Sample records for continuous reaction system

  1. Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.

    PubMed

    Toh, Ren Wei; Li, Jie Sheng; Wu, Jie

    2018-01-04

    A new reaction screening technology for organic synthesis was recently demonstrated by combining elements from both continuous micro-flow and conventional batch reactors, coined stop-flow micro-tubing (SFMT) reactors. In SFMT, chemical reactions that require high pressure can be screened in parallel through a safer and convenient way. Cross-contamination, which is a common problem in reaction screening for continuous flow reactors, is avoided in SFMT. Moreover, the commercially available light-permeable micro-tubing can be incorporated into SFMT, serving as an excellent choice for light-mediated reactions due to a more effective uniform light exposure, compared to batch reactors. Overall, the SFMT reactor system is similar to continuous flow reactors and more superior than batch reactors for reactions that incorporate gas reagents and/or require light-illumination, which enables a simple but highly efficient reaction screening system. Furthermore, any successfully developed reaction in the SFMT reactor system can be conveniently translated to continuous-flow synthesis for large scale production.

  2. Ionic Liquid Droplet Microreactor for Catalysis Reactions Not at Equilibrium.

    PubMed

    Zhang, Ming; Ettelaie, Rammile; Yan, Tao; Zhang, Suojiang; Cheng, Fangqin; Binks, Bernard P; Yang, Hengquan

    2017-12-06

    We develop a novel strategy to more effectively and controllably process continuous enzymatic or homogeneous catalysis reactions based on nonaqueous Pickering emulsions. A key element of this strategy is "bottom-up" construction of a macroscale continuous flow reaction system through packing catalyst-containing micron-sized ionic liquid (IL) droplet in oil in a column reactor. Due to the continuous influx of reactants into the droplet microreactors and the continuous release of products from the droplet microreactors, catalysis reactions in such a system can take place without limitations arising from establishment of the reaction equilibrium and catalyst separation, inherent in conventional batch reactions. As proof of the concept, enzymatic enantioselective trans-esterification and CuI-catalyzed cycloaddition reactions using this IL droplet-based flow system both exhibit 8 to 25-fold enhancement in catalysis efficiency compared to their batch counterparts, and a durability of at least 4000 h for the enantioselective trans-esterification of 1-phenylethyl alcohol, otherwise unattainable in their batch counterparts. We further establish a theoretical model for such a catalysis system working under nonequilibrium conditions, which not only supports the experimental results but also helps to predict reaction progress at a microscale level. Being operationally simple, efficient, and adaptive, this strategy provides an unprecedented platform for practical applications of enzymes and homogeneous catalysts even at a controllable level.

  3. Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network.

    PubMed

    Griffith, Mark; Courtney, Tod; Peccoud, Jean; Sanders, William H

    2006-11-15

    The stochastic kinetics of a well-mixed chemical system, governed by the chemical Master equation, can be simulated using the exact methods of Gillespie. However, these methods do not scale well as systems become more complex and larger models are built to include reactions with widely varying rates, since the computational burden of simulation increases with the number of reaction events. Continuous models may provide an approximate solution and are computationally less costly, but they fail to capture the stochastic behavior of small populations of macromolecules. In this article we present a hybrid simulation algorithm that dynamically partitions the system into subsets of continuous and discrete reactions, approximates the continuous reactions deterministically as a system of ordinary differential equations (ODE) and uses a Monte Carlo method for generating discrete reaction events according to a time-dependent propensity. Our approach to partitioning is improved such that we dynamically partition the system of reactions, based on a threshold relative to the distribution of propensities in the discrete subset. We have implemented the hybrid algorithm in an extensible framework, utilizing two rigorous ODE solvers to approximate the continuous reactions, and use an example model to illustrate the accuracy and potential speedup of the algorithm when compared with exact stochastic simulation. Software and benchmark models used for this publication can be made available upon request from the authors.

  4. The assembly and use of continuous flow systems for chemical synthesis.

    PubMed

    Britton, Joshua; Jamison, Timothy F

    2017-11-01

    The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.

  5. Modeling and simulation of enzymatic gluconic acid production using immobilized enzyme and CSTR-PFTR circulation reaction system.

    PubMed

    Li, Can; Lin, Jianqun; Gao, Ling; Lin, Huibin; Lin, Jianqiang

    2018-04-01

    Production of gluconic acid by using immobilized enzyme and continuous stirred tank reactor-plug flow tubular reactor (CSTR-PFTR) circulation reaction system. A production system is constructed for gluconic acid production, which consists of a continuous stirred tank reactor (CSTR) for pH control and liquid storage and a plug flow tubular reactor (PFTR) filled with immobilized glucose oxidase (GOD) for gluconic acid production. Mathematical model is developed for this production system and simulation is made for the enzymatic reaction process. The pH inhibition effect on GOD is modeled by using a bell-type curve. Gluconic acid can be efficiently produced by using the reaction system and the mathematical model developed for this system can simulate and predict the process well.

  6. Mass spectrometric directed system for the continuous-flow synthesis and purification of diphenhydramine.

    PubMed

    Loren, Bradley P; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang; Nagy, Zoltan K; Thompson, David H; Cooks, R Graham

    2017-06-01

    A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis.

  7. A hybrid continuous-discrete method for stochastic reaction-diffusion processes.

    PubMed

    Lo, Wing-Cheong; Zheng, Likun; Nie, Qing

    2016-09-01

    Stochastic fluctuations in reaction-diffusion processes often have substantial effect on spatial and temporal dynamics of signal transductions in complex biological systems. One popular approach for simulating these processes is to divide the system into small spatial compartments assuming that molecules react only within the same compartment and jump between adjacent compartments driven by the diffusion. While the approach is convenient in terms of its implementation, its computational cost may become prohibitive when diffusive jumps occur significantly more frequently than reactions, as in the case of rapid diffusion. Here, we present a hybrid continuous-discrete method in which diffusion is simulated using continuous approximation while reactions are based on the Gillespie algorithm. Specifically, the diffusive jumps are approximated as continuous Gaussian random vectors with time-dependent means and covariances, allowing use of a large time step, even for rapid diffusion. By considering the correlation among diffusive jumps, the approximation is accurate for the second moment of the diffusion process. In addition, a criterion is obtained for identifying the region in which such diffusion approximation is required to enable adaptive calculations for better accuracy. Applications to a linear diffusion system and two nonlinear systems of morphogens demonstrate the effectiveness and benefits of the new hybrid method.

  8. Mass spectrometric real-time monitoring of an enzymatic phosphorylation assay using internal standards and data-handling freeware.

    PubMed

    Krappmann, Michael; de Boer, Arjen R; Kool, Daniël R W; Irth, Hubertus; Letzel, Thomas

    2016-04-30

    Continuous-flow reaction detection systems (monitoring enzymatic reactions with mass spectrometry (MS)) lack quantitative values so far. Therefore, two independent internal standards (IS) are implemented in a way that the online system stability can be observed, quantitative conversion values for substrate and product can be obtained and they can be used as mass calibration standards for high MS accuracy. An application previously developed for the MS detection of peptide phosphorylation by cAMP-dependent protein kinase A (PKA) (De Boer et al., Anal. Bioanal. Chem. 2005, 381, 647-655) was transferred to a continuous-flow reaction detection system. This enzymatic reaction, involving enzyme activation as well as the transfer of a phosphate group from ATP to a peptide substrate, was used to prove the compatibility of a quantitative enzymatic assay in a continuous-flow real-time system (connected to MS). Moreover (using internal standards), the critical parameter reaction temperature (including solution density variations depending on temperature) was studied in the continuous-flow mixing system. Furthermore, two substrates (malantide and kemptide), two enzyme types (catalytic subunit of PKA and complete PKA) and one inhibitor were tested to determine system robustness and long-term availability. Even spraying solutions that contained significant amount of MS contaminants (e.g. the polluted catalytic subunit) resulted in quantifiable MS signal intensities. Subsequent recalculations using the internal standards led to results representing the power of this application. The presented methodology and the data evaluation with available Achroma freeware enable the direct coupling of biochemical assays with quantitative MS detection. Monitoring changes such as temperature, reaction time, inhibition, or compound concentrations can be observed quantitatively and thus enzymatic activity can be calculated. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Mass spectrometric directed system for the continuous-flow synthesis and purification of diphenhydramine† †Electronic supplementary information (ESI) available: NMR spectra of selected product, mass spectra of selected products, crystallization information, and experimental procedures are supplied. See DOI: 10.1039/c7sc00905d Click here for additional data file.

    PubMed Central

    Loren, Bradley P.; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang

    2017-01-01

    A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis. PMID:28979759

  10. Continuous steel production and apparatus

    DOEpatents

    Peaslee, Kent D [Rolla, MO; Peter, Jorg J [McMinnville, OR; Robertson, David G. C. [Rolla, MO; Thomas, Brian G [Champaign, IL; Zhang, Lifeng [Trondheim, NO

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  11. Instability of turing patterns in reaction-diffusion-ODE systems.

    PubMed

    Marciniak-Czochra, Anna; Karch, Grzegorz; Suzuki, Kanako

    2017-02-01

    The aim of this paper is to contribute to the understanding of the pattern formation phenomenon in reaction-diffusion equations coupled with ordinary differential equations. Such systems of equations arise, for example, from modeling of interactions between cellular processes such as cell growth, differentiation or transformation and diffusing signaling factors. We focus on stability analysis of solutions of a prototype model consisting of a single reaction-diffusion equation coupled to an ordinary differential equation. We show that such systems are very different from classical reaction-diffusion models. They exhibit diffusion-driven instability (turing instability) under a condition of autocatalysis of non-diffusing component. However, the same mechanism which destabilizes constant solutions of such models, destabilizes also all continuous spatially heterogeneous stationary solutions, and consequently, there exist no stable Turing patterns in such reaction-diffusion-ODE systems. We provide a rigorous result on the nonlinear instability, which involves the analysis of a continuous spectrum of a linear operator induced by the lack of diffusion in the destabilizing equation. These results are extended to discontinuous patterns for a class of nonlinearities.

  12. Continuous monitoring of enzymatic activity within native electrophoresis gels: Application to mitochondrial oxidative phosphorylation complexes

    PubMed Central

    Covian, Raul; Chess, David; Balaban, Robert S.

    2012-01-01

    Native gel electrophoresis allows the separation of very small amounts of protein complexes while retaining aspects of their activity. In-gel enzymatic assays are usually performed by using reaction-dependent deposition of chromophores or light scattering precipitates quantified at fixed time points after gel removal and fixation, limiting the ability to analyze enzyme reaction kinetics. Herein, we describe a custom reaction chamber with reaction media recirculation and filtering and an imaging system that permits the continuous monitoring of in-gel enzymatic activity even in the presence of turbidity. Images were continuously collected using time-lapse high resolution digital imaging, and processing routines were developed to obtain kinetic traces of the in-gel activities and analyze reaction time courses. This system also permitted the evaluation of enzymatic activity topology within the protein bands of the gel. This approach was used to analyze the reaction kinetics of two mitochondrial complexes in native gels. Complex IV kinetics showed a short initial linear phase where catalytic rates could be calculated, whereas Complex V activity revealed a significant lag phase followed by two linear phases. The utility of monitoring the entire kinetic behavior of these reactions in native gels, as well as the general application of this approach, is discussed. PMID:22975200

  13. Continuous monitoring of enzymatic activity within native electrophoresis gels: application to mitochondrial oxidative phosphorylation complexes.

    PubMed

    Covian, Raul; Chess, David; Balaban, Robert S

    2012-12-01

    Native gel electrophoresis allows the separation of very small amounts of protein complexes while retaining aspects of their activity. In-gel enzymatic assays are usually performed by using reaction-dependent deposition of chromophores or light-scattering precipitates quantified at fixed time points after gel removal and fixation, limiting the ability to analyze the enzyme reaction kinetics. Herein, we describe a custom reaction chamber with reaction medium recirculation and filtering and an imaging system that permits the continuous monitoring of in-gel enzymatic activity even in the presence of turbidity. Images were continuously collected using time-lapse high-resolution digital imaging, and processing routines were developed to obtain kinetic traces of the in-gel activities and analyze reaction time courses. This system also permitted the evaluation of enzymatic activity topology within the protein bands of the gel. This approach was used to analyze the reaction kinetics of two mitochondrial complexes in native gels. Complex IV kinetics showed a short initial linear phase in which catalytic rates could be calculated, whereas Complex V activity revealed a significant lag phase followed by two linear phases. The utility of monitoring the entire kinetic behavior of these reactions in native gels, as well as the general application of this approach, is discussed. Published by Elsevier Inc.

  14. Enzymatic synthesis of chiral amino-alcohols by coupling transketolase and transaminase-catalyzed reactions in a cascading continuous-flow microreactor system.

    PubMed

    Gruber, Pia; Carvalho, Filipe; Marques, Marco P C; O'Sullivan, Brian; Subrizi, Fabiana; Dobrijevic, Dragana; Ward, John; Hailes, Helen C; Fernandes, Pedro; Wohlgemuth, Roland; Baganz, Frank; Szita, Nicolas

    2018-03-01

    Rapid biocatalytic process development and intensification continues to be challenging with currently available methods. Chiral amino-alcohols are of particular interest as they represent key industrial synthons for the production of complex molecules and optically pure pharmaceuticals. (2S,3R)-2-amino-1,3,4-butanetriol (ABT), a building block for the synthesis of protease inhibitors and detoxifying agents, can be synthesized from simple, non-chiral starting materials, by coupling a transketolase- and a transaminase-catalyzed reaction. However, until today, full conversion has not been shown and, typically, long reaction times are reported, making process modifications and improvement challenging. In this contribution, we present a novel microreactor-based approach based on free enzymes, and we report for the first time full conversion of ABT in a coupled enzyme cascade for both batch and continuous-flow systems. Using the compartmentalization of the reactions afforded by the microreactor cascade, we overcame inhibitory effects, increased the activity per unit volume, and optimized individual reaction conditions. The transketolase-catalyzed reaction was completed in under 10 min with a volumetric activity of 3.25 U ml -1 . Following optimization of the transaminase-catalyzed reaction, a volumetric activity of 10.8 U ml -1 was attained which led to full conversion of the coupled reaction in 2 hr. The presented approach illustrates how continuous-flow microreactors can be applied for the design and optimization of biocatalytic processes. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  15. Checkpoint inhibitor-associated drug reaction with eosinophilia and systemic symptom syndrome.

    PubMed

    Mirza, Sayeef; Hill, Ebone'; Ludlow, Steven P; Nanjappa, Sowmya

    2017-06-01

    Drug reaction with eosinophilia and systemic symptom syndrome is a potentially fatal drug reaction that must be recognized quickly. Ipilimumab and nivolumab are both important agents in the treatment of melanoma and continue to be studied in other malignancies. We believe the mainstay of therapy for immunotherapy-induced drug reaction with eosinophilia and systemic symptom syndrome is early recognition, discontinuation of the inciting agent, supportive care, and treatment with high dose corticosteroids with appropriate tapers that may reduce the length of internal organ injury in cases with liver or kidney involvement.

  16. Simulating the reactions of CO2 in aqueous monoethanolamine solution by reaction ensemble Monte Carlo using the continuous fractional component method.

    PubMed

    Balaji, Sayee Prasaad; Gangarapu, Satesh; Ramdin, Mahinder; Torres-Knoop, Ariana; Zuilhof, Han; Goetheer, Earl L V; Dubbeldam, David; Vlugt, Thijs J H

    2015-06-09

    Molecular simulations were used to compute the equilibrium concentrations of the different species in CO2/monoethanolamine solutions for different CO2 loadings. Simulations were performed in the Reaction Ensemble using the continuous fractional component Monte Carlo method at temperatures of 293, 333, and 353 K. The resulting computed equilibrium concentrations are in excellent agreement with experimental data. The effect of different reaction pathways was investigated. For a complete understanding of the equilibrium speciation, it is essential to take all elementary reactions into account because considering only the overall reaction of CO2 with MEA is insufficient. The effects of electrostatics and intermolecular van der Waals interactions were also studied, clearly showing that solvation of reactants and products is essential for the reaction. The Reaction Ensemble Monte Carlo using the continuous fractional component method opens the possibility of investigating the effects of the solvent on CO2 chemisorption by eliminating the need to study different reaction pathways and concentrate only on the thermodynamics of the system.

  17. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.

    PubMed

    Salis, Howard; Kaznessis, Yiannis

    2005-02-01

    The dynamical solution of a well-mixed, nonlinear stochastic chemical kinetic system, described by the Master equation, may be exactly computed using the stochastic simulation algorithm. However, because the computational cost scales with the number of reaction occurrences, systems with one or more "fast" reactions become costly to simulate. This paper describes a hybrid stochastic method that partitions the system into subsets of fast and slow reactions, approximates the fast reactions as a continuous Markov process, using a chemical Langevin equation, and accurately describes the slow dynamics using the integral form of the "Next Reaction" variant of the stochastic simulation algorithm. The key innovation of this method is its mechanism of efficiently monitoring the occurrences of slow, discrete events while simultaneously simulating the dynamics of a continuous, stochastic or deterministic process. In addition, by introducing an approximation in which multiple slow reactions may occur within a time step of the numerical integration of the chemical Langevin equation, the hybrid stochastic method performs much faster with only a marginal decrease in accuracy. Multiple examples, including a biological pulse generator and a large-scale system benchmark, are simulated using the exact and proposed hybrid methods as well as, for comparison, a previous hybrid stochastic method. Probability distributions of the solutions are compared and the weak errors of the first two moments are computed. In general, these hybrid methods may be applied to the simulation of the dynamics of a system described by stochastic differential, ordinary differential, and Master equations.

  18. Interference effects of vocalization on dual task performance

    NASA Astrophysics Data System (ADS)

    Owens, J. M.; Goodman, L. S.; Pianka, M. J.

    1984-09-01

    Voice command and control systems have been proposed as a potential means of off-loading the typically overburdened visual information processing system. However, prior to introducing novel human-machine interfacing technologies in high workload environments, consideration must be given to the integration of the new technologists within existing task structures to ensure that no new sources of workload or interference are systematically introduced. This study examined the use of voice interactive systems technology in the joint performance of two cognitive information processing tasks requiring continuous memory and choice reaction wherein a basis for intertask interference might be expected. Stimuli for the continuous memory task were presented aurally and either voice or keyboard responding was required in the choice reaction task. Performance was significantly degraded in each task when voice responding was required in the choice reaction time task. Performance degradation was evident in higher error scores for both the choice reaction and continuous memory tasks. Performance decrements observed under conditions of high intertask stimulus similarity were not statistically significant. The results signal the need to consider further the task requirements for verbal short-term memory when applying speech technology in multitask environments.

  19. Liquid-assisted grinding and ion pairing regulates percentage conversion and diastereoselectivity of the Wittig reaction under mechanochemical conditions.

    PubMed

    Denlinger, Kendra Leahy; Ortiz-Trankina, Lianna; Carr, Preston; Benson, Kingsley; Waddell, Daniel C; Mack, James

    2018-01-01

    Mechanochemistry is maturing as a discipline and continuing to grow, so it is important to continue understanding the rules governing the system. In a mechanochemical reaction, the reactants are added into a vessel along with one or more grinding balls and the vessel is shaken at high speeds to facilitate a chemical reaction. The dielectric constant of the solvent used in liquid-assisted grinding (LAG) and properly chosen counter-ion pairing increases the percentage conversion of stilbenes in a mechanochemical Wittig reaction. Utilizing stepwise addition/evaporation of ethanol in liquid-assisted grinding also allows for the tuning of the diastereoselectivity in the Wittig reaction.

  20. Forward design of a complex enzyme cascade reaction

    PubMed Central

    Hold, Christoph; Billerbeck, Sonja; Panke, Sven

    2016-01-01

    Enzymatic reaction networks are unique in that one can operate a large number of reactions under the same set of conditions concomitantly in one pot, but the nonlinear kinetics of the enzymes and the resulting system complexity have so far defeated rational design processes for the construction of such complex cascade reactions. Here we demonstrate the forward design of an in vitro 10-membered system using enzymes from highly regulated biological processes such as glycolysis. For this, we adapt the characterization of the biochemical system to the needs of classical engineering systems theory: we combine online mass spectrometry and continuous system operation to apply standard system theory input functions and to use the detailed dynamic system responses to parameterize a model of sufficient quality for forward design. This allows the facile optimization of a 10-enzyme cascade reaction for fine chemical production purposes. PMID:27677244

  1. Simulation tools for particle-based reaction-diffusion dynamics in continuous space

    PubMed Central

    2014-01-01

    Particle-based reaction-diffusion algorithms facilitate the modeling of the diffusional motion of individual molecules and the reactions between them in cellular environments. A physically realistic model, depending on the system at hand and the questions asked, would require different levels of modeling detail such as particle diffusion, geometrical confinement, particle volume exclusion or particle-particle interaction potentials. Higher levels of detail usually correspond to increased number of parameters and higher computational cost. Certain systems however, require these investments to be modeled adequately. Here we present a review on the current field of particle-based reaction-diffusion software packages operating on continuous space. Four nested levels of modeling detail are identified that capture incrementing amount of detail. Their applicability to different biological questions is discussed, arching from straight diffusion simulations to sophisticated and expensive models that bridge towards coarse grained molecular dynamics. PMID:25737778

  2. Rapid Catalyst Screening by a Continuous-Flow Microreactor Interfaced with Ultra High Pressure Liquid Chromatography

    PubMed Central

    Fang, Hui; Xiao, Qing; Wu, Fanghui; Floreancig, Paul E.; Weber, Stephen G.

    2010-01-01

    A high-throughput screening system for homogeneous catalyst discovery has been developed by integrating a continuous-flow capillary-based microreactor with ultra-high pressure liquid chromatography (UHPLC) for fast online analysis. Reactions are conducted in distinct and stable zones in a flow stream that allows for time and temperature regulation. UHPLC detection at high temperature allows high throughput online determination of substrate, product, and byproduct concentrations. We evaluated the efficacies of a series of soluble acid catalysts for an intramolecular Friedel-Crafts addition into an acyliminium ion intermediate within one day and with minimal material investment. The effects of catalyst loading, reaction time, and reaction temperature were also screened. This system exhibited high reproducibility for high-throughput catalyst screening and allowed several acid catalysts for the reaction to be identified. Major side products from the reactions were determined through off-line mass spectrometric detection. Er(OTf)3, the catalyst that showed optimal efficiency in the screening, was shown to be effective at promoting the cyclization reaction on a preparative scale. PMID:20666502

  3. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

    PubMed Central

    Jolley, Katherine E

    2015-01-01

    Summary The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates. PMID:26734089

  4. Investigation of a lithium-halogen exchange flow process for the preparation of boronates by using a cryo-flow reactor.

    PubMed

    Newby, James A; Huck, Lena; Blaylock, D Wayne; Witt, Paul M; Ley, Steven V; Browne, Duncan L

    2014-01-03

    Conducting low-temperature organometallic reactions under continuous flow conditions offers the potential to more accurately control exotherms and thus provide more reproducible and scalable processes. Herein, progress towards this goal with regards to the lithium-halogen exchange/borylation reaction is reported. In addition to improving the scope of substrates available on a research scale, methods to improve reaction profiles and expedite purification of the products are also described. On moving to a continuous system, thermocouple measurements have been used to track exotherms and provide a level of safety for continuous processing of organometallic reagents. The use of an in-line continuous liquid-liquid separation device to circumvent labour intensive downstream off-line processing is also reported. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An interfaced system for production of methane in a spacecraft

    NASA Technical Reports Server (NTRS)

    Weiss, A. H.

    1973-01-01

    The formose reaction, the homogeneously catalyzed condensation of formaldehyde to sugars, proceeds simultaneously with Cannizzaro and crossed Cannizzaro reactions. Reaction studies in a continuous stirred tank reactor have shown that rate instabilities are exhibited. There are temperature instabilities as well as concentration instabilities in calcium hydroxide catalyst, formaldehyde reactant, and hydroxyl ion. It is postulated that Ca(OH)+ is the actual catalytic species for the formose system. A unifying mechanism is developed that postulates that reactions proceed from a common intermediate complexed species, and that the selectivity for each reaction depends on the nature of the catalyst forming the carbohydrate complex. The catalytic mechanism explains the Lobry de Bruyn-van Eckenstein aldose ketose rearrangements and mutarotations of sugars that also proceed in the system.

  6. Enzymatic production of monoacylglycerols containing polyunsaturated fatty acids through an efficient glycerolysis system.

    PubMed

    Yang, Tiankui; Rebsdorf, Morten; Engelrud, Ulrik; Xu, Xuebing

    2005-03-09

    The aim of the study was to develop an efficient glycerolysis system for the enzymatic production of monoacylglycerols (MAGs) containing polyunsaturated fatty acids. Glycerolysis has been widely applied in industry for the chemical production of food MAGs under high temperature. The enzymatic glycerolysis system at 40-70 degrees C is unfortunately a multiphase system, which leads to the lower reaction efficiency. A tert-butyl alcohol system was developed after careful evaluation and more than 20-fold of the reaction efficiency from this system was obtained compared to the solvent-free system. Novozym 435 was employed as a catalyst in the glycerolysis from the screening. In the batch reaction system with tert-butyl alcohol, temperature higher than 40 degrees C was favored. The glycerol/oil ratio was best in the study with 4.5 while the solvent weight ratio from 1 to 3 had little effect. In general, 60-70% yield can be obtained at 2 h in the stirred tank reactor. The continuous glycerolysis was conducted in a packed bed reactor. MAG yield up to 70% was reached at 30-40 min residence time. The continuous glycerolysis was more sensitive to the amount of tert-butyl alcohol, and in the weight ratio to oil more than 2 was favored. The continuous process was optimized with the assistance of response surface methodology. Optimal conditions for the packed bed reactor after all considerations were recommended as glycerol/oil 4:1 (mol/mol), temperature 40 degrees C, and residence time 45 min. The operation stability study showed that there was no slight reduction of reaction performance at more than 30 days, implying a high feasibility in practical applications.

  7. Stress reaction process-based hierarchical recognition algorithm for continuous intrusion events in optical fiber prewarning system

    NASA Astrophysics Data System (ADS)

    Qu, Hongquan; Yuan, Shijiao; Wang, Yanping; Yang, Dan

    2018-04-01

    To improve the recognition performance of optical fiber prewarning system (OFPS), this study proposed a hierarchical recognition algorithm (HRA). Compared with traditional methods, which employ only a complex algorithm that includes multiple extracted features and complex classifiers to increase the recognition rate with a considerable decrease in recognition speed, HRA takes advantage of the continuity of intrusion events, thereby creating a staged recognition flow inspired by stress reaction. HRA is expected to achieve high-level recognition accuracy with less time consumption. First, this work analyzed the continuity of intrusion events and then presented the algorithm based on the mechanism of stress reaction. Finally, it verified the time consumption through theoretical analysis and experiments, and the recognition accuracy was obtained through experiments. Experiment results show that the processing speed of HRA is 3.3 times faster than that of a traditional complicated algorithm and has a similar recognition rate of 98%. The study is of great significance to fast intrusion event recognition in OFPS.

  8. A new halogen-free chemical oscillator: the reaction between permanganate ion and ninhydrin in a continuously stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Treindl, Ľudovít; Nagy, Arpád

    1987-07-01

    The reaction between permanganate ion and ninhydrin in the presence of phosphoric acid in aqueous solution shows sustained oscillations in a continuously stirred tank reactor (CSTR). It exhibits a kinetic bistability between an oscillatory and a stationary state. Our new oscillating system seems to be a second permanganate chemical oscillator, thus broadening the small group of non-halogen-based chemical oscillators.

  9. Hybrid deterministic/stochastic simulation of complex biochemical systems.

    PubMed

    Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina

    2017-11-21

    In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is greater than the fast reaction waiting time but smaller than the slow reaction waiting time. A moderate reaction is approximated as a stochastic (deterministic) process if it was classified as a stochastic (deterministic) process at the time at which it crosses the threshold of low (high) waiting time. A Gillespie First Reaction Method is implemented to select and execute the slow reactions. The performances of MoBios were tested on a typical example of hybrid dynamics: that is the DNA transcription regulation. The simulated dynamic profile of the reagents' abundance and the estimate of the error introduced by the fully deterministic approach were used to evaluate the consistency of the computational model and that of the software tool.

  10. A National Satellite-Based System for Providing Continuing Education to Engineers.

    ERIC Educational Resources Information Center

    Georgia Inst. of Tech., Atlanta.

    This document proposes, and indicates initial reaction to, a multi-point satellite-based delivery system which will permit expansion of current programs and services of the Association for Media-based Continuing Education for Engineers, Inc. (AMCEE) consortium to a much larger aggregated audience of practicing engineers throughout the country. It…

  11. Glucose Disappearance in Biological Treatment Systems

    PubMed Central

    Jeris, John S.; Cardenas, Raul R.

    1966-01-01

    Laboratory scale anaerobic and aerobic treatment units were conditioned with a daily slug-feed of glucose. After a period of acclimation and stabilization, glucose disappearance was monitored continuously after the slug feed. A continuous sampling apparatus is described. Mathematical analysis of the data indicate zero-order reactions for both biological treatment systems. PMID:16349685

  12. Continuous Flow Science in an Undergraduate Teaching Laboratory: Bleach-Mediated Oxidation in a Biphasic System

    ERIC Educational Resources Information Center

    Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, bleach-mediated oxidation of aldehydes under biphasic conditions was developed that allowed students to explore concepts of mixing or mass transport, solvent sustainability, biphasic reactions, phase transfer catalysis, and continuous flow chemistry.

  13. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    PubMed Central

    Moreno-Marrodan, Carmen; Liguori, Francesca

    2017-01-01

    The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible. PMID:28503209

  14. Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil

    PubMed Central

    2011-01-01

    Background The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel. Results The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w). Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield. Conclusions The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design of a continuous flow-through bioreactor system. PMID:22013896

  15. THE RECIPROCAL SYSTEM FORMED BY THE CHLORIDES AND THE BROMIDES OF LITHIUM AND THALLIUM (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergman, A.G.; Arabadzhan, A.S.

    1963-06-01

    The phase diagrams of 2 series of continuous solid solutions, the Li, K:: Cl,Br and the Li,Tl:: Cl,Br were investigated, as part of a study of the relation between thermal effect of equilibrium reactions and the structure of the melts. In the second system, the heat of the exchange reaction LiCl + TlBr in equilibrium LiBr + TlCl amounts to 8.19 kcal/mole, being larger than that of the corresponding reaction in the Li,K:: Cl,Br system; this affects the crystallization surface in the system. A Pt crucible and Pt, Au, Pd/Pt-Rh thermocouple were used in the thermal studies. It was foundmore » that the liquidus surface consists of 2 fields of continuous series of solid solutions. The joint crystallization curve has a maximum at 392 deg C at the stable portion of the LiCl-TlBr system. There is crest in the liquidus surface corresponding to the stable diagonal LiCl--TlBr; this is visible more markedly in the Li(Cl,Br) field. (TTT)« less

  16. Method and system for continuous atomic layer deposition

    DOEpatents

    Elam, Jeffrey W.; Yanguas-Gil, Angel; Libera, Joseph A.

    2017-03-21

    A system and method for continuous atomic layer deposition. The system and method includes a housing, a moving bed which passes through the housing, a plurality of precursor gases and associated input ports and the amount of precursor gases, position of the input ports, and relative velocity of the moving bed and carrier gases enabling exhaustion of the precursor gases at available reaction sites.

  17. The in situ generation and reactive quench of diazonium compounds in the synthesis of azo compounds in microreactors.

    PubMed

    Akwi, Faith M; Watts, Paul

    2016-01-01

    In this paper, a micro-fluidic optimized process for the continuous flow synthesis of azo compounds is presented. The continuous flow synthesis of Sudan II azo dye was used as a model reaction for the study. At found optimal azo coupling reaction temperature and pH an investigation of the optimum flow rates of the reactants for the diazotization and azo coupling reactions in Little Things Factory-MS microreactors was performed. A conversion of 98% was achieved in approximately 2.4 minutes and a small library of azo compounds was thus generated under these reaction conditions from couplers with aminated or hydroxylated aromatic systems. The scaled up synthesis of these compounds in PTFE tubing (i.d. 1.5 mm) was also investigated, where good reaction conversions ranging between 66-91% were attained.

  18. Oxidation kinetics of a continuous carbon phase in a nonreactive matrix

    NASA Technical Reports Server (NTRS)

    Eckel, Andrew J.; Cawley, James D.; Parthasarathy, Triplicane A.

    1995-01-01

    Analytical solutions of and experimental results on the oxidation kinetics of carbon in a pore are presented. Reaction rate, reaction sequence, oxidant partial pressure, total system pressure, pore/crack dimensions, and temperature are analyzed with respect to the influence of each on an overall linear-parabolic rate relationship. Direct measurement of carbon recession is performed using two microcomposite model systems oxidized in the temperature range of 700 to 1200 C, and for times to 35 h. Experimental results are evaluated using the derived analytical solutions. Implications on the oxidation resistance of continuous-fiber-reinforced ceramic-matrix composites containing a carbon constituent are discussed.

  19. Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions

    NASA Astrophysics Data System (ADS)

    Piersall, Shannon D.; Anderson, James B.

    1991-07-01

    In applications to several simple reaction systems we have explored a ``direct simulation'' method for predicting and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird, has been found remarkably successful in treating a number of difficult problems in rarefied dynamics. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal distributions, with coupled gas-dynamic and reaction effects, with emission and adsorption of radiation, and with many other effects difficult to treat in any other way. The usual differential equations of chemical kinetics are eliminated. For a bimolecular reaction of the type A+B→C+D with a rate sufficiently low to allow a continued thermal equilibrium of reactants we find that direct simulation reproduces the expected second order kinetics. Simulations for a range of temperatures yield the activation energies expected for the reaction models specified. For faster reactions under conditions leading to a depletion of energetic reactant species, the expected slowing of reaction rates and departures from equilibrium distributions are observed. The minimum sample sizes required for adequate simulations are as low as 1000 molecules for these cases. The calculations are found to be simple and straightforward for the homogeneous systems considered. Although computation requirements may be excessively high for very slow reactions, they are reasonably low for fast reactions, for which nonequilibrium effects are most important.

  20. Amine-Functionalized Sugarcane Bagasse: A Renewable Catalyst for Efficient Continuous Flow Knoevenagel Condensation Reaction at Room Temperature.

    PubMed

    Qiao, Yanhui; Teng, Junjiang; Wang, Shuangfei; Ma, Hao

    2017-12-24

    A biomass-based catalyst with amine groups (-NH₂), viz., amine-functionalized sugarcane bagasse (SCB-NH₂), was prepared through the amination of sugarcane bagasse (SCB) in a two-step process. The physicochemical properties of the catalyst were characterized through FT-IR, elemental analysis, XRD, TG, and SEM-EDX techniques, which confirmed the -NH₂ group was grafted onto SCB successfully. The catalytic performance of SCB-NH₂ in Knoevenagel condensation reaction was tested in the batch and continuous flow reactions. Significantly, it was found that the catalytic performance of SCB-NH₂ is better in flow system than that in batch system. Moreover, the SCB-NH₂ presented an excellent catalytic activity and stability at the high flow rate. When the flow rate is at the 1.5 mL/min, no obvious deactivation was observed and the product yield and selectivity are more than 97% and 99% after 80 h of continuous reaction time, respectively. After the recovery of solvent from the resulting solution, a white solid was obtained as a target product. As a result, the SCB-NH₂ is a promising catalyst for the synthesis of fine chemicals by Knoevenagel condensation reaction in large scale, and the modification of the renewable SCB with -NH₂ group is a potential avenue for the preparation of amine-functionalized catalytic materials in industry.

  1. High-yield cell-free synthesis of human EGFR by IRES-mediated protein translation in a continuous exchange cell-free reaction format

    PubMed Central

    Quast, Robert B.; Sonnabend, Andrei; Stech, Marlitt; Wüstenhagen, Doreen A.; Kubick, Stefan

    2016-01-01

    Cell-free protein synthesis systems derived from eukaryotic sources often provide comparatively low amounts of several μg per ml of de novo synthesized membrane protein. In order to overcome this, we herein demonstrate the high-yield cell-free synthesis of the human EGFR in a microsome-containing system derived from cultured Sf21 cells. Yields were increased more than 100-fold to more than 285 μg/ml by combination of IRES-mediated protein translation with a continuous exchange cell-free reaction format that allowed for prolonged reaction lifetimes exceeding 24 hours. In addition, an orthogonal cell-free translation system is presented that enabled the site-directed incorporation of p-Azido-L-phenylalanine by amber suppression. Functionality of cell-free synthesized receptor molecules is demonstrated by investigation of autophosphorylation activity in the absence of ligand and interaction with the cell-free synthesized adapter molecule Grb2. PMID:27456041

  2. Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow.

    PubMed

    Peyman, Sally A; Iles, Alexander; Pamme, Nicole

    2009-11-07

    An extremely versatile microfluidic device is demonstrated in which multi-step (bio)chemical procedures can be performed in continuous flow. The system operates by generating several co-laminar flow streams, which contain reagents for specific (bio)reactions across a rectangular reaction chamber. Functionalized magnetic microparticles are employed as mobile solid-supports and are pulled from one side of the reaction chamber to the other by use of an external magnetic field. As the particles traverse the co-laminar reagent streams, binding and washing steps are performed on their surface in one operation in continuous flow. The applicability of the platform was first demonstrated by performing a proof-of-principle binding assay between streptavidin coated magnetic particles and biotin in free solution with a limit of detection of 20 ng mL(-1) of free biotin. The system was then applied to a mouse IgG sandwich immunoassay as a first example of a process involving two binding steps and two washing steps, all performed within 60 s, a fraction of the time required for conventional testing.

  3. Enhanced organic pollutants degradation and electricity production simultaneously via strengthening the radicals reaction in a novel Fenton-photocatalytic fuel cell system.

    PubMed

    Zhao, Kai; Zeng, Qingyi; Bai, Jing; Li, Jinhua; Xia, Ligang; Chen, Shuai; Zhou, Baoxue

    2017-01-01

    An enhanced result in organic pollutants degradation and simultaneous electricity production has been achieved by establishing a novel Fenton-photocatalytic fuel cell (Fenton-PFC) system in which TiO 2 nanotube arrays (TNA) was designed as a photoanode and ferrous ions were added. The proposed Fenton-PFC system can expand the radical reaction for organic pollutants degradation from the surface of electrodes to the whole solution system due to a continuous photoelectric Fenton reaction without continually adding any external voltage and ferrous ions. The cyclic reactions between ferrous ions (Fe 2+ /Fe 3+ ) and radicals and related species (HO, HO 2 , O 2 - and H 2 O 2 etc.) can be achieved at electrodes surface via a self-bias voltage yielded by the PFC. More importantly, the proposed Fenton-PFC system has hardly any sludge due to an effective radical reaction using a small amount of ferrous ions. The degradation rate of refractory organics, such as methyl orange, methylene blue, congo red and tetracycline, increased from 34.99%, 43.75%, 40.58% and 34.40% (the traditional PFC without Fe 2+ ) to 97.34%, 95.36%, 93.23% and 73.80% (the Fenton-PFC within Fe 2+ ) respectively after 60 min operation. Meanwhile, the electricity generation is up to 1.21-2.04 times larger than the traditional PFC. The proposed Fenton-PFC system provides a more economical and efficient way for energy recovery and wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Reaction Acceleration in Thin Films with Continuous Product Deposition for Organic Synthesis.

    PubMed

    Wei, Zhenwei; Wleklinski, Michael; Ferreira, Christina; Cooks, R Graham

    2017-08-01

    Thin film formats are used to study the Claisen-Schmidt base-catalyzed condensation of 6-hydroxy-1-indanone with substituted benzaldehydes and to compare the reaction acceleration relative to the bulk. Relative acceleration factors initially exceeded 10 3 and were on the order of 10 2 at steady state, although the confined volume reaction was not electrostatically driven. Substituent effects were muted compared to those in the corresponding bulk and microdroplet reactions and it is concluded that the rate-limiting step at steady state is reagent transport to the interface. Conditions were found that allowed product deposition from the thin film to occur continuously as the reaction mixture was added and as the solvent evaporated. Yields of 74 % and production rates of 98 mg h -1 were reached in a very simple experimental system that could be multiplexed to greater scales. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The in situ generation and reactive quench of diazonium compounds in the synthesis of azo compounds in microreactors

    PubMed Central

    Akwi, Faith M

    2016-01-01

    Summary In this paper, a micro-fluidic optimized process for the continuous flow synthesis of azo compounds is presented. The continuous flow synthesis of Sudan II azo dye was used as a model reaction for the study. At found optimal azo coupling reaction temperature and pH an investigation of the optimum flow rates of the reactants for the diazotization and azo coupling reactions in Little Things Factory-MS microreactors was performed. A conversion of 98% was achieved in approximately 2.4 minutes and a small library of azo compounds was thus generated under these reaction conditions from couplers with aminated or hydroxylated aromatic systems. The scaled up synthesis of these compounds in PTFE tubing (i.d. 1.5 mm) was also investigated, where good reaction conversions ranging between 66–91% were attained. PMID:27829903

  6. Continuous protein concentration via free-flow moving reaction boundary electrophoresis.

    PubMed

    Kong, Fanzhi; Zhang, Min; Chen, Jingjing; Fan, Liuyin; Xiao, Hua; Liu, Shaorong; Cao, Chengxi

    2017-07-28

    In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Robotic reactions: delay-induced patterns in autonomous vehicle systems.

    PubMed

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  8. Robotic reactions: Delay-induced patterns in autonomous vehicle systems

    NASA Astrophysics Data System (ADS)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  9. Discreteness effects in a reacting system of particles with finite interaction radius.

    PubMed

    Berti, S; López, C; Vergni, D; Vulpiani, A

    2007-09-01

    An autocatalytic reacting system with particles interacting at a finite distance is studied. We investigate the effects of the discrete-particle character of the model on properties like reaction rate, quenching phenomenon, and front propagation, focusing on differences with respect to the continuous case. We introduce a renormalized reaction rate depending both on the interaction radius and the particle density, and we relate it to macroscopic observables (e.g., front speed and front thickness) of the system.

  10. Chemical Continuous Time Random Walks

    NASA Astrophysics Data System (ADS)

    Aquino, T.; Dentz, M.

    2017-12-01

    Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.

  11. A continuous-exchange cell-free protein synthesis system based on extracts from cultured insect cells.

    PubMed

    Stech, Marlitt; Quast, Robert B; Sachse, Rita; Schulze, Corina; Wüstenhagen, Doreen A; Kubick, Stefan

    2014-01-01

    In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds.

  12. A Continuous-Exchange Cell-Free Protein Synthesis System Based on Extracts from Cultured Insect Cells

    PubMed Central

    Stech, Marlitt; Quast, Robert B.; Sachse, Rita; Schulze, Corina; Wüstenhagen, Doreen A.; Kubick, Stefan

    2014-01-01

    In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds. PMID:24804975

  13. Adaptive hybrid simulations for multiscale stochastic reaction networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa

    2015-01-21

    The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such amore » partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest.« less

  14. Adaptive hybrid simulations for multiscale stochastic reaction networks.

    PubMed

    Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa

    2015-01-21

    The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such a partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest.

  15. Continuous optical measurement system of hemolysis during a photosensitization reaction using absorption spectrum

    NASA Astrophysics Data System (ADS)

    Hamada, R.; Ogawa, E.; Arai, T.

    2018-02-01

    To investigate hemolysis phenomena during a photosensitization reaction with the reaction condition continuously and simultaneously for a safety assessment of hemolysis side effect, we constructed an optical system to measure blood sample absorption spectrum during the reaction. Hemolysis degree might be under estimated in general evaluation methods because there is a constant oxygen pressure assumption in spite of oxygen depression take place. By investigating hemoglobin oxidation and oxygen desorption dynamics obtained from the contribution of the visible absorption spectrum and multiple regression analysis, both the hemolysis phenomena and its oxygen environment might be obtained with time. A 664 nm wavelength laser beam for the reaction excitation and 475-650 nm light beam for measuring the absorbance spectrum were arranged perpendicularly crossing. A quartz glass cuvette with 1×10 mm in dimensions for the spectrum measurement was located at this crossing point. A red blood cells suspension medium was arranged with low hematocrit containing 30 μg/ml talaporfin sodium. This medium was irradiated up to 40 J/cm2 . The met-hemoglobin, oxygenatedhemoglobin, and deoxygenated-hemoglobin concentrations were calculated by a multiple regression analysis from the measured spectra. We confirmed the met-hemoglobin concentration increased and oxygen saturation decreased with the irradiation time, which seems to indicate the hemolysis progression and oxygen consumption, respectively. By using our measuring system, the hemolysis progression seems to be obtained with oxygen environment information.

  16. Rapid neutral-neutral reactions at low temperatures: a new network and first results for TMC-1

    NASA Astrophysics Data System (ADS)

    Smith, Ian W. M.; Herbst, Eric; Chang, Qiang

    2004-05-01

    There is now ample evidence from an assortment of experiments, especially those involving the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme) technique, that a variety of neutral-neutral reactions possess no activation energy barrier and are quite rapid at very low temperatures. These reactions include both radical-radical systems and, more surprisingly, systems involving an atom or a radical and one `stable' species. Generalizing from the small but growing number of systems studied in the laboratory, we estimate reaction rate coefficients for a larger number of such reactions and include these estimates in a new network of gas-phase reactions for use in low-temperature interstellar chemistry. Designated osu.2003, the new network is available on the World Wide Web and will be continually updated. A table of new results for molecular abundances in the dark cloud TMC-1 (CP) is provided and compared with results from an older (new standard model; nsm) network.

  17. Dichotomous-noise-induced pattern formation in a reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Das, Debojyoti; Ray, Deb Shankar

    2013-06-01

    We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR) -membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion system.

  18. Development of a chemiluminescent and bioluminescent system for the detection of bacteria in wastewater effluent

    NASA Technical Reports Server (NTRS)

    Thomas, R. R.

    1975-01-01

    Automated chemiluminescent and bioluminescent sensors were developed for continuous monitoring of microbial levels in wastewater effluent. Development of the chemiluminescent system included optimization of reagent concentrations as well as two new techniques which will allow for increased sensitivity and specificity. The optimal reagent concentrations are 0.0025 M luminol and 0.0125 M sodium perborate in 0.75N sodium hydroxide before addition of sample. The methods developed to increase specificity include (1) extraction of porphyrins from bacteria collected in a filter using 0.1N NaOH - 50 percent Ethanol, and (2) use of the specific reaction rate characteristics for the different luminol catalysts. Since reaction times are different for each catalyst, the reaction can be made specific for bacteria by measuring only the light emission from the particular reaction time zone specific for bacteria. Developments of the bioluminescent firefly luciferase system were in the area of flow system design.

  19. Identifying the Oscillatory Mechanism of the Glucose Oxidase-Catalase Coupled Enzyme System.

    PubMed

    Muzika, František; Jurašek, Radovan; Schreiberová, Lenka; Radojković, Vuk; Schreiber, Igor

    2017-10-12

    We provide experimental evidence of periodic and aperiodic oscillations in an enzymatic system of glucose oxidase-catalase in a continuous-flow stirred reactor coupled by a membrane with a continuous-flow reservoir supplied with hydrogen peroxide. To describe such dynamics, we formulate a detailed mechanism based on partial results in the literature. Finally, we introduce a novel method for estimation of unknown kinetic parameters. The method is based on matching experimental data at an oscillatory instability with stoichiometric constraints of the mechanism formulated by applying the stability theory of reaction networks. This approach has been used to estimate rate coefficients in the catalase part of the mechanism. Remarkably, model simulations show good agreement with the observed oscillatory dynamics, including apparently chaotic intermittent behavior. Our method can be applied to any reaction system with an experimentally observable dynamical instability.

  20. Harnessing Thin-Film Continuous-Flow Assembly Lines.

    PubMed

    Britton, Joshua; Castle, Jared W; Weiss, Gregory A; Raston, Colin L

    2016-07-25

    Inspired by nature's ability to construct complex molecules through sequential synthetic transformations, an assembly line synthesis of α-aminophosphonates has been developed. In this approach, simple starting materials are continuously fed through a thin-film reactor where the intermediates accrue molecular complexity as they progress through the flow system. Flow chemistry allows rapid multistep transformations to occur via reaction compartmentalization, an approach not amenable to using conventional flasks. Thin film processing can also access facile in situ solvent exchange to drive reaction efficiency, and through this method, α-aminophosphonate synthesis requires only 443 s residence time to produce 3.22 g h(-1) . Assembly-line synthesis allows unprecedented reaction flexibility and processing efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A hybrid continuous-discrete method for stochastic reaction–diffusion processes

    PubMed Central

    Zheng, Likun; Nie, Qing

    2016-01-01

    Stochastic fluctuations in reaction–diffusion processes often have substantial effect on spatial and temporal dynamics of signal transductions in complex biological systems. One popular approach for simulating these processes is to divide the system into small spatial compartments assuming that molecules react only within the same compartment and jump between adjacent compartments driven by the diffusion. While the approach is convenient in terms of its implementation, its computational cost may become prohibitive when diffusive jumps occur significantly more frequently than reactions, as in the case of rapid diffusion. Here, we present a hybrid continuous-discrete method in which diffusion is simulated using continuous approximation while reactions are based on the Gillespie algorithm. Specifically, the diffusive jumps are approximated as continuous Gaussian random vectors with time-dependent means and covariances, allowing use of a large time step, even for rapid diffusion. By considering the correlation among diffusive jumps, the approximation is accurate for the second moment of the diffusion process. In addition, a criterion is obtained for identifying the region in which such diffusion approximation is required to enable adaptive calculations for better accuracy. Applications to a linear diffusion system and two nonlinear systems of morphogens demonstrate the effectiveness and benefits of the new hybrid method. PMID:27703710

  2. Dermatologic surgery emergencies: Complications caused by systemic reactions, high-energy systems, and trauma.

    PubMed

    Minkis, Kira; Whittington, Adam; Alam, Murad

    2016-08-01

    While the overall incidence of emergencies in dermatologic surgery is low, emergent situations can occasionally pose a risk to patients undergoing such procedures. The clinical importance of several types of emergences related to systemic reactions, high energy systems, and trauma are reviewed, and relevant epidemiology, clinical manifestations, diagnosis, work-up, management, and prevention are discussed. Early detection of surgical emergencies can mitigate any associated adverse outcomes, thereby allowing the outstanding record of safety of dermatologic surgery to continue. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Efficient Application of Continuous Fractional Component Monte Carlo in the Reaction Ensemble

    PubMed Central

    2017-01-01

    A new formulation of the Reaction Ensemble Monte Carlo technique (RxMC) combined with the Continuous Fractional Component Monte Carlo method is presented. This method is denoted by serial Rx/CFC. The key ingredient is that fractional molecules of either reactants or reaction products are present and that chemical reactions always involve fractional molecules. Serial Rx/CFC has the following advantages compared to other approaches: (1) One directly obtains chemical potentials of all reactants and reaction products. Obtained chemical potentials can be used directly as an independent check to ensure that chemical equilibrium is achieved. (2) Independent biasing is applied to the fractional molecules of reactants and reaction products. Therefore, the efficiency of the algorithm is significantly increased, compared to the other approaches. (3) Changes in the maximum scaling parameter of intermolecular interactions can be chosen differently for reactants and reaction products. (4) The number of fractional molecules is reduced. As a proof of principle, our method is tested for Lennard-Jones systems at various pressures and for various chemical reactions. Excellent agreement was found both for average densities and equilibrium mixture compositions computed using serial Rx/CFC, RxMC/CFCMC previously introduced by Rosch and Maginn (Journal of Chemical Theory and Computation, 2011, 7, 269–279), and the conventional RxMC approach. The serial Rx/CFC approach is also tested for the reaction of ammonia synthesis at various temperatures and pressures. Excellent agreement was found between results obtained from serial Rx/CFC, experimental results from literature, and thermodynamic modeling using the Peng–Robinson equation of state. The efficiency of reaction trial moves is improved by a factor of 2 to 3 (depending on the system) compared to the RxMC/CFCMC formulation by Rosch and Maginn. PMID:28737933

  4. Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot

    DOEpatents

    Reilly, Peter T. A.

    2007-03-20

    The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.

  5. Continuous In Vitro Evolution of a Ribozyme that Catalyzes Three Successive Nucleotidyl Addition Reactions

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Wright, Martin C.; Joyce, Gerald F.

    2002-01-01

    Variants of the class I ligase ribozyme, which catalyzes joining of the 3' end of a template bound oligonucleotide to its own 5' end, have been made to evolve in a continuous manner by a simple serial transfer procedure that can be carried out indefinitely. This process was expanded to allow the evolution of ribozymes that catalyze three successive nucleotidyl addition reactions, two template-directed mononucleotide additions followed by RNA ligation. During the development of this behavior, a population of ribozymes was maintained against an overall dilution of more than 10(exp 406). The resulting ribozymes were capable of catalyzing the three-step reaction pathway, with nucleotide addition occurring in either a 5' yieldig 3' or a 3' yielding 5' direction. This purely chemical system provides a functional model of a multi-step reaction pathway that is undergoing Darwinian evolution.

  6. Space shuttle orbiter rear mounted reaction control system jet interaction study. [hypersonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.

    1977-01-01

    The effect of interaction between the reaction control system (RCS) jets and the flow over the space shuttle orbiter in the atmosphere was investigated in the NASA Langley 31-inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 and in the AEDC continuous flow hypersonic tunnel B at a nominal Mach number of 6, using 0.01 and .0125 scale force models with aft RCS nozzles mounted both on the model and on the sting of the force model balance. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter when the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.

  7. Recycling Frank: Spontaneous emergence of homochirality in noncatalytic systems

    PubMed Central

    Plasson, Raphaël; Bersini, Hugues; Commeyras, Auguste

    2004-01-01

    In this work, we introduce a prebiotically relevant protometabolic pattern corresponding to an engine of deracemization by using an external energy source. The spontaneous formation of a nonracemic mixture of chiral compounds can be observed in out-of-equilibrium systems via a symmetry-breaking phenomenon. This observation is possible thanks to chirally selective autocatalytic reactions (Frank's model) [Frank, F. C. (1953) Biochim. Biophys. Acta 11, 459–463]. We show that the use of a Frank-like model in a recycled system composed of reversible chemical reactions, rather than the classical irreversible system, allows for the emergence of a synergetic autoinduction from simple reactions, without any autocatalytic or even catalytic reaction. This model is described as a theoretical framework, based on the stereoselective reactivity of preexisting chiral monomeric building blocks (polymerization, epimerization, and depolymerization) maintained out of equilibrium by a continuous energy income, via an activation reaction. It permits the self-conversion of all monomeric subunits into a single chiral configuration. Real prebiotic systems of amino acid derivatives can be described on this basis. They are shown to be able to spontaneously reach a stable nonracemic state in a few centuries. In such systems, the presence of epimerization reactions is no more destructive, but in contrast is the central driving force of the unstabilization of the racemic state. PMID:15548617

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, G.-H.; Pesaran, A.; Smith, K.

    The objectives of this paper are: (1) continue to explore thermal abuse behaviors of Li-ion cells and modules that are affected by local conditions of heat and materials; (2) use the 3D Li-ion battery thermal abuse 'reaction' model developed for cells to explore the impact of the location of internal short, its heating rate, and thermal properties of the cell; (3) continue to understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-ion cells and modules; and (4) explore the use of the developed methodology to support the design of abuse-tolerant Li-ion battery systems.

  9. Biological water quality monitoring using chemiluminescent and bioluminescent techniques

    NASA Technical Reports Server (NTRS)

    Thomas, R. R.

    1978-01-01

    Automated chemiluminescence and bioluminescence sensors were developed for the continuous monitoring of microbial levels in water supplies. The optimal chemical procedures were determined for the chemiluminescence system to achieve maximum sensitivity. By using hydrogen peroxide, reaction rate differentiation, ethylene diamine tetraacetic acid (EDTA), and carbon monoxide pretreatments, factors which cause interference were eliminated and specificity of the reaction for living and dead bacteria was greatly increased. By employing existing technology with some modifications, a sensitive and specific bioluminescent system was developed.

  10. PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals.

    PubMed

    Zhang, Chengxi; Luan, Weiling; Yin, Yuhang; Yang, Fuqian

    2017-01-01

    Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX 3 , X = Cl, Br, I or a mixture thereof) have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene) (PTFE) capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19-35 nm, high fluorescence quantum yield of 47.8-90.55%, and photoluminescence emission in the range of 450-700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices.

  11. PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals

    PubMed Central

    Zhang, Chengxi; Yin, Yuhang

    2017-01-01

    Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX3, X = Cl, Br, I or a mixture thereof) have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene) (PTFE) capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19–35 nm, high fluorescence quantum yield of 47.8–90.55%, and photoluminescence emission in the range of 450–700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices. PMID:29259867

  12. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    PubMed Central

    Chevalier, Michael W.; El-Samad, Hana

    2014-01-01

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled. PMID:25481130

  13. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    NASA Astrophysics Data System (ADS)

    Chevalier, Michael W.; El-Samad, Hana

    2014-12-01

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.

  14. Chemical reactions in reverse micelle systems

    DOEpatents

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  15. Spatiotemporal chaos of self-replicating spots in reaction-diffusion systems.

    PubMed

    Wang, Hongli; Ouyang, Qi

    2007-11-23

    The statistical properties of self-replicating spots in the reaction-diffusion Gray-Scott model are analyzed. In the chaotic regime of the system, the spots that dominate the spatiotemporal chaos grow and divide in two or decay into the background randomly and continuously. The rates at which the spots are created and decay are observed to be linearly dependent on the number of spots in the system. We derive a probabilistic description of the spot dynamics based on the statistical independence of spots and thus propose a characterization of the spatiotemporal chaos dominated by replicating spots.

  16. Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 3

    NASA Technical Reports Server (NTRS)

    Prust, Chet D.; Hartman, Dan W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 3 continues the presentation of IOA worksheets.

  17. Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 2

    NASA Technical Reports Server (NTRS)

    Prust, Chet D.; Hartman, Dan W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 2 continues the presentation of IOA worksheets.

  18. Stochastic simulations on a model of circadian rhythm generation.

    PubMed

    Miura, Shigehiro; Shimokawa, Tetsuya; Nomura, Taishin

    2008-01-01

    Biological phenomena are often modeled by differential equations, where states of a model system are described by continuous real values. When we consider concentrations of molecules as dynamical variables for a set of biochemical reactions, we implicitly assume that numbers of the molecules are large enough so that their changes can be regarded as continuous and they are described deterministically. However, for a system with small numbers of molecules, changes in their numbers are apparently discrete and molecular noises become significant. In such cases, models with deterministic differential equations may be inappropriate, and the reactions must be described by stochastic equations. In this study, we focus a clock gene expression for a circadian rhythm generation, which is known as a system involving small numbers of molecules. Thus it is appropriate for the system to be modeled by stochastic equations and analyzed by methodologies of stochastic simulations. The interlocked feedback model proposed by Ueda et al. as a set of deterministic ordinary differential equations provides a basis of our analyses. We apply two stochastic simulation methods, namely Gillespie's direct method and the stochastic differential equation method also by Gillespie, to the interlocked feedback model. To this end, we first reformulated the original differential equations back to elementary chemical reactions. With those reactions, we simulate and analyze the dynamics of the model using two methods in order to compare them with the dynamics obtained from the original deterministic model and to characterize dynamics how they depend on the simulation methodologies.

  19. Nonlinear Chemical Dynamics and Synchronization

    NASA Astrophysics Data System (ADS)

    Li, Ning

    Alan Turing's work on morphogenesis, more than half a century ago, continues to motivate and inspire theoretical and experimental biologists even today. That said, there are very few experimental systems for which Turing's theory is applicable. In this thesis we present an experimental reaction-diffusion system ideally suited for testing Turing's ideas in synthetic "cells" consisting of microfluidically produced surfactant-stabilized emulsions in which droplets containing the Belousov-Zhabotinsky (BZ) oscillatory chemical reactants are dispersed in oil. The BZ reaction has become the prototype of nonlinear dynamics in chemistry and a preferred system for exploring the behavior of coupled nonlinear oscillators. Our system consists of a surfactant stabilized monodisperse emulsion of drops of aqueous BZ solution dispersed in a continuous phase of oil. In contrast to biology, here the chemistry is understood, rate constants are measured and interdrop coupling is purely diffusive. We explore a large set of parameters through control of rate constants, drop size, spacing, and spatial arrangement of the drops in lines and rings in one-dimension (1D) and hexagonal arrays in two-dimensions (2D). The Turing model is regarded as a metaphor for morphogenesis in biology but not for prediction. Here, we develop a quantitative and falsifiable reaction-diffusion model that we experimentally test with synthetic cells. We quantitatively establish the extent to which the Turing model in 1D describes both stationary pattern formation and temporal synchronization of chemical oscillators via reaction-diffusion and in 2D demonstrate that chemical morphogenesis drives physical differentiation in synthetic cells.

  20. High-yield, in vitro protein expression using a continuous-exchange, coupled transcription/ translation system.

    PubMed

    Martin, G A; Kawaguchi, R; Lam, Y; DeGiovanni, A; Fukushima, M; Mutter, W

    2001-10-01

    The Rapid Translation System (RTS 500) (Roche Molecular Biochemicals) is a high-yield protein expression system that utilizes an enhanced E. coli lysate for an in vitro transcription/translation reaction. In contrast to conventional transcription/translation, this system allows protein expression to continue for more than 24 h. We demonstrated the utility of the RTS 500 by expressing different soluble and active proteins that generally pose problems in cell-based expression systems. We first expressed GFP-lunasin, a fusion protein that, because of its toxicity, has been impossible to produce in whole cells. The second protein we expressed, human interleukin-2 (IL-2), is generally difficult to produce, either as the native molecule or as a GSTfusion protein, in a soluble form in bacteria. Finally, we demonstrated the capacity of the RTS 500 to co-express proteins, by the simultaneous production of GFP and CAT in a single reaction. This new technology appears to be particularly usefulfor the convenient production of preparative amounts (100-900 microg) of proteins that are toxic or insoluble in cell-based systems.

  1. Space Shuttle reaction control system thruster metal nitrate removal and characterization

    NASA Technical Reports Server (NTRS)

    Saulsberry, R. L.; Mccartney, P. A.

    1993-01-01

    The Space Shuttle hypergolic primary reaction control system (PRCS) thrusters continue to fail-leak or fail-off at a rate of approximately 1.5 per flight, attributed primarily to metal nitrate formation in the nitrogen tetroxide (N2O4) pilot operated valves (POV's). The failures have continued despite ground support equipment (GSE) and subsystem operational improvements. As a result, the Johnson Space Center (JSC) White Sands Test Facility (WSTF) performed a study to characterize the contamination in the N204 valves. This study prompted the development and implementation of a highly successful flushing technique using deionized (DI) water and gaseous nitrogen (GN2) to remove the contamination while minimizing Teflon seat damage. Following flushing a comprehensive acceptance test is performed before the thruster is deemed recovered. Between the time WSTF was certified to process flight thrusters (March 1992) and September 1993, a 68 percent thruster recovery rate was achieved. The contamination flushed from these thrusters was analyzed and has provided insight into the corrosion process, which is reported in this publication. Additionally, the long-term performance of 24 flushed thrusters installed in the WSTF Fleet Leader Shuttle reaction control subsystem (RCS) test articles is being assessed. WSTF continues to flush flight and test article thrusters and compile data to investigate metal nitrate formation characteristics in leaking and nonleaking valves.

  2. Continuous real-time measurement of aqueous cyanide

    DOEpatents

    Rosentreter, Jeffrey J.; Gering, Kevin L.

    2007-03-06

    This invention provides a method and system capable of the continuous, real-time measurement of low concentrations of aqueous free cyanide (CN) using an on-line, flow through system. The system is based on the selective reactivity of cyanide anions and the characteristically nonreactive nature of metallic gold films, wherein this selective reactivity is exploited as an indirect measurement for aqueous cyanide. In the present invention the dissolution of gold, due to the solubilization reaction with the analyte cyanide anion, is monitored using a piezoelectric microbalance contained within a flow cell.

  3. The Eschenmoser coupling reaction under continuous-flow conditions

    PubMed Central

    Singh, Sukhdeep; Köhler, J Michael; Schober, Andreas

    2011-01-01

    Summary The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given. PMID:21915222

  4. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning and...

  5. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning and...

  6. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning and...

  7. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning and...

  8. Modulation of electrostatic interactions to reveal a reaction network unifying the aggregation behaviour of the Aβ42 peptide and its variants† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00215g Click here for additional data file.

    PubMed Central

    Meisl, Georg; Yang, Xiaoting

    2017-01-01

    The aggregation of the amyloid β peptide (Aβ42), which is linked to Alzheimer's disease, can be altered significantly by modulations of the peptide's intermolecular electrostatic interactions. Variations in sequence and solution conditions have been found to lead to highly variable aggregation behaviour. Here we modulate systematically the electrostatic interactions governing the aggregation kinetics by varying the ionic strength of the solution. We find that changes in the solution ionic strength induce a switch in the reaction pathway, altering the dominant mechanisms of aggregate multiplication. This strategy thereby allows us to continuously sample a large space of different reaction mechanisms and develop a minimal reaction network that unifies the experimental kinetics under a wide range of different conditions. More generally, this universal reaction network connects previously separate systems, such as charge mutants of the Aβ42 peptide, on a continuous mechanistic landscape, providing a unified picture of the aggregation mechanism of Aβ42. PMID:28979758

  9. Method for production of magnesium

    DOEpatents

    Diaz, Alexander F.; Howard, Jack B.; Modestino, Anthony J.; Peters, William A.

    1998-01-01

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400.degree. C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products.

  10. Method for production of magnesium

    DOEpatents

    Diaz, A.F.; Howard, J.B.; Modestino, A.J.; Peters, W.A.

    1998-07-21

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400 C or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products. 12 figs.

  11. Characterization of the surfaces of platinum/tin oxide based catalysts by Fourier transform spectroscopy (FTIR)

    NASA Technical Reports Server (NTRS)

    Keiser, Joseph T.

    1989-01-01

    The Laser Atmospheric Wind Sounder (LAWS) Program has as one of its goals the development of a satellite based carbon dioxide laser for making wind velocity measurements. The specifications for this laser include the requirement that the laser operate at a repetition rate of 10 Hertz continuously for three years. Earth-based carbon dioxide lasers can operate for only a short time on a single charge of gas because the lasing action causes the CO2 to break down into CO and O2. Therefore, earth-based CO2 lasers are generally operated in a flow through mode in which the spent gas is continually exhausted and fresh gas is continually added. For a satellite based system, however, a recirculation system is desired because it is not practical to send up extra tanks of CO2. A catalyst which could enable a recirculating CO2 laser to function continuously for three years needs to be developed. In the development of a catalyst system there are many variables. Obviously, not all possible formulations can be tested for three years, therefore, an accurate model which is based on the reaction mechanism is needed. The construction of a multistep reaction mechanism is similar to the construction of a jigsaw puzzle. Different techniques each supply a piece of the puzzle and the researcher must put the pieces together. Transmission infrared spectroscopy was shown to be very useful in supplying some of the information needed to elucidate reaction mechanisms. The purpose was to see what kind of information might be obtained about the NASA catalyst using infrared absorption spectroscopy. Approximately 200 infrared spectra of the prototype Pt/tin oxide catalyst and its precursor components are observed under a variety of different conditions. The most significant observations are summarized.

  12. Photoreactor with self-contained photocatalyst recapture

    DOEpatents

    Gering, Kevin L.

    2004-12-07

    A system for the continuous use and recapture of a catalyst in liquid, comprising: a generally vertical reactor having a reaction zone with generally downwardly flowing liquid, and a catalyst recovery chamber adjacent the reaction zone containing a catalyst consisting of buoyant particles. The liquid in the reaction zone flows downward at a rate which exceeds the speed of upward buoyant migration of catalyst particles in the liquid, whereby catalyst particles introduced into the liquid in the reaction zone are drawn downward with the liquid. A slow flow velocity flotation chamber disposed below the reaction zone is configured to recapture the catalyst particles and allow them to float back into the catalyst recovery chamber for recycling into the reaction zone, rather than being swept downstream. A novel 3-dimensionally adjustable solar reflector directs light into the reaction zone to induce desired photocatalytic reactions within the liquid in the reaction zone.

  13. 40 CFR 63.11502 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: process knowledge, an engineering assessment, or test data. Byproduct means a chemical (liquid, gas, or... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources... system(s); (5) A gas stream routed to other processes for reaction or other use in another process (i.e...

  14. An Inexpensive Electrode and Cell for Measurement of Oxygen Uptake in Chemical and Biochemical Systems.

    ERIC Educational Resources Information Center

    Brunet, Juan E.; And Others

    1983-01-01

    The continuous measurement of oxygen consumption in an enzymatic reaction is a frequent experimental fact and extremely important in the enzymatic activity of oxygenase. An electrochemical system, based on a polarographic method, has been developed to monitor the oxygen uptake. The system developed and electrode used are described. (JN)

  15. Characterization of extended channel bioreactors for continuous-flow protein production

    DOE PAGES

    Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.; ...

    2015-10-02

    In this paper, protein based therapeutics are an important class of drugs, used to treat a variety of medical conditions including cancer and autoimmune diseases. Requiring continuous cold storage, and having a limited shelf life, the ability to produce such therapeutics at the point-of-care would open up new opportunities in distributing medicines and treating patients in more remote locations. Here, the authors describe the first steps in the development of a microfluidic platform that can be used for point-of-care protein synthesis. While biologic medicines, including therapeutic proteins, are commonly produced using recombinant deoxyribonucleic acid (DNA) technology in large batch cellmore » cultures, the system developed here utilizes cell-free protein synthesis (CFPS) technology. CFPS is a scalable technology that uses cell extracts containing the biological machinery required for transcription and translation and combines those extracts with DNA, encoding a specific gene, and the additional metabolites required to produce proteins in vitro. While CFPS reactions are typically performed in batch or fed-batch reactions, a well-engineered reaction scheme may improve both the rate of protein production and the economic efficiency of protein synthesis reactions, as well as enable a more streamlined method for subsequent purification of the protein product—all necessary requirements for point-of-care protein synthesis. In this work, the authors describe a new bioreactor design capable of continuous production of protein using cell-free protein synthesis. The bioreactors were designed with three inlets to separate reactive components prior to on-chip mixing, which lead into a long, narrow, serpentine channel. These multiscale, serpentine channel bioreactors were designed to take advantage of microscale diffusion distances across narrow channels in reactors containing enough volume to produce a therapeutic dose of protein, and open the possibility of performing these reactions continuously and in line with downstream purification modules. Here, the authors demonstrate the capability to produce protein over time with continuous-flow reactions and examine basic design features and operation specifications fundamental to continuous microfluidic protein synthesis.« less

  16. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevalier, Michael W., E-mail: Michael.Chevalier@ucsf.edu; El-Samad, Hana, E-mail: Hana.El-Samad@ucsf.edu

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation timesmore » of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.« less

  17. Should drivers be operating within an automation-free bandwidth? Evaluating haptic steering support systems with different levels of authority.

    PubMed

    Petermeijer, Sebastiaan M; Abbink, David A; de Winter, Joost C F

    2015-02-01

    The aim of this study was to compare continuous versus bandwidth haptic steering guidance in terms of lane-keeping behavior, aftereffects, and satisfaction. An important human factors question is whether operators should be supported continuously or only when tolerance limits are exceeded. We aimed to clarify this issue for haptic steering guidance by investigating costs and benefits of both approaches in a driving simulator. Thirty-two participants drove five trials, each with a different level of haptic support: no guidance (Manual); guidance outside a 0.5-m bandwidth (Band1); a hysteresis version of Band1, which guided back to the lane center once triggered (Band2); continuous guidance (Cont); and Cont with double feedback gain (ContS). Participants performed a reaction time task while driving. Toward the end of each trial, the guidance was unexpectedly disabled to investigate aftereffects. All four guidance systems prevented large lateral errors (>0.7 m). Cont and especially ContS yielded smaller lateral errors and higher time to line crossing than Manual, Band1, and Band2. Cont and ContS yielded short-lasting aftereffects, whereas Band1 and Band2 did not. Cont yielded higher self-reported satisfaction and faster reaction times than Band1. Continuous and bandwidth guidance both prevent large driver errors. Continuous guidance yields improved performance and satisfaction over bandwidth guidance at the cost of aftereffects and variability in driver torque (indicating human-automation conflicts). The presented results are useful for designers of haptic guidance systems and support critical thinking about the costs and benefits of automation support systems.

  18. Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 4

    NASA Technical Reports Server (NTRS)

    Prust, Chet D.; Hartman, Dan W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 4 continues the presentation of IOA worksheets and contains the potential critical items list.

  19. Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.

    PubMed

    Berenstein, Igal; Muñuzuri, Alberto P; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R

    2008-08-01

    Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.

  20. A Flight-Calibrated Methodology for Determination of Cassini Thruster On-Times for Reaction Wheel Biases

    NASA Technical Reports Server (NTRS)

    Sarani, Sam

    2010-01-01

    The Cassini spacecraft, the largest and most complex interplanetary spacecraft ever built, continues to undertake unique scientific observations of planet Saturn, Titan, Enceladus, and other moons of the ring world. In order to maintain a stable attitude during the course of its mission, this three-axis stabilized spacecraft uses two different control systems: the Reaction Control System (or RCS) and the Reaction Wheel Assembly (RWA) control system. In the course of its mission, Cassini performs numerous reaction wheel momentum biases (or unloads) using its reaction control thrusters. The use of the RCS thrusters often imparts undesired velocity changes (delta Vs) on the spacecraft and it is crucial for Cassini navigation and attitude control teams to be able to, quickly but accurately, predict the hydrazine usage and delta V vector in Earth Mean Equatorial (J2000) inertial coordinates for reaction wheel bias events, without actually having to spend time and resources simulating the event in a dynamic or hardware-in-the-loop simulation environments. The flight-calibrated methodology described in this paper, and the ground software developed thereof, are designed to provide the RCS thruster on-times, with acceptable accuracy and without any form of dynamic simulation, for reaction wheel biases, along with the hydrazine usage and the delta V in EME-2000 inertial frame.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hang, E-mail: hangchen@mit.edu; Thill, Peter; Cao, Jianshu

    In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes withmore » the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.« less

  2. The Role of Oxygen in the Formation of TNT Product Ions in Ion Mobility Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daum, Keith Alvin; Atkinson, David Alan; Ewing, Robert Gordon

    2002-03-01

    The atmospheric pressure ionization of 2,4,6-trinitrotoluene (TNT) in air yields the (TNT-H)- product ion. It is generally accepted that this product ion is formed by the direct proton abstraction of neutral TNT by O2- reactant ions. Data presented here demonstrate the reaction involves the formation of an intermediate (TNT·O2)-, from the association of either TNT+O2- or TNT-+O2. This intermediate has two subsequent reaction branches. One of these branches involves simple dissociation of the intermediate to TNT-; the other branch is a terminal reaction that forms the typically observed (TNT-H)- ion via proton abstraction. The dissociation reaction involving electron transfer tomore » TNT- appeared to be kinetically favored and prevailed at low concentrations of oxygen (less than 2%). The presence of significant amounts of oxygen, however, resulted in the predominant formation of the (TNT-H)- ion by the terminal reaction branch. With TNT- in the system, either from direct electron attachment or by simple dissociation of the intermediate, increasing levels of oxygen in the system will continue to reform the intermediate, allowing the cycle to continue until proton abstraction occurs. Key to understanding this complex reaction pathway is that O2- was observed to transfer an electron directly to neutral TNT to form the TNT-. At oxygen levels of less than 2%, the TNT- ion intensity increased with increasing levels of oxygen (and O2-) and was larger than the (TNT-H)- ion intensity. As the oxygen level increased from 2 to 10%, the (TNT-H)- product ion became predominant. The potential reaction mechanisms were investigated with an ion mobility spectrometer, which was configured to independently evaluate the ionization pathways.« less

  3. New techniques in neutron data measurements above 30 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, P.W.; Haight, R.C.

    1991-01-01

    Recent developments in experimental facilities have enabled new techniques for measurements of neutron interactions above 30 MeV. Foremost is the development of both monoenergetic and continuous neutron sources using accelerators in the medium energy region between 100 and 800 MeV. Measurements of the reaction products have been advanced by the continuous improvement in detector systems, electronics and computers. Corresponding developments in particle transport codes and in the theory of nuclear reactions at these energies have allowed more precise design of neutron sources, experimental shielding and detector response. As a result of these improvements, many new measurements are possible and themore » data base in this energy range is expanding quickly.« less

  4. Model reduction of multiscale chemical langevin equations: a numerical case study.

    PubMed

    Sotiropoulos, Vassilios; Contou-Carrere, Marie-Nathalie; Daoutidis, Prodromos; Kaznessis, Yiannis N

    2009-01-01

    Two very important characteristics of biological reaction networks need to be considered carefully when modeling these systems. First, models must account for the inherent probabilistic nature of systems far from the thermodynamic limit. Often, biological systems cannot be modeled with traditional continuous-deterministic models. Second, models must take into consideration the disparate spectrum of time scales observed in biological phenomena, such as slow transcription events and fast dimerization reactions. In the last decade, significant efforts have been expended on the development of stochastic chemical kinetics models to capture the dynamics of biomolecular systems, and on the development of robust multiscale algorithms, able to handle stiffness. In this paper, the focus is on the dynamics of reaction sets governed by stiff chemical Langevin equations, i.e., stiff stochastic differential equations. These are particularly challenging systems to model, requiring prohibitively small integration step sizes. We describe and illustrate the application of a semianalytical reduction framework for chemical Langevin equations that results in significant gains in computational cost.

  5. Thermoelectrochemical system and method

    DOEpatents

    Ludwig, F.A.; Townsend, C.W.; Eliash, B.M.

    1995-11-28

    A thermal electrochemical system is described in which an electrical current is generated between a cathode immersed in a concentrated aqueous solution of phosphoric acid and an anode immersed in a molten salt solution of ammonium phosphate and monohydric ammonium phosphate. Reactants consumed at the electrodes during the electrochemical reaction are thermochemically regenerated and recycled to the electrodes to provide continuous operation of the system. 5 figs.

  6. Safety of High Speed Ground Transportation Systems - Human Factors Phase II: Design and Evaluation of Decision Aids for Control of High-Speed Trains: Experiments and Model

    DOT National Transportation Integrated Search

    1996-12-01

    Although the speed of some guided ground transportation systems continues to : increase, the reaction time and the sensory and information processing : capacities of railroad personnel remain constant. This second report in a : series examining criti...

  7. THERMALLY STABLE PERFLUORINATED POLYMERS

    DTIC Science & Technology

    this system has been found which involves addition of perfluoroalkyl - dihydrazides to perfluoroalkyldinitriles in a highly polar solvent. Inactivation...formation of an intermediate poly( perfluorodiacyl hydrazine) from the reaction of perfluorodiacyl chlorides with perfluoroalkyldihydrazides ....Work on the poly( perfluoroalkylene -1,2,4,4H-triazole system has been continued with the objectives of increasing the polymer molecular weights

  8. Boosting the value of biodiesel byproduct by the non-catalytic transesterification of dimethyl carbonate via a continuous flow system under ambient pressure.

    PubMed

    Kwon, Eilhann E; Yi, Haakrho; Jeon, Young Jae

    2014-10-01

    Transformation of coconut oil into biodiesel by using dimethyl carbonate (DMC) via a non-catalytic transesterification reaction under ambient pressure was investigated in this study. The non-catalytic transformation to biodiesel was achieved by means of a heterogeneous reaction between liquid triglycerides and gas phase DMC. The reaction was enhanced in the presence of porous material due to its intrinsic physical properties such as tortuosity and absorption/adsorption. The numerous pores in the material served as micro reaction chambers and ensured that there was enough contact time between the liquid triglycerides and the gaseous DMC, which enabled the completion of the transesterification. The highest fatty acid methyl esters (FAMEs) yield achieved was 98±0.5% within 1-2min at a temperature of 360-450°C under ambient pressure. The fast reaction rates made it possible to convert the lipid feedstock into biodiesel via a continuous flow system without the application of increased pressure. This suggested that the commonly used supercritical conditions could be avoided, resulting in huge cost benefits for biodiesel production. In addition, the high value of the byproduct from the transesterification of the lipid feedstock with DMC suggested that the production biodiesel using this method could be more economically competitive. Finally, the basic properties of biodiesel derived from the non-catalytic conversion of rapeseed oil with DMC were summarised. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Integrated rig for the production of boron nitride nanotubes via the pressurized vapor-condenser method

    DOEpatents

    Smith, Michael W; Jordan, Kevin C

    2014-03-25

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  10. Integrated Rig for the Production of Boron Nitride Nanotubes via the Pressurized Vapor-Condenser Method

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor)

    2014-01-01

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  11. A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.

    PubMed

    Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A

    2018-01-23

    A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.

  12. Remote calorimetric detection of urea via flow injection analysis

    PubMed Central

    Gaddes, David E.; Demirel, Melik C.; Reeves, W. Brian; Tadigadapa, Srinivas

    2017-01-01

    The design and development of a calorimetric biosensing system enabling relatively high throughput sample analysis are reported. The calorimetric biosensor system consists of a thin (~20 μm) micromachined Y-cut quartz crystal resonator (QCR) as a temperature sensor placed in close proximity to a fluidic chamber packed with an immobilized enzyme. Layer by layer enzyme immobilization of urease is demonstrated and its activity as a function of the number of layers, pH, and time has been evaluated. This configuration enables a sensing system where a transducer element is physically separated from the analyte solution of interest and is thereby free from fouling effects typically associated with biochemical reactions occuring on the sensor surface. The performance of this biosensing system is demonstrated by detection of 1–200 mM urea in phosphate buffer via a flow injection analysis (FIA) technique. Miniaturized fluidic systems were used to provide continuous flow through a reaction column. Under this configuration the biosensor has an ultimate resolution of less than 1 mM urea and showed a linear response between 0–50 mM. This work demonstrates a sensing modality in which the sensor itself is not fouled or contaminated by the solution of interest and the enzyme immobilized Kapton® fluidic reaction column can be used as a disposable cartridge. Such a system enables reuse and reliability for long term sampling measurements. Based on this concept a biosensing system is envisioned which can perform rapid measurements to detect biomarkers such as glucose, creatinine, cholesterol, urea and lactate in urine and blood continuously over extended periods of time. PMID:26479269

  13. Remote calorimetric detection of urea via flow injection analysis.

    PubMed

    Gaddes, David E; Demirel, Melik C; Reeves, W Brian; Tadigadapa, Srinivas

    2015-12-07

    The design and development of a calorimetric biosensing system enabling relatively high throughput sample analysis are reported. The calorimetric biosensor system consists of a thin (∼20 μm) micromachined Y-cut quartz crystal resonator (QCR) as a temperature sensor placed in close proximity to a fluidic chamber packed with an immobilized enzyme. Layer by layer enzyme immobilization of urease is demonstrated and its activity as a function of the number of layers, pH, and time has been evaluated. This configuration enables a sensing system where a transducer element is physically separated from the analyte solution of interest and is thereby free from fouling effects typically associated with biochemical reactions occuring on the sensor surface. The performance of this biosensing system is demonstrated by detection of 1-200 mM urea in phosphate buffer via a flow injection analysis (FIA) technique. Miniaturized fluidic systems were used to provide continuous flow through a reaction column. Under this configuration the biosensor has an ultimate resolution of less than 1 mM urea and showed a linear response between 0-50 mM. This work demonstrates a sensing modality in which the sensor itself is not fouled or contaminated by the solution of interest and the enzyme immobilized Kapton® fluidic reaction column can be used as a disposable cartridge. Such a system enables reuse and reliability for long term sampling measurements. Based on this concept a biosensing system is envisioned which can perform rapid measurements to detect biomarkers such as glucose, creatinine, cholesterol, urea and lactate in urine and blood continuously over extended periods of time.

  14. Continuous Hydrolysis of Pectate by Immobilized Endo-polygalacturonase in a Continuously Stirred Tank Reactor.

    PubMed

    Iwasaki, K; Inoue, M; Matsubara, Y

    1998-01-01

    Enzymatic hydrolysis of pectate was carried out continuously to produce pectate oligosaccharides by immobilized endo-polygalacturonase in a continuous stirred tank reactor (CSTR) with high efficiency. The enzyme was immobilized on to chitosan beads by the absorption method, and the reaction was performed with an initial pectate concentration of 10 gl(-1) at 35°C and pH 4.0 at a dilution rate of 0.87-2.8 h(-1). The hydrolysis products mainly consisted of mono-, di-, tri-, tetra-, penta-, hexa- and heptasaccharides, with the highest conversion being 0.78. A higher volumetric production rate of the total hydrolyzate, which was dependent on the dilution rate, was obtained than that by a batch reaction. The hydrolysis process was mathematically modeled from the basic material balance and rate equations, and showed agreement between the simulated and experimental results. This reactor system was found to be effective for obtaining pectate oligosaccharides with a high production rate.

  15. A discrete model to study reaction-diffusion-mechanics systems.

    PubMed

    Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  16. A Discrete Model to Study Reaction-Diffusion-Mechanics Systems

    PubMed Central

    Weise, Louis D.; Nash, Martyn P.; Panfilov, Alexander V.

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects. PMID:21804911

  17. Continued Statin Prescriptions After Adverse Reactions and Patient Outcomes: A Cohort Study.

    PubMed

    Zhang, Huabing; Plutzky, Jorge; Shubina, Maria; Turchin, Alexander

    2017-08-15

    Many patients discontinue statin treatment, often after having a possible adverse reaction. The risks and benefits of continued statin therapy after an adverse reaction are not known. To examine the relationship between continuation of statin therapy (any prescription within 12 months after an adverse reaction) and clinical outcomes. Retrospective cohort study. Primary care practices affiliated with 2 academic medical centers. Patients with a presumed adverse reaction to a statin between 2000 and 2011. Information on adverse reactions to statins was obtained from structured electronic medical record data or natural-language processing of narrative provider notes. The primary composite outcome was time to a cardiovascular event (myocardial infarction or stroke) or death. Most (81%) of the adverse reactions to statins were identified from the text of electronic provider notes. Among 28 266 study patients, 19 989 (70.7%) continued receiving statin prescriptions after the adverse reaction. Four years after the presumed adverse event, the cumulative incidence of the composite primary outcome was 12.2% for patients with continued statin prescriptions, compared with 13.9% for those without them (difference, 1.7% [95% CI, 0.8% to 2.7%]; P < 0.001). In a secondary analysis of 7604 patients for whom a different statin was prescribed after the adverse reaction, 2014 (26.5%) had a documented adverse reaction to the second statin, but 1696 (84.2%) of those patients continued receiving statin prescriptions. The risk for recurrent adverse reactions to statins could not be established for the entire sample. It was also not possible to determine whether patients actually took the statins. Continued statin prescriptions after an adverse reaction were associated with a lower incidence of death and cardiovascular events. Chinese National Key Program of Clinical Science, National Natural Science Foundation of China, and Young Scientific Research Fund of Peking Union Medical College Hospital.

  18. Development of a continuous bioconversion system using a thermophilic whole-cell biocatalyst.

    PubMed

    Ninh, Pham Huynh; Honda, Kohsuke; Yokohigashi, Yukako; Okano, Kenji; Omasa, Takeshi; Ohtake, Hisao

    2013-03-01

    The heat treatment of recombinant mesophilic cells having heterologous thermophilic enzymes results in the denaturation of indigenous mesophilic enzymes and the elimination of undesired side reactions; therefore, highly selective whole-cell catalysts comparable to purified enzymes can be readily prepared. However, the thermolysis of host cells leads to the heat-induced leakage of thermophilic enzymes, which are produced as soluble proteins, limiting the exploitation of their excellent stability in repeated and continuous reactions. In this study, Escherichia coli cells having the thermophilic fumarase from Thermus thermophilus (TtFTA) were treated with glutaraldehyde to prevent the heat-induced leakage of the enzyme, and the resulting cells were used as a whole-cell catalyst in repeated and continuous reactions. Interestingly, although electron microscopic observations revealed that the cellular structure of glutaraldehyde-treated E. coli was not apparently changed by the heat treatment, the membrane permeability of the heated cells to relatively small molecules (up to at least 3 kDa) was significantly improved. By applying the glutaraldehyde-treated E. coli having TtFTA to a continuous reactor equipped with a cell-separation membrane filter, the enzymatic hydration of fumarate to malate could be operated for more than 600 min with a molar conversion yield of 60% or higher.

  19. Development of a Continuous Bioconversion System Using a Thermophilic Whole-Cell Biocatalyst

    PubMed Central

    Ninh, Pham Huynh; Yokohigashi, Yukako; Okano, Kenji; Omasa, Takeshi; Ohtake, Hisao

    2013-01-01

    The heat treatment of recombinant mesophilic cells having heterologous thermophilic enzymes results in the denaturation of indigenous mesophilic enzymes and the elimination of undesired side reactions; therefore, highly selective whole-cell catalysts comparable to purified enzymes can be readily prepared. However, the thermolysis of host cells leads to the heat-induced leakage of thermophilic enzymes, which are produced as soluble proteins, limiting the exploitation of their excellent stability in repeated and continuous reactions. In this study, Escherichia coli cells having the thermophilic fumarase from Thermus thermophilus (TtFTA) were treated with glutaraldehyde to prevent the heat-induced leakage of the enzyme, and the resulting cells were used as a whole-cell catalyst in repeated and continuous reactions. Interestingly, although electron microscopic observations revealed that the cellular structure of glutaraldehyde-treated E. coli was not apparently changed by the heat treatment, the membrane permeability of the heated cells to relatively small molecules (up to at least 3 kDa) was significantly improved. By applying the glutaraldehyde-treated E. coli having TtFTA to a continuous reactor equipped with a cell-separation membrane filter, the enzymatic hydration of fumarate to malate could be operated for more than 600 min with a molar conversion yield of 60% or higher. PMID:23335777

  20. A continuous GRASP to determine the relationship between drugs and adverse reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Michael J.; Meneses, Claudio N.; Pardalos, Panos M.

    2007-11-05

    Adverse drag reactions (ADRs) are estimated to be one of the leading causes of death. Many national and international agencies have set up databases of ADR reports for the express purpose of determining the relationship between drugs and adverse reactions that they cause. We formulate the drug-reaction relationship problem as a continuous optimization problem and utilize C-GRASP, a new continuous global optimization heuristic, to approximately determine the relationship between drugs and adverse reactions. Our approach is compared against others in the literature and is shown to find better solutions.

  1. Constructing New Bioorthogonal Reagents and Reactions.

    PubMed

    Row, R David; Prescher, Jennifer A

    2018-05-15

    Chemical tools are transforming our understanding of biomolecules and living systems. Included in this group are bioorthogonal reagents-functional groups that are inert to most biological species, but can be selectively ligated with complementary probes, even in live cells and whole organisms. Applications of these tools have revealed fundamental new insights into biomolecule structure and function-information often beyond the reach of genetic approaches. In many cases, the knowledge gained from bioorthogonal probes has enabled new questions to be asked and innovative research to be pursued. Thus, the continued development and application of these tools promises to both refine our view of biological systems and facilitate new discoveries. Despite decades of achievements in bioorthogonal chemistry, limitations remain. Several reagents are too large or insufficiently stable for use in cellular environments. Many bioorthogonal groups also cross-react with one another, restricting them to singular tasks. In this Account, we describe our work to address some of the voids in the bioorthogonal toolbox. Our efforts to date have focused on small reagents with a high degree of tunability: cyclopropenes, triazines, and cyclopropenones. These motifs react selectively with complementary reagents, and their unique features are enabling new pursuits in biology. The Account is organized by common themes that emerged in our development of novel bioorthogonal reagents and reactions. First, natural product structures can serve as valuable starting points for probe design. Cyclopropene, triazine, and cyclopropenone motifs are all found in natural products, suggesting that they would be metabolically stable and compatible with a variety of living systems. Second, fine-tuning bioorthogonal reagents is essential for their successful translation to biological systems. Different applications demand different types of probes; thus, generating a collection of tools that span a continuum of reactivities and stabilities remains an important goal. We have used both computational analyses and mechanistic studies to guide the optimization of various cyclopropene and triazine probes. Along the way, we identified reagents that are chemoselective but best suited for in vitro work. Others are selective and robust enough for use in living organisms. The last section of this Account highlights the need for the continued pursuit of new reagents and reactions. Challenges exist when bioorthogonal chemistries must be used in concert, given that many exploit similar mechanisms and cannot be used simultaneously. Such limitations have precluded certain multicomponent labeling studies and other biological applications. We have relied on mechanistic and computational insights to identify mutually orthogonal sets of reactions, in addition to exploring unique genres of reactivity. The continued development of mechanistically distinct, biocompatible reactions will further diversify the bioorthogonal reaction portfolio for examining biomolecules.

  2. The Phase Behavior Effect on the Reaction Engineering of Transesterification Reactions and Reactor Design for Continuous Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Csernica, Stephen N.

    The demand for renewable forms of energy has increased tremendously over the past two decades. Of all the different forms of renewable energy, biodiesel, a liquid fuel, has emerged as one of the more viable possibilities. This is in large part due to the fact that biodiesel can readily be used in modern day diesel engines with nearly no engine modifications. It is commonly blended with conventional petroleum-derived diesel but it can also be used neat. As a result of the continued growth of the industry, there has been a correspondingly large increase in the scientific and technical research conducted on the subject. Much of the research has been conducted on the feasibility of using different types of feedstocks, which generally vary with respect to geographic locale, as well as different types of catalysts. Much of the work of the present study was involved with the investigation of the binary liquid-liquid nature of the system and its effects on the reaction kinetics. Initially, the development of an analytical method for the analysis of the compounds present in transesterification reaction mixtures using high performance liquid chromatography (HPLC) was developed. The use of UV(205 nm) as well as refractive index detection (RID) were shown capable to detect the various different types of components associated with transesterification reactions. Reversed-phase chromatography with isocratic elution was primarily used. Using a unique experimental apparatus enabling the simultaneous analysis of both liquid phases throughout the reaction, an experimental method was developed for measuring the reaction rate under both mass transfer control and reaction control. The transesterification reaction rate under each controlling mechanism was subsequently evaluated and compared. It was determined that the reaction rate is directly proportional to the concentration of triglycerides in the methanol phase. Furthermore, the reaction rate accelerates rapidly as the system transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style plug flow reactors (PFR). Despite this fact, the use of CSTRs is more common than the use of PFRs. This is mostly due to the fact that the two initial reactant phases are relatively immiscible and significant agitation is generally supplied to initiate the reaction. Based on the theoretical results, however, the use of a packed-bed tubular flow reactor was investigated experimentally. A series of two tubular flow reactors was built in the laboratory. The first reactor was of the shell and tube variety and also functioned as a preheater. The second reactor was larger and contained a packed-bed. Two different flow configurations were invested, upflow-upflow and downflow-downflow. It was determined that the downflow-downflow configuration provided significantly better triglyceride conversions that the upflow-upflow configuration.

  3. New porous monolithic membranes based on supported ionic liquid-like phases for oil/water separation and homogenous catalyst immobilisation.

    PubMed

    Porcar, Raúl; Nuevo, Daniel; García-Verdugo, Eduardo; Lozano, Pedro; Sanchez-Marcano, José; Burguete, M Isabel; Luis, Santiago V

    2018-03-07

    Porous monolithic advanced functional materials based on supported ionic liquid-like phase (SILLP) systems were used for the preparation of oleophilic and hydrophobic cylindrical membranes and successfully tested as eco-friendly and safe systems for oil/water separation and for the continuous integration of catalytic and separation processes in an aqueous-organic biphasic reaction system.

  4. Variable photosynthetic units, energy transfer and light-induced evolution of hydrogen in algae and bacteria.

    NASA Technical Reports Server (NTRS)

    Gaffron, H.

    1971-01-01

    The present state of knowledge regarding the truly photochemical reactions in photosynthesis is considered. Nine-tenths of the available knowledge is of a biochemical nature. Questions regarding the activities of the chlorophyll system are examined. The simplest photochemical response observed in living hydrogen-adapted algal cells is the release of molecular hydrogen, which continues even after all other known natural reactions have been eliminated either by heating or the action of poisons.

  5. Towards a Model of Reactive-Cracking: the Role of Reactions, Elasticity and Surface Energy Driven Flow in Poro-elastic Media

    NASA Astrophysics Data System (ADS)

    Evans, O.; Spiegelman, M. W.; Wilson, C. R.; Kelemen, P. B.

    2016-12-01

    Many critical processes can be described by reactive fluid flow in brittle media, including hydration/alteration of oceanic plates near spreading ridges, chemical weathering, and dehydration/decarbonation of subducting plates. Such hydration reactions can produce volume changes that may induce stresses large enough to drive fracture in the rock, in turn exposing new reactive surface and modifying the permeability. A better understanding of this potentially rich feedback could also be critical in the design of engineered systems for geologic carbon sequestration. To aid understanding of these processes we have developed a macroscopic continuum description of reactive fluid flow in an elastically deformable porous media. We explore the behaviour of this model by considering a simplified hydration reaction (e.g. olivine + H20 -> serpentine + brucite). In a closed system, these hydration reactions will continue to consume available fluids until the permeability reaches zero, leaving behind it a highly stressed residuum. Our model demonstrates this limiting behaviour, and that the elastic stresses generated are large enough to cause failure/fracture of the host rock. Whilst it is understood that `reactive fracture' is an important mechanism for the continued evolution of this process, it is also proposed that imbibition/surface energy driven flow may play a role. Through a simplified set of computational experiments, we investigate the relative roles of elasticity and surface energy in both a non-reactive purely poro-elastic framework, and then in the presence of reaction. We demonstrate that surface energy can drive rapid diffusion of porosity, thus allowing the reaction to propagate over larger areas. As we expect both surface energy and fracture/failure to be of importance in these processes, we plan to integrate the current model into one that allows for fracture once critical stresses are exceeded.

  6. Innate immune system still works at diapause, a physiological state of dormancy in insects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Akihiro; Miyado, Kenji, E-mail: kmiyado@nch.go.jp; Takezawa, Youki

    Highlights: {yields} Two major types of cells are present in the body fluid isolated from the thoracic region of a diapausing pupa. {yields} Phagocytosis and encapsulation by these cells were observed when latex beads as foreign targets were microinjected into a pupa. {yields} Such behavior by these cells was still observed even when pupae were continuously chilled at 4 {sup o}C. {yields} Innate cellular reactions can work in diapausing insects in a dormant state. -- Abstract: Diapause is most often observed in insects and is a physiologically dormant state different from other types of dormancy, such as hibernation. It allowsmore » insects to survive in harsh environments or extend longevity. In general, larval, pupal, or adult non-diapausing insects possess an innate immune system preventing the invasion of microorganisms into their bodies; however, it is unclear whether this system works under the dormant condition of diapause. We here report the occurrence of innate cellular reactions during diapause using pupae of a giant silkmoth, Samia cynthia pryeri. Scanning electron microscopic analysis demonstrated the presence of two major types of cells in the body fluid isolated from the thoracic region of a pupa. Phagocytosis and encapsulation, characteristics of innate cellular reactions, by these cells were observed when latex beads as foreign targets were microinjected into the internal portion of a pupa. Such behavior by these cells was still observed even when pupae were continuously chilled at 4 {sup o}C. Our results indicate that innate cellular reactions can work in diapausing insects in a dormant state.« less

  7. Adverse reactions to contrast media: an analysis of spontaneous reports in the database of the pharmacovigilance programme of India.

    PubMed

    Kalaiselvan, Vivekanandan; Sharma, Surbhi; Singh, Gyanendra Nath

    2014-09-01

    Contrast media are used widely to improve medical imaging. Like all other pharmaceuticals, these agents are not completely devoid of risk, and continuous monitoring of adverse reactions with these agents is important. Spontaneous reporting is the simplest method for understanding the safety profile of pharmaceutical products after their approval. Our objective was to identify the pattern and characteristics of adverse reactions attributed to contrast media in the Indian population reported to the National Coordination Centre for the Pharmacovigilance Programme of India (NCC-PvPI). Individual case safety reports (ICSRs) attributed to contrast media submitted spontaneously to the NCC-PvPI were extracted from the database for July 2010 to September 2013. We analysed these reports for information related to reporter's professional category, patient's age and sex, reporter's diagnosis of the reaction, seriousness of the reaction, type of contrast media exposure, system organ class (SOC) affected (as described in World Health Organization Adverse Reaction Terminology [WHO-ART]) and outcome. Of the total 59,915 ICSRs in the database, 415 (0.7%) were suspected adverse reactions to contrast media; 44 reports were serious, including three fatal cases. The most affected SOCs were skin and appendage disorders, body as a whole-general disorders, gastrointestinal system disorders and respiratory system disorders. Hypersensitivity reactions were reported in the majority of ICSRs. The contrast media with the highest number of reports were iohexol (40.7%), iomeprol (17.8%), iopamidol (12%) and diatrizoate (12%). Most of the reactions to contrast media were allergic-like, and no previously unrecognised adverse reactions were observed in the Indian population. Further data and increased awareness among healthcare professionals is required to signal and prevent the consequences of adverse reactions attributed to contrast media.

  8. Detox{sup SM} wet oxidation system studies for engineering scale up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, D.T.; Moslander, J.E.; Zigmond, J.A.

    1995-12-31

    Catalyzed wet oxidation utilizing iron(III) has been shown to have promise for treating many hazardous and mixed wastes. The reaction occurs at the surface of contact between an aqueous iron(III) solution and organic material. Studies with liquid- and vapor-phase organic waste surrogates have established reaction kinetics and the limits of reaction rate based on organic concentration and iron(III) diffusion. Continuing engineering studies have concentrated on reaction vessel agitator and solids feed configurations, an improved bench scale reflux condenser and reflux condenser calculations, sparging of organic compounds from the process condensate water, filtration of solids from the process solution, and flammabilitymore » limits for volatile organic compounds in the headspace of the reaction vessel under the reaction conditions. Detailed engineering design and fabrication of a demonstration unit for treatment of mixed waste is in progress.« less

  9. Immobilised enzyme microreactor for screening of multi-step bioconversions: characterisation of a de novo transketolase-ω-transaminase pathway to synthesise chiral amino alcohols.

    PubMed

    Matosevic, S; Lye, G J; Baganz, F

    2011-09-20

    Complex molecules are synthesised via a number of multi-step reactions in living cells. In this work, we describe the development of a continuous flow immobilized enzyme microreactor platform for use in evaluation of multi-step bioconversion pathways demonstrating a de novo transketolase/ω-transaminase-linked asymmetric amino alcohol synthesis. The prototype dual microreactor is based on the reversible attachment of His₆-tagged enzymes via Ni-NTA linkage to two surface derivatised capillaries connected in series. Kinetic parameters established for the model transketolase (TK)-catalysed conversion of lithium-hydroxypyruvate (Li-HPA) and glycolaldehyde (GA) to L-erythrulose using a continuous flow system with online monitoring of reaction output was in good agreement with kinetic parameters determined for TK in stop-flow mode. By coupling the transketolase catalysed chiral ketone forming reaction with the biocatalytic addition of an amine to the TK product using a transaminase (ω-TAm) it is possible to generate chiral amino alcohols from achiral starting compounds. We demonstrated this in a two-step configuration, where the TK reaction was followed by the ω-TAm-catalysed amination of L-erythrulose to synthesise 2-amino-1,3,4-butanetriol (ABT). Synthesis of the ABT product via the dual reaction and the on-line monitoring of each component provided a full profile of the de novo two-step bioconversion and demonstrated the utility of this microreactor system to provide in vitro multi-step pathway evaluation. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Material-Efficient Microfluidic Platform for Exploratory Studies of Visible-Light Photoredox Catalysis.

    PubMed

    Coley, Connor W; Abolhasani, Milad; Lin, Hongkun; Jensen, Klavs F

    2017-08-07

    We present an automated microfluidic platform for in-flow studies of visible-light photoredox catalysis in liquid or gas-liquid reactions at the 15 μL scale. An oscillatory flow strategy enables a flexible residence time while preserving the mixing and heat transfer advantages of flow systems. The adjustable photon flux made possible with the platform is characterized using actinometry. Case studies of oxidative hydroxylation of phenylboronic acids and dimerization of thiophenol demonstrate the capabilities and advantages of the system. Reaction conditions identified through droplet screening translate directly to continuous synthesis with minor platform modifications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Systems Approach towards an Intelligent and Self-Controlling Platform for Integrated Continuous Reaction Sequences**

    PubMed Central

    Ingham, Richard J; Battilocchio, Claudio; Fitzpatrick, Daniel E; Sliwinski, Eric; Hawkins, Joel M; Ley, Steven V

    2015-01-01

    Performing reactions in flow can offer major advantages over batch methods. However, laboratory flow chemistry processes are currently often limited to single steps or short sequences due to the complexity involved with operating a multi-step process. Using new modular components for downstream processing, coupled with control technologies, more advanced multi-step flow sequences can be realized. These tools are applied to the synthesis of 2-aminoadamantane-2-carboxylic acid. A system comprising three chemistry steps and three workup steps was developed, having sufficient autonomy and self-regulation to be managed by a single operator. PMID:25377747

  12. Scale-up of an ultrasound-enhanced bioscouring process

    USDA-ARS?s Scientific Manuscript database

    Using previously determined optimized reaction conditions, an ultrasound-enhanced bioscouring process was scaled to ten gallon capacity and a system of rollers was added which allowed for continuous fabric feed and equipment operation. UV-Vis photospectroscopic data from bioscoured fabric samples co...

  13. A feasible enzymatic process for D-tagatose production by an immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor.

    PubMed

    Kim, Hye-Jung; Ryu, Se-Ah; Kim, Pil; Oh, Deok-Kun

    2003-01-01

    To develop a feasible enzymatic process for d-tagatose production, a thermostable l-arabinose isomerase, Gali152, was immobilized in alginate, and the galactose isomerization reaction conditions were optimized. The pH and temperature for the maximal galactose isomerization reaction were pH 8.0 and 65 degrees C in the immobilized enzyme system and pH 7.5 and 60 degrees C in the free enzyme system. The presence of manganese ion enhanced galactose isomerization to tagatose in both the free and immobilized enzyme systems. The immobilized enzyme was more stable than the free enzyme at the same pH and temperature. Under stable conditions of pH 8.0 and 60 degrees C, the immobilized enzyme produced 58 g/L of tagatose from 100 g/L galactose in 90 h by batch reaction, whereas the free enzyme produced 37 g/L tagatose due to its lower stability. A packed-bed bioreactor with immobilized Gali152 in alginate beads produced 50 g/L tagatose from 100 g/L galactose in 168 h, with a productivity of 13.3 (g of tagatose)/(L-reactor.h) in continuous mode. The bioreactor produced 230 g/L tagatose from 500 g/L galactose in continuous recycling mode, with a productivity of 9.6 g/(L.h) and a conversion yield of 46%.

  14. Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system.

    PubMed

    Gomes, Arlindo C; Nunes, José C; Simões, Rogério M S

    2010-06-15

    To study the fast kinetic decolourisation of textile dyes by ozone a continuous quench-flow system was used. This system has not been used before for these purposes. Reaction times in the range of 7-3000 ms were explored. The reaction was quenched with potassium iodide, which proved to be very effective, and the indigo method was used to follow the ozone concentration. Dyes from the most representative chemical classes currently used in the textile industry, i.e. azo and anthraquinone, were selected. Using the initial slope method, the effect of dye and ozone concentrations was researched and the kinetic equations thus established. Using tert-butyl alcohol, as radical scavenger, and pH close to 2.5, the second-order rate constant of the reactant dyes at 280 K varies in the range of 1.20x10(4)-7.09x10(5)M(-1)s(-1); the Acid Orange 7 exhibiting thus its lowest value, the Acid Blue 45 its highest value and the Acid Green 25 and 27 and Direct Yellow 4 intermediate values (approximately 1.6x10(5)M(-1)s(-1)). Without radical scavenger and the pH close to 4, the reaction rate increases one order of magnitude, but, on the reverse, the efficiency of ozone to decolourisation decreases. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Studies in organic and physical photochemistry - an interdisciplinary approach.

    PubMed

    Oelgemöller, Michael; Hoffmann, Norbert

    2016-08-21

    Traditionally, organic photochemistry when applied to synthesis strongly interacts with physical chemistry. The aim of this review is to illustrate this very fruitful interdisciplinary approach and cooperation. A profound understanding of the photochemical reactivity and reaction mechanisms is particularly helpful for optimization and application of these reactions. Some typical reactions and particular aspects are reported such as the Norrish-Type II reaction and the Yang cyclization and related transformations, the [2 + 2] photocycloadditions, particularly the Paternò-Büchi reaction, photochemical electron transfer induced transformations, different kinds of catalytic reactions such as photoredox catalysis for organic synthesis and photooxygenation are discussed. Particular aspects such as the structure and reactivity of aryl cations, photochemical reactions in the crystalline state, chiral memory, different mechanisms of hydrogen transfer in photochemical reactions or fundamental aspects of stereoselectivity are discussed. Photochemical reactions are also investigated in the context of chemical engineering. Particularly, continuous flow reactors are of interest. Novel reactor systems are developed and modeling of photochemical transformations and different reactors play a key role in such studies. This research domain builds a bridge between fundamental studies of organic photochemical reactions and their industrial application.

  16. High-rate synthesis of Cu-BTC metal-organic frameworks.

    PubMed

    Kim, Ki-Joong; Li, Yong Jun; Kreider, Peter B; Chang, Chih-Hung; Wannenmacher, Nick; Thallapally, Praveen K; Ahn, Ho-Geun

    2013-12-21

    The reaction conditions for the synthesis of Cu-BTC (BTC = benzene-1,3,5-tricarboxylic acid) were elucidated using a continuous-flow microreactor-assisted solvothermal system to achieve crystal size and phase control. A high-rate synthesis of Cu-BTC metal-organic frameworks with a BET surface area of more than 1600 m(2) g(-1) (Langmuir surface area of more than 2000 m(2) g(-1)) and with a 97% production yield could be achieved with a total reaction time of 5 minutes.

  17. Highly effective synthesis of a cobalt(ii) metal-organic coordination polymer by using continuous flow chemistry.

    PubMed

    Gong, Chunhua; Zhang, Junyong; Zeng, Xianghua; Xie, Jingli

    2016-12-20

    The coordination polymer [Co 2 L 4 (H 2 O) 2 ]·CH 3 CN·H 2 O (HL = (E)-2-[2-(4-chlorophenyl)vinyl]-8-hydroxyquinoline) has been achieved with 95% yield by using an Asia flow synthesis system (chip reactor). Compared with the conventional batch-type methods such as diffusion, reflux and solvothermal reactions, higher yielding reactions carried out in a flow reactor have demonstrated that this technique is a powerful strategy to obtain coordination compounds.

  18. Case report: anaphylactic reaction to guaifenesin.

    PubMed

    Ray, Manujendra; Faltay, Bela; Haller, Nairmeen Awad

    2009-12-01

    Adverse drug reactions lead to a significant number of hospital admissions each year and thus contribute to the overall financial burden of health care. Some of these drug reactions are allergic responses. As the overall predictability of allergic responses to drugs remains low, efforts to improve our understanding of the processes underlying these responses continue as we strive toward the ultimate goal of primary prevention. Allergic reactions range from mild pruritic to severe systemic anaphylactic responses. We report a case of a young healthy man who developed an anaphylactic reaction to an over-the-counter expectorant. A skin test showed that the patient had an immunoglobulin E-mediated allergic response to guaifenesin, one of the components of commonly available cough medications. Our review of published literature showed that this is the first report of a severe allergic response to guaifenesin.

  19. Marginal states in a cubic autocatalytic reaction

    NASA Astrophysics Data System (ADS)

    Das, Debojyoti; Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-01

    Marginal steady state belongs to a special class of states in nonlinear dynamics. To realize this state we consider a cubic autocatalytic reaction A + 2B → 3B in a continuous-stirred-tank-reactor, where the flow rate of the reactant A can be controlled to manipulate the dynamical behavior of the open system. We demonstrate that when the flow rate is weakly noisy the autocatalytic reaction admits of a steady state which is marginal in nature and is surrounded by infinite number of periodic trajectories. When the uncatalyzed reaction A → B is included in the reaction scheme, there exists a marginal steady state which is a critical state corresponding to the point of transition between the flow branch and the equilibrium branch, similar to gas-liquid critical point of transition. This state loses its stability in the weak noise limit.

  20. Photochemistry and reactivity of the phenyl radical-water system: a matrix isolation and computational study.

    PubMed

    Mardyukov, Artur; Crespo-Otero, Rachel; Sanchez-Garcia, Elsa; Sander, Wolfram

    2010-08-02

    The reaction of the phenyl radical 1 with water has been investigated by using matrix isolation spectroscopy and quantum chemical calculations. The primary thermal product of the reaction between 1 and water is a weakly bound complex stabilized by an OH...pi interaction. This complex is photolabile, and visible-light irradiation (lambda>420 nm) results in hydrogen atom transfer from water to radical 1 and the formation of a highly labile complex between benzene and the OH radical. This complex is stable under the conditions of matrix isolation, however, continuous irradiation with lambda>420 nm light results in the complete destruction of the aromatic system and formation of an acylic unsaturated ketene. The mechanisms of all reaction steps are discussed in the light of ab initio and DFT calculations.

  1. Blood grouping based on PCR methods and agarose gel electrophoresis.

    PubMed

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.

  2. Hybrid stochastic simulations of intracellular reaction-diffusion systems.

    PubMed

    Kalantzis, Georgios

    2009-06-01

    With the observation that stochasticity is important in biological systems, chemical kinetics have begun to receive wider interest. While the use of Monte Carlo discrete event simulations most accurately capture the variability of molecular species, they become computationally costly for complex reaction-diffusion systems with large populations of molecules. On the other hand, continuous time models are computationally efficient but they fail to capture any variability in the molecular species. In this study a hybrid stochastic approach is introduced for simulating reaction-diffusion systems. We developed an adaptive partitioning strategy in which processes with high frequency are simulated with deterministic rate-based equations, and those with low frequency using the exact stochastic algorithm of Gillespie. Therefore the stochastic behavior of cellular pathways is preserved while being able to apply it to large populations of molecules. We describe our method and demonstrate its accuracy and efficiency compared with the Gillespie algorithm for two different systems. First, a model of intracellular viral kinetics with two steady states and second, a compartmental model of the postsynaptic spine head for studying the dynamics of Ca+2 and NMDA receptors.

  3. Further Evidence of Severe Allergic Contact Dermatitis From Isobornyl Acrylate While Using a Continuous Glucose Monitoring System.

    PubMed

    Kamann, Stefanie; Aerts, Olivier; Heinemann, Lutz

    2018-05-01

    In the past decade, new diabetes technologies, including continuous glucose monitoring (CGM) systems, support patients with diabetes in their daily struggle with achieving a good glucose control. However, shortly after the first CGM systems appeared on the market, also the first concerns about adverse skin reactions were raised. Most patients claimed to suffer from (sometimes severe) skin irritation, or even allergy, which they related to the (acrylate-based) adhesive part of the device. For a long time the actual substance that caused these skin reactions with, for example, the Flash Glucose Monitoring system (iscCGM; Freestyle® Libre) could not be identified; however, recently Belgian and Swedish dermatologists reported that the majority of their patients that have developed a contact-allergic while using iscCGM react sensitively to a specific acrylate, that is, isobornyl acrylate (IBOA). Subsequently they showed by means of gas chromatography-mass spectrometry that this substance is present in the case of the glucose sensor attached by an adhesive to the skin. We report three additional cases from Germany, including a 10-year-old boy, suffering from severe allergic contact dermatitis to IBOA.

  4. Biodiesel synthesis by direct transesterification of microalga Botryococcus braunii with continuous methanol reflux.

    PubMed

    Hidalgo, Pamela; Ciudad, Gustavo; Schober, Sigurd; Mittelbach, Martin; Navia, Rodrigo

    2015-04-01

    Direct transesterification of Botryococcus braunii with continuous acyl acceptor reflux was evaluated. This method combines in one step lipid extraction and esterification/transesterification. Fatty acid methyl esters (FAME) synthesis by direct conversion of microalgal biomass was carried out using sulfuric acid as catalyst and methanol as acyl acceptor. In this system, once lipids are extracted, they are contacted with the catalyst and methanol reaching 82%wt of FAME yield. To optimize the reaction conditions, a factorial design using surface response methodology was applied. The effects of catalyst concentration and co-solvent concentration were studied. Hexane was used as co-solvent for increasing lipid extraction performance. The incorporation of hexane in the reaction provoked an increase in FAME yield from 82% (pure methanol) to 95% when a 47%v/v of hexane was incorporated in the reaction. However, the selectivity towards non-saponifiable lipids such as sterols was increased, negatively affecting biodiesel quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR) studies.

    PubMed

    Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

    2015-12-01

    Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.

  6. Safety of High Ground Transportation Systems - Human Factors Phase I: Function Analyses and Theoretical Considerations

    DOT National Transportation Integrated Search

    1994-10-01

    Although the speed of guided ground transportation continues to increase, the reaction : time as well as the sensory and information processing capacities of on- and off-board : operators remain constant. This report, the first of two examining criti...

  7. Method for the continuous production of hydrogen

    DOEpatents

    Getty, John Paul; Orr, Mark T.; Woodward, Jonathan

    2002-01-01

    The present invention is a method for the continuous production of hydrogen. The present method comprises reacting a metal catalyst with a degassed aqueous organic acid solution within a reaction vessel under anaerobic conditions at a constant temperature of .ltoreq.80.degree. C. and at a pH ranging from about 4 to about 9. The reaction forms a metal oxide when the metal catalyst reacts with the water component of the organic acid solution while generating hydrogen, then the organic acid solution reduces the metal oxide thereby regenerating the metal catalyst and producing water, thus permitting the oxidation and reduction to reoccur in a continual reaction cycle. The present method also allows the continuous production of hydrogen to be sustained by feeding the reaction with a continuous supply of degassed aqueous organic acid solution.

  8. Cure kinetics, morphologies, and mechanical properties of thermoplastic/MWCNT modified multifunctional glassy epoxies prepared via continuous reaction methods

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaole

    The primary goal of this dissertation is to develop a novel continuous reactor method to prepare partially cured epoxy prepolymers for aerospace prepreg applications with the aim of replacing traditional batch reactors. Compared to batch reactors, the continuous reactor is capable of solubilizing and dispersing a broad range of additives including thermoplastic tougheners, stabilizers, nanoparticles and curatives and advancing epoxy molecular weights and viscosities while reducing energy consumption. In order to prove this concept, polyethersulfone (PES) modified 4, 4'-diaminodiphenylsulfone (44DDS)/tetraglycidyl-4, 4'-diaminodiphenylmethane (TGDDM) epoxy prepolymers were firstly prepared using both continuous reactor and batch reactor methods. Kinetic studies confirmed the chain extension reaction in the continuous reactor is similar to the batch reactor, and the molecular weights and viscosities of prepolymers were readily controlled through reaction kinetics. Atomic force microscopy (AFM) confirmed similar cured network morphologies for formulations prepared from batch and continuous reactors. Additionally tensile strength, tensile modulus and fracture toughness analyses concluded mechanical properties of cured epoxy matrices produced from both reactors were equivalent. Effects of multifunctional epoxy compositions on thermoplastics phase-separated morphologies were systematically studied using a combination of AFM with nanomechanical mapping, spectroscopic and calorimetric techniques to provide new insights to tailor cured reaction induced phase separation (CRIPS) in multifunctional epoxy blend networks. Furthermore, how resultant crosslinked glassy polymer network and phase-separated morphologies correlated with mechanical properties are discussed in detail. Multiwall carbon nanotube (MWCNT)/TGDDM epoxy prepolymers were further prepared by combining the successful strategies for advancing epoxy chemistries and dispersing nanotubes using the continuous reactor. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to characterize the MWCNT dispersion states and stabilization in epoxy prepolymer matrix after continuous process and during curing cycles. Additionally, electrical conductivities and mechanical properties of final cured MWCNT/TGDDM composites were measured and discussed in view of their corresponding MWCNT dispersion states. Ternary blends of MWCNT reinforced thermoplastic/epoxy prepolymers were prepared by the continuous reactor. Influence of MWCNT on the CRIPS mechanism and the cured morphologies were systematically investigated using SEM and rheological analysis. Incorporation of MWCNT in thermoplastic/epoxy matrices can lead to a morphological transformation from phase inverted, to co-continuous, and to droplet dispersed morphology. In additional, dynamic mechanical analysis revealed the heterogeneity of MWCNT dispersion in thermoplastic/thermosets systems.

  9. A flow reactor setup for photochemistry of biphasic gas/liquid reactions

    PubMed Central

    Schachtner, Josef; Bayer, Patrick

    2016-01-01

    Summary A home-built microreactor system for light-mediated biphasic gas/liquid reactions was assembled from simple commercial components. This paper describes in full detail the nature and function of the required building elements, the assembly of parts, and the tuning and interdependencies of the most important reactor and reaction parameters. Unlike many commercial thin-film and microchannel reactors, the described set-up operates residence times of up to 30 min which cover the typical rates of many organic reactions. The tubular microreactor was successfully applied to the photooxygenation of hydrocarbons (Schenck ene reaction). Major emphasis was laid on the realization of a constant and highly reproducible gas/liquid slug flow and the effective illumination by an appropriate light source. The optimized set of conditions enabled the shortening of reaction times by more than 99% with equal chemoselectivities. The modular home-made flow reactor can serve as a prototype model for the continuous operation of various other reactions at light/liquid/gas interfaces in student, research, and industrial laboratories. PMID:27829887

  10. Mixing and reactions in multiphase flow through porous media

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, J.; Le Borgne, T.; Meheust, Y.; Porter, M. L.; De Anna, P.; Hyman, J.; Tabuteau, H.; Turuban, R.; Carey, J. W.; Viswanathan, H. S.

    2016-12-01

    The understanding and quantification of flow and transport processes in multiphase systems remains a grand scientific and engineering challenge in natural and industrial systems (e.g., soils and vadose zone, CO2 sequestration, unconventional oil and gas extraction, enhanced oil recovery). Beyond the kinetic of the chemical reactions, mixing processes in porous media play a key role in controlling both fluid-fluid and fluid-solid reactions. However, conventional continuum-scale models and theories oversimplify and/or ignore many important pore-scale processes. Multiphase flows, with the creation of highly heterogeneous fluid velocity fields (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), makes conservative and reactive transport more complex. We present recent multi-scale experimental developments and theoretical approaches to quantify transport, mixing, and reaction and their coupling with multiphase flows. We discuss our main findings: i) the sustained concentration gradients and enhanced reactivity in a two-phase system for a continuous injection, and the comparison with a pulse line injection; ii) the enhanced mixing by a third mobile-immiscible phase; and iii) the role that capillary forces play in the localization of the fluid-solid reactions. These experimental results are for highly-idealized geometries, however, the proposed models are related to basic porous media and unsaturated flow properties, and could be tested on more complex systems.

  11. Method for continuously recovering metals using a dual zone chemical reactor

    DOEpatents

    Bronson, Mark C.

    1995-01-01

    A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing.

  12. Safety of High Speed Guided Ground Transportation Systems: Human Factors Phase I: Function Analyses and Theoretical Considerations

    DOT National Transportation Integrated Search

    1994-10-01

    Although the speed of guided ground transportation continues to increase, the reaction : time as well as the sensory and information processing capacities of on- and off-board : operators remain constant. This report, the first of two examining criti...

  13. Human factors phase II: design and evaluation of decision aids for control of high-speed trains: experiments and model

    DOT National Transportation Integrated Search

    1996-12-01

    Although the speed of some guided ground transportation systems continues to increase, the reaction time and the sensory : and information processing capacities of railroad personnel remain constant. This second report in a series examining : critica...

  14. Microgel Modified UV-Cured Methacrylic-Silica Hybrid: Synthesis and Characterization

    PubMed Central

    Corcione, Carola Esposito; Striani, Raffaella; Frigione, Mariaenrica

    2013-01-01

    An innovative photopolymerizable microgel modified UV-cured acrylic-silica hybrid formulation was developed and characterized for possible use as protective coating for different substrates. A deep investigation, aiming at providing a strong scientific basis for the production of organic-inorganic (O-I) hybrids exhibiting phase co-continuity, was firstly carried out. The O-I hybrid first proposed in this study was obtained from organic precursors with a high siloxane content, which are mixed with tetraethoxysilane (TEOS) in such a way to produce co-continuous silica nanodomains dispersed within the crosslinked organic phase, as a result of the sol-gel process. The first part of the research deals with the selection and optimization of suitable systems through appropriate chemical modifications, in order to ensure that curing reactions can be carried out at room temperature and in the presence of UV radiation. Firstly, the silica domains are formed, followed by crosslinking reactions of the acrylic groups in the oligomer via a free radical polymerization. The crosslinking reaction was controlled with the use of a suitable photoinitiator. Most of the experimental work was devoted to understanding the morphology of the hybrid system, both in uncured and cured states, and to assess its final thermal and optical properties, using different experiential techniques. PMID:28788307

  15. Continuous Flow Science in an Undergraduate Teaching Laboratory: Photocatalytic Thiol-Ene Reaction Using Visible Light

    ERIC Educational Resources Information Center

    Santandrea, Jeffrey; Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, photocatalytic thiol-ene reaction using visible-light irradiation is described that allows students to explore concepts of green chemistry, photochemistry, photocatalysis, and continuous flow chemistry.

  16. Ambulant Measurements of Physiological Status and Cognitive Performance during Sustained Operations

    DTIC Science & Technology

    2009-10-01

    the target, reaction time, illegal responses, and missed responses were recorded. 2.4 Physiological measurements 2.4.1 Anthropometry ...system (SPi-Elite, GPsports Australia ) was mounted on the soldiers’ backpack. The system measured continuously during the training weeks. Walking or...the percentage missed stimuli were even more alike. 3.3 Physiological measurements 3.3.1 Anthropometry The soldiers who completed the training

  17. Method of introducing additive into a reaction gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelfelder, S.; Chughtai, M.Y.

    1984-04-03

    A method of continuously introducing additive, which is conveyed by gaseous and/or liquid carriers, into a turbulent reaction gas flow in the combustion chamber of a steam generator having dry ash withdrawal for selective removal, in a dry manner, of environmentally harmful gaseous noxious materials, such as sulfur, chlorine, and chlorine compounds, which are contained in a hot reaction gas flow which results after a complete or incomplete flame combustion of solid, liquid, or gaseous fuels. Depending upon the additive introduced, heat is stored and/or used for decomposition reactions. The additive, is first introduced at one or more input locations,more » due to locally different pressure conditions in the combustion chamber, into one or more recirculation flows which are within the system and are closed. The additive is subsequently withdrawn from these recirculation flows and is introduced into the reaction gas flow.« less

  18. Gas-liquid countercurrent integration process for continuous biodiesel production using a microporous solid base KF/CaO as catalyst.

    PubMed

    Hu, Shengyang; Wen, Libai; Wang, Yun; Zheng, Xinsheng; Han, Heyou

    2012-11-01

    A continuous-flow integration process was developed for biodiesel production using rapeseed oil as feedstock, based on the countercurrent contact reaction between gas and liquid, separation of glycerol on-line and cyclic utilization of methanol. Orthogonal experimental design and response surface methodology were adopted to optimize technological parameters. A second-order polynomial model for the biodiesel yield was established and validated experimentally. The high determination coefficient (R(2)=98.98%) and the low probability value (Pr<0.0001) proved that the model matched the experimental data, and had a high predictive ability. The optimal technological parameters were: 81.5°C reaction temperature, 51.7cm fill height of catalyst KF/CaO and 105.98kPa system pressure. Under these conditions, the average yield of triplicate experiments was 93.7%, indicating the continuous-flow process has good potential in the manufacture of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Microwave treatment of dairy manure for resource recovery: Reaction kinetics and energy analysis.

    PubMed

    Srinivasan, Asha; Liao, Ping H; Lo, Kwang V

    2016-12-01

    A newly designed continuous-flow 915 MHz microwave wastewater treatment system was used to demonstrate the effectiveness of the microwave enhanced advanced oxidation process (MW/H 2 O 2 -AOP) for treating dairy manure. After the treatment, about 84% of total phosphorus and 45% of total chemical oxygen demand were solubilized with the highest H 2 O 2 dosage (0.4% H 2 O 2 per %TS). The reaction kinetics of soluble chemical oxygen demand revealed activation energy to be in the range of 5-22 kJ mole -1 . The energy required by the processes was approximately 0.16 kWh per liter of dairy manure heated. A higher H 2 O 2 dosage used in the system had a better process performance in terms of solids solubilization, reaction kinetics, and energy consumption. Cost-benefit analysis for a farm-scale MW/H 2 O 2 -AOP treatment system was also presented. The results obtained from this study would provide the basic knowledge for designing an effective farm-scale dairy manure treatment system.

  20. Implicit and Explicit Knowledge Both Improve Dual Task Performance in a Continuous Pursuit Tracking Task.

    PubMed

    Ewolds, Harald E; Bröker, Laura; de Oliveira, Rita F; Raab, Markus; Künzell, Stefan

    2017-01-01

    The goal of this study was to investigate the effect of predictability on dual-task performance in a continuous tracking task. Participants practiced either informed (explicit group) or uninformed (implicit group) about a repeated segment in the curves they had to track. In Experiment 1 participants practices the tracking task only, dual-task performance was assessed after by combining the tracking task with an auditory reaction time task. Results showed both groups learned equally well and tracking performance on a predictable segment in the dual-task condition was better than on random segments. However, reaction times did not benefit from a predictable tracking segment. To investigate the effect of learning under dual-task situation participants in Experiment 2 practiced the tracking task while simultaneously performing the auditory reaction time task. No learning of the repeated segment could be demonstrated for either group during the training blocks, in contrast to the test-block and retention test, where participants performed better on the repeated segment in both dual-task and single-task conditions. Only the explicit group improved from test-block to retention test. As in Experiment 1, reaction times while tracking a predictable segment were no better than reaction times while tracking a random segment. We concluded that predictability has a positive effect only on the predictable task itself possibly because of a task-shielding mechanism. For dual-task training there seems to be an initial negative effect of explicit instructions, possibly because of fatigue, but the advantage of explicit instructions was demonstrated in a retention test. This might be due to the explicit memory system informing or aiding the implicit memory system.

  1. Implicit and Explicit Knowledge Both Improve Dual Task Performance in a Continuous Pursuit Tracking Task

    PubMed Central

    Ewolds, Harald E.; Bröker, Laura; de Oliveira, Rita F.; Raab, Markus; Künzell, Stefan

    2017-01-01

    The goal of this study was to investigate the effect of predictability on dual-task performance in a continuous tracking task. Participants practiced either informed (explicit group) or uninformed (implicit group) about a repeated segment in the curves they had to track. In Experiment 1 participants practices the tracking task only, dual-task performance was assessed after by combining the tracking task with an auditory reaction time task. Results showed both groups learned equally well and tracking performance on a predictable segment in the dual-task condition was better than on random segments. However, reaction times did not benefit from a predictable tracking segment. To investigate the effect of learning under dual-task situation participants in Experiment 2 practiced the tracking task while simultaneously performing the auditory reaction time task. No learning of the repeated segment could be demonstrated for either group during the training blocks, in contrast to the test-block and retention test, where participants performed better on the repeated segment in both dual-task and single-task conditions. Only the explicit group improved from test-block to retention test. As in Experiment 1, reaction times while tracking a predictable segment were no better than reaction times while tracking a random segment. We concluded that predictability has a positive effect only on the predictable task itself possibly because of a task-shielding mechanism. For dual-task training there seems to be an initial negative effect of explicit instructions, possibly because of fatigue, but the advantage of explicit instructions was demonstrated in a retention test. This might be due to the explicit memory system informing or aiding the implicit memory system. PMID:29312083

  2. Convective instability and boundary driven oscillations in a reaction-diffusion-advection model

    NASA Astrophysics Data System (ADS)

    Vidal-Henriquez, Estefania; Zykov, Vladimir; Bodenschatz, Eberhard; Gholami, Azam

    2017-10-01

    In a reaction-diffusion-advection system, with a convectively unstable regime, a perturbation creates a wave train that is advected downstream and eventually leaves the system. We show that the convective instability coexists with a local absolute instability when a fixed boundary condition upstream is imposed. This boundary induced instability acts as a continuous wave source, creating a local periodic excitation near the boundary, which initiates waves travelling both up and downstream. To confirm this, we performed analytical analysis and numerical simulations of a modified Martiel-Goldbeter reaction-diffusion model with the addition of an advection term. We provide a quantitative description of the wave packet appearing in the convectively unstable regime, which we found to be in excellent agreement with the numerical simulations. We characterize this new instability and show that in the limit of high advection speed, it is suppressed. This type of instability can be expected for reaction-diffusion systems that present both a convective instability and an excitable regime. In particular, it can be relevant to understand the signaling mechanism of the social amoeba Dictyostelium discoideum that may experience fluid flows in its natural habitat.

  3. Space and time-resolved probing of heterogeneous catalysis reactions using lab-on-a-chip

    NASA Astrophysics Data System (ADS)

    Navin, Chelliah V.; Krishna, Katla Sai; Theegala, Chandra S.; Kumar, Challa S. S. R.

    2016-03-01

    Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors.Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06752a

  4. [Electromagnetic radiation of non-thermal intensity and short exposition as a sub-threshold irritant for the central nervous system].

    PubMed

    Luk'ianova, S N

    2013-01-01

    This work represents generalization and the analysis of the long-term own materials characterizing reaction of the brain on electromagnetic radiation of low intensity (energy flow density in the continuous regime or in the impulse approximately 500 microW/sm2) and a short exposition (approximately 30 min). A set of the experimental results received on separate neurons, formations and brain as a whole give an idea about the reaction of the central nervous system to the studied influence. Comparison of these data with the corresponding responses to the known incentives (light, sound, electric current) testifies to the electromagnetic radiation of low energy flow density and a short exposition as a sub-threshold irritant for the central nervous system.

  5. Assessing Liability and Legitimacy of School Transportation Services

    ERIC Educational Resources Information Center

    Ammon, Tim; Burns, Peggy

    2011-01-01

    Whenever a school district considers changing bus stops, bus routes, or bell times, the public reaction is often decidedly unequal to the magnitude of the changes proposed. Unfortunately, the severity of continued budget crises has compelled many school districts to make major changes to their transportation systems. While additional cuts in…

  6. TRAVELING WAVE PYROTRON

    DOEpatents

    Post, R.F.

    1963-06-11

    The invention relates to a pyrotron, i.e., magnetic mirror device, designed for continuous operation in producing a high-temperature fusion reaction plasma and for directly converting the plasma energy into electrical power. The device utilizes a system in which an axially symmetric magnetic field is produced and transports plasma through a first zone of progressively rising field intensity, a second reaction zone of slowly increasing intensity, and thenceforth through a third zone of progressively decreasing intensity wherein the plasma expands against the magnetic field thereby producing electrical current in magnetic field generating solenoids associated with said third zone. (AEC)

  7. Process and continuous apparatus for chemical conversion of materials

    DOEpatents

    Rugg, Barry; Stanton, Robert

    1983-01-01

    A process and apparatus for the acid hydrolysis of waste cellulose to glucose of the type wherein waste cellulose is continuously fed into an inlet port of a twin screw extruder, water is continuously fed into reaction zone in the extruder, downstream of the inlet port, the cellulose is continuously reacted with water in the presence of an acid catalyst at elevated temperature and pressure in the reaction zone while being continuously conveyed to an outlet port of the extruder having a given diameter and the reacted cellulose is discharged from the extruder while the elevated temperature and pressure in the reaction zone is maintained. The elevated pressure is maintained by forming a dynamic seal zone at the upstream end of the reaction and continuously discharging the reacted material downstream of the outlet port at a predetermined volume rate of flow to maintain the pressure by passing the discharge through an orifice pipe having a smaller diameter than the given diameter of the outlet port.

  8. Self-contained exothermic applicator and process

    DOEpatents

    Koehmstedt, Paul L.

    1984-01-01

    An adhesive resin application system which requires no external heating apparatus, and which is operative in the absence of a reactive atmosphere, is disclosed. The system provides its own heat by employing an adhesive material containing reactants which react exothermally when electrically ignited. After ignition of the reactants, sufficient heat energy is liberated by the exothermic reaction either to plasticize a thermoplastic resin or to cure a thermosetting resin and therby bond together two closely spaced objects. This application is a continuation-in-part of application Ser. No. 489,006, filed Apr. 27, 1983, which is a continuation-in-part of application, Ser. No. 929,120, filed July 28, 1978, both now abandoned.

  9. Method for continuously recovering metals using a dual zone chemical reactor

    DOEpatents

    Bronson, M.C.

    1995-02-14

    A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing. 6 figs.

  10. Interaction of boron cluster ions with water: Single collision dynamics and sequential etching

    NASA Astrophysics Data System (ADS)

    Hintz, Paul A.; Ruatta, Stephen A.; Anderson, Scott L.

    1990-01-01

    Reactions of mass-selected, cooled, boron cluster ions (B+n, n=1-14) with water have been studied for collision energies from 0.1 to 6.0 eV. Most work was done with D2O, however isotope effects were examined for selected reactant cluster ions. For all size clusters there are exoergic product channels, which in most cases have no activation barriers. Cross sections are generally large, however there are fluctuations with cluster size in total reactivity, collision energy dependences, and in product distributions. For small cluster ions, there is a multitude of product channels. For clusters larger than B+6, the product distributions are dominated by a single channel: Bn-1D++DBO. Under multiple collision conditions, the primary products undergo a remarkable sequence of secondary ``etching'' reactions. As these occur, boron atoms are continuously replaced by hydrogen, and the intermediate products retain the composition: Bn-mH+m. This highly efficient chemistry appears to continue unchanged as the composition changes from pure boron to mostly hydrogen. Comparison of these results is made with boron cluster ion reactions with O2 and D2, as well as reactions with water of aluminum and silicon cluster ions. Some discussion is given of the thermochemistry for these reactions, and a possible problem with the thermochemical data in the BOD/DBO system is discussed.

  11. Optimization of information content in a mass spectrometry based flow-chemistry system by investigating different ionization approaches.

    PubMed

    Martha, Cornelius T; Hoogendoorn, Jan-Carel; Irth, Hubertus; Niessen, Wilfried M A

    2011-05-15

    Current development in catalyst discovery includes combinatorial synthesis methods for the rapid generation of compound libraries combined with high-throughput performance-screening methods to determine the associated activities. Of these novel methodologies, mass spectrometry (MS) based flow chemistry methods are especially attractive due to the ability to combine sensitive detection of the formed reaction product with identification of introduced catalyst complexes. Recently, such a mass spectrometry based continuous-flow reaction detection system was utilized to screen silver-adducted ferrocenyl bidentate catalyst complexes for activity in a multicomponent synthesis of a substituted 2-imidazoline. Here, we determine the merits of different ionization approaches by studying the combination of sensitive detection of product formation in the continuous-flow system with the ability to simultaneous characterize the introduced [ferrocenyl bidentate+Ag](+) catalyst complexes. To this end, we study the ionization characteristics of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), no-discharge APCI, dual ESI/APCI, and dual APCI/no-discharge APCI. Finally, we investigated the application potential of the different ionization approaches by the investigation of ferrocenyl bidentate catalyst complex responses in different solvents. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Alginate as immobilization matrix and stabilizing agent in a two-phase liquid system: application in lipase-catalysed reactions.

    PubMed

    Hertzberg, S; Kvittingen, L; Anthonsen, T; Skjåk-Braek, G

    1992-01-01

    Alginate was evaluated as an immobilization matrix for enzyme-catalyzed reactions in organic solvents. In contrast to most hydrogels, calcium alginate was found to be stable in a range of organic solvents and to retain the enzyme inside the gel matrix. In hydrophobic solvents, the alginate gel (greater than 95% water) thus provided a stable, two-phase liquid system. The lipase from Candida cylindracea, after immobilization in alginate beads, catalysed esterification and transesterification in n-hexane under both batch and continuous-flow conditions. The operational stability of the lipase was markedly enhanced by alginate entrapment. In the esterification of butanoic acid with n-butanol, better results were obtained in the typical hydrophilic calcium alginate beads than in less hydrophilic matrices. The effects of substrate concentration, matrix area, and polarity of the substrate alcohols and of the organic solvent on the esterification activity were examined. The transesterification of octyl 2-bromopropanoate with ethanol was less efficient than that of ethyl 2-bromopropanoate with octanol. By using the hydrophilic alginate gel as an immobilization matrix in combination with a mobile hydrophobic phase, a two-phase liquid system was achieved with definite advantages for a continuous, enzyme-catalysed process.

  13. Direct oral provocation tests in non-immediate mild cutaneous reactions related to beta-lactam antibiotics.

    PubMed

    Vezir, Emine; Dibek Misirlioglu, Emine; Civelek, Ersoy; Capanoglu, Murat; Guvenir, Hakan; Ginis, Tayfur; Toyran, Muge; Kocabas, Can N

    2016-02-01

    Skin testing has a limited role in the diagnosis of non-immediate beta-lactam hypersensitivity in children. The aim of this study was to report the results of oral provocation tests performed without skin tests in children with non-immediate mild cutaneous reactions without systemic symptoms caused by beta-lactam antibiotics. Oral provocation tests with suspected antibiotics were performed to patients with non-immediate mild cutaneous reactions without systemic symptoms caused by beta-lactam antibiotics. Skin tests were not performed before provocation tests. A total of five doses were administered with half-an-hour intervals in increasing doses. Provocation was continued for 5 days. A total of 119 patients with a median age of 4.3 (IQR: 2-7.5) years, of whom 58% were males, were included in the study. Amoxicillin-clavulanic acid was the most frequently responsible agent in 87 (73.1%) patients, and most common type of rash was maculopapular in 74 (62.2%) patients. Four patients (3.4%) had an urticarial reaction during the provocation test. We did not experience any severe reactions during oral provocation test without previous skin tests performed to children with non-immediate mild cutaneous reactions without systemic symptoms. Omitting skin tests before oral provocation test in this group of children can help decreasing the burden of allergy clinics and alleviating the discomfort of children. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Electro-Fenton as a feasible advanced treatment process to produce reclaimed water.

    PubMed

    Durán Moreno, A; Frontana-Uribe, B A; Ramírez Zamora, R M

    2004-01-01

    The feasibility of the electro-Fenton process to generate simultaneously both of the Fenton's reagent species (Fe2+/H2O2), was assessed as a potentially more economical alternative to the classical Fenton's reaction to produce reclaimed water. An air-saturated combined wastewater (mixture of municipal and laboratory effluents) was treated in discontinuous and continuous reactors at pH = 3.5. The discontinuous reactor was a 2 L electrochemical laboratory cell fitted with concentric graphite and iron electrodes. The continuous reactor tests used a pilot treatment system comprising the aforementioned electrochemical cell, two clarifiers and one sand filter. Several tests were carried out at different conditions of reaction time (0-60 min) and electrical current values (0.2-1.0 A) in the discontinuous reactor. The best operating conditions were 60 min and 1 A without filtration of effluents. At these conditions, in discontinuous and continuous reactors with filtration, the COD, turbidity and color removal were 65-74.8%, 77-92.3% and 80-100%, respectively. Fecal and total coliforms, Escherichia coli, Shigella and Salmonella sp. were not detected at the end of the pilot treatment system. Electrogeneration of the Fenton's reagent is also economical; its cost is one-fifth the cost reported for Advanced Primary Treatment.

  15. Frontiers in Applied and Computational Mathematics 05’

    DTIC Science & Technology

    2005-03-01

    dynamics, forcing subsets to have the same oscillation numbers and interleaving spiking times . Our analysis follows the theory of coupled systems of...continuum is described by a continuous- time stochastic process, as are their internal dynamics. Soluble factors, such as cytokines, are represent- ed...scale of a partide pas- sage time through the reaction zone. Both are realistic for many systems of physical interest. A higher order theory includes

  16. Potential energy surfaces and reaction dynamics of polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yan-Tyng

    A simple empirical valence bond (EVB) model approach is suggested for constructing global potential energy surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous potential surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogenmore » atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.« less

  17. Diels–Alder reactions of myrcene using intensified continuous-flow reactors

    PubMed Central

    Álvarez-Diéguez, Miguel Á; Kohl, Thomas M; Tsanaktsidis, John

    2017-01-01

    This work describes the Diels–Alder reaction of the naturally occurring substituted butadiene, myrcene, with a range of different naturally occurring and synthetic dienophiles. The synthesis of the Diels–Alder adduct from myrcene and acrylic acid, containing surfactant properties, was scaled-up in a plate-type continuous-flow reactor with a volume of 105 mL to a throughput of 2.79 kg of the final product per day. This continuous-flow approach provides a facile alternative scale-up route to conventional batch processing, and it helps to intensify the synthesis protocol by applying higher reaction temperatures and shorter reaction times. PMID:28228853

  18. Method and apparatus to produce high specific impulse and moderate thrust from a fusion-powered rocket engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Samuel A.; Pajer, Gary A.; Paluszek, Michael A.

    A system and method for producing and controlling high thrust and desirable specific impulse from a continuous fusion reaction is disclosed. The resultant relatively small rocket engine will have lower cost to develop, test, and operate that the prior art, allowing spacecraft missions throughout the planetary system and beyond. The rocket engine method and system includes a reactor chamber and a heating system for heating a stable plasma to produce fusion reactions in the stable plasma. Magnets produce a magnetic field that confines the stable plasma. A fuel injection system and a propellant injection system are included. The propellant injectionmore » system injects cold propellant into a gas box at one end of the reactor chamber, where the propellant is ionized into a plasma. The propellant and fusion products are directed out of the reactor chamber through a magnetic nozzle and are detached from the magnetic field lines producing thrust.« less

  19. Apparatus for continuously referenced analysis of reactive components in solution

    DOEpatents

    Bostick, William D.; Denton, Mark S.; Dinsmore, Stanley R.

    1981-01-01

    A continuously referenced apparatus for measuring the concentration of a reactive chemical species in solution comprises in combination conduit means for introducing a sample solution, means for introducing one or more reactants into a sample solution, a reaction zone in fluid communication with said conduit means wherein a first chemical reaction occurs between said species and reactants, and a stream separator disposed within the conduit means for separating the sample solution into a sample stream and a reference stream. An enzymatic reactor is disposed in fluid communication with only the sample stream wherein a second reaction takes place between the said reactants, species, and reactor enzymes causing the consumption or production of an indicator species in just the sample stream. Measurement means such as a photometric system are disposed in communication with the sample and reference streams, and the outputs of the measurement means are compared to provide a blanked measurement of the concentration of indicator species. A peristaltic pump is provided to equalize flow through the apparatus by evacuation. The apparatus is particularly suitable for measurement of isoenzymes in body tissues or fluids.

  20. Solving regularly and singularly perturbed reaction-diffusion equations in three space dimensions

    NASA Astrophysics Data System (ADS)

    Moore, Peter K.

    2007-06-01

    In [P.K. Moore, Effects of basis selection and h-refinement on error estimator reliability and solution efficiency for higher-order methods in three space dimensions, Int. J. Numer. Anal. Mod. 3 (2006) 21-51] a fixed, high-order h-refinement finite element algorithm, Href, was introduced for solving reaction-diffusion equations in three space dimensions. In this paper Href is coupled with continuation creating an automatic method for solving regularly and singularly perturbed reaction-diffusion equations. The simple quasilinear Newton solver of Moore, (2006) is replaced by the nonlinear solver NITSOL [M. Pernice, H.F. Walker, NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput. 19 (1998) 302-318]. Good initial guesses for the nonlinear solver are obtained using continuation in the small parameter ɛ. Two strategies allow adaptive selection of ɛ. The first depends on the rate of convergence of the nonlinear solver and the second implements backtracking in ɛ. Finally a simple method is used to select the initial ɛ. Several examples illustrate the effectiveness of the algorithm.

  1. Intelligent sensor-model automated control of PMR-15 autoclave processing

    NASA Technical Reports Server (NTRS)

    Hart, S.; Kranbuehl, D.; Loos, A.; Hinds, B.; Koury, J.

    1992-01-01

    An intelligent sensor model system has been built and used for automated control of the PMR-15 cure process in the autoclave. The system uses frequency-dependent FM sensing (FDEMS), the Loos processing model, and the Air Force QPAL intelligent software shell. The Loos model is used to predict and optimize the cure process including the time-temperature dependence of the extent of reaction, flow, and part consolidation. The FDEMS sensing system in turn monitors, in situ, the removal of solvent, changes in the viscosity, reaction advancement and cure completion in the mold continuously throughout the processing cycle. The sensor information is compared with the optimum processing conditions from the model. The QPAL composite cure control system allows comparison of the sensor monitoring with the model predictions to be broken down into a series of discrete steps and provides a language for making decisions on what to do next regarding time-temperature and pressure.

  2. Saccadic eye movements analysis as a measure of drug effect on central nervous system function.

    PubMed

    Tedeschi, G; Quattrone, A; Bonavita, V

    1986-04-01

    Peak velocity (PSV) and duration (SD) of horizontal saccadic eye movements are demonstrably under the control of specific brain stem structures. Experimental and clinical evidence suggest the existence of an immediate premotor system for saccade generation located in the paramedian pontine reticular formation (PPRF). Effects on saccadic eye movements have been studied in normal volunteers with barbiturates, benzodiazepines, amphetamine and ethanol. On two occasions computer analysis of PSV, SD, saccade reaction time (SRT) and saccade accuracy (SA) was carried out in comparison with more traditional methods of assessment of human psychomotor performance like choice reaction time (CRT) and critical flicker fusion threshold (CFFT). The computer system proved to be a highly sensitive and objective method for measuring drug effect on central nervous system (CNS) function. It allows almost continuous sampling of data and appears to be particularly suitable for studying rapidly changing drug effects on the CNS.

  3. Enzymatic synthesis of chiral amino‐alcohols by coupling transketolase and transaminase‐catalyzed reactions in a cascading continuous‐flow microreactor system

    PubMed Central

    Gruber, Pia; Carvalho, Filipe; Marques, Marco P. C.; O'Sullivan, Brian; Subrizi, Fabiana; Dobrijevic, Dragana; Ward, John; Hailes, Helen C.; Fernandes, Pedro; Wohlgemuth, Roland; Baganz, Frank

    2017-01-01

    Abstract Rapid biocatalytic process development and intensification continues to be challenging with currently available methods. Chiral amino‐alcohols are of particular interest as they represent key industrial synthons for the production of complex molecules and optically pure pharmaceuticals. (2S,3R)‐2‐amino‐1,3,4‐butanetriol (ABT), a building block for the synthesis of protease inhibitors and detoxifying agents, can be synthesized from simple, non‐chiral starting materials, by coupling a transketolase‐ and a transaminase‐catalyzed reaction. However, until today, full conversion has not been shown and, typically, long reaction times are reported, making process modifications and improvement challenging. In this contribution, we present a novel microreactor‐based approach based on free enzymes, and we report for the first time full conversion of ABT in a coupled enzyme cascade for both batch and continuous‐flow systems. Using the compartmentalization of the reactions afforded by the microreactor cascade, we overcame inhibitory effects, increased the activity per unit volume, and optimized individual reaction conditions. The transketolase‐catalyzed reaction was completed in under 10 min with a volumetric activity of 3.25 U ml−1. Following optimization of the transaminase‐catalyzed reaction, a volumetric activity of 10.8 U ml−1 was attained which led to full conversion of the coupled reaction in 2 hr. The presented approach illustrates how continuous‐flow microreactors can be applied for the design and optimization of biocatalytic processes. PMID:28986983

  4. Hydrogen-driven asymmetric reduction of hydroxyacetone to (R)-1,2-propanediol by Ralstonia eutropha transformant expressing alcohol dehydrogenase from Kluyveromyces lactis.

    PubMed

    Oda, Takahiro; Oda, Koji; Yamamoto, Hiroaki; Matsuyama, Akinobu; Ishii, Masaharu; Igarashi, Yasuo; Nishihara, Hirofumi

    2013-01-10

    Conversion of industrial processes to more nature-friendly modes is a crucial subject for achieving sustainable development. Utilization of hydrogen-oxidation reactions by hydrogenase as a driving force of bioprocess reaction can be an environmentally ideal method because the reaction creates no pollutants. We expressed NAD-dependent alcohol dehydrogenase from Kluyveromyces lactis in a hydrogen-oxidizing bacterium: Ralstonia eutropha. This is the first report of hydrogen-driven in vivo coupling reaction of the alcohol dehydrogenase and indigenous soluble NAD-reducing hydrogenase. Asymmetric reduction of hydroxyacetone to (R)-1,2-propanediol, which is a commercial building block for antibacterial agents, was performed using the transformant as the microbial cell catalyst. The two enzymes coupled in vitro in vials without a marked decrease of reactivity during the 20 hr reaction because of the hydrogenase reaction, which generates no by-product that affects enzymes. Alcohol dehydrogenase was expressed functionally in R. eutropha in an activity level equivalent to that of indigenous NAD-reducing hydrogenase under the hydrogenase promoter. The hydrogen-driven in vivo coupling reaction proceeded only by the transformant cell without exogenous addition of a cofactor. The decrease of reaction velocity at higher concentration of hydroxyacetone was markedly reduced by application of an in vivo coupling system. Production of (R)-1,2-propanediol (99.8% e.e.) reached 67.7 g/l in 76 hr with almost a constant rate using a jar fermenter. The reaction velocity under 10% PH2 was almost equivalent to that under 100% hydrogen, indicating the availability of crude hydrogen gas from various sources. The in vivo coupling system enabled cell-recycling as catalysts. Asymmetric reduction of hydroxyacetone by a coupling reaction of the two enzymes continued in both in vitro and in vivo systems in the presence of hydrogen. The in vivo reaction system using R. eutropha transformant expressing heterologous alcohol dehydrogenase showed advantages for practical usage relative to the in vitro coupling system. The results suggest a hopeful perspective of the hydrogen-driven bioprocess as an environmentally outstanding method to achieve industrial green innovation. Hydrogen-oxidizing bacteria can be useful hosts for the development of hydrogen-driven microbial cell factories.

  5. Time Dependent Analytical and Optical Studies of Heat Balanced Internal Combustion Engine Flow Fields.

    DTIC Science & Technology

    1980-11-01

    to auto ignite in color cinematography of the process. It appears the above interaction reduces classical wall quench(14 ) as the reaction continues...vivid blue hue while the core reaction is white. Continuation of the reaction is seen in the first four frames of Fig. V-3; this figure covers the time

  6. Multimembrane Bioreactor

    NASA Technical Reports Server (NTRS)

    Cho, Toohyon; Shuler, Michael L.

    1989-01-01

    Set of hydrophilic and hydrophobic membranes in bioreactor allows product of reaction to be separated, while nutrients fed to reacting cells and byproducts removed from them. Separation process requires no externally supplied energy; free energy of reaction sufficient. Membranes greatly increase productivity of metabolizing cells by continuously removing product and byproducts, which might otherwise inhibit reaction, and by continuously adding oxygen and organic nutrients.

  7. Cluster geometry and survival probability in systems driven by reaction diffusion dynamics

    NASA Astrophysics Data System (ADS)

    Windus, Alastair; Jensen, Henrik J.

    2008-11-01

    We consider a reaction-diffusion model incorporating the reactions A→phi, A→2A and 2A→3A. Depending on the relative rates for sexual and asexual reproduction of the quantity A, the model exhibits either a continuous or first-order absorbing phase transition to an extinct state. A tricritical point separates the two phase lines. While we comment on this critical behaviour, the main focus of the paper is on the geometry of the population clusters that form. We observe the different cluster structures that arise at criticality for the three different types of critical behaviour and show that there exists a linear relationship for the survival probability against initial cluster size at the tricritical point only.

  8. Comparison of Fenton and Fenton-like oxidation for the treatment of cosmetic wastewater.

    PubMed

    Bautista, P; Casas, J A; Zazo, J A; Rodriguez, J J; Mohedano, A F

    2014-01-01

    The treatment of cosmetic wastewaters by Fenton (Fe²⁺/H₂O₂) and Fenton-like (Fe³⁺/H₂O₂) oxidation has been studied. From batch and continuous experiments it has been proved that both versions of the Fenton process lead to quite similar results in terms of chemical oxygen demand (COD) and total organic carbon reduction although the COD shows a slightly higher rate in the early stages of reaction. COD reductions of around 55% after 2 h reaction time and 75-80% with 4 h residence time were reached in batch and continuous experiments, respectively, conducted at pH around 3, ambient temperature (20 °C), with 200 mg/L of Fe dose and an initial H₂O₂/COD weight ratio corresponding to the theoretical stoichiometric value. Achieving the locally allowable limit of COD for industrial wastewater discharge into the municipal sewer system takes no more than 30 min reaction time under those conditions by both Fenton systems. However, the Fenton-like process, where iron is fed as Fe(3+), would be preferable for industrial applications since the ferric sludge resulting upon final neutralization of the effluent can be recycled to the process. A second-order kinetic equation with respect to COD fitted fairly well the experimental results at different temperatures, thus providing a simple practical tool for design purposes.

  9. Predicting Ares I Reaction Control System Performance by Utilizing Analysis Anchored with Development Test Data

    NASA Technical Reports Server (NTRS)

    Stein, William B.; Holt, K.; Holton, M.; Williams, J. H.; Butt, A.; Dervan, M.; Sharp, D.

    2010-01-01

    The Ares I launch vehicle is an integral part of NASA s Constellation Program, providing a foundation for a new era of space access. The Ares I is designed to lift the Orion Crew Module and will enable humans to return to the Moon as well as explore Mars.1 The Ares I is comprised of two inline stages: a Space Shuttle-derived five-segment Solid Rocket Booster (SRB) First Stage (FS) and an Upper Stage (US) powered by a Saturn V-derived J-2X engine. A dedicated Roll Control System (RoCS) located on the connecting interstage provides roll control prior to FS separation. Induced yaw and pitch moments are handled by the SRB nozzle vectoring. The FS SRB operates for approximately two minutes after which the US separates from the vehicle and the US Reaction Control System (ReCS) continues to provide reaction control for the remainder of the mission. A representation of the Ares I launch vehicle in the stacked configuration and including the Orion Crew Exploration Vehicle (CEV) is shown in Figure 1. Each Reaction Control System (RCS) design incorporates a Gaseous Helium (GHe) pressurization system combined with a monopropellant Hydrazine (N2H4) propulsion system. Both systems have two diametrically opposed thruster modules. This architecture provides one failure tolerance for function and prevention of catastrophic hazards such as inadvertent thruster firing, bulk propellant leakage, and over-pressurization. The pressurization system on the RoCS includes two ambient pressure-referenced regulators on parallel strings in order to attain the required system level single Fault Tolerant (FT) design for function while the ReCS utilizes a blow-down approach. A single burst disk and relief valve assembly is also included on the RoCS to ensure single failure tolerance for must-not-occur catastrophic hazards. The Reaction Control Systems are designed to support simultaneously firing multiple thrusters as required

  10. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co2+Soultion : Interactional Performance and Mechanism

    NASA Astrophysics Data System (ADS)

    Dai, C.; Zhang, Y.

    2015-12-01

    The nanoscale particle and low oxidation reduction potential make nano zero-valent iron (nZVI) an efficient sorbent and reductant for treating many kinds of organic contaminants and heavy metals.The structures of nanoscale zero-valent iron (nZVI) particles are evolving in reactions, and the reactions are influenced by the evolved structures. In order to understand the detail removal process, it is important to investigate the interactions between reactions and structural evolution. In this work, reactions between nZVI and Co2+ at different initial concentrations in anoxic aqueous solutions (to eliminate the effects of O2) were tracked for 10 days using a variety of methods including inductively coupled plasma optical emission spectrometry (ICP-OES), high resolution-transmission electron microscopy (HR-TEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM). Continuous removal and reduction of Co2+ by nZVI caused by structural evolution were revealed in reaction processes. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the corrosion rate of nZVI, was deemed as the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results showed that the formation and dissolution of sheet structure impacts on the ratio of Fe (0) on nZVI's surface and the surface reduction of Co2+. The cavity structure provides the possibility of Co migrating from surface to inside of nZVI leading a continuous removal. A subacidity condition could accelerate the evolution to improve the removal of Co2+ and the results of structural controlled reactions further indicated that the removal was suspended by sheet structure and enhanced by cavity structure. The results in this study revealed "structural influence" for fully and dynamically understanding nZVI's reactions.

  11. Drug rash with eosinophilia and systemic symptoms syndrome associated with use of phenytoin, divalproex sodium, and phenobarbital.

    PubMed

    Brizendine, Christina E; Naik, Paras J

    2013-03-15

    A probable case of drug reaction with eosinophilia and systemic symptoms (DRESS) associated with consecutive use of three medications for seizure control is reported. A 36-year-old woman was treated at a community hospital for a mild fever (37.9°C) and diffuse raised maculopapular rash with erythema. Three weeks previously, she had been diagnosed with a seizure disorder and initiated on phenytoin (dose unknown) at that time; about two weeks later, she developed a rash, prompting a switch from phenytoin to extended-release divalproex sodium 250 mg orally twice daily. During the week after discontinuation of phenytoin, the rash was improving, but about five days after the initiation of divalproex therapy, she had worsening rash and pruritus requiring urgent treatment; the divalproex was discontinued, and phenobarbital 30 mg three times daily was initiated for continued seizure control. Despite the discontinuation of phenytoin and divalproex, the patient's hepatic function worsened over five days, and phenobarbital therapy was discontinued. With continued deterioration of the patient's condition to fulminant hepatic failure, a transfer to a liver transplant facility was arranged. The use of the adverse reaction probability scale of Naranjo et al. in this case yielded a score of 8, indicating a probable relationship between DRESS and the serial use of phenytoin, divalproex, and phenobarbital. After receiving phenytoin for treatment of seizure disorder, a 36-year-old woman developed a fever and maculopapular rash with erythema. This reaction continued even after drug therapy was switched to extended-release divalproex and then phenobarbital. The patient's liver function deteriorated despite discontinuation of all seizure medications.

  12. Advanced Continuous Flow Platform for On-Demand Pharmaceutical Manufacturing.

    PubMed

    Zhang, Ping; Weeranoppanant, Nopphon; Thomas, Dale A; Tahara, Kohei; Stelzer, Torsten; Russell, Mary Grace; O'Mahony, Marcus; Myerson, Allan S; Lin, Hongkun; Kelly, Liam P; Jensen, Klavs F; Jamison, Timothy F; Dai, Chunhui; Cui, Yuqing; Briggs, Naomi; Beingessner, Rachel L; Adamo, Andrea

    2018-02-21

    As a demonstration of an alternative to the challenges faced with batch pharmaceutical manufacturing including the large production footprint and lengthy time-scale, we previously reported a refrigerator-sized continuous flow system for the on-demand production of essential medicines. Building on this technology, herein we report a second-generation, reconfigurable and 25 % smaller (by volume) continuous flow pharmaceutical manufacturing platform featuring advances in reaction and purification equipment. Consisting of two compact [0.7 (L)×0.5 (D)×1.3 m (H)] stand-alone units for synthesis and purification/formulation processes, the capabilities of this automated system are demonstrated with the synthesis of nicardipine hydrochloride and the production of concentrated liquid doses of ciprofloxacin hydrochloride, neostigmine methylsulfate and rufinamide that meet US Pharmacopeia standards. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Exclusive and Semi-Exclusive Reactions at a Higher Energy CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carl Carlson

    More energy at CEBAF provides more opportunity for studies of hadron and nuclear properties. Many of the experiments that could be done are extensions of things already done at lower energies. Others represent new initiatives that could not work or could not theoretically be interpreted at lower energies. The author concentrates on the new initiatives, but do not wish our thinking to neglect what can be learned from continuations of lower energy work. The author begins with a list of some things that should be continued into a new energy regime. (1) Baryon and meson spectroscopy of higher mass states.more » With 4 GeV incoming electron energy, strange mesons are limited to 1.8 GeV in mass and charm is not producible. (2) Exclusive reactions, including meson and baryon form factors and reactions on few nucleon systems. The latter includes deuteron photodisintegration, the A and B form factors of the deuteron, and the deuteron tensor polarization T{sub 20}. (And we should not forget T{sub 20} in inclusive scattering.) (3) Hadrons in the nuclear medium, with such topics as color transparency, electroproduction of {rho} mesons, virtual Compton scattering off nuclei, and backward hadrons from e-d reactions. The very last must be especially important, since it gives the logo used in the advertizing for this conference. In addition, there are new initiatives that this talk will call attention to, in particular: (1) semi-exclusive meson production; (2) duality in semi-exclusive reactions; and (3) new views of exclusive reactions and perturbative QCD (leading to ''off-forward parton distributions'').« less

  14. Process Feasibility Study in Support of Silicon Material, Task 1

    NASA Technical Reports Server (NTRS)

    Li, K. Y.; Hansen, K. C.; Yaws, C. L.

    1979-01-01

    During this reporting period, major activies were devoted to process system properties, chemical engineering and economic analyses. Analyses of process system properties was continued for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for silicon tetrafluoride: critical constants, vapor pressure, heat of varporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation and Gibb's free energy of formation. Chemical engineering analysis of the BCL process was continued with primary efforts being devoted to the preliminary process design. Status and progress are reported for base case conditions; process flow diagram; reaction chemistry; material and energy balances; and major process equipment design.

  15. Rapid identification of Yersinia pestis and Brucella melitensis by chip-based continuous flow PCR

    NASA Astrophysics Data System (ADS)

    Dietzsch, Michael; Hlawatsch, Nadine; Melzer, Falk; Tomaso, Herbert; Gärtner, Claudia; Neubauer, Heinrich

    2012-06-01

    To combat the threat of biological agents like Yersinia pestis and Brucella melitensis in bioterroristic scenarios requires fast, easy-to-use and safe identification systems. In this study we describe a system for rapid amplification of specific genetic markers for the identification of Yersinia pestis and Brucella melitensis. Using chip based PCR and continuous flow technology we were able to amplify the targets simultaneously with a 2-step reaction profile within 20 minutes. The subsequent analysis of amplified fragments by standard gel electrophoresis requires another 45 minutes. We were able to detect both pathogens within 75 minutes being much faster than most other nucleic acid amplification technologies.

  16. Equilibrium Polymerization of Butyl Methacrylate in Bulk and in Nanopore Confinement

    NASA Astrophysics Data System (ADS)

    Tian, Qian; Simon, Sindee

    The equilibrium between monomer and polymer in free radical polymerization can be shifted towards monomer under nanoconfinement. This decrease in ceiling temperature is due to a decrease in the entropy associated with the constrained polymer chains, resulting in a larger negative change in entropy of reaction. Here, we investigate the equilibrium polymerization of butyl methacrylate (BMA) in bulk and in nanopore confinement with differential scanning calorimetry (DSC) using di-tert-butyl peroxide (DTBP) as initiator. This system has several advantages compare to the previously studied system of methyl methacrylate (MMA) initiated with 2,2'-azo-bis-isobutyronitrile (AIBN), namely, a reduced rate of reaction, higher boiling point of monomer, and higher initiator utilization temperature range, all of which facilitate the study of the reaction at high temperatures near the ceiling temperature. Interestingly, for BMA, there is no change in limiting conversion between material reacted in bulk and that in controlled pore glass having pore diameters of 7.5 and 50 nm. This unexpected result may be due to the greater flexibility of the PBMA chains compared to PMMA, suggesting that in the BMA/PBMA system, the degree of confinement is relatively low. Future studies will continue to investigate how the entropy change on reaction is affected by confinement.

  17. Webcam camera as a detector for a simple lab-on-chip time based approach.

    PubMed

    Wongwilai, Wasin; Lapanantnoppakhun, Somchai; Grudpan, Supara; Grudpan, Kate

    2010-05-15

    A modification of a webcam camera for use as a small and low cost detector was demonstrated with a simple lab-on-chip reactor. Real time continuous monitoring of the reaction zone could be done. Acid-base neutralization with phenolphthalein indicator was used as a model reaction. The fading of pink color of the indicator when the acidic solution diffused into the basic solution zone was recorded as the change of red, blue and green colors (%RBG.) The change was related to acid concentration. A low cost portable semi-automation analysis system was achieved.

  18. Ultrasonic-assisted continuous methanolysis of Jatropha curcas oil in the appearance of biodiesel used as an intermediate solvent.

    PubMed

    Kumar, Gajendra; Singh, Vidhi; Kumar, Dharmendra

    2017-11-01

    A environmental friendly system for fast transesterification of Jatropha curcas oil was developed for the production of biodiesel using an ultrasonic-assisted continuous tank reactor in the presence of fatty acid methyl ester (FAMEs) used as a green (intermediate) solvent with potassium hydroxide used as a catalyst. This research provide a new biodiesel production process, the optimal condition for the reaction were established: reaction temperature 25°C oil to methanol molar ratio was 1:5, catalyst concentration 0.75wt% of oil, solvent concentration 7.5%, flow rate 241.68±0.80ml/min, ultrasonic amplitude 60% and ultrasonic cycles 0.7s, transesterification was completed within 1.09min (residence time). The purity and conversion of biodiesel was 98.75±0.50% analyzed by the reverse phase HPLC method. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Particle-based modeling of heterogeneous chemical kinetics including mass transfer.

    PubMed

    Sengar, A; Kuipers, J A M; van Santen, Rutger A; Padding, J T

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  20. Particle-based modeling of heterogeneous chemical kinetics including mass transfer

    NASA Astrophysics Data System (ADS)

    Sengar, A.; Kuipers, J. A. M.; van Santen, Rutger A.; Padding, J. T.

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  1. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.

    PubMed

    Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar

    2015-04-01

    When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.

  2. High yield neutron generators using the DD reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.

    2013-04-19

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber,more » increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.« less

  3. High yield neutron generators using the DD reaction

    NASA Astrophysics Data System (ADS)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-01

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 × 109 n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 μs have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  4. Gypsum crystal size distribution in four continuous flow stirred slurry boric acid reactors in series compared with the batch

    NASA Astrophysics Data System (ADS)

    Çakal, G. Ö.; Eroğlu, İ.; Özkar, S.

    2006-04-01

    Colemanite, one of the important boron minerals, is dissolved in aqueous sulfuric acid to produce boric acid. In this reaction, gypsum is obtained as a by-product. Gypsum crystals are in the shape of thin needles. These crystals should be grown to an easily filterable size in order to increase the production yield and purity of boric acid. In this paper, the particle size distributions and the volume-weighted mean diameters of the gypsum crystals obtained in batch and continuous flow systems were compared. Experiments in both batch and continuous reactors were performed at a temperature of 85 °C, a stirring rate of 400 rpm, and the inlet CaO to SO42- molar ratio of 1.0 using colemanite mineral in particle size smaller than 150 μm. The average diameter of the gypsum crystals obtained at 3.5 h from the batch reactor was found to be 37-41 μm. This value for the continuous system at steady state was observed to change between 44-163 μm. The particle size of the gypsum crystals was found to increase with the residence time of the solid in the continuous system.

  5. History and classification of anaphylaxis.

    PubMed

    Ring, Johannes; Behrendt, Heidrun; de Weck, Alain

    2010-01-01

    Anaphylaxis as the maximal variant of an acute systemic hypersensitivity reaction can involve several organ systems, particularly the skin, respiratory tract, gastrointestinal tract and the cardiovascular system. The severity of anaphylactic reaction is variable and can be classified into severity grades I-IV. Some reactions are fatal. Most frequent elicitors of anaphylaxis are foods in childhood, later insect stings and drugs. The phenomenon itself has been described in ancient medical literature, but was actually recognized and named at the beginning of the 20th century by Charles Richet and Paul Portier. In the course of experiments starting on the yacht of the Prince of Monaco and continued in the laboratory in Paris, they tried to immunize dogs with extracts of Physalia species in an attempt to develop an antitoxin to the venom of the Portuguese man-of-war. While Charles Richet believed that anaphylaxis was a 'lack of protection', it has become clear that an exaggerated immune reaction, especially involving immunoglobulin E antibodies, is the underlying pathomechanism in allergic anaphylaxis besides immune complex reactions. Non-immunologically mediated reactions leading to similar clinical symptomatology have been called 'anaphylactoid' or 'pseudo-allergic'--especially by Paul Kallos--and are now called 'non-immune anaphylaxis' according to a consensus of the World Allergy Organization (WAO). The distinction of different pathophysiological processes is important since non-immune anaphylaxis cannot be detected by skin test or in vitro allergy diagnostic procedures. History and provocation tests are crucial. The intensity of the reaction is not only influenced by the degree of sensitization but also by concomitant other factors as age, simultaneous exposure to other allergens, underlying infection, physical exercise or psychological stress or concomitant medication (e.g. beta-blockers, NSAIDs); this phenomenon has been called augmentation or summation anaphylaxis. Copyright 2010 S. Karger AG, Basel.

  6. High temperature gas-solid reactions in calc-silicate Cu-Au skarn formation; Ertsberg, Papua Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Henley, Richard W.; Brink, Frank J.; King, Penelope L.; Leys, Clyde; Ganguly, Jibamitra; Mernagh, Terrance; Middleton, Jill; Renggli, Christian J.; Sieber, Melanie; Troitzsch, Ulrike; Turner, Michael

    2017-12-01

    The 2.7-3 Ma Ertsberg East Skarn System (Indonesia), adjacent to the giant Grasberg Porphyry Copper deposit, is part of the world's largest system of Cu -Au skarn deposits. Published fluid inclusion and stable isotope data show that it formed through the flux of magma-derived fluid through contact metamorphosed carbonate rock sequences at temperatures well above 600° C and pressures of less than 50 MPa. Under these conditions, the fluid has very low density and the properties of a gas. Combining a range of micro-analytical techniques, high-resolution QEMSCAN mineral mapping and computer-assisted X-ray micro-tomography, an array of coupled gas-solid reactions may be identified that controlled reactive mass transfer through the 1 km3 hydrothermal skarn system. Vacancy-driven mineral chemisorption reactions are identified as a new type of reactive transport process for high-temperature skarn alteration. These gas-solid reactions are maintained by the interaction of unsatisfied bonds on mineral surfaces and dipolar gas-phase reactants such as SO2 and HCl that are continuously supplied through open fractures and intergranular diffusion. Principal reactions are (a) incongruent dissolution of almandine-grossular to andradite and anorthite (an alteration mineral not previously recognized at Ertsberg), and (b) sulfation of anorthite to anhydrite. These sulfation reactions also generate reduced sulfur with consequent co-deposition of metal sulfides. Diopside undergoes similar reactions with deposition of Fe-enriched pyroxene in crypto-veins and vein selvedges. The loss of calcium from contact metamorphic garnet to form vein anhydrite necessarily results in Fe-enrichment of wallrock, and does not require Fe-addition from a vein fluid as is commonly assumed.

  7. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous-Flow Nanocatalysis.

    PubMed

    Koga, Hirotaka; Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta

    2017-06-22

    Continuous-flow nanocatalysis based on metal nanoparticle catalyst-anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle-anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The "paper reactor" offers hierarchically interconnected micro- and nanoscale pores, which can act as convective-flow and rapid-diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous-flow, aqueous, room-temperature catalytic reduction of 4-nitrophenol to 4-aminophenol, a gold nanoparticle (AuNP)-anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state-of-the-art AuNP-anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP-anchored paper reactors were also demonstrated while high reaction efficiency was maintained. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Mechanistic elucidation of thermal runaway in potassium-ion batteries

    NASA Astrophysics Data System (ADS)

    Adams, Ryan A.; Varma, Arvind; Pol, Vilas G.

    2018-01-01

    For the first time, thermal runaway of charged graphite anodes for K-ion batteries is investigated, using differential scanning calorimetry (DSC) to probe the exothermic degradation reactions. Investigated parameters such as state of charge, cycle number, surface area, and binder demonstrate strong influences on the DSC profiles. Thermal runaway initiates at 100 °C owing to KxC8 - electrolyte reactions, but the K-ion graphite anode evolves significantly less heat as compared to the analogous Li-ion system (395 J g-1 vs. 1048 J g-1). The large volumetric expansion of graphite during potassiation cracks the SEI layer, enabling contact and reaction of KC8 - electrolyte, which diminishes with cycle number due to continuous SEI growth. High surface area graphite decreases the total heat generation, owing to thermal stability of the K-ion SEI layer. These findings illustrate the dynamic nature of K-ion thermal runaway and its many contrasts with the Li-ion graphite system, permitting possible engineering solutions for safer batteries.

  9. Parallel replica dynamics method for bistable stochastic reaction networks: Simulation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Plecháč, Petr

    2017-12-01

    Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.

  10. Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing

    NASA Astrophysics Data System (ADS)

    Mazzola, Guglielmo; Smelyanskiy, Vadim N.; Troyer, Matthias

    2017-10-01

    Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016), 10.1103/PhysRevLett.117.180402], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.

  11. Spatiotemporal patterns in reaction-diffusion system and in a vibrated granular bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinney, H.L.; Lee, K.J.; McCormick, W.D.

    Experiments on a quasi-two-dimensional reaction-diffusion system reveal transitions from a uniform state to stationary hexagonal, striped, and rhombic spatial patterns. For other reactor conditions lamellae and self-replicating spot patterns are observed. These patterns form in continuously fed thin gel reactors that can be maintained indefinitely in well-defined nonequilibrium states. Reaction-diffusion models with two chemical species yield patterns similar to those observed in the experiments. Pattern formation is also being examined in vertically oscillated thin granular layers (typically 3-30 particle diameters deep). For small acceleration amplitudes, a granular layer is flat, but above a well-defined critical acceleration amplitude, spatial patterns spontaneouslymore » form. Disordered time-dependent granular patterns are observed as well as regular patterns of squares, stripes, and hexagons. A one-dimensional model consisting of a completely inelastic ball colliding with a sinusoidally oscillating platform provides a semi-quantitative description of most of the observed bifurcations between the different spatiotemporal regimes.« less

  12. An autonomous chemically fuelled small-molecule motor

    NASA Astrophysics Data System (ADS)

    Wilson, Miriam R.; Solà, Jordi; Carlone, Armando; Goldup, Stephen M.; Lebrasseur, Nathalie; Leigh, David A.

    2016-06-01

    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.

  13. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    NASA-Redox systems are electrochemical storage devices that use two fully soluble Redox couples, anode and cathode fluids, as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of Redox flow cells where the electrochemical reactions (reduction and oxidation) take place at porous carbon felt electrodes. A string or stack of these power producing cells is connected in series in a bipolar manner. Redox energy storage systems promise to be inexpensive and possess many features that provide for flexible design, long life, high reliability and minimal operation and maintenance costs. These features include independent sizing of power and storage capacity requirements and inclusion within the cell stack of a cell that monitors the state of charge of the system as a whole, and a rebalance cell which permits continuous correction to be made for minor side reactions that would tend to result in the anode fluid and cathode fluids becoming electrochemically out of balance. These system features are described and discussed.

  14. Advancing Fenton and photo-Fenton water treatment through the catalyst design.

    PubMed

    Vorontsov, Alexander V

    2018-04-20

    The review is devoted to modern Fenton, photo-Fenton, as well as Fenton-like and photo-Fenton-like reactions with participation of iron species in liquid phase and as heterogeneous catalysts. Mechanisms of these reactions were considered that include hydroxyl radical and oxoferryl species as the reactive intermediates. The barriers in the way of application of these reactions to wastewater treatment were discussed. The following fundamental problems need further research efforts: inclusion of more mechanism steps and quantum calculations of all rate constants lacking in the literature, checking the outer sphere electron transfer contribution, determination of the causes for the key changes in the homogeneous Fenton reaction mechanism with a change in the reagents concentration. The key advances for Fenton reactions implementation for the water treatment are related to tremendous hydrodynamical effects on the catalytic activity, design of ligands for high rate and completeness of mineralization in short time, and design of highly active heterogeneous catalysts. While both homogeneous and heterogeneous Fenton and photo-Fenton systems are open for further improvements, heterogeneous photo-Fenton systems are most promising for practical applications because of the inherent higher catalyst stability. Modern methods of quantum chemistry are expected to play a continuously increasing role in development of such catalysts. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Nitromethane decomposition under high static pressure.

    PubMed

    Citroni, Margherita; Bini, Roberto; Pagliai, Marco; Cardini, Gianni; Schettino, Vincenzo

    2010-07-29

    The room-temperature pressure-induced reaction of nitromethane has been studied by means of infrared spectroscopy in conjunction with ab initio molecular dynamics simulations. The evolution of the IR spectrum during the reaction has been monitored at 32.2 and 35.5 GPa performing the measurements in a diamond anvil cell. The simulations allowed the characterization of the onset of the high-pressure reaction, showing that its mechanism has a complex bimolecular character and involves the formation of the aci-ion of nitromethane. The growth of a three-dimensional disordered polymer has been evidenced both in the experiments and in the simulations. On decompression of the sample, after the reaction, a continuous evolution of the product is observed with a decomposition into smaller molecules. This behavior has been confirmed by the simulations and represents an important novelty in the scene of the known high-pressure reactions of molecular systems. The major reaction product on decompression is N-methylformamide, the smallest molecule containing the peptide bond. The high-pressure reaction of crystalline nitromethane under irradiation at 458 nm was also experimentally studied. The reaction threshold pressure is significantly lowered by the electronic excitation through two-photon absorption, and methanol, not detected in the purely pressure-induced reaction, is formed. The presence of ammonium carbonate is also observed.

  16. Allergic-like reactions to asparaginase: Atypical allergies without asparaginase inactivation.

    PubMed

    Kloos, Robin Q H; Pieters, Rob; Escherich, Gabriele; van der Sluis, Inge M

    2016-11-01

    Asparaginase is an important component of pediatric acute lymphoblastic leukemia (ALL) therapy. Unfortunately, this treatment is hampered by hypersensitivity reactions. In general, allergies - regardless of severity - cause complete inactivation of the drug. However, we report atypical allergic reactions without inactivation of asparaginase, here called allergic-like reactions. Patients with an allergic-like reaction, who were treated according to the Dutch Childhood Oncology Group ALL-11 or the CoALL 08-09 protocol, were described. The reactions were identified by continual measurement of asparaginase activity levels. Characteristics, including timing of occurrence, symptoms, grade, and the presence of antiasparaginase antibodies, were compared to those of real allergies. Fourteen allergic-like reactions occurred in nine patients. Five reactions were to PEGasparaginase and nine to Erwinia asparaginase. Allergic-like reactions occurred relatively late after the start of infusion compared to real allergies. Antibodies were absent in all but one patient with an allergic-like reaction, while they were detected in all patients with a real allergy. Symptoms and grade did not differ between the groups. Asparaginase was continued with the same formulation in six patients of whom four finished treatment with adequate activity levels. In conclusion, allergic-like reactions occur relatively late after the start of infusion and without antibodies. Despite these clinical differences, allergic-like reactions can only be distinguished from real allergies by continually measuring asparaginase activity levels. If clinically tolerated, formulations should not be switched in case of allergic-like reactions. Moreover, failure to recognize these reactions may lead to a less favorable prognosis if asparaginase therapy is terminated unnecessarily. © 2016 Wiley Periodicals, Inc.

  17. Modeling transport kinetics in clinoptilolite-phosphate rock systems

    NASA Technical Reports Server (NTRS)

    Allen, E. R.; Ming, D. W.; Hossner, L. R.; Henninger, D. L.

    1995-01-01

    Nutrient release in clinoptilolite-phosphate rock (Cp-PR) systems occurs through dissolution and cation-exchange reactions. Investigating the kinetics of these reactions expands our understanding of nutrient release processes. Research was conducted to model transport kinetics of nutrient release in Cp-PR systems. The objectives were to identify empirical models that best describe NH4, K, and P release and define diffusion-controlling processes. Materials included a Texas clinoptilolite (Cp) and North Carolina phosphate rock (PR). A continuous-flow thin-disk technique was used. Models evaluated included zero order, first order, second order, parabolic diffusion, simplified Elovich, Elovich, and power function. The power-function, Elovich, and parabolic-diffusion models adequately described NH4, K, and P release. The power-function model was preferred because of its simplicity. Models indicated nutrient release was diffusion controlled. Primary transport processes controlling nutrient release for the time span observed were probably the result of a combination of several interacting transport mechanisms.

  18. Pilot-scale study on the acid-catalyzed steam explosion of rice straw using a continuous pretreatment system.

    PubMed

    Chen, Wen-Hua; Tsai, Chia-Chin; Lin, Chih-Feng; Tsai, Pei-Yuan; Hwang, Wen-Song

    2013-01-01

    A continuous acid-catalyzed steam explosion pretreatment process and system to produce cellulosic ethanol was developed at the pilot-scale. The effects of the following parameters on the pretreatment efficiency of rice straw feedstocks were investigated: the acid concentration, the reaction temperature, the residence time, the feedstock size, the explosion pressure and the screw speed. The optimal presteaming horizontal reactor conditions for the pretreatment process are as follows: 1.7 rpm and 100-110 °C with an acid concentration of 1.3% (w/w). An acid-catalyzed steam explosion is then performed in the vertical reactor at 185 °C for 2 min. Approximately 73% of the total saccharification yield was obtained after the rice straw was pretreated under optimal conditions and subsequent enzymatic hydrolysis at a combined severity factor of 0.4-0.7. Moreover, good long-term stability and durability of the pretreatment system under continuous operation was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Continuous variables logic via coupled automata using a DNAzyme cascade with feedback.

    PubMed

    Lilienthal, S; Klein, M; Orbach, R; Willner, I; Remacle, F; Levine, R D

    2017-03-01

    The concentration of molecules can be changed by chemical reactions and thereby offer a continuous readout. Yet computer architecture is cast in textbooks in terms of binary valued, Boolean variables. To enable reactive chemical systems to compute we show how, using the Cox interpretation of probability theory, one can transcribe the equations of chemical kinetics as a sequence of coupled logic gates operating on continuous variables. It is discussed how the distinct chemical identity of a molecule allows us to create a common language for chemical kinetics and Boolean logic. Specifically, the logic AND operation is shown to be equivalent to a bimolecular process. The logic XOR operation represents chemical processes that take place concurrently. The values of the rate constants enter the logic scheme as inputs. By designing a reaction scheme with a feedback we endow the logic gates with a built in memory because their output then depends on the input and also on the present state of the system. Technically such a logic machine is an automaton. We report an experimental realization of three such coupled automata using a DNAzyme multilayer signaling cascade. A simple model verifies analytically that our experimental scheme provides an integrator generating a power series that is third order in time. The model identifies two parameters that govern the kinetics and shows how the initial concentrations of the substrates are the coefficients in the power series.

  20. CARDIOCOG. Experiment ops

    NASA Image and Video Library

    2006-11-29

    ISS014-E-08795 (29 Nov. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 14 flight engineer, works with the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.

  1. Low Energy Nuclear Reactions: A Millennium Status Report

    NASA Astrophysics Data System (ADS)

    Mallove, Eugene F.

    2000-03-01

    This talk will summarize some of the more convincing recent experiments that show that helium-4, nuclear scale excess energy, tritium, low-level neutron production, and the transmutation of heavy elements can occur near room temperature in relatively simple systems. Despite inappropriate theory-based arguments against it and unethical attacks by people unfamiliar with the supporting experiments, the new field of solid state nuclear reactions is progressing. The physical theory behind the associated phenomena continues to be debated among theorists. The facts of the history of this scientific controversy suggest that it is inadvisable to rush to judgment against allegedly ``impossible" new phenomena when increasingly careful experiments have revealed new vistas in physics. Detailed discussion of evidence for solid state nuclear reactions is available elsewhere (http://www.infinite-energy.com). abstract document

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, B.; Pellegrino, J.; Stickel, J.

    We are currently evaluating the feasibility of performing continuous enzymatic hydrolysis of lignocellulosic biomass to product sugars using a membrane-assisted reaction/separation process. The overarching technical goals are to continuously remove the sugars—this lowers product feedback inhibition—retain and recycle active enzyme, and continuously recover the co-product of lignin. Experimental d d d currently evaluating the feasibility of performing continuous enzymatic hydrolysis of lignocellulosic biomass to product sugars using a membrane-assisted reaction/separation process. The overarching technical goals are to continuously remove the sugars -- this lowers product feedback inhibition --retain and recycle active enzyme, and continuously recover the co-product of lignin.

  3. Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam

    2012-01-01

    A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.

  4. Continuous flow room temperature reductive aqueous homo-coupling of aryl halides using supported Pd catalysts

    PubMed Central

    Feiz, Afsaneh; Bazgir, Ayoob; Balu, Alina M.; Luque, Rafael

    2016-01-01

    A convenient and environmentally friendly protocol for the preparation of biaryls at room temperature under continuous flow conditions is reported. A simple reductive homo-coupling Ullmann-type reaction was performed in an H-Cube mini using commercially available supported Pd catalysts under mild reaction conditions, with quantitative conversion to target products. Commercial Pd catalysts were found to be highly stable under the investigated reaction conditions, with a minimum Pd leaching into solution after several reaction runs (ca. 20 h on stream). PMID:27600989

  5. Can LENR Energy Gains Exceed 1000?

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2011-03-01

    Energy gain is defined as the energy realized from reactions divided by the energy required to produce those reactions. Low Energy Nuclear Reactions (LENR) have already been measured to significantly exceed the energy gain of 10 projected from ITER,possibly 15 years from now. Electrochemical experiments using the Pd-D system have shown energy gains exceeding 10. Gas phase experiments with the Ni-H system were reported to yield energy gains of over 100. Neither of these reports has been adequately verified or reproduced. However, the question in the title still deserves consideration. If, as thought by many, it is possible to trigger nuclear reactions that yield MeV energies with chemical energies of the order of eV, then the most optimistic expectation is that LENR gains could approach one million. Hence, the very tentative answer to the question above is yes. However, if LENR could be initiated with some energy cost, and then continue to ``burn,'' very high energy gains might be realized. Consider a match and a pile of dry logs. The phenomenon termed ``heat after death'' will be examined to see if it might be the initial evidence for nuclear ``burning.''

  6. Method for Continuous Monitoring of Electrospray Ion Formation

    NASA Astrophysics Data System (ADS)

    Metzler, Guille; Crathern, Susan; Bachmann, Lorin; Fernández-Metzler, Carmen; King, Richard

    2017-10-01

    A method for continuously monitoring the performance of electrospray ionization without the addition of hardware or chemistry to the system is demonstrated. In the method, which we refer to as SprayDx, cluster ions with solvent vapor natively formed by electrospray are followed throughout the collection of liquid chromatography-selected reaction monitoring data. The cluster ion extracted ion chromatograms report on the consistency of the ion formation and detection system. The data collected by the SprayDx method resemble the data collected for postcolumn infusion of analyte. The response of the cluster ions monitored reports on changes in the physical parameters of the ion source such as voltage and gas flow. SprayDx is also observed to report on ion suppression in a fashion very similar to a postcolumn infusion of analyte. We anticipate the method finding utility as a continuous readout on the performance of electrospray and other atmospheric pressure ionization processes. [Figure not available: see fulltext.

  7. Cognitive Improvement of Attention and Inhibition in the Late Afternoon in Children With Attention-Deficit Hyperactivity Disorder (ADHD) Treated With Osmotic-Release Oral System Methylphenidate.

    PubMed

    Slama, Hichem; Fery, Patrick; Verheulpen, Denis; Vanzeveren, Nathalie; Van Bogaert, Patrick

    2015-07-01

    Long-acting medications have been developed and approved for use in the treatment of attention-deficit hyperactivity disorder (ADHD). These compounds are intended to optimize and maintain symptoms control throughout the day. We tested prolonged effects of osmotic-release oral system methylphenidate on both attention and inhibition, in the late afternoon. A double-blind, randomized, placebo-controlled study was conducted in 36 boys (7-12 years) with ADHD and 40 typically developing children. The ADHD children received an individualized dose of placebo or osmotic-release oral system methylphenidate. They were tested about 8 hours after taking with 2 continuous performance tests (continuous performance test-X [CPT-X] and continuous performance test-AX [CPT-AX]) and a counting Stroop. A positive effect of osmotic-release oral system methylphenidate was present in CPT-AX with faster and less variable reaction times under osmotic-release oral system methylphenidate than under placebo, and no difference with typically developing children. In the counting Stroop, we found a decreased interference with osmotic-release oral system methylphenidate but no difference between children with ADHD under placebo and typically developing children. © The Author(s) 2014.

  8. PROCESS INTENSIFICATION: MICROWAVE INITIATED REACTIONS USING A CONTINUOUS FLOW REACTOR

    EPA Science Inventory

    The concept of process intensification has been used to develop a continuous narrow channel reactor at Clarkson capable of carrying out reactions under isothermal conditions whilst being exposed to microwave (MW) irradiation thereby providing information on the true effect of mi...

  9. Flow injection chemiluminescence determination of vitamin B12 using on-line UV-persulfate photooxidation and charge coupled device detection.

    PubMed

    Murillo Pulgarín, José A; García Bermejo, Luisa F; Sánchez García, M Nieves

    2011-01-01

    A sensitive chemiluminescence method for vitamin B(12) using a charge-coupled device (CCD) photodetector combined with on-line UV-persulfate oxidation in a simple continuous flow system has been developed. The principle for the determination of vitamin B(12) is based on the enhancive effect of cobalt (II) on the chemiluminescence reaction between luminol and percarbonate in alkaline medium. In addition, percarbonate has been investigated and proposed as a powerful source of hydrogen peroxide as oxidant agent in this chemiluminescence reaction. The digestion of vitamin B(12) to release the cobalt (II) is reached by UV irradiation treatment in a persulfate medium. The CCD detector, directly connected to the flow cell, is used with the continuous flow manifold to obtain the full spectral characteristics of cobalt (II) catalyzed luminol-percarbonate reaction. The vitamin B(12) oxidation process and chemical conditions for the chemiluminescence reaction were investigated and optimized. The increment of the emission intensity was proportional to the concentration of vitamin B(12) , giving a second-order calibration graph over the cobalt (II) concentration range from 10 to 5000 μg L(-1)(r(2) = 0.9985) with a detection limit of 9.3 μg L(-1). The proposed method was applied to the determination of vitamin B(12) in different kinds of pharmaceuticals. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Resonating group method as applied to the spectroscopy of α-transfer reactions

    NASA Astrophysics Data System (ADS)

    Subbotin, V. B.; Semjonov, V. M.; Gridnev, K. A.; Hefter, E. F.

    1983-10-01

    In the conventional approach to α-transfer reactions the finite- and/or zero-range distorted-wave Born approximation is used in liaison with a macroscopic description of the captured α particle in the residual nucleus. Here the specific example of 16O(6Li,d)20Ne reactions at different projectile energies is taken to present a microscopic resonating group method analysis of the α particle in the final nucleus (for the reaction part the simple zero-range distorted-wave Born approximation is employed). In the discussion of suitable nucleon-nucleon interactions, force number one of the effective interactions presented by Volkov is shown to be most appropriate for the system considered. Application of the continuous analog of Newton's method to the evaluation of the resonating group method equations yields an increased accuracy with respect to traditional methods. The resonating group method description induces only minor changes in the structures of the angular distributions, but it does serve its purpose in yielding reliable and consistent spectroscopic information. NUCLEAR STRUCTURE 16O(6Li,d)20Ne; E=20 to 32 MeV; calculated B(E2); reduced widths, dσdΩ extracted α-spectroscopic factors. ZRDWBA with microscope RGM description of residual α particle in 20Ne; application of continuous analog of Newton's method; tested and applied Volkov force No. 1; direct mechanism.

  11. Promoting and Protecting Public Health: How the European Union Pharmacovigilance System Works.

    PubMed

    Santoro, Aniello; Genov, Georgy; Spooner, Almath; Raine, June; Arlett, Peter

    2017-10-01

    This article provides an overview of the European Union pharmacovigilance system resulting from the rationalisation and strengthening delivered through the implementation of the revised pharmacovigilance legislation. It outlines the system aims, underlying principles, components and drivers for future change. At its core, the Pharmacovigilance Risk Assessment Committee is responsible for assessing all aspects of the risk management of medicinal products, thus ensuring that medicines approved for the European Union market are optimally used by maximising their benefits and minimising risks. The main objectives of the system are to promote and protect public health by supporting the availability of medicines including those that fulfil previously unmet medical needs, and reducing the burden of adverse drug reactions. These are achieved through a proactive, risk proportionate and patient-centred approach, with high levels of transparency and engagement of civil society. In the European Union, pharmacovigilance is now fully integrated into the life cycle of medicinal products, with the planning of pharmacovigilance activities commencing before a medicine is placed on the market, and companies encouraged to start planning very early in development for high-innovation products. After authorisation, information on the safety of medicines continues to be obtained through a variety of sources, including spontaneous reports of adverse drug reactions or monitoring real-world data. Finally, the measurement of the impact of pharmacovigilance activities, auditing and inspections, as well as capacity building ensure that the system undergoes continuous improvement and can always rely on the best methodologies to safeguard public health.

  12. Continuous-flow Heck synthesis of 4-methoxybiphenyl and methyl 4-methoxycinnamate in supercritical carbon dioxide expanded solvent solutions

    PubMed Central

    Lau, Phei Li; Allen, Ray W K

    2013-01-01

    Summary The palladium metal catalysed Heck reaction of 4-iodoanisole with styrene or methyl acrylate has been studied in a continuous plug flow reactor (PFR) using supercritical carbon dioxide (scCO2) as the solvent, with THF and methanol as modifiers. The catalyst was 2% palladium on silica and the base was diisopropylethylamine due to its solubility in the reaction solvent. No phosphine co-catalysts were used so the work-up procedure was simplified and the green credentials of the reaction were enhanced. The reactions were studied as a function of temperature, pressure and flow rate and in the case of the reaction with styrene compared against a standard, stirred autoclave reaction. Conversion was determined and, in the case of the reaction with styrene, the isomeric product distribution was monitored by GC. In the case of the reaction with methyl acrylate the reactor was scaled from a 1.0 mm to 3.9 mm internal diameter and the conversion and turnover frequency determined. The results show that the Heck reaction can be effectively performed in scCO2 under continuous flow conditions with a palladium metal, phosphine-free catalyst, but care must be taken when selecting the reaction temperature in order to ensure the appropriate isomer distribution is achieved. Higher reaction temperatures were found to enhance formation of the branched terminal alkene isomer as opposed to the linear trans-isomer. PMID:24367454

  13. Optimization of lipase-catalyzed biodiesel by isopropanolysis in a continuous packed-bed reactor using response surface methodology.

    PubMed

    Chang, Cheng; Chen, Jiann-Hwa; Chang, Chieh-Ming J; Wu, Tsung-Ta; Shieh, Chwen-Jen

    2009-10-31

    Isopropanolysis reactions were performed using triglycerides with immobilized lipase in a solvent-free environment. This study modeled the degree of isopropanolysis of soybean oil in a continuous packed-bed reactor when Novozym 435 was used as the biocatalyst. Response surface methodology (RSM) and three-level-three-factor Box-Behnken design were employed to evaluate the effects of synthesis parameters, reaction temperature ( degrees C), flow rate (mL/min) and substrate molar ratio of isopropanol to soybean oil, on the percentage molar conversion of biodiesel by transesterification. The results show that flow rate and temperature have a significant effect on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions for synthesis were as follows: flow rate 0.1 mL/min, temperature 51.5 degrees C and substrate molar ratio 1:4.14. The predicted value was 76.62+/-1.52% and actual experimental value was 75.62+/-0.81% molar conversion. Moreover, continuous enzymatic process for seven days did not show any appreciable decrease in the percent of molar conversion (75%). This work demonstrates the applicability of lipase catalysis to prepare isopropyl esters by transesterification in solvent-free system with a continuous packed-bed reactor for industrial production.

  14. Small-volume, ultrahigh-vacuum-compatible high-pressure reaction cell for combined kinetic and in situ IR spectroscopic measurements on planar model catalysts

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Diemant, T.; Häring, T.; Rauscher, H.; Behm, R. J.

    2005-12-01

    We describe the design and performance of a high-pressure reaction cell for simultaneous kinetic and in situ infrared reflection (IR) spectroscopic measurements on model catalysts at elevated pressures, between 10-3 and 103mbars, which can be operated both as batch reactor and as flow reactor with defined gas flow. The cell is attached to an ultrahigh-vacuum (UHV) system, which is used for sample preparation and also contains facilities for sample characterization. Specific for this design is the combination of a small cell volume, which allows kinetic measurements with high sensitivity under batch or continuous flow conditions, the complete isolation of the cell from the UHV part during UHV measurements, continuous temperature control during both UHV and high-pressure operation, and rapid transfer between UHV and high-pressure stage. Gas dosing is performed by a designed gas-handling system, which allows operation as flow reactor with calibrated gas flows at adjustable pressures. To study the kinetics of reactions on the model catalysts, a quadrupole mass spectrometer is connected to the high-pressure cell. IR measurements are possible in situ by polarization-modulation infrared reflection-absorption spectroscopy, which also allows measurements at elevated pressures. The performance of the setup is demonstrated by test measurements on the kinetics for CO oxidation and the CO adsorption on a Au /TiO2/Ru(0001) model catalyst film at 1-50 mbar total pressure.

  15. Method for producing size selected particles

    DOEpatents

    Krumdick, Gregory K.; Shin, Young Ho; Takeya, Kaname

    2016-09-20

    The invention provides a system for preparing specific sized particles, the system comprising a continuous stir tank reactor adapted to receive reactants; a centrifugal dispenser positioned downstream from the reactor and in fluid communication with the reactor; a particle separator positioned downstream of the dispenser; and a solution stream return conduit positioned between the separator and the reactor. Also provided is a method for preparing specific sized particles, the method comprising introducing reagent into a continuous stir reaction tank and allowing the reagents to react to produce product liquor containing particles; contacting the liquor particles with a centrifugal force for a time sufficient to generate particles of a predetermined size and morphology; and returning unused reagents and particles of a non-predetermined size to the tank.

  16. Methods for producing silicon carbide fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnier, John E.; Griffith, George W.

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  17. Silicon carbide fibers and articles including same

    DOEpatents

    Garnier, John E; Griffith, George W

    2015-01-27

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  18. Reaction-induced porosity fingering: Replacement dynamic and porosity evolution in the KBr-KCl system

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Hamilton, Andrea; Koehn, Daniel; Shipton, Zoe Kai; Kelka, Ulrich

    2018-07-01

    In this contribution, we use X-ray computed micro-tomography (X-CT) to observe and quantify dynamic pattern and porosity formation in a fluid-mediated replacement reaction. The evolution of connected porosity distribution helps to understand how fluid can migrate through a transforming rock, for example during dolomitization, a phenomenon extensively reported in sedimentary basins. Two types of experiment were carried out, in both cases a single crystal of KBr was immersed in a static bath of saturated aqueous KCl at room temperature and atmospheric pressure, and in both cases the replacement process was monitored in 3D using X-CT. In the first type of experiment a crystal of KBr was taken out, scanned, and returned to the solution in cycles (discontinuous replacement). In the second type of experiment, 3 samples of KBr were continuously reacted for 15, 55 min and 5.5 h respectively, with the latter being replaced completely (continuous replacement). X-CT of KBr-KCl replacement offers new insights into dynamic porosity development and transport mechanisms during replacement. As the reaction progresses the sample composition changes from KBr to KCl via a K(Br, Cl) solid solution series which generates porosity in the form of fingers that account for a final molar volume reduction of 13% when pure KCl is formed. These fingers form during an initial and transient advection regime followed by a diffusion dominated system, which is reflected by the reaction propagation, front morphology, and mass evolution. The porosity develops as fingers perpendicular to the sample walls, which allow a faster transport of reactant than in the rest of the crystal, before fingers coarsen and connect laterally. In the continuous experiment, finger coarsening has a dynamic behaviour consistent with fingering processes observed in nature. In the discontinuous experiment, which can be compared to rock weathering or to replacement driven by intermittent fluid contact, the pore structure changes from well-organized parallel fingers to a complex 3D connected network, shedding light on the alteration of reservoir properties during weathering.

  19. IR spectroscopic studies in microchannel structures

    NASA Astrophysics Data System (ADS)

    Guber, A. E.; Bier, W.

    1998-06-01

    By means of the various microengineering methods available, microreaction systems can be produced among others. These microreactors consist of microchannels, where chemical reactions take place under defined conditions. For optimum process control, continuous online analytics is envisaged in the microchannels. For this purpose, a special analytical module has been developed. It may be applied for IR spectroscopic studies at any point of the microchannel.

  20. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    PubMed

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  1. Removal of PCB and Other Halogenated Organic Contaminants found in Ex Situ Structures

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Coon, Christina (Inventor); Berger, Cristina M. (Inventor); Filipek, Laura B. (Inventor); Milum, Kristen M. (Inventor)

    2007-01-01

    Emulsified systems or a surfactant-stabilized, biodegradable water-in-solvent emulsion with bimetallic particles contained with the emulsion droplets are useful at removing PCBs from ex situ structures. The hydrophobic emulsion system draws PCBs through the solvent/surfactant membrane. Once inside the membrane, the PCBs diffuse into the bimetallic particles and undergo degradation. The PCBs continue to enter, diffuse, degrade, and biphenyl will exit the particle maintaining a concentration gradient across the membrane and maintaining a driving force of the reaction.

  2. Removal of PCB and other halogenated organic contaminants found in ex situ structures

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Coon, Christina (Inventor); Berger, Cristina M. (Inventor); Filipek, Laura B. (Inventor); Milum, Kristen M. (Inventor)

    2007-01-01

    Emulsified systems of a surfactant-stabilized, biodegradable water-in-solvent emulsion with bimetallic particles contained with the emulsion droplets are useful at removing PCBs from ex situ structures. The hydrophobic emulsion system draws PCBs through the solvent/surfactant membrane. Once inside the membrane, the PCBs diffuse into the bimetallic particles and undergo degradation. The PCBs continue to enter, diffuse, degrade, and biphenyl will exit the particle maintaining a concentration gradient across the membrane and maintaining a driving force of the reaction.

  3. Manufacturing Technology Support (MATES II) Task Order 0005: Manufacturing Integration and Technology Evaluation to Enable Technology Transition. Subtask Phase 0 Study Task: Manufacturing Technology (ManTech) and Systems Engineering For Quick Reaction Systems

    DTIC Science & Technology

    2014-10-01

    Porosity from gas entrapment & shrinkage 4 Continuous Fiber Ti Metal Matrix Composites (Aircraft panels and rotor components) [14...process models for casting, forging, and welding , and software capability to integrate various independent models with design, thermal, and structural...Applications, Ph.D. Thesis, Queen’s College, University of Oxford, (2007). 14. S.A. Singerman and J.J. Jackson, Titanium Metal Matrix Composites for

  4. Removal of PCB and other halogenated organic contaminants found in ex situ structures

    NASA Technical Reports Server (NTRS)

    Clausen, Christian A. (Inventor); Milum, Kristen M. (Inventor); Quinn, Jacqueline W. (Inventor); Berger, Cristina M. (Inventor); Geiger, Cherie L. (Inventor); Filipek, Laura B. (Inventor); Coon, Christina (Inventor)

    2009-01-01

    Emulsified systems of a surfactant-stabilized, biodegradable water-in-solvent emulsion with bimetallic particles contained with the emulsion droplets are useful at removing PCBs from ex situ structures. The hydrophobic emulsion system draws PCBs through the solvent/surfactant membrane. Once inside the membrane, the PCBs diffuse into the bimetallic particles and undergo degradation. The PCBs continue to enter, diffuse, degrade, and biphenyl will exit the particle maintaining a concentration gradient across the membrane and maintaining a driving force of the reaction.

  5. Exploration of cellular reaction systems.

    PubMed

    Kirkilionis, Markus

    2010-01-01

    We discuss and review different ways to map cellular components and their temporal interaction with other such components to different non-spatially explicit mathematical models. The essential choices made in the literature are between discrete and continuous state spaces, between rule and event-based state updates and between deterministic and stochastic series of such updates. The temporal modelling of cellular regulatory networks (dynamic network theory) is compared with static network approaches in two first introductory sections on general network modelling. We concentrate next on deterministic rate-based dynamic regulatory networks and their derivation. In the derivation, we include methods from multiscale analysis and also look at structured large particles, here called macromolecular machines. It is clear that mass-action systems and their derivatives, i.e. networks based on enzyme kinetics, play the most dominant role in the literature. The tools to analyse cellular reaction networks are without doubt most complete for mass-action systems. We devote a long section at the end of the review to make a comprehensive review of related tools and mathematical methods. The emphasis is to show how cellular reaction networks can be analysed with the help of different associated graphs and the dissection into modules, i.e. sub-networks.

  6. Conception et calibration d'un sonoreacteur pour l'oxydation de la cellulose par le systeme TEMPO/NaOCl/NaBr

    NASA Astrophysics Data System (ADS)

    Paquin, Michel

    Avec le contexte economique actuel dans le domaine des pates et papiers au Canada, l'industrie se doit de diversifier ses produits mis en marche. La fermeture de plus de 20 usines depuis 2005, une baisse du PIB de l'industrie de 1,4 milliard CAD entre 1999--2008, une baisse de la demande de 2,4 %, une diminution du prix de la pate de 20,9 % depuis juillet 2009. La delocalisation du secteur vers l'Asie et l'hemisphere sud sont autant de raisons pour laquelle l'industrie se doit d'etre a l'avant plan de nouvelle technologie a base de fibre de bois. Pour augmenter leur rentabilite, l'industrie se doit de diversifier ses produits dans d'autres secteurs que le simple fabricant de papier impression-ecriture. Sa diversification passe par l'elaboration de nouveaux papiers a valeur ajoutee (papier conducteur, papier bioactif, etc.), par l'utilisation de la biomasse forestiere pour la production d'energie, par l'utilisation de la biomasse forestiere pour l'elaboration d'une plateforme de chimie verte, par l'utilisation de la lignine pour le developpement de polymeres et par l'utilisation de la fibre cellulosique pour la fabrication de nanomateriaux. La fabrication de nanofibrille de cellulose peut devenir un des produits qui servira a diversifier la production des usines de pates et papiers. Les nanofibrilles de cellulose possedent des proprietes mecaniques et chimiques exceptionnelles. Les nanofibrilles de cellulose sont fabriquees a partir d'une oxydation selective de la pate kraft de feuillu avec le systeme TEMPO-NaOCl-NaBr. L'oxydation selective de l'alcool primaire en C6 du monomere de glucose sous forme de carboxylates engendre une modification chimique de la cellulose qui accroit l'hydrophilicite des fibrilles. Suite a cette oxydation, nous devons effectuer une desintegration mecanique de la fibre kraft de feuillu oxydee pour separer les fibrilles. Le processus d'oxydation de la fibre par le systeme TEMPO-NaOCl-NaBr et sa defibrillation par la suite engendre une grande consommation d'energie et de reactif qui rend le procede difficilement accessible au milieu industriel. L'utilisation des ultrasons lors de la reaction d'oxydation permet de reduire de 50% le temps de reaction et d'autant la consommation de produits chimiques. Actuellement le processus d'oxydation s'effectue en mode discontinu pour une quantite de 20 grammes de pate dans un reacteur en verre dans un bain a ultrason. L'objectif principal de ce travail est d'elaborer un sonoreacteur en mode semi-continu afin d'etre en mesure de transferer une reaction d'oxydation du mode discontinu en mode semi-continu. Le transfert de reaction sera effectue en realisant la calibration de l'activite acoustique des deux differents reacteurs, discontinu et semi-continu, par la methode de Weissler. La methode de Weissler quantifie le taux de production radicalaire en mesurant la formation d'iode moleculaire d'une solution aqueuse d'iodure de potassium sous ultrason. Suite a sa calibration, le sonoreacteur pilote (mode semi-continu) a demontre une augmentation de la production radicalaire de 683 % a 170 kHz en comparaison avec l'utilisation d'un bain a ultrason a la meme frequence. Lors de la reaction d'oxydation, la puissance optimale utilisee dans le bain a ultrason a 170 kHz est de 1000 W. La puissance utilisee selon les resultats de calibration obtenue dans le sonoreacteur pilote est de 125 W soit une diminution de l'energie appliquee de 87,5 %. Lors de la reaction d'oxydation, le taux de production des groupements carboxylates est de 2,6 mmol COOH kg/min dans le bain a ultrason et de 6,87 mmol COOH kg/min dans le sonoreacteur pilote soit une augmentation de 164% du taux de formation. Selon les resultats obtenus, l'utilisation d'un sonoreacteur en mode continu peut etre envisageable pour la reaction d'oxydation de la cellulose par le systeme TEMPO-NaOCl-NaBr en industrie au niveau industriel.

  7. Analysis of Thermal and Reaction Times for Hydrogen Reduction of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2008-01-01

    System analysis of oxygen production by hydrogen reduction of lunar regolith has shown the importance of the relative time scales for regolith heating and chemical reaction to overall performance. These values determine the sizing and power requirements of the system and also impact the number and operational phasing of reaction chambers. In this paper, a Nusselt number correlation analysis is performed to determine the heat transfer rates and regolith heat up times in a fluidized bed reactor heated by a central heating element (e.g., a resistively heated rod, or a solar concentrator heat pipe). A coupled chemical and transport model has also been developed for the chemical reduction of regolith by a continuous flow of hydrogen. The regolith conversion occurs on the surfaces of and within the regolith particles. Several important quantities are identified as a result of the above analyses. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the particle Reynolds number, the Archimedes number, and the time needed for hydrogen to diffuse into the pores of the regolith particles. The analysis is used to determine the heat up and reaction times and its application to NASA s oxygen production system modeling tool is noted.

  8. Analysis of Thermal and Reaction Times for Hydrogen Reduction of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2009-01-01

    System analysis of oxygen production by hydrogen reduction of lunar regolith has shown the importance of the relative time scales for regolith heating and chemical reaction to overall performance. These values determine the sizing and power requirements of the system and also impact the number and operational phasing of reaction chambers. In this paper, a Nusselt number correlation analysis is performed to determine the heat transfer rates and regolith heat up times in a fluidized bed reactor heated by a central heating element (e.g., a resistively heated rod, or a solar concentrator heat pipe). A coupled chemical and transport model has also been developed for the chemical reduction of regolith by a continuous flow of hydrogen. The regolith conversion occurs on the surfaces of and within the regolith particles. Several important quantities are identified as a result of the above analyses. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the particle Reynolds number, the Archimedes number, and the time needed for hydrogen to diffuse into the pores of the regolith particles. The analysis is used to determine the heat up and reaction times and its application to NASA s oxygen production system modeling tool is noted.

  9. Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors.

    PubMed

    Gruber, Pia; Marques, Marco P C; O'Sullivan, Brian; Baganz, Frank; Wohlgemuth, Roland; Szita, Nicolas

    2017-07-01

    The continuous production of high value or difficult to synthesize products is of increasing interest to the pharmaceutical industry. Cascading reaction systems have already been employed for chemical synthesis with great success, allowing a quick change in reaction conditions and addition of new reactants as well as removal of side products. A cascading system can remove the need for isolating unstable intermediates, increasing the yield of a synthetic pathway. Based on the success for chemical synthesis, the question arises how cascading systems could be beneficial to chemo-enzymatic or biocatalytic synthesis. Microreactors, with their rapid mass and heat transfer, small reaction volumes and short diffusion pathways, are promising tools for the development of such processes. In this mini-review, the authors provide an overview of recent examples of cascaded microreactors. Special attention will be paid to how microreactors are combined and the challenges as well as opportunities that arise from such combinations. Selected chemical reaction cascades will be used to illustrate this concept, before the discussion is widened to include chemo-enzymatic and multi-enzyme cascades. The authors also present the state of the art of online and at-line monitoring for enzymatic microreactor cascades. Finally, the authors review work-up and purification steps and their integration with microreactor cascades, highlighting the potential and the challenges of integrated cascades. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Establishing a high yielding streptomyces-based cell-free protein synthesis system.

    PubMed

    Li, Jian; Wang, He; Kwon, Yong-Chan; Jewett, Michael C

    2017-06-01

    Cell-free protein synthesis (CFPS) has emerged as a powerful platform for applied biotechnology and synthetic biology, with a range of applications in synthesizing proteins, evolving proteins, and prototyping genetic circuits. To expand the current CFPS repertoire, we report here the development and optimization of a Streptomyces-based CFPS system for the expression of GC-rich genes. By developing a streamlined crude extract preparation protocol and optimizing reaction conditions, we were able to achieve active enhanced green fluorescent protein (EGFP) yields of greater than 50 μg/mL with batch reactions lasting up to 3 h. By adopting a semi-continuous reaction format, the EGFP yield could be increased to 282 ± 8 μg/mL and the reaction time was extended to 48 h. Notably, our extract preparation procedures were robust to multiple Streptomyces lividans and Streptomyces coelicolor strains, although expression yields varied. We show that our optimized Streptomyces lividans system provides benefits when compared to an Escherichia coli-based CFPS system for increasing percent soluble protein expression for four Streptomyces-originated high GC-content genes that are involved in biosynthesis of the nonribosomal peptides tambromycin and valinomycin. Looking forward, we believe that our Streptomyces-based CFPS system will contribute significantly towards efforts to express complex natural product gene clusters (e.g., nonribosomal peptides and polyketides), providing a new avenue for obtaining and studying natural product biosynthesis pathways. Biotechnol. Bioeng. 2017;114: 1343-1353. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Functionalized Anodic Aluminum Oxide Membrane–Electrode System for Enzyme Immobilization

    PubMed Central

    2015-01-01

    A nanoporous membrane system with directed flow carrying reagents to sequentially attached enzymes to mimic nature’s enzyme complex system was demonstrated. Genetically modified glycosylation enzyme, OleD Loki variant, was immobilized onto nanometer-scale electrodes at the pore entrances/exits of anodic aluminum oxide membranes through His6-tag affinity binding. The enzyme activity was assessed in two reactions—a one-step “reverse” sugar nucleotide formation reaction (UDP-Glc) and a two-step sequential sugar nucleotide formation and sugar nucleotide-based glycosylation reaction. For the one-step reaction, enzyme specific activity of 6–20 min–1 on membrane supports was seen to be comparable to solution enzyme specific activity of 10 min–1. UDP-Glc production efficiencies as high as 98% were observed at a flow rate of 0.5 mL/min, at which the substrate residence time over the electrode length down pore entrances was matched to the enzyme activity rate. This flow geometry also prevented an unwanted secondary product hydrolysis reaction, as observed in the test homogeneous solution. Enzyme utilization increased by a factor of 280 compared to test homogeneous conditions due to the continuous flow of fresh substrate over the enzyme. To mimic enzyme complex systems, a two-step sequential reaction using OleD Loki enzyme was performed at membrane pore entrances then exits. After UDP-Glc formation at the entrance electrode, aglycon 4-methylumbelliferone was supplied at the exit face of the reactor, affording overall 80% glycosylation efficiency. The membrane platform showed the ability to be regenerated with purified enzyme as well as directly from expression crude, thus demonstrating a single-step immobilization and purification process. PMID:25025628

  12. The path to achieving molecular dispersion in an extremely dense reactive mixture

    NASA Astrophysics Data System (ADS)

    Patel, Jigneshkumar; Xiang, Zou; Hsu, Shaw; Schoch, Andrew

    2015-03-01

    In any multicomponent reactive system, a uniform and continuous dispersion of reactants is necessary to achieve a complete reaction. In this study, we have examined the role of one additional component to disperse two seemingly unlikely reactants, including a highly crystalline hexamethylenetetramine (hexa) and strongly hydrogen bonded phenol formaldehyde resin. By combining information from NMR, infrared spectroscopy and differential scanning calorimetry, we were able to decipher the role of specific intermolecular interactions in order for this additional component to dissolve the highly crystalline hexa and to plasticize the phenol formaldehyde resin in this crosslinking reaction. It is clear that the presence of the third component increased the segmental mobility, disrupted the hydrogen bonded matrix, and freed the hydroxyl units, which further increased the solubility of hexa. Both the endothermic and exothermic transitions are accounted for in the calorimetric data obtained. For the first time, it is possible to understand the miscibility behavior of this multicomponent system. By designing the additional component to form a hydrogen bond with one or more N of the highly symmetric hexamethylenetetramine, it is then possible to obtain the effective molar ratio of each component needed to complete the crosslinking reaction efficiently. The understanding of this system is applicable to a broad range of reactive systems.

  13. Low temperature isothermal pyrolysis of cellulose

    Treesearch

    A. Broido; M. Weinstein

    1971-01-01

    By providing continuous weight measurement, thermogravimetry, even for isothermal experiments, offers a major advantage over the classical methods of determining weight-change curves in complex pyrolysis reactions. Thus, even minor weight changes, readily detectable on a continuous record, furnish clues concerning the reaction sequences and indicate conditions under...

  14. Continuous Flow Chemistry: Reaction of Diphenyldiazomethane with p-Nitrobenzoic Acid.

    PubMed

    Aw, Alex; Fritz, Marshall; Napoline, Jonathan W; Pollet, Pamela; Liotta, Charles L

    2017-11-15

    Continuous flow technology has been identified as instrumental for its environmental and economic advantages leveraging superior mixing, heat transfer and cost savings through the "scaling out" strategy as opposed to the traditional "scaling up". Herein, we report the reaction of diphenyldiazomethane with p-nitrobenzoic acid in both batch and flow modes. To effectively transfer the reaction from batch to flow mode, it is essential to first conduct the reaction in batch. As a consequence, the reaction of diphenyldiazomethane was first studied in batch as a function of temperature, reaction time, and concentration to obtain kinetic information and process parameters. The glass flow reactor set-up is described and combines two types of reaction modules with "mixing" and "linear" microstructures. Finally, the reaction of diphenyldiazomethane with p-nitrobenzoic acid was successfully conducted in the flow reactor, with up to 95% conversion of the diphenyldiazomethane in 11 min. This proof of concept reaction aims to provide insight for scientists to consider flow technology's competitiveness, sustainability, and versatility in their research.

  15. Stochastic thermodynamics across scales: Emergent inter-attractoral discrete Markov jump process and its underlying continuous diffusion

    NASA Astrophysics Data System (ADS)

    Santillán, Moisés; Qian, Hong

    2013-01-01

    We investigate the internal consistency of a recently developed mathematical thermodynamic structure across scales, between a continuous stochastic nonlinear dynamical system, i.e., a diffusion process with Langevin and Fokker-Planck equations, and its emergent discrete, inter-attractoral Markov jump process. We analyze how the system’s thermodynamic state functions, e.g. free energy F, entropy S, entropy production ep, free energy dissipation Ḟ, etc., are related when the continuous system is described with coarse-grained discrete variables. It is shown that the thermodynamics derived from the underlying, detailed continuous dynamics gives rise to exactly the free-energy representation of Gibbs and Helmholtz. That is, the system’s thermodynamic structure is the same as if one only takes a middle road and starts with the natural discrete description, with the corresponding transition rates empirically determined. By natural we mean in the thermodynamic limit of a large system, with an inherent separation of time scales between inter- and intra-attractoral dynamics. This result generalizes a fundamental idea from chemistry, and the theory of Kramers, by incorporating thermodynamics: while a mechanical description of a molecule is in terms of continuous bond lengths and angles, chemical reactions are phenomenologically described by a discrete representation, in terms of exponential rate laws and a stochastic thermodynamics.

  16. CONTINUOUS GAS ANALYZER

    DOEpatents

    Katz, S.; Weber, C.W.

    1960-02-16

    A reagent gas and a sample gas are chemically combined on a continuous basis in a reaction zone maintained at a selected temperature. The reagent gas and the sample gas are introduced to the reaction zone at preselected. constant molar rates of flow. The reagent gas and the selected gas in the sample mixture combine in the reaction zone to form a product gas having a different number of moles from the sum of the moles of the reactants. The difference in the total molar rates of flow into and out of the reaction zone is measured and indicated to determine the concentration of the selected gas.

  17. Psychological reactions to continuous ambulatory peritoneal dialysis.

    PubMed

    Geiser, M T; Van Dyke, C; East, R; Weiner, M

    The first twenty patients who entered our continuous ambulatory peritoneal dialysis (CAPD) program from March, 1979 to February, 1981 were interviewed to assess their psychological reactions to CAPD. Six patients were successfully maintained on CAPD for more than one year. CAPD provided patients with a greater sense of well-being, strength, and independence. This independence required adherence to a strict schedule of exchanges. Reactions to the loss of CAPD followed the pattern of a grief reaction. Those patients who were self-disciplined and comfortable assuming active control of their health care proved to be the best candidates for CAPD.

  18. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients.

    PubMed

    Gutmann, Bernhard; Cantillo, David; Kappe, C Oliver

    2015-06-01

    In the past few years, continuous-flow reactors with channel dimensions in the micro- or millimeter region have found widespread application in organic synthesis. The characteristic properties of these reactors are their exceptionally fast heat and mass transfer. In microstructured devices of this type, virtually instantaneous mixing can be achieved for all but the fastest reactions. Similarly, the accumulation of heat, formation of hot spots, and dangers of thermal runaways can be prevented. As a result of the small reactor volumes, the overall safety of the process is significantly improved, even when harsh reaction conditions are used. Thus, microreactor technology offers a unique way to perform ultrafast, exothermic reactions, and allows the execution of reactions which proceed via highly unstable or even explosive intermediates. This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Pauson-Khand reactions in a photochemical flow microreactor.

    PubMed

    Asano, Keisuke; Uesugi, Yuki; Yoshida, Jun-ichi

    2013-05-17

    Pauson-Khand reactions were achieved at ambient temperature without any additive using a photochemical flow microreactor. The efficiency of the reaction was better than that in a conventional batch reactor, and the reaction could be operated continuously for 1 h.

  20. Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture

    PubMed Central

    Buehler, Edward A.; Mesbah, Ali

    2016-01-01

    Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663

  1. Acute intraoperative reactions during the injection of calcium sulfate bone cement for the treatment of unicameral bone cysts: a review of four cases.

    PubMed

    Nystrom, Lukas; Raw, Robert; Buckwalter, Joseph; Morcuende, Jose A

    2008-01-01

    Unicameral bone cysts can predispose patients to pathologic fracture and deformities of growth. Treatment options vary from continuous decompression with transcortical placement of a cannulated screw to percutaneous aspiration and injection of medical-grade calcium sulfate. From 2005 to 2007, we treated 22 patients with unicameral bone cysts using aspiration and injection of calcium sulfate. Three patients experienced acute laryngospasm and one patient developed tachyarrhythmia, temporarily, associated with injection of calcium sulfate. All reactions occurred in patients under age 18 without predisposing risk factors and resolved spontaneously with supportive care. Although the mechanism is unclear, we hypothesize that these reactions are either due to the nociceptive stimulus of the calcium sulfate injection or a systemic calcium bolus. Clinicians using this product for this indication should be aware that such reactions may occur. We suggest endotracheal intubation and communication to the anesthesiologist about the time of the injection in preparation for these idiopathic responses. Further research is necessary to determine exactly how this reaction occurs and how it can be avoided.

  2. Acute Intraoperative Reactions During the Injection of Calcium Sulfate Bone Cement for the Treatment of Unicameral Bone Cysts: A Review of Four Cases

    PubMed Central

    Nystrom, Lukas; Raw, Robert; Buckwalter, Joseph; Morcuende, Jose A.

    2008-01-01

    Unicameral bone cysts can predispose patients to pathologic fracture and deformities of growth. Treatment options vary from continuous decompression with transcortical placement of a cannulated screw to percutaneous aspiration and injection of medical-grade calcium sulfate. From 2005 to 2007, we treated 22 patients with unicameral bone cysts using aspiration and injection of calcium sulfate. Three patients experienced acute laryngospasm and one patient developed tachyarrhythmia, temporarily, associated with injection of calcium sulfate. All reactions occurred in patients under age 18 without predisposing risk factors and resolved spontaneously with supportive care. Although the mechanism is unclear, we hypothesize that these reactions are either due to the nociceptive stimulus of the calcium sulfate injection or a systemic calcium bolus. Clinicians using this product for this indication should be aware that such reactions may occur. We suggest endotracheal intubation and communication to the anesthesiologist about the time of the injection in preparation for these idiopathic responses. Further research is necessary to determine exactly how this reaction occurs and how it can be avoided. PMID:19223954

  3. Web-based continuing medical education. (II): Evaluation study of computer-mediated continuing medical education.

    PubMed

    Curran, V R; Hoekman, T; Gulliver, W; Landells, I; Hatcher, L

    2000-01-01

    Over the years, various distance learning technologies and methods have been applied to the continuing medical education needs of rural and remote physicians. They have included audio teleconferencing, slow scan imaging, correspondence study, and compressed videoconferencing. The recent emergence and growth of Internet, World Wide Web (Web), and compact disk read-only-memory (CD-ROM) technologies have introduced new opportunities for providing continuing education to the rural medical practitioner. This evaluation study assessed the instructional effectiveness of a hybrid computer-mediated courseware delivery system on dermatologic office procedures. A hybrid delivery system merges Web documents, multimedia, computer-mediated communications, and CD-ROMs to enable self-paced instruction and collaborative learning. Using a modified pretest to post-test control group study design, several evaluative criteria (participant reaction, learning achievement, self-reported performance change, and instructional transactions) were assessed by various qualitative and quantitative data collection methods. This evaluation revealed that a hybrid computer-mediated courseware system was an effective means for increasing knowledge (p < .05) and improving self-reported competency (p < .05) in dermatologic office procedures, and that participants were very satisfied with the self-paced instruction and use of asynchronous computer conferencing for collaborative information sharing among colleagues.

  4. Batteryless, wireless sensor powered by a sediment microbial fuel cell.

    PubMed

    Donovan, Conrad; Dewan, Alim; Heo, Deukhyoun; Beyenal, Haluk

    2008-11-15

    Sediment microbial fuel cells (SMFCs) are considered to be an alternative renewable power source for remote monitoring. There are two main challenges to using SMFCs as power sources: 1) a SMFC produces a low potential at which most sensor electronics do not operate, and 2) a SMFC cannot provide continuous power, so energy from the SMFC must be stored and then used to repower sensor electronics intermittently. In this study, we developed a SMFC and a power management system (PMS) to power a batteryless, wireless sensor. A SMFC operating with a microbial anode and cathode, located in the Palouse River, Pullman, Washington, U.S.A., was used to demonstrate the utility of the developed system. The designed PMS stored microbial energy and then started powering the wireless sensor when the SMFC potential reached 320 mV. It continued powering until the SMFC potential dropped below 52 mV. The system was repowered when the SMFC potential increased to 320 mV, and this repowering continued as long as microbial reactions continued. We demonstrated that a microbial fuel cell with a microbial anode and cathode can be used as an effective renewable power source for remote monitoring using custom-designed electronics.

  5. Independent Orbiter Assessment (IOA): Analysis of the reaction control system, volume 3

    NASA Technical Reports Server (NTRS)

    Burkemper, V. J.; Haufler, W. A.; Odonnell, R. A.; Paul, D. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Reaction Control System (RCS). The RCS is situated in three independent modules, one forward in the orbiter nose and one in each OMS/RCS pod. Each RCS module consists of the following subsystems: Helium Pressurization Subsystem; Propellant Storage and Distribution Subsystem; Thruster Subsystem; and Electrical Power Distribution and Control Subsystem. Volume 3 continues the presentation of IOA analysis worksheets and the potential critical items list.

  6. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    PubMed Central

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  7. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    PubMed

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. © 2015 The Authors.

  8. Continuous-flow retro-Diels-Alder reaction: an efficient method for the preparation of pyrimidinone derivatives.

    PubMed

    Nekkaa, Imane; Palkó, Márta; Mándity, István M; Fülöp, Ferenc

    2018-01-01

    The syntheses of various pyrimidinones as potentially bioactive products by means of the highly controlled continuous-flow retro-Diels-Alder reaction of condensed pyrimidinone derivatives are presented. Noteworthy, the use of this approach allowed us to rapidly screen a selection of conditions and quickly confirm the viability of preparing the desired pyrimidinones in short reaction times. Yields typically higher than those published earlier using conventional batch or microwave processes were achieved.

  9. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    PubMed

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  10. Study of dynamics of glucose-glucose oxidase-ferricyanide reaction

    NASA Astrophysics Data System (ADS)

    Nováková, A.; Schreiberová, L.; Schreiber, I.

    2011-12-01

    This work is focused on dynamics of the glucose-glucose oxidase-ferricyanide enzymatic reaction with or without sodium hydroxide in a continuous-flow stirred tank reactor (CSTR) and in a batch reactor. This reaction exhibits pH-variations having autocatalytic character and is reported to provide nonlinear dynamic behavior (bistability, excitability). The dynamical behavior of the reaction was examined within a wide range of inlet parameters. The main inlet parameters were the ratio of concentrations of sodium hydroxide and ferricyanide and the flow rate. In a batch reactor we observed an autocatalytic drop of pH from slightly basic to medium acidic values. In a CSTR our aim was to find bistability in the presence of sodium hydroxide. However, only a basic steady state was found. In order to reach an acidic steady state, we investigated the system in the absence of sodium hydroxide. Under these conditions the transition from the basic to the acidic steady state was observed when inlet glucose concentration was increased.

  11. Suppression of Ostwald Ripening by Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-03-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable and coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Ostwald ripening must thus be suppressed to stabilize emulsions, e.g. to control the properties of pharmaceuticals, food, or cosmetics. Suppression of Ostwald ripening is also important in biological cells, which contain stable liquid-like compartments, e.g. germ granules, Cajal-bodies, and centrosomes. Such systems are often driven away from equilibrium by chemical reactions and can thus be called active emulsions. Here, we show that non-equilibrium chemical reactions can suppress Ostwald Ripening, leading to stable, monodisperse emulsions. We derive analytical approximations of the typical droplet size, droplet count, and time scale of the dynamics from a coarse-grained description of the droplet dynamics. We also compare these results to numerical simulations of the continuous concentration fields. Generally, we thus show how chemical reactions can be used to stabilize emulsions and to control their properties in technology and nature.

  12. Photocatalytic degradation of paracetamol: intermediates and total reaction mechanism.

    PubMed

    Moctezuma, Edgar; Leyva, Elisa; Aguilar, Claudia A; Luna, Raúl A; Montalvo, Carlos

    2012-12-01

    The advanced oxidation of paracetamol (PAM) promoted by TiO(2)/UV system in aqueous medium was investigated. Monitoring this reaction by HPLC and TOC, it was demonstrated that while oxidation of paracetamol is quite efficient under these conditions, its mineralization is not complete. HPLC indicated the formation of hydroquinone, benzoquinone, p-aminophenol and p-nitrophenol in the reaction mixtures. Further evidence of p-nitrophenol formation was obtained following the reaction by UV-vis spectroscopy. Continuous monitoring by IR spectroscopy demonstrated the breaking of the aromatic amide present in PAM and subsequent formation of several aromatic intermediate compounds such as p-aminophenol and p-nitrophenol. These aromatic compounds were eventually converted into trans-unsaturated carboxylic acids. Based on these experimental results, an alternative deacylation mechanism for the photocatalytic oxidation of paracetamol is proposed. Our studies also demonstrated IR spectroscopy to be a useful technique to investigate oxidative mechanisms of pharmaceutical compounds. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Synchronization of generalized reaction-diffusion neural networks with time-varying delays based on general integral inequalities and sampled-data control approach.

    PubMed

    Dharani, S; Rakkiyappan, R; Cao, Jinde; Alsaedi, Ahmed

    2017-08-01

    This paper explores the problem of synchronization of a class of generalized reaction-diffusion neural networks with mixed time-varying delays. The mixed time-varying delays under consideration comprise of both discrete and distributed delays. Due to the development and merits of digital controllers, sampled-data control is a natural choice to establish synchronization in continuous-time systems. Using a newly introduced integral inequality, less conservative synchronization criteria that assure the global asymptotic synchronization of the considered generalized reaction-diffusion neural network and mixed delays are established in terms of linear matrix inequalities (LMIs). The obtained easy-to-test LMI-based synchronization criteria depends on the delay bounds in addition to the reaction-diffusion terms, which is more practicable. Upon solving these LMIs by using Matlab LMI control toolbox, a desired sampled-data controller gain can be acuqired without any difficulty. Finally, numerical examples are exploited to express the validity of the derived LMI-based synchronization criteria.

  14. Sensing Size through Clustering in Non-Equilibrium Membranes and the Control of Membrane-Bound Enzymatic Reactions

    PubMed Central

    Vagne, Quentin; Turner, Matthew S.; Sens, Pierre

    2015-01-01

    The formation of dynamical clusters of proteins is ubiquitous in cellular membranes and is in part regulated by the recycling of membrane components. We show, using stochastic simulations and analytic modeling, that the out-of-equilibrium cluster size distribution of membrane components undergoing continuous recycling is strongly influenced by lateral confinement. This result has significant implications for the clustering of plasma membrane proteins whose mobility is hindered by cytoskeletal “corrals” and for protein clustering in cellular organelles of limited size that generically support material fluxes. We show how the confinement size can be sensed through its effect on the size distribution of clusters of membrane heterogeneities and propose that this could be regulated to control the efficiency of membrane-bound reactions. To illustrate this, we study a chain of enzymatic reactions sensitive to membrane protein clustering. The reaction efficiency is found to be a non-monotonic function of the system size, and can be optimal for sizes comparable to those of cellular organelles. PMID:26656912

  15. 42 CFR 493.1103 - Standard: Requirements for transfusion services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of transfusion reactions on a continuous basis through a CLIA-certified laboratory or a laboratory... transfusion reactions. The facility must have procedures for preventing transfusion reactions and when necessary, promptly identify, investigate, and report blood and blood product transfusion reactions to the...

  16. 42 CFR 493.1103 - Standard: Requirements for transfusion services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of transfusion reactions on a continuous basis through a CLIA-certified laboratory or a laboratory... transfusion reactions. The facility must have procedures for preventing transfusion reactions and when necessary, promptly identify, investigate, and report blood and blood product transfusion reactions to the...

  17. Hydrolysis kinetics of tulip tree xylan in hot compressed water.

    PubMed

    Yoon, Junho; Lee, Hun Wook; Sim, Seungjae; Myint, Aye Aye; Park, Hee Jeong; Lee, Youn-Woo

    2016-08-01

    Lignocellulosic biomass, a promising renewable resource, can be converted into numerous valuable chemicals post enzymatic saccharification. However, the efficacy of enzymatic saccharification of lignocellulosic biomass is low; therefore, pretreatment is necessary to improve the efficiency. Here, a kinetic analysis was carried out on xylan hydrolysis, after hot compressed water pretreatment of the lignocellulosic biomass conducted at 180-220°C for 5-30min, and on subsequent xylooligosaccharide hydrolysis. The weight ratio of fast-reacting xylan to slow-reacting xylan was 5.25 in tulip tree. Our kinetic results were applied to three different reaction systems to improve the pretreatment efficiency. We found that semi-continuous reactor is promising. Lower reaction temperatures and shorter space times in semi-continuous reactor are recommended for improving xylan conversion and xylooligosaccharide yield. In the theoretical calculation, 95% of xylooligosaccharide yield and xylan conversion were achieved simultaneously with high selectivity (desired product/undesired product) of 100 or more. Copyright © 2016. Published by Elsevier Ltd.

  18. "Batch" kinetics in flow: online IR analysis and continuous control.

    PubMed

    Moore, Jason S; Jensen, Klavs F

    2014-01-07

    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gap junction systems in the rat vestibular labyrinth: immunohistochemical and ultrastructural analysis.

    PubMed

    Kikuchi, T; Adams, J C; Paul, D L; Kimura, R S

    1994-09-01

    The distribution of gap junctions within the vestibular labyrinth was investigated using immunohistochemistry and transmission electron microscopy. Connexin26-like immunoreactivity was observed among supporting cells in each vestibular sensory epithelium. Reaction product was also present in the transitional epithelium of each vestibular endorgan and in the planum semilunatum of crista ampullaris. No connexin26-like immunoreactivity was observed among thin wall epithelial cells or among vestibular dark cells. In addition, fibrocytes within vestibular connective tissue were positively immunostained. Reaction product was also detected in the melanocyte area just beneath dark cells. Ultrastructural observations indicated that a gap junction network of vestibular supporting cells extends to the transitional epithelium and planum semilunatum and forms an isolated epithelial cell gap junction system in each vestibular endorgan. In contrast, no gap junctions were found among wall epithelial cells or among dark cells. Fibrocytes and melanocytes were coupled by gap junctions and belong to the connective tissue cell gap junction system, which is continuous throughout the vestibular system and the cochlea. The possible functional significance of these gap junction systems is discussed.

  20. Kinetic study of an enzymic cycling system coupled to an enzymic step: determination of alkaline phosphatase activity.

    PubMed Central

    Valero, E; Varón, R; García-Carmona, F

    1995-01-01

    A kinetic study is made of a system consisting of a specific enzymic cycling assay coupled to an enzymic reaction. A kinetic analysis of this system is presented, and the accumulation of chromophore involved in the cycle is seen to be parabolic, i.e. the rate of the reaction increases continuously with constant acceleration. The system is illustrated by the measurement of alkaline phosphatase activity using beta-NADP+ as substrate. The enzymes alcohol dehydrogenase and diaphorase are used to cycle beta-NAD+ in the presence of ethanol and p-Iodonitrotetrazolium Violet. During each turn of the cycle, one molecule of the tetrazolium salt is reduced to an intensely coloured formazan. A simple procedure for evaluating the kinetic parameters involved in the system and for optimizing this cycling assay is described. The method is applicable to the measurement of any enzyme, and its amplification capacity as well as the simplicity of determining kinetic parameters enable it to be employed in enzyme immunoassays to increase the magnitude of the measured response. PMID:7619054

  1. A peculiar segmented flow microfluidics for isoquercitrin biosynthesis based on coupling of reaction and separation.

    PubMed

    Gong, An; Gu, Shuang-Shuang; Wang, Jun; Sheng, Sheng; Wu, Fu-An

    2015-10-01

    A segmented flow containing a buffer-ionic liquid/solvent in a micro-channel reactor was applied to synthesize isoquercitrin by the hesperidinase-catalyzed selective hydrolysis of rutin, based on a novel system of reaction coupling with separation. Within the developed microchannel reactor with one T-shaped inlet and outlet, the maximum isoquercitrin yield (101.7 ± 2.6%) was achieved in 20 min at 30 °C and 4 μL/min. Compared with a continuous-flow reactor, reaction rate was increased 4-fold due to a glycine-sodium hydroxide:[Bmim][BF4]/glycerol triacetate (1:1, v/v) system that formed a slug flow in microchannel and significantly increased mass transfer rates. The mass transfer coefficient significantly increased and exhibited a linear relationship with the flow rate. Hesperidinase could be efficiently reused at least 5 times, without losing any activity. The bonding mechanism and secondary structure of hesperidinase indicated that hesperidinase had a greater affinity to rutin at a production rate of 4 μL/min in this segmented flow microreactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Giant Volume Change of Active Gels under Continuous Flow

    DTIC Science & Technology

    2014-04-21

    harnessing chemical energy to produce motion, for example, using the energy released by ATP hydrolysis to power the directed movement of muscle fibers or micro ...microfluidic systems to generate capsules of biopolymer hydrogels, Herr demonstrated the use of gels for automated microfluidic protein blotting,13 Wu...active gels driven by the Belousov−Zhabotinsky reaction. These results demon- strate that microfluidics offers a useful and facile experimental

  3. Materials and Mechanisms of Photo-Assisted Chemical Reactions under Light and Dark Conditions: Can Day-Night Photocatalysis Be Achieved?

    PubMed

    Sakar, M; Nguyen, Chinh-Chien; Vu, Manh-Hiep; Do, Trong-On

    2018-03-09

    The photoassisted catalytic reaction, conventionally known as photocatalysis, is expanding into the field of energy and environmental applications. It is widely known that the discovery of TiO 2 -assisted photochemical reactions has led to several unique applications, such as degradation of pollutants in water and air, hydrogen production through water splitting, fuel conversion, cancer treatment, antibacterial activity, self-cleaning glasses, and concrete. These multifaceted applications of this phenomenon can be enriched and expanded further if this process is equipped with more tools and functions. The term "photoassisted" catalytic reactions clearly emphasizes that photons are required to activate the catalyst; this can be transcended even into the dark if electrons are stored in the material for the later use to continue the catalytic reactions in the absence of light. This can be achieved by equipping the photocatalyst with an electron-storage material to overcome current limitations in photoassisted catalytic reactions. In this context, this article sheds lights on the materials and mechanisms of photocatalytic reactions under light and dark conditions. The manifestation of such systems could be an unparalleled technology in the near future that could influence all spheres of the catalytic sciences. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. CONTINUOUS PRECIPITATION METHOD FOR CONVERSION OF URANYL NITRATE TO URANIUM HEXAFLUORIDE

    DOEpatents

    Reinhart, G.M.; Collopy, T.J.

    1962-11-13

    A continuous precipitation process is given for converting a uranyl nitrate solution to uranium tetrafluoride. A stream of the uranyl nitrate solution and a stream of an aqueous ammonium hydroxide solution are continuously introduced into an agitated reaction zone maintained at a pH of 5.0 to 6.5. Flow rates are adjusted to provide a mean residence time of the resulting slurry in the reaction zone of at least 30 minutes. After a startup period of two hours the precipitate is recovered from the effluent stream by filtration and is converted to uranium tetrafluoride by reduction to uranium dioxide with hydrogen and reaction of the uranium dioxide with anhydrous hydrogen fluoride. (AEC)

  5. Donders revisited: Discrete or continuous temporal processing underlying reaction time distributions?

    PubMed

    Bao, Yan; Yang, Taoxi; Lin, Xiaoxiong; Pöppel, Ernst

    2016-09-01

    Differences of reaction times to specific stimulus configurations are used as indicators of cognitive processing stages. In this classical experimental paradigm, continuous temporal processing is implicitly assumed. Multimodal response distributions indicate, however, discrete time sampling, which is often masked by experimental conditions. Differences in reaction times reflect discrete temporal mechanisms that are pre-semantically implemented and suggested to be based on entrained neural oscillations. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  6. Continuous-flow retro-Diels–Alder reaction: an efficient method for the preparation of pyrimidinone derivatives

    PubMed Central

    Nekkaa, Imane; Palkó, Márta; Mándity, István M

    2018-01-01

    The syntheses of various pyrimidinones as potentially bioactive products by means of the highly controlled continuous-flow retro-Diels–Alder reaction of condensed pyrimidinone derivatives are presented. Noteworthy, the use of this approach allowed us to rapidly screen a selection of conditions and quickly confirm the viability of preparing the desired pyrimidinones in short reaction times. Yields typically higher than those published earlier using conventional batch or microwave processes were achieved. PMID:29507637

  7. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns.

    PubMed

    Hartwig, Jan; Metternich, Jan B; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V

    2014-06-14

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  8. Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations.

    PubMed

    Henry, B I; Langlands, T A M; Wearne, S L

    2006-09-01

    We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps then the long time asymptotic limit has a standard linear reaction kinetics term but a fractional order temporal derivative operating on a nonstandard diffusion term. Results from the above two models are compared with a phenomenological model with standard linear reaction kinetics and a fractional order temporal derivative operating on a standard diffusion term. We have also developed further extensions of the CTRW model to include more general reaction dynamics.

  9. Assessing pretreatment reactor scaling through empirical analysis

    DOE PAGES

    Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik; ...

    2016-10-10

    Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems, which may be used as starting points for further optimization. Additionally, using a severity-factor approach to optimization was found to be inadequate compared to a multivariate optimization method. As a result, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of incorporating mechanical disruption into pretreatment reactor designs to achieve high enzymatic digestibilities.« less

  10. Assessing pretreatment reactor scaling through empirical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik

    Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems, which may be used as starting points for further optimization. Additionally, using a severity-factor approach to optimization was found to be inadequate compared to a multivariate optimization method. As a result, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of incorporating mechanical disruption into pretreatment reactor designs to achieve high enzymatic digestibilities.« less

  11. Numerical Bifurcation Analysis of Delayed Recycle Stream in a Continuously Stirred Tank Reactor

    NASA Astrophysics Data System (ADS)

    Gangadhar, Nalwala Rohitbabu; Balasubramanian, Periyasamy

    2010-10-01

    In this paper, we present the stability analysis of delay differential equations which arise as a result of transportation lag in the CSTR-mechanical separator recycle system. A first order irreversible elementary reaction is considered to model the system and is governed by the delay differential equations. The DDE-BIFTOOL software package is used to analyze the stability of the delay system. The present analysis reveals that the system exhibits delay independent stability for isothermal operation of the CSTR. In the absence of delay, the system is dynamically unstable for non-isothermal operation of the CSTR, and as a result of delay, the system exhibits delay dependent stability.

  12. A Flight-Calibrated Methodology for Determination of Cassini Thruster On-Times for Reaction Wheel Biases

    NASA Technical Reports Server (NTRS)

    Sarani, Siamak

    2010-01-01

    This paper describes a methodology for accurate and flight-calibrated determination of the on-times of the Cassini spacecraft Reaction Control System (RCS) thrusters, without any form of dynamic simulation, for the reaction wheel biases. The hydrazine usage and the delta V vector in body frame are also computed from the respective thruster on-times. The Cassini spacecraft, the largest and most complex interplanetary spacecraft ever built, continues to undertake ambitious and unique scientific observations of planet Saturn, Titan, Enceladus, and other moons of Saturn. In order to maintain a stable attitude during the course of its mission, this three-axis stabilized spacecraft uses two different control systems: the RCS and the reaction wheel assembly control system. The RCS is used to execute a commanded spacecraft slew, to maintain three-axis attitude control, control spacecraft's attitude while performing science observations with coarse pointing requirements, e.g. during targeted low-altitude Titan and Enceladus flybys, bias the momentum of reaction wheels, and to perform RCS-based orbit trim maneuvers. The use of RCS often imparts undesired delta V on the spacecraft. The Cassini navigation team requires accurate predictions of the delta V in spacecraft coordinates and inertial frame resulting from slews using RCS thrusters and more importantly from reaction wheel bias events. It is crucial for the Cassini spacecraft attitude control and navigation teams to be able to, quickly but accurately, predict the hydrazine usage and delta V for various reaction wheel bias events without actually having to spend time and resources simulating the event in flight software-based dynamic simulation or hardware-in-the-loop simulation environments. The methodology described in this paper, and the ground software developed thereof, are designed to provide just that. This methodology assumes a priori knowledge of thrust magnitudes and thruster pulse rise and tail-off time constants for eight individual attitude control thrusters, the spacecraft's wet mass and its center of mass location, and a few other key parameters.

  13. Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst

    PubMed Central

    2015-01-01

    Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869

  14. An adaptive multi-level simulation algorithm for stochastic biological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.

    2015-01-14

    Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the efficiency of our method using a number of examples.« less

  15. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    DOEpatents

    Peters, William A [Lexington, MA; Howard, Jack B [Winchester, MA; Modestino, Anthony J [Hanson, MA; Vogel, Fredreric [Villigen PSI, CH; Steffin, Carsten R [Herne, DE

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  16. Integrated operation of continuous chromatography and biotransformations for the generic high yield production of fine chemicals.

    PubMed

    Bechtold, Matthias; Makart, Stefan; Heinemann, Matthias; Panke, Sven

    2006-06-25

    The rapid progress in biocatalysis in the identification and development of enzymes over the last decade has enormously enlarged the chemical reaction space that can be addressed not only in research applications, but also on industrial scale. This enables us to consider even those groups of reactions that are very promising from a synthetic point of view, but suffer from drawbacks on process level, such as an unfavourable position of the reaction equilibrium. Prominent examples stem from the aldolase-catalyzed enantioselective carbon-carbon bond forming reactions, reactions catalyzed by isomerising enzymes, and reactions that are kinetically controlled. On the other hand, continuous chromatography concepts such as the simulating moving bed technology have matured and are increasingly realized on industrial scale for the efficient separation of difficult compound mixtures - including enantiomers - with unprecedented efficiency. We propose that coupling of enzyme reactor and continuous chromatography is a very suitable and potentially generic process concept to address the thermodynamic limitations of a host of promising biotransformations. This way, it should be possible to establish novel in situ product recovery processes of unprecedented efficiency and selectivity that represent a feasible way to recruit novel biocatalysts to the industrial portfolio.

  17. Methylation of 2-Naphthol Using Dimethyl Carbonate under Continuous-Flow Gas-Phase Conditions

    ERIC Educational Resources Information Center

    Tundo, Pietro; Rosamilia, Anthony E.; Arico, Fabio

    2010-01-01

    This experiment investigates the methylation of 2-naphthol with dimethyl carbonate. The volatility of the substrates, products, and co-products allows the reaction to be performed using a continuous-flow gas-phase setup at ambient pressure. The reaction uses catalytic quantities of base, achieves high conversion, produces little waste, and…

  18. Arbuscular mycorrhizal fungal communities in the rhizosphere of a continuous cropping soybean system at the seedling stage.

    PubMed

    Cui, Jiaqi; Bai, Li; Liu, Xiaorui; Jie, Weiguang; Cai, Baiyan

    Arbuscular mycorrhizae (AM) fungi play a crucial role in the growth of soybean; however, the planting system employed is thought to have an effect on AM fungal communities in the rhizosphere. This study was performed to explore the influence of continuous soybean cropping on the diversity of Arbuscular mycorrhizal (AM) fungi, and to identify the dominant AM fungus during the seedling stage. Three soybean cultivars were planted under two and three years continuous cropping, respectively. The diversity of AM fungi in the rhizosphere soil at the seedling stage was subsequently analyzed using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). The results showed that an increase in cropping years improved the colonization rate of AM in all three soybean cultivars. Moreover, the dominant species were found to be Funneliformis mosseae and Glomus species. The results of cluster analysis further confirmed that the number of years of continuous cropping significantly affected the composition of rhizospheric AM fungal communities in different soybean cultivars. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. Rebooting Kirkpatrick: Integrating Information System Theory Into the Evaluation of Web-based Continuing Professional Development Interventions for Interprofessional Education.

    PubMed

    Shen, Nelson; Yufe, Shira; Saadatfard, Omid; Sockalingam, Sanjeev; Wiljer, David

    2017-01-01

    Information system research has stressed the importance of theory in understanding how user perceptions can motivate the use and adoption of technology such as web-based continuing professional development programs for interprofessional education (WCPD-IPE). A systematic review was conducted to provide an information system perspective on the current state of WCPD-IPE program evaluation and how current evaluations capture essential theoretical constructs in promoting technology adoption. Six databases were searched to identify studies evaluating WCPD-IPE. Three investigators determined eligibility of the articles. Evaluation items extracted from the studies were assessed using the Kirkpatrick-Barr framework and mapped to the Benefits Evaluation Framework. Thirty-seven eligible studies yielded 362 evaluation items for analysis. Most items (n = 252) were assessed as Kirkpatrick-Barr level 1 (reaction) and were mainly focused on the quality (information, service, and quality) and satisfaction dimensions of the Benefits Evaluation. System quality was the least evaluated quality dimension, accounting for 26 items across 13 studies. WCPD-IPE use was reported in 17 studies and its antecedent factors were evaluated in varying degrees of comprehensiveness. Although user reactions were commonly evaluated, greater focus on user perceptions of system quality (ie, functionality and performance), usefulness, and usability of the web-based platform is required. Surprisingly, WCPD-IPE use was reported in less than half of the studies. This is problematic as use is a prerequisite to realizing any individual, organizational, or societal benefit of WCPD-IPE. This review proposes an integrated framework which accounts for these factors and provides a theoretically grounded guide for future evaluations.

  20. Granulocyte antigen systems and antibodies and their clinical significance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCullough, J.

    Granulocyte alloantibodies and autoantibodies have a key role in the pathophysiology of several clinical problems. These include febrile transfusion reactions, severe pulmonary reactions to transfusion, isoimmune neonatal neutropenia, failure of effective granulocyte transfusion, autoimmune neutropenia, drug-induced neutropenia, and neutropenias secondary to many other diseases. Although many techniques are available for detecting granulocyte antibodies, the optimal in-vitro tests for predicting the antibodies' clinical effects are not established. Use of indium-111-labeled granulocytes may provide valuable information regarding the in-vivo effects of different granulocyte antibodies. Granulocyte transfusions continue to be used for a limited number of severely infected neutropenic patients who do notmore » respond to antibiotic therapy.« less

  1. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  2. Methane Post-Processing and Hydrogen Separation for Spacecraft Oxygen Loop Closure

    NASA Technical Reports Server (NTRS)

    Greenwood, Zachary W.; Abeny, Morgan B.; Wall, Terry; Miller, Lee A.; Wheeler, Richard R., Jr.

    2017-01-01

    State-of-the-art life support oxygen recovery technology on the International Space Station is based on the Sabatier reaction where only about half of the oxygen required for the crew is recovered from metabolic carbon dioxide (CO2). The Sabatier reaction produces water as the primary product and methane as a byproduct. Oxygen recovery is constrained by both the limited availability of reactant hydrogen from water electrolysis and Sabatier methane (CH4) being vented as a waste product resulting in a continuous loss of reactant hydrogen. Post-processing methane with the Plasma Pyrolysis Assembly (PPA) to recover this hydrogen has the potential to substantially increase oxygen recovery and thus dramatically reduce the logistical challenges associated with oxygen resupply. The PPA decomposes methane into predominantly hydrogen and acetylene. A purification system is necessary to purify hydrogen before it is recycled back to the Sabatier reactor. Testing and evaluation of acetylene removal systems and PPA system architectures are presented and discussed.

  3. AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures.

    PubMed

    Helmig, Sarah; Gothelf, Kurt Vesterager

    2017-10-23

    Signal transfer is central to the controlled exchange of information in biology and advanced technologies. Therefore, the development of reliable, long-range signal transfer systems for artificial nanoscale assemblies is of great scientific interest. We have designed such a system for the signal transfer between two connected DNA nanostructures, using the hybridization chain reaction (HCR). Two sets of metastable DNA hairpins, one of which is immobilized at specific points along tracks on DNA origami structures, are polymerized to form a continuous DNA duplex, which is visible using atomic force microscopy (AFM). Upon addition of a designed initiator, the initiation signal is efficiently transferred more than 200 nm from a specific location on one origami structure to an end point on another origami structure. The system shows no significant loss of signal when crossing from one nanostructure to another and, therefore, has the potential to be applied to larger multi-component DNA assemblies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Prediction of pressure and flow transients in a gaseous bipropellant reaction control rocket engine

    NASA Technical Reports Server (NTRS)

    Markowsky, J. J.; Mcmanus, H. N., Jr.

    1974-01-01

    An analytic model is developed to predict pressure and flow transients in a gaseous hydrogen-oxygen reaction control rocket engine feed system. The one-dimensional equations of momentum and continuity are reduced by the method of characteristics from partial derivatives to a set of total derivatives which describe the state properties along the feedline. System components, e.g., valves, manifolds, and injectors are represented by pseudo steady-state relations at discrete junctions in the system. Solutions were effected by a FORTRAN IV program on an IBM 360/65. The results indicate the relative effect of manifold volume, combustion lag time, feedline pressure fluctuations, propellant temperature, and feedline length on the chamber pressure transient. The analytical combustion model is verified by good correlation between predicted and observed chamber pressure transients. The developed model enables a rocket designer to vary the design parameters analytically to obtain stable combustion for a particular mode of operation which is prescribed by mission objectives.

  5. Inkjet Printing Based Droplet Generation for Integrated Online Digital Polymerase Chain Reaction.

    PubMed

    Zhang, Weifei; Li, Nan; Koga, Daisuke; Zhang, Yong; Zeng, Hulie; Nakajima, Hizuru; Lin, Jin-Ming; Uchiyama, Katsumi

    2018-04-17

    We report on the development of a novel and flexible online digital polymerase chain reaction (dPCR) system. The system was composed of three parts: an inkjet for generating the droplets, a coiled fused-silica capillary for thermal cycling, and a laser-induced fluorescence detector (LIFD) for positive droplet counting. Upon inkjet printing, monodisperse droplets were continuously generated in the oil phase and then introduced into the capillary in the form of a stable dispersion. The droplets containing one or zero molecules of target DNA passed through the helical capillary that was attached to a cylindrical thermal cycler for PCR amplification, resulting in the generation of fluorescence for the DNA-positive droplet. After 36 PCR cycles, the fluorescence signal intensity was detected by laser-induced fluorescence located at the downstream of the capillary, followed by a positive/negative counting. The present system was successfully applied to the absolute quantification of the HPV sequence in Caski cells with dynamic ranges spanning 4 orders of magnitude.

  6. On-line Monitoring of Continuous Flow Chemical Synthesis Using a Portable, Small Footprint Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Bristow, Tony W. T.; Ray, Andrew D.; O'Kearney-McMullan, Anne; Lim, Louise; McCullough, Bryan; Zammataro, Alessio

    2014-10-01

    For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed.

  7. The electrochemical generation of useful chemical species from lunar materials

    NASA Technical Reports Server (NTRS)

    Tsai, Kan J.; Kuchynka, Daniel J.; Sammells, Anthony F.

    1989-01-01

    The current status of work on an electrochemical technology for the simultaneous generation of oxygen and lithium from a Li2O containing molten salt (Li2O-LiCl-LiF) is discussed. The electrochemical cell utilizes an oxygen vacancy conducting solid electrolyte, yttria-stabilized zirconia, to effect separation between the oxygen evolving and lithium reduction half-cell reactions. The cell, which operates at 700 to 800 C, possesses rapid electrode kinetics at the lithium-alloy electrode with exchange current density values being greater than 60 mA/sq cm, showing high reversibility for this reaction. When used in the electrolytic mode, lithium produced at the negative electrode would be continuously removed from the cell for later use (under lunar conditions) as an easily storable reducting agent (compared to H2) for the chemical refining of lunar ores via the general reaction: 2Li + MO yields Li2O + M where MO represents a lunar ore. Emphasis to this time has been on the simulated lunar ore ilmenite (FeTiO3), which we have found becomes chemically reduced by Li at 432 C. Furthermore, both Fe2O3 and TiO2 have been reduced by Li to give the corresponding metal. This electrochemical approach provides a convenient route for producing metals under lunar conditions and oxygen for the continuous maintenance of human habitats on the Moon's surface. Because of the high reversibility of this electrochemical system, it has also formed the basis for the lithium-oxygen secondary battery. This secondary lithium-oxygen battery system posses the highest theoretical energy density yet investigated.

  8. Comparison of orthorhombic and alpha-two titanium aluminides as matrices for continuous SiC-reinforced composites

    NASA Astrophysics Data System (ADS)

    Smith, P. R.; Graves, J. A.; Rhodes, Cg.

    1994-06-01

    The attributes of an orthorhombic Ti aluminide alloy, Ti-21Al-22Nb (at. pct), and an alpha-two Ti aluminide alloy, Ti-24Al-11Nb (at. pct), for use as a matrix with continuous SiC (SCS-6) fiber reinforcement have been compared. Foil-fiber-foil processing was used to produce both unreinforced (“neat”) and unidirectional “SCS-6” reinforced panels. Microstructure of the Ti-24A1-11Nb matrix consisted of ordered Ti3Al ( α 2) + disordered beta (β), while the Ti-21 Al-22Nb matrix contained three phases: α2, ordered beta ( β 0), and ordered orthorhombic (O). Fiber/ matrix interface reaction zone growth kinetics at 982 °C were examined for each composite system. Although both systems exhibited similar interface reaction products (i.e., mixed Ti carbides, silicides, and Ti-Al carbides), growth kinetics in the α 2 + β matrix composite were much more rapid than in the O + β 0 + α 2 matrix composite. Additionally, interfacial reaction in the α 2 + β} composite resulted in a relatively large brittle matrix zone, depleted of beta phase, which was not present in the O + β 0+ α 2 matrix composite. Mechanical property measurements included room and elevated temperature tensile, thermal stability, thermal fatigue, thermo-mechanical fatigue (TMF), and creep. The three-phase orthorhombic-based alloy outperformed the α2+ β alloy in all of these mechanical behavioral areas, on both an absolute and a specific (i.e., density corrected) basis.

  9. The electrochemical generation of useful chemical species from lunar materials

    NASA Astrophysics Data System (ADS)

    Tsai, Kan J.; Kuchynka, Daniel J.; Sammells, Anthony F.

    1989-03-01

    The current status of work on an electrochemical technology for the simultaneous generation of oxygen and lithium from a Li2O containing molten salt (Li2O-LiCl-LiF) is discussed. The electrochemical cell utilizes an oxygen vacancy conducting solid electrolyte, yttria-stabilized zirconia, to effect separation between the oxygen evolving and lithium reduction half-cell reactions. The cell, which operates at 700 to 800 C, possesses rapid electrode kinetics at the lithium-alloy electrode with exchange current density values being greater than 60 mA/sq cm, showing high reversibility for this reaction. When used in the electrolytic mode, lithium produced at the negative electrode would be continuously removed from the cell for later use (under lunar conditions) as an easily storable reducting agent (compared to H2) for the chemical refining of lunar ores via the general reaction: 2Li + MO yields Li2O + M where MO represents a lunar ore. Emphasis to this time has been on the simulated lunar ore ilmenite (FeTiO3), which we have found becomes chemically reduced by Li at 432 C. Furthermore, both Fe2O3 and TiO2 have been reduced by Li to give the corresponding metal. This electrochemical approach provides a convenient route for producing metals under lunar conditions and oxygen for the continuous maintenance of human habitats on the Moon's surface. Because of the high reversibility of this electrochemical system, it has also formed the basis for the lithium-oxygen secondary battery. This secondary lithium-oxygen battery system posses the highest theoretical energy density yet investigated.

  10. Alcohol vapour detection at the three phase interface using enzyme-conducting polymer composites.

    PubMed

    Winther-Jensen, Orawan; Kerr, Robert; Winther-Jensen, Bjorn

    2014-02-15

    Immobilisation of enzymes on a breathable electrode can be useful for various applications where the three-phase interface between gas or chemical vapour, electrolyte and electrode is crucial for the reaction. In this paper, we report the further development of the breathable electrode concept by immobilisation of alcohol dehydrogenase into vapour-phase polymerised poly(3,4-ethylene dioxythiophene) that has been coated onto a breathable membrane. Typical alcohol sensing, whereby the coenzyme β-Nicotinamide adenine dinucleotide (NADH) is employed as a redox-mediator, was successfully used as a model reaction for the oxidation of ethanol. This indicates that the ethanol vapour from the backside of the membrane has access to the active enzyme embedded in the electrode. The detecting range of the sensor is suitable for the detection of ethanol in fruit juices and for the baseline breath ethanol concentration of drunken driving. After continuous operation for 4.5h the system only showed a 20% decrease in the current output. The electrodes maintained 62% in current output after being refrigerated for 76 days. This work is continuing the progress of the immobilisation of specific enzymes for certain electrochemical reactions whereby the three-phase interface has to be maintained and/or the simultaneous separation of gas from liquid is required. © 2013 Elsevier B.V. All rights reserved.

  11. APDS: the autonomous pathogen detection system.

    PubMed

    Hindson, Benjamin J; Makarewicz, Anthony J; Setlur, Ujwal S; Henderer, Bruce D; McBride, Mary T; Dzenitis, John M

    2005-04-15

    We have developed and tested a fully autonomous pathogen detection system (APDS) capable of continuously monitoring the environment for airborne biological threat agents. The system was developed to provide early warning to civilians in the event of a bioterrorism incident and can be used at high profile events for short-term, intensive monitoring or in major public buildings or transportation nodes for long-term monitoring. The APDS is completely automated, offering continuous aerosol sampling, in-line sample preparation fluidics, multiplexed detection and identification immunoassays, and nucleic acid-based polymerase chain reaction (PCR) amplification and detection. Highly multiplexed antibody-based and duplex nucleic acid-based assays are combined to reduce false positives to a very low level, lower reagent costs, and significantly expand the detection capabilities of this biosensor. This article provides an overview of the current design and operation of the APDS. Certain sub-components of the ADPS are described in detail, including the aerosol collector, the automated sample preparation module that performs multiplexed immunoassays with confirmatory PCR, and the data monitoring and communications system. Data obtained from an APDS that operated continuously for 7 days in a major U.S. transportation hub is reported.

  12. Interaction of SO{sub x} and NO{sub x} with soot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chughtai, A.R.; Atteya, M.M.O.; Konowalchuk, B.K.

    1996-12-31

    As part of a continuing study of the heterogeneous reactions of black carbon with gas phase oxidant species, the adsorption of low concentrations (30 - 2000 ppm) of so, and NO{sub 2} individually, together, and in the presence of other adsorbates have been studied by spectroscopic and microgravimetric techniques. Previous work in this study has revealed a dual path mechanism for the reaction of NO{sub 2}/N{sub 2}O{sub 4} with n-hexane soot over concentration range 9 ppm - 200 torr. (This soot has been used throughout these investigations as a model for fossil fuel-produced black carbon). Interaction of SO{sub 2} andmore » carbon represent the most intensively studied of the heterogeneous systems containing carbon. An attempt to understand the molecular dynamics involved in the reactions of carbon in the presence of multiple reactants, such as SO{sub 2} and NO{sub 2}, underlies the present work.« less

  13. Low Energy Nuclear Reactions: Status at the Beginning of the New Millenium

    NASA Astrophysics Data System (ADS)

    Mallove, Eugene F.

    2001-03-01

    This talk will summarize some of the more convincing recent experiments that show that ^4He,^3He (including impossible to explain changes in the ^4He/^3He isotopic ratio), nuclear scale excess energy, tritium, low-level neutron production, and the transmutation of heavy elements can occur near room temperature in relatively simple systems. Despite inappropriate theory-based arguments against it and unethical attacks by people unfamiliar with the supporting experiments, the new field of solid state nuclear reactions is progressing. The physical theory behind the associated phenomena continues to be debated among theorists. But progress is being made. The facts of the history of this scientific controversy suggest that it is inadvisable to rush to judgment against allegedly ``impossible" new phenomena when increasingly careful experiments have revealed new vistas in physics. Detailed discussion of evidence for solid state nuclear reactions is available

  14. Rush immunotherapy for wasp venom allergy seems safe and effective in patients with mastocytosis.

    PubMed

    Verburg, M; Oldhoff, J M; Klemans, R J B; Lahey-de Boer, A; de Bruin-Weller, M S; Röckmann, H; Sanders, C; Bruijnzeel-Koomen, C A F M; Pasmans, S G M A; Knulst, A C

    2015-11-01

    Patients with mastocytosis and wasp venom allergy (WA) may benefit from venom immunotherapy (VIT). However, fatal insect sting reactions have been described in mastocytosis patients despite previous immunotherapy. We investigated the safety and efficacy of (rush) VIT in patients with mastocytosis and WA. To investigate the safety and efficacy of (rush) VIT in patients with mastocytosis and WA. We describe nine patients with cutaneous mastocytosis and WA who received VIT. Cutaneous mastocytosis was confirmed by histopathology and systemic mastocytosis was diagnosed according to World Health Organization criteria. VIT was given according to a rush protocol. Given the difference in safety and efficacy of VIT in patients with WA and honeybee venom allergy, we reviewed the literature for VIT with the focus on WA patients with mastocytosis and addressed the difference between patients with cutaneous versus systemic mastocytosis. Nine patients had WA and mastocytosis, of whom six had cutaneous mastocytosis, two combined cutaneous and systemic mastocytosis and one systemic mastocytosis. All patients received rush IT with wasp venom. Most patients had only mild local side effects, with no systemic side effects during the course of VIT. One patient had a systemic reaction upon injection on one occasion, during the updosing phase, with dyspnoea and hypotension, but responded well to treatment. Immunotherapy was continued after temporary dose adjustment without problems. Two patients with a previous anaphylactic reaction were re-stung, without any systemic effects. VIT is safe in cutaneous mastocytosis patients with WA, while caution has to be made in case of systemic mastocytosis. VIT was effective in the patients who were re-stung.

  15. Parallel array of nanochannels grafted with polymer-brushes-stabilized Au nanoparticles for flow-through catalysis.

    PubMed

    Liu, Jianxi; Ma, Shuanhong; Wei, Qiangbing; Jia, Lei; Yu, Bo; Wang, Daoai; Zhou, Feng

    2013-12-07

    Smart systems on the nanometer scale for continuous flow-through reaction present fascinating advantages in heterogeneous catalysis, in which a parallel array of straight nanochannels offers a platform with high surface area for assembling and stabilizing metallic nanoparticles working as catalysts. Herein we demonstrate a method for finely modifying the nanoporous anodic aluminum oxide (AAO), and further integration of nanoreactors. By using atomic transfer radical polymerization (ATRP), polymer brushes were successfully grafted on the inner wall of the nanochannels of the AAO membrane, followed by exchanging counter ions with a precursor for nanoparticles (NPs), and used as the template for deposition of well-defined Au NPs. The membrane was used as a functional nanochannel for novel flow-through catalysis. High catalytic performance and instantaneous separation of products from the reaction system was achieved in reduction of 4-nitrophenol.

  16. Parallel array of nanochannels grafted with polymer-brushes-stabilized Au nanoparticles for flow-through catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Jianxi; Ma, Shuanhong; Wei, Qiangbing; Jia, Lei; Yu, Bo; Wang, Daoai; Zhou, Feng

    2013-11-01

    Smart systems on the nanometer scale for continuous flow-through reaction present fascinating advantages in heterogeneous catalysis, in which a parallel array of straight nanochannels offers a platform with high surface area for assembling and stabilizing metallic nanoparticles working as catalysts. Herein we demonstrate a method for finely modifying the nanoporous anodic aluminum oxide (AAO), and further integration of nanoreactors. By using atomic transfer radical polymerization (ATRP), polymer brushes were successfully grafted on the inner wall of the nanochannels of the AAO membrane, followed by exchanging counter ions with a precursor for nanoparticles (NPs), and used as the template for deposition of well-defined Au NPs. The membrane was used as a functional nanochannel for novel flow-through catalysis. High catalytic performance and instantaneous separation of products from the reaction system was achieved in reduction of 4-nitrophenol.

  17. Active interrogation using low-energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Antolak, Arlyn; Doyle, Barney; Leung, Ka-Ngo; Morse, Daniel; Provencio, Paula

    2005-09-01

    High-energy photons and neutrons can be used to interrogate for heavily shielded fissile materials inside sealed cargo containers by detecting their prompt and/or delayed fission signatures. The FIND (Fissmat Inspection for Nuclear Detection) active interrogation system is based on a dual neutron+gamma source that uses low-energy (< 500 keV) proton- or deuteron-induced nuclear reactions to produce high intensities of mono-energetic gamma rays and/or neutrons. The source can be operated in either pulsed (e.g., to detect delayed photofission neutrons and gammas) or continuous (e.g., detecting prompt fission signatures) modes. For the gamma-rays, the source target can be segmented to incorporate different (p,γ) isotopes for producing gamma-rays at selective energies, thereby improving the probability of detection. The design parameters for the FIND system are discussed and preliminary accelerator-based measurements of gamma and neutron yields, background levels, and fission signals for several target materials under consideration are presented.

  18. Production of edible carbohydrates from formaldehyde in a spacecraft. pH variations in the calcium hydroxide catalyzed formose reaction. Final Report, 1 Jul. 1973 - 30 Jun. 1974. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Weiss, A. H.; Kohler, J. T.; John, T.

    1974-01-01

    The study of the calcium hydroxide catalyzed condensation of formaldehyde was extended to a batch reactor system. Decreases in pH were observed, often in the acid regime, when using this basic catalyst. This observation was shown to be similar to results obtained by others using less basic catalysts in the batch mode. The relative rates of these reactions are different in a batch reactor than in a continuous stirred tank reactor. This difference in relative rates is due to the fact that at any degree of advancement in the batch system, the products have a history of previous products, pH, and dissolved catalyst. The relative rate differences can be expected to yield a different nature of product sugars for the two types of reactors.

  19. Evaluation of adverse reactions to contrast media in the hospital

    PubMed Central

    Ryu, J-H; Kim, E-Y

    2013-01-01

    Objective: To determine and analyse the characteristics of contrast media adverse reactions (CM-ARs) reported in a hospital. Methods: A retrospective review of CM-ARs from the electronic spontaneous adverse drug reaction (ADR) report system between January 2011 and August 2012 was conducted. CM-ARs were evaluated in terms of causality, severity, preventability and affected organs. Also, agreement and correlation among the tools used to evaluate CM-ARs were analysed. Results: The overall reaction rate was 1.5% (n = 286). In total, 269 CM-ARs were identified. For ADR causality, 96.7% (n = 260) and 98.5% (n = 265) were evaluated as “probable” ADR using the Naranjo probability scale and the World Health Organization–Uppsala Monitoring Centre causality categories, whereas 98.1% (n = 264) were evaluated as “certain” with Korean algorithm v. II. Of these, 91.4% (n = 246) were mild in severity and 96.7% (n = 260) were unpreventable. Most patients (n = 233, 86.7%) could be managed with observation and/or simple treatment. The most frequent reaction (n = 383, 79.5%) was dermatological. Spearman's correlation coefficient was 0.667 (p < 0.01), and the agreement was 98.1% between the Naranjo scale and the World Health Organization–Uppsala Monitoring Centre categories. No relationship was seen between CM-AR severity and gender or between in- and outpatients. Conclusion: In our study, most CM-ARs were mild and managed with simple treatment. However, as the number of patients undergoing CT procedures continues to increase, it is essential to identify and observe patients at risk for CM-ARs to prevent severe ADRs. Advances in knowledge: Continuous careful review of reporting and treatment protocols of CM-ARs is needed to prevent morbidity and mortality. PMID:24191123

  20. Kotov collects data for the Cardiocog-2 Experiment in the SM during Expedition 15

    NASA Image and Video Library

    2007-05-01

    ISS015-E-08661 (May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, collects medical data for the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.

  1. Kotov collects data for the Cardiocog-2 Experiment in the SM during Expedition 15

    NASA Image and Video Library

    2007-05-01

    ISS015-E-08660 (May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, collects medical data for the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.

  2. Kotov collects data for the Cardiocog-2 Experiment in the SM during Expedition 15

    NASA Image and Video Library

    2007-05-01

    ISS015-E-08659 (May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, checks procedures checklists while collecting medical data for the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.

  3. Towards the development of continuous, organocatalytic, and stereoselective reactions in deep eutectic solvents

    PubMed Central

    Brenna, Davide; Massolo, Elisabetta; Puglisi, Alessandra; Rossi, Sergio; Celentano, Giuseppe; Capriati, Vito

    2016-01-01

    Different deep eutectic solvent (DES) mixtures were studied as reaction media for the continuous synthesis of enantiomerically enriched products by testing different experimental set-ups. L-Proline-catalysed cross-aldol reactions were efficiently performed in continuo, with high yield (99%), anti-stereoselectivity, and enantioselectivity (up to 97% ee). Moreover, using two different DES mixtures, the diastereoselectivity of the process could be tuned, thereby leading to the formation, under different experimental conditions, to both the syn- and the anti-isomer with very high enantioselectivity. The excess of cyclohexanone was recovered and reused, and the reaction could be run and the product isolated without the use of any organic solvent by a proper choice of DES components. The dramatic influence of the reaction media on the reaction rate and stereoselectivity of the process suggests that the intimate architecture of DESs deeply influences the reactivity of different species involved in the catalytic cycle. PMID:28144332

  4. An advanced environment for hybrid modeling of biological systems based on modelica.

    PubMed

    Pross, Sabrina; Bachmann, Bernhard

    2011-01-20

    Biological systems are often very complex so that an appropriate formalism is needed for modeling their behavior. Hybrid Petri Nets, consisting of time-discrete Petri Net elements as well as continuous ones, have proven to be ideal for this task. Therefore, a new Petri Net library was implemented based on the object-oriented modeling language Modelica which allows the modeling of discrete, stochastic and continuous Petri Net elements by differential, algebraic and discrete equations. An appropriate Modelica-tool performs the hybrid simulation with discrete events and the solution of continuous differential equations. A special sub-library contains so-called wrappers for specific reactions to simplify the modeling process. The Modelica-models can be connected to Simulink-models for parameter optimization, sensitivity analysis and stochastic simulation in Matlab. The present paper illustrates the implementation of the Petri Net component models, their usage within the modeling process and the coupling between the Modelica-tool Dymola and Matlab/Simulink. The application is demonstrated by modeling the metabolism of Chinese Hamster Ovary Cells.

  5. Continuous Heterogeneous Photocatalysis in Serial Micro-Batch Reactors.

    PubMed

    Pieber, Bartholomäus; Shalom, Menny; Antonietti, Markus; Seeberger, Peter H; Gilmore, Kerry

    2018-01-29

    Solid reagents, leaching catalysts, and heterogeneous photocatalysts are commonly employed in batch processes but are ill-suited for continuous-flow chemistry. Heterogeneous catalysts for thermal reactions are typically used in packed-bed reactors, which cannot be penetrated by light and thus are not suitable for photocatalytic reactions involving solids. We demonstrate that serial micro-batch reactors (SMBRs) allow for the continuous utilization of solid materials together with liquids and gases in flow. This technology was utilized to develop selective and efficient fluorination reactions using a modified graphitic carbon nitride heterogeneous catalyst instead of costly homogeneous metal polypyridyl complexes. The merger of this inexpensive, recyclable catalyst and the SMBR approach enables sustainable and scalable photocatalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Generalizing Gillespie’s Direct Method to Enable Network-Free Simulations

    DOE PAGES

    Suderman, Ryan T.; Mitra, Eshan David; Lin, Yen Ting; ...

    2018-03-28

    Gillespie’s direct method for stochastic simulation of chemical kinetics is a staple of computational systems biology research. However, the algorithm requires explicit enumeration of all reactions and all chemical species that may arise in the system. In many cases, this is not feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-based modeling frameworks provide a way to exactly represent networks containing such combinatorial complexity, and generalizations of Gillespie’s direct method have been developed as simulation engines for rule-based modeling languages. Here, we provide both a high-level description of the algorithms underlying the simulation engines, termedmore » network-free simulation algorithms, and how they have been applied in systems biology research. We also define a generic rule-based modeling framework and describe a number of technical details required for adapting Gillespie’s direct method for network-free simulation. Lastly, we briefly discuss potential avenues for advancing network-free simulation and the role they continue to play in modeling dynamical systems in biology.« less

  7. Generalizing Gillespie’s Direct Method to Enable Network-Free Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suderman, Ryan T.; Mitra, Eshan David; Lin, Yen Ting

    Gillespie’s direct method for stochastic simulation of chemical kinetics is a staple of computational systems biology research. However, the algorithm requires explicit enumeration of all reactions and all chemical species that may arise in the system. In many cases, this is not feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-based modeling frameworks provide a way to exactly represent networks containing such combinatorial complexity, and generalizations of Gillespie’s direct method have been developed as simulation engines for rule-based modeling languages. Here, we provide both a high-level description of the algorithms underlying the simulation engines, termedmore » network-free simulation algorithms, and how they have been applied in systems biology research. We also define a generic rule-based modeling framework and describe a number of technical details required for adapting Gillespie’s direct method for network-free simulation. Lastly, we briefly discuss potential avenues for advancing network-free simulation and the role they continue to play in modeling dynamical systems in biology.« less

  8. Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide.

    PubMed

    You, Borwen; Lu, Ja-Yu

    2016-08-08

    The feasibility of remote chemical detection is experimentally demonstrated by using a Teflon pipe as a scanning arm in a continuous-terahertz wave sensing and imaging system. Different tablets with distinct mixed ratios of aluminum and polyethylene powders are well distinguished by measuring the power reflectivities of 0.4 THz wave associated with their distinct terahertz refractive indices. Given its refractive index sensitivity and fast response, the reflective terahertz sensing system can be used to real-time trace and quantitatively analyze the ammonium-chloride aerosols produced by the chemical reaction between hydrochloric acid and ammonia vapors. With a tightly focusing terahertz beam spot, the spatial and concentration distributions of the generated chemical product are successfully mapped out by the 1D scan of the flexible pipe probe. In consideration of the responsitivity, power stability, and focused spot size of the system, its detection limit for the ammonium-chloride aerosol is estimated to be approximately 165 nmol/mm2. The reliable and compact terahertz pipe scan system is potentially suitable for practical applications, such as biomedical or industrial fiber endoscopy.

  9. Continuous catalytic decomposition of methane

    NASA Technical Reports Server (NTRS)

    Clifford, J. E.; Hillenbrand, L. J.; Kim, B. C.; Kolic, E. S.; Zupan, J.

    1973-01-01

    Water is conserved by employing sequence of reactions whereby 75 percent of methane from Sabatier reaction is decomposed to solid carbon and hydrogen; hydrogen is then separated from residual methane and utilized in usual Sabatier reaction to reduce remaining metabolic carbon dioxide.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D.

    Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamicmore » computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.« less

  11. Factors that condition the spontaneous reporting of adverse drug reactions among nurses: an integrative review.

    PubMed

    De Angelis, Alessia; Colaceci, Sofia; Giusti, Angela; Vellone, Ercole; Alvaro, Rosaria

    2016-03-01

    To describe and synthesise previous research on factors conditioning the spontaneous reporting of adverse drug reactions among nurses. Spontaneous reports of adverse drug reactions by health-care providers, are a main instrument for the continuous evaluation of the risk-benefit ratio of every drug. Under-reporting of adverse drug reactions by all health-care providers, in particular by nurses, is a major limitation to this system. An integrated review of the literature was conducted using MEDLINE, CINAHL, Embase, Scopus databases and Google Scholar. After evaluation for appropriateness related to inclusion/exclusion criteria, 16 studies were included in the final analysis and synthesis. Two factors emerged from the study: (1) intrinsic factors related to nurses' knowledge and attitudes; (2) extrinsic factors related to nurses' interaction with health-care organisations and to the relationship between nurses and physicians. Nurses' attitudes that hinder reporting include ignorance, insecurity, fear and lethargy. Nurses are not fully aware of their role in adverse drug reaction reporting. Nurses must acquire greater knowledge to implement specific skills into their daily clinical practice. To improve nurses' reporting of adverse drug reactions, it is necessary to develop management approaches that modify both intrinsic and extrinsic factors. © 2015 John Wiley & Sons Ltd.

  12. Computationally guided discovery of a reactive, hydrophilic trans-5-oxocene dienophile for bioorthogonal labeling† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ob01707c

    PubMed Central

    Lambert, William D.; Scinto, Samuel L.; Dmitrenko, Olga; Boyd, Samantha J.; Magboo, Ronald; Mehl, Ryan A.

    2017-01-01

    The use of organic chemistry principles and prediction techniques has enabled the development of new bioorthogonal reactions. As this “toolbox” expands to include new reaction manifolds and orthogonal reaction pairings, the continued development of existing reactions remains an important objective. This is particularly important in cellular imaging, where non-specific background fluorescence has been linked to the hydrophobicity of the bioorthogonal moiety. Here we report that trans-5-oxocene (oxoTCO) displays enhanced reactivity and hydrophilicity compared to trans-cyclooctene (TCO) in the tetrazine ligation reaction. Aided by ab initio calculations we show that the insertion of a single oxygen atom into the trans-cyclooctene (TCO) ring system is sufficient to impart aqueous solubility and also results in significant rate acceleration by increasing angle strain. We demonstrate the rapid and quantitative cycloaddition of oxoTCO using a water-soluble tetrazine derivative and a protein substrate containing a site-specific genetically encoded tetrazine moiety both in vitro and in vivo. We anticipate that oxoTCO will find use in studies where hydrophilicity and fast bioconjugation kinetics are paramount. PMID:28752889

  13. In situ imaging of the soldering reactions in nanoscale Cu/Sn/Cu and Sn/Cu/Sn diffusion couples

    NASA Astrophysics Data System (ADS)

    Yin, Qiyue; Gao, Fan; Gu, Zhiyong; Wang, Jirui; Stach, Eric A.; Zhou, Guangwen

    2018-01-01

    The soldering reactions of three-segmented Sn/Cu/Sn and Cu/Sn/Cu diffusion couples are monitored by in-situ transmission electron microscopy to reveal the metallurgical reaction mechanism and the associated phase transformation pathway. For Sn/Cu/Sn diffusion couples, there is no ɛ-Cu3Sn formation due to the relatively insufficient Cu as compared to Sn. Kirkendall voids form initially in the Cu segment and then disappear due to the volume expansion associated with the continued intermetallic compound (IMC) formation as the reaction progresses. The incoming Sn atoms react with Cu to form η-Cu6Sn5, and the continuous reaction then transforms the entire nanowire to η-Cu6Sn5 grains with remaining Sn. With continued heating slightly above the melting point of Sn, an Sn-rich liquid phase forms between η-Cu6Sn5 grains. By contrast, the reaction in the Cu/Sn/Cu diffusion couples results in the intermetallic phases of both Cu3Sn and Cu6Sn5 and the development of Cu6Sn5 bulges on Cu3Sn grains. Kirkendall voids form in the two Cu segments, which grow and eventually break the nanowire into multiple segments.

  14. Synthesis of Biodiesel in Batch and Packed-Bed Reactors Using Powdered and Granular Sugar Catalyst

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Lim, P. M.; Balan, W. S.; Yaser, A. Z.; Chong, K. P.

    2017-06-01

    Increasing world production of palm oil warrants effective utilization of its waste. In particular, conversion of waste cooking oil into biodiesel has obtained global interest because of renewable energy need and reduction of CO2 emission. In this study, oleic acid used as a model compound for waste cooking oil conversion using esterification reaction catalysed by sugar catalyst (SC) in powdered (P-SC) and granular (G-SC) forms. The catalysts were synthesized via incomplete carbonization of D-glucose followed by functionalization with concentrated sulphuric acid. Catalysts characterizations were done for their physical and chemical properties using modern tools. Batch and packed-bed reactor systems were used to evaluate the reactivity of the catalysts. The results showed that G-SC had slightly higher total acidity and more porous than P-SC. The experimental conditions for batch reaction were temperature of 60°C, molar ratio of 1:20 (Oleic Acid:Methanol) and 2 wt. catalyst with respect to oleic acid. The results showed the maximum oleic acid conversion using G-SC and P-SC were 52 and 48, respectively. Whereas, the continuous reaction with varying feed flow rate as a function of retention time was studied by using 3 g of P-SC in 60 °C and 1:20 molar ratio in a packed-bed reactor. The results showed that a longer retention time which was 6.48 min and feed flow rate 1.38 ml/min, achieved higher average conversion of 9.9 and decreased with further increasing flow rate. G-SC showed a better average conversion of 10.8 at lowest feed flow rate of 1.38 ml/min in continuous reaction experiments. In a broader perspective, large scale continuous biodiesel production is feasible using granular over powdered catalyst mainly due to it lower pressure drop.

  15. Chromatographic separation and continuously referenced, on-line monitoring of creatine kinase isoenzymes by use of an immobilized-enzyme microreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, M.S.; Bostick, W.D.; Dinsmore, S.R.

    1978-08-01

    We describe a new concept in continuously referenced monitoring of the isoenzyme activities of creatine kinase (EC 2.7.3.2) after liquid-chromatographic separation. After separation on a diethylaminoethyl-Sephacel column, the three isoenzymes of creatine kinase undergo a series of coupled enzyme reactions, ultimately resulting in the formation of ultraviolet-detectable NADPH. A major advantage of this detection system is the immobilized-enzyme microreactor (2 x 17 mm), which may be removed and stored refrigerated when not in use. A split-stream configuration allows self-blanking of endogenous ultraviolet-absorbing constituents in authentic sera samples, which would otherwise make definitive diagnosis and quantitation difficult or impossible. This detectionmore » system is applicable to the automated analysis of creatine kinase isoenzymes in the clinical laboratory.« less

  16. Studying Fast Reactions: Construction and Use of a Low-Cost Continuous-Flow Instrument

    ERIC Educational Resources Information Center

    Bisson, Patrick J.; Whitten, James E.

    2006-01-01

    The construction and use of a low-cost continuous-flow instrument for measuring the kinetics of fast reaction which include the use of an light emitting diode light source, a photodiode-on-a-chip detector, and a position sensor is demonstrated. The instrument is suitable for the physical chemistry laboratory and could be used to study the kinetics…

  17. APPARATUS FOR THE PRODUCTION OF LITHIUM METAL

    DOEpatents

    Baker, P.S.; Duncan, F.R.; Greene, H.B.

    1961-08-22

    Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

  18. Highly Productive and Enantioselective Enzyme Catalysis under Continuous Supported Liquid-Liquid Conditions Using a Hybrid Monolithic Bioreactor.

    PubMed

    Sandig, Bernhard; Buchmeiser, Michael R

    2016-10-20

    Enzyme-containing ionic liquids (ILs) were immobilized in cellulose-2.5-acetate microbeads particles embedded in a porous monolithic polyurethane matrix. This bioreactor was used under continuous liquid-liquid conditions by dissolving the substrates in a nonpolar organic phase immiscible with the ILs, thereby creating a biphasic system. Lipases (candida antarctica lipase B, CALB, candida rugosa lipase, CRL) were used to catalyze the enantioselective transesterification of racemic (R,S)-1-phenylethanol with vinyl butyrate and vinyl acetate, the esterification of (+/-)-2-isopropyl-5-methylcyclohexanol with propionic anhydride and the amidation of (R,S)-1-phenylethylamine with ethyl methoxyacetate. With this unique setup, very high productivities, that is, turnover numbers (TONs) up to 5.1×10 6 and space-time yields (STYs) up to 28 g product L -1  h -1 , exceeding the corresponding values for batch-type reactions by a factor of 3100 and 40, respectively, were achieved while maintaining or even enhancing enantioselectivity compared to batch reactions via kinetic resolution. To our best knowledge, this is the first continuously operated bioreactor using supported liquid-liquid conditions that shows these features in the synthesis of chiral esters and amides. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Continuous variables logic via coupled automata using a DNAzyme cascade with feedback† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc03892a Click here for additional data file.

    PubMed Central

    Lilienthal, S.; Klein, M.; Orbach, R.; Willner, I.; Remacle, F.

    2017-01-01

    The concentration of molecules can be changed by chemical reactions and thereby offer a continuous readout. Yet computer architecture is cast in textbooks in terms of binary valued, Boolean variables. To enable reactive chemical systems to compute we show how, using the Cox interpretation of probability theory, one can transcribe the equations of chemical kinetics as a sequence of coupled logic gates operating on continuous variables. It is discussed how the distinct chemical identity of a molecule allows us to create a common language for chemical kinetics and Boolean logic. Specifically, the logic AND operation is shown to be equivalent to a bimolecular process. The logic XOR operation represents chemical processes that take place concurrently. The values of the rate constants enter the logic scheme as inputs. By designing a reaction scheme with a feedback we endow the logic gates with a built in memory because their output then depends on the input and also on the present state of the system. Technically such a logic machine is an automaton. We report an experimental realization of three such coupled automata using a DNAzyme multilayer signaling cascade. A simple model verifies analytically that our experimental scheme provides an integrator generating a power series that is third order in time. The model identifies two parameters that govern the kinetics and shows how the initial concentrations of the substrates are the coefficients in the power series. PMID:28507669

  20. Neuman systems model-based research: an integrative review project.

    PubMed

    Fawcett, J; Giangrande, S K

    2001-07-01

    The project integrated Neuman systems model-based research literature. Two hundred published studies were located. This article is limited to the 59 full journal articles and 3 book chapters identified. A total of 37% focused on prevention interventions; 21% on perception of stressors; and 10% on stressor reactions. Only 50% of the reports explicitly linked the model with the study variables, and 61% did not include conclusions regarding model utility or credibility. No programs of research were identified. Academic courses and continuing education workshops are needed to help researchers design programs of Neuman systems model-based research and better explicate linkages between the model and the research.

  1. Modelling and performance assessment of an antenna-control system

    NASA Astrophysics Data System (ADS)

    Burrows, C. R.

    1982-03-01

    An assessment is made of a surveillance-radar control system designed to provide a sector-search capability and continuous control of antenna speed without unwanted torque-reaction on the supporting mast. These objectives are attained by utilizing regenerative braking, and control is exercised through Perbury CVTs. A detailed analysis of the system is given. The models derived for the Perbury CVTs supplement the qualitative data contained in earlier papers. Some results from a computer simulation are presented. Although the paper is concerned with a particular problem, the analysis of the CVTs, and the concept of using energy transfer to control large inertial loads, are of more general interest.

  2. [Management of adverse drug effects].

    PubMed

    Schlienger, R G

    2000-09-01

    Adverse drug reactions (ADRs) are still considered one of the main problems of drug therapy. ADRs are associated with considerable morbidity, mortality, decreased compliance and therapeutic success as well as high direct and indirect medical costs. Several considerations have to come into play when managing a potential ADR. It is critical to establish an accurate clinical diagnosis of the adverse event. Combining information about drug exposure together with considering other possible causes of the reaction is crucial to establish a causal relationship between the reaction and the suspected drug. Identification of the underlying pathogenesis of an ADR together with the severity of the reaction will have profound implications on continuation of drug therapy after an ADR. Since spontaneous reports about ADRs are a key stone of a functioning post-marketing surveillance system and therefore play a key role in improving drug safety, health care professionals are highly encouraged to report ADRs to a local or national organization. However, because the majority of ADRs is dose-dependent and therefore preventable, individualization of pharmacotherapy may have a major impact on reducing such events.

  3. Auxiliary Propulsion Activities in Support of NASA's Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Best, Philip J.; Unger, Ronald J.; Waits, David A.

    2005-01-01

    The Space Launch Initiative (SLI) procurement mechanism NRA8-30 initiated the Auxiliary Propulsion System/Main Propulsion System (APS/MPS) Project in 2001 to address technology gaps and development risks for non-toxic and cryogenic propellants for auxiliary propulsion applications. These applications include reaction control and orbital maneuvering engines, and storage, pressure control, and transfer technologies associated with on-orbit maintenance of cryogens. The project has successfully evolved over several years in response to changing requirements for re-usable launch vehicle technologies, general launch technology improvements, and, most recently, exploration technologies. Lessons learned based on actual hardware performance have also played a part in the project evolution to focus now on those technologies deemed specifically relevant to the Exploration Initiative. Formal relevance reviews held in the spring of 2004 resulted in authority for continuation of the Auxiliary Propulsion Project through Fiscal Year 2005 (FY05), and provided for a direct reporting path to the Exploration Systems Mission Directorate. The tasks determined to be relevant under the project were: continuation of the development, fabrication, and delivery of three 870 lbf thrust prototype LOX/ethanol reaction control engines; the fabrication, assembly, engine integration and testing of the Auxiliary Propulsion Test Bed at White Sands Test Facility; and the completion of FY04 cryogenic fluid management component and subsystem development tasks (mass gauging, pressure control, and liquid acquisition elements). This paper presents an overview of those tasks, their scope, expectations, and results to-date as carried forward into the Exploration Initiative.

  4. Active pharmaceutical ingredient (API) production involving continuous processes--a process system engineering (PSE)-assisted design framework.

    PubMed

    Cervera-Padrell, Albert E; Skovby, Tommy; Kiil, Søren; Gani, Rafiqul; Gernaey, Krist V

    2012-10-01

    A systematic framework is proposed for the design of continuous pharmaceutical manufacturing processes. Specifically, the design framework focuses on organic chemistry based, active pharmaceutical ingredient (API) synthetic processes, but could potentially be extended to biocatalytic and fermentation-based products. The method exploits the synergic combination of continuous flow technologies (e.g., microfluidic techniques) and process systems engineering (PSE) methods and tools for faster process design and increased process understanding throughout the whole drug product and process development cycle. The design framework structures the many different and challenging design problems (e.g., solvent selection, reactor design, and design of separation and purification operations), driving the user from the initial drug discovery steps--where process knowledge is very limited--toward the detailed design and analysis. Examples from the literature of PSE methods and tools applied to pharmaceutical process design and novel pharmaceutical production technologies are provided along the text, assisting in the accumulation and interpretation of process knowledge. Different criteria are suggested for the selection of batch and continuous processes so that the whole design results in low capital and operational costs as well as low environmental footprint. The design framework has been applied to the retrofit of an existing batch-wise process used by H. Lundbeck A/S to produce an API: zuclopenthixol. Some of its batch operations were successfully converted into continuous mode, obtaining higher yields that allowed a significant simplification of the whole process. The material and environmental footprint of the process--evaluated through the process mass intensity index, that is, kg of material used per kg of product--was reduced to half of its initial value, with potential for further reduction. The case-study includes reaction steps typically used by the pharmaceutical industry featuring different characteristic reaction times, as well as L-L separation and distillation-based solvent exchange steps, and thus constitutes a good example of how the design framework can be useful to efficiently design novel or already existing API manufacturing processes taking advantage of continuous processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Perspectives for the industrial enzymatic production of glycosides.

    PubMed

    de Roode, B Mattheus; Franssen, Maurice C R; van der Padt, Albert; Boom, Remko M

    2003-01-01

    Glycosides are of commercial interest for industry in general and specifically for the pharmaceutical and food industry. Currently chemical preparation of glycosides will not meet EC food regulations, and therefore chemical preparation of glycosides is not applicable in the food industry. Thus, enzyme-catalyzed reactions are a good alternative. However, until now the low yields obtained by enzymatic methods prevent the production of glycosides on a commercial scale. Therefore, high yields should be established by a combination of optimum reaction conditions and continuous removal of the product. Unfortunately, a bioreactor for the commercial scale production of glycosides is not available. The aim of this article is to discuss the literature with respect to enzymatic production of glycosides and the design of an industrially viable bioreactor system.

  6. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    PubMed Central

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  7. Aeromedical Factors in Aviator Fatigue, Crew Work/Rest Schedules and Extended Flight Operations: An Annotated Bibliography.

    DTIC Science & Technology

    1981-01-01

    complex is a common psychological reaction to stress, which causes a chronic overactivity of the higher brain centers and the vagal-parasympathetic...continuous military operations in which other complex man-machine systems were being used. In addition, we found great interest in multidisciplinary...2. Adams, J. T. 1967. Fatigue in helicopter aircrews in combat. In: Aeromedical aspects of helicopter operations in the tac- tical situation

  8. A Study of Chemical Reactions and Interactions in Microemulsion and Surfactant Phases.

    DTIC Science & Technology

    1982-07-19

    purpose of this study was to continue in depth investigations of the utility of microemulsion systems for studies of interactions at microcopic oil...which contain one or more amphiphilic compounds and are mechanically stable. However, the crux of the problem concerning the definition of a...microemulsion is a "persistent translucent combination of oil and water that may contain electrolytes and one or more amphiphilic compounds ". The definition

  9. Continuous process for singlet oxygenation of hydrophobic substrates in microemulsion using a pervaporation membrane.

    PubMed

    Caron, Laurent; Nardello, Véronique; Mugge, José; Hoving, Erik; Alsters, Paul L; Aubry, Jean-Marie

    2005-02-15

    Chemically generated singlet oxygen (1O2, 1Deltag) is able to oxidize a great deal of hydrophobic substrates from molybdate-catalyzed hydrogen peroxide decomposition, provided a suitable reaction medium such as a microemulsion system is used. However, high substrate concentrations or poorly reactive organics require large amounts of H2O2 that generate high amounts of water and thus destabilize the system. We report results obtained on combining dark singlet oxygenation of hydrophobic substrates in microemulsions with a pervaporation membrane process. To avoid composition alterations after addition of H2O2 during the peroxidation, the reaction mixture circulates through a ceramic membrane module that enables a partial and selective dewatering of the microemulsion. Optimization phase diagrams of sodium molybdate/water/alcohol/anionic surfactant/organic solvent have been elaborated to maximize the catalyst concentration and therefore the reaction rate. The membrane selectivity towards the mixture constituents has been investigated showing that a high retention is observed for the catalyst, for organic solvents and hydrophobic substrates, but not for n-propanol (cosurfactant) and water. The efficiency of such a process is illustrated with the peroxidation of a poorly reactive substrate, viz., beta-pinene.

  10. Highly efficient reversible addition-fragmentation chain-transfer polymerization in ethanol/water via flow chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Piaoran; Cao, Peng -Fei; Su, Zhe

    Here, utilization of a flow reactor under high pressure allows highly efficient polymer synthesis via reversible addition–fragmentation chain-transfer (RAFT) polymerization in an aqueous system. Compared with the batch reaction, the flow reactor allows the RAFT polymerization to be performed in a high-efficiency manner at the same temperature. The adjustable pressure of the system allows further elevation of the reaction temperature and hence faster polymerization. Other reaction parameters, such as flow rate and initiator concentration, were also well studied to tune the monomer conversion and the molar mass dispersity (Ð) of the obtained polymers. Gel permeation chromatography, nuclear magnetic resonance (NMR),more » and Fourier transform infrared spectroscopies (FTIR) were utilized to monitor the polymerization process. With the initiator concentration of 0.15 mmol L –1, polymerization of poly(ethylene glycol) methyl ethermethacrylate with monomer conversion of 52% at 100 °C under 73 bar can be achieved within 40 min with narrow molar mass dispersity (D) Ð (<1.25). The strategy developed here provides a method to produce well-defined polymers via RAFT polymerization with high efficiency in a continuous manner.« less

  11. Hybrid RTM process: Monitoring and processing of composites based on reactive thermoplastic systems

    NASA Astrophysics Data System (ADS)

    Dkier, Mohamed; Lamnawar, Khalid; Maazouz, Abderrahim

    2017-10-01

    In this work, hybrid process coupling "Reactive Extrusion" and "Resin Transfer Molding" machine (T-ERTM) equipped with an instrumented mold was designed and developed. Polyamides model matrix according to two kinds of polymerizations were studied as well anionic and chain extension reactions. For the former, different ratios of catalyst and activator were investigated. For the latter, various formulations of prepolymer with chain extender (CA) were studied at different stoichiometry ratios and temperatures. Since that both reaction kinetics are very fast to be monitored at short times by usual technics, the chemo-rheological evolutions were firstly studied ex-situ by coupling rheology with FTIR and dielectric spectroscopy (DRS). Secondly, the T-ERTM process with an "instrumented mold" was developed with specific dielectric sensors in order to in-situ track viscosity and reaction evolution. The in-situ results corroborate the ex-situ ones aforementioned. Overall, a processing window was obtained for each reactive system to ensure a good preform impregnation for the manufacturing of complex and continuous glass fiber-reinforced parts. Herein, the Time-Temperature-Transformation-equivalent diagrams were established to obtain Thermoplastic composites with tailored mechanical and physical properties.

  12. A wheat embryo cell-free protein synthesis system not requiring an exogenous supply of GTP.

    PubMed

    Koga, Hirohisa; Misawa, Satoru; Shibui, Tatsuro

    2009-01-01

    Most in vitro protein synthesis systems require a supply of GTP for the formation of translation initiation complexes, with two GTP molecules per amino acid needed as an energy source for a peptide elongation reaction. In order to optimize protein synthesis reactions in a continuous-flow wheat embryo cell-free system, we have examined the influence of adding GTP and found that the system does not require any supply of GTP. We report here the preparation of a wheat embryo extract from which endogenous GTP was removed by gel filtration, and the influence of adding GTP to the system on protein synthesis reactions. Using Green Fluorescent Protein (GFP) as a reporter, higher levels of production were observed at lower concentrations of GTP, with the optimal level of production obtained with no supply of GTP. A HPLC-based analysis of the extract and the translation mixture containing only ATP as an energy source revealed that GTP was not detectable in the extract, however, 35 microM of GTP was found in the translation mixture. This result suggests that GTP could be generated from other compounds, such as GDP and GMP, using ATP. A similar experiment with a C-terminally truncated form of human protein tyrosine phosphatase 1B (hPTP1B(1-320)) gave almost the same result. The wheat embryo cell-free translation system worked most efficiently without exogenous GTP, producing 3.5 mg/mL of translation mixture over a 48-h period at 26 degrees C. 2009 American Institute of Chemical Engineers Biotechnol.

  13. Using PAT to accelerate the transition to continuous API manufacturing.

    PubMed

    Gouveia, Francisca F; Rahbek, Jesper P; Mortensen, Asmus R; Pedersen, Mette T; Felizardo, Pedro M; Bro, Rasmus; Mealy, Michael J

    2017-01-01

    Significant improvements can be realized by converting conventional batch processes into continuous ones. The main drivers include reduction of cost and waste, increased safety, and simpler scale-up and tech transfer activities. Re-designing the process layout offers the opportunity to incorporate a set of process analytical technologies (PAT) embraced in the Quality-by-Design (QbD) framework. These tools are used for process state estimation, providing enhanced understanding of the underlying variability in the process impacting quality and yield. This work describes a road map for identifying the best technology to speed-up the development of continuous processes while providing the basis for developing analytical methods for monitoring and controlling the continuous full-scale reaction. The suitability of in-line Raman, FT-infrared (FT-IR), and near-infrared (NIR) spectroscopy for real-time process monitoring was investigated in the production of 1-bromo-2-iodobenzene. The synthesis consists of three consecutive reaction steps including the formation of an unstable diazonium salt intermediate, which is critical to secure high yield and avoid formation of by-products. All spectroscopic methods were able to capture critical information related to the accumulation of the intermediate with very similar accuracy. NIR spectroscopy proved to be satisfactory in terms of performance, ease of installation, full-scale transferability, and stability to very adverse process conditions. As such, in-line NIR was selected to monitor the continuous full-scale production. The quantitative method was developed against theoretical concentration values of the intermediate since representative sampling for off-line reference analysis cannot be achieved. The rapid and reliable analytical system allowed the following: speeding up the design of the continuous process and a better understanding of the manufacturing requirements to ensure optimal yield and avoid unreacted raw materials and by-products in the continuous reactor effluent. Graphical Abstract Using PAT to accelerate the transition to continuous API manufacturing.

  14. Temperature-Dependent Kinetic Prediction for Reactions Described by Isothermal Mathematics

    DOE PAGES

    Dinh, L. N.; Sun, T. C.; McLean, W.

    2016-09-12

    Most kinetic models are expressed in isothermal mathematics. In addition, this may lead unaware scientists either to the misconception that classical isothermal kinetic models cannot be used for any chemical process in an environment with a time-dependent temperature profile or, even worse, to a misuse of them. In reality, classical isothermal models can be employed to make kinetic predictions for reactions in environments with time-dependent temperature profiles, provided that there is a continuity/conservation in the reaction extent at every temperature–time step. In this article, fundamental analyses, illustrations, guiding tables, and examples are given to help the interested readers using eithermore » conventional isothermal reacted fraction curves or rate equations to make proper kinetic predictions for chemical reactions in environments with temperature profiles that vary, even arbitrarily, with time simply by the requirement of continuity/conservation of reaction extent whenever there is an external temperature change.« less

  15. Controlling Nitrosamines, Nitramines, and Amines in Amine-Based CO₂ Capture Systems with Continuous Ultraviolet and Ozone Treatment of Washwater.

    PubMed

    Dai, Ning; Mitch, William A

    2015-07-21

    Formation of nitrosamines and nitramines from reactions between flue gas NOx and the amines used in CO2 capture units has arisen as a significant concern. Washwater scrubbers can capture nitrosamines and nitramines. They can also capture amines, preventing formation of nitrosamines and nitramines downwind by amine reactions with ambient NOx. The continuous application of UV alone, or a combination of UV and ozone to the return line of a washwater treatment unit was evaluated to control the accumulation of nitrosamines, nitramines and amines in a laboratory-scale washwater unit. With model secondary amine solvents ranging from nonvolatile diethanolamine to volatile morpholine, application of 272-537 mJ/cm(2) UV incident fluence alone reduced the accumulation of nitrosamines and nitramines by approximately an order of magnitude. Modeling indicated that the gains achieved by UV treatment should increase over time, because UV treatment converts the time dependence of nitrosamine accumulation from a quadratic to a linear function. Ozone (21 mg/L) maintained low steady-state concentrations of amines in the washwater. While modeling indicated that more than 80% of nitrosamine accumulation in the washwater was associated with reaction of washwater amines with residual NOx, a reduction in nitrosamine accumulation rates due to ozone oxidation of amines was not fully realized because the ozonation products of amines reduced nitrosamine photolysis rates by competing for photons.

  16. Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for integrated multistep synthesis in flow chemistry.

    PubMed

    Hiebler, Katharina; Lichtenegger, Georg J; Maier, Manuel C; Park, Eun Sung; Gonzales-Groom, Renie; Binks, Bernard P; Gruber-Woelfler, Heidrun

    2018-01-01

    Within the "compartmentalised smart factory" approach of the ONE-FLOW project the implementation of different catalysts in "compartments" provided by Pickering emulsions and their application in continuous flow is targeted. We present here the development of heterogeneous Pd catalysts that are ready to be used in combination with biocatalysts for catalytic cascade synthesis of active pharmaceutical ingredients (APIs). In particular, we focus on the application of the catalytic systems for Suzuki-Miyaura cross-coupling reactions, which is the key step in the synthesis of the targeted APIs valsartan and sacubitril. An immobilised enzyme will accomplish the final product formation via hydrolysis. In order to create a large interfacial area for the catalytic reactions and to keep the reagents separated until required, the catalyst particles are used to stabilise Pickering emulsions of oil and water. A set of Ce-Sn-Pd oxides with the molecular formula Ce 0.99- x Sn x Pd 0.01 O 2-δ ( x = 0-0.99) has been prepared utilising a simple single-step solution combustion method. The high applicability of the catalysts for different functional groups and their minimal leaching behaviour is demonstrated with various Suzuki-Miyaura cross-coupling reactions in batch as well as in continuous flow employing the so-called "plug & play reactor". Finally, we demonstrate the use of these particles as the sole emulsifier of oil-water emulsions for a range of oils.

  17. A collision history-based approach to Sensitivity/Perturbation calculations in the continuous energy Monte Carlo code SERPENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuseppe Palmiotti

    In this work, the implementation of a collision history-based approach to sensitivity/perturbation calculations in the Monte Carlo code SERPENT is discussed. The proposed methods allow the calculation of the eects of nuclear data perturbation on several response functions: the eective multiplication factor, reaction rate ratios and bilinear ratios (e.g., eective kinetics parameters). SERPENT results are compared to ERANOS and TSUNAMI Generalized Perturbation Theory calculations for two fast metallic systems and for a PWR pin-cell benchmark. New methods for the calculation of sensitivities to angular scattering distributions are also presented, which adopts fully continuous (in energy and angle) Monte Carlo estimators.

  18. XMM-Newton mission operations - ready for its third decade

    NASA Astrophysics Data System (ADS)

    Kirsch, M.; Finn, T.; Godard, T.; v. Krusenstiern, N.; Pfeil, N.; Salt, D.; Toma, L.; Webert, D.; Weissmann, U.

    2017-10-01

    The XMM-Newton X-ray space observatory is approaching its third decade of operations. The spacecraft and payload are operating without major degradation and scientific demand is continuously very high. With the change to a new way of using the Attitude and Orbit control System in 2013 the fuel consumption was reduced by a factor of two, additionally this has reduced stress on the reaction wheels. The challenge for the next decade is now to ensure that the saved fuel is available for continuous usage. We will describe the process of the so called 'fuel migration and replenishment' activities needed to keep the spacecraft operational potentially up to 2029+. We provide as well an overall health status of the mission, the evolution of the ground segment and concepts on streamlining mission operations with continued high safety requirements using automation tools.

  19. Identification of the structure parameters using short-time non-stationary stochastic excitation

    NASA Astrophysics Data System (ADS)

    Jarczewska, Kamila; Koszela, Piotr; Śniady, PaweŁ; Korzec, Aleksandra

    2011-07-01

    In this paper, we propose an approach to the flexural stiffness or eigenvalue frequency identification of a linear structure using a non-stationary stochastic excitation process. The idea of the proposed approach lies within time domain input-output methods. The proposed method is based on transforming the dynamical problem into a static one by integrating the input and the output signals. The output signal is the structure reaction, i.e. structure displacements due to the short-time, irregular load of random type. The systems with single and multiple degrees of freedom, as well as continuous systems are considered.

  20. Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon.

    PubMed

    Tsuboi, Yasuyuki; Shimizu, Ryosuke; Shoji, Tatsuya; Kitamura, Noboru

    2009-09-09

    We demonstrate that a photochromic reaction can be driven by irradiation from a weak, near-infrared continuous-wave (NIR-CW) laser light. A two-photon ring-opening photochromic reaction of a diarylethene (DE) derivative can be induced by irradiation with a NIR-CW laser light (lambda = 808 nm). An ultrathin polymer film doped with DE in its closed form was coated onto a gold-nanoparticle-integrated glass substrate. Upon irradiation of the sample with a CW laser at low fluence (0.1-4.0 W/cm(2)), we could clearly observe bleaching of the DE (ring-opening reaction). Following the IR irradiation, the bleached absorption could be reversibly recovered by applying UV irradiation (ring-closing reaction). We verified that the yield of the photochromic ring-opening reaction of the DE was proportional to the square of the irradiation fluence. The origin of this NIR-CW-induced two-photon photochromic reaction is an "enhancing effect" that acts on the electromagnetic field (localized surface plasmon) of the gold nanoparticles. The DE interacts with the surface plasmon and receives energy from two photons, which excites it to a state from which the ring-opening reaction can be initiated.

  1. 40 CFR 161.162 - Description of production process.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicant must submit information on the production (reaction) processes used to produce the active... continuous (a single reaction process from starting materials to active ingredient), but is accomplished in...) A flow chart of the chemical equations of each intended reaction occurring at each step of the...

  2. 40 CFR 161.162 - Description of production process.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicant must submit information on the production (reaction) processes used to produce the active... continuous (a single reaction process from starting materials to active ingredient), but is accomplished in...) A flow chart of the chemical equations of each intended reaction occurring at each step of the...

  3. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.

    PubMed

    Han, Wei; Hu, Yunyi; Li, Shiyi; Li, Feifei; Tang, Junhong

    2016-10-01

    Waste pastry was hydrolyzed by glucoamylase and protease which were obtained from solid state fermentation of Aspergillus awamori and Aspergillus oryzae to produce waste pastry hydrolysate. Then, the effects of hydraulic retention times (HRTs) (4-12h) on hydrogen production rate (HPR) in the suspended microbial growth system (continuous stirred tank reactor, CSTR) and attached microbial growth system (continuous mixed immobilized sludge reactor, CMISR) from waste pastry hydrolysate were investigated. The maximum HPRs of CSTR (201.8mL/(h·L)) and CMISR (255.3mL/(h·L)) were obtained at HRT of 6h and 4h, respectively. The first-order reaction could be used to describe the enzymatic hydrolysis of waste pastry. The carbon content of the waste pastry remained 22.8% in the undigested waste pastry and consumed 77.2% for carbon dioxide and soluble microbial products. To our knowledge, this is the first study which reports biohydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Forward Analyses of Dehydration Reactions in Mafic Rocks Along the P-T Trajectories of the Subducting Slabs

    NASA Astrophysics Data System (ADS)

    Kuwatani, T.; Okamoto, A.; Toriumi, M.

    2005-12-01

    Fluids in the subduction zone play an important role in magmatism, metamorphism, and mechanical processes involving seismic activity. Additionally, recent geophysical researches found low-frequency tremors which may be related to the movement of fluid (Obara, 2002) and a zone of high Poisson_fs ratio which reflects high pore fluid pressure (Kodaira et al.,2004) in the Southwest Japan fore-arc. It is widely accepted that these fluids are supplied by the dehydration of hydrous metamorphic minerals in the subducting oceanic plate. Although many previous studies attempted to estimate the water content of the subducting oceanic crust experimentally and theoretically (e.g., Schmidt and Poli, 1998; Hacker et al., 2003), there have been no studies which quantify the continuous dehydration reactions in detail. The aim of this study is to quantify the progress of the continuous dehydration reactions of mafic rocks in the condition of greenschist facies, corresponding to low-intermediate depth (10-50km) of warm subduction zone. We use the differential thermodynamics (Spear 1993) which include mass balance to predict the continuous metamorphic reaction history of mafic rocks along the P-T trajectory of the subducting slab. With fixed bulk chemical composition the thermodynamic system is divariant, as specified in Duhem_fs theorem. In differential thermodynamics, applying a series of changes in pressure and temperature (ΔP and ΔT, respectively) from initial conditions (P0, T0, X0s, M0s), we can trace ΔXs and ΔMs, that is, the progress (history) of the metamorphic reactions along the arbitrary P-T trajectory (Thermodynamic forward modeling). According to Okamoto and Toriumi, 2001, we modeled the greenschist/ blueschist/ (epidote -) amphibolite assemblage of mafic rocks, which consist of the following phases: Amphibole ± Epidote ± Chlorite + Plagioclase + Quartz + Fluid (H2O), in the system of Na2O - CaO - MgO - FeO - Fe2O3 - Al2O3 - SiO2 - H2O. The reference compositions and modes of minerals were assumed according to the natural sample of greenschist which has MORB-like bulk composition (Hacker et al. 2003). The reference temperature and pressure were set to be 300°C, 0.3GPa. Calculations were performed along the P-T paths of the Southwest Japan (4MPa/°C) and the Cape Mendocino (the North California, 2MPa/°C) predicted by Yamasaki and Seno, 2003. As a result, the water production rates have the peak depths at the boundary between the greenschist facies and the epidote-amphibolite facies in the Southwest Japan, and at the boundary between the greenschist facies and the amphibolite facies in the Cape Mendocino, respectively. Chlorite decomposition is the main dehydration reaction. These peak depths correspond to the zone of low frequency tremors, high Poisson_fs ratio and active seismicity (30-50km) in the Southwest Japan, and active seismicity (10-20km) in the Cape Mendocino, respectively.

  5. A living mesoscopic cellular automaton made of skin scales.

    PubMed

    Manukyan, Liana; Montandon, Sophie A; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C

    2017-04-12

    In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

  6. Management of the diffusion of 4-methylumbelliferone across phases in microdroplet-based systems for in vitro protein evolution.

    PubMed

    Wu, Nan; Courtois, Fabienne; Zhu, Yonggang; Oakeshott, John; Easton, Chris; Abell, Chris

    2010-09-01

    Fluorongenic reagents based on 4-methylumbelliferone (4-MU) have been widely used for the detection of phosphatase, sulfatase, esterase, lipase and glycosidase activities in conventionally formatted enzyme assay systems. However, the sensitivity of assays based on these substrates is also potentially very useful in the microdroplet formats now being developed for high throughput in vitro evolution experiments. In this article, we report the investigation of diffusion of 4-MU as a model dye from water-in-oil droplets and the internal aqueous phase of water-in-oil-in-water droplets in microfluidics. The effect of BSA in the aqueous phase on the diffusion of 4-MU is also discussed. Based on these results, we provided here proof-of-concept of the reaction of the enzyme OpdA with the substrate coumaphos in water-in-oil-in-water droplets. In this double-emulsion system, the reaction of OpdA and coumaphos was achieved by allowing coumaphos to diffuse from the continuous aqueous phase across the oil phase into the internal aqueous droplets.

  7. A living mesoscopic cellular automaton made of skin scales

    NASA Astrophysics Data System (ADS)

    Manukyan, Liana; Montandon, Sophie A.; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C.

    2017-04-01

    In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

  8. Chromatographic separation and continuously referenced, on-line monitoring of creatine kinase isoenzymes by use of an immobilized-enzyme microreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, M.S.; Bostick, W.D.; Dinsmore, S.R.

    1978-08-01

    We describe a new concept in continuously referenced monitoring of the isoenzyme activities of creatine kinase (EC 2.7.3.2) after liquid-chromatographic separation. After separation on a diethylaminoethyl-Sephacel column, the three isoenzymes of creatine kinase undergo a series of upled enzyme reactions, ultimately resulting in the formation of ultraviolet-detectable NADPH. A major advantage of this detection system is the immobilized-enzyme microreactor (2 x 17 mm), which may be removed and stored refrigerated when not in use. A split-stream configuration allows self-blanking of endogenous ultraviolet-absorbing constituents in authentic sera samples, which would otherwise make definitive diagnosis and quantitation difficult or impossible. This detectionmore » system is applicable to the automated analysis of creatine kinase isoenzymes in the clinical laboratory. 5 figures; 42 references.« less

  9. The Customer is Always Right...Girls' and Boys' Reactions to Science Lessons.

    ERIC Educational Resources Information Center

    Kelly, Alison

    1988-01-01

    Explores the reactions of third-year pupils to their science lessons. Discusses the extent to which these boys' and girls' reactions can be used to predict enrollment in the different branches of science in their fourth year. Describes ways to encourage students to continue in science. (CW)

  10. Synthesis of Donor/Acceptor-Substituted Diazo Compounds in Flow and Their Application in Enantioselective Dirhodium-Catalyzed Cyclopropanation and C-H Functionalization.

    PubMed

    Rackl, Daniel; Yoo, Chun-Jae; Jones, Christopher W; Davies, Huw M L

    2017-06-16

    A tandem reaction system has been developed for the preparation of donor/acceptor-substituted diazo compounds in continuous flow coupled to dirhodium-catalyzed C-H functionalization or cyclopropanation. Hydrazones were oxidized in flow by solid-supported N-iodo-p-toluenesulfonamide potassium salt (PS-SO 2 NIK) to generate the diazo compounds, which were then purified by passing through a column of molecular sieves/sodium thiosulfate.

  11. Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems

    PubMed Central

    Ströbel, Ulrich; Rose-Meierhöfer, Sandra; Öz, Hülya; Brunsch, Reiner

    2013-01-01

    Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective of this study was to develop a teat-end vacuum control system with individual quarter actor reaction. Based on a review of the literature, this system is assumed to protect the teat tissue. It reduces the mean teat-end vacuum in the maximum vacuum phase (b) to a level of 20 kPa at a flow rate of 0.25 L/min per quarter. At flow rates higher than 1.50 L/min per quarter, the teat-end vacuum can be controlled to a level of 30 kPa, because in this case it is desirable to have a higher vacuum for the transportation of the milk to the receiver. With this system it is possible for the first time to supply the teat end with low vacuum at low flow rates and with higher vacuum at increasing flow rates in a continuous process with a three second reaction-rate on individual quarter level. This system is completely automated. PMID:23765272

  12. Continuous flow nitration in miniaturized devices

    PubMed Central

    2014-01-01

    Summary This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed. PMID:24605161

  13. Studying mechanism of radical reactions: From radiation to nitroxides as research tools

    NASA Astrophysics Data System (ADS)

    Maimon, Eric; Samuni, Uri; Goldstein, Sara

    2018-02-01

    Radicals are part of the chemistry of life, and ionizing radiation chemistry serves as an indispensable research tool for elucidation of the mechanism(s) underlying their reactions. The ever-increasing understanding of their involvement in diverse physiological and pathological processes has expanded the search for compounds that can diminish radical-induced damage. This review surveys the areas of research focusing on radical reactions and particularly with stable cyclic nitroxide radicals, which demonstrate unique antioxidative activities. Unlike common antioxidants that are progressively depleted under oxidative stress and yield secondary radicals, nitroxides are efficient radical scavengers yielding in most cases their respective oxoammonium cations, which are readily reduced back in the tissue to the nitroxide thus continuously being recycled. Nitroxides, which not only protect enzymes, cells, and laboratory animals from diverse kinds of biological injury, but also modify the catalytic activity of heme enzymes, could be utilized in chemical and biological systems serving as a research tool for elucidating mechanisms underlying complex chemical and biochemical processes.

  14. A stochastic DNA walker that traverses a microparticle surface

    NASA Astrophysics Data System (ADS)

    Jung, C.; Allen, P. B.; Ellington, A. D.

    2016-02-01

    Molecular machines have previously been designed that are propelled by DNAzymes, protein enzymes and strand displacement. These engineered machines typically move along precisely defined one- and two-dimensional tracks. Here, we report a DNA walker that uses hybridization to drive walking on DNA-coated microparticle surfaces. Through purely DNA:DNA hybridization reactions, the nanoscale movements of the walker can lead to the generation of a single-stranded product and the subsequent immobilization of fluorescent labels on the microparticle surface. This suggests that the system could be of use in analytical and diagnostic applications, similar to how strand exchange reactions in solution have been used for transducing and quantifying signals from isothermal molecular amplification assays. The walking behaviour is robust and the walker can take more than 30 continuous steps. The traversal of an unprogrammed, inhomogeneous surface is also due entirely to autonomous decisions made by the walker, behaviour analogous to amorphous chemical reaction network computations, which have been shown to lead to pattern formation.

  15. Sulfur and Its Role In Modern Materials Science.

    PubMed

    Boyd, Darryl A

    2016-12-12

    Although well-known and studied for centuries, sulfur continues to be at the center of an extensive array of scientific research topics. As one of the most abundant elements in the Universe, a major by-product of oil refinery processes, and as a common reaction site within biological systems, research involving sulfur is both broad in scope and incredibly important to our daily lives. Indeed, there has been renewed interest in sulfur-based reactions in just the past ten years. Sulfur research spans the spectrum of topics within the physical sciences including research on improving energy efficiency, environmentally friendly uses for oil refinery waste products, development of polymers with unique optical and mechanical properties, and materials produced for biological applications. This Review focuses on some of the latest exciting ways in which sulfur and sulfur-based reactions are being utilized to produce materials for application in energy, environmental, and other practical areas. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Decoupling the Arrhenius equation via mechanochemistry.

    PubMed

    Andersen, Joel M; Mack, James

    2017-08-01

    Mechanochemistry continues to reveal new possibilities in chemistry including the opportunity for "greening" reactions. Nevertheless, a clear understanding of the energetic transformations within mechanochemical systems remains elusive. We employed a uniquely modified ball mill and strategically chosen Diels-Alder reactions to evaluate the role of several ball-milling variables. This revealed three different energetic regions that we believe are defining characteristics of most, if not all, mechanochemical reactors. Relative to the locations of a given ball mill's regions, activation energy determines whether a reaction is energetically easy (Region I), challenging (Region II), or unreasonable (Region III) in a given timeframe. It is in Region II, that great sensitivity to mechanochemical conditions such as vial material and oscillation frequency emerge. Our unique modifications granted control of reaction vessel temperature, which in turn allowed control of the locations of Regions I, II, and III for our mill. Taken together, these results suggest envisioning vibratory mills (and likely other mechanochemical methodologies) as molecular-collision facilitating devices that act upon molecules occupying a thermally-derived energy distribution. This unifies ball-milling energetics with solution-reaction energetics via a common tie to the Arrhenius equation, but gives mechanochemistry the unique opportunity to influence either half of the equation. In light of this, we discuss a strategy for translating solvent-based reaction conditions to ball milling conditions. Lastly, we posit that the extra control via frequency factor grants mechanochemistry the potential for greater selectivity than conventional solution reactions.

  17. Novel experimental studies for coal liquefaction: Quarterly progress report, October 1, 1987-December 31, 1987. [In Supercritical State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holder, G.D.; Tierney, J.W.

    Experimental work is presently being concentrated on a two-step synthesis of methanol from CO and H/sub 2/ Which consists of the carbonylation of a molecule of methanol to methyl formate followed by hydrogenation to form two molecules of methanol. Carrying out both reactions concurrently gives different results than predicted. One explanation is interaction between the two catalysts. Since one catalyst is homogeneous and the other heterogeneous, the interaction, due to absorption of the homogeneous catalyst on the heterogeneous one, at room temperature was measured and found to be significant. Measurements of mass transfer cooefficients from gas phase to liquid phasemore » for systems containing H/sub 2/, CO, methanol and methyl formate were made to verify that the reaction rate data being obtained are not influenced by mass transfer limitations. Mass transfer rates in the experimental reactor are a least 1000 times larger than reaction rates and hence are not rate limiting. Modeling of the unsteady state slurry phase Fischer-Tropsch reaction continued in order to investigate interactions among the Fischer-Tropsch reactions, the thermal effects, and the water gas shift reaction. A computer program for solution of the reaction equations was written. Also included in this report is the entire program for evaluating mass transfer coefficients under supercritical conditions is described and a review of current knowledge and planned correlational approaches is given. 61 refs., 22 figs, 7 tabs.« less

  18. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co2+ Solution: Interactional Performance and Mechanism

    PubMed Central

    Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei

    2015-01-01

    The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co2+ solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co2+ reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the “structural influence” crucial for the full and dynamical understanding of nZVI reactions. PMID:26355955

  19. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co(2+) Solution: Interactional Performance and Mechanism.

    PubMed

    Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei

    2015-09-10

    The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co(2+) solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co(2+) reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the "structural influence" crucial for the full and dynamical understanding of nZVI reactions.

  20. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co2+ Solution: Interactional Performance and Mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei

    2015-09-01

    The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co2+ solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co2+ reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the “structural influence” crucial for the full and dynamical understanding of nZVI reactions.

  1. An efficient one-pot two catalyst system in the construction of 2-substituted benzimidazoles: synthesis of benzimidazo[1,2-c]quinazolines.

    PubMed

    Cimarelli, Cristina; Di Nicola, Matteo; Diomedi, Simone; Giovannini, Riccardo; Hamprecht, Dieter; Properzi, Roberta; Sorana, Federico; Marcantoni, Enrico

    2015-12-28

    The benzimidazole core is a common moiety in a large number of natural products and pharmacologically active small molecules. The synthesis of novel benzimidazole derivatives remains a main focus in medicinal research. In continuation of the efforts towards Ce(III) catalysts for organic transformations, we observed for the first time the activity of the iodide ion and copper cation in activating CeCl3·7H2O in the selective formation of prototypical 2-substituted benzimidazoles. The one-pot CeCl3·7H2O-CuI catalytic system procedure includes the cyclo-dehydrogenation of aniline Schiff's bases, generated in situ from the condensation of 1,2-phenylenediamine and aldehydes, followed by the oxidation with iodine, which works as a hydrogen sponge. Mild reaction conditions, good to excellent yields, and clean reactions make the procedure a useful contribution to the synthesis of biologically active fused heterocycles containing benzimidazoquinazolines.

  2. Increased Oxygen Recovery from Sabatier Systems Using Plasma Pyrolysis Technology and Metal Hydride Separation

    NASA Technical Reports Server (NTRS)

    Greenwood, Zachary W.; Abney, Morgan B.; Perry, Jay L.; Miller, Lee A.; Dahl, Roger W.; Hadley, Neal M.; Wambolt, Spencer R.; Wheeler, Richard R.

    2015-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology is based on the Sabatier reaction where less than 50% of the oxygen required for the crew is recovered from metabolic CO2. The reaction produces water as the primary product and methane as a byproduct. Oxygen recovery is constrained by the limited availability of reactant hydrogen. This is further exacerbated when Sabatier methane (CH4) is vented as a waste product resulting in a continuous loss of reactant hydrogen. Post-processing methane with the Plasma Pyrolysis Assembly (PPA) to recover hydrogen has the potential to dramatically increase oxygen recovery and thus drastically reduce the logistical challenges associated with oxygen resupply. The PPA decomposes methane into predominantly hydrogen and acetylene. Due to the highly unstable nature of acetylene, a separation system is necessary to purify hydrogen before it is recycled back to the Sabatier reactor. Testing and evaluation of a full-scale Third Generation PPA is reported and investigations into metal hydride hydrogen separation technology is discussed.

  3. Vibration computer programs E13101, E13102, E13104, and E13112 and application to the NERVA program. Project 187: Methodology documentation

    NASA Technical Reports Server (NTRS)

    Mironenko, G.

    1972-01-01

    Programs for the analyses of the free or forced, undamped vibrations of one or two elastically-coupled lumped parameter teams are presented. Bearing nonlinearities, casing and rotor distributed mass and elasticity, rotor imbalance, forcing functions, gyroscopic moments, rotary inertia, and shear and flexural deformations are all included in the system dynamics analysis. All bearings have nonlinear load displacement characteristics, the solution is achieved by iteration. Rotor imbalances allowed by such considerations as pilot tolerances and runouts as well as bearing clearances (allowing concail or cylindrical whirl) determine the forcing function magnitudes. The computer programs first obtain a solution wherein the bearings are treated as linear springs of given spring rates. Then, based upon the computed bearing reactions, new spring rates are predicted and another solution of the modified system is made. The iteration is continued until the changes to bearing spring rates and bearing reactions become negligibly small.

  4. Fundamentals and applications of solar energy. Part 2

    NASA Astrophysics Data System (ADS)

    Faraq, I. H.; Melsheimer, S. S.

    Applications of techniques of chemical engineering to the development of materials, production methods, and performance optimization and evaluation of solar energy systems are discussed. Solar thermal storage systems using phase change materials, liquid phase Diels-Alder reactions, aquifers, and hydrocarbon oil were examined. Solar electric systems were explored in terms of a chlorophyll solar cell, the nonequilibrium electric field effects developed at photoelectrode/electrolyte interfaces, and designs for commercial scale processing of solar cells using continuous thin-film coating production methods. Solar coal gasification processes were considered, along with multilayer absorber coatings for solar concentrator receivers, solar thermal industrial applications, the kinetics of anaerobic digestion of crop residues to produce methane, and a procedure for developing a computer simulation of a solar cooling system.

  5. 14 CFR 29.143 - Controllability and maneuverability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... occurs with maximum continuous power and critical weight. No corrective action time delay for any... pilot reaction time (whichever is greater); and (ii) For any other condition, normal pilot reaction time...

  6. Thin layer chromatography coupled with surface-enhanced Raman scattering as a facile method for on-site quantitative monitoring of chemical reactions.

    PubMed

    Zhang, Zong-Mian; Liu, Jing-Fu; Liu, Rui; Sun, Jie-Fang; Wei, Guo-Hua

    2014-08-05

    By coupling surface-enhanced Raman spectroscopy (SERS) with thin layer chromatography (TLC), a facile and powerful method was developed for on-site monitoring the process of chemical reactions. Samples were preseparated on a TLC plate following a common TLC procedure, and then determined by SERS after fabricating a large-area, uniform SERS substrate on the TLC plate by spraying gold nanoparticles (AuNPs). Reproducible and strong SERS signals were obtained with substrates prepared by spraying 42-nm AuNPs at a density of 5.54 × 10(10) N/cm(2) on the TLC plate. The capacity of this TLC-SERS method was evaluated by monitoring a typical Suzuki coupling reaction of phenylboronic acid and 2-bromopyridine as a model. Results showed that this proposed method is able to identify reaction product that is invisible to the naked eye, and distinguish the reactant 2-bromopyridine and product 2-phenylpyridine, which showed almost the same retention factors (R(f)). Under the optimized conditions, the peak area of the characteristic Raman band (755 cm(-1)) of the product 2-phenylpyridine showed a good linear correlation with concentration in the range of 2-200 mg/L (R(2) = 0.9741), the estimated detection limit (1 mg/L 2-phenylpyridine) is much lower than the concentration of the chemicals in the common organic synthesis reaction system, and the product yield determined by the proposed TLC-SERS method agreed very well with that by UPLC-MS/MS. In addition, a new byproduct in the reaction system was found and identified through continuous Raman detection from the point of sample to the solvent front. This facile TLC-SERS method is quick, easy to handle, low-cost, sensitive, and can be exploited in on-site monitoring the processes of chemical reactions, as well as environmental and biological processes.

  7. Push-out tests on a new silicon carbide/reaction-bonded silicon carbide ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Curtin, William A.; Eldridge, Jeffrey I.; Srinivasan, Gajawalli V.

    1993-01-01

    Fiber push-out tests have been performed on a ceramic matrix composite consisting of carborundum-sintered SiC fibers, with a BN coating, embedded in a reaction-bonded SiC matrix. Analysis of the push-out data, utilizing the most complete theory presently available, shows that one of the fiber/coating/matrix interfaces has a low fracture energy (one-tenth that of the fiber) and a moderate sliding resistance of about 8 MPa. The debonded sliding interface shows some continuous but minor abrasion, which appears to increase the sliding resistance, but overall the system exhibits very clean smooth sliding. The tensile response of a full-scale composite is then modeled using data obtained here and known fiber strengths to demonstrate the good composite behavior predicted for this material.

  8. Etiologies and management of cutaneous flushing: Nonmalignant causes.

    PubMed

    Sadeghian, Azeen; Rouhana, Hailey; Oswald-Stumpf, Brittany; Boh, Erin

    2017-09-01

    The flushing phenomenon may represent a physiologic or a pathologic reaction. Although flushing is usually benign, it is prudent that the physician remains aware of potentially life-threatening conditions associated with cutaneous flushing. A thorough investigation should be performed if the flushing is atypical or not clearly associated with a benign underlying process. The diagnosis often relies on a pertinent history, review of systems, physical examination, and various laboratory and imaging modalities, all of which are discussed in the 2 articles in this continuing medical education series. This article reviews flushing associated with fever, hyperthermia, emotions, menopause, medications, alcohol, food, hypersensitivity reactions, rosacea, hyperthyroidism, dumping syndrome, superior vena cava syndrome, and neurologic etiologies. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Attempts to identify a control system for chemical reactivity in the living state using virtual energy.

    PubMed

    Reid, B L; Bourke, C

    2001-07-01

    This thesis explores the activation of chemicals in metabolic systems from the viewpoint that this activation is under the control of elements of the space-sea in which the chemicals are immersed. Themselves inert, the chemicals are theorised to exploit a force or action issuing from space (fluctuation) and characterized by the homogeneity (termed symmetry) of this medium. The fluctuation is heterogenized upon collision with matter from the intervention of well recognized fields of gravity and electromagnetism at the instant of its issue to form the near field of radiation. Fractions of original space waves and of their intrinsic spin are produced resulting in the activation of the orbitals (valency) in the chemical itself. The thesis continues: the disturbed fluctuation must return to space, obliging in turn, a prior return to the homogeneous state requiring special restorative wave rearrangements known as resonance. The success of the restorative resonance is signalled by a singularity of the fluctuation now propelled to infinity (space), and the contingent chemical reactions thereby terminated. Compromise to this return can occur from many causes and, in its presence, activation of the orbitals continues. They now effectively constitute autonomous reactions alienated from the system as a whole. The thesis is supported from evidence from diverse fields such as space theory, history of quantum field theory in attempts to derive its meaning, dielectrics and the near field of electromagnetic radiation, electron-space interactions at the Fermi surface during phase transitions and evolution of equilibrium conditions in resonance phenomena. The utility of the hypothesis rests on recognition of the resonance condition at various points in the system sufficiently macroscopic as to be available clinically as an abrupt interface between physiology and pathology. Copyright 2001 Harcourt Publishers Ltd.

  10. Removal of NO in NO/N2, NO/N2/O2, NO/CH4/N2, and NO/CH4/O2/N2 systems by flowing microwave discharges.

    PubMed

    Hueso, José L; Gonzalez-Elipe, Agustín R; Cotrino, José; Caballero, Alfonso

    2007-02-15

    In this paper, continuing previous work, we report on experiments carried out to investigate the removal of NO from simulated flue gas in nonthermal plasmas. The plasma-induced decomposition of small concentrations of NO in N2 used as the carrier gas and O2 and CH4 as minority components has been studied in a surface wave discharge induced with a surfatron launcher. The reaction products and efficiency have been monitored by mass spectrometry as a function of the composition of the mixture. NO is effectively decomposed into N2 and O2 even in the presence of O2, provided always that enough CH4 is also present in the mixture. Other majority products of the plasma reactions under these conditions are NH3, CO, and H2. In the absence of O2, decomposition of NO also occurs, although in that case HCN accompanies the other reaction products as a majority component. The plasma for the different reaction mixtures has been characterized by optical emission spectroscopy. Intermediate excited species of NO*, C*, CN*, NH*, and CH* have been monitored depending on the gas mixture. The type of species detected and their evolution with the gas composition are in agreement with the reaction products detected in each case. The observations by mass spectrometry and optical emission spectroscopy are in agreement with the kinetic reaction models available in literature for simple plasma reactions in simple reaction mixtures.

  11. On the existence of and mechanism for microwave-specific reaction rate enhancement† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03372h Click here for additional data file.

    PubMed Central

    Dudley, Gregory B.; Richert, Ranko

    2015-01-01

    The use of microwave radiation to drive chemical reactions has become ubiquitous in almost all fields of chemistry. In all of these areas it is principally due to rapid and convenient heating resulting in significantly higher rates of reaction, with other advantages including enhanced product selectivity and control of materials properties. Although microwave heating continues to grow as an enabling technology, fundamental research into the nature of microwave heating has not grown at the same rate. In the case of chemical reactions run in homogeneous solution, particularly synthetic organic reactions, there is considerable controversy over the origins of rate enhancement, with a fundamental question being whether there exist microwave-specific effects, distinct from what can be attained under conventional convective heating, that can accelerate a reaction rate. In this Perspective, we discuss unique aspects of microwave heating of molecules in solution and discuss the origin and nature of microwave-specific effects arising from the process of “selective heating” of reactants in solution. Integral to this discussion is work from the field of dielectric relaxation spectroscopy, which provides a model for selective heating by Debye relaxation processes. The Perspective also includes a critical discussion of hypotheses of non-thermal effects (alternatively classified here as resonant processes) and an outline of specific reaction parameters for chemical systems in which microwave-specific Debye relaxation processes can result in observable reaction rate enhancement. PMID:29308138

  12. 14 CFR 27.143 - Controllability and maneuverability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... failure occurs with maximum continuous power and critical weight. No corrective action time delay for any... pilot reaction time (whichever is greater); and (ii) For any other condition, normal pilot reaction time...

  13. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study.

    PubMed

    Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen

    2011-01-01

    An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  14. Metabolic engineering: the ultimate paradigm for continuous pharmaceutical manufacturing.

    PubMed

    Yadav, Vikramaditya G; Stephanopoulos, Gregory

    2014-07-01

    Research and development (R&D) expenditures by pharmaceutical companies doubled over the past decade, yet candidate attrition rates and development times rose markedly during this period. Understandably, companies have begun downsizing their pipelines and diverting investments away from R&D in favor of manufacturing. It is estimated that transitioning to continuous manufacturing could enable companies to compete for a share in emerging markets. Accordingly, the model for continuous manufacturing that has emerged commences with the conversion of late-stage intermediates into the active pharmaceutical ingredient (API) in a series of continuous flow reactors, followed by continuous solid processing to form finished tablets. The use of flow reactions for API synthesis will certainly generate purer products at higher yields in shorter times compared to equivalent batch reactions. However, transitioning from batch to flow configuration simply alleviates transport limitations within the reaction milieu. As the catalogue of reactions used in flow syntheses is a subset of batch-based chemistries, molecules such as natural products will continue to evade drug prospectors. Also, it is uncertain whether flow synthesis can deliver improvements in the atom and energy economies of API production at the scales that would achieve the levels of revenue growth targeted by companies. Instead, it is argued that implementing metabolic engineering for the production of oxidized scaffolds as gateway molecules for flow-based addition of electrophiles is a more effective and scalable strategy for accessing natural product chemical space. This new paradigm for manufacturing, with metabolic engineering as its engine, would also permit rapid optimization of production variables and allow facile scale-up from gram to ton scale to meet material requirements for clinical trials, thus recasting manufacturing as a tool for discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. First step toward near-infrared continuous glucose monitoring: in vivo evaluation of antibody coupled biomaterials

    PubMed Central

    Gellynck, Karolien; Kodeck, Valérie; Van De Walle, Elke; Kersemans, Ken; De Vos, Filip; Declercq, Heidi; Dubruel, Peter; Vlaminck, Lieven

    2015-01-01

    Continuous glucose monitoring (CGM) is crucial in diabetic care. Long-term CGM systems however require an accurate sensor as well as a suitable measuring environment. Since large intravenous sensors are not feasible, measuring inside the interstitial fluid is considered the best alternative. This option, unfortunately, has the drawback of a lag time with blood glucose values. A good strategy to circumvent this is to enhance tissue integration and enrich the peri-implant vasculature. Implants of different optically transparent biomaterials (poly(methyl-methacrylate) [PMMA] and poly(dimethylsiloxane) [PDMS]) – enabling glucose monitoring in the near-infrared (NIR) spectrum – were surface-treated and subsequently implanted in goats at various implantation sites for up to 3 months. The overall in vivo biocompatibility, tissue integration, and vascularization at close proximity of the surfaces of these materials were assessed. Histological screening showed similar tissue reactions independent of the implantation site. No significant inflammation reaction was observed. Tissue integration and vascularization correlated, to some extent, with the biomaterial composition. A modification strategy, in which a vascular endothelial-cadherin antibody was coupled to the biomaterials surface through a dopamine layer, showed significantly enhanced vascularization 3 months after subcutaneous implantation. Our results suggest that the developed strategy enables the creation of tissue interactive NIR transparent packaging materials, opening the possibility of continuous glucose monitoring. PMID:25304314

  16. An efficient and more sustainable one-step continuous-flow multicomponent synthesis approach to chromene derivatives

    EPA Science Inventory

    A simple and rapid one-step continuous-flow synthesis route has been developed for the preparation of chromene derivatives from the reaction of aromatic aldehydes, α-cyanomethylene compounds and naphthols. In this contribution, a one-step continuous-flow protocol in a continuous ...

  17. Analysis of continuous beams with joint slip

    Treesearch

    L. A. Soltis

    1981-01-01

    A computer analysis with user guidelines to analyze partially continuous multi-span beams is presented. Partial continuity is due to rotational slip which occurs at spliced joints at the supports of continuous beams such as floor joists. Beam properties, loads, and joint slip are input; internal forces, reactions, and deflections are output.

  18. [Quantification of dehydration of soda lime in clinical circumstances].

    PubMed

    Soro-Domingo, M; Cortés-Uribe, A; Alvarez-Refojo, F; Bonome, C; Belda Nacher, F J

    1997-05-01

    When the CO2 absorbents, soda lime and baralime, have lost their normal level of hydration, they may react with certain halogenated anesthetics to produce appreciable levels of carbon monoxide. The degree of absorbent desiccation has been considered the limiting factor for this phenomenon. This study quantifies the level of dehydration of lime produced under clinical conditions and the influence of several factors. Desiccation was determined: 1) at set periods of time (3, 7 and 14 days) after clinical use of fresh soda lime in general anesthesia using a fresh gas flow (FGF) of 6 l/min, and 2) after gas had been crossing the continuous flow (CF) oxygen reservoir at 7 l/min for 17 and 65 hours. Two anesthetic systems were used: a) the Ohmeda Excel-210, in which the continuous FGF did not cross the reservoir and b) the Siemens Ventilator 710, in which the FGF did cross the reservoir. The experiments were repeated with three types of lime. The clinical use of lime for 3, 7 and 14 days caused different levels of desiccation, with decreases in hydration of up to 50% and 14 days. Nevertheless, water content was always over 5%, a level at which no reaction with halogenated agents takes place. After 17 and 65 hours of CF in the circuit where continuous FGF did not pass through the canister, the water content did not change. With the Siemens 710 circuit, in which the continuous FGF crossed the canister, the dehydration level was 1.2 +/- 0.3% after 17 hours and 0.7 +/- 0.3% after 65 hours, a level that can produce CO upon reaction between lime and halogenated gases. The type of lime used had little effect. Lime does not desiccate to levels able to produce CO in daily use, regardless of the FGF system used. The phenomenon of desiccation depends on two factors: 1) use of anesthetic equipment in which continuous FGF conditions require gas to pass through the canister, and 2) the maintenance of CF for a sufficient period of time.

  19. High-power CW laser using hydrogen-fluorine reaction

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.

    1975-01-01

    Continuous-wave laser has been proposed based on reaction of hydrogen and fluorine. Hydrogen is produced by dissociation of hydrazine, which can be stored as liquid in light containers at room temperature.

  20. Transdermal rivastigmine: management of cutaneous adverse events and review of the literature.

    PubMed

    Greenspoon, Jill; Herrmann, Nathan; Adam, David N

    2011-07-01

    Alzheimer's disease is a chronic neurodegenerative disorder resulting in part from the degeneration of cholinergic neurons in the brain. Rivastigmine, a cholinesterase inhibitor, is commonly used as a treatment for dementia due to its ability to moderate cholinergic neurotransmission; however, treatment with oral rivastigmine can lead to gastrointestinal adverse effects such as nausea and vomiting. Transdermal administration of rivastigmine can minimize these adverse effects by providing continuous delivery of the medication, while maintaining the effectiveness of the oral treatment. While the transdermal form of rivastigmine has been found to have fewer systemic adverse effects compared with the oral form, cutaneous reactions, such as contact dermatitis, can lead to discontinuation of the drug in its transdermal form. Lack of patient compliance with regard to applying the patch to the designated site, applying the patch for the correct length of time or rotating patch application sites increases the risk of cutaneous adverse reactions. This article outlines the diagnosis and management of irritant contact dermatitis and allergic contact dermatitis secondary to transdermal rivastigmine. The large majority of reactions to transdermal patches are of an irritant type, which can be diagnosed clinically by the presence of a pruritic, erythematous, eczematous plaque strictly confined to the borders of the patch. In contrast, an allergic reaction can be differentiated by the presence of vesicles and/or oedema, erythema beyond the boundaries of the transdermal patch and lack of improvement of the lesion 48 hours after removal of the offending treatment. By encouraging the patient to follow a regular rotation schedule for the patch, and using lipid-based emollients for irritant dermatitis and pre- and post-treatment topical corticosteroids for allergic dermatitis, cutaneous reactions can often be alleviated and patients can continue with their medication regimen. Other simple changes to a patient's treatment routine, including minimizing the use of harsh soaps, avoiding recently shaven or damaged areas of skin and carefully removing the patch after use, can help to further decrease the risk of dermatitis development.

  1. Process Intensification of Enzymatic Fatty Acid Butyl Ester Synthesis Using a Continuous Centrifugal Contactor Separator.

    PubMed

    Ilmi, Miftahul; Abduh, Muhammad Y; Hommes, Arne; Winkelman, Jozef G M; Hidayat, Chusnul; Heeres, Hero J

    2018-01-17

    Fatty acid butyl esters were synthesized from sunflower oil with 1-butanol using a homogeneous Rhizomucor miehei lipase in a biphasic organic (triglyceride, 1-butanol, hexane)- water (with enzyme) system in a continuous setup consisting of a cascade of a stirred tank reactor and a continuous centrifugal contactor separator (CCCS), the latter being used for integrated reaction and liquid-liquid separation. A fatty acid butyl ester yield up to 93% was obtained in the cascade when operated in a once-through mode. The cascade was run for 8 h without operational issues. Enzyme recycling was studied by reintroduction of the water phase from the CCCS outlet to the stirred tank reactor. Product yield decreased over time to an average of 50% of the initial value, likely due to accumulation of 1-butanol in water phase, loss of enzyme due to agglomeration, and the formation of a separate enzyme layer.

  2. Process Intensification of Enzymatic Fatty Acid Butyl Ester Synthesis Using a Continuous Centrifugal Contactor Separator

    PubMed Central

    2017-01-01

    Fatty acid butyl esters were synthesized from sunflower oil with 1-butanol using a homogeneous Rhizomucor miehei lipase in a biphasic organic (triglyceride, 1-butanol, hexane)– water (with enzyme) system in a continuous setup consisting of a cascade of a stirred tank reactor and a continuous centrifugal contactor separator (CCCS), the latter being used for integrated reaction and liquid–liquid separation. A fatty acid butyl ester yield up to 93% was obtained in the cascade when operated in a once-through mode. The cascade was run for 8 h without operational issues. Enzyme recycling was studied by reintroduction of the water phase from the CCCS outlet to the stirred tank reactor. Product yield decreased over time to an average of 50% of the initial value, likely due to accumulation of 1-butanol in water phase, loss of enzyme due to agglomeration, and the formation of a separate enzyme layer. PMID:29398779

  3. Rapid identification of antibiotic resistance using droplet microfluidics.

    PubMed

    Keays, Marie C; O'Brien, Mark; Hussain, Anam; Kiely, Patrick A; Dalton, Tara

    2016-04-02

    Culturing bacteria and monitoring bacterial cell growth is a critical issue when dealing with patients who present with bacterial infections. One of the main challenges that arises is the time taken to identify the particular strain of bacteria and consequently, decide the correct treatment. In the majority of cases, broad spectrum antibiotics are used to target infections when a narrow spectrum drug would be more appropriate. The efficient monitoring of bacterial growth and potential antibiotic resistance is necessary to identify the best treatment options for patients. Minturising the reactions into microfluidic droplets offers a novel method to rapidy analyze bacteria. Microfluidics facilitates low volume reactions that provide a unique system where each droplet reaction acts as an individual bioreactor. Here, we designed and built a novel platform that allowed us to create and monitor E.coli microfluidic droplet cultures. Optical capacity was built in and measurements of bacterial cultures were captured facilitating the continuous monitoring of individual reactions. The capacity of the instrument was demonstrated by the application of treatments to both bacteria and drug resistant strains of bacteria. We were able to detect responses within one hour in the droplet cultures, demonstrating the capacity of this workflow to the culture and rapid characterization of bacterial strains.

  4. The α-Effect and Competing Mechanisms: The Gas-Phase Reactions of Microsolvated Anions with Methyl Formate

    NASA Astrophysics Data System (ADS)

    Thomsen, Ditte L.; Nichols, Charles M.; Reece, Jennifer N.; Hammerum, Steen; Bierbaum, Veronica M.

    2014-02-01

    The enhanced reactivity of α-nucleophiles, which contain an electron lone pair adjacent to the reactive site, has been demonstrated in solution and in the gas phase and, recently, for the gas-phase SN2 reactions of the microsolvated HOO-(H2O) ion with methyl chloride. In the present work, we continue to explore the significance of microsolvation on the α-effect as we compare the gas-phase reactivity of the microsolvated α-nucleophile HOO-(H2O) with that of microsolvated normal alkoxy nucleophiles, RO-(H2O), in reactions with methyl formate, where three competing reactions are possible. The results reveal enhanced reactivity of HOO-(H2O) towards methyl formate, and clearly demonstrate the presence of an overall α-effect for the reactions of the microsolvated α-nucleophile. The association of the nucleophiles with a single water molecule significantly lowers the degree of proton abstraction and increases the SN2 and BAC2 reactivity compared with the unsolvated analogs. HOO-(H2O) reacts with methyl formate exclusively via the BAC2 channel. While microsolvation lowers the overall reaction efficiency, it enhances the BAC2 reaction efficiency for all anions compared with the unsolvated analogs. This may be explained by participation of the solvent water molecule in the BAC2 reaction in a way that continuously stabilizes the negative charge throughout the reaction.

  5. Transuranic solid waste management programs. Progress report, July--December 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-09-01

    Progress is reported for three transuranic solid waste management programs funded at the Los Alamos Scientific Laboratory (LASL) by the Energy Research and Development Administration (ERDA) Division of Fuel Cycle and Production (NFCP). Under the Transuranic Waste Research and Development Program, continued studies have shown the potential attractiveness of fiber drums as an acceptable substitute for the current mild steel storage containers. Various fire retardants have been evaluated, with one indicating significant ability to inhibit fire propagation. Continued radiolysis studies, under laboratory and field conditions, continue to reaffirm earlier LASL results indicating no significant hazard from radiolytic reactions, assuming nomore » change in current allowable loadings. Care must be exercised to differentiate between radiolytic and chemical reactions. Other efforts have identified a modification of chemical processing to reduce the amounts of plutonium requiring retrievable storage. Studies are also in progress to enhance the sensitivity of the LASL MEGAS assay system. The Transuranic-Contaminated Solid Waste Treatment Development Facility building was 72 percent complete as of December 31, 1975, which is in accord with the existing schedule. Procurement of process components is also on schedule. Certain modifications to the facility have been made, and various pre-facility experiments on waste container handling and processing have been completed. The program for the Evaluation of Transuranic-Contaminated Radioactive Waste Disposal Areas continued development of various computer modules for simulation of radionuclide transport within the biosphere. In addition, program staff contributed to an ERDA document on radioactive waste management through the preparation of a report on burial of radioactive waste at ERDA-contractor and commercial sites.« less

  6. Rapid trifluoromethylation and perfluoroalkylation of five-membered heterocycles by photoredox catalysis in continuous flow.

    PubMed

    Straathof, Natan J W; Gemoets, Hannes P L; Wang, Xiao; Schouten, Jaap C; Hessel, Volker; Noël, Timothy

    2014-06-01

    Trifluoromethylated and perfluoroalkylated heterocycles are important building blocks for the synthesis of numerous pharmaceutical products, agrochemicals and are widely applied in material sciences. To date, trifluoromethylated and perfluoroalkylated hetero-aromatic systems can be prepared utilizing visible light photoredox catalysis methodologies in batch. While several limitations are associated with these batch protocols, the application of microflow technology could greatly enhance and intensify these reactions. A simple and straightforward photocatalytic trifluoromethylation and perfluoroalkylation method has been developed in continuous microflow, using commercially available photocatalysts and microflow components. A selection of five-membered hetero-aromatics were successfully trifluoromethylated (12 examples) and perfluoroalkylated (5 examples) within several minutes (8-20 min). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Thermomyces lanuginosus lipase-catalyzed synthesis of natural flavor esters in a continuous flow microreactor.

    PubMed

    Gumel, Ahmad Mohammed; Annuar, M S M

    2016-06-01

    Enzymatic catalysis is considered to be among the most environmental friendly processes for the synthesis of fine chemicals. In this study, lipase from Thermomyces lanuginosus (Lecitase Ultra™) was used to catalyze the synthesis of flavor esters, i.e., methyl butanoate and methyl benzoate by esterification of the acids with methanol in a microfluidic system. Maximum reaction rates of 195 and 115 mM min -1 corresponding to catalytic efficiencies (k cat /K M ) of 0.30 and 0.24 min -1  mM -1 as well as yield conversion of 54 and 41 % were observed in methyl butanoate and methyl benzoate synthesis, respectively. Catalytic turnover (k cat ) was higher for methyl butanoate synthesis. Rate of synthesis and yield decreased with increasing flow rates. For both esters, increase in microfluidic flow rate resulted in increased advective transport over molecular diffusion and reaction rate, thus lower conversion. In microfluidic synthesis using T. lanuginosus lipase, the following reaction conditions were 40 °C, flow rate 0.1 mL min -1 , and 123 U g -1 enzyme loading found to be the optimum operating limits. The work demonstrated the application of enzyme(s) in a microreactor system for the synthesis of industrially important esters.

  8. Space shuttle orbiter reaction control system jet interaction study

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.

    1975-01-01

    The space shuttle orbiter has forward mounted and rear mounted Reaction Control Systems (RCS) which are used for orbital maneuvering and also provide control during entry and abort maneuvers in the atmosphere. The effects of interaction between the RCS jets and the flow over the vehicle in the atmosphere are studied. Test data obtained in the NASA Langley Research Center 31 inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 is analyzed. The data were obtained with a 0.01 scale force model with aft mounted RCS nozzles mounted on the sting off of the force model balance. The plume simulations were accomplished primarily using air in a cold gas simulation through scaled nozzles, however, various cold gas mixtures of Helium and Argon were also tested. The effect of number of nozzles was tested as were limited tests of combined controls. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter where the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.

  9. Treatments for food allergy: how close are we?

    PubMed

    Wang, Julie; Sampson, Hugh A

    2012-12-01

    Food allergy continues to be a challenging health problem, with prevalence continuing to increase and anaphylaxis still an unpredictable possibility. While improvements in diagnosis are more accurately identifying affected individuals, treatment options remain limited. The cornerstone of treatment relies on strict avoidance of the offending allergens and education regarding management of allergic reactions. Despite vigilance in avoidance, accidental ingestions and reactions continue to occur. With recent advances in the understanding of humoral and cellular immune responses in food allergy and mechanisms of tolerance, several therapeutic strategies for food allergies are currently being investigated with the hopes of providing a cure or long-term remission from food allergy.

  10. System and method for regeneration and recirculation of a reducing agent using highly exothermic reactions induced by mixed industrial slags

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, Jinichiro; Bennett, James P.; Nakano, Anna

    Embodiments relate to systems and methods for regenerating and recirculating a CO, H.sub.2 or combinations thereof utilized for metal oxide reduction in a reduction furnace. The reduction furnace receives the reducing agent, reduces the metal oxide, and generates an exhaust of the oxidized product. The oxidized product is transferred to a mixing vessel, where the oxidized product, a calcium oxide, and a vanadium oxide interact to regenerate the reducing agent from the oxidized product. The regenerated reducing agent is transferred back to the reduction furnace for continued metal oxide reductions.

  11. ADM-CLE Approach for Detecting Slow Variables in Continuous Time Markov Chains and Dynamic Data

    DTIC Science & Technology

    2015-04-01

    Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom. E -mail: erban@maths.ox.ac.uk; Radek Erban would like to thank the Royal Society...more e cient than the ADM method for a large class of chemical reaction systems, because it replaces the computationally most expensive step of ADM...i.e., m = 4), given by ∅ k1 −→ X1 k2−→←− k3 X2 k4−→ ∅. (2.2) Throughout the rest of this paper, we shall refer to the chemical system (2.2) as CS-I (i.e

  12. Electrochemical detection for microscale analytical systems: a review.

    PubMed

    Wang, Joseph

    2002-02-11

    As the field of chip-based microscale systems continues its rapid growth, there are urgent needs for developing compatible detection modes. Electrochemistry detection offers considerable promise for such microfluidic systems, with features that include remarkable sensitivity, inherent miniaturization and portability, independence of optical path length or sample turbidity, low cost, low-power requirements and high compatibility with advanced micromachining and microfabrication technologies. This paper highlights recent advances, directions and key strategies in controlled-potential electrochemical detectors for miniaturized analytical systems. Subjects covered include the design and integration of the electrochemical detection system, its requirements and operational principles, common electrode materials, derivatization reactions, electrical-field decouplers, typical applications and future prospects. It is expected that electrochemical detection will become a powerful tool for microscale analytical systems and will facilitate the creation of truly portable (and possibly disposable) devices.

  13. Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for integrated multistep synthesis in flow chemistry

    PubMed Central

    Hiebler, Katharina; Lichtenegger, Georg J; Maier, Manuel C; Park, Eun Sung; Gonzales-Groom, Renie

    2018-01-01

    Within the “compartmentalised smart factory” approach of the ONE-FLOW project the implementation of different catalysts in “compartments” provided by Pickering emulsions and their application in continuous flow is targeted. We present here the development of heterogeneous Pd catalysts that are ready to be used in combination with biocatalysts for catalytic cascade synthesis of active pharmaceutical ingredients (APIs). In particular, we focus on the application of the catalytic systems for Suzuki–Miyaura cross-coupling reactions, which is the key step in the synthesis of the targeted APIs valsartan and sacubitril. An immobilised enzyme will accomplish the final product formation via hydrolysis. In order to create a large interfacial area for the catalytic reactions and to keep the reagents separated until required, the catalyst particles are used to stabilise Pickering emulsions of oil and water. A set of Ce–Sn–Pd oxides with the molecular formula Ce0.99− xSnxPd0.01O2−δ (x = 0–0.99) has been prepared utilising a simple single-step solution combustion method. The high applicability of the catalysts for different functional groups and their minimal leaching behaviour is demonstrated with various Suzuki–Miyaura cross-coupling reactions in batch as well as in continuous flow employing the so-called “plug & play reactor”. Finally, we demonstrate the use of these particles as the sole emulsifier of oil–water emulsions for a range of oils. PMID:29623127

  14. Analysis of Reaction Products and Conversion Time in the Pyrolisis of Cellulose and Wood Particles

    NASA Technical Reports Server (NTRS)

    Miller, R. S.; Bellan, J.

    1996-01-01

    A detailed mathematical model is presented for the temporal and spatial accurate modeling of solid-fluid reactions in porous particles for which volumetric reaction rate data is known a priori and both the porosity and the permeability of the particle are large enough to allow for continuous gas flow.

  15. ONR Far East Scientific Information Bulletin

    DTIC Science & Technology

    1990-09-01

    In bone, grafting onto a polymer chain, inter- continuous processes, such as reactive extru- chain reactions, formation of interpenetrat- sion and...reaction kinetics, rheology, and side- and end-chain grafting , homopolymer transport phenomena occurring during REX. chain coupling, polymer...the Grafting reactions yield block or graft coupling species becomes a part of the chain, copolymers. Polyethylene, polypropylene, or by

  16. Predictive models of lameness in dairy cows achieve high sensitivity and specificity with force measurements in three dimensions.

    PubMed

    Dunthorn, Jason; Dyer, Robert M; Neerchal, Nagaraj K; McHenry, Jonathan S; Rajkondawar, Parimal G; Steingraber, Gary; Tasch, Uri

    2015-11-01

    Lameness remains a significant cause of production losses, a growing welfare concern and may be a greater economic burden than clinical mastitis . A growing need for accurate, continuous automated detection systems continues because US prevalence of lameness is 12.5% while individual herds may experience prevalence's of 27.8-50.8%. To that end the first force-plate system restricted to the vertical dimension identified lame cows with 85% specificity and 52% sensitivity. These results lead to the hypothesis that addition of transverse and longitudinal dimensions could improve sensitivity of lameness detection. To address the hypothesis we upgraded the original force plate system to measure ground reaction forces (GRFs) across three directions. GRFs and locomotion scores were generated from randomly selected cows and logistic regression was used to develop a model that characterised relationships of locomotion scores to the GRFs. This preliminary study showed 76 variables across 3 dimensions produced a model with greater than 90% sensitivity, specificity, and area under the receiver operating curve (AUC). The result was a marked improvement on the 52% sensitivity, and 85% specificity previously observed with the 1 dimensional model or the 45% sensitivities reported with visual observations. Validation of model accuracy continues with the goal to finalise accurate automated methods of lameness detection.

  17. Pseudocapacitive organic catechol derivative-functionalized three-dimensional graphene aerogel hybrid electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Choi, Jaewon; Yang, MinHo; Kim, Sung-Kon

    2017-11-01

    Bio-inspired and environmentally friendly chemical functionalization is a successful way to a new class of hybrid electrode materials for applications in energy storage. Quinone (Q)-hydroquinone (QH2) couples, a prototypical example of organic redox systems, provide fast and reversible proton-coupled electron-transfer reactions which lead to increased capacity. To achieve high capacitance and rate performance, constructing three-dimensional (3D) continuous porous structure is highly desirable. Here we report the hybrid electrodes (GA-C) consisting of 3D graphene aerogel (GA) functionalized with organic redox-active material, catechol derivative, for application to high-performance supercapacitors. The catechol derivative is adsorbed on the surface of GA through non-covalent interactions and promotes fast and reversible Q/QH2 faradaic reactions, providing large specific capacitance of 188 F g-1 at a current of 1 A g-1 and a specific energy of ∼25 Wh kg-1 at a specific power of ∼18,000 W kg-1. 3D continuous porous structure of GA electrode facilitates ion and electron transports, resulting in high rate performance (∼140 F g-1 at a current of 10 A g-1).

  18. Insights in the Diffusion Controlled Interfacial Flow Synthesis of Au Nanostructures in a Microfluidic System.

    PubMed

    Kulkarni, Amol A; Sebastian Cabeza, Victor

    2017-12-19

    Continuous segmented flow interfacial synthesis of Au nanostructures is demonstrated in a microchannel reactor. This study brings new insights into the growth of nanostructures at continuous interfaces. The size as well as the shape of the nanostructures showed significant dependence on the reactant concentrations, reaction time, temperature, and surface tension, which actually controlled the interfacial mass transfer. The microchannel reactor assisted in achieving a high interfacial area, as well as uniformity in mass transfer effects. Hexagonal nanostructures were seen to be formed in synthesis times as short as 10 min. The wettability of the channel showed significant effect on the particle size as well as the actual shape. The hydrophobic channel yielded hexagonal structures of relatively smaller size than the hydrophilic microchannel, which yielded sharp hexagonal bipyramidal particles (diagonal distance of 30 nm). The evolution of particle size and shape for the case of hydrophilic microchannel is also shown as a function of the residence time. The interfacial synthesis approach based on a stable segmented flow promoted an excellent control on the reaction extent, reduction in axial dispersion as well as the particle size distribution.

  19. Control of Oxidative Sulfur Metabolism of Chlorobium limicola forma thiosulfatophilum

    PubMed Central

    Cork, Douglas; Mathers, Jeremy; Maka, Andrea; Srnak, Anna

    1985-01-01

    A metered blend of anaerobic-grade N2, CO2, and H2S gases was introduced into an illuminated, 800-ml liquid volume, continuously stirred tank reactor. The system, described as an anaerobic gas-to-liquid phase fed-batch reactor, was used to investigate the effects of H2S flow rate and light energy on the accumulation of oxidized sulfur compounds formed by the photoautotroph Chlorobium limicola forma thiosulfatophilum during growth. Elemental sulfur was formed and accumulated in stoichiometric quantities when light energy and H2S molar flow rate levels were optimally adjusted in the presence of nonlimiting CO2. Deviation from the optimal H2S and light energy levels resulted in either oxidation of sulfur or complete inhibition of sulfide oxidation. Based on these observations, a model of sulfide and sulfur oxidases electrochemically coupled to the photosynthetic reaction center of Chlorobium spp. is presented. The dynamic deregulation of oxidative pathways may be a mechanism for supplying the photosynthetic reaction center with a continuous source of electrons during periods of varying light and substrate availability, as in pond ecosystems where Chlorobium spp. are found. Possible applications for a sulfide gas removal process are discussed. PMID:16346713

  20. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.

    PubMed

    Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy

    2016-01-01

    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime.

  1. Correlating defect density with growth time in continuous graphene films.

    PubMed

    Kang, Cheong; Jung, Da Hee; Nam, Ji Eun; Lee, Jin Seok

    2014-12-01

    We report that graphene flakes and films which were synthesized by copper-catalyzed atmospheric pressure chemical vapor deposition (APCVD) method using a mixture of Ar, H2, and CH4 gases. It was found that variations in the reaction parameters, such as reaction temperature, annealing time, and growth time, influenced the domain size of as-grown graphene. Besides, the reaction parameters influenced the number of layers, degree of defects and uniformity of the graphene films. The increase in growth temperature and annealing time tends to accelerate the graphene growth rate and increase the diffusion length, respectively, thereby increasing the average size of graphene domains. In addition, we confirmed that the number of pinholes reduced with increase in the growth time. Micro-Raman analysis of the as-grown graphene films confirmed that the continuous graphene monolayer film with low defects and high uniformity could be obtained with prolonged reaction time, under the appropriate annealing time and growth temperature.

  2. Arrhenius plot for a reaction catalyzed by a single molecule of β-galactosidase.

    PubMed

    Craig, Douglas B; Chase, Linden N

    2012-02-21

    The activity of a single enzyme molecule of Escherichia coli β-galactosidase was measured using a capillary electrophoresis continuous flow assay. As the enzyme molecule traversed the capillary the incubation temperature was increased from 27 to 37 °C, providing a continuous record of the change in rate with temperature. This data was used to develop a single enzyme molecule Arrhenius plot, from which the activation energy of the reaction was determined to be 31 kJ mol(-1).

  3. Computer Simulation of the Continuous TNT Process. Volume 1: The Nitration Section

    DTIC Science & Technology

    1975-01-01

    isomerism and oxidation account for a yield lose of about 8 to 10% based on molar feed of toluene. PROCESS DESCRIPTION The continuous TNT process, which is...nitration section of the process in terms of the kinetic and mass transfer phenomena which are believed to occur there and account for most of the process...Reaction 10) It it pointed out that Reactions 1 through 10 are not mechanistic equations but rather stoichiometric equations which account for the

  4. Using Multiscale Modeling to Study Coupled Flow, Transport, Reaction and Biofilm Growth Processes in Porous Media

    NASA Astrophysics Data System (ADS)

    Valocchi, A. J.; Laleian, A.; Werth, C. J.

    2017-12-01

    Perturbation of natural subsurface systems by fluid inputs may induce geochemical or microbiological reactions that change porosity and permeability, leading to complex coupled feedbacks between reaction and transport processes. Some examples are precipitation/dissolution processes associated with carbon capture and storage and biofilm growth associated with contaminant transport and remediation. We study biofilm growth due to mixing controlled reaction of multiple substrates. As biofilms grow, pore clogging occurs which alters pore-scale flow paths thus changing the mixing and reaction. These interactions are challenging to quantify using conventional continuum-scale porosity-permeability relations. Pore-scale models can accurately resolve coupled reaction, biofilm growth and transport processes, but modeling at this scale is not feasible for practical applications. There are two approaches to address this challenge. Results from pore-scale models in generic pore structures can be used to develop empirical relations between porosity and continuum-scale parameters, such as permeability and dispersion coefficients. The other approach is to develop a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled by a suitable method that ensures continuity of flux across the interface. Thus, regions of high reactivity where flow alteration occurs are resolved at the pore scale for accuracy while regions of low reactivity are resolved at the continuum scale for efficiency. This approach thus avoids the need for empirical upscaling relations in regions with strong feedbacks between reaction and porosity change. We explore and compare these approaches for several two-dimensional cases.

  5. Facet-Dependent Oxidative Goethite Growth As a Function of Aqueous Solution Conditions.

    PubMed

    Strehlau, Jennifer H; Stemig, Melissa S; Penn, R Lee; Arnold, William A

    2016-10-04

    Nitroaromatic compounds are groundwater pollutants that can be degraded through reactions with Fe(II) adsorbed on iron oxide nanoparticles, although little is known about the evolving reactivity of the minerals with continuous pollutant exposure. In this work, Fe(II)/goethite reactivity toward 4-chloronitrobenzene (4-ClNB) as a function of pH, organic matter presence, and reactant concentrations was explored using sequential-spike batch reactors. Reaction rate constants were smaller with lower pH, introduction of organic matter, and diluted reactant concentrations as compared to a reference condition. Reaction rate constants did not change with the number of 4-ClNB spikes for all reaction conditions. Under all conditions, oxidative goethite growth was demonstrated through X-ray diffraction, magnetic characterization, and transmission electron microscopy. Nonparametric statistics were applied to compare histograms of lengths and widths of goethite nanoparticles as a function of varied solution conditions. The conditions that slowed the reaction also resulted in statistically shorter and wider particles than for the faster reactions. Additionally, added organic matter interfered with particle growth on the favorable {021} faces to a greater extent, with statistically reduced rate of growth on the tip facets and increased rate of growth on the side facets. These data demonstrate that oxidative growth of goethite in aqueous systems is dependent on major groundwater variables, such as pH and the presence of organic matter, which could lead to the evolving reactivity of goethite particles in natural environments.

  6. Desensitization to ceftaroline in a patient with multiple medication hypersensitivity reactions.

    PubMed

    Jones, Justin M; Richter, Lisa M; Alonto, Augusto; Leedahl, David D

    2015-02-01

    The case of a patient with multiple medication hypersensitivity reactions and a methicillin-resistant Staphylococcus aureus (MRSA) infection who underwent desensitization to ceftaroline is reported. A 32-year-old Caucasian woman with asthma, gastroesophageal reflux disease, heart murmur, and major depression was admitted for MRSA cellulitis with a subcutaneous abscess along the left sternomanubrial joint and clavicular osteomyelitis secondary to port placement after gastric bypass surgery. The patient had an extensive history of hypersensitivity reactions. Pertinent documented allergies were as follows: penicillin (anaphylaxis), daptomycin (anaphylaxis), vancomycin (hives), linezolid (hives), ertapenem (rash), ciprofloxacin (rash), and tigecycline (rash). The patient also reported previous reactions to aztreonam (unknown) and gentamicin (hives). The pharmacy was consulted to develop a desensitization protocol for ceftaroline. The desensitization protocol used three serial dilutions of ceftaroline to make 14 sequential infusions with escalating doses. Intramuscular epinephrine, i.v. diphenhydramine, and i.v. methylprednisolone were ordered as needed for the development of immediate hypersensitivity reactions during or after administration of ceftaroline. The cumulative dose (574.94 mg) was administered intravenously over 225 minutes with no breakthrough symptoms reported during or after the desensitization protocol. Ceftaroline fosamil 600 mg i.v. every 12 hours was continued for six weeks. Desensitization to ceftaroline was conducted for a patient with extensive history of hypersensitivity reactions to other drugs, including penicillin-induced anaphylaxis. Desensitization and subsequent treatment with full doses of ceftaroline were accomplished without apparent adverse effects. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  7. Insights into the Hydrogen-Atom Transfer of the Blue Aroxyl.

    PubMed

    Bächle, Josua; Marković, Marijana; Kelterer, Anne-Marie; Grampp, Günter

    2017-10-19

    An experimental and theoretical study on hydrogen-atom transfer dynamics in the hydrogen-bonded substituted phenol/phenoxyl complex of the blue aroxyl (2,4,6-tri-tert-butylphenoxyl) is presented. The experimental exchange dynamics is determined in different organic solvents from the temperature-dependent alternating line-width effect in the continuous-wave ESR spectrum. From bent Arrhenius plots, effective tunnelling contributions with parallel heavy-atom motion are concluded. To clarify the transfer mechanism, reaction paths for different conformers of the substituted phenol/phenoxyl complex are modelled theoretically. Various DFT and post-Hartree-Fock methods including multireference methods are applied. From the comparison of experimental and theoretical data it is concluded that the system favours concerted hydrogen-atom transfer along a parabolic reaction path caused by heavy-atom motion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fractional calculus and morphogen gradient formation

    NASA Astrophysics Data System (ADS)

    Yuste, Santos Bravo; Abad, Enrique; Lindenberg, Katja

    2012-12-01

    Some microscopic models for reactive systems where the reaction kinetics is limited by subdiffusion are described by means of reaction-subdiffusion equations where fractional derivatives play a key role. In particular, we consider subdiffusive particles described by means of a Continuous Time Random Walk (CTRW) model subject to a linear (first-order) death process. The resulting fractional equation is employed to study the developmental biology key problem of morphogen gradient formation for the case in which the morphogens are subdiffusive. If the morphogen degradation rate (reactivity) is constant, we find exponentially decreasing stationary concentration profiles, which are similar to the profiles found when the morphogens diffuse normally. However, for the case in which the degradation rate decays exponentially with the distance to the morphogen source, we find that the morphogen profiles are qualitatively different from the profiles obtained when the morphogens diffuse normally.

  9. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    NASA Astrophysics Data System (ADS)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  10. Apparent lack of cross-reactivity for infusion-related reactions between two forms of lipid-based amphotericin B.

    PubMed

    Buckley, Mitchell S; Anderson, Clint S; Patel, Shardool A; Yerondopoulos, Melanie J; Wicks, Laura M; Martin, Mary T

    2013-06-15

    The case of a patient who experienced probable infusion-related reactions to amphotericin B lipid complex (ABLC) but tolerated continued amphotericin B therapy after a switch to an alternative lipid-based formulation is reported. A 28-year-old immunocompromised man with pneumonia, respiratory failure, and neutropenic fever was initiated on ABLC and other antibiotics for suspected invasive aspergillosis. Due to the patient's deteriorating renal function, the use of amphotericin B was deemed preferable to the standard therapy for invasive aspergillosis (voriconazole) even though he had experienced likely infusion-related reactions to ABLC on two prior occasions. During the infusion of ABLC, significant increases in the man's temperature, respiratory rate, systolic blood pressure, and heart rate were observed. Although those symptoms were suspected to be infusion related, it was decided that continuing amphotericin B therapy with an alternative lipid-based form of the drug was the best course of action. After the patient was switched to liposomal amphotericin B one day later, no further infusion-related adverse reactions were noted for the duration of therapy. While this case suggests that adverse reactions to one type of amphotericin B might not occur with the use of an alternative formulation, further research is needed to better define the potential for cross-reactivity among various forms of amphotericin B and related safe-infusion practices. A patient with invasive aspergillosis who experienced likely infusion- related reactions to ABLC was able to tolerate continued amphotericin B therapy after a switch to the liposomal formulation.

  11. Millimeter and Submillimeter Studies of O(^1D) Insertion Reactions to Form Molecules of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Hays, Brian; Wehres, Nadine; Deprince, Bridget Alligood; Roy, Althea A. M.; Laas, Jacob; Widicus Weaver, Susanna L.

    2015-06-01

    While both the number of detected interstellar molecules and their chemical complexity continue to increase, understanding of the processes leading to their formation is lacking. Our research group combines laboratory spectroscopy, observational astronomy, and astrochemical modeling for an interdisciplinary examination of the chemistry of star and planet formation. This talk will focus on our laboratory studies of O(^1D) insertion reactions with organic molecules to produce molecules of astrophysical interest. By employing these reactions in a supersonic expansion, we are able to produce interstellar organic reaction intermediates that are unstable under terrestrial conditions; we then probe the products using millimeter and submillimeter spectroscopy. We benchmarked this setup using the well-studied O(^1D) + methane reaction to form methanol. After optimizing methanol production, we moved on to study the O(^1D) + ethylene reaction to form vinyl alcohol (CH_2CHOH), and the O(^1D) + methyl amine reaction to form aminomethanol (NH_2CH_2OH). Vinyl alcohol measurements have now been extended up to 450 GHz, and the associated spectral analysis is complete. A possible detection of aminomethanol has also been made, and continued spectral studies and analysis are underway. We will present the results from these experiments and discuss future applications of these molecular and spectroscopic techniques.

  12. Systems Characterization of Temperature, Ph and Electrical Conductivity in Aerobic Biodegradation of Wheat Biomass at Differing Mixing Rates

    NASA Technical Reports Server (NTRS)

    Calhoun, M.; Trotman, A.; Aglan, H.

    1998-01-01

    The purpose of this preliminary study is to observe and relate the rate of mixing to pH and electrical conductivity in an aerobic, continuously stirred bioreactor. The objective is to use data collected from successive experiments as a means of a system characterization. Tests were conducted to obtain these data using a continuously stirred 20 L Cytostir glass reaction vessel as a bioreactor operated without built-in temperature or pH control. The tests were conducted on the lab bench at ambient temperatures. The substrate in the bioreactor was ground wheat biomass obtained from the Biomass Production Chamber at NASA Kennedy Space Center. In this study, the data reflect characteristics of the native (uninoculated) systems as well as inoculated systems. In the native systems, it was found that pi levels became stable after approximately 2 to 3 days. The electrical conductivity levels for the native systems tended to decrease over time. In contrast, ion activity was increased after the introduction of bacteria into the system. This could be correlated with the release of nutrients, due to the activity of the bacteria. Also, there were slight increases in pH in the inoculated system, a result which is expected for a system with no active pr controls. The data will be used to test a mathematical model in an automated system.

  13. Asymmetric reactions in continuous flow

    PubMed Central

    Mak, Xiao Yin; Laurino, Paola

    2009-01-01

    Summary An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed. PMID:19478913

  14. The Barium Hydroxide-Ammonium Thiocyanate Reaction: A Titrimetric Continuous Variations Experiment.

    ERIC Educational Resources Information Center

    Harris, Arlo D.

    1979-01-01

    Presents an experiment for inorganic, organic, or physical chemistry students utilizing acid-base titrimetry to study the stoichiometric of a solid state reaction. Time involved ranges from one to three, three-hour lab periods. (Author/SA)

  15. Laboratory experiments in the study of the chemistry of the outer planets.

    PubMed

    Scattergood, T W

    1987-01-01

    The investigation of chemical evolution of bodies in our solar system has, in the past, included observations, theoretical modeling, and laboratory simulations. Of these programs, the last one has been the most criticized due to the inherent difficulties in accurately recreating alien environments in the laboratory. Processes such as wall reactions and changes in chemistry due to difficulties in achieving realistic conditions of temperature, pressure, composition, and energy flux may yield results which are not truly representative of the systems being modeled. However, many laboratory studies have been done which have yielded data useful in planetary science. Gross simulations of atmospheric chemistry have placed constraints on the nature of complex molecules expected in planetary atmospheres. More precise studies of specific chemical processes have provided information about the sources and properties of product gases and aerosols. Determinations of basic properties such as spectral features and reaction rate constants yield data useful in the interpretation of observations and in computational modeling. Alone, and in conjunction with modeling, laboratory experiments will continue to be used to further our understanding of the outer solar system, and some experiments that need to be done are listed.

  16. Development of Eddy Current Techniques for the Detection of Cracking in Space Shuttle Primary Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A.; Simpson, John W.; Koshti, Ajay

    2007-01-01

    A recent identification of cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.

  17. Development of Eddy Current Technique for the Detection of Stress Corrosion Cracking in Space Shuttle Primary Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John; Koshti, Ajay

    2006-01-01

    A recent identification of stress corrosion cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.

  18. Hybrid hard- and soft-modeling of spectrophotometric data for monitoring of ciprofloxacin and its main photodegradation products at different pH values

    NASA Astrophysics Data System (ADS)

    Razuc, Mariela; Garrido, Mariano; Caro, Yamile S.; Teglia, Carla M.; Goicoechea, Héctor C.; Fernández Band, Beatriz S.

    2013-04-01

    A simple and fast on line spectrophotometric method combined with a hybrid hard-soft modeling multivariate curve resolution (HS-MCR) was proposed for the monitoring of photodegradation reaction of ciprofloxacin under UV radiation. The studied conditions attempt to emulate the effect of sunlight on these antibiotics that could be eventually present in the environment. The continuous flow system made it possible to study the ciprofloxacin degradation at different pH values almost at real time, avoiding errors that could arise from typical batch monitoring of the reaction. On the base of a concentration profiles obtained by previous pure soft-modeling approach, reaction pathways have been proposed for the parent compound and its photoproducts at different pH values. These kinetic models were used as a constraint in the HS-MCR analysis. The kinetic profiles and the corresponding pure response profile (UV-Vis spectra) of ciprofloxacin and its main degradation products were recovered after the application of HS-MCR analysis to the spectra recorded throughout the reaction. The observed behavior showed a good agreement with the photodegradation studies reported in the bibliography. Accordingly, the photodegradation reaction was studied by high performance liquid chromatography coupled with UV-Vis diode array detector (HPLC-DAD). The spectra recorded during the chromatographic analysis present a good correlation with the ones recovered by UV-Vis/HS-MCR method.

  19. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor

    PubMed Central

    Fusillo, Vincenzo; Jenkins, Robert L; Lubinu, M Caterina; Mason, Christopher

    2013-01-01

    Summary The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing. PMID:24204407

  20. Phosphate Detection through a Cost-Effective Carbon Black Nanoparticle-Modified Screen-Printed Electrode Embedded in a Continuous Flow System.

    PubMed

    Talarico, Daria; Cinti, Stefano; Arduini, Fabiana; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe

    2015-07-07

    An automatable flow system for the continuous and long-term monitoring of the phosphate level has been developed using an amperometric detection method based on the use of a miniaturized sensor. This method is based on the monitoring of an electroactive complex obtained by the reaction between phosphate and molybdate that is consequently reduced at the electrode surface. The use of a screen-printed electrode modified with carbon black nanoparticles (CBNPs) leads to the quantification of the complex at low potential, because CBNPs are capable of electrocatalitically enhancing the phosphomolybdate complex reduction at +125 mV versus Ag/AgCl without fouling problems. The developed system also incorporates reagents and waste storage and is connected to a portable potentiostat for rapid detection and quantification of phosphate. Main analytical parameters, such as working potential, reagent concentration, type of cell, and flow rate, were evaluated and optimized. This system was characterized by a low detection limit (6 μM). Interference studies were carried out. Good recovery percentages comprised between 89 and 131.5% were achieved in different water sources, highlighting its suitability for field measurements.

  1. Demonstration of a Large-Scale Tank Assembly via Circumferential Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Jones, Clyde S.; Adams, Glynn; Colligan, Kevin

    2000-01-01

    A collaborative effort between NASA/Marshall Space Flight Center and the Michoud Unit of Lockheed Martin Space Systems Company was undertaken to demonstrate assembly of a large-scale aluminum tank using circumferential friction stir welds. The hardware used to complete this demonstration was fabricated as a study of near-net- shape technologies. The tooling used to complete this demonstration was originally designed for assembly of a tank using fusion weld processes. This presentation describes the modifications and additions that were made to the existing fusion welding tools required to accommodate circumferential friction stir welding, as well as the process used to assemble the tank. The tooling modifications include design, fabrication and installation of several components. The most significant components include a friction stir weld unit with adjustable pin length capabilities, a continuous internal anvil for 'open' circumferential welds, a continuous closeout anvil, clamping systems, an external reaction system and the control system required to conduct the friction stir welds and integrate the operation of the tool. The demonstration was intended as a development task. The experience gained during each circumferential weld was applied to improve subsequent welds. Both constant and tapered thickness 14-foot diameter circumferential welds were successfully demonstrated.

  2. DNA curtains for high-throughput single-molecule optical imaging.

    PubMed

    Greene, Eric C; Wind, Shalom; Fazio, Teresa; Gorman, Jason; Visnapuu, Mari-Liis

    2010-01-01

    Single-molecule approaches provide a valuable tool in the arsenal of the modern biologist, and new discoveries continue to be made possible through the use of these state-of-the-art technologies. However, it can be inherently difficult to obtain statistically relevant data from experimental approaches specifically designed to probe individual reactions. This problem is compounded with more complex biochemical reactions, heterogeneous systems, and/or reactions requiring the use of long DNA substrates. Here we give an overview of a technology developed in our laboratory, which relies upon simple micro- or nanofabricated structures in combination with "bio-friendly" lipid bilayers, to align thousands of long DNA molecules into defined patterns on the surface of a microfluidic sample chamber. We call these "DNA curtains," and we have developed several different versions varying in complexity and DNA substrate configuration, which are designed to meet different experimental needs. This novel approach to single-molecule imaging provides a powerful experimental platform that offers the potential for concurrent observation of hundreds or even thousands of protein-DNA interactions in real time. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Fuel-rich catalytic combustion: A soot-free technique for in situ hydrogen-like enrichment

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Olson, S. L.

    1985-01-01

    An experimental program on the catalytic oxidation of iso-octane demonstrated the feasibility of the two-stage combustion system for reducing particulate emissions. With a fuel-rich (phi = 4.8 to 7.8) catalytic combustion preburner as the first stage the combustion process was soot free at reactor outlet temperatures of 1200 K or less. Although soot was not measured directly, its absence was indicated. Reaction products collected at two positions downstream of the catalyst bed were analyzed on a gas chromatograph. Comparison of these products indicated that pyrolysis of the larger molecules continued along the drift tube and that benzene formation was a gas-phase reaction. The effective hydrogen-carbon ratio calculated from the reaction products increased by 20 to 68 percent over the range of equivalence ratios tested. The catalytic partial oxidation process also yielded a large number of smaller-containing molecules. The fraction of fuel carbon in compounds having two or fewer carbon atoms ranged from 30 percent at 1100 K to 80 percent at 1200 K.

  4. Continuous performance task in ADHD: Is reaction time variability a key measure?

    PubMed

    Levy, Florence; Pipingas, Andrew; Harris, Elizabeth V; Farrow, Maree; Silberstein, Richard B

    2018-01-01

    To compare the use of the Continuous Performance Task (CPT) reaction time variability (intraindividual variability or standard deviation of reaction time), as a measure of vigilance in attention-deficit hyperactivity disorder (ADHD), and stimulant medication response, utilizing a simple CPT X-task vs an A-X-task. Comparative analyses of two separate X-task vs A-X-task data sets, and subgroup analyses of performance on and off medication were conducted. The CPT X-task reaction time variability had a direct relationship to ADHD clinician severity ratings, unlike the CPT A-X-task. Variability in X-task performance was reduced by medication compared with the children's unmedicated performance, but this effect did not reach significance. When the coefficient of variation was applied, severity measures and medication response were significant for the X-task, but not for the A-X-task. The CPT-X-task is a useful clinical screening test for ADHD and medication response. In particular, reaction time variability is related to default mode interference. The A-X-task is less useful in this regard.

  5. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    PubMed

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  6. [Leprosy reactions in discharged patients following cure by multidrug therapy].

    PubMed

    Souza, Linton Wallis Figueiredo

    2010-01-01

    Reactional states are the main cause of nerve lesions and incapacities provoked by leprosy. Retrospective study aimed at verifying the frequency of leprosy reactions in discharged patients following cure by multidrug therapy (MDT). Among patients who presented reactions during treatment, 35.5% continued after MDT; of those that did not present during treatment, only 12.7% presented after discharge; 63.4% multibacillary patients presented during and 31.7% after; 27.7% paucibacillary patients presented during and 8.3% after. A direct proportional relation exists between the presence of reactions during and after treatment. Multibacillary clinical forms present a greater frequency of reactions during and after cure.

  7. Sleeve reaction chamber system

    DOEpatents

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  8. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtainedmore » from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.« less

  9. Enriched environment protects the nigrostriatal dopaminergic system and induces astroglial reaction in the 6-OHDA rat model of Parkinson's disease.

    PubMed

    Anastasía, Agustín; Torre, Luciana; de Erausquin, Gabriel A; Mascó, Daniel H

    2009-05-01

    Enriched environment (EE) is neuroprotective in several animal models of neurodegeneration. It stimulates the expression of trophic factors and modifies the astrocyte cell population which has been said to exert neuroprotective effects. We have investigated the effects of EE on 6-hydroxydopamine (6-OHDA)-induced neuronal death after unilateral administration to the medial forebrain bundle, which reaches 85-95% of dopaminergic neurons in the substantia nigra after 3 weeks. Continuous exposure to EE 3 weeks before and after 6-OHDA injection prevents neuronal death (assessed by tyrosine hydroxylase staining), protects the nigrostriatal pathway (assessed by Fluorogold retrograde labeling) and reduces motor impairment. Four days after 6-OHDA injection, EE was associated with a marked increase in glial fibrillary acidic protein staining and prevented neuronal death (assessed by Fluoro Jade-B) but not partial loss of tyrosine hydroxylase staining in the anterior substantia nigra. These results robustly demonstrate that EE preserves the entire nigrostriatal system against 6-OHDA-induced toxicity, and suggests that an early post-lesion astrocytic reaction may participate in the neuroprotective mechanism.

  10. Nitrogen dioxide produced by self-sustained pyrolysis of nitrous oxide

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.

    1965-01-01

    Apparatus is developed for achieving continuous self-sustaining pyrolysis reaction in the production of nitrogen dioxide from nitrous oxide. The process becomes self-sustaining because of the exothermic reaction and the regenerative heating of the gases in the pyrolysis chamber.

  11. Organic Synthesis in a Spinning Tube-in-Tube (STT¢) Reactor

    EPA Science Inventory

    Continuous-flow reactors have been designed to minimize and potentially overcome the limitations of heat and mass transfer that are encountered in chemical reactors and further experienced upon scale up of a reaction. With process intensification, optimization of the reaction i...

  12. Contribution of sulfur-containing compounds to the colour-inhibiting effect and improved antioxidant activity of Maillard reaction products of soybean protein hydrolysates.

    PubMed

    Huang, Meigui; Liu, Ping; Song, Shiqing; Zhang, Xiaoming; Hayat, Khizar; Xia, Shuqin; Jia, Chengsheng; Gu, Fenglin

    2011-03-15

    Light-coloured and savoury-tasting flavour enhancers are attractive to both consumers and food producers. The aim of this study was to investigate the colour-inhibiting effect of L-cysteine and thiamine during the Maillard reaction of soybean peptide and D-xylose. The correlation between volatile compounds and antioxidant activity of the corresponding products was also studied. Colour formation was markedly suppressed by cysteine. Compared with peptide/xylose (PX), the taste profile of Maillard reaction products (MRPs) derived from peptide/xylose/cysteine (PXC) and peptide/xylose/cysteine/thiamine (PXCT) was stronger, including umami, mouthfulness, continuity, meaty and overall acceptance. PXC and PXCT also exihibited distinctly higher antioxidant activity. Principal component analysis was applied to investigate the correlation between antioxidant activity and volatile compounds. Of 88 volatile compounds identified, 55 were significantly correlated with antioxidant activity by two principal components (accounting for 85.05% of the total variance). Effective colour control of the Maillard reaction by L-cysteine may allow the production of healthier (higher antioxidant activity) and tastier foods to satisfy consumers' and food producers' demands. Light-coloured products might be used as functional flavour enhancers in various food systems. Copyright © 2010 Society of Chemical Industry.

  13. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery

    NASA Astrophysics Data System (ADS)

    Fernandes, Y.; Bry, A.; de Persis, S.

    2018-06-01

    As hazardous situations can occur during the life of a Li-ion battery, it is of great importance to understand its behavior under abusive conditions (mechanical, thermal or electrical). In particular, the study of overcharge, which consists of forcing a current through the cell, can be very helpful in improving battery safety. Very few studies in the literature have focused on the chemical reaction mechanism responsible for failure during overcharge. This is, however, of great interest because a Li-ion battery can produce reactions in a sealed container and is thus a highly reactive system. Here, experimental approaches are employed to understand the reaction mechanisms that occur during overcharge testing. Experiments consist of studying the overcharge kinetics of a commercial battery at an initial state of charge of 100%. The battery is maintained in a known volume and gaseous samples are withdrawn both at the end of the test and continuously during the test. The main gaseous species are then identified and quantified by gas phase chromatography coupled with mass spectrometry and FTIR spectroscopy. This experimental study is completed by a numerical investigation to determine the combustion parameters of the exhaust gases using a detailed reaction mechanism associated with a numerical code.

  14. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Zhang, M. M.; Zhang, D. X.; Xu, D.; Qian, Y.; Liu, W.

    2014-01-01

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H2 from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H2 in helium recycle gas are less than 1 ppb.

  15. Total Synthesis of Ionic Liquid Systems for Dissolution of Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Sharpe, Robert J.; Karr, Laurel J.; Paley, Mark S.

    2010-01-01

    For purposes of Space Resource Utilization, work in the total synthesis of a new ionic liquid system for the extraction of oxygen and metals from lunar soil is studied and described. Reactions were carried out according to procedures found in the chemical literature, analyzed via Thin-Layer Chromatography and 1H Nuclear Magnetic Resonance Spectroscopy and purified via vacuum distillation and rotary evaporation. Upon final analysis via 1H NMR, it was found that while the intermediates of the synthesis had been achieved, unexpected side products were also present. The mechanisms and constraints of the synthesis are described as well as the final results of the project and recommendations for continued study

  16. The Canadian Transfusion Surveillance System: what is it and how can the data be used?

    PubMed

    Ditomasso, Julie; Liu, Yang; Heddle, Nancy M

    2012-06-01

    Hemovigilance systems are important programs for: monitoring trends of known risks; evaluating effectiveness of steps taken to reduce risks; providing data to support recommendations for change and guideline development; and contributing overall to the safety of transfusion. The Transfusion Transmitted Injury Surveillance System is the hemovigilance system implemented in Canada. It evolved in 1999 as a pilot program and expanded across Canada in 2005. Each province reports their adverse reactions to the transfusion of blood products and plasma proteins to the Public Health Agency of Canada (PHAC) at predetermined intervals. PHAC reconciles, summarizes the data and publishes a report approximately 2 years after the data are collected. This is considered a passive reporting system but in spite of the delays, the program provides useful information to address a variety of questions. Examples include: assessing the impact of a provincial patient transfusion history registry in Québec on reporting of hemolytic transfusion reactions; identifying trends of bacterial contamination of blood products and assessing the impact of interventions on these events; and the impact of male-only plasma on the incidence of Transfusion Related Acute Lung Injury. Although hemovigilance data has been successfully used to improve blood safety, we must continue to explore ways to utilize such data to improve and implement safe transfusion practices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. 3D-printed devices for continuous-flow organic chemistry.

    PubMed

    Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J; Cronin, Leroy

    2013-01-01

    We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  18. Nitrogen Chemistry in Sea Level Air Following Large Radiation Doses.

    DTIC Science & Technology

    1984-06-15

    majur reactions NO + 0 + M +N0 2 + M (9) ’.o, NO+0 3 +N 2 +0 2 (1) NO + HO2 + NO2 + OH (11) 0 + NO2 NO + U 2 (12) H + NO2 + No + OOH (13) NO + OH...8217 ’, ,-7- 0 DEPARTMENT OF THE NAVY DEPARTMENT OF THE AIR FORCE (Continued) 0 Joint Cruise Missiles Project...Ofc Air Force Space Technology Ctr ATTN: JCMG-707 ATTN: YH Naval Air Systems Command Air Force !-!ight Aeronautical Lab/AAAD ATTN: PMA 271 ATjN: W

  19. Ultrafast table-top dynamic radiography of spontaneous or stimulated events

    DOEpatents

    Smilowitz, Laura; Henson, Bryan

    2018-01-16

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing radiography. For example, certain embodiments concern X-ray radiography of spontaneous events. Particular embodiments of the disclosed technology provide continuous high-speed x-ray imaging of spontaneous dynamic events, such as explosions, reaction-front propagation, and even material failure. Further, in certain embodiments, x-ray activation and data collection activation are triggered by the object itself that is under observation (e.g., triggered by a change of state detected by one or more sensors monitoring the object itself).

  20. The Relevance of the De Broglie Velocity (V sub 1 = h/2md sub 1) to Shock Loading Induced Reactions in Lead Azide

    DTIC Science & Technology

    1991-09-01

    CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP De Broglie Velocity Detonation Particle...Velocity Shock Induced Reaction I Lead Azide 19. ABSTRACT (Continue on reverse if necessary and identify by biock number) Availabl e experimental shock...induced reactive pressure levels for dextrinated and single crystal lead azide are compared to predicted Pv1 magnitudes. PV1 = P. CL V1 where V, = h

  1. Proof of concept of the CaO/Ca(OH)2 reaction in a continuous heat-exchanger BFB reactor for thermochemical heat storage in CSP plants

    NASA Astrophysics Data System (ADS)

    Rougé, Sylvie; Criado, Yolanda A.; Huille, Arthur; Abanades, J. Carlos

    2017-06-01

    The CaO/Ca(OH)2 hydration/dehydration reaction has long been identified as a attractive method for storing CSP heat. However, the technology applications are still at laboratory scale (TG or small fixed beds). The objective of this work is to investigate the hydration and dehydration reactions performance in a bubbling fluidized bed (BFB) which offers a good potential with regards to heat and mass transfers and upscaling at industrial level. The reactions are first investigated in a 5.5 kW batch BFB, the main conditions are the bed temperature (400-500°C), the molar fraction of steam in the fluidizing gas (0-0.8), the fluidizing gas velocity (0.2-0.7 m/s) and the mass of lime in the batch (1.5-3.5 kg). To assist in the interpretation of the experimental results, a standard 1D bubbling reactor model is formulated and fitted to the experimental results. The results indicate that the hydration reaction is mainly controlled by the slow kinetics of the CaO material tested while significant emulsion-bubble mass-transfer resistances are identified during dehydration due to the much faster dehydration kinetics. In the continuity of these preliminary investigations, a continuous 15.5 kW BFB set-up has been designed, manufactured and started with the objective to operate the hydration and dehydration reactions in steady state during a few hours, and to investigate conditions of faster reactivity such as higher steam molar fractions (up to 1), temperatures (up to 600°C) and velocities (up to 1.5 m/s).

  2. Evolution of a chemically reacting plume in a ventilated room

    NASA Astrophysics Data System (ADS)

    Conroy, D. T.; Smith, Stefan G. Llewellyn; Caulfield, C. P.

    2005-08-01

    The dynamics of a second-order chemical reaction in an enclosed space driven by the mixing produced by a turbulent buoyant plume are studied theoretically, numerically and experimentally. An isolated turbulent buoyant plume source is located in an enclosure with a single external opening. Both the source and the opening are located at the bottom of the enclosure. The enclosure is filled with a fluid of a given density with a fixed initial concentration of a chemical. The source supplies a constant volume flux of fluid of different density containing a different chemical of known and constant concentration. These two chemicals undergo a second-order non-reversible reaction, leading to the creation of a third product chemical. For simplicity, we restrict attention to the situation where the reaction process does not affect the density of the fluids involved. Because of the natural constraint of volume conservation, fluid from the enclosure is continually vented. We study the evolution of the various chemical species as they are advected by the developing ventilated filling box process within the room that is driven by the plume dynamics. In particular, we study both the mean and vertical distributions of the chemical species as a function of time within the room. We compare the results of analogue laboratory experiments with theoretical predictions derived from reduced numerical models, and find excellent agreement. Important parameters for the behaviour of the system are associated with the source volume flux and specific momentum flux relative to the source specific buoyancy flux, the ratio of the initial concentrations of the reacting chemical input in the plume and the reacting chemical in the enclosed space, the reaction rate of the chemicals and the aspect ratio of the room. Although the behaviour of the system depends on all these parameters in a non-trivial way, in general the concentration within the room of the chemical input at the isolated source passes through three distinct phases. Initially, as the source fluid flows into the room, the mean concentration of the input chemical increases due to the inflow, with some loss due to the reaction with the chemical initially within the room. After a finite time, the layer of fluid contaminated by the inflow reaches the opening to the exterior at the base of the room. During an ensuing intermediate phase, the rate of increase in the concentration of the input chemical then drops non-trivially, due to the extra sink for the input chemical of the outflow through the opening. During this intermediate stage, the concentration of the input chemical continues to rise, but at a rate that is reduced due to the reaction with the fluid in the room. Ultimately, all the fluid (and hence the chemical) that was originally within the room is lost, both through reaction and outflow through the opening, and the room approaches its final steady state, being filled completely with source fluid.

  3. Method of Continuous Variations: Applications of Job Plots to the Study of Molecular Associations in Organometallic Chemistry[**

    PubMed Central

    Renny, Joseph S.; Tomasevich, Laura L.; Tallmadge, Evan H.; Collum, David B.

    2014-01-01

    Applications of the method of continuous variations—MCV or the Method of Job—to problems of interest to organometallic chemists are described. MCV provides qualitative and quantitative insights into the stoichiometries underlying association of m molecules of A and n molecules of B to form AmBn. Applications to complex ensembles probe associations that form metal clusters and aggregates. Job plots in which reaction rates are monitored provide relative stoichiometries in rate-limiting transition structures. In a specialized variant, ligand- or solvent-dependent reaction rates are dissected into contributions in both the ground states and transition states, which affords insights into the full reaction coordinate from a single Job plot. Gaps in the literature are identified and critiqued. PMID:24166797

  4. Integrodifferential formulations of the continuous-time random walk for solute transport subject to bimolecular A +B →0 reactions: From micro- to mesoscopic

    NASA Astrophysics Data System (ADS)

    Hansen, Scott K.; Berkowitz, Brian

    2015-03-01

    We develop continuous-time random walk (CTRW) equations governing the transport of two species that annihilate when in proximity to one another. In comparison with catalytic or spontaneous transformation reactions that have been previously considered in concert with CTRW, both species have spatially variant concentrations that require consideration. We develop two distinct formulations. The first treats transport and reaction microscopically, potentially capturing behavior at sharp fronts, but at the cost of being strongly nonlinear. The second, mesoscopic, formulation relies on a separation-of-scales technique we develop to separate microscopic-scale reaction and upscaled transport. This simplifies the governing equations and allows treatment of more general reaction dynamics, but requires stronger smoothness assumptions of the solution. The mesoscopic formulation is easily tractable using an existing solution from the literature (we also provide an alternative derivation), and the generalized master equation (GME) for particles undergoing A +B →0 reactions is presented. We show that this GME simplifies, under appropriate circumstances, to both the GME for the unreactive CTRW and to the advection-dispersion-reaction equation. An additional major contribution of this work is on the numerical side: to corroborate our development, we develop an indirect particle-tracking-partial-integro-differential-equation (PIDE) hybrid verification technique which could be applicable widely in reactive anomalous transport. Numerical simulations support the mesoscopic analysis.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westover, Tyler; Emerson, Rachel Marie

    Torrefaction is the thermal treatment of materials in the absence of oxygen in the temperature range of 200 to 300 °C and has been shown to improve handling and grinding properties, hydrophobicity, volatiles content, energy density, and combustion performance of renewable energy biomass feedstock materials. The disadvantages of torrefaction are its relative high cost compared to the low value input feedstock material and the energy that can be lost to volatized gases. This work will demonstrate a new technology developed by Advanced Torrefaction Systems (ATS), known as TorreCat™ Technology, that uses an oxidation catalyst in a closed system to combustmore » and destroy volatile organic compounds (VOCs) and other byproducts produced in the torrefaction process. An oxidation catalyst is a substance, or a combination of substances, that accelerate the rate of a chemical reaction without being consumed by the reaction. Catalytic combustion is a reaction that occurs at temperatures 50% lower than traditional combustion, such that essentially no NOx is created. The output of the oxidation catalyst (flue gas) consists mainly of superheated steam and inert gases (carbon dioxide and nitrogen), which can be used for heat in the thermal treatment process. INL has previously developed a pilot-scale Continuous-Feed Thermal Treatment System (CFTTS) that has 10 kg/hr capacity but does not reform the flue gas to reduce environmental concerns or capture all available heat from the biomass material. Using the TorreCat™ technology in INL’s thermal treatment system will demonstrate increased thermal efficiencies during the treatment process as well as reduced environmental impact and clean-up costs. The objective of this project is to determine the effectiveness of the Torrecat™ technology to reform the flue gas and capture as much of its heat content as possible.« less

  6. Noise induced phenomena in combustion

    NASA Astrophysics Data System (ADS)

    Liu, Hongliang

    Quantitative models of combustion usually consist of systems of deterministic differential equations. However, there are reasons to suspect that noise may have a significant influence. In this thesis, our primary objective is to study the effect of noise on measurable quantities in the combustion process. Our first study involves combustion in a homogeneous gas. With a one step reaction model, we analytically estimate the requirements under which noise is important to create significant differences. Our simulation shows that a bi-modality phenomenon appears when appropriate parameters are applied, which agrees with our analytical result. Our second study involves steady planar flames. We use a relatively complete chemical model of the H2/air reaction system, which contains all eight reactive species (H2, O2, H, O, OH, H2O, HO2, H2O2) and N2. Our mathematical model for this system is a reacting flow model. We derive noise terms related to transport processes by a method advocated by Landau & Lifshitz, and we also derive noise terms related to chemical reactions. We develop a code to simulate this system. The numerical implementation relies on a good Riemann solver, suitable initial and boundary conditions, and so on. We also implement a code on a continuation method, which not only can be used to study approximate properties of laminar flames under deterministic governing equations, but also eliminates the difficulty of providing a suitable initial condition for governing equations with noise. With numerical experiments, we find the difference of flame speed exist when the noise is turned on or off although it is small when compared with the influence of other parameters, for example, the equivalence ratio. It will be a starting point for further studies to include noise in combustion.

  7. Application of a continuous twin screw-driven process for dilute acid pretreatment of rape straw.

    PubMed

    Choi, Chang Ho; Oh, Kyeong Keun

    2012-04-01

    Rape straw, a processing residue generated from the bio-oil industry, was used as a model biomass for application of continuous twin screw-driven dilute acid pretreatment. The screw rotation speed and feeding rate were adjusted to 19.7rpm and 0.5g/min, respectively to maintain a residence time of 7.2min in the reaction zone, respectively. The sulfuric acid concentration was 3.5wt% and the reaction temperature was 165°C. The enzymatic digestibility of the glucan in the pretreated solids was 70.9%. The continuous process routinely gave around 28.8% higher yield for glucan digestibility than did the batch processing method. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegel, Aaron A.; Liu, Matthew J.; Hinsberg, William D.

    Multiphase chemical reactions (gas + solid/liquid) involve a complex interplay between bulk and interface chemistry, diffusion, evaporation, and condensation. Reactions of atmospheric aerosols are an important example of this type of chemistry: the rich array of particle phase states and multiphase transformation pathways produce diverse but poorly understood interactions between chemistry and transport. Their chemistry is of intrinsic interest because of their role in controlling climate. Their characteristics also make them useful models for the study of principles of reactivity of condensed materials under confined conditions. Previously, we have reported a computational study of the oxidation chemistry of a liquidmore » aliphatic aerosol. In this study, we extend the calculations to investigate nearly the same reactions at a semisolid gas-aerosol interface. A reaction-diffusion model for heterogeneous oxidation of triacontane by hydroxyl radicals (OH) is described, and its predictions are compared to measurements of aerosol size and composition, which evolve continuously during oxidation. Our results are also explicitly compared to those obtained for the corresponding liquid system, squalane, to pinpoint salient elements controlling reactivity. The diffusive confinement of the free radical intermediates at the interface results in enhanced importance of a few specific chemical processes such as the involvement of aldehydes in fragmentation and evaporation, and a significant role of radical-radical reactions in product formation. The simulations show that under typical laboratory conditions semisolid aerosols have highly oxidized nanometer-scale interfaces that encapsulate an unreacted core and may confer distinct optical properties and enhanced hygroscopicity. This highly oxidized layer dynamically evolves with reaction, which we propose to result in plasticization. The validated model is used to predict chemistry under atmospheric conditions, where the OH radical concentration is much lower. The oxidation reactions are more strongly influenced by diffusion in the particle, resulting in a more liquid-like character.« less

  9. Proton and deuteron activation measurements at the NPI and future plans in SPIRAL2/NFS

    NASA Astrophysics Data System (ADS)

    Šimečková, Eva; Bém, Pavel; Mrázek, Jaromír; Štefánik, Milan; Běhal, Radomír; Gladolev, Vadim

    2017-09-01

    The proton- and deuteron-induced reactions are of a great interest for the assessment of induced radioactivity of accelerator components, target and beam stoppers as well as isotope production for medicine. In the present work, the deuteron-induced reaction cross sections on zinc were investigated by stacked-foil activation technique with deuteron beam of 20 MeV energy from the cyclotron U-120M of NPI CAS Řež. Also the proton activation cross section measurement of iron is presented. The comparison of present results to data of other authors and to predictions of evaluated data libraries is discussed. The investigation shall continue for higher proton and deuteron energy interval 20-35 MeV at SPIRAL2/NFS facility using a charged particle irradiation chamber with pneumatic transport system to measure isotopes and isomers with half-lives in minutes-regions.

  10. Reaction Time and Attention: Toward a New Standard in the Assessment of ADHD? A Pilot Study.

    PubMed

    De la Torre, Gabriel G; Barroso, Juan M; León-Carrión, José; Mestre, Jose M; Bozal, Rocío Guil

    2015-12-01

    This pilot study shows results of an experiment comparing reaction times (RTs) and attentional performance between an ADHD group of 30 children and 30 controls, both Spanish speaking. The experiment was carried out using the Seville computerized neuropsychological battery (SNB). This study had two goals: One was to test sensitivity of SNB for attention deficits in ADHD and the second was to detect differences in RTs between ADHD and controls. Possible explanations and implications of such differences are also discussed. SNB computerized system was used to assess RTs and accuracy, and alternate forms of continuous performance task were used. Results showed high sensitivity of some of the SNB tests, especially cancellation tests. RTs were significantly different between groups. SNB represents a helpful tool for detection of attention deficits, and RT indices represent the most significant variable in differentiation of both groups studied. © The Author(s) 2012.

  11. The Simplest Chronoscope V: A Theory of Dual Primary and Secondary Reaction Time Systems.

    PubMed

    Montare, Alberto

    2016-12-01

    Extending work by Montare, visual simple reaction time, choice reaction time, discriminative reaction time, and overall reaction time scores obtained from college students by the simplest chronoscope (a falling meterstick) method were significantly faster as well as significantly less variable than scores of the same individuals from electromechanical reaction timers (machine method). Results supported the existence of dual reaction time systems: an ancient primary reaction time system theoretically activating the V5 parietal area of the dorsal visual stream that evolved to process significantly faster sensory-motor reactions to sudden stimulations arising from environmental objects in motion, and a secondary reaction time system theoretically activating the V4 temporal area of the ventral visual stream that subsequently evolved to process significantly slower sensory-perceptual-motor reactions to sudden stimulations arising from motionless colored objects. © The Author(s) 2016.

  12. Process and apparatus for obtaining silicon from fluosilicic acid

    DOEpatents

    Sancier, Kenneth M.

    1985-07-16

    Process for producing low cost, high purity solar grade Si wherein a reduction reaction, preferably the reduction of SiF.sub.4, by an alkali metal (liquid Na preferred) is carried out essentialy continuously by injecting of reactants in substantially stoichiometric proportions into a reaction chamber having a controlled temperature thereby to form a mist or dispersion of reactants. The reactants being supplied at such a rate and temperature that the reaction takes place far enough away from the entry region to avoid plugging of reactants at the entry region, the reaction is completed and whereby essentially all reaction product solidifies and forms a free flowing powder before reaction product hits a reaction chamber wall. Thus, the reaction product does not adhere to the reaction chamber wall or pick up impurities therefrom. Separation of reaction products is easily carried out by either a leach or melt separation process.

  13. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine.

    PubMed

    Jahangirian, Hossein; Lemraski, Ensieh Ghasemian; Webster, Thomas J; Rafiee-Moghaddam, Roshanak; Abdollahi, Yadollah

    2017-01-01

    This review discusses the impact of green and environmentally safe chemistry on the field of nanotechnology-driven drug delivery in a new field termed "green nanomedicine". Studies have shown that among many examples of green nanotechnology-driven drug delivery systems, those receiving the greatest amount of attention include nanometal particles, polymers, and biological materials. Furthermore, green nanodrug delivery systems based on environmentally safe chemical reactions or using natural biomaterials (such as plant extracts and microorganisms) are now producing innovative materials revolutionizing the field. In this review, the use of green chemistry design, synthesis, and application principles and eco-friendly synthesis techniques with low side effects are discussed. The review ends with a description of key future efforts that must ensue for this field to continue to grow.

  14. Bioreactor concepts for cell culture-based viral vaccine production.

    PubMed

    Gallo-Ramírez, Lilí Esmeralda; Nikolay, Alexander; Genzel, Yvonne; Reichl, Udo

    2015-01-01

    Vaccine manufacturing processes are designed to meet present and upcoming challenges associated with a growing vaccine market and to include multi-use facilities offering a broad portfolio and faster reaction times in case of pandemics and emerging diseases. The final products, from whole viruses to recombinant viral proteins, are very diverse, making standard process strategies hardly universally applicable. Numerous factors such as cell substrate, virus strain or expression system, medium, cultivation system, cultivation method, and scale need consideration. Reviewing options for efficient and economical production of human vaccines, this paper discusses basic factors relevant for viral antigen production in mammalian cells, avian cells and insect cells. In addition, bioreactor concepts, including static systems, single-use systems, stirred tanks and packed-beds are addressed. On this basis, methods towards process intensification, in particular operational strategies, the use of perfusion systems for high product yields, and steps to establish continuous processes are introduced.

  15. CONTINUOUS TREATMENT APPARATUS

    DOEpatents

    Erickson, E.E.

    1962-05-15

    An apparatus is described for dissolving a nuclear reactor fuel element in strong acid solutlon. The vapors and entrained liquid resulting from the violent reaction of dissolution are led into a reflux condenser which discharges, not directly back into the top of the reaction vessel in the conventional manner, but by a route leading to the bottom of the apparatus, thereby utilizing the energy of the reaction to bring about a circulation of the solution. (AEC)

  16. When can immunotherapy for insect sting allergy be stopped?

    PubMed

    Müller, Ulrich R; Ring, Johannes

    2015-01-01

    Stings by Hymenoptera (honey bees, vespids, ants) can cause systemic allergic reactions (SARs). Venom immunotherapy (VIT) is highly effective and reduces an allergic patient's risk of a recurrent SAR to less than 5-20%. The risk of a recurrent SAR to a re-sting decreases the longer VIT is continued. The recommended duration of VIT is at least 3 to 5 years. Risk factors for recurrent SARs to a sting after stopping VIT have been identified and discussed: Recommendations concerning stopping VIT: For patients without any of the identified risk factors, VIT should be continued for 5 rather than 3 years. In patients with definite risk factors, a longer duration of VIT has to be discussed before stopping it. In mast cell disorders, VIT for life is recommended. Because of the residual risk of SARs after VIT, all patients are advised to carry an epinephrine autoinjector indefinitely and to continue to take measures to avoid Hymenoptera stings. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Charge-dependent non-bonded interaction methods for use in quantum mechanical modeling of condensed phase reactions

    NASA Astrophysics Data System (ADS)

    Kuechler, Erich R.

    Molecular modeling and computer simulation techniques can provide detailed insight into biochemical phenomena. This dissertation describes the development, implementation and parameterization of two methods for the accurate modeling of chemical reactions in aqueous environments, with a concerted scientific effort towards the inclusion of charge-dependent non-bonded non-electrostatic interactions into currently used computational frameworks. The first of these models, QXD, modifies interactions in a hybrid quantum mechanical/molecular (QM/MM) mechanical framework to overcome the current limitations of 'atom typing' QM atoms; an inaccurate and non-intuitive practice for chemically active species as these static atom types are dictated by the local bonding and electrostatic environment of the atoms they represent, which will change over the course of the simulation. The efficacy QXD model is demonstrated using a specific reaction parameterization (SRP) of the Austin Model 1 (AM1) Hamiltonian by simultaneously capturing the reaction barrier for chloride ion attack on methylchloride in solution and the solvation free energies of a series of compounds including the reagents of the reaction. The second, VRSCOSMO, is an implicit solvation model for use with the DFTB3/3OB Hamiltonian for biochemical reactions; allowing for accurate modeling of ionic compound solvation properties while overcoming the discontinuous nature of conventional PCM models when chemical reaction coordinates. The VRSCOSMO model is shown to accurately model the solvation properties of over 200 chemical compounds while also providing smooth, continuous reaction surfaces for a series of biologically motivated phosphoryl transesterification reactions. Both of these methods incorporate charge-dependent behavior into the non-bonded interactions variationally, allowing the 'size' of atoms to change in meaningful ways with respect to changes in local charge state, as to provide an accurate, predictive and transferable models for the interactions between the quantum mechanical system and their solvated surroundings.

  18. Impingement effect of service module reaction control system engine plumes. Results of service module reaction control system plume model force field application to an inflight Skylab mission proximity operation situation with the inflight Skylab response

    NASA Technical Reports Server (NTRS)

    Lobb, J. D., Jr.

    1978-01-01

    Plume impingement effects of the service module reaction control system thruster firings were studied to determine if previous flight experience would support the current plume impingement model for the orbiter reaction control system engines. The orbiter reaction control system is used for rotational and translational maneuvers such as those required during rendezvous, braking, docking, and station keeping. Therefore, an understanding of the characteristics and effects of the plume force fields generated by the reaction control system thruster firings were examined to develop the procedures for orbiter/payload proximity operations.

  19. A dual-process model of reactions to perceived stigma.

    PubMed

    Pryor, John B; Reeder, Glenn D; Yeadon, Christopher; Hesson-McLnnis, Matthew

    2004-10-01

    The authors propose a theoretical model of individual psychological reactions to perceived stigma. This model suggests that 2 psychological systems may be involved in reactions to stigma across a variety of social contexts. One system is primarily reflexive, or associative, whereas the other is rule based, or reflective. This model assumes a temporal pattern of reactions to the stigmatized, such that initial reactions are governed by the reflexive system, whereas subsequent reactions or "adjustments" are governed by the rule-based system. Support for this model was found in 2 studies. Both studies examined participants' moment-by-moment approach-avoidance reactions to the stigmatized. The 1st involved participants' reactions to persons with HIV/AIDS, and the 2nd, participants' reactions to 15 different stigmatizing conditions. (c) 2004 APA, all rights reserved

  20. Universal dynamical properties preclude standard clustering in a large class of biochemical data.

    PubMed

    Gomez, Florian; Stoop, Ralph L; Stoop, Ruedi

    2014-09-01

    Clustering of chemical and biochemical data based on observed features is a central cognitive step in the analysis of chemical substances, in particular in combinatorial chemistry, or of complex biochemical reaction networks. Often, for reasons unknown to the researcher, this step produces disappointing results. Once the sources of the problem are known, improved clustering methods might revitalize the statistical approach of compound and reaction search and analysis. Here, we present a generic mechanism that may be at the origin of many clustering difficulties. The variety of dynamical behaviors that can be exhibited by complex biochemical reactions on variation of the system parameters are fundamental system fingerprints. In parameter space, shrimp-like or swallow-tail structures separate parameter sets that lead to stable periodic dynamical behavior from those leading to irregular behavior. We work out the genericity of this phenomenon and demonstrate novel examples for their occurrence in realistic models of biophysics. Although we elucidate the phenomenon by considering the emergence of periodicity in dependence on system parameters in a low-dimensional parameter space, the conclusions from our simple setting are shown to continue to be valid for features in a higher-dimensional feature space, as long as the feature-generating mechanism is not too extreme and the dimension of this space is not too high compared with the amount of available data. For online versions of super-paramagnetic clustering see http://stoop.ini.uzh.ch/research/clustering. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network

    PubMed Central

    2012-01-01

    Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Conclusions Yeast 5 expands and refines the computational reconstruction of yeast metabolism and improves the predictive accuracy of a stoichiometrically constrained yeast metabolic model. It differs from previous reconstructions and models by emphasizing the distinction between the yeast metabolic reconstruction and the stoichiometrically constrained model, and makes both available as Additional file 4 and Additional file 5 and at http://yeast.sf.net/ as separate systems biology markup language (SBML) files. Through this separation, we intend to make the modeling process more accessible, explicit, transparent, and reproducible. PMID:22663945

  2. Use of Both Anode and Cathode Reactions in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Brillas, Enric; Sirés, Ignasi; Cabot, Pere LluíS.

    Here, we describe the fundamentals, laboratory experiments, and environmental applications of indirect electrooxidation methods based on H2O2 electrogeneration such as electro-Fenton, photoelectro-Fenton and peroxicoagulation for the treatment of acidic wastewaters containing toxic and recalcitrant organics. These methods are electrochemical advanced oxidation processes that can be used in divided and undivided electrolytic cells in which pollutants are oxidized by hydroxyl radical (•OH) produced from anode and/or cathode reactions. H2O2 is generated from the two-electron reduction of O2 at reticulated vitreous carbon, graphite, carbon-felt, and O2-diffusion cathodes. The most usual method is electro-Fenton where Fe2 + added to the wastewater reacts with electrogenerated H2O2 to yield •OH and Fe3 + from Fenton's reaction. An advantage of this technique is that Fe2 + is continuously regenerated from cathodic reduction of Fe3 +. The characteristics of different electro-Fenton systems where pollutants are simultaneously destroyed by •OH formed in the medium from Fenton's reaction and at the anode surface from water oxidation are explained. The effect of the anode [Pt or boron-doped diamond (BDD)] and cathode (carbon-felt or O2-diffusion) on the degradation rate of persistent industrial by-products, herbicides, pharmaceuticals, dyes, etc. is examined. Initial pollutants react much more rapidly with •OH formed in the medium and their degradation sequences are discussed from aromatic intermediates and finally short aliphatic acids are detected. The synergetic positive catalytic effect of Cu2 + on the electro-Fenton process is evidenced. The photoelectro-Fenton method involves the irradiation of the wastewater with UVA light that rapidly photodecomposes complexes of Fe3 + with final carboxylic acids enhancing total decontamination. The peroxicoagulation method uses a sacrificial Fe anode that is continuously oxidized to Fe2 + and organics are either mineralized with •OH formed from both electrogenerated Fe2 + and H2O2 or removed by parallel coagulation with the FeOH3 precipitate formed from the excess of Fe3 + generated from Fenton's reaction.

  3. A design of spectrophotometric microfluidic chip sensor for analyzing silicate in seawater

    NASA Astrophysics Data System (ADS)

    Cao, X.; Zhang, S. W.; Chu, D. Z.; Wu, N.; Ma, H. K.; Liu, Y.

    2017-08-01

    High quality and continuous in situ silicate data are required to investigate the mechanism of the biogeochemical cycles and the formation of red tide. There is an urgently growing need for autonomous in situ silicate instruments that perform determination on various platforms. However, due to the high reagents and power consumption, as well as high system complexity leading to low reliability and robustness, the performance of the commercially available silicate sensors is not satisfactory. With these problems, here we present a new generation of microfluidic continuous flow analysis silicate sensor with sufficient analytical performance and robustness, for in situ determination of soluble silicate in seawater. The reaction mechanism of this sensor is based on the reaction of silicate with ammonium molybdate to form a yellow silicomolybdate complex and further reduction to silicomoIybdenum blue by ascorbic acid. The minimum limit of detection was 45.1 nmol L-1, and the linear determination range of the sensor is 0-400 μmol L-1. The recovery rate of the actual water is between 98.1%-104.0%, and the analyzing cycle of the sensor is about 5 minutes. This sensor has the advantages of high accuracy, high integration, low water consumption, and strong anti-interference ability. It has been successfully applied to measuring the silicate in seawater in Jiaozhou Bay.

  4. High-throughput continuous flow synthesis of nickel nanoparticles for the catalytic hydrodeoxygenation of guaiacol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Emily J.; Habas, Susan E.; Wang, Lu

    2016-11-07

    The translation of batch chemistries to high-throughput continuous flow methods dresses scaling, automation, and reproducibility concerns associated with the implementation of colloidally prepared nanoparticle (NP) catalysts for industrial catalytic processes. Nickel NPs were synthesized by the high-temperature amine reduction of a Ni2+ precursor using a continuous millifluidic (mF) flow method, achieving yields greater than 60%. The resulting Ni NP catalysts were compared against catalysts prepared in a batch reaction under conditions analogous to the continuous flow conditions with respect to total reaction volume, time, and temperature and by traditional incipient wetness (IW) impregnation for the hydrodeoxygenation (HDO) of guaiacol undermore » ex situ catalytic fast pyrolysis conditions. Compared to the IW method, the colloidally prepared NPs displayed increased morphological control and narrowed size distributions, and the NPs prepared by both methods showed similar size, shape, and crystallinity. The Ni NP catalyst synthesized by the continuous flow method exhibited similar H-adsorption site densities, site-time yields, and selectivities towards deoxygenated products as compared to the analogous batch reaction, and outperformed the IW catalyst with respect to higher selectivity to lower oxygen content products and a 6.9-fold slower deactivation rate. These results demonstrate the utility of synthesizing colloidal Ni NP catalysts using continuous flow methods while maintaining the catalytic properties displayed by the batch equivalent. Finally, this methodology can be extended to other catalytically relevant base metals for the high-throughput synthesis of metal NPs for the catalytic production of biofuels.« less

  5. Liquid waveguide spectrophotometric measurement of nanomolar ammonium in seawater based on the indophenol reaction with o-phenylphenol (OPP).

    PubMed

    Hashihama, Fuminori; Kanda, Jota; Tauchi, Ami; Kodama, Taketoshi; Saito, Hiroaki; Furuya, Ken

    2015-10-01

    We describe a highly sensitive colorimetric method for the determination of nanomolar concentrations of ammonium in seawater based on the indophenol reaction with o-phenylphenol [(1,1'-biphenyl)-2-ol, abbreviated as OPP]. OPP is available as non-toxic, stable flaky crystals with no caustic odor and has some advantages over phenol in practical use. The method was established by using a gas-segmented continuous flow analyzer equipped with two types of long path liquid waveguide capillary cell, LWCCs (100 cm and 200 cm) and an UltraPath (200 cm), which have inner diameters of 0.55 mm and 2 mm, respectively. The reagent concentrations, flow rates of the pumping tubes, and reaction path and temperature were determined on the basis of a manual indophenol blue method with OPP (Kanda, Water Res. 29 (1995) 2746-2750). The sample mixed with reagents that form indophenol blue dye was measured at 670 nm. Aged subtropical surface water was used as a blank, a matrix of standards, and the carrier. The detection limits of the analytical systems with a 100 cm LWCC, a 200 cm LWCC, and a 200 cm UltraPath were 6, 4, and 4 nM, respectively. These systems had high precision (<4% at 100 nM) and a linear dynamic range up to 200 nM. Non-linear baseline drift did not occur when using the UltraPath system. This is due to the elimination of cell clogging because of the larger inner diameter of the UltraPath compared to the LWCCs. The UltraPath system is thus more suitable for long-term measurements compared with the LWCC systems. The results of the proposed sensitive colorimetry and a conventional colorimetry for the determination of seawater samples showed no significant difference. The proposed analytical systems were applied to underway surface monitoring and vertical observation in the oligotrophic South Pacific. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Comparison of accuracy and safety of the SEVEN and the Navigator continuous glucose monitoring systems.

    PubMed

    Garg, Satish K; Smith, James; Beatson, Christie; Lopez-Baca, Benita; Voelmle, Mary; Gottlieb, Peter A

    2009-02-01

    This study evaluated the accuracy and safety of two continuous glucose monitoring (CGM) systems, the SEVEN (DexCom, San Diego, CA) and the Navigator (Abbott Diabetes Care, Alameda, CA), with the YSI laboratory measurements of blood glucose (blood glucose meter manufactured by YSI, Yellow Springs, OH), when worn concurrently in adults with type 1 diabetes. Fourteen subjects with type 1 diabetes, 33 +/- 6 (mean +/- SD) years old, were enrolled in this study. All subjects wore both sensors concurrently over three consecutive 5-day CGM sessions (15-day wear). On Days 5, 10, and 15, subjects participated in an 8-h in-clinic session where measurements from the CGM systems were collected and compared with YSI measurements every 15 min. At the end of Day 5 and 10 in-clinic sessions, the sensors were removed, and new sensors were inserted for the following CGM session despite the SEVEN system's recommended use for up to 7 days. The mean absolute relative difference (ARD) for the two CGM devices versus YSI was not different: 16.8% and 16.1% for SEVEN and Navigator, respectively (P = 0.38). In the hypoglycemic region (YSI value <80 mg/dL), the mean ARD for SEVEN was lower than for Navigator (21.5% vs. 29.8%, respectively; P = 0.001). The data analyses were similar when compared with self-monitoring of blood glucose (SMBG) values. Thirteen additional Navigator replacement devices were issued compared to two for the SEVEN. A total of three versus 14 skin reactions were reported with the SEVEN and Navigator insertion area, respectively. Glucose measurements with the SEVEN and Navigator were found to be similar compared with YSI and SMBG measurements, with the exception of the hypoglycemic range where the SEVEN performed better. However, the Navigator caused more skin area reactions.

  7. Reaction Event Counting Statistics of Biopolymer Reaction Systems with Dynamic Heterogeneity.

    PubMed

    Lim, Yu Rim; Park, Seong Jun; Park, Bo Jung; Cao, Jianshu; Silbey, Robert J; Sung, Jaeyoung

    2012-04-10

    We investigate the reaction event counting statistics (RECS) of an elementary biopolymer reaction in which the rate coefficient is dependent on states of the biopolymer and the surrounding environment and discover a universal kinetic phase transition in the RECS of the reaction system with dynamic heterogeneity. From an exact analysis for a general model of elementary biopolymer reactions, we find that the variance in the number of reaction events is dependent on the square of the mean number of the reaction events when the size of measurement time is small on the relaxation time scale of rate coefficient fluctuations, which does not conform to renewal statistics. On the other hand, when the size of the measurement time interval is much greater than the relaxation time of rate coefficient fluctuations, the variance becomes linearly proportional to the mean reaction number in accordance with renewal statistics. Gillespie's stochastic simulation method is generalized for the reaction system with a rate coefficient fluctuation. The simulation results confirm the correctness of the analytic results for the time dependent mean and variance of the reaction event number distribution. On the basis of the obtained results, we propose a method of quantitative analysis for the reaction event counting statistics of reaction systems with rate coefficient fluctuations, which enables one to extract information about the magnitude and the relaxation times of the fluctuating reaction rate coefficient, without a bias that can be introduced by assuming a particular kinetic model of conformational dynamics and the conformation dependent reactivity. An exact relationship is established between a higher moment of the reaction event number distribution and the multitime correlation of the reaction rate for the reaction system with a nonequilibrium initial state distribution as well as for the system with the equilibrium initial state distribution.

  8. Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Weilacher, F.; Radha, P. B.; Forrest, C.

    2018-04-01

    Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium-tritium (D-T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. It is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D-D and D-T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D-D reaction, whereas they insignificantly influence the inferred D-T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. This code will continue to be used for post-processing detailed hydrodynamic simulations and interpreting observed neutron spectra in ICF implosions.

  9. The Effectiveness of Automatic Recommending System for Premedication in Reducing Recurrent Radiocontrast Media Hypersensitivity Reactions

    PubMed Central

    Bae, Yun-Jeong; Hwang, Ye Won; Yoon, Sun-young; Kim, Sujeong; Lee, Taehoon; Lee, Yoon Su; Kwon, Hyouk-Soo; Cho, You Sook; Shin, Myung Jin; Moon, Hee-Bom; Kim, Tae-Bum

    2013-01-01

    Background Non-ionic radiocontrast media (RCM) is rarely associated with hypersensitivity reactions. Premedication of patients who reacted previously to RCM with systemic corticosteroids and/or antihistamines can help reduce recurrent hypersensitivity reactions. However, premedication is still not prescribed in many cases for various reasons. This study aimed to determine the effectiveness of our novel RCM hypersensitivity surveillance and automatic recommending system for premedication. Methods and Results Hospitalized patients with a history of RCM hypersensitivity were identified in an electronic medical record system that included a mandatory reporting system for past adverse drug reactions. In 2009, a novel automatic prescription system was added that classified index RCM reactions by severity and dispensed appropriate corticosteroid and/or antihistamine pretreatment prior to new RCM exposures. The data from 12 months under the previous system and 12 months under the current system were compared. The two systems had similar overall premedication rates (91% and 95%) but the current system was associated with a significantly higher corticosteroid premedication rate (65% vs. 14%), which significantly reduced the breakthrough reaction rate (6.7% vs. 15.2%). The current system was also associated with increased corticosteroid and antihistamine premedication of patients with a mild index reaction (61% vs. 7%) and a reduction in their breakthrough reaction rate (6% vs. 15%). Conclusions Premedication with corticosteroid and/or antihistamine, which was increased by our novel automatic prescription system, significantly reduced breakthrough reactions in patients with a history of RCM hypersensitivity. PMID:23840391

  10. Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow.

    PubMed

    Willrodt, Christian; Halan, Babu; Karthaus, Lisa; Rehdorf, Jessica; Julsing, Mattijs K; Buehler, Katja; Schmid, Andreas

    2017-02-01

    The efficiency of biocatalytic reactions involving industrially interesting reactants is often constrained by toxification of the applied biocatalyst. Here, we evaluated the combination of biologically and technologically inspired strategies to overcome toxicity-related issues during the multistep oxyfunctionalization of (R)-(+)-limonene to (R)-(+)-perillic acid. Pseudomonas putida GS1 catalyzing selective limonene oxidation via the p-cymene degradation pathway and recombinant Pseudomonas taiwanensis VLB120 were evaluated for continuous perillic acid production. A tubular segmented-flow biofilm reactor was used in order to relieve oxygen limitations and to enable membrane mediated substrate supply as well as efficient in situ product removal. Both P. putida GS1 and P. taiwanensis VLB120 developed a catalytic biofilm in this system. The productivity of wild-type P. putida GS1 encoding the enzymes for limonene bioconversion was highly dependent on the carbon source and reached 34 g L tube -1  day -1 when glycerol was supplied. More than 10-fold lower productivities were reached irrespective of the applied carbon source when the recombinant P. taiwanensis VLB120 harboring p-cymene monooxygenase and p-cumic alcohol dehydrogenase was used as biocatalyst. The technical applicability for preparative perillic acid synthesis in the applied system was verified by purification of perillic acid from the outlet stream using an anion exchanger resin. This concept enabled the multistep production of perillic acid and which might be transferred to other reactions involving volatile reactants and toxic end-products. Biotechnol. Bioeng. 2017;114: 281-290. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Automated knowledge-base refinement

    NASA Technical Reports Server (NTRS)

    Mooney, Raymond J.

    1994-01-01

    Over the last several years, we have developed several systems for automatically refining incomplete and incorrect knowledge bases. These systems are given an imperfect rule base and a set of training examples and minimally modify the knowledge base to make it consistent with the examples. One of our most recent systems, FORTE, revises first-order Horn-clause knowledge bases. This system can be viewed as automatically debugging Prolog programs based on examples of correct and incorrect I/O pairs. In fact, we have already used the system to debug simple Prolog programs written by students in a programming language course. FORTE has also been used to automatically induce and revise qualitative models of several continuous dynamic devices from qualitative behavior traces. For example, it has been used to induce and revise a qualitative model of a portion of the Reaction Control System (RCS) of the NASA Space Shuttle. By fitting a correct model of this portion of the RCS to simulated qualitative data from a faulty system, FORTE was also able to correctly diagnose simple faults in this system.

  12. A well-designed online transfusion reaction reporting system improves the estimation of transfusion reaction incidence and quality of care in transfusion practice.

    PubMed

    Yeh, Su-Peng; Chang, Ci-Wen; Chen, Ju-Chuan; Yeh, Wan-Chen; Chen, Pei-Chi; Chuang, Su-Jung; Lin, Chiou-Ping; Hsu, Ling-Nu; Chen, Han-Mih; Lu, Jang-Jih; Peng, Ching-Tien

    2011-12-01

    Recognizing and reporting a transfusion reaction is important in transfusion practice. However, the actual incidence of transfusion reactions is frequently underestimated. We designed an online transfusion reaction reporting system for nurses who take care of transfusion recipients. The common management before and after transfusion and the 18 most common transfusion reactions were itemized as tick boxes. We found the overall documented incidence of transfusion reaction increased dramatically, from 0.21% to 0.61% per unit of blood, after we started using an online reporting system. Overall, 94% (30/32) of nurses took only 1 week to become familiar with the new system, and 88% (28/32) considered the new system helpful in improving the quality of clinical transfusion care. By using an intranet connection, blood bank physicians can also identify patients who are having a reaction and provide appropriate recommendations immediately. A well-designed online reporting system may improve the ability to estimate the incidence of transfusion reactions and the quality of transfusion care.

  13. Measurement of Nonribosomal Peptide Synthetase Adenylation Domain Activity Using a Continuous Hydroxylamine Release Assay.

    PubMed

    Duckworth, Benjamin P; Wilson, Daniel J; Aldrich, Courtney C

    2016-01-01

    Adenylation is a crucial enzymatic process in the biosynthesis of nonribosomal peptide synthetase (NRPS) derived natural products. Adenylation domains are considered the gatekeepers of NRPSs since they select, activate, and load the carboxylic acid substrate onto a downstream peptidyl carrier protein (PCP) domain of the NRPS. We describe a coupled continuous kinetic assay for NRPS adenylation domains that substitutes the PCP domain with hydroxylamine as the acceptor molecule. The pyrophosphate released from the first-half reaction is then measured using a two-enzyme coupling system, which detects conversion of the chromogenic substrate 7-methylthioguanosine (MesG) to 7-methylthioguanine. From profiling substrate specificity of unknown or engineered adenylation domains to studying chemical inhibition of adenylating enzymes, this robust assay will be of widespread utility in the broad field NRPS enzymology.

  14. Combustion synthesis continuous flow reactor

    DOEpatents

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  15. Kinetic Profiling of Catalytic Organic Reactions as a Mechanistic Tool.

    PubMed

    Blackmond, Donna G

    2015-09-02

    The use of modern kinetic tools to obtain virtually continuous reaction progress data over the course of a catalytic reaction opens up a vista that provides mechanistic insights into both simple and complex catalytic networks. Reaction profiles offer a rate/concentration scan that tells the story of a batch reaction time course in a qualitative "fingerprinting" manner as well as in quantitative detail. Reaction progress experiments may be mathematically designed to elucidate catalytic rate laws from only a fraction of the number of experiments required in classical kinetic measurements. The information gained from kinetic profiles provides clues to direct further mechanistic analysis by other approaches. Examples from a variety of catalytic reactions spanning two decades of the author's work help to delineate nuances on a central mechanistic theme.

  16. Combustion synthesis continuous flow reactor

    DOEpatents

    Maupin, Gary D.; Chick, Lawrence A.; Kurosky, Randal P.

    1998-01-01

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  17. Extent of reaction in open systems with multiple heterogeneous reactions

    USGS Publications Warehouse

    Friedly, John C.

    1991-01-01

    The familiar batch concept of extent of reaction is reexamined for systems of reactions occurring in open systems. Because species concentrations change as a result of transport processes as well as reactions in open systems, the extent of reaction has been less useful in practice in these applications. It is shown that by defining the extent of the equivalent batch reaction and a second contribution to the extent of reaction due to the transport processes, it is possible to treat the description of the dynamics of flow through porous media accompanied by many chemical reactions in a uniform, concise manner. This approach tends to isolate the reaction terms among themselves and away from the model partial differential equations, thereby enabling treatment of large problems involving both equilibrium and kinetically controlled reactions. Implications on the number of coupled partial differential equations necessary to be solved and on numerical algorithms for solving such problems are discussed. Examples provided illustrate the theory applied to solute transport in groundwater flow.

  18. Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study.

    PubMed

    Zazo, J A; Casas, J A; Mohedano, A F; Rodriguez, J J

    2009-09-01

    This work investigates the Fenton oxidation of phenol in a semicontinuous reactor where the overall amount of H(2)O(2) is distributed as a continuous feed upon the reaction time. The experiments were carried out at 25 degrees C and atmospheric pressure, with 100mg/L initial phenol concentration and iron dosages from 1 to 100 mg/L. H(2)O(2) aqueous solution was continuously fed during 4h reaction time up to an overall dose varying within the range of 500-5000 mg/L. The results in terms of evolution of phenol, H(2)O(2) and intermediates, as well as TOC abatement were compared with those obtained in conventional batch operation. It was found that the oxidation rates for phenol and intermediates were lower when adding the H(2)O(2) continuously. However, a higher abatement of TOC was reached at the end of the 4-h reaction time, in spite of a similar overall H(2)O(2) consumption. This is the result of a more efficient OH generation throughout the semicontinuous process, favouring the reaction with the organic species and reducing the occurrence of competitive scavenging reactions involving Fe(2+), H(2)O(2) and OH. Two kinetic models were proposed, one for describing the evolution of phenol, aromatics and H(2)O(2) and the other for TOC. The influence of the operating conditions on the kinetic constants was also studied, looking for the optimal conditions in terms of both, environmental and economic points of view.

  19. Preparation of Imide Oligomers via Concurrent Reactive Extrusion

    NASA Technical Reports Server (NTRS)

    Avakian, Roger W. (Inventor); Hu, Ling (Inventor)

    2018-01-01

    Reactive extrusion can be used in a continuous, solvent-less preparation of imide oligomers involving two competing reactions among three ingredients, the first reaction between a dianhydride and a diamine and the second reaction between an endcap and the same diamine. The imide oligomer can form a composite via conventional production methods or via formation of a film from imide oligomer re-melted in an extruder before being impregnated into tape or fabric.

  20. The incidence and features of systemic reactions to skin prick tests.

    PubMed

    Sellaturay, Priya; Nasser, Shuaib; Ewan, Pamela

    2015-09-01

    Skin prick testing (SPT) has been regarded as a safe procedure with few systemic reactions. To evaluate the rate of systemic reactions and their associations after SPT in the largest population to date. In this study reactions were recorded prospectively in a specialist UK allergy clinic for 6 years (2007-2013). An estimated 31,000 patients underwent SPT. Twenty-four patients (age range 7 months to 56 years, mean 23.5 years, 17 female patients, 12 with asthma) had systemic reactions. The rate of systemic reactions to SPT was 0.077%. The likely allergens causing the reaction were foods (18; peanut, 7; walnut, 1; Brazil nut, 2; pistachio, 1; lupin, 1; cow's milk, 2; shrimp, 1; spinach, 1; legume, 1; soy, 1), aeroallergens (4; rabbit, 1; rat, 1; ragwort, 1; grass pollen, 1), wasp venom (1), and Tazocin (1). The causative SPT wheal was larger than 8 mm in 75%. The reaction to Tazocin was severe, with anaphylaxis occurring minutes after SPT. Reactions were treated immediately in the clinic and did not require further medical care. In this largest single-center study, the rate of systemic reactions after SPT was 77 per 100,000 patients. It is the first study to identify foods as a common and important cause (75%), with nuts posing the highest risk. This study reports the first systemic reaction to venom SPT and the first anaphylactic reaction after drug SPT. There was an association with a history of severe reactions and large skin test reaction. There are risks, albeit small, when undertaking SPT. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

Top