Construction simulation analysis of 120m continuous rigid frame bridge based on Midas Civil
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Ran, Zhi-hong
2018-03-01
In this paper, a three-dimensional finite element model of a continuous rigid frame bridge with a main span of 120m is established by the simulation and analysis of Midas Civil software. The deflection and stress of the main beam in each construction stage of continuous beam bridge are simulated and analyzed, which provides a reliable technical guarantee for the safe construction of the bridge.
Research on durability of a concrete continuous rigid frame bridge
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Ran, Zhi-hong
2018-05-01
The research on the durability of concrete structures has also become one of the most important topics for discussion at international academic institutions and conferences. This paper summarizes and reviews the current research on the durability of bridge structure of the bridge at the index relationship between state lifetime and structure durability. According to the actual situation in this paper on a continuous rigid frame bridge China of Yunnan as an example, this bridge was completed and opened to traffic during the first half of the year, a series of tests are carried out for the durability problem. It is found that all the indicators are good within six months after the bridge opened to traffic, but durability issues should be further studied in future monitoring efforts.
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Ran, Zhi-hong
2018-03-01
Extradossed Cable-stayed Bridge is both cable-stayed Bridge and Continuous rigid frame bridge mechanics feature, Beam is the main force components, cable is supplement.This article combined with a single tower and single cable plane Extradossed cable-stayed bridge in Yunnan, use different creep calculation models and analysis deflection caused by creep effects. The results showing that deflection caused by creep effect is smaller than the same span continuous rigid frame bridge, the value is about 2cm. On the other hand the deflection is increasing with ambient humidity decreases, therefore in the dry environment the calculation model is relatively large in the pre-camber. In the choice of RC creep model is significant in the dry areas.
24 CFR 3280.902 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... mechanism, frame, running gear assembly, and lights. (b) Drawbar and coupling mechanism means the rigid assembly, (usually an A frame) upon which is mounted a coupling mechanism, which connects the manufactured home's frame to the towing vehicle. (c) Frame means the fabricated rigid substructure which provides...
24 CFR 3280.902 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... mechanism, frame, running gear assembly, and lights. (b) Drawbar and coupling mechanism means the rigid assembly, (usually an A frame) upon which is mounted a coupling mechanism, which connects the manufactured home's frame to the towing vehicle. (c) Frame means the fabricated rigid substructure which provides...
24 CFR 3280.902 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... mechanism, frame, running gear assembly, and lights. (b) Drawbar and coupling mechanism means the rigid assembly, (usually an A frame) upon which is mounted a coupling mechanism, which connects the manufactured home's frame to the towing vehicle. (c) Frame means the fabricated rigid substructure which provides...
24 CFR 3280.902 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... mechanism, frame, running gear assembly, and lights. (b) Drawbar and coupling mechanism means the rigid assembly, (usually an A frame) upon which is mounted a coupling mechanism, which connects the manufactured home's frame to the towing vehicle. (c) Frame means the fabricated rigid substructure which provides...
29 CFR 1926.758 - Systems-engineered metal buildings.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.758... systems-engineered metal buildings except §§ 1926.755 (column anchorage) and 1926.757 (open web steel...) Rigid frames shall have 50 percent of their bolts or the number of bolts specified by the manufacturer...
29 CFR 1926.758 - Systems-engineered metal buildings.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.758... systems-engineered metal buildings except §§ 1926.755 (column anchorage) and 1926.757 (open web steel...) Rigid frames shall have 50 percent of their bolts or the number of bolts specified by the manufacturer...
Six-degrees-of-freedom sensing based on pictures taken by single camera.
Zhongke, Li; Yong, Wang; Yongyuan, Qin; Peijun, Lu
2005-02-01
Two six-degrees-of-freedom sensing methods are presented. In the first method, three laser beams are employed to set up Descartes' frame on a rigid body and a screen is adopted to form diffuse spots. In the second method, two superimposed grid screens and two laser beams are used. A CCD camera is used to take photographs in both methods. Both approaches provide a simple and error-free method to record the positions and the attitudes of a rigid body in motion continuously.
A study of a rigid frame highway bridge in Virginia.
DOT National Transportation Integrated Search
1975-01-01
This report describes the experimental and analytical study of a rigid frame highway bridge conducted under the auspices of the Federal Highway Administration and the Virginia Highway & Transportation Research Council. Data collected during the exper...
Stress analysis of the haunch region in a rigid frame bridge.
DOT National Transportation Integrated Search
1977-01-01
The purpose of this study was to obtain an understanding of the behavior and stress distribution in the haunch region of a rigid frame highway bridge. A finite element model of the haunch of the bridge was developed to permit the prediction of stress...
NASA Astrophysics Data System (ADS)
Bhatti, Abdul Qadir
2017-12-01
To demonstrate the characteristics of the nonlinear response of steel frames, an elastic dynamic response analysis of the semi-rigid frame is performed under the harmonic wave. The semi-rigid contact is represented by the alternating spring which is given stiffness by a three-parameter energy model which approaches the hysterical curve by hardening model. The properties of spectra and hysteric curves are presented. This study shows that (1) the greater the acceleration input capacitance the smaller the instant connection capability and the smaller is the response. (2) However, by allowing an extreme increase in capacitance input acceleration, response spectra can be increased as the contact stiffness results near zero.
Groby, J-P; Duclos, A; Dazel, O; Boeckx, L; Lauriks, W
2011-05-01
The acoustic properties of a periodic rigid frame porous layer with multiple irregularities in the rigid backing and embedded rigid circular inclusions are investigated theoretically and numerically. The theoretical representation of the sound field in the structure is obtained using a combination of multipole method that accounts for the periodic inclusions and multi-modal method that accounts for the multiple irregularities of the rigid backing. The theoretical model is validated against a finite element method. The predictions show that the acoustic response of this structure exhibits quasi-total, high absorption peaks at low frequencies which are below the frequency of the quarter-wavelength resonance typical for a flat homogeneous porous layer backed by a rigid plate. This result is explained by excitation of additional modes in the porous layer and by a complex interaction between various acoustic modes. These modes relate to the resonances associated with the presence of a profiled rigid backing and rigid inclusions in the porous layer.
Development of U-frame bending system for studying the vibration integrity of spent nuclear fuel
NASA Astrophysics Data System (ADS)
Wang, Hong; Wang, Jy-An John; Tan, Ting; Jiang, Hao; Cox, Thomas S.; Howard, Rob L.; Bevard, Bruce B.; Flanagan, Michelle
2013-09-01
A bending fatigue system developed to evaluate the response of spent nuclear fuel rods to vibration loads is presented. A U-frame testing setup is used for imposing bending loads on the fuel rod specimen. The U-frame setup consists of two rigid arms, side connecting plates to the rigid arms, and linkages to a universal testing machine. The test specimen's curvature is obtained through a three-point deflection measurement method. The tests using surrogate specimens with stainless steel cladding revealed increased flexural rigidity under unidirectional cyclic bending, significant effect of cladding-pellets bonding on the response of surrogate rods, and substantial cyclic softening in reverse bending mode. These phenomena may cast light on the expected response of a spent nuclear fuel rod. The developed U-frame system is thus verified and demonstrated to be ready for further pursuit in hot-cell tests.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... counterbalanced lift truck is a rigid framed, engine- powered machine with lift arms that has additional weight...; \\7\\ (2) construction vehicles and equipment, including earthmover articulated dump products, rigid frame haul trucks,\\8\\ front end loaders,\\9\\ dozers,\\10\\ lift trucks, straddle carriers,\\11\\ graders,\\12...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... the rear tires. \\9\\ A log-skidder has a grappling lift arm that is used to grasp, lift and move trees... grading'' in road construction. \\14\\ A straddle carrier is a rigid frame, engine-powered machine that is... is a rigid framed, engine- powered machine with lift arms that has additional weight incorporated...
NASA Astrophysics Data System (ADS)
Njoroge, M. W.; Malservisi, R.; Hugentobler, U.; Mokhtari, M.; Voytenko, D.
2014-12-01
Plate rigidity is one of the main paradigms of plate tectonics and a fundamental assumption in the definition of a global reference frame as ITRF. Although still far for optimal, the increased GPS instrumentation of the African region can allow us to understand how rigid one of the major plate can be. The presence of diffused band of seismicity, the Cameroon volcanic line, Pan African Kalahari orogenic belt and East Africa Rift suggest the possibility of relative motion among the different regions within the Nubia. The study focuses on the rigidity of Nubia plate. We divide the plate into three regions: Western (West Africa craton plus Nigeria), Central (approximately the region of the Congo craton) and Southern (Kalahari craton plus South Africa) and we utilize Euler Vector formulation to study internal rigidity and eventual relative motion. Developing five different reference frames with different combinations of the 3 regions, we try to understand the presence of the relative motion between the 3 cratons thus the stability of the Nubia plate as a whole. All available GPS stations from the regions are used separately or combined in creation of the reference frames. We utilize continuous stations with at least 2.5 years of data between 1994 and 2014. Given the small relative velocity, it is important to eliminate eventual biases in the analysis and to have a good estimation in the uncertainties of the observed velocities. For this reason we perform our analysis using both Bernese and Gipsy-oasis codes to generate time series for each station. Velocities and relative uncertainties are analyzed using the Allan variance of rate technique, taking in account for colored noise. An analysis of the color of the noise as function of latitude and climatic region is also performed to each time series. Preliminary results indicate a slight counter clockwise motion of West Africa craton with respect to South Africa Kalahari, and South Africa Kalahari-Congo Cratons. In addition, a possible counter clockwise rotation of the South African Kalahari craton with respect to the Nubian plate caused by southward propagation of the East Africa Rift is compatible with the observations. However, the results are at the limit of the statistical significance and within the current velocity uncertainties the Nubia plate appears as single- rigid plate.
Learned Non-Rigid Object Motion is a View-Invariant Cue to Recognizing Novel Objects
Chuang, Lewis L.; Vuong, Quoc C.; Bülthoff, Heinrich H.
2012-01-01
There is evidence that observers use learned object motion to recognize objects. For instance, studies have shown that reversing the learned direction in which a rigid object rotated in depth impaired recognition accuracy. This motion reversal can be achieved by playing animation sequences of moving objects in reverse frame order. In the current study, we used this sequence-reversal manipulation to investigate whether observers encode the motion of dynamic objects in visual memory, and whether such dynamic representations are encoded in a way that is dependent on the viewing conditions. Participants first learned dynamic novel objects, presented as animation sequences. Following learning, they were then tested on their ability to recognize these learned objects when their animation sequence was shown in the same sequence order as during learning or in the reverse sequence order. In Experiment 1, we found that non-rigid motion contributed to recognition performance; that is, sequence-reversal decreased sensitivity across different tasks. In subsequent experiments, we tested the recognition of non-rigidly deforming (Experiment 2) and rigidly rotating (Experiment 3) objects across novel viewpoints. Recognition performance was affected by viewpoint changes for both experiments. Learned non-rigid motion continued to contribute to recognition performance and this benefit was the same across all viewpoint changes. By comparison, learned rigid motion did not contribute to recognition performance. These results suggest that non-rigid motion provides a source of information for recognizing dynamic objects, which is not affected by changes to viewpoint. PMID:22661939
Non-rigid multi-frame registration of cell nuclei in live cell fluorescence microscopy image data.
Tektonidis, Marco; Kim, Il-Han; Chen, Yi-Chun M; Eils, Roland; Spector, David L; Rohr, Karl
2015-01-01
The analysis of the motion of subcellular particles in live cell microscopy images is essential for understanding biological processes within cells. For accurate quantification of the particle motion, compensation of the motion and deformation of the cell nucleus is required. We introduce a non-rigid multi-frame registration approach for live cell fluorescence microscopy image data. Compared to existing approaches using pairwise registration, our approach exploits information from multiple consecutive images simultaneously to improve the registration accuracy. We present three intensity-based variants of the multi-frame registration approach and we investigate two different temporal weighting schemes. The approach has been successfully applied to synthetic and live cell microscopy image sequences, and an experimental comparison with non-rigid pairwise registration has been carried out. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hemenway, Paul
1991-07-01
Determination of a non-rotating Reference Frame is crucial to progress in many areas, including: Galactic motions, local (Oort's A and B) and global (R0) parameters derived from them, solar system motion discrepancies (Planet X); and in conjunction with the VLBI radio reference frame, the registration of radio and optical images at an accuracy well below the resolution limit of HST images (0.06 arcsec). The goal of the Program is to tie the HIPPARCOS and Extra- galactic Reference Frames together at the 0.0005 arcsec and 0.0005 arcsec/year level. The HST data will allow a deter- mination of the brightness distribution in the stellar and extragalactic objects observed and time dependent changes therein at the 0.001 arcsec/year level. The Program requires targets distributed over the whole sky to define a rigid Reference Frame. GTO observations will provide initial first epoch data and preliminary proper motions. The observations will consist of relative positions of Extra- galactic objects (EGOs) and HIPPARCOS stars, measured with the FGSs.
Liu, Hsin-yi; Pearlman, Jonathan; Cooper, Rosemarie; Hong, Eun-kyoung; Wang, Hongwu; Salatin, Benjamin; Cooper, Rory A
2010-01-01
Previous studies found that select titanium ultralight rigid wheelchairs (TURWs) had fewer equivalent cycles and less value than select aluminum ultralight folding wheelchairs (AUFWs). The causes of premature failure of TURWs were not clear because the TURWs had different frame material and design than the AUFWs. We tested 12 aluminum ultralight rigid wheelchairs (AURWs) with similar frame designs and dimensions as the TURWs using the American National Standards Institute/Rehabilitation Engineering and Assistive Technology Society of North America and International Organization for Standardization wheelchair standards and hypothesized that the AURWs would be more durable than the TURWs. Across wheelchair models, no significant differences were found in the test results between the AURWs and TURWs, except in their overall length. Tire pressure, tube-wall thickness, and tube manufacturing were proposed to be the factors affecting wheelchair durability through comparison of the failure modes, frames, and components. The frame material did not directly affect the performance of AURWs and TURWs, but proper wheelchair manufacture and design based on mechanical properties are important.
Body frame close coupling wave packet approach to gas phase atom-rigid rotor inelastic collisions
NASA Technical Reports Server (NTRS)
Sun, Y.; Judson, R. S.; Kouri, D. J.
1989-01-01
The close coupling wave packet (CCWP) method is formulated in a body-fixed representation for atom-rigid rotor inelastic scattering. For J greater than j-max (where J is the total angular momentum and j is the rotational quantum number), the computational cost of propagating the coupled channel wave packets in the body frame is shown to scale approximately as N exp 3/2, where N is the total number of channels. For large numbers of channels, this will be much more efficient than the space frame CCWP method previously developed which scales approximately as N-squared under the same conditions.
2016-10-01
laminated rigid frame to reduce thermal layers, increase flexibility and comfort while retaining ischial containment. In contrast, a Sub-I design has...design is comprised of a flexible interface and minimal laminated rigid frame to reduce thermal layers, increase flexibility and comfort while...AWARD NUMBER: W81XWH-15-1-0410 TITLE: The Effect of Prosthetic Socket Interface Design on Socket Comfort , Residual Limb Health, and Function
Vision-based stress estimation model for steel frame structures with rigid links
NASA Astrophysics Data System (ADS)
Park, Hyo Seon; Park, Jun Su; Oh, Byung Kwan
2017-07-01
This paper presents a stress estimation model for the safety evaluation of steel frame structures with rigid links using a vision-based monitoring system. In this model, the deformed shape of a structure under external loads is estimated via displacements measured by a motion capture system (MCS), which is a non-contact displacement measurement device. During the estimation of the deformed shape, the effective lengths of the rigid link ranges in the frame structure are identified. The radius of the curvature of the structural member to be monitored is calculated using the estimated deformed shape and is employed to estimate stress. Using MCS in the presented model, the safety of a structure can be assessed gauge-freely. In addition, because the stress is directly extracted from the radius of the curvature obtained from the measured deformed shape, information on the loadings and boundary conditions of the structure are not required. Furthermore, the model, which includes the identification of the effective lengths of the rigid links, can consider the influences of the stiffness of the connection and support on the deformation in the stress estimation. To verify the applicability of the presented model, static loading tests for a steel frame specimen were conducted. By comparing the stress estimated by the model with the measured stress, the validity of the model was confirmed.
[A development of FRP frame for crown and bridge resin. (2) Rigidity and adaptability of FRP frame].
Kimura, H; Teraoka, F
1990-05-01
Retainer and pontic of FRP frame for crown and bridge resin were constructed with two different prepregs, used glass cloth and roving as reinforcement. Rigidity and adaptability of the FRP frame and bonding strength of jointing of retainer and pontic were investigated. The glass content was about 50 wt% for both kinds of prepregs. Bonding strength and modulus of FRP plate reinforced with glass roving were about 1.5 times larger than that of the FRP plate reinforced with glass cloth. Bonding strength of FRP specimen constructed by curing the prepreg put on the FRP plate was about 3 kgf/mm2. However, the bonding strength of specimen constructed by curing simultaneously the two prepregs was about 12 kgf/mm2. Though discrepancy of the FRP frame to stone cast of abutment tooth was proportional to the length of pontic, that of the FRP frame with a 50 mm pontic was less than 0.05 mm.
13. VIEW OF CAUSEWAY, LOOKING EAST, PROFILING DETAILS OF RIGID ...
13. VIEW OF CAUSEWAY, LOOKING EAST, PROFILING DETAILS OF RIGID FRAME SPAN OVER CANAL STREET, AND SHOWING STEEL RIBS AND FLOOR BEANS ENCASED IN CONCRETE - Notre Dame Bridge, Spanning Merrimack River on Bridge Street, Manchester, Hillsborough County, NH
The Present Status of Airship Construction, Especially of Airship-framing Construction
NASA Technical Reports Server (NTRS)
Ebner, Hans
1938-01-01
This work proposes to sketch, in broad outline, the status of airship construction in the various countries, at a time when commerce over great distances might be finally opened up to the airship through the performances of the "Graf Zeppelin." After a short historical review, a survey of the most important rigid and semirigid airships built since 1925, their differences and special problems, is made. In more detailed treatment, the framing construction of the more recent rigid airships and some especially interesting structural questions are investigated.
Vibrations of a thin cylindrical shell stiffened by rings with various stiffness
NASA Astrophysics Data System (ADS)
Nesterchuk, G. A.
2018-05-01
The problem of vibrations of a thin-walled elastic cylindrical shell reinforced by frames of different rigidity is investigated. The solution for the case of the clamped shell edges was obtained by asymptotic methods and refined by the finite element method. Rings with zero eccentricity and stiffness varying along the generatrix of the shell cylinder are considered. Varying the optimal coefficients of the distribution functions of the rigidity of the frames and finding more precise parameters makes it possible to find correction factors for analytical formulas of approximate calculation.
Dielectric Elastomer Actuated Systems and Methods
NASA Technical Reports Server (NTRS)
Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)
2008-01-01
The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex.
Application of FBG sensors in strengthening and maintenance monitoring of old bridges
NASA Astrophysics Data System (ADS)
Yue, Li-na; Huang, Jun; Yang, Yan
2009-10-01
The various fiber Bragg grating(FBG)sensors such as FBG force rings, differential FBG displacement cells, FBG strain sensors and FBG temperature sensors had been used to monitor the strengthening and maintenance process of the continuous concrete beam bridges and the continuous concrete rigid frame bridges which are the part of Wuhan Second Yangtze River Bridge. In the strengthening and maintenance process, the tension force of the external prestressed tendons, the cracks change and intensity of cross sections had been monitored to insure the instruction safety, study the effect of strengthening and maintenance, and verify the design theories of strengthening and maintenance. Also the reference state criterion for long-term bridge health monitoring had been provided according to the monitoring results.
Skomoroshko, Petr V; Vilensky, Victor A; Hammouda, Ahmed I; Fletcher, Matt D A; Solomin, Leonid N
2015-04-01
The Ortho-SUV frame (OSF) is a novel hexapod circular external fixator which draws upon the innovation of the Ilizarov method and the advantages of hexapod construction in the three-dimensional control of bone segments. Stability of fixation is critical to the success or failure of an external circular fixator for fracture or osteotomy healing. In vitro biomechanical modelling study was performed comparing the stability of the OSF under load in both original form and after dynamisation to the Ilizarov fixator in all zones of the femur utilising optimal frame configuration. A superior performance of the OSF in terms of resistance to deforming forces in both original and dynamised forms over that of the original Ilizarov fixator was found. The OSF shows higher rigidity than the Ilizarov in the control of forces acting upon the femur. This suggests better stabilisation of femoral fractures and osteotomies and thus improved healing with a reduced incidence of instability-related bone segment deformity, non-union and delayed union.
Model-based registration of multi-rigid-body for augmented reality
NASA Astrophysics Data System (ADS)
Ikeda, Sei; Hori, Hajime; Imura, Masataka; Manabe, Yoshitsugu; Chihara, Kunihiro
2009-02-01
Geometric registration between a virtual object and the real space is the most basic problem in augmented reality. Model-based tracking methods allow us to estimate three-dimensional (3-D) position and orientation of a real object by using a textured 3-D model instead of visual marker. However, it is difficult to apply existing model-based tracking methods to the objects that have movable parts such as a display of a mobile phone, because these methods suppose a single, rigid-body model. In this research, we propose a novel model-based registration method for multi rigid-body objects. For each frame, the 3-D models of each rigid part of the object are first rendered according to estimated motion and transformation from the previous frame. Second, control points are determined by detecting the edges of the rendered image and sampling pixels on these edges. Motion and transformation are then simultaneously calculated from distances between the edges and the control points. The validity of the proposed method is demonstrated through experiments using synthetic videos.
Fabric panel clean change-out frame
Brown, Ronald M.
1995-01-31
A fabric panel clean change-out frame, for use on a containment structure having rigid walls, is formed of a compression frame and a closure panel. The frame is formed of elongated spacers, each carrying a plurality of closely spaced flat springs, and each having a hooked lip extending on the side of the spring facing the spacer. The closure panel is includes a perimeter frame formed of flexible, wedge-shaped frame members that are receivable under the springs to deflect the hooked lips. A groove on the flexible frame members engages the hooked lips and locks the frame members in place under the springs. A flexible fabric panel is connected to the flexible frame members and closes its center.
Snyder, Keith W.
2002-01-01
A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.
Lee, Seungjae; Park, Jaeseong; Kwak, Euishin; Shon, Sudeok; Kang, Changhoon; Choi, Hosoon
2017-03-06
Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured.
Augmented Reality for Maintenance and Repair (ARMAR)
2007-08-01
800×600 resolution monocular display, whose small size and lack of an opaque “ frame ”, provides the closest experience to an eyeglass form factor, and...Alternatively, fiducials could be mounted on lightweight rigid frames that are attached to predetermined points on the maintained system. Figure...stereo at 800×600 resolution, thirty frames per second, creating a compelling experience of an augmented workspace. Based on our preliminary
The Galileo Orbiter - Command and telemetry subsystems on their way to Jupiter
NASA Astrophysics Data System (ADS)
Erickson, James K.
1990-09-01
An overview is given of the Galileo command and telemetry subsystems, which exemplify the rigid time-synchronized systems required by TDM (time division multiplexing). The spacecraft clock is examined, along with some of the rationale for the development of the clock structure and timing to give a sense of the design imperatives for rigidly synchronized systems. Additional subjects include the structure of the science and engineering frames, emphasizing the subcommutated structure of the engineering frame and its relationship to the spacecraft clock; ground processing for and basic uses of the telemetry; the various message types used to transmit commands to the spacecraft; and the generation processes for the command message types.
Aluminum space frame technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, S.
This article examines the increased application of aluminum to the construction of automobile frames. The topics of the article include a joint venture between Audi and Alcoa, forms in which aluminum is used, new alloys and construction methods, meeting rigidity and safety levels, manufacturing techniques, the use of extrusions, die casting, joining techniques, and pollution control during manufacturing.
Coherent states for the quantum complete rigid rotor
NASA Astrophysics Data System (ADS)
Fontanari, Daniele; Sadovskií, Dmitrií A.
2018-07-01
Motivated by the possibility to describe orientations of quantum triaxial rigid rotors, such as molecules, with respect to both internal (body-fixed) and external (laboratory) frames, we go through the theory of coherent states and design the appropriate family of coherent states on T∗ SO(3) , the classical phase space of the freely rotating rigid body (the Euler top). We pay particular attention to the resolution of identity property in order to establish the explicit relation between the parameters of the coherent states and classical phase-space variables, actions and angles.
Fábri, Csaba; Mátyus, Edit; Császár, Attila G
2014-02-05
It is shown that the use of an Eckart-frame embedding with a kinetic energy operator expressed in curvilinear internal coordinates becomes feasible and straightforward to implement for arbitrary molecular compositions and internal coordinates if the operator is defined numerically over a (discrete variable representation) grid. The algorithm proposed utilizes the transformation method of Dymarsky and Kudin to maintain the rotational Eckart condition. In order to demonstrate the applicability and flexibility of our approach the non-rigid ammonia molecule is considered and the corresponding rotational-vibrational energy levels and wave functions are computed using kinetic energy operators with three different embeddings. Two of them fulfill the Eckart conditions corresponding to a trigonal pyramidal (C3v) and a trigonal planar (D3h) reference structure and the third one is a non-Eckart frame. The computed energy levels are, of course, identical, and the structure of the three different wave-function representations are analyzed in terms of the rigid rotor functions for a symmetric top. The possible advantages of one frame representation over another are discussed concerning the interpretation of the rovibrational states in terms of the traditional rigid rotor labels. Copyright © 2013 Elsevier B.V. All rights reserved.
A general-purpose approach to computer-aided dynamic analysis of a flexible helicopter
NASA Technical Reports Server (NTRS)
Agrawal, Om P.
1988-01-01
A general purpose mathematical formulation is described for dynamic analysis of a helicopter consisting of flexible and/or rigid bodies that undergo large translations and rotations. Rigid body and elastic sets of generalized coordinates are used. The rigid body coordinates define the location and the orientation of a body coordinate frame (global frame) with respect to an inertial frame. The elastic coordinates are introduced using a finite element approach in order to model flexible components. The compatibility conditions between two adjacent elements in a flexible body are imposed using a Boolean matrix, whereas the compatibility conditions between two adjacent bodies are imposed using the Lagrange multiplier approach. Since the form of the constraint equations depends upon the type of kinematic joint and involves only the generalized coordinates of the two participating elements, then a library of constraint elements can be developed to impose the kinematic constraint in an automated fashion. For the body constraints, the Lagrange multipliers yield the reaction forces and torques of the bodies at the joints. The virtual work approach is used to derive the equations of motion, which are a system of differential and algebraic equations that are highly nonlinear. The formulation presented is general and is compared with hard-wired formulations commonly used in helicopter analysis.
Leuridan, Steven; Goossens, Quentin; Roosen, Jorg; Pastrav, Leonard; Denis, Kathleen; Mulier, Michiel; Desmet, Wim; Vander Sloten, Jos
2017-02-01
Accurate pre-clinical evaluation of the initial stability of new cementless hip stems using in vitro micromotion measurements is an important step in the design process to assess the new stem's potential. Several measuring systems, linear variable displacement transducer-based and other, require assuming bone or implant to be rigid to obtain micromotion values or to calculate derived quantities such as relative implant tilting. An alternative linear variable displacement transducer-based measuring system not requiring a rigid body assumption was developed in this study. The system combined advantages of local unidirectional and frame-and-bracket micromotion measuring concepts. The influence and possible errors that would be made by adopting a rigid body assumption were quantified. Furthermore, as the system allowed emulating local unidirectional and frame-and-bracket systems, the influence of adopting rigid body assumptions were also analyzed for both concepts. Synthetic and embalmed bone models were tested in combination with primary and revision implants. Single-legged stance phase loading was applied to the implant - bone constructs. Adopting a rigid body assumption resulted in an overestimation of mediolateral micromotion of up to 49.7μm at more distal measuring locations. Maximal average relative rotational motion was overestimated by 0.12° around the anteroposterior axis. Frontal and sagittal tilting calculations based on a unidirectional measuring concept underestimated the true tilting by an order of magnitude. Non-rigid behavior is a factor that should not be dismissed in micromotion stability evaluations of primary and revision femoral implants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Seungjae; Park, Jaeseong; Kwak, Euishin; Shon, Sudeok; Kang, Changhoon; Choi, Hosoon
2017-01-01
Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured. PMID:28772622
Temporary and definitive external fixation of war injuries: use of a French dedicated fixator.
Mathieu, Laurent; Ouattara, Naklan; Poichotte, Antoine; Saint-Macari, Erwan; Barbier, Olivier; Rongiéras, Fréderic; Rigal, Sylvain
2014-08-01
External fixation is the recommended stabilization method for both open and closed fractures of long bones in forward surgical hospitals. Specific combat surgical tactics are best performed using dedicated external fixators. The Percy Fx (Biomet) fixator was developed for this reason by the French Army Medical Service, and has been used in various theatres of operations for more than ten years. The tactics of Percy Fx (Biomet) fixator use were analysed in two different situations: for the treatment of French soldiers wounded on several battlefields and then evacuated to France and for the management of local nationals in forward medical treatment facilities in Afghanistan and Chad. Overall 48 externals fixators were implanted on 37 French casualties; 28 frames were temporary and converted to definitive rigid frames or internal fixation after medical evacuation. The 77 Afghan patients totalled 85 external fixators, including 13 temporary frames applied in Forward Surgical Teams (FSTs) prior to their arrival at the Kabul combat support hospital. All of the 47 Chadian patients were treated in a FST with primary definitive frames because of delayed surgical management and absence of higher level of care in Chad. Temporary frames were mostly used for French soldiers to facilitate strategic air medical evacuation following trauma damage control orthopaedic principles. Definitive rigid frames permitted achieving treatment of all types of war extremity injuries, even in poor conditions.
Constraints on the Computation of Rigid Motion Parameters from Retinal Displacements.
1985-10-01
field (two temporall . proximal frames) is, in general, ambiguous. two frames can recover structure "hen the moing surface satisfies the conditions of...8217(i.b) Furthermore the following identity holds Z(X + SX, . + 6 Y) = z(x + ax . + 6)’) (iii) Using the Taylor series expansion of the above Z(X + 8X Y
Pyramidal space frame and associated methods
Clark, Ryan Michael; White, David; Farr, Jr, Adrian Lawrence
2016-07-19
A space frame having a high torsional strength comprising a first square bipyramid and two planar structures extending outward from an apex of the first square bipyramid to form a "V" shape is disclosed. Some embodiments comprise a plurality of edge-sharing square bipyramids configured linearly, where the two planar structures contact apexes of all the square bipyramids. A plurality of bridging struts, apex struts, corner struts and optional internal bracing struts increase the strength and rigidity of the space frame. In an embodiment, the space frame supports a solar reflector, such as a parabolic solar reflector. Methods of fabricating and using the space frames are also disclosed.
Tool for cutting insulation from electrical cables
Harless, Charles E.; Taylor, Ward G.
1978-01-01
This invention is an efficient hand tool for precisely slitting the sheath of insulation on an electrical cable--e.g., a cable two inches in diameter--in a manner facilitating subsequent peeling or stripping of the insulation. The tool includes a rigid frame which is slidably fitted on an end section of the cable. The frame carries a rigidly affixed handle and an opposed, elongated blade-and-handle assembly. The blade-and-handle assembly is pivotally supported by a bracket which is slidably mounted on the frame for movement toward and away from the cable, thus providing an adjustment for the depth of cut. The blade-and-handle assembly is mountable to the bracket in two pivotable positions. With the assembly mounted in the first position, the tool is turned about the cable to slit the insulation circumferentially. With the assembly mounted in the second position, the tool is drawn along the cable to slit the insulation axially. When cut both circumferentially and axially, the insulation can easily be peeled from the cable.
On the sensitivity analysis of porous material models
NASA Astrophysics Data System (ADS)
Ouisse, Morvan; Ichchou, Mohamed; Chedly, Slaheddine; Collet, Manuel
2012-11-01
Porous materials are used in many vibroacoustic applications. Different available models describe their behaviors according to materials' intrinsic characteristics. For instance, in the case of porous material with rigid frame, and according to the Champoux-Allard model, five parameters are employed. In this paper, an investigation about this model sensitivity to parameters according to frequency is conducted. Sobol and FAST algorithms are used for sensitivity analysis. A strong parametric frequency dependent hierarchy is shown. Sensitivity investigations confirm that resistivity is the most influent parameter when acoustic absorption and surface impedance of porous materials with rigid frame are considered. The analysis is first performed on a wide category of porous materials, and then restricted to a polyurethane foam analysis in order to illustrate the impact of the reduction of the design space. In a second part, a sensitivity analysis is performed using the Biot-Allard model with nine parameters including mechanical effects of the frame and conclusions are drawn through numerical simulations.
Two-axis sagittal focusing monochromator
Haas, Edwin G; Stelmach, Christopher; Zhong, Zhong
2014-05-13
An x-ray focusing device and method for adjustably focusing x-rays in two orthogonal directions simultaneously. The device and method can be operated remotely using two pairs of orthogonal benders mounted on a rigid, open frame such that x-rays may pass through the opening in the frame. The added x-ray flux allows significantly higher brightness from the same x-ray source.
Koul, Ashok R; Nahar, Sushil; Valandi, Beena; Praveen, Kumar H P
2012-09-01
We present a new technique for stabilizing an avulsed scalp during and after replantation/revascularization. We used an aluminium "halo" frame with 4 screws. This technique can rigidly stabilize an avulsed scalp and eliminate the possibility of shearing/pressure necrosis. This device can make perioperative management easier and more comfortable for the patient and caregivers.
Baker, Stephen B; Reid, Russell R; Burkey, Brooke; Bartlett, Scott P
2007-09-01
To shorten head frame wear time associated with external halo distraction (HD), we have adapted a protocol for maxillary distraction with the halo system that integrates plate fixation. All patients had a history of cleft lip and/or palate and maxillary retrusion > or = 8 mm. Five patients treated with this protocol and followed for at least 1 year were included in this study. The protocol included a 3-day latency period, variable maxillary distraction, and removal of the halo device with simultaneous rigid internal fixation. Two patients had a variable period of maxillomandibular fixation (MMF), which maintained the maxillary advancement and idealized intercuspal position while permitting further callus maturation. Cephalographs were obtained preoperatively, immediately following distractor removal, and 1 year after rigid internal fixation. The mean age at time of surgery was 18.7 years. The maxillary deficiency ranged from 8 to 15 mm (mean = 10.6 mm). All five patients demonstrated excellent occlusion. Cephalometric analysis 1-year post rigid internal fixation revealed minimal (<1 mm) skeletal relapse. Rapid maxillary distraction followed by MMF to maintain maxillary advancement may reduce halo device wear to 1 to 2 weeks. MMF optimizes occlusion by forcing the maxillary teeth into maximal intercuspal position. Rigid fixation is not only associated with less long-term relapse compared to nonrigid forms of fixation, but also minimizes the incidence of nonunion. This treatment protocol provides the advancement possible with distraction osteogenesis and the accuracy of orthognathic surgery, thereby minimizing external head frame wear.
Code of Federal Regulations, 2014 CFR
2014-07-01
... compressor or compressor means any wheel, skid, truck, or railroad car mounted, but not self-propelled... reciprocating rotary or turbine engine rigidly connected in permanent alignment and mounted on a common frame...
Code of Federal Regulations, 2012 CFR
2012-07-01
... compressor or compressor means any wheel, skid, truck, or railroad car mounted, but not self-propelled... reciprocating rotary or turbine engine rigidly connected in permanent alignment and mounted on a common frame...
Code of Federal Regulations, 2013 CFR
2013-07-01
... compressor or compressor means any wheel, skid, truck, or railroad car mounted, but not self-propelled... reciprocating rotary or turbine engine rigidly connected in permanent alignment and mounted on a common frame...
Koul, Ashok R.; Nahar, Sushil; Valandi, Beena; Praveen, Kumar H. P.
2012-01-01
We present a new technique for stabilizing an avulsed scalp during and after replantation/revascularization. We used an aluminium “halo” frame with 4 screws. This technique can rigidly stabilize an avulsed scalp and eliminate the possibility of shearing/pressure necrosis. This device can make perioperative management easier and more comfortable for the patient and caregivers. PMID:23450655
Groby, J-P; Lauriks, W; Vigran, T E
2010-05-01
The acoustic properties of a low resistivity porous layer backed by a rigid plate containing periodic rectangular irregularities, creating a multicomponent diffraction gratings, are investigated. Numerical and experimental results show that the structure possesses a total absorption peak at the frequency of the modified mode of the layer, when designed as proposed in the article. These results are explained by an analysis of the acoustic response of the whole structure and especially by the modal analysis of the configuration. When more than one irregularity per spatial period is considered, additional higher frequency peaks are observed.
Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit
NASA Technical Reports Server (NTRS)
Ansar, Adnan I.; Clouse, Daniel S.; McHenry, Michael C.; Zarzhitsky, Dimitri V.; Pagdett, Curtis W.
2013-01-01
This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS. This innovation can automatically derive the camera-to-INS alignment using image data only. The assumption is that the camera fixates on an area while the aircraft flies on orbit. The system then, fully automatically, solves for the camera orientation in the INS frame. No manual intervention or ground tie point data is required.
Beaton, L.; Mazzaferri, J.; Lalonde, F.; Hidalgo-Aguirre, M.; Descovich, D.; Lesk, M. R.; Costantino, S.
2015-01-01
We have developed a novel optical approach to determine pulsatile ocular volume changes using automated segmentation of the choroid, which, together with Dynamic Contour Tonometry (DCT) measurements of intraocular pressure (IOP), allows estimation of the ocular rigidity (OR) coefficient. Spectral Domain Optical Coherence Tomography (OCT) videos were acquired with Enhanced Depth Imaging (EDI) at 7Hz during ~50 seconds at the fundus. A novel segmentation algorithm based on graph search with an edge-probability weighting scheme was developed to measure choroidal thickness (CT) at each frame. Global ocular volume fluctuations were derived from frame-to-frame CT variations using an approximate eye model. Immediately after imaging, IOP and ocular pulse amplitude (OPA) were measured using DCT. OR was calculated from these peak pressure and volume changes. Our automated segmentation algorithm provides the first non-invasive method for determining ocular volume change due to pulsatile choroidal filling, and the estimation of the OR constant. Future applications of this method offer an important avenue to understanding the biomechanical basis of ocular pathophysiology. PMID:26137373
Comparative Analysis of THOR-NT ATD vs. Hybrid III ATD in Laboratory Vertical Shock Testing
2013-09-01
were taken both pretest and post - test for each test event (figure 5). Figure 5. Rigid fixture placed on the drop table with ATD seated: Hybrid III...6 3. Experimental Procedure 6 3.1 Test Setup...frames per second and with a Vision Research Phantom V9.1 (Wayne, NJ) high-speed video camera, sampling 1000 frames per second. 3. Experimental
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Holland, R. L.
1978-01-01
A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.
Kalantari, Faraz; Wang, Jing
2017-01-01
Purpose Four-dimensional positron emission tomography (4D-PET) imaging is a potential solution to the respiratory motion effect in the thoracic region. Computed tomography (CT)-based attenuation correction (AC) is an essential step toward quantitative imaging for PET. However, due to the temporal difference between 4D-PET and a single attenuation map from CT, typically available in routine clinical scanning, motion artifacts are observed in the attenuation-corrected PET images, leading to errors in tumor shape and uptake. We introduced a practical method to align single-phase CT with all other 4D-PET phases for AC. Methods A penalized non-rigid Demons registration between individual 4D-PET frames without AC provides the motion vectors to be used for warping single-phase attenuation map. The non-rigid Demons registration was used to derive deformation vector fields (DVFs) between PET matched with the CT phase and other 4D-PET images. While attenuated PET images provide useful data for organ borders such as those of the lung and the liver, tumors cannot be distinguished from the background due to loss of contrast. To preserve the tumor shape in different phases, an ROI-covering tumor was excluded from non-rigid transformation. Instead the mean DVF of the central region of the tumor was assigned to all voxels in the ROI. This process mimics a rigid transformation of the tumor along with a non-rigid transformation of other organs. A 4D-XCAT phantom with spherical lung tumors, with diameters ranging from 10 to 40 mm, was used to evaluate the algorithm. The performance of the proposed hybrid method for attenuation map estimation was compared to 1) the Demons non-rigid registration only and 2) a single attenuation map based on quantitative parameters in individual PET frames. Results Motion-related artifacts were significantly reduced in the attenuation-corrected 4D-PET images. When a single attenuation map was used for all individual PET frames, the normalized root mean square error (NRMSE) values in tumor region were 49.3% (STD: 8.3%), 50.5% (STD: 9.3%), 51.8% (STD: 10.8%) and 51.5% (STD: 12.1%) for 10-mm, 20-mm, 30-mm and 40-mm tumors respectively. These errors were reduced to 11.9% (STD: 2.9%), 13.6% (STD: 3.9%), 13.8% (STD: 4.8%), and 16.7% (STD: 9.3%) by our proposed method for deforming the attenuation map. The relative errors in total lesion glycolysis (TLG) values were −0.25% (STD: 2.87%) and 3.19% (STD: 2.35%) for 30-mm and 40-mm tumors respectively in proposed method. The corresponding values for Demons method were 25.22% (STD: 14.79%) and 18.42% (STD: 7.06%). Our proposed hybrid method outperforms the Demons method especially for larger tumors. For tumors smaller than 20 mm, non-rigid transformation could also provide quantitative results. Conclusion Although non-AC 4D-PET frames include insignificant anatomical information, they are still useful to estimate the DVFs to align the attenuation map for accurate AC. The proposed hybrid method can recover the AC-related artifacts and provide quantitative AC-PET images. PMID:27987223
Theory, implementation and applications of nonstationary Gabor frames
Balazs, P.; Dörfler, M.; Jaillet, F.; Holighaus, N.; Velasco, G.
2011-01-01
Signal analysis with classical Gabor frames leads to a fixed time–frequency resolution over the whole time–frequency plane. To overcome the limitations imposed by this rigidity, we propose an extension of Gabor theory that leads to the construction of frames with time–frequency resolution changing over time or frequency. We describe the construction of the resulting nonstationary Gabor frames and give the explicit formula for the canonical dual frame for a particular case, the painless case. We show that wavelet transforms, constant-Q transforms and more general filter banks may be modeled in the framework of nonstationary Gabor frames. Further, we present the results in the finite-dimensional case, which provides a method for implementing the above-mentioned transforms with perfect reconstruction. Finally, we elaborate on two applications of nonstationary Gabor frames in audio signal processing, namely a method for automatic adaptation to transients and an algorithm for an invertible constant-Q transform. PMID:22267893
Comparative multibody dynamics analysis of falls from playground climbing frames.
Forero Rueda, M A; Gilchrist, M D
2009-10-30
This paper shows the utility of multibody dynamics in evaluating changes in injury related parameters of the head and lower limbs of children following falls from playground climbing frames. A particular fall case was used as a starting point to analyze the influence of surface properties, posture of the body at impact, and intermediate collisions against the climbing frame before impacting the ground. Simulations were made using the 6-year-old pedestrian MADYMO rigid body model and scaled head contact characteristics. Energy absorbing surfaces were shown to reduce injury severity parameters by up to 30-80% of those of rigid surfaces, depending on impact posture and surface. Collisions against components of a climbing frame during a fall can increase injury severity of the final impact of the head with the ground by more than 90%. Negligible changes are associated with lower limb injury risks when different surfacing materials are used. Computer reconstructions of actual falls that are intended to quantify the severity of physical injuries rely on accurate knowledge of initial conditions prior to falling, intermediate kinematics of the fall and the orientation of the body when it impacts against the ground. Multibody modelling proved to be a valuable tool to analyze the quality of eyewitness information and analyze the relative injury risk associated with changes in components influencing fall injuries from playground climbing frames. Such simulations can also support forensic investigations by evaluating alternative hypotheses for the sequence of kinematic motion of falls which result in known injuries.
Miniaturized Cassegrainian concentrator concept demonstration
NASA Technical Reports Server (NTRS)
Patterson, R. E.; Rauschenbach, H. S.
1982-01-01
High concentration ratio photovoltaic systems for space applications have generally been considered impractical because of perceived difficulties in controlling solar cell temperatures to reasonably low values. A miniaturized concentrator system is now under development which surmounts this objection by providing acceptable solar cell temperatures using purely passive cell cooling methods. An array of identical miniaturized, rigid Cassegrainian optical systems having a low f-number with resulting short dimensions along their optical axes are rigidly mounted into a frame to form a relatively thin concentrator solar array panel. A number of such panels, approximately 1.5 centimeters thick, are wired as an array and are folded against one another for launch in a stowed configuration. Deployment on orbit is similar to the deployment of conventional planar honeycomb panel arrays or flexible blanket arrays. The miniaturized concept was conceived and studied in the 1978-80 time frame. Progress in the feasibility demonstration to date is reported.
Fixing a Reference Frame to a Moving and Deforming Continent
NASA Astrophysics Data System (ADS)
Blewitt, G.; Kreemer, C.; Hammond, W. C.
2016-12-01
The U.S. National Spatial Reference System will be modernized in 2022. A foundational component will be a geocentric reference frame fixed to the North America tectonic plate. Here we address challenges of fixing a reference frame to a moving and deforming continent. Scientific applications motivate that we fix the frame with a scale consistent with the SI system, an origin that coincides with the Earth system's center of mass, and with axes attached to the rigidly rotating interior of the North America plate. Realizing the scale and origin is now achieved to < 0.5 mm/yr by combining space-geodetic techniques (SLR, VLBI, GPS, and DORIS) in the global system, ITRS. To realize the no-net rotation condition, the complexity of plate boundary deformation demands that we only select GPS stations far from plate boundaries. Another problem is that velocity uncertainties in models of glacial isostatic adjustment (GIA) are significant compared to uncertainties in observed velocities. GIA models generally agree that far-field horizontal velocities tend to be directed toward/away from Hudson Bay, depending on mantle viscosity, with uncertain sign and magnitude of velocity. Also in the far field, strain rates tend to be small beyond the peripheral bulge ( US-Canada border). Thus the Earth's crust in the US east of the Rockies may appear to be rigid, even if this region moves relative to plate motion. This can affect Euler vector estimation, with implications (pros and cons) on scientific interpretation. Our previous approach [ref. 1] in defining the NA12 frame was to select a core set of 30 stations east of the Rockies and south of the U.S.-Canada border that satisfy strict criteria on position time series quality. The resulting horizontal velocities have an RMS of 0.3 mm/yr, quantifying a combination of plate rigidity and accuracy. However, this does not rule out possible common-mode motion arising from GIA. For the development of new frame NA16, we consider approaches to this problem. We also apply new techniques including the MIDAS robust velocity estimator [ref. 2] and "GPS Imaging" of vertical motions and strain rates (Fig. 1), which together could assist in better defining "stable North America".[1] Blewitt et al. (2013). J. Geodyn. 72, 11-24, doi:10.1016/j.jog.2013.08.004[2] Blewitt et al. (2016). JGR 121, doi:10.1002/2015JB012552
A Variational Approach to Video Registration with Subspace Constraints.
Garg, Ravi; Roussos, Anastasios; Agapito, Lourdes
2013-01-01
This paper addresses the problem of non-rigid video registration, or the computation of optical flow from a reference frame to each of the subsequent images in a sequence, when the camera views deformable objects. We exploit the high correlation between 2D trajectories of different points on the same non-rigid surface by assuming that the displacement of any point throughout the sequence can be expressed in a compact way as a linear combination of a low-rank motion basis. This subspace constraint effectively acts as a trajectory regularization term leading to temporally consistent optical flow. We formulate it as a robust soft constraint within a variational framework by penalizing flow fields that lie outside the low-rank manifold. The resulting energy functional can be decoupled into the optimization of the brightness constancy and spatial regularization terms, leading to an efficient optimization scheme. Additionally, we propose a novel optimization scheme for the case of vector valued images, based on the dualization of the data term. This allows us to extend our approach to deal with colour images which results in significant improvements on the registration results. Finally, we provide a new benchmark dataset, based on motion capture data of a flag waving in the wind, with dense ground truth optical flow for evaluation of multi-frame optical flow algorithms for non-rigid surfaces. Our experiments show that our proposed approach outperforms state of the art optical flow and dense non-rigid registration algorithms.
A computational procedure for multibody systems including flexible beam dynamics
NASA Technical Reports Server (NTRS)
Downer, J. D.; Park, K. C.; Chiou, J. C.
1990-01-01
A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. A fully nonlinear continuum approach capable of accounting for both finite rotations and large deformations has been used to model a flexible beam component. The beam kinematics are referred directly to an inertial reference frame such that the degrees of freedom embody both the rigid and flexible deformation motions. As such, the beam inertia expression is identical to that of rigid body dynamics. The nonlinear coupling between gross body motion and elastic deformation is contained in the internal force expression. Numerical solution procedures for the integration of spatial kinematic systems can be directily applied to the generalized coordinates of both the rigid and flexible components. An accurate computation of the internal force term which is invariant to rigid motions is incorporated into the general solution procedure.
71. Meadow Creek Culvert. This is an example of a ...
71. Meadow Creek Culvert. This is an example of a triple arch concrete box culvert with stone facing mimicking rigid frame structures. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC
New Whole-House Solutions Case Study: Tindall Homes, Columbus, New Jersey
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The builder worked with IBACOS to build 20 HERS-58 homes with R-49 mixed attic insulation, poly-iso foam in advanced framed walls, precast concrete basement walls with rigid foam, tight airsealing, and HRV
Marker-less multi-frame motion tracking and compensation in PET-brain imaging
NASA Astrophysics Data System (ADS)
Lindsay, C.; Mukherjee, J. M.; Johnson, K.; Olivier, P.; Song, X.; Shao, L.; King, M. A.
2015-03-01
In PET brain imaging, patient motion can contribute significantly to the degradation of image quality potentially leading to diagnostic and therapeutic problems. To mitigate the image artifacts resulting from patient motion, motion must be detected and tracked then provided to a motion correction algorithm. Existing techniques to track patient motion fall into one of two categories: 1) image-derived approaches and 2) external motion tracking (EMT). Typical EMT requires patients to have markers in a known pattern on a rigid too attached to their head, which are then tracked by expensive and bulky motion tracking camera systems or stereo cameras. This has made marker-based EMT unattractive for routine clinical application. Our main contributions are the development of a marker-less motion tracking system that uses lowcost, small depth-sensing cameras which can be installed in the bore of the imaging system. Our motion tracking system does not require anything to be attached to the patient and can track the rigid transformation (6-degrees of freedom) of the patient's head at a rate 60 Hz. We show that our method can not only be used in with Multi-frame Acquisition (MAF) PET motion correction, but precise timing can be employed to determine only the necessary frames needed for correction. This can speeds up reconstruction by eliminating the unnecessary subdivision of frames.
Automatic facial animation parameters extraction in MPEG-4 visual communication
NASA Astrophysics Data System (ADS)
Yang, Chenggen; Gong, Wanwei; Yu, Lu
2002-01-01
Facial Animation Parameters (FAPs) are defined in MPEG-4 to animate a facial object. The algorithm proposed in this paper to extract these FAPs is applied to very low bit-rate video communication, in which the scene is composed of a head-and-shoulder object with complex background. This paper addresses the algorithm to automatically extract all FAPs needed to animate a generic facial model, estimate the 3D motion of head by points. The proposed algorithm extracts human facial region by color segmentation and intra-frame and inter-frame edge detection. Facial structure and edge distribution of facial feature such as vertical and horizontal gradient histograms are used to locate the facial feature region. Parabola and circle deformable templates are employed to fit facial feature and extract a part of FAPs. A special data structure is proposed to describe deformable templates to reduce time consumption for computing energy functions. Another part of FAPs, 3D rigid head motion vectors, are estimated by corresponding-points method. A 3D head wire-frame model provides facial semantic information for selection of proper corresponding points, which helps to increase accuracy of 3D rigid object motion estimation.
Study on bridge checking evaluation based on deformation-Stress data
NASA Astrophysics Data System (ADS)
Shi, Jing Xian; Cheng, Ying Jie
2018-06-01
Bridge structure plays a very important role in human traffic. The evaluation of bridge structure after a certain period of operation has always been the focus of the bridge. Based on the data collected from the health inspection system of a continuous rigid frame bridge on a highway in Yunnan, China, it is found that there is a certain linear relationship between the deformation and stress of the bridge structure. In view of a specific section of the structure, the stress value of this section can be derived according to its deformation value. The coefficient K can be calculated by comparing the estimated value to the actual measured value. According to the range of the K value, the structural state of the bridge can be evaluated to a certain extent.
2016-12-01
of the frame from the combined image files and ensure total contact between the frame geometry, ultimately modeled independently as a solid, and...fitting with a rigid PETG check socket to ensure correct volumes and total contact at the distal end has been achieved, a second check socket can be...from dynamically conforming to changes in residual limb shape and volume during gait (Sanders, 2009). The ensuing separation (i.e. loss of contact
24 CFR 3280.902 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... provides a platform for securement of the running gear assembly, the drawbar and coupling mechanism. (d) Running gear assembly means the subsystem consisting of suspension springs, axles, bearings, wheels, hubs... mechanism, frame, running gear assembly, and lights. (b) Drawbar and coupling mechanism means the rigid...
49 CFR 587.18 - Dimensions of fixed rigid barrier.
Code of Federal Regulations, 2010 CFR
2010-10-01
... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) DEFORMABLE BARRIERS Offset Deformable Barrier § 587.18 Dimensions of fixed rigid barrier. (a) The fixed rigid barrier has a mass of not... 49 Transportation 7 2010-10-01 2010-10-01 false Dimensions of fixed rigid barrier. 587.18 Section...
49 CFR 587.18 - Dimensions of fixed rigid barrier.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Dimensions of fixed rigid barrier. 587.18 Section 587.18 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY... Deformable Barrier § 587.18 Dimensions of fixed rigid barrier. (a) The fixed rigid barrier has a mass of not...
49 CFR 587.18 - Dimensions of fixed rigid barrier.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Dimensions of fixed rigid barrier. 587.18 Section 587.18 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY... Deformable Barrier § 587.18 Dimensions of fixed rigid barrier. (a) The fixed rigid barrier has a mass of not...
49 CFR 587.18 - Dimensions of fixed rigid barrier.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Dimensions of fixed rigid barrier. 587.18 Section 587.18 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY... Deformable Barrier § 587.18 Dimensions of fixed rigid barrier. (a) The fixed rigid barrier has a mass of not...
49 CFR 587.18 - Dimensions of fixed rigid barrier.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Dimensions of fixed rigid barrier. 587.18 Section 587.18 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY... Deformable Barrier § 587.18 Dimensions of fixed rigid barrier. (a) The fixed rigid barrier has a mass of not...
New Whole-House Solutions Case Study: Shaw Construction, Aspen, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This builder worked with Building Science Corporation to design affordable HERS-54 townhouses with central solar radiator space heating, PV, R-28 closed-cell spray foam under slab and R-26 in advanced framed walls, and rigid polyiso on inside of basement walls
TH-EF-BRB-08: Robotic Motion Compensation for Radiation Therapy: A 6DOF Phantom Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belcher, AH; Liu, X; Wiersma, R
Purpose: The high accuracy of frame-based stereotactic radiosurgery (SRS), which uses a rigid frame fixed to the patient’s skull, is offset by potential drawbacks of poor patient compliance and clinical workflow restrictions. Recent research into frameless SRS has so far resulted in reduced accuracy. In this study, we investigate the use of a novel 6 degree-of-freedom (6DOF) robotic head motion cancellation system that continuously detects and compensates for patient head motions during a SRS delivery. This approach has the potential to reduce invasiveness while still achieving accuracies better or equal to traditional frame-based SRS. Methods: A 6DOF parallel kinematics roboticsmore » stage was constructed, and controlled using an inverse kinematics-based motion compensation algorithm. A 6DOF stereoscopic infrared (IR) marker tracking system was used to monitor real-time motions at sub-millimeter and sub-degree levels. A novel 6DOF calibration technique was first applied to properly orient the camera coordinate frame to match that of the LINAC and robotic control frames. Simulated head motions were measured by the system, and the robotic stage responded to these 6DOF motions automatically, returning the reflective marker coordinate frame to its original position. Results: After the motions were introduced to the system in the phantom-based study, the robotic stage automatically and rapidly returned the phantom to LINAC isocenter. When errors exceeded the compensation lower threshold of 0.25 mm or 0.25 degrees, the system registered the 6DOF error and generated a cancellation trajectory. The system responded in less than 0.5 seconds and returned all axes to less than 0.1 mm and 0.1 degree after the 6DOF compensation was performed. Conclusion: The 6DOF real-time motion cancellation system was found to be effective at compensating for translational and rotational motions to current SRS requirements. This system can improve frameless SRS by automatically returning patients to isocenter with high 6DOF accuracy.« less
An experimental investigation for external RC shear wall applications
NASA Astrophysics Data System (ADS)
Kaltakci, M. Y.; Ozturk, M.; Arslan, M. H.
2010-09-01
The strength and rigidity of most reinforced concrete (RC) buildings in Turkey, which are frequently hit by destructive earthquakes, is not at a sufficient level. Therefore, the result of earthquakes is a significant loss of life and property. The strengthening method most commonly preferred for these type of RC buildings is the application of RC infilled walls (shear walls) in the frame openings of the building. However, since the whole building has to be emptied and additional heavy costs arise during this type of strengthening, users prefer not to strengthen their buildings despite the heavy risk they are exposed to. Therefore, it is necessary to develop easier-to-apply and more effective methods for the rapid strengthening of housing and the heavily-used public buildings which cannot be emptied during the strengthening process (such as hospitals and schools). This study empirically analyses the different methods of a new system which can meet this need. In this new system, named "external shear wall application", RC shear walls are applied on the external surface of the building, along the frame plane rather than in the building. To this end, 7 test samples in 1/2 and 1/3 geometrical scale were designed to analyse the efficiency of the strengthening technique where the shear wall leans on the frame from outside of the building (external shear wall application) and of the strengthening technique where a specific space is left between the frame and the external shear wall by using a coupling beam to connect elements (application of external shear wall with coupling beam). Test results showed that the maximum lateral load capacity, initial rigidity and energy dissipation behaviours of the samples strengthened with external shear wall were much better than those of the bare frames.
21 CFR 886.5916 - Rigid gas permeable contact lens.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid gas permeable contact lens. 886.5916 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5916 Rigid gas permeable contact lens. (a) Identification. A rigid gas permeable contact lens is a device intended to be worn directly...
21 CFR 886.5916 - Rigid gas permeable contact lens.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigid gas permeable contact lens. 886.5916 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5916 Rigid gas permeable contact lens. (a) Identification. A rigid gas permeable contact lens is a device intended to be worn directly...
Numerical algorithm for rigid body position estimation using the quaternion approach
NASA Astrophysics Data System (ADS)
Zigic, Miodrag; Grahovac, Nenad
2017-11-01
This paper deals with rigid body attitude estimation on the basis of the data obtained from an inertial measurement unit mounted on the body. The aim of this work is to present the numerical algorithm, which can be easily applied to the wide class of problems concerning rigid body positioning, arising in aerospace and marine engineering, or in increasingly popular robotic systems and unmanned aerial vehicles. Following the considerations of kinematics of rigid bodies, the relations between accelerations of different points of the body are given. A rotation matrix is formed using the quaternion approach to avoid singularities. We present numerical procedures for determination of the absolute accelerations of the center of mass and of an arbitrary point of the body expressed in the inertial reference frame, as well as its attitude. An application of the algorithm to the example of a heavy symmetrical gyroscope is presented, where input data for the numerical procedure are obtained from the solution of differential equations of motion, instead of using sensor measurements.
Vertical bending strength and torsional rigidity analysis of formula student car chassis
NASA Astrophysics Data System (ADS)
Hazimi, Hashfi; Ubaidillah, Setiyawan, Adi Eka Putra; Ramdhani, Hanief Cahya; Saputra, Murnanda Zaesy; Imaduddin, Fitrian
2018-02-01
Formula Society of Automotive Engineers (FSAE) is a competition for students to construct formula student car. One of an essential part of a formula student car is its chassis. Chassis is an internal vehicle frame which holds all another part of the vehicle and secures the driver. The team have to design their chassis and tests their design to achieve the best chassis that fulfill the regulation. This paper contains chassis design from Bengawan FSAE Team and some FEA tests to find out the Tensile Strength, Torsional Rigidity, and Von Misses Stress of Formula SAE car. Torsional rigidity was found by applying the static torsional test. The results from torsional rigidity test are a maximum deformation of 9.9512 mm with 1.7064 safety factor, and 35.935 MPa maximum Von Misses Stress. Moreover, then the result of the vertical bending strength test is 8.1214 mm max deformation with safety factor 4.2717, and 29.226 MPa maximum Von Misses Stress.
The R-38 Catastrophe and the Mechanics of Rigid Airship Construction
NASA Technical Reports Server (NTRS)
Herrera, Emilio
1922-01-01
An airship frame may be regarded as a rigid girder subjected to a number of forces which, according to their nature, may be classified as follows: weight or loads (force of gravity); lifting forces (aero-static); accelerations (dynamic). These forces must be in equilibrium in the three most important cases during flight: 1) when the airship is floating (aerostatic problem); 2) when flying without acceleration (aerodynamic problem). 3) When under the influence of any accelerating force (dynamic problem). This report will briefly discuss each of these cases in regard to the R-38 airship accident.
Helms holds onto the Rigid Umbilical during EVA
2001-03-11
STS102-314-003 (11 March 2001) --- Astronaut Susan J. Helms works while holding onto a rigid umbilical and with her feet anchored to the remote manipulator system (RMS) robot arm on the Space Shuttle Discovery. This extravehicular activity (EVA), on which Helms was joined by astronaut James S. Voss (out of frame), was the first of two scheduled STS-102 space walks. The pair, destined to become members of the Expedition Two crew aboard the station later in the mission, rode aboard Discovery into orbit and at the time of this EVA were still regarded as STS-102 mission specialists.
64. Paynes Creek Culvert. This concrete box culvert is a ...
64. Paynes Creek Culvert. This concrete box culvert is a typical example of a concrete box culvert finished with rusticated stone. Its arches reflect the rigid frame structures. Looking west. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC
Schäfer, Sebastian; Nylund, Kim; Sævik, Fredrik; Engjom, Trond; Mézl, Martin; Jiřík, Radovan; Dimcevski, Georg; Gilja, Odd Helge; Tönnies, Klaus
2015-08-01
This paper presents a system for correcting motion influences in time-dependent 2D contrast-enhanced ultrasound (CEUS) images to assess tissue perfusion characteristics. The system consists of a semi-automatic frame selection method to find images with out-of-plane motion as well as a method for automatic motion compensation. Translational and non-rigid motion compensation is applied by introducing a temporal continuity assumption. A study consisting of 40 clinical datasets was conducted to compare the perfusion with simulated perfusion using pharmacokinetic modeling. Overall, the proposed approach decreased the mean average difference between the measured perfusion and the pharmacokinetic model estimation. It was non-inferior for three out of four patient cohorts to a manual approach and reduced the analysis time by 41% compared to manual processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Designing of self-deploying origami structures using geometrically misaligned crease patterns
Saito, Kazuya; Tsukahara, Akira; Okabe, Yoji
2016-01-01
Usually, origami-based morphing structures are designed on the premise of ‘rigid folding’, i.e. the facets and fold lines of origami can be replaced with rigid panels and ideal hinges, respectively. From a structural mechanics viewpoint, some rigid-foldable origami models are overconstrained and have negative degrees of freedom (d.f.). In these cases, the singularity in crease patterns guarantees their rigid foldability. This study presents a new method for designing self-deploying origami using the geometrically misaligned creases. In this method, some facets are replaced by ‘holes’ such that the systems become a 1-d.f. mechanism. These perforated origami models can be folded and unfolded similar to rigid-foldable (without misalignment) models because of their d.f. focusing on the removed facets, the holes will deform according to the motion of the frame of the remaining parts. In the proposed method, these holes are filled with elastic parts and store elastic energy for self-deployment. First, a new extended rigid-folding simulation technique is proposed to estimate the deformation of the holes. Next, the proposed method is applied on arbitrary-size quadrilateral mesh origami. Finally, by using the finite-element method, the authors conduct numerical simulations and confirm the deployment capabilities of the models. PMID:26997884
Designing of self-deploying origami structures using geometrically misaligned crease patterns.
Saito, Kazuya; Tsukahara, Akira; Okabe, Yoji
2016-01-01
Usually, origami-based morphing structures are designed on the premise of 'rigid folding', i.e. the facets and fold lines of origami can be replaced with rigid panels and ideal hinges, respectively. From a structural mechanics viewpoint, some rigid-foldable origami models are overconstrained and have negative degrees of freedom (d.f.). In these cases, the singularity in crease patterns guarantees their rigid foldability. This study presents a new method for designing self-deploying origami using the geometrically misaligned creases. In this method, some facets are replaced by 'holes' such that the systems become a 1-d.f. mechanism. These perforated origami models can be folded and unfolded similar to rigid-foldable (without misalignment) models because of their d.f. focusing on the removed facets, the holes will deform according to the motion of the frame of the remaining parts. In the proposed method, these holes are filled with elastic parts and store elastic energy for self-deployment. First, a new extended rigid-folding simulation technique is proposed to estimate the deformation of the holes. Next, the proposed method is applied on arbitrary-size quadrilateral mesh origami. Finally, by using the finite-element method, the authors conduct numerical simulations and confirm the deployment capabilities of the models.
NASA Astrophysics Data System (ADS)
Makhrojan, Agus; Suprihadi, Agus; Budi, Sigit Setijo; Jamari, J.; Ismail, Rifky
2017-01-01
The electric car is transportation which growing and constantly put through improvisation vehicle design. One of the structural components of the electric car which holds a major role is a frame. The purpose of this study is to get monocoque frame design which lightweight and powerful for a city car with two passengers that was able to improve the efficiency of the battery voltage source. Monocoque frame should be able to accept the normal loads such as the weight of batteries, passenger, and body. The most important thing, monocoque frame should also be able to protect the driver and passengers in the event of a collision. Mild steel was chosen for the design because it is easy to obtain and reasonable price as well as easy to shaped for two-seater electric car. FEM (finite element method) was used to determine stress determination and rigidity of the monocoque frame when receiving a static load. The results show that the monocoque frame was still able to withstand the required loads with minimal deflection.
NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data.
Pnevmatikakis, Eftychios A; Giovannucci, Andrea
2017-11-01
Motion correction is a challenging pre-processing problem that arises early in the analysis pipeline of calcium imaging data sequences. The motion artifacts in two-photon microscopy recordings can be non-rigid, arising from the finite time of raster scanning and non-uniform deformations of the brain medium. We introduce an algorithm for fast Non-Rigid Motion Correction (NoRMCorre) based on template matching. NoRMCorre operates by splitting the field of view (FOV) into overlapping spatial patches along all directions. The patches are registered at a sub-pixel resolution for rigid translation against a regularly updated template. The estimated alignments are subsequently up-sampled to create a smooth motion field for each frame that can efficiently approximate non-rigid artifacts in a piecewise-rigid manner. Existing approaches either do not scale well in terms of computational performance or are targeted to non-rigid artifacts arising just from the finite speed of raster scanning, and thus cannot correct for non-rigid motion observable in datasets from a large FOV. NoRMCorre can be run in an online mode resulting in comparable to or even faster than real time motion registration of streaming data. We evaluate its performance with simple yet intuitive metrics and compare against other non-rigid registration methods on simulated data and in vivo two-photon calcium imaging datasets. Open source Matlab and Python code is also made available. The proposed method and accompanying code can be useful for solving large scale image registration problems in calcium imaging, especially in the presence of non-rigid deformations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Wilhelm, W.G.
The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
First order coupled dynamic model of flexible space structures with time-varying configurations
NASA Astrophysics Data System (ADS)
Wang, Jie; Li, Dongxu; Jiang, Jianping
2017-03-01
This paper proposes a first order coupled dynamic modeling method for flexible space structures with time-varying configurations for the purpose of deriving the characteristics of the system. The model considers the first time derivative of the coordinate transformation matrix between the platform's body frame and the appendage's floating frame. As a result it can accurately predict characteristics of the system even if flexible appendages rotate with complex trajectory relative to the rigid part. In general, flexible appendages are fixed on the rigid platform or forced to rotate with a slow angular velocity. So only the zero order of the transformation matrix is considered in conventional models. However, due to neglecting of time-varying terms of the transformation matrix, these models introduce severe error when appendages, like antennas, for example, rotate with a fast speed relative to the platform. The first order coupled dynamic model for flexible space structures proposed in this paper resolve this problem by introducing the first time derivative of the transformation matrix. As a numerical example, a central core with a rotating solar panel is considered and the results are compared with those given by the conventional model. It has been shown that the first order terms are of great importance on the attitude of the rigid body and dynamic response of the flexible appendage.
Hassan, Atef; Letts, Merv
2012-01-01
Neglected or inadequately treated rigid congenitally deformed feet in older children are a nightmarish challenge for the child, the parents, and the orthopaedic surgeon. Because of the multiplicity of spatial deformities exhibited by these feet and legs, it was hypothesized that correction using the Taylor spatial frame (TSF) would decrease morbidity, facilitate correction, and minimize treatment time in children from remote regions with extremely rigid deformed feet. Recent experience with the management of 11 such feet (Dimeglio type IV) in 9 children with an average age of 9.2 years using the TSF has been gratifying. Six children had associated leg length discrepancy, which was corrected by concomitant tibial lengthening. All feet underwent soft tissue releases, whereas forefoot and/or hindfoot osteotomies were performed in 7 feet. All children attained plantigrade, functional feet, and were fully ambulatory and capable of wearing normal footwear. Complications were minor consisting of pin tract infections, residual metatarsus varus in 3, and wound dehiscence in 1. There were no neurovascular events. This was attributed to the slower 3 plane correction using the TSF technique as well as the elimination of the need for plaster immobilization thus allowing direct monitoring of the foot and limb. The rigid foot deformity in the older child can be safely and effectively corrected with the aid of the TSF, which facilitates a 3 plane correction and concomitant limb lengthening.
Analytical Approach to Large Deformation Problems of Frame Structures
NASA Astrophysics Data System (ADS)
Ohtsuki, Atsumi; Ellyin, Fernand
In elements used as flexible linking devices and structures, the main characteristic is a fairly large deformation without exceeding the elastic limit of the material. This property is of both analytical and technological interests. Previous studies of large deformation have been generally concerned with a single member (e.g. a cantilever beam, a simply supported beam, etc.). However, there are very few large deformation studies of assembled members such as frames. This paper deals with a square frame with rigid joints, loaded diagonally in either tension or compression by a pair of opposite forces. Analytical solutions for large deformation are obtained in terms of elliptic integrals, and are compared with the experimental data. The agreement is found to be fairly close.
21 CFR 882.1020 - Rigidity analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigidity analyzer. 882.1020 Section 882.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1020 Rigidity analyzer. (a...
21 CFR 882.1020 - Rigidity analyzer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigidity analyzer. 882.1020 Section 882.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1020 Rigidity analyzer. (a...
Contribution to defining a geodetic reference frame for Africa (AFREF): Geodynamics implications
NASA Astrophysics Data System (ADS)
Saria, Elifuraha E.
African Reference Frame (AFREF) is the proposed regional three-dimensional standard frame, which will be used to reference positions and velocities for geodetic sites in Africa and surrounding. This frame will play a crucial role in scientific application for example plate motion and crustal deformation studies, and also in mapping when it involves for example national boundary surveying, remote sensing, GIS, engineering projects and other development programs in Africa. To contribute to the definition of geodetic reference frame for Africa and provide the first continent-wide position/velocity solution for Africa, we processed and analyzed 16 years of GPS and 17 years of DORIS data at 133 GPS sites and 9 DORIS sites continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. We use the resulting horizontal velocities to determine the level of rigidity of Nubia and updated a plate motion model for the East African Rift and revise the counter clockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. The vertical velocity ranges from -2 to +2 mm/yr, close to their uncertainties with no clear geographical pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). In the next step we used the substantial increase in the geologic, geophysical and geodetic data in Africa to improve our understanding of the rift geometry and the block kinematics of the EAR. We determined the best-fit fault structure of the rift in terms of the locking depth and dip angle and use a block modeling approach where observed velocities are described as the contribution of rigid block rotation and strain accumulation on locked faults. Our results show a better fit with three sub-plates (Victoria, Rovuma and Lwandle) between the major plates Nubia and Somalia. We show that the earthquake slip vectors provide information that is consistent with the GPS velocities and significantly help reduce the uncertainties in plate angular velocity estimates. However, we find that 3.16 My average spreading rates along the Southwest Indian Ridge (SWIR) from MORVEL model are systematically faster than GPS-derived motions across that ridge, possibly reflecting the need to revise the MORVEL outward displacement correction. In the final step, we attempt to understand the hydrological loading in Africa, which may affect our geodetic estimates, particularly the uplift rates. In this work, we analyze 10 years (2002 - 2012) of continuous GPS measurements operating in Africa, and compare with the modeled hydrological loading deformation inferred from the Gravity Recovery and Climate Experiment (GRACE) at the same GPS location and for the same time period. We estimated hydrological loading deformation based on the Equivalent Water Height (EWH) derived from the 10-days interval reprocessed GRACE solution second release (RL02). We took in to account in both GPS and GRACE the systematic errors from atmospheric pressure and non-tidal ocean loading effects and model the Earth as perfect elastic and compute the deformation using appropriate Greens function. We analyze the strength of association between the observation (GPS) and the model (GRACE) in terms of annual amplitude and phase as well as the original data (time-series). We find a good correlation mainly in regions associated with strong seasonal hydrological variations. To improve the correlation between the two solutions, we subtract the GRACE-derived vertical displacement from GPS-observed time series and determine the variance reduction. Our solution shows average variance between the model and the observation reduced to ~40%. (Abstract shortened by UMI.)
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.
Investigating the Improved Aerodynamic Efficiency of Cambered Frames on Membrane MAV Wings
NASA Astrophysics Data System (ADS)
Wrist, Andrew; Zhang, Zheng; Hubner, Paul
2014-11-01
Previous research has demonstrated that membrane wings with cambered frames are more aerodynamically efficient than those with flat frames, despite passive dynamic membrane cambering for both. To help understand this aerodynamic benefit, this study compares the time-averaged membrane shape as well as membrane vibration frequency and amplitude for a group of wings with cambered frames. The frames were 3D printed with a hardened polymer material, and a silicon rubber membrane was attached to the top surface. The frame aspect ratio is two, comprised of two cells each with a cell aspect ratio of one. The rigid leading edge extended 20% of the chord, and the trailing edge was scalloped at 25%. Camber ranged from 2--6%, camber location from 40--60%, and airfoil thickness from 4--6%. Tests were performed in the University of Alabama's MAV wind tunnel at 10 m/s (Re = 50,000). High speed imaging results of the deformation and vibration will be discussed in context to airfoil and wing theory. National Science Foundation Grant Number: 1358991.
21 CFR 876.3630 - Penile rigidity implant.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Penile rigidity implant. 876.3630 Section 876.3630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Prosthetic Devices § 876.3630 Penile rigidity implant. (a...
Steelworker 1 & C. Rate Training Manual and Nonresident Career Course. Revised Edition.
ERIC Educational Resources Information Center
Essinger, Patrick J.
This Rate Training Manual and Nonresident Career Course (RTM/NRCC) form a self-study package that will enable Steelworkers First and Chief to help themselves fulfill the requirements of their rating. (These positions direct and coordinate efforts of individuals and crews in cutting, welding, placing and erecting rigid frame and other…
Builders Challenge High Performance Builder Spotlight: David Weekley Homes, Houston, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-12-22
Building America Builders Challenge fact sheet on David Weekley Homes of Houston, Texas. The builder plans homes as a "system," with features such as wood-framed walls that are air-sealed then insulated with R-13 unfaced fiberglass batts plus an external covering of R-2 polyisocyanurate rigid foam sheathing.
2008-03-01
consider the origin of the parachute they probably envision the pyramidal drawing of Leonardo da Vinci from the late 1400s. However, the Chinese are...refining their designs. Like da Vinci’s plan, most had a rigid frame limiting their versatility. The practical use for the parachute was
30 CFR 75.802 - Protection of high-voltage circuits extending underground.
Code of Federal Regulations, 2010 CFR
2010-07-01
... serve as a grounding conductor for the frames of all high-voltage equipment supplied power from that... stationary electric equipment if: (1) Such circuits are either steel armored or installed in grounded, rigid steel conduit throughout their entire length; or, (2) The voltage of such circuits is nominally 2,400...
30 CFR 75.802 - Protection of high-voltage circuits extending underground.
Code of Federal Regulations, 2011 CFR
2011-07-01
... serve as a grounding conductor for the frames of all high-voltage equipment supplied power from that... stationary electric equipment if: (1) Such circuits are either steel armored or installed in grounded, rigid steel conduit throughout their entire length; or, (2) The voltage of such circuits is nominally 2,400...
BEAM: A Finite Element Program for the Collapse Analysis of Vehicle Structures
1994-06-01
deflects a latera: d&stance 8, its bending stresses are increased. Nor can BEAM account for the reduction of plastic moment capacity due to axial loads...Figure 9: The load -displacement curve for Frame 4, comparing elastic-, rigid plastuc and Sttq’ BI-Step analyses with experimental results. The
16 CFR 1201.4 - Test procedures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (but are not limited to): Nominal thickness or thicknesses, method of manufacture (in appropriate cases... rigidity. (ii) The structural framing shall be welded or securely bolted at the corners and braced by one... figure 5 on this section. The bag shall be filled with No. 71/2 chilled lead shot to a total weight of...
16 CFR § 1201.4 - Test procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... (but are not limited to): Nominal thickness or thicknesses, method of manufacture (in appropriate cases... rigidity. (ii) The structural framing shall be welded or securely bolted at the corners and braced by one... figure 5 on this section. The bag shall be filled with No. 71/2 chilled lead shot to a total weight of...
16 CFR 1201.4 - Test procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (but are not limited to): Nominal thickness or thicknesses, method of manufacture (in appropriate cases... rigidity. (ii) The structural framing shall be welded or securely bolted at the corners and braced by one... figure 5 on this section. The bag shall be filled with No. 71/2 chilled lead shot to a total weight of...
Multibody dynamic analysis using a rotation-free shell element with corotational frame
NASA Astrophysics Data System (ADS)
Shi, Jiabei; Liu, Zhuyong; Hong, Jiazhen
2018-03-01
Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore, the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.
Best Practices Case Study: David Weekley Homes - Eagle Springs and Waterhaven, Houston, TX
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2011-04-01
Case study describing David Weekley Homes, Houston Division, has qualified more than 1,240 homes for the DOE Builders Challenge. Advanced framed 2x6 walls with open headers and two-stud corners allow more room for R-20 damp sprayed cellulose wall cavity insulation that is covered with R-5 rigid XPS foam. A radiant barrier cuts heat gain in the R-38 insulated vented attics. Draft stopping at fireplace and duct chases and behind tubs, gluing sheetrock to framing, and extensive caulking make for air-tight homes at 3.0 ACH50.
21 CFR 890.3610 - Rigid pneumatic structure orthosis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610 Rigid...
21 CFR 890.3610 - Rigid pneumatic structure orthosis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610 Rigid...
21 CFR 890.3610 - Rigid pneumatic structure orthosis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610 Rigid...
21 CFR 890.3610 - Rigid pneumatic structure orthosis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610 Rigid...
21 CFR 890.3610 - Rigid pneumatic structure orthosis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610 Rigid...
Adding In-Plane Flexibility to the Equations of Motion of a Single Rotor Helicopter
NASA Technical Reports Server (NTRS)
Curtiss, H. C., Jr.
2000-01-01
This report describes a way to add the effects of main rotor blade flexibility in the in- plane or lead-lag direction to a large set of non-linear equations of motion for a single rotor helicopter with rigid blades(l). Differences between the frequency of the regressing lag mode predicted by the equations of (1) and that measured in flight (2) for a UH-60 helicopter indicate that some element is missing from the analytical model of (1) which assumes rigid blades. A previous study (3) noted a similar discrepancy for the CH-53 helicopter. Using a relatively simple analytical model in (3), compared to (1), it was shown that a mechanical lag damper increases significantly the coupling between the rigid lag mode and the first flexible mode. This increased coupling due to a powerful lag damper produces an increase in the lowest lag frequency when viewed in a frame rotating with the blade. Flight test measurements normally indicate the frequency of this mode in a non-rotating or fixed frame. This report presents the additions necessary to the full equations of motion, to include main rotor blade lag flexibility. Since these additions are made to a very complex nonlinear dynamic model, in order to provide physical insight, a discussion of the results obtained from a simplified set of equations of motion is included. The reduced model illustrates the physics involved in the coupling and should indicate trends in the full model.
Meshless Modeling of Deformable Shapes and their Motion
Adams, Bart; Ovsjanikov, Maks; Wand, Michael; Seidel, Hans-Peter; Guibas, Leonidas J.
2010-01-01
We present a new framework for interactive shape deformation modeling and key frame interpolation based on a meshless finite element formulation. Starting from a coarse nodal sampling of an object’s volume, we formulate rigidity and volume preservation constraints that are enforced to yield realistic shape deformations at interactive frame rates. Additionally, by specifying key frame poses of the deforming shape and optimizing the nodal displacements while targeting smooth interpolated motion, our algorithm extends to a motion planning framework for deformable objects. This allows reconstructing smooth and plausible deformable shape trajectories in the presence of possibly moving obstacles. The presented results illustrate that our framework can handle complex shapes at interactive rates and hence is a valuable tool for animators to realistically and efficiently model and interpolate deforming 3D shapes. PMID:24839614
Dynamic Projection Mapping onto Deforming Non-Rigid Surface Using Deformable Dot Cluster Marker.
Narita, Gaku; Watanabe, Yoshihiro; Ishikawa, Masatoshi
2017-03-01
Dynamic projection mapping for moving objects has attracted much attention in recent years. However, conventional approaches have faced some issues, such as the target objects being limited to rigid objects, and the limited moving speed of the targets. In this paper, we focus on dynamic projection mapping onto rapidly deforming non-rigid surfaces with a speed sufficiently high that a human does not perceive any misalignment between the target object and the projected images. In order to achieve such projection mapping, we need a high-speed technique for tracking non-rigid surfaces, which is still a challenging problem in the field of computer vision. We propose the Deformable Dot Cluster Marker (DDCM), a novel fiducial marker for high-speed tracking of non-rigid surfaces using a high-frame-rate camera. The DDCM has three performance advantages. First, it can be detected even when it is strongly deformed. Second, it realizes robust tracking even in the presence of external and self occlusions. Third, it allows millisecond-order computational speed. Using DDCM and a high-speed projector, we realized dynamic projection mapping onto a deformed sheet of paper and a T-shirt with a speed sufficiently high that the projected images appeared to be printed on the objects.
Improving the performance of auto-parametric pendulum absorbers by means of a flexural beam
NASA Astrophysics Data System (ADS)
Mahmoudkhani, S.
2018-07-01
Auto-parametric pendulum absorbers perform well only in a very limited range of excitation amplitudes, above which their efficiency would be substantially degraded as a consequence of spillover effects or appearance of quasi-periodic and chaotic responses. For improving the performance against this drawback, the rigid pendulum is replaced in the present study with a low-stiffness viscoelastic beam. An additional one-to-three internal resonance between the almost non-flexural rotational and the first flexural modes of the beam is also introduced. With the aid of this internal resonance, the energy that has been transferred to the absorber due to the one-to-two internal resonance would be avoided from being transferred back to the primary system by faster dissipation of vibrations at a higher-frequency mode thereby leading to lower spillover effects. For modeling purpose, the tracking frame with the rigid-body constraint and also the third-order nonlinear beam theory are employed to account for arbitrarily large rotation angles coupled to moderately large elastic deformations. The assumed-mode method is also used to obtain discretized equations of motion. The numerical continuation of periodic solution is performed and the bifurcations with detrimental effects on the performance are determined. Various parametric studies are also conducted which show that by proper setting of the system parameters, higher efficiencies at much wider range of excitation amplitudes could be achieved.
NASA Astrophysics Data System (ADS)
Mitchell, Sarah L.; Ortiz, Michael
2016-09-01
This study utilizes computational topology optimization methods for the systematic design of optimal multifunctional silicon anode structures for lithium-ion batteries. In order to develop next generation high performance lithium-ion batteries, key design challenges relating to the silicon anode structure must be addressed, namely the lithiation-induced mechanical degradation and the low intrinsic electrical conductivity of silicon. As such this work considers two design objectives, the first being minimum compliance under design dependent volume expansion, and the second maximum electrical conduction through the structure, both of which are subject to a constraint on material volume. Density-based topology optimization methods are employed in conjunction with regularization techniques, a continuation scheme, and mathematical programming methods. The objectives are first considered individually, during which the influence of the minimum structural feature size and prescribed volume fraction are investigated. The methodology is subsequently extended to a bi-objective formulation to simultaneously address both the structural and conduction design criteria. The weighted sum method is used to derive the Pareto fronts, which demonstrate a clear trade-off between the competing design objectives. A rigid frame structure was found to be an excellent compromise between the structural and conduction design criteria, providing both the required structural rigidity and direct conduction pathways. The developments and results presented in this work provide a foundation for the informed design and development of silicon anode structures for high performance lithium-ion batteries.
Code of Federal Regulations, 2010 CFR
2010-10-01
... boundary in which the doors are fitted; (5) Door frames must be of rigid construction and provide at least... inches) square. A self-closing hinged or pivoted steel or equivalent material cover must be fitted in the...) A door in a bulkhead required to be A-60, A-30, or A-15 Class must be of hollow steel or equivalent...
Code of Federal Regulations, 2011 CFR
2011-10-01
... boundary in which the doors are fitted; (5) Door frames must be of rigid construction and provide at least... inches) square. A self-closing hinged or pivoted steel or equivalent material cover must be fitted in the...) A door in a bulkhead required to be A-60, A-30, or A-15 Class must be of hollow steel or equivalent...
16 CFR 1201.4 - Test procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... rigidity. (ii) The structural framing shall be welded or securely bolted at the corners and braced by one... figure 5 on this section. The bag shall be filled with No. 71/2 chilled lead shot to a total weight of... durability test equipment—(i) Boil test. Two containers of water shall be provided with means to maintain one...
16 CFR 1201.4 - Test procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... rigidity. (ii) The structural framing shall be welded or securely bolted at the corners and braced by one... figure 5 on this section. The bag shall be filled with No. 71/2 chilled lead shot to a total weight of... durability test equipment—(i) Boil test. Two containers of water shall be provided with means to maintain one...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
... grading'' in road construction. \\16\\ A straddle carrier is a rigid frame, engine-powered machine that is... road construction to prepare the base course onto which asphalt or other paving material will be laid...-the-Road Tires From the People's Republic of China: Notice of Rescission of Changed Circumstances...
NASA Astrophysics Data System (ADS)
Wilson, F.; Neukirch, T.
2018-01-01
We present new analytical three-dimensional solutions of the magnetohydrostatic equations, which are applicable to the co-rotating frame of reference outside a rigidly rotating cylindrical body, and have potential applications to planetary magnetospheres and stellar coronae. We consider the case with centrifugal force only, and use a transformation method in which the governing equation for the "pseudo-potential" (from which the magnetic field can be calculated) becomes the Laplace partial differential equation. The new solutions extend the set of previously found solutions to those of a "fractional multipole" nature, and offer wider possibilities for modelling than before. We consider some special cases, and present example solutions.
Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arena, Lois B.
High R-value wall assemblies (R-40 and above) are gaining popularity in the market due to programs such as the U.S. Department of Energy Zero Energy Ready Home program, Passive House, Net Zero Energy Home challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used double-wall systems to achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double-wall systems is that there are very few new exterior details. Exterior sheathings, structural bracings, house wraps or building paper, window and doormore » flashings, and siding attachments are usually identical to good details in conventional framed-wall systems. However, although the details in double-wall systems are very similar to those in conventional stick framing, there is sometimes less room for error. Several studies have confirmed colder temperatures of exterior sheathing in high R-value wall assemblies that do not have exterior rigid foam insulation. These colder temperatures can lead to increased chances for condensation from air exfiltration, and they have the potential to result in moisture-related problems (Straube and Smegal 2009, Arena 2014, Ueno 2015). The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and reduce material brought to landfills due to failures and resulting decay. Although this document focuses on double-wall framing techniques, the majority of the information about how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture-related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super-insulated homes. The information is applicable to both new construction and gut-rehabilitation projects in Climate Zones 5 and higher.« less
Torque balance, Taylor's constraint and torsional oscillations in a numerical model of the geodynamo
NASA Astrophysics Data System (ADS)
Dumberry, Mathieu; Bloxham, Jeremy
2003-11-01
Theoretical considerations and observations suggest that, to a first approximation, the Earth's dynamo is in a quasi-Taylor state, where the axial Lorentz torque on cylindrical surfaces co-axial with the rotation axis vanishes, except for the part involved in torsional oscillations. The latter are rigid azimuthal accelerations of cylindrical surfaces which oscillate with typical periods of decades. We present a solution of a numerical model of the geodynamo in which rigid accelerations of cylinder surfaces are observed. The underlying dynamic state in the model is not a Taylor state because the Reynolds stresses and viscous torque remain large and provide an effective way to balance a large Lorentz torque. This is a consequence of the limited parameter regime which can be attained numerically. Nevertheless, departures in the torque equilibrium are primarily counterbalanced by rigid accelerations of cylindrical surfaces, which, in turn, excite rigid azimuthal oscillations of the surfaces. We show that the azimuthal motion is indeed quasi-rigid, though the torsional oscillations that are produced in the model probably differ from those in the Earth's core because of the large influence of the Reynolds stresses on their dynamics. We also show that the continual excitation of rigid cylindrical accelerations is produced by the advection of the non-axisymmetric structure of the fields by a mean differential rotation of the cylindrical surfaces which produces disconnections and reconnections and continual fluctuations in the Lorentz torque and Reynolds stresses. We propose that the torque balance in Earth's core may evolve in a similar chaotic fashion, except that the influence of the Reynolds stresses is probably weaker. If this is the case, the Lorentz torque on a cylindrical surface is continually fluctuating, even though its time-averaged value vanishes and satisfies Taylor's constraint. Rigid accelerations of cylindrical surfaces are continually excited by the fluctuations in the Lorentz torque, and the torsional oscillations observed in the geomagnetic data are a mixture of forced and free oscillations.
Elastomeric actuator devices for magnetic resonance imaging
NASA Technical Reports Server (NTRS)
Lichter, Matthew (Inventor); Wingert, Andreas (Inventor); Hafez, Moustapha (Inventor); Dubowsky, Steven (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Weiss, Peter (Inventor)
2008-01-01
The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.
Rodgers, M. Steven; Miller, Samuel L.
2003-01-01
A compact electrostatic actuator is disclosed for microelectromechanical (MEM) applications. The actuator utilizes stationary and moveable electrodes, with the stationary electrodes being formed on a substrate and the moveable electrodes being supported above the substrate on a frame. The frame provides a rigid structure which allows the electrostatic actuator to be operated at high voltages (up to 190 Volts) to provide a relatively large actuation force compared to conventional electrostatic comb actuators which are much larger in size. For operation at its maximum displacement, the electrostatic actuator is relatively insensitive to the exact value of the applied voltage and provides a self-limiting displacement.
Morphable Word Clouds for Time-Varying Text Data Visualization.
Chi, Ming-Te; Lin, Shih-Syun; Chen, Shiang-Yi; Lin, Chao-Hung; Lee, Tong-Yee
2015-12-01
A word cloud is a visual representation of a collection of text documents that uses various font sizes, colors, and spaces to arrange and depict significant words. The majority of previous studies on time-varying word clouds focuses on layout optimization and temporal trend visualization. However, they do not fully consider the spatial shapes and temporal motions of word clouds, which are important factors for attracting people's attention and are also important cues for human visual systems in capturing information from time-varying text data. This paper presents a novel method that uses rigid body dynamics to arrange multi-temporal word-tags in a specific shape sequence under various constraints. Each word-tag is regarded as a rigid body in dynamics. With the aid of geometric, aesthetic, and temporal coherence constraints, the proposed method can generate a temporally morphable word cloud that not only arranges word-tags in their corresponding shapes but also smoothly transforms the shapes of word clouds over time, thus yielding a pleasing time-varying visualization. Using the proposed frame-by-frame and morphable word clouds, people can observe the overall story of a time-varying text data from the shape transition, and people can also observe the details from the word clouds in frames. Experimental results on various data demonstrate the feasibility and flexibility of the proposed method in morphable word cloud generation. In addition, an application that uses the proposed word clouds in a simulated exhibition demonstrates the usefulness of the proposed method.
Scope of inextensible frame hypothesis in local action analysis of spherical reservoirs
NASA Astrophysics Data System (ADS)
Vinogradov, Yu. I.
2017-05-01
Spherical reservoirs, as objects perfect with respect to their weight, are used in spacecrafts, where thin-walled elements are joined by frames into multifunction structures. The junctions are local, which results in origination of stress concentration regions and the corresponding rigidity problems. The thin-walled elements are reinforced by frame to decrease the stresses in them. To simplify the analysis of the mathematical model of common deformation of the shell (which is a mathematical idealization of the reservoir) and the frame, the assumption that the frame axial line is inextensible is used widely (in particular, in the manual literature). The unjustified use of this assumption significantly distorts the concept of the stress-strain state. In this paper, an example of a lens-shaped structure formed as two spherical shell segments connected by a frame of square profile is used to carry out a numerical comparative analysis of the solutions with and without the inextensible frame hypothesis taken into account. The scope of the hypothesis is shown depending on the structure geometric parameters and the load location degree. The obtained results can be used to determine the stress-strain state of the thin-walled structure with an a priori prescribed error, for example, in research and experimental design of aerospace systems.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched. PMID:24578667
Intrinsic frame transport for a model of nematic liquid crystal
NASA Astrophysics Data System (ADS)
Cozzini, S.; Rull, L. F.; Ciccotti, G.; Paolini, G. V.
1997-02-01
We present a computer simulation study of the dynamical properties of a nematic liquid crystal model. The diffusional motion of the nematic director is taken into account in our calculations in order to give a proper estimate of the transport coefficients. Differently from other groups we do not attempt to stabilize the director through rigid constraints or applied external fields. We instead define an intrinsic frame which moves along with the director at each step of the simulation. The transport coefficients computed in the intrinsic frame are then compared against the ones calculated in the fixed laboratory frame, to show the inadequacy of the latter for systems with less than 500 molecules. Using this general scheme on the Gay-Berne liquid crystal model, we evidence the natural motion of the director and attempt to quantify its intrinsic time scale and size dependence. Through extended simulations of systems of different size we calculate the diffusion and viscosity coefficients of this model and compare our results with values previously obtained with fixed director.
Thin film absorber for a solar collector
Wilhelm, William G.
1985-01-01
This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
Wilhelm, William G.
1982-01-01
The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
2009-04-01
outer ends of the MEMS-stage connect the stage to a macroscopic piezo -electric actuated test frame using rigid pins. In order to apply uniaxial...carbide also served as the resistor for Joule heating. This heater was used to melt glass (Soda lime glass, softening temperature: 720C, Gold Seal
Solar-Array Substrate From Glass-Reinforced Concrete
NASA Technical Reports Server (NTRS)
Eirls, J. L.
1985-01-01
Design elminiates glass superstrate and associated metal framing. Panel has two trapezoidal stiffening ribs for structural support. Strategic placement of ribs with embedded support tubes (standard PVC tubing) minimizes bending moments and resulting stresses produced by installation and windloads. Glass-reinforced concrete panel has smooth flat surface suitable for solar substrate and includes structural bracing for rigidity and design adaptable to mass production.
Four-Wheel Vehicle Suspension System
NASA Technical Reports Server (NTRS)
Bickler, Donald B.
1990-01-01
Four-wheel suspension system uses simple system of levers with no compliant components to provide three-point suspension of chassis of vehicle while maintaining four-point contact with uneven terrain. Provides stability against tipping of four-point rectangular base, without rocking contact to which rigid four-wheel frame susceptible. Similar to six-wheel suspension system described in "Articulated Suspension Without Springs" (NPO-17354).
Tracking of Ball and Players in Beach Volleyball Videos
Gomez, Gabriel; Herrera López, Patricia; Link, Daniel; Eskofier, Bjoern
2014-01-01
This paper presents methods for the determination of players' positions and contact time points by tracking the players and the ball in beach volleyball videos. Two player tracking methods are compared, a classical particle filter and a rigid grid integral histogram tracker. Due to mutual occlusion of the players and the camera perspective, results are best for the front players, with 74,6% and 82,6% of correctly tracked frames for the particle method and the integral histogram method, respectively. Results suggest an improved robustness against player confusion between different particle sets when tracking with a rigid grid approach. Faster processing and less player confusions make this method superior to the classical particle filter. Two different ball tracking methods are used that detect ball candidates from movement difference images using a background subtraction algorithm. Ball trajectories are estimated and interpolated from parabolic flight equations. The tracking accuracy of the ball is 54,2% for the trajectory growth method and 42,1% for the Hough line detection method. Tracking results of over 90% from the literature could not be confirmed. Ball contact frames were estimated from parabolic trajectory intersection, resulting in 48,9% of correctly estimated ball contact points. PMID:25426936
Ferré, J C; Chevalier, C; Robert, R; Degrez, J; Le Cloarec, A Y; Legoux, R; Orio, E; Barbin, J Y
1989-01-01
Using thick sections of the base of the skull and face their mechanical structure is viewed from the engineering aspect and the anatomic solutions evolved are compared with those selected by Aerospatiale engineers for the concept and development of the Airbus. It is concluded that the anterior and middle cranial fossae, together with the face, constitute an inseparable mechanical assembly each of whose component units participate in the rigidity of the others. Since this mechanical assembly must provide maximal rigidity for minimal weight, this suggests that aeronautical solutions should throw much light on the detail of construction of the skull and face. Indeed, the rigidity and lightness of the latter are obtained by means of solutions familiar in aeronautics: the reliance on thin-shelled beams with a honeycomb filling, the diploe analogous to a preconstrained composite or sandwich structure, a system of frames, struts and stiffeners, and the use of fillets at the sites of junction of struts.
A wave model for rigid-frame porous materials using lumped parameter concepts
NASA Astrophysics Data System (ADS)
Rossetti, S.; Gardonio, P.; Brennan, M. J.
2005-08-01
The work presented in this paper concerns the behaviour of porous media when exposed to a normal incidence sound field. A propagating wave model based on lumped parameter concepts of acoustic mass, stiffness and damping is used to investigate the absorption phenomena due to the wave propagation in the layer(s) and interference effects due to the wave reflection-transmission at the interfaces of the layer(s). Results from the theoretical model have been validated by measurements on samples of consolidated rubber granulate material. Two typical installations where a layer of porous material is placed next to a rigid wall, and where it is placed at a distance from a rigid wall are used as reference cases. The geometrical and physical properties of porous materials can be described by such parameters as the non-dimensional shape factor and the porosity. The propagating model introduced is used to investigate the effect of these two parameters on acoustic absorption and thus relate the physical properties to the acoustic behaviour.
Roto-orbital dynamics of a triaxial rigid body around a sphere. Relative equilibria and stability
NASA Astrophysics Data System (ADS)
Crespo, F.; Ferrer, S.
2018-06-01
We study the roto-orbital motion of a triaxial rigid body around a sphere, which is assumed to be much more massive than the triaxial body. The associated dynamics of this system, which consists of a normalized Hamiltonian with respect to the fast angles (partial averaging), is investigated making use of variables referred to the total angular momentum. The first order approximation of this model is integrable. We carry out the analysis of the relative equilibria, which hinges principally in the dihedral angle between the orbital and rotational planes and the ratio among the moments of inertia ρ = (B - A) / (2 C - B - A) . In particular, the dynamics of the body frame, though formally given by the classical Euler equations, experiences changes of stability in the principal directions related to the roto-orbital coupling. When ρ = 1 / 3 , we find a family of relative equilibria connected to the unstable equilibria of the free rigid body.
Template-Based 3D Reconstruction of Non-rigid Deformable Object from Monocular Video
NASA Astrophysics Data System (ADS)
Liu, Yang; Peng, Xiaodong; Zhou, Wugen; Liu, Bo; Gerndt, Andreas
2018-06-01
In this paper, we propose a template-based 3D surface reconstruction system of non-rigid deformable objects from monocular video sequence. Firstly, we generate a semi-dense template of the target object with structure from motion method using a subsequence video. This video can be captured by rigid moving camera orienting the static target object or by a static camera observing the rigid moving target object. Then, with the reference template mesh as input and based on the framework of classical template-based methods, we solve an energy minimization problem to get the correspondence between the template and every frame to get the time-varying mesh to present the deformation of objects. The energy terms combine photometric cost, temporal and spatial smoothness cost as well as as-rigid-as-possible cost which can enable elastic deformation. In this paper, an easy and controllable solution to generate the semi-dense template for complex objects is presented. Besides, we use an effective iterative Schur based linear solver for the energy minimization problem. The experimental evaluation presents qualitative deformation objects reconstruction results with real sequences. Compare against the results with other templates as input, the reconstructions based on our template have more accurate and detailed results for certain regions. The experimental results show that the linear solver we used performs better efficiency compared to traditional conjugate gradient based solver.
21 CFR 164.120 - Shelled nuts in rigid or semirigid containers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION TREE NUT AND PEANUT PRODUCTS Requirements for Specific Standardized Tree Nut and Peanut Products § 164.120 Shelled nuts in rigid or semirigid containers. (a)-(b...
21 CFR 164.120 - Shelled nuts in rigid or semirigid containers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION TREE NUT AND PEANUT PRODUCTS Requirements for Specific Standardized Tree Nut and Peanut Products § 164.120 Shelled nuts in rigid or semirigid containers. (a)-(b...
21 CFR 164.120 - Shelled nuts in rigid or semirigid containers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION TREE NUT AND PEANUT PRODUCTS Requirements for Specific Standardized Tree Nut and Peanut Products § 164.120 Shelled nuts in rigid or semirigid containers. (a)-(b...
21 CFR 164.120 - Shelled nuts in rigid or semirigid containers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION TREE NUT AND PEANUT PRODUCTS Requirements for Specific Standardized Tree Nut and Peanut Products § 164.120 Shelled nuts in rigid or semirigid containers. (a)-(b...
21 CFR 164.120 - Shelled nuts in rigid or semirigid containers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION TREE NUT AND PEANUT PRODUCTS Requirements for Specific Standardized Tree Nut and Peanut Products § 164.120 Shelled nuts in rigid or semirigid containers. (a)-(b...
The Rigid Pavement Database: Overview and Data Collection Plan
DOT National Transportation Integrated Search
1998-06-01
The rigid pavement (RP) database contains historical distress data obtained from more than 400 continuously reinforced concrete pavements(CRCP) and jointed concrete pavements (JCP) across the state of Texas. Data collection efforts began in 1974 and ...
NASA Astrophysics Data System (ADS)
Kreemer, C. W.; Hammond, W. C.; Blewitt, G.
2009-12-01
The Sierra Nevada - Great Valley (SNGV) micro-plate has long been recognized as a tectonically rigid, though mobile, entity within the Pacific - North America plate boundary zone. The motion of the SNGV relative to stable North America (and the Colorado Plateau) provides the kinematic boundary condition for, and perhaps drives, the deformation in the Basin and Range Province (BRP) and Walker Lane. In the north the motion of the SNGV is aligned with the Mohawk Valley fault zone, which could have a slip rate of over a few mm/yr. The crest of the Sierras marks the SNGV’s eastern edge, but the obliquity between orientation of this boundary and the block’s motion implies an expected increase in rangefront-normal extension from the northern to southern Walker Lane. We use new GPS data from the EarthScope Plate Boundary Observatory (PBO) and our own semi-continuous MAGNET network to revisit the following questions: 1) Do the data still support rigidity of the SNGV?; 2) How far east does the rigidity extend and how does this relate to SNGV lithology?; 3) How does the direction of SNGV motion relate to the strike of its eastern margin and observed strain partitioning (and its along strike variation) in the Walker Lane?; and 4) How is SNGV-BRP motion accommodated between the Walker Lane and the Cascadia forearc? We analyze data from all the available continuous GPS sites in the greater SNGV region, including new data from PBO, as well as data from MAGNET. All data are processed with the GIPSY-OASIS II precise point positioning software using recently reprocessed orbits from JPL's IGS Analysis Center. The processing includes satellite and station antenna calibrations and all data have the phase ambiguities fixed using the Ambizap algorithm. Positions are estimated in our custom-made North America reference frame in which continental-scale common-mode errors are removed. Velocities and uncertainties are estimated using the CATS software in which we assuming an error model with flicker plus white noise. Many stations in the Great Valley show anomalous horizontal motions compared to the most stable stations in the Sierra Nevada Mountains. These motions are likely due to hydrological effects in the Great Valley, which can be seen in the significant subsidence that occurs at these stations. Consequently, there are a relatively small number of stations that should be used to constrain the SNGV rigid body rotation. We find that stations in the southernmost Sierra Nevada Mountains have a northward motion of >1 mm/yr relative to the central and northern Sierras. This could partly be explained in terms of regional post-seismic viscoelastic relaxation from recent earthquakes (e.g. Kern County 1952, Landers, 1992, Hector Mine1999), but may also reflect the region’s anomalous mantle dynamics.
The protection of photovoltaic power systems from lightning
NASA Astrophysics Data System (ADS)
Rogers, C. B.
Lightning protection techniques at nine prototype photovoltaic power system sites with outputs from 18-225 kW are described. Noting that protection schemes are devised to fit isokeraunic data for specific sites, grounding is cited as a common feature for all systems. The grounds are, in separate instances, connected to junction boxes, frames of the solar cell panels, lead from the dc center, from the dc negative terminal, from the frames and equipment, at the array turntable, or from the building rebar frames. The dc power cables are protected by either metal conduit, metal conduit ground wire, direct burial, by rigid metal conduit, ground conductors, or by ground conductors at the ends of the conduit run. Costs run from 0.01-0.28$/W, with all the systems outfitted with bypass and blocking diodes. Direct stroke protection is viewed as less important than isokeraunic data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochkin, V.; Wiehagen, J.
2017-06-01
Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochkin, V.; Wiehagen, J.
Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.
Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation.
Frick, Eric; Rahmatalla, Salam
2018-04-04
The biomechanical models used to refine and stabilize motion capture processes are almost invariably driven by joint center estimates, and any errors in joint center calculation carry over and can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact (STA). This paper proposes a novel approach to joint center estimation implemented via sequential application of single-frame optimization (SFO). First, the method minimizes the variance of individual time frames’ joint center estimations via the developed variance minimization method to obtain accurate overall initial conditions. These initial conditions are used to stabilize an optimization-based linearization of human motion that determines a time-varying joint center estimation. In this manner, the complex and nonlinear behavior of human motion contaminated by STA can be captured as a continuous series of unique rigid-body realizations without requiring a complex analytical model to describe the behavior of STA. This article intends to offer proof of concept, and the presented method must be further developed before it can be reasonably applied to human motion. Numerical simulations were introduced to verify and substantiate the efficacy of the proposed methodology. When directly compared with a state-of-the-art inertial method, SFO reduced the error due to soft-tissue artifact in all cases by more than 45%. Instead of producing a single vector value to describe the joint center location during a motion capture trial as existing methods often do, the proposed method produced time-varying solutions that were highly correlated ( r > 0.82) with the true, time-varying joint center solution.
Analysis of a kinetic multi-segment foot model. Part I: Model repeatability and kinematic validity.
Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L
2012-04-01
Kinematic multi-segment foot models are still evolving, but have seen increased use in clinical and research settings. The addition of kinetics may increase knowledge of foot and ankle function as well as influence multi-segment foot model evolution; however, previous kinetic models are too complex for clinical use. In this study we present a three-segment kinetic foot model and thorough evaluation of model performance during normal gait. In this first of two companion papers, model reference frames and joint centers are analyzed for repeatability, joint translations are measured, segment rigidity characterized, and sample joint angles presented. Within-tester and between-tester repeatability were first assessed using 10 healthy pediatric participants, while kinematic parameters were subsequently measured on 17 additional healthy pediatric participants. Repeatability errors were generally low for all sagittal plane measures as well as transverse plane Hindfoot and Forefoot segments (median<3°), while the least repeatable orientations were the Hindfoot coronal plane and Hallux transverse plane. Joint translations were generally less than 2mm in any one direction, while segment rigidity analysis suggested rigid body behavior for the Shank and Hindfoot, with the Forefoot violating the rigid body assumptions in terminal stance/pre-swing. Joint excursions were consistent with previously published studies. Copyright © 2012 Elsevier B.V. All rights reserved.
Study on intelligent processing system of man-machine interactive garment frame model
NASA Astrophysics Data System (ADS)
Chen, Shuwang; Yin, Xiaowei; Chang, Ruijiang; Pan, Peiyun; Wang, Xuedi; Shi, Shuze; Wei, Zhongqian
2018-05-01
A man-machine interactive garment frame model intelligent processing system is studied in this paper. The system consists of several sensor device, voice processing module, mechanical parts and data centralized acquisition devices. The sensor device is used to collect information on the environment changes brought by the body near the clothes frame model, the data collection device is used to collect the information of the environment change induced by the sensor device, voice processing module is used for speech recognition of nonspecific person to achieve human-machine interaction, mechanical moving parts are used to make corresponding mechanical responses to the information processed by data collection device.it is connected with data acquisition device by a means of one-way connection. There is a one-way connection between sensor device and data collection device, two-way connection between data acquisition device and voice processing module. The data collection device is one-way connection with mechanical movement parts. The intelligent processing system can judge whether it needs to interact with the customer, realize the man-machine interaction instead of the current rigid frame model.
Deployable video conference table
NASA Technical Reports Server (NTRS)
Cohen, Marc M. (Inventor); Lissol, Peter (Inventor)
1993-01-01
A deployable table is presented. The table is stowed in and deployed from a storage compartment based upon a non-self rigidizing, 4-hinge, arch support structure that folds upon itself to stow and that expands to deploy. The work surfaces bypass each other above and below to allow the deployment mechanism to operate. This assembly includes the following: first and second primary pivot hinges placed at the opposite ends of the storage compartment; first and second lateral frame members with proximal ends connected to the first and second pivot hinges; a medial frame member offset from and pivotally connected to distal ends of the first and second members through third and fourth medial pivot hinges; and left-side, right-side, and middle trays connected respectively to the first, second, and third frame members and being foldable into and out of the storage compartment by articulation of the first, second, third, and fourth joints. At least one of the third and fourth joints are locked to set the first, second, and third frame members in a desired angular orientation with respect to each other.
25. Otter Creek Bridge #2. View of the stone facing ...
25. Otter Creek Bridge #2. View of the stone facing common on nearly all concrete box culverts. The stone faced arch mimics rigid frame structures. Culverts were used for a variety of purposes from small stream crossings to grade separation structures for farmers whose land was split by the parkway. Looking northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC
Navigation System Design and State Estimation for a Small Rigid Hull Inflatable Boat (RHIB)
2014-09-01
addition of the Coriolis term as previously defined has no effect on pitch, only one measurement is compared against Condor’s true pitch angle values...33 B. REFERENCE FRAME DEFINITIONS ......................................................33 1. Earth Centered Inertial...the effect of higher order terms. Lastly, the zeroth weight of the scaled weight set can be modified to incorporate prior knowledge of the
Code of Federal Regulations, 2011 CFR
2011-07-01
... nonrefillable containers-rigid containers with dilutable pesticides. 156.146 Section 156.146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS LABELING REQUIREMENTS FOR PESTICIDES AND DEVICES Container Labeling § 156.146 Residue removal instructions for nonrefillable containers...
Code of Federal Regulations, 2014 CFR
2014-07-01
... nonrefillable containers-rigid containers with dilutable pesticides. 156.146 Section 156.146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS LABELING REQUIREMENTS FOR PESTICIDES AND DEVICES Container Labeling § 156.146 Residue removal instructions for nonrefillable containers...
Code of Federal Regulations, 2013 CFR
2013-07-01
... nonrefillable containers-rigid containers with dilutable pesticides. 156.146 Section 156.146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS LABELING REQUIREMENTS FOR PESTICIDES AND DEVICES Container Labeling § 156.146 Residue removal instructions for nonrefillable containers...
Code of Federal Regulations, 2012 CFR
2012-07-01
... nonrefillable containers-rigid containers with dilutable pesticides. 156.146 Section 156.146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS LABELING REQUIREMENTS FOR PESTICIDES AND DEVICES Container Labeling § 156.146 Residue removal instructions for nonrefillable containers...
Rotational Stiffness of Precast Beam-Column Connection using Finite Element Method
NASA Astrophysics Data System (ADS)
Hashim, N.; Agarwal, J.
2018-04-01
Current design practice in structural analysis is to assume the connection as pinned or rigid, however this cannot be relied upon for safety against collapse because during services the actual connection reacts differently where the connection has rotated in relevance. This situation may lead to different reactions and consequently affect design results and other frame responses. In precast concrete structures, connections play an important part in ensuring the safety of the whole structure. Thus, investigates on the actual connection behavior by construct the moment-rotation relationship is significant. Finite element (FE) method is chosen for modeling a 3-dimensional beam-column connection. The model is built in symmetry to reduce analysis time. Results demonstrate that precast billet connection is categorized as semi-rigid connection with Sini of 23,138kNm/rad. This is definitely different from the assumption of pinned or rigid connection used in design practice. Validation were made by comparing with mathematical equation and small differences were achieved that led to the conclusion where precast billet connection using FE method is acceptable.
Numerical analysis of the cylindrical rigidity of the vertical steel tank shell
NASA Astrophysics Data System (ADS)
Chirkov, Sergey; Tarasenko, Alexander; Chepur, Petr
2017-10-01
The paper deals with the study of rigidity of a vertical steel cylindrical tank and its structural elements with the development of inhomogeneous subsidence in ANSYS software complex. The limiting case is considered in this paper: a complete absence of a base sector that varies along an arc of a circle. The subsidence zone is modeled by the parameter n. A finite-element model of vertical 20000 m3 steel tank has been created, taking into account all structural elements of tank metal structures, including the support ring, beam frame and roof sheets. Various combinations of vertical steel tank loading are analyzed. For operational loads, the most unfavorable combination is considered. Calculations were performed for the filled and emptied tank. Values of the maximum possible deformations of the outer contour of the bottom are obtained with the development of inhomogeneous base subsidence for the given tank size. The obtained parameters of intrinsic rigidity (deformability) of vertical steel tank can be used in the development of new regulatory and technical documentation for tanks.
NASA Technical Reports Server (NTRS)
Ozsoy, T.; Ochs, J. B.
1984-01-01
The development of a general link between three dimensional wire frame models and rigid solid models is discussed. An interactive computer graphics program was developed to serve as a front end to an algorithm (COSMIC Program No. ARC-11446) which offers a general solution to the hidden line problem where the input data is either line segments of n-sided planar polygons of the most general type with internal boundaries. The program provides a general interface to CAD/CAM data bases and is implemented for models created on the Unigraphics VAX 11/780-based CAD/CAM systems with the display software written for DEC's VS11 color graphics devices.
Precise Image-Based Motion Estimation for Autonomous Small Body Exploration
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Matthies, Larry H.
1998-01-01
Space science and solar system exploration are driving NASA to develop an array of small body missions ranging in scope from near body flybys to complete sample return. This paper presents an algorithm for onboard motion estimation that will enable the precision guidance necessary for autonomous small body landing. Our techniques are based on automatic feature tracking between a pair of descent camera images followed by two frame motion estimation and scale recovery using laser altimetry data. The output of our algorithm is an estimate of rigid motion (attitude and position) and motion covariance between frames. This motion estimate can be passed directly to the spacecraft guidance and control system to enable rapid execution of safe and precise trajectories.
Vibration Control in Rotating Machinery Using Variable Dynamic Stiffness Squeeze-Films. Volume 1.
1986-03-01
in Gunter’s work (13). The dynamics of a simple single mass rotor rigid shaft with squeeze film supported rolling element bearings was analysed using... Dynamics of a Rigid Rotor Supprted on Squeeze Film Bearings. Inst Mech Engrs Conf on Vibrations of Rotating Systems 1972, pp 213- 229. 23. Mohan, S., Hahn, E...Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Bearing, Squeeze Film, Vibration, Rotors 19. ABSTRACT (Continue on
NASA Astrophysics Data System (ADS)
Jiao, Jieqing; Salinas, Cristian A.; Searle, Graham E.; Gunn, Roger N.; Schnabel, Julia A.
2012-02-01
Dynamic Positron Emission Tomography is a powerful tool for quantitative imaging of in vivo biological processes. The long scan durations necessitate motion correction, to maintain the validity of the dynamic measurements, which can be particularly challenging due to the low signal-to-noise ratio (SNR) and spatial resolution, as well as the complex tracer behaviour in the dynamic PET data. In this paper we develop a novel automated expectation-maximisation image registration framework that incorporates temporal tracer kinetic information to correct for inter-frame subject motion during dynamic PET scans. We employ the Zubal human brain phantom to simulate dynamic PET data using SORTEO (a Monte Carlo-based simulator), in order to validate the proposed method for its ability to recover imposed rigid motion. We have conducted a range of simulations using different noise levels, and corrupted the data with a range of rigid motion artefacts. The performance of our motion correction method is compared with pairwise registration using normalised mutual information as a voxel similarity measure (an approach conventionally used to correct for dynamic PET inter-frame motion based solely on intensity information). To quantify registration accuracy, we calculate the target registration error across the images. The results show that our new dynamic image registration method based on tracer kinetics yields better realignment of the simulated datasets, halving the target registration error when compared to the conventional method at small motion levels, as well as yielding smaller residuals in translation and rotation parameters. We also show that our new method is less affected by the low signal in the first few frames, which the conventional method based on normalised mutual information fails to realign.
Development of a Superconducting Six-Axis Accelerometer
1989-07-01
COW tH + R"( rkw rRk . (2.35) Recognizing that the components of the Levi - Civita tensor must remain the same in all Cartesian coordinate systems, this...Dynamics of a Rigid Body in a RuLating Accelerated Reference Frame ........ .................................. 10 2.2.3 Accelerometer Equations of Motion...in the Type-I region where currents are more stable. All the parts fit inside a 10.16 cm titanium cube. Two problems were encountered with this
Automatic Mrf-Based Registration of High Resolution Satellite Video Data
NASA Astrophysics Data System (ADS)
Platias, C.; Vakalopoulou, M.; Karantzalos, K.
2016-06-01
In this paper we propose a deformable registration framework for high resolution satellite video data able to automatically and accurately co-register satellite video frames and/or register them to a reference map/image. The proposed approach performs non-rigid registration, formulates a Markov Random Fields (MRF) model, while efficient linear programming is employed for reaching the lowest potential of the cost function. The developed approach has been applied and validated on satellite video sequences from Skybox Imaging and compared with a rigid, descriptor-based registration method. Regarding the computational performance, both the MRF-based and the descriptor-based methods were quite efficient, with the first one converging in some minutes and the second in some seconds. Regarding the registration accuracy the proposed MRF-based method significantly outperformed the descriptor-based one in all the performing experiments.
Surface oscillation and jetting from surface attached acoustic driven bubbles.
Prabowo, Firdaus; Ohl, Claus-Dieter
2011-01-01
We report on an experimental study of the onset of surface oscillation and jetting of bubbles attached to a rigid surface. The driving frequency is 16.27 kHz and the radius of the spherical capped bubble is 160 ± 5 μm. The acoustic amplitude is increased from 0 to 0.085 bar while the oscillation is recorded with a high-speed camera at 180,000 frames/s over 8100 periods of oscillations. The radial and surface modes are analyzed from a Fourier decomposition. With increasing pressure amplitude we find three regimes: pure radial oscillation, development of surface oscillations, and a chaotic surface oscillation regime. These regimes appear abrupt and are repeatable. In the chaotic regime, fast liquid jetting towards the rigid surface is observed. Copyright © 2010 Elsevier B.V. All rights reserved.
Fast Simulations of Gas Sloshing and Cold Front Formation
NASA Technical Reports Server (NTRS)
Roediger, E.; ZuHone, J. A.
2011-01-01
We present a simplified and fast method for simulating minor mergers between galaxy clusters. Instead of following the evolution of the dark matter halos directly by the N-body method, we employ a rigid potential approximation for both clusters. The simulations are run in the rest frame of the more massive cluster and account for the resulting inertial accelerations in an optimised way. We test the reliability of this method for studies of minor merger induced gas sloshing by performing a one-to-one comparison between our simulations and hydro+N-body ones. We find that the rigid potential approximation reproduces the sloshing-related features well except for two artefacts: the temperature just outside the cold fronts is slightly over-predicted, and the outward motion of the cold fronts is delayed by typically 200 Myr. We discuss reasons for both artefacts.
Fast Simulations of Gas Sloshing and Cold Front Formation
NASA Technical Reports Server (NTRS)
Roediger, E.; ZuHone, J. A.
2012-01-01
We present a simplified and fast method for simulating minor mergers between galaxy clusters. Instead of following the evolution of the dark matter halos directly by the N-body method, we employ a rigid potential approximation for both clusters. The simulations are run in the rest frame of the more massive cluster and account for the resulting inertial accelerations in an optimised way. We test the reliability of this method for studies of minor merger induced gas sloshing by performing a one-to-one comparison between our simulations and hydro+N-body ones. We find that the rigid potential approximation reproduces the sloshing-related features well except for two artifacts: the temperature just outside the cold fronts is slightly over-predicted, and the outward motion of the cold fronts is delayed by typically 200 Myr. We discuss reasons for both artifacts.
Çelebi, Mehmet
2016-01-01
Responses of a dual core shear-wall and outrigger-framed 58-story building recorded during the Mw6.0 Napa earthquake of 24 August 2014 and the Mw3.8 Berkeley earthquake of 20 October 2011 are used to identify its dynamic characteristics and behavior. Fundamental frequencies are 0.28 Hz (NS), 0.25 Hz (EW), and 0.43 Hz (torsional). Rigid body motions due to rocking are not significant. Average drift ratios are small. Outrigger frames do not affect average drift ratios or mode shapes. Local site effects do not affect the response; however, response associated with deeper structure may be substantial. A beating effect is observed from data of both earthquakes but beating periods are not consistent. Low critical damping ratios may have contributed to the beating effect. Torsion is relatively larger above outriggers as indicated by the time-histories of motions at the roof, possibly due to the discontinuity of the stiffer shear walls above level 47.
Portable basketball rim testing device
Abbott, W. Bruce; Davis, Karl C.
1993-01-01
A portable basketball rim rebound testing device 10 is illustrated in two preferred embodiments for testing the rebound or energy absorption characteristics of a basketball rim 12 and its accompanying support to determine likely rebound or energy absorption charcteristics of the system. The apparatus 10 includes a depending frame 28 having a C-clamp 36 for releasably rigidly connecting the frame to the basketball rim 12. A glide weight 60 is mounted on a guide rod 52 permitting the weight 60 to be dropped against a calibrated spring 56 held on an abutment surface on the rod to generate for deflecting the basketball rim and then rebounding the weight upwardly. A photosensor 66 is mounted on the depending frame 28 to sense passage of reflective surfaces 75 on the weight to thereby obtain sufficient data to enable a processing means 26 to calculate the rebound velocity and relate it to an energy absorption percentage rate of the rim system 12. A readout is provided to display the energy absorption percentage.
Slab edge insulating form system and methods
Lee, Brain E [Corral de Tierra, CA; Barsun, Stephan K [Davis, CA; Bourne, Richard C [Davis, CA; Hoeschele, Marc A [Davis, CA; Springer, David A [Winters, CA
2009-10-06
A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.
Robust group-wise rigid registration of point sets using t-mixture model
NASA Astrophysics Data System (ADS)
Ravikumar, Nishant; Gooya, Ali; Frangi, Alejandro F.; Taylor, Zeike A.
2016-03-01
A probabilistic framework for robust, group-wise rigid alignment of point-sets using a mixture of Students t-distribution especially when the point sets are of varying lengths, are corrupted by an unknown degree of outliers or in the presence of missing data. Medical images (in particular magnetic resonance (MR) images), their segmentations and consequently point-sets generated from these are highly susceptible to corruption by outliers. This poses a problem for robust correspondence estimation and accurate alignment of shapes, necessary for training statistical shape models (SSMs). To address these issues, this study proposes to use a t-mixture model (TMM), to approximate the underlying joint probability density of a group of similar shapes and align them to a common reference frame. The heavy-tailed nature of t-distributions provides a more robust registration framework in comparison to state of the art algorithms. Significant reduction in alignment errors is achieved in the presence of outliers, using the proposed TMM-based group-wise rigid registration method, in comparison to its Gaussian mixture model (GMM) counterparts. The proposed TMM-framework is compared with a group-wise variant of the well-known Coherent Point Drift (CPD) algorithm and two other group-wise methods using GMMs, using both synthetic and real data sets. Rigid alignment errors for groups of shapes are quantified using the Hausdorff distance (HD) and quadratic surface distance (QSD) metrics.
3D tissue formation by stacking detachable cell sheets formed on nanofiber mesh.
Kim, Min Sung; Lee, Byungjun; Kim, Hong Nam; Bang, Seokyoung; Yang, Hee Seok; Kang, Seong Min; Suh, Kahp-Yang; Park, Suk-Hee; Jeon, Noo Li
2017-03-23
We present a novel approach for assembling 3D tissue by layer-by-layer stacking of cell sheets formed on aligned nanofiber mesh. A rigid frame was used to repeatedly collect aligned electrospun PCL (polycaprolactone) nanofiber to form a mesh structure with average distance between fibers 6.4 µm. When human umbilical vein endothelial cells (HUVECs), human foreskin dermal fibroblasts, and skeletal muscle cells (C2C12) were cultured on the nanofiber mesh, they formed confluent monolayers and could be handled as continuous cell sheets with areas 3 × 3 cm 2 or larger. Thicker 3D tissues have been formed by stacking multiple cell sheets collected on frames that can be nested (i.e. Matryoshka dolls) without any special tools. When cultured on the nanofiber mesh, skeletal muscle, C2C12 cells oriented along the direction of the nanofibers and differentiated into uniaxially aligned multinucleated myotube. Myotube cell sheets were stacked (upto 3 layers) in alternating or aligned directions to form thicker tissue with ∼50 µm thickness. Sandwiching HUVEC cell sheets with two dermal fibroblast cell sheets resulted in vascularized 3D tissue. HUVECs formed extensive networks and expressed CD31, a marker of endothelial cells. Cell sheets formed on nanofiber mesh have a number of advantages, including manipulation and stacking of multiple cell sheets for constructing 3D tissue and may find applications in a variety of tissue engineering applications.
Toll, Benjamin A.; O’Malley, Stephanie S.; Katulak, Nicole A.; Wu, Ran; Dubin, Joel A.; Latimer, Amy; Meandzija, Boris; George, Tony P.; Jatlow, Peter; Cooney, Judith L.; Salovey, Peter
2008-01-01
Prospect theory suggests that because smoking cessation is a prevention behavior with a fairly certain outcome, gain-framed messages will be more persuasive than loss-framed messages when attempting to encourage smoking cessation. To test this hypothesis, the authors randomly assigned participants (N = 258) in a clinical trial to either a gain- or loss-framed condition, in which they received factually equivalent video and printed messages encouraging smoking cessation that emphasized either the benefits of quitting (gains) or the costs of continuing to smoke (losses), respectively. All participants received open label sustained-release bupropion (300 mg/day) for 7 weeks. In the intent-to-treat analysis, the difference between the experimental groups by either point prevalence or continuous abstinence was not statistically significant. Among 170 treatment completers, however, a significantly higher proportion of participants were continuously abstinent in the gain-framed condition as compared with the loss-framed condition. These data suggest that gain-framed messages may be more persuasive than loss-framed messages in promoting early success in smoking cessation for participants who are engaged in treatment. PMID:18072836
Analysis on mechanics response of long-life asphalt pavement at moist hot heavy loading area
NASA Astrophysics Data System (ADS)
Xu, Xinquan; Li, Hao; Wu, Chuanhai; Li, Shanqiang
2018-04-01
Based on the durability of semi-rigid base asphalt pavement test road in Guangdong Yunluo expressway, by comparing the mechanics response of modified semi-rigid base, RCC base and inverted semi-rigid base with the state of continuous, using four unit five parameter model to evaluate rut depth of asphalt pavement structure, and through commonly used fatigue life prediction model to evaluate fatigue performance of three types of asphalt pavement structure. Theoretical calculation and four years tracking observation results of test road show that rut depth of modified semi-rigid base asphalt pavement is the minimum, the road performance is the best, and the fatigue performance is the optimal.
Vibration of a flexible spacecraft with momentum exchange controllers
NASA Technical Reports Server (NTRS)
Canavin, J. R.
1976-01-01
Floating reference frames were investigated in order to allow first order vibration analysis in the presence of large system rotations. When the deformations of an elastic continuum are expanded in terms of the free-free modes of an unconstrained system, the rigid body modes are found to be fixed relative to the Tisserand frame, with respect to which the relative momentum is zero. The proof presented for this is based on the orthogonality condition for modes with distinct natural frequencies. This result also guarantees the independence of coordinates for all modes with nonzero natural frequencies. A Modified Tisserand Constraint is introduced in order to define a floating reference frame with similar properties for an elastic body which contains a spinning rotor. Finite element equations of motion are derived for a completely flexible spacecraft with momentum exchange controllers, using a Modified Tisserand Frame. The deformable systems covered in this application are assumed to undergo only small rotations, and therefore the rotor torques must formally be small, although in engineering applications it may be possible to relax this constraint. A modal analysis is performed for the system and the resulting set of equations is reduced in number by a truncation procedure for more efficient system simulation.
A variational approach to dynamics of flexible multibody systems
NASA Technical Reports Server (NTRS)
Wu, Shih-Chin; Haug, Edward J.; Kim, Sung-Soo
1989-01-01
This paper presents a variational formulation of constrained dynamics of flexible multibody systems, using a vector-variational calculus approach. Body reference frames are used to define global position and orientation of individual bodies in the system, located and oriented by position of its origin and Euler parameters, respectively. Small strain linear elastic deformation of individual components, relative to their body references frames, is defined by linear combinations of deformation modes that are induced by constraint reaction forces and normal modes of vibration. A library of kinematic couplings between flexible and/or rigid bodies is defined and analyzed. Variational equations of motion for multibody systems are obtained and reduced to mixed differential-algebraic equations of motion. A space structure that must deform during deployment is analyzed, to illustrate use of the methods developed.
Projective Structure from Two Uncalibrated Images: Structure from Motion and Recognition
1992-09-01
correspondence between points in Maybank 1990). The question, therefore, is why look for both views more of a problem, and hence, may make the...plane is fixed with respect to the 1987, Faugeras, Luong and Maybank 1992). The prob- camera coordinate frame. A rigid camera motion, there- lem of...the second reference Rieger-Lawton 1985, Faugeras and Maybank 1990, Hil- plane (assuming the four object points Pi, j = 1, ...,4, dreth 1991, Faugeras
Recommended Practices in Thrust Measurements
2013-10-01
Turin.5,38 This stand consists of two BeCu plates which hang from flexible BeCu mounts on a rigid block of Zerodur c, a material with a very low coe...2013 Figure 4. Example of a state-of-the-art hanging pendulum thrust stand. 38 Two spherical mirrors mounted on the plates form an optical cavity for...the Zerodur frame. Temperature control and careful choice of materials were used to minimize and correct for thermal drift. 2. Thrust Stand Performance
Probabilistic structural analysis by extremum methods
NASA Technical Reports Server (NTRS)
Nafday, Avinash M.
1990-01-01
The objective is to demonstrate discrete extremum methods of structural analysis as a tool for structural system reliability evaluation. Specifically, linear and multiobjective linear programming models for analysis of rigid plastic frames under proportional and multiparametric loadings, respectively, are considered. Kinematic and static approaches for analysis form a primal-dual pair in each of these models and have a polyhedral format. Duality relations link extreme points and hyperplanes of these polyhedra and lead naturally to dual methods for system reliability evaluation.
Dragon Skin - How It Changed Body Armor Testing in the United States Army
2015-09-01
flat front surface for accurate and consistent measurement of depression depths. After the clay has been worked into the rigid frame, the clay backing...material will be simultaneously conditioned for use in filling depressions created by the drop testing and building up areas to fit non-planar body...clay consistency shall be such that a depression of [redacted] in depth is obtained when a [redacted] cylindrical steel mass (see Figure 4
NASA Astrophysics Data System (ADS)
Venugopal, Vivek; Park, Minho; Ashitate, Yoshitomo; Neacsu, Florin; Kettenring, Frank; Frangioni, John V.; Gangadharan, Sidhu P.; Gioux, Sylvain
2013-12-01
We report the design, characterization, and validation of an optimized simultaneous color and near-infrared (NIR) fluorescence rigid endoscopic imaging system for minimally invasive surgery. This system is optimized for illumination and collection of NIR wavelengths allowing the simultaneous acquisition of both color and NIR fluorescence at frame rates higher than 6.8 fps with high sensitivity. The system employs a custom 10-mm diameter rigid endoscope optimized for NIR transmission. A dual-channel light source compatible with the constraints of an endoscope was built and includes a plasma source for white light illumination and NIR laser diodes for fluorescence excitation. A prism-based 2-CCD camera was customized for simultaneous color and NIR detection with a highly efficient filtration scheme for fluorescence imaging of both 700- and 800-nm emission dyes. The performance characterization studies indicate that the endoscope can efficiently detect fluorescence signal from both indocyanine green and methylene blue in dimethyl sulfoxide at the concentrations of 100 to 185 nM depending on the background optical properties. Finally, we performed the validation of this imaging system in vivo during a minimally invasive procedure for thoracic sentinel lymph node mapping in a porcine model.
Integrated GNSS Attitude Determination and Positioning for Direct Geo-Referencing
Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J. G.
2014-01-01
Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0.8, matching the theoretical gain of 3/4 for two antennas on the rotating frame and a single antenna at the reference station. PMID:25036330
Integrated GNSS attitude determination and positioning for direct geo-referencing.
Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J G
2014-07-17
Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0:8, matching the theoretical gain of √ 3/4 for two antennas on the rotating frame and a single antenna at the reference station.
On kinetics of a dynamically unbalanced rotator with sliding friction in supports
NASA Astrophysics Data System (ADS)
Chistyakov, Viktor V.
2018-05-01
The dynamics is analytically and numerically modelled for both free and forced rotations of a rigid body around the central but non-principal vertical axis Oz under action of dry friction forces in plain bearings and heel supports in combination with other dissipative and conservative axial torques. The inertia forces due to D'Alembert principle cause the supports' reactions and hence the decelerating friction torque depending on not only angular speed but acceleration too. This dependence makes the dynamical equations not resolved with regard to the senior derivative and ambiguous, and being thus resolved they have an irrational or singular right hand side. This irrationality/singularity results in their featured solutions or paradoxical absence of those in frames of absolutely rigid body approach. The kinetics obtained is analyzed and compared with the standard ones of rotation under action of conservative elastic and drag torques.
NASA Astrophysics Data System (ADS)
Liu, Yonghuai; Rodrigues, Marcos A.
2000-03-01
This paper describes research on the application of machine vision techniques to a real time automatic inspection task of air filter components in a manufacturing line. A novel calibration algorithm is proposed based on a special camera setup where defective items would show a large calibration error. The algorithm makes full use of rigid constraints derived from the analysis of geometrical properties of reflected correspondence vectors which have been synthesized into a single coordinate frame and provides a closed form solution to the estimation of all parameters. For a comparative study of performance, we also developed another algorithm based on this special camera setup using epipolar geometry. A number of experiments using synthetic data have shown that the proposed algorithm is generally more accurate and robust than the epipolar geometry based algorithm and that the geometric properties of reflected correspondence vectors provide effective constraints to the calibration of rigid body transformations.
Anisotropic responses to motion toward and away from the eye
NASA Technical Reports Server (NTRS)
Perrone, John A.
1986-01-01
When a rigid object moves toward the eye, it is usually perceived as being rigid. However, in the case of motion away from the eye, the motion and structure of the object are perceived nonveridically, with the percept tending to reflect the nonrigid transformations that are present in the retinal image. This difference in response to motion to and from the observer was quantified in an experiment using wire-frame computer-generated boxes which moved toward and away from the eye. Two theoretical systems are developed by which uniform three-dimensional velocity can be recovered from an expansion pattern of nonuniform velocity vectors. It is proposed that the human visual system uses two similar systems for processing motion in depth. The mechanism used for motion away from the eye produces perceptual errors because it is not suited to objects with a depth component.
NASA Astrophysics Data System (ADS)
Gonzalez-Garcia, J. J.
2004-12-01
Using ITRF2000 as a common reference frame link, I analyzed survey mode and permanent GPS published results, together with SOPAC public data and results (http://sopac.ucsd.edu), in order to evaluate relative present day crustal deformation in California and northern Mexico. The crustal velocity field of Mexico (Marquez-Azua and DeMets, 2003) obtained from continuous GPS measurements conducted by Instituto Nacional de Geografia e Informatica (INEGI) for 1993-2001, was partially used. The preferred model for an instantaneous rigid motion between North-America and Pacific plates (NAPA), is obtained using results of Isla Guadalupe GPS surveys (1991-2002) giving a new constraint for Pacific plate (PA) motion (Gonzalez-Garcia et al., 2003). It produces an apparent reduction of 1 mm/yr in the absolute motion in the border zone between PA and North-America (NA) plates in this region, as compared with other GPS models (v.g. Prawirodirdjo and Bock, 2004); and it is 3 mm/yr higher than NNRNUVEL-1A. In the PA reference frame, westernmost islands from San Francisco (FARB), Los Angeles (MIG1), and Ensenada (GUAX); give current residuals of 1.8, 1.7 and 0.9 mm/yr and azimuths that are consistent with local tectonic setting, respectively. In the NA reference frame, besides the confirmation of 2 mm/yr E-W extension for the southern Basin and Range province in northern Mexico; a present day deformation rate of 40.5 mm/yr between San Felipe, Baja California (SFBC) and Hermosillo, Sonora, is obtained. This rate agrees with a 6.3 to 6.7 Ma for the "initiation of a full sea-floor spreading" in the northern Gulf of California. SFBC has a 7 mm/yr motion in the PA reference frame, giving then, a full NAPA theoretical absolute motion of 47.5 mm/yr. For Puerto Penasco, Sonora (PENA) there is a NAPA motion of 46.2 mm/yr and a residual of 1.2 mm/yr in the NA reference frame, this site is located only 75 km to the northeast from the Wagner basin center. For southern Isla Guadalupe (GUAX) there is 51.8 mm/yr in the NAPA reference frame. Finally full present day NAPA motion at the Alarcon Rise must be only 50.1 ±0.2 mm/yr in agreement with the lower limit of the NAPA "geological" model obtained by DeMets and Dixon (1999).
Dynamics of water in sulfonated poly(phenylene) membranes
NASA Astrophysics Data System (ADS)
Osti, Naresh; Etampawala, Thusitha; Shrestha, Umesh; Perahia, Dvora; Cornelius, Christopher
2011-03-01
The dynamics of water in networks formed by highly rigid ionic polymers, sulfonated poly(phenylene) as observed by quasi elastic neutron scattering (QENS) is presented. These rigid ionic polymers have potential as effective ion exchange membranes with impact on a large number of applications from water purification to clean energy, where its rigidity distinguishes it from other ionic polymers. Its transport characteristics are affected by its rigidness as well as by direct interactions with the solvent. Our QENS studies as a function of sulfonation levels, temperature and solvent content have shown that on the time scale of the measurement, the polymers are rigid. While macroscopically all samples swell, and transport water, the water molecules appear locally rather confined. Water however remind non-frozen to subzero temperatures. The results will be discussed in view of theoretical models including continues diffusion and hopping of solvent molecules.
Global tectonic reconstructions with continuously deforming and evolving rigid plates
NASA Astrophysics Data System (ADS)
Gurnis, Michael; Yang, Ting; Cannon, John; Turner, Mark; Williams, Simon; Flament, Nicolas; Müller, R. Dietmar
2018-07-01
Traditional plate reconstruction methodologies do not allow for plate deformation to be considered. Here we present software to construct and visualize global tectonic reconstructions with deforming plates within the context of rigid plates. Both deforming and rigid plates are defined by continuously evolving polygons. The deforming regions are tessellated with triangular meshes such that either strain rate or cumulative strain can be followed. The finite strain history, crustal thickness and stretching factor of points within the deformation zones are tracked as Lagrangian points. Integrating these tools within the interactive platform GPlates enables specialized users to build and refine deforming plate models and integrate them with other models in time and space. We demonstrate the integrated platform with regional reconstructions of Cenozoic western North America, the Mesozoic South American Atlantic margin, and Cenozoic southeast Asia, embedded within global reconstructions, using different data and reconstruction strategies.
A robust motion estimation system for minimal invasive laparoscopy
NASA Astrophysics Data System (ADS)
Marcinczak, Jan Marek; von Öhsen, Udo; Grigat, Rolf-Rainer
2012-02-01
Laparoscopy is a reliable imaging method to examine the liver. However, due to the limited field of view, a lot of experience is required from the surgeon to interpret the observed anatomy. Reconstruction of organ surfaces provide valuable additional information to the surgeon for a reliable diagnosis. Without an additional external tracking system the structure can be recovered from feature correspondences between different frames. In laparoscopic images blurred frames, specular reflections and inhomogeneous illumination make feature tracking a challenging task. We propose an ego-motion estimation system for minimal invasive laparoscopy that can cope with specular reflection, inhomogeneous illumination and blurred frames. To obtain robust feature correspondence, the approach combines SIFT and specular reflection segmentation with a multi-frame tracking scheme. The calibrated five-point algorithm is used with the MSAC robust estimator to compute the motion of the endoscope from multi-frame correspondence. The algorithm is evaluated using endoscopic videos of a phantom. The small incisions and the rigid endoscope limit the motion in minimal invasive laparoscopy. These limitations are considered in our evaluation and are used to analyze the accuracy of pose estimation that can be achieved by our approach. The endoscope is moved by a robotic system and the ground truth motion is recorded. The evaluation on typical endoscopic motion gives precise results and demonstrates the practicability of the proposed pose estimation system.
Tha, S P; Shuster, J; Goldsmith, H L
1986-01-01
The expressions derived in the previous paper for the respective normal, F3, and shear forces, Fshear, acting along and perpendicular to the axis of a doublet of rigid spheres, were used to determine the hydrodynamic forces required to separate two red cell spheres of antigenic type B crosslinked by the corresponding antibody. Cells were sphered and swollen in isotonic buffered glycerol containing 8 X 10(-5) M sodium dodecyl sulfate, fixed in 0.085% glutaraldehyde, and suspended in aqueous glycerol (viscosity: 15-34 mPa s), containing 0.15 M NaCl and anti-B antibody from human hyperimmune antiserum at concentrations from 0.73 to 3.56 vol%. After incubating and mixing for 12 h, doublets were observed through a microscope flowing in a 178-micron tube by gravity feed between two reservoirs. Using a traveling microtube apparatus, the doublets were tracked in a constantly accelerating flow and the translational and rotational motions were recorded on videotape until breakup occurred. From a frame by frame replay of the tape, the radial position, velocity and orientation of the doublet were obtained and the normal and shear forces of separation at breakup computed. Both forces increased significantly with increasing antiserum concentration, the mean values of F3 increasing from 0.060 to 0.197 nN, and Fshear from 0.023 to 0.072 nN. There was no significant effect of glycerol viscosity on the forces of separation. It was not possible to determine whether the shear or normal force was responsible for doublet separation. Measurements of the mean dimensionless period of rotation, TG, of doublets in suspensions containing 0.73 and 2.40% antiserum undergoing steady flow were also made to test whether the spheres were rigidly linked or capable of some independent rotation. A fairly narrow distribution in TG about the value 15.64, predicted for rigidly-linked doublets, was obtained at both antiserum concentrations. Images FIGURE 1 PMID:3801572
DOE Zero Energy Ready Home Case Study: John Hubert Associates — EXIT-0 House, North Cape May, NJ
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This house is the first DOE Zero Energy Ready Home for this builder and won a Custom Builder award in the 2014 Housing Innovation Awards. The 1,871-ft2 home features advanced-framed above-grade walls with R-21 fiberglass batt plus an R-3.6-insulated coated OSB sheathing, R-18 rigid-foam-insulated crawlspace walls, solar water heating, a high-efficiency heat pump, an HRV, and mostly LED lighting.
Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings
NASA Astrophysics Data System (ADS)
Dakel, Mzaki; Baguet, Sébastien; Dufour, Régis
2014-05-01
The major purpose of this study is to predict the dynamic behavior of an on-board rotor mounted on hydrodynamic journal bearings in the presence of rigid support movements, the target application being turbochargers of vehicles or rotating machines subject to seismic excitation. The proposed on-board rotor model is based on Timoshenko beam finite elements. The dynamic modeling takes into account the geometric asymmetry of shaft and/or rigid disk as well as the six deterministic translations and rotations of the rotor rigid support. Depending on the type of analysis used for the bearing, the fluid film forces computed with the Reynolds equation are linear/nonlinear. Thus the application of Lagrange's equations yields the linear/nonlinear equations of motion of the rotating rotor in bending with respect to the moving rigid support which represents a non-inertial frame of reference. These equations are solved using the implicit Newmark time-step integration scheme. Due to the geometric asymmetry of the rotor and to the rotational motions of the support, the equations of motion include time-varying parametric terms which can lead to lateral dynamic instability. The influence of sinusoidal rotational or translational motions of the support, the accuracy of the linear 8-coefficient bearing model and the interest of the nonlinear model for a hydrodynamic journal bearing are examined and discussed by means of stability charts, orbits of the rotor, time history responses, fast Fourier transforms, bifurcation diagrams as well as Poincaré maps.
Experimental and numerical study on bubble-sphere interaction near a rigid wall
NASA Astrophysics Data System (ADS)
Li, S.; Zhang, A. M.; Han, R.; Liu, Y. Q.
2017-09-01
This study is concerned with the interaction between a violently oscillating bubble and a movable sphere with comparable size near a rigid wall, which is an essential physical phenomenon in many applications such as cavitation, underwater explosion, ultrasonic cleaning, and biomedical treatment. Experiments are performed in a cubic water tank, and the underwater electric discharge technique (580 V DC) is employed to generate a bubble that is initiated between a rigid wall and a sphere in an axisymmetric configuration. The bubble-sphere interactions are captured using a high-speed camera operating at 52 000 frames/s. A classification of the bubble-sphere interaction is proposed, i.e., "weak," "intermediate," and "strong" interactions, identified with three distinct bubble shapes at the maximum volume moment. In the numerical simulations, the boundary integral method and the auxiliary function method are combined to establish a full coupling model that decouples the mutual dependence between the force and the sphere motion. The main features of bubble dynamics in different experiments are well reproduced by our numerical model. Meanwhile, the pressure and velocity fields are also provided for clarifying the associated mechanisms. The effects of two dimensionless standoff parameters, namely, γs (defined as ds/Rm, where ds is the minimum distance between the initial bubble center and the sphere surface and Rm is the maximum bubble radius) and γw (defined as dw/Rm, where dw is the distance between the initial bubble center and the rigid wall), are also discussed.
Robust object matching for persistent tracking with heterogeneous features.
Guo, Yanlin; Hsu, Steve; Sawhney, Harpreet S; Kumar, Rakesh; Shan, Ying
2007-05-01
This paper addresses the problem of matching vehicles across multiple sightings under variations in illumination and camera poses. Since multiple observations of a vehicle are separated in large temporal and/or spatial gaps, thus prohibiting the use of standard frame-to-frame data association, we employ features extracted over a sequence during one time interval as a vehicle fingerprint that is used to compute the likelihood that two or more sequence observations are from the same or different vehicles. Furthermore, since our domain is aerial video tracking, in order to deal with poor image quality and large resolution and quality variations, our approach employs robust alignment and match measures for different stages of vehicle matching. Most notably, we employ a heterogeneous collection of features such as lines, points, and regions in an integrated matching framework. Heterogeneous features are shown to be important. Line and point features provide accurate localization and are employed for robust alignment across disparate views. The challenges of change in pose, aspect, and appearances across two disparate observations are handled by combining a novel feature-based quasi-rigid alignment with flexible matching between two or more sequences. However, since lines and points are relatively sparse, they are not adequate to delineate the object and provide a comprehensive matching set that covers the complete object. Region features provide a high degree of coverage and are employed for continuous frames to provide a delineation of the vehicle region for subsequent generation of a match measure. Our approach reliably delineates objects by representing regions as robust blob features and matching multiple regions to multiple regions using Earth Mover's Distance (EMD). Extensive experimentation under a variety of real-world scenarios and over hundreds of thousands of Confirmatory Identification (CID) trails has demonstrated about 95 percent accuracy in vehicle reacquisition with both visible and Infrared (IR) imaging cameras.
Adjoint-Based Design of Rotors Using the Navier-Stokes Equations in a Noninertial Reference Frame
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Jones, William T.
2010-01-01
Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementation of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the implementation is demonstrated by using comparisons with a complex-variable technique, and a number of single- and multipoint optimizations for the rotorcraft figure of merit function are shown for varying blade collective angles. Design trends are shown to remain consistent as the grid is refined.
Adjoint-Based Design of Rotors using the Navier-Stokes Equations in a Noninertial Reference Frame
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Jones, William T.
2009-01-01
Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementation of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the implementation is demonstrated using comparisons with a complex-variable technique, and a number of single- and multi-point optimizations for the rotorcraft figure of merit function are shown for varying blade collective angles. Design trends are shown to remain consistent as the grid is refined.
Minkowski spacetime does not apply to a homogeneously accelerating medium
NASA Astrophysics Data System (ADS)
Coleman, Brian
Home and comoving inertial frame parameters of an individual point of an idealized medium of launch length L uniformly co-accelerating between identical fixed-thrust rockets, are well known. This is not the case with the varying inter-rocket radar periods and related implications regarding a changing 'noninertial own-length' Λ which differs from a front rocket's retrospective separation L from the simultaneously relatively moving rear rocket. On the other hand, the nonhomogeneous acceleration case involving every comoving frame's unchanging perception of a contrived 'rigor mortis' medium (so-called 'rigid motion' traditionally associated with 'Rindler coordinates') whereby Λ = L = L , constitutes the sole extended accelerating medium scenario where the entrenched Minkowski metric is actually applicable. Paraphrasing Wolfgang Pauli, not only is Minkowski spacetime not correct [in the general sense], it is not even wrong [in the restricted sense].
Acrylic Resin Molding Based Head Fixation Technique in Rodents.
Roh, Mootaek; Lee, Kyungmin; Jang, Il-Sung; Suk, Kyoungho; Lee, Maan-Gee
2016-01-12
Head fixation is a technique of immobilizing animal's head by attaching a head-post on the skull for rigid clamping. Traditional head fixation requires surgical attachment of metallic frames on the skull. The attached frames are then clamped to a stationary platform resulting in immobilization of the head. However, metallic frames for head fixation have been technically difficult to design and implement in general laboratory environment. In this study, we provide a novel head fixation method. Using a custom-made head fixation bar, head mounter is constructed during implantation surgery. After the application of acrylic resin for affixing implants such as electrodes and cannula on the skull, additional resins applied on top of that to build a mold matching to the port of the fixation bar. The molded head mounter serves as a guide rails, investigators conveniently fixate the animal's head by inserting the head mounter into the port of the fixation bar. This method could be easily applicable if implantation surgery using dental acrylics is necessary and might be useful for laboratories that cannot easily fabricate CNC machined metal head-posts.
NASA Astrophysics Data System (ADS)
Li, Senhu; Sarment, David
2015-12-01
Minimally invasive neurosurgery needs intraoperative imaging updates and high efficient image guide system to facilitate the procedure. An automatic image guided system utilized with a compact and mobile intraoperative CT imager was introduced in this work. A tracking frame that can be easily attached onto the commercially available skull clamp was designed. With known geometry of fiducial and tracking sensor arranged on this rigid frame that was fabricated through high precision 3D printing, not only was an accurate, fully automatic registration method developed in a simple and less-costly approach, but also it helped in estimating the errors from fiducial localization in image space through image processing, and in patient space through the calibration of tracking frame. Our phantom study shows the fiducial registration error as 0.348+/-0.028mm, comparing the manual registration error as 1.976+/-0.778mm. The system in this study provided a robust and accurate image-to-patient registration without interruption of routine surgical workflow and any user interactions involved through the neurosurgery.
Effects of tectonic plate deformation on the geodetic reference frame of Mexico
NASA Astrophysics Data System (ADS)
Gonzalez Franco, G. A.; Avalos, D.; Esquivel, R.
2013-05-01
Positioning for geodetic applications is commonly determined at one observation epoch, but tectonic drift and tectonic deformation cause the coordinates to be different for any other epoch. Finding the right coordinates at a different epoch from that of the observation time is necessary in Mexico in order to comply the official reference frame, which requires all coordinates to be referred to the standard epoch 2010.0. Available models of horizontal movement in rigid tectonic plates are used to calculate the displacement of coordinates; however for a portion of Mexico these models fail because of miss-modeled regional deformation, decreasing the quality of users' data transformed to the standard epoch. In this work we present the progress achieved in measuring actual horizontal motion towards an improved modeling of horizontal displacements for some regions. Miss-modeled velocities found are as big as 23mm/a, affecting significantly applications like cadastral and geodetic control. Data from a large set of GNSS permanent stations in Mexico is being analyzed to produce the preliminary model of horizontal crustal movement that will be used to minimize distortions of the reference frame.
NASA Astrophysics Data System (ADS)
Launay, Jean; Hivet, Gilles; Vu Duong, Ahn; Boisse, Philippe
2007-04-01
Two tests are mainly used to identify the shear behavior of fabrics. The "picture frame" which uses a lozenge framework made of four rigid and articulated bars and the "bias test" which is a tensile test on a sample with initially a 45° angle between the yarns and the edges. The picture frame test is the more commonly used because the whole specimen is theoretically in a pure shear state. Nevertheless the absence of tension in the woven reinforcement supposes a perfect alignment of fibres and positioning of the clamping point with regards to the framework articulations. In addition, it is often necessary in practice to impose an initial tension which is not quantified and whose consequences are ignored in the classical picture frame test. An experimental device making it possible to measure the tensions during the test is carried out. Different types of teste on different fabrics have been performed. Results presented here concern a twintex fabric that has been selected for a shear benchmark Thanks to this device, it is shown that tensions play an important role in plane shear behaviour.
Robust visual object tracking with interleaved segmentation
NASA Astrophysics Data System (ADS)
Abel, Peter; Kieritz, Hilke; Becker, Stefan; Arens, Michael
2017-10-01
In this paper we present a new approach for tracking non-rigid, deformable objects by means of merging an on-line boosting-based tracker and a fast foreground background segmentation. We extend an on-line boosting- based tracker, which uses axes-aligned bounding boxes with fixed aspect-ratio as tracking states. By constructing a confidence map from the on-line boosting-based tracker and unifying this map with a confidence map, which is obtained from a foreground background segmentation algorithm, we build a superior confidence map. For constructing a rough confidence map of a new frame based on on-line boosting, we employ the responses of the strong classifier as well as the single weak classifier responses that were built before during the updating step. This confidence map provides a rough estimation of the object's position and dimension. In order to refine this confidence map, we build a fine, pixel-wisely segmented confidence map and merge both maps together. Our segmentation method is color-histogram-based and provides a fine and fast image segmentation. By means of back-projection and the Bayes' rule, we obtain a confidence value for every pixel. The rough and the fine confidence maps are merged together by building an adaptively weighted sum of both maps. The weights are obtained by utilizing the variances of both confidence maps. Further, we apply morphological operators in the merged confidence map in order to reduce the noise. In the resulting map we estimate the object localization and dimension via continuous adaptive mean shift. Our approach provides a rotated rectangle as tracking states, which enables a more precise description of non-rigid, deformable objects than axes-aligned bounding boxes. We evaluate our tracker on the visual object tracking (VOT) benchmark dataset 2016.
NASA Astrophysics Data System (ADS)
Webb, Brenda Hainley
The influences of mandates, particularly the Alabama Reading Initiative (ARI) as the response to No Child Left Behind (2002), on elementary science education in Alabama were investigated. Teachers' voices provided insights to the status of science education in kindergarten, second grade, and third grade, and all three case participants reported negative influences of ARI on science education in their classrooms. The multiple case study, framed by critical theory and critical pedagogy, indicated that these teachers sometimes accepted marginalized roles in determining curriculum and pedagogy yet at other times made the decisions to empower themselves and negotiate or discard mandates in favor of meeting their children's learning needs or their own professional needs as they perceived them to be. Whether the case participants reached a threshold of resisting mandates or not, they struggled with the view of the political hierarchy that continues to force them into the status of being a technician rather than being a teaching professional. NCLB currently mandates standardized science testing, beginning in the spring of 2008. Historically, standardized testing reduces learning to low-level recall and teaching to rigid, uncreative, uncritical strategies. All of this intersects with science education reform and a national call for more attention to be given to science, technology, and mathematics learning. Research should track the continued influences of intersecting mandates on science education at every level.
Plane wave packet formulation of atom-plus-diatom quantum reactive scattering.
Althorpe, Stuart C
2004-07-15
We recently interpreted several reactive scattering experiments using a plane wave packet (PWP) formulation of quantum scattering theory [see, e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper presents the first derivation of this formulation for atom-plus-diatom reactive scattering, and explains its relation to conventional time-independent reactive scattering. We generalize recent results for spherical-particle scattering [S. C. Althorpe, Phys. Rev. A 69, 042702 (2004)] to atom-rigid-rotor scattering in the space-fixed frame, atom-rigid-rotor scattering in the body-fixed frame, and finally A+BC rearrangement scattering. The reactive scattering is initiated by a plane wave packet, describing the A+BC reagents in center-of-mass scattering coordinates, and is detected by projecting onto a series of AC+B (or AB+C) plane wave "probe" packets. The plane wave packets are localized at the closest distance from the scattering center at which the interaction potential can be neglected. The time evolution of the initial plane wave packet provides a clear visualization of the scattering into space of the reaction products. The projection onto the probe packets yields the time-independent, state-to-state scattering amplitude, and hence the differential cross section. We explain how best to implement the PWP approach in a numerical computation, and illustrate this with a detailed application to the H+D2 reaction. (c) 2004 American Institute of Physics
Wolff, Erin; Pal, Lubna; Altun, Tugba; Madankumar, Rajeevi; Freeman, Ruth; Amin, Hussein; Harman, Mitch; Santoro, Nanette; Taylor, Hugh S.
2010-01-01
Objective To characterize skin wrinkles and rigidity in recently menopausal women. Design Baseline assessment of participants prior to randomization to study drug. Setting Multicenter trial, university medical centers. Patients Recently menopausal participants enrolled in the Kronos Early Estrogen Prevention Study (KEEPS). Interventions Skin wrinkles were assessed at 11 locations on the face and neck using the Lemperle wrinkle scale. Skin rigidity was assessed at the forehead and cheek using a durometer. Outcome Skin wrinkles and rigidity were compared among race/ethnic groups. Skin wrinkles and rigidity were correlated with age, time since menopause, weight, and BMI. Results In early menopausal women, wrinkles, but not skin rigidity, vary significantly among races (p=0.0003), where Black women have the lowest wrinkle scores. In White women, chronological age was significantly correlated with worsening skin wrinkles, but not with rigidity(p<0.001). Skin rigidity correlated with increasing length of time since menopause, however only in the White subgroup (p<0.01). In the combined study group, increasing weight was associated with less skin wrinkling (p<0.05). Conclusions Skin characteristics of recently menopausal women are not well studied. Ethnic differences in skin characteristics are widely accepted, but poorly described. In recently menopausal women not using hormone therapy (HT), significant racial differences in skin wrinkling and rigidity exist. Continued study of the KEEPS population will provide evidence of the effects of HT on the skin aging process in early menopausal women. PMID:20971461
Wolff, Erin; Pal, Lubna; Altun, Tugba; Madankumar, Rajeevi; Freeman, Ruth; Amin, Hussein; Harman, Mitch; Santoro, Nanette; Taylor, Hugh S
2011-02-01
To characterize skin wrinkles and rigidity in recently menopausal women. Baseline assessment of participants before randomization to study drug. Multicenter trial, university medical centers. Recently menopausal participants enrolled in the Kronos Early Estrogen Prevention Study (KEEPS). Skin wrinkles were assessed at 11 locations on the face and neck using the Lemperle wrinkle scale. Skin rigidity was assessed at the forehead and cheek using a durometer. Skin wrinkles and rigidity were compared among race/ethnic groups. Skin wrinkles and rigidity were correlated with age, time since menopause, weight, and body mass index (BMI). In early menopausal women, wrinkles, but not skin rigidity, vary significantly among races, where black women have the lowest wrinkle scores. In white women, chronological age was significantly correlated with worsening skin wrinkles, but not with rigidity. Skin rigidity correlated with increasing length of time since menopause, however, only in the white subgroup. In the combined study group, increasing weight was associated with less skin wrinkling. Skin characteristics of recently menopausal women are not well studied. Ethnic differences in skin characteristics are widely accepted, but poorly described. In recently menopausal women not using hormone therapy (HT), significant racial differences in skin wrinkling and rigidity exist. Continued study of the KEEPS population will provide evidence of the effects of HT on the skin aging process in early menopausal women. Copyright © 2011 American Society for Reproductive Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing; Walker, Paul D.
2017-02-01
This paper proposes an uncertain modelling and computational method to analyze dynamic responses of rigid-flexible multibody systems (or mechanisms) with random geometry and material properties. Firstly, the deterministic model for the rigid-flexible multibody system is built with the absolute node coordinate formula (ANCF), in which the flexible parts are modeled by using ANCF elements, while the rigid parts are described by ANCF reference nodes (ANCF-RNs). Secondly, uncertainty for the geometry of rigid parts is expressed as uniform random variables, while the uncertainty for the material properties of flexible parts is modeled as a continuous random field, which is further discretized to Gaussian random variables using a series expansion method. Finally, a non-intrusive numerical method is developed to solve the dynamic equations of systems involving both types of random variables, which systematically integrates the deterministic generalized-α solver with Latin Hypercube sampling (LHS) and Polynomial Chaos (PC) expansion. The benchmark slider-crank mechanism is used as a numerical example to demonstrate the characteristics of the proposed method.
NASA Astrophysics Data System (ADS)
Li, Yuanyuan; Wang, Zilu; Wang, Cong; Huang, Wenhu
2018-01-01
Based on Nodal Coordinate Formulation (NCF) and Absolute Nodal Coordinate Formulation (ANCF), this paper establishes rigid-flexible coupling dynamic model of the spacecraft with large deployable solar arrays and multiple clearance joints to analyze and control the satellite attitude under deployment disturbance. Considering torque spring, close cable loop (CCL) configuration and latch mechanisms, a typical spacecraft composed of a rigid main-body described by NCF and two flexible panels described by ANCF is used as a demonstration case. Nonlinear contact force model and modified Coulomb friction model are selected to establish normal contact force and tangential friction model, respectively. Generalized elastic force are derived and all generalized forces are defined in the NCF-ANCF frame. The Newmark-β method is used to solve system equations of motion. The availability and superiority of the proposed model is verified through comparing with numerical co-simulations of Patran and ADAMS software. The numerical results reveal the effects of panel flexibility, joint clearance and their coupling on satellite attitude. The effects of clearance number, clearance size and clearance stiffness on satellite attitude are investigated. Furthermore, a proportional-differential (PD) attitude controller of spacecraft is designed to discuss the effect of attitude control on the dynamic responses of the whole system.
Smart align -- A new tool for robust non-rigid registration of scanning microscope data
Jones, Lewys; Yang, Hao; Pennycook, Timothy J.; ...
2015-07-10
Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the carefulmore » alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.« less
Smart align -- A new tool for robust non-rigid registration of scanning microscope data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Lewys; Yang, Hao; Pennycook, Timothy J.
Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the carefulmore » alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.« less
Fatigue Level Estimation of Bill Based on Acoustic Signal Feature by Supervised SOM
NASA Astrophysics Data System (ADS)
Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa
Fatigued bills have harmful influence on daily operation of Automated Teller Machine(ATM). To make the fatigued bills classification more efficient, development of an automatic fatigued bill classification method is desired. We propose a new method to estimate bending rigidity of bill from acoustic signal feature of banking machines. The estimated bending rigidities are used as continuous fatigue level for classification of fatigued bill. By using the supervised Self-Organizing Map(supervised SOM), we estimate the bending rigidity from only the acoustic energy pattern effectively. The experimental result with real bill samples shows the effectiveness of the proposed method.
49 CFR 587.13 - General description.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) DEFORMABLE BARRIERS Offset Deformable Barrier § 587.13 General description. The offset deformable barrier is comprised of two elements: a fixed rigid barrier and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
High-R wall assemblies (R-40 and above) are gaining popularity in the market due to programs like the DOE's Zero Energy Ready Home program, Passive House (PH), Net Zero Energy Home (NZEH) challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used 'double wall' systems to more practically achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double wall systems is that there are very few new exterior details. Exterior sheathing, structural bracing, house wrap or building paper, window andmore » door flashing, and siding attachment are usually identical to good details in conventional framed wall systems. The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and result in a reduction of material brought to landfills due to failures and resulting decay. While this document focuses on double wall framing techniques, the majority of the information on how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super insulated homes.« less
Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arena, Lois B.
High-R wall assemblies (R-40 and above) are gaining popularity in the market due to programs like the DOE's Zero Energy Ready Home program, Passive House (PH), Net Zero Energy Home (NZEH) challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used 'double wall' systems to more practically achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double wall systems is that there are very few new exterior details. Exterior sheathing, structural bracing, house wrap or building paper, window andmore » door flashing, and siding attachment are usually identical to good details in conventional framed wall systems. The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and result in a reduction of material brought to landfills due to failures and resulting decay. While this document focuses on double wall framing techniques, the majority of the information on how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super insulated homes.« less
The Gaia inertial reference frame and the tilting of the Milky Way disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perryman, Michael; Spergel, David N.; Lindegren, Lennart, E-mail: mac.perryman@gmail.com
2014-07-10
While the precise relationship between the Milky Way disk and the symmetry planes of the dark matter halo remains somewhat uncertain, a time-varying disk orientation with respect to an inertial reference frame seems probable. Hierarchical structure formation models predict that the dark matter halo is triaxial and tumbles with a characteristic rate of ∼2 rad H{sub 0}{sup −1} (∼30 μas yr{sup –1}). These models also predict a time-dependent accretion of gas, such that the angular momentum vector of the disk should be misaligned with that of the halo. These effects, as well as tidal effects of the LMC, will resultmore » in the rotation of the angular momentum vector of the disk population with respect to the quasar reference frame. We assess the accuracy with which the positions and proper motions from Gaia can be referred to a kinematically non-rotating system, and show that the spin vector of the transformation from any rigid self-consistent catalog frame to the quasi-inertial system defined by quasars should be defined to better than 1 μas yr{sup –1}. Determination of this inertial frame by Gaia will reveal any signature of the disk orientation varying with time, improve models of the potential and dynamics of the Milky Way, test theories of gravity, and provide new insights into the orbital evolution of the Sagittarius dwarf galaxy and the Magellanic Clouds.« less
Modal Logics for Continuous Dynamics
1997-11-01
Australian- American Educational Foundation - 1991-96 Fulbright Award; Australian Fedration of University Women (Victoria Branch) - 1991-92...Nerode); American Association of Uni- versity Women (AAUW) Educational Foundation - 1996-97 International Fellowship. The AAUW fellowship was...h(F(w)) is a Kripke frame for LQa , and the minimal quotient under hof)C. Moreover, if JC is a continuous Kripke frame, then K,’ is also continuous
NASA Astrophysics Data System (ADS)
Gillies, Derek J.; Gardi, Lori; Zhao, Ren; Fenster, Aaron
2017-03-01
During image-guided prostate biopsy, needles are targeted at suspicious tissues to obtain specimens that are later examined histologically for cancer. Patient motion causes inaccuracies when using MR-transrectal ultrasound (TRUS) image fusion approaches used to augment the conventional biopsy procedure. Motion compensation using a single, user initiated correction can be performed to temporarily compensate for prostate motion, but a real-time continuous registration offers an improvement to clinical workflow by reducing user interaction and procedure time. An automatic motion compensation method, approaching the frame rate of a TRUS-guided system, has been developed for use during fusion-based prostate biopsy to improve image guidance. 2D and 3D TRUS images of a prostate phantom were registered using an intensity based algorithm utilizing normalized cross-correlation and Powell's method for optimization with user initiated and continuous registration techniques. The user initiated correction performed with observed computation times of 78 ± 35 ms, 74 ± 28 ms, and 113 ± 49 ms for in-plane, out-of-plane, and roll motions, respectively, corresponding to errors of 0.5 ± 0.5 mm, 1.5 ± 1.4 mm, and 1.5 ± 1.6°. The continuous correction performed significantly faster (p < 0.05) than the user initiated method, with observed computation times of 31 ± 4 ms, 32 ± 4 ms, and 31 ± 6 ms for in-plane, out-of-plane, and roll motions, respectively, corresponding to errors of 0.2 ± 0.2 mm, 0.6 ± 0.5 mm, and 0.8 ± 0.4°.
Compact fast analyzer of rotary cuvette type
Thacker, Louis H.
1976-01-01
A compact fast analyzer of the rotary cuvette type is provided for simultaneously determining concentrations in a multiplicity of discrete samples using either absorbance or fluorescence measurement techniques. A rigid, generally rectangular frame defines optical passageways for the absorbance and fluorescence measurement systems. The frame also serves as a mounting structure for various optical components as well as for the cuvette rotor mount and drive system. A single light source and photodetector are used in making both absorbance and fluorescence measurements. Rotor removal and insertion are facilitated by a swing-out drive motor and rotor mount. BACKGROUND OF THE INVENTION The invention relates generally to concentration measuring instruments and more specifically to a compact fast analyzer of the rotary cuvette type which is suitable for making either absorbance or fluorescence measurements. It was made in the course of, or under, a contract with the U.S. Atomic Energy Commission.
Morandi, Paolo; Hak, Sanja; Magenes, Guido
2018-02-01
This article contains information related to a recent study "Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills" (Morandi et al., 2017 [1]). Motivated by the necessity to improve the knowledge of the in-plane seismic response of rigid strong masonry infills, a wide experimental campaign based on in-plane cyclic tests on full-scale RC infilled frame specimens, supplemented with a complete characterization of the materials, has been conducted at the laboratory of the Department of Civil Engineering and Architecture of the University of Pavia. The masonry is constituted by vertically perforated 35 cm thick clay units with tongue and groove and dry head-joints and general-purpose mortar bed-joints. The paper reports the results of the mechanical characterization and of the force-displacement hysteretic curves from the in-plane cyclic tests.
1991-02-27
balance of trade at this date. Planters owed over three million livres for previous shipments of slaves and supplies. By that time, structures within New...Delavigine (Lots 7 to 18). The frame buildings lying within the projected passage of Jourdan Avenue between Maurais and St. Claude, were purchased by...the top lends additional rigidity. It was also justified at South Halsted Street to provide machinists with quick passage from the top of one tower
Real-time Avatar Animation from a Single Image.
Saragih, Jason M; Lucey, Simon; Cohn, Jeffrey F
2011-01-01
A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user's facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters.
Real-time Avatar Animation from a Single Image
Saragih, Jason M.; Lucey, Simon; Cohn, Jeffrey F.
2014-01-01
A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user’s facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters. PMID:24598812
Nuclear Storage Overpack Door Actuator and Alignment Apparatus
Andreyko, Gregory M.
2005-05-11
The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.
Nuclear storage overpack door actuator and alignment apparatus
Andreyko, Gregory M.
2005-05-10
The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.
Experimental observation of a hydrodynamic mode in a flow duct with a porous material.
Aurégan, Yves; Singh, Deepesh Kumar
2014-08-01
This paper experimentally investigates the acoustic behavior of a homogeneous porous material with a rigid frame (metallic foam) under grazing flow. The transmission coefficient shows an unusual oscillation over a particular range of frequencies which reports the presence of an unstable hydrodynamic wave that can exchange energy with the acoustic waves. This coupling of acoustic and hydrodynamic waves becomes larger when the Mach number increases. A rise of the static pressure drop in the lined region is induced by an acoustic excitation when the hydrodynamic wave is present.
Dynamical analysis of an orbiting three-rigid-body system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagnozzi, Daniele, E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk; Biggs, James D., E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk
2014-12-10
The development of multi-joint-spacecraft mission concepts calls for a deeper understanding of their nonlinear dynamics to inform and enhance system design. This paper presents a study of a three-finite-shape rigid-body system under the action of an ideal central gravitational field. The aim of this paper is to gain an insight into the natural dynamics of this system. The Hamiltonian dynamics is derived and used to identify relative attitude equilibria of the system with respect to the orbital reference frame. Then a numerical investigation of the behaviour far from the equilibria is provided using tools from modern dynamical systems theory suchmore » as energy methods, phase portraits and Poincarè maps. Results reveal a complex structure of the dynamics as well as the existence of connections between some of the equilibria. Stable equilibrium configurations appear to be surrounded by very narrow regions of regular and quasi-regular motions. Trajectories evolve on chaotic motions in the rest of the domain.« less
Manipulator having thermally conductive rotary joint for transferring heat from a test specimen
Haney, Steven J.; Stulen, Richard H.; Toly, Norman F.
1985-01-01
A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.
A flight-dynamic helicopter mathematical model with a single flap-lag-torsion main rotor
NASA Technical Reports Server (NTRS)
Takahashi, Marc D.
1990-01-01
A mathematical model of a helicopter system with a single main rotor that includes rigid, hinge-restrained rotor blades with flap, lag, and torsion degrees of freedom is described. The model allows several hinge sequences and two offsets in the hinges. Quasi-steady Greenberg theory is used to calculate the blade-section aerodynamic forces, and inflow effects are accounted for by using three-state nonlinear dynamic inflow model. The motion of the rigid fuselage is defined by six degrees of freedom, and an optional rotor rpm degree of freedom is available. Empennage surfaces and the tail rotor are modeled, and the effect of main-rotor downwash on these elements is included. Model trim linearization, and time-integration operations are described and can be applied to a subset of the model in the rotating or nonrotating coordinate frame. A preliminary validation of the model is made by comparing its results with those of other analytical and experimental studies. This publication presents the results of research compiled in November 1989.
NASA Astrophysics Data System (ADS)
Pan, Peng; Wu, Shoujun; Wang, Haishen; Nie, Xin
2018-04-01
Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.
WE-H-207A-02: Attenuation Correction in 4D-PET Using a Single-Phase Attenuation Map
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalantari, F; Wang, J
2016-06-15
Purpose: 4D-PET imaging has been proposed as a potential solution to the respiratory motion effect in thoracic region. CT-based attenuation correction (AC) is an essential step toward quantitative imaging for PET. However, due to the temporal difference of 4D-PET and a single breath-hold CT, motion artifacts are observed in the attenuation-corrected PET images that can lead to error in tumor shape and uptake. We introduce a practical method for aligning single-phase CT to all other 4D-PET phases using a penalized non-rigid demons registration. Methods: Individual 4D-PET frames were reconstructed without AC. Non-rigid Demons registration was used to derive deformation vectormore » fields (DVFs) between the PET matched with CT phase and other 4D-PET images. While attenuated PET images provide enough useful data for organ borders such as lung and liver, tumors are not distinguishable from background due to loss of contrast. To preserve tumor shape in different phases, from CT image an ROI covering tumor was excluded from non-rigid transformation. Mean DVF of the central region of the tumor was assigned to all voxels in the ROI. This process mimics a rigid transformation of tumor along with a non-rigid transformation of other organs. 4D XCAT phantom with spherical tumors in lung with diameters ranging from 10 to 40 mm was used to evaluate the algorithm. Results: Motion related induced artifacts in attenuation-corrected 4D-PET images were significantly reduced. For tumors smaller than 20 mm, non-rigid transformation was capable to provide quantitative results. However, for larger tumors, where tumor self-attenuation is considerable, our combined method yields superior results. Conclusion: We introduced a practical method for deforming a single CT to match all 4D-PET images for accurate AC. Although 4D-PET data include insignificant anatomical information, we showed that they are still useful to estimate DVFs for aligning attenuation map and accurate AC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shea, M.A.; Smart, D.F.
1974-03-26
Using the trajectory-tracing technique, the asymptotic directions and cut-off rigidities for Palestine, Dallas, amd Midland,Texas were calculated as a function of various zenith and azimuth angles. Continuation of the trajectory-tracing process below the Stormer cutoff allows an evaluation of the reentrant albedo; the invariant latitude of the guiding center of the trajectory at the albedo origin is seen to be the same as the invariant latitude of the guiding center of the particle trajectory at the specified zenith and azimuth angle of the detection point. Tables of asymptotic directions, cutoff rigidities, and the location of the reentrant albedo for eachmore » of these locations are given. Summaries of cutoff rigidity calculations as a function of zenith and azimuth directions for some miscellaneous locations are also included. (GRA)« less
α-Information Based Registration of Dynamic Scans for Magnetic Resonance Cystography
Han, Hao; Lin, Qin; Li, Lihong; Duan, Chaijie; Lu, Hongbing; Li, Haifang; Yan, Zengmin; Fitzgerald, John
2015-01-01
To continue our effort on developing magnetic resonance (MR) cystography, we introduce a novel non–rigid 3D registration method to compensate for bladder wall motion and deformation in dynamic MR scans, which are impaired by relatively low signal–to–noise ratio in each time frame. The registration method is developed on the similarity measure of α–information, which has the potential of achieving higher registration accuracy than the commonly-used mutual information (MI) measure for either mono-modality or multi-modality image registration. The α–information metric was also demonstrated to be superior to both the mean squares and the cross-correlation metrics in multi-modality scenarios. The proposed α–registration method was applied for bladder motion compensation via real patient studies, and its effect to the automatic and accurate segmentation of bladder wall was also evaluated. Compared with the prevailing MI-based image registration approach, the presented α–information based registration was more effective to capture the bladder wall motion and deformation, which ensured the success of the following bladder wall segmentation to achieve the goal of evaluating the entire bladder wall for detection and diagnosis of abnormality. PMID:26087506
High-Speed Videography Overview
NASA Astrophysics Data System (ADS)
Miller, C. E.
1989-02-01
The field of high-speed videography (HSV) has continued to mature in recent years, due to the introduction of a mixture of new technology and extensions of existing technology. Recent low frame-rate innovations have the potential to dramatically expand the areas of information gathering and motion analysis at all frame-rates. Progress at the 0 - rate is bringing the battle of film versus video to the field of still photography. The pressure to push intermediate frame rates higher continues, although the maximum achievable frame rate has remained stable for several years. Higher maximum recording rates appear technologically practical, but economic factors impose severe limitations to development. The application of diverse photographic techniques to video-based systems is under-exploited. The basics of HSV apply to other fields, such as machine vision and robotics. Present motion analysis systems continue to function mainly as an instant replay replacement for high-speed movie film cameras. The interrelationship among lighting, shuttering and spatial resolution is examined.
2015-07-01
IMAGE FRAME RATE (R-x\\ IFR -n) PRE-TRIGGER FRAMES (R-x\\PTG-n) TOTAL FRAMES (R-x\\TOTF-n) EXPOSURE TIME (R-x\\EXP-n) SENSOR ROTATION (R-x...0” (Single frame). “1” (Multi-frame). “2” (Continuous). Allowed when: When R\\CDT is “IMGIN” IMAGE FRAME RATE R-x\\ IFR -n R/R Ch 10 Status: RO...the settings that the user wishes to modify. Return Value The impact : A partial IHAL <configuration> element containing only the new settings for
Unevenness of Sliding Surface of Overhead Rigid Conductor Lines and Method for Reducing Unevenness
NASA Astrophysics Data System (ADS)
Aboshi, Mitsuo; Shimizu, Masashi
Rigid conductor lines are used in many subways, because the use of such conductor lines reduces the risk of accidents and because less space is required for their installation. However, as the unevenness of the sliding surface of the rigid conductor lines significantly influences the fluctuations in the contact force between pantographs and contact lines, it is necessary to decrease the unevenness at the construction as well as the maintenance stages. In order to investigate the installation accuracy of overhead rigid conductor lines, we have developed a device that accurately and continuously measures the unevenness of the sliding surface. By using this measuring device, we have confirmed that the unevenness of the sliding surface depends on various factors such as the sag between the support points, the deformation of the aluminum base or the conductive rail in the case of a long wavelength, the slight sagging unevenness between the bolts of the long ear, the undulating wear etc. This paper describes the actual unevenness conditions and the technical methods for decreasing the unevenness of the sliding surface of overhead rigid conductor lines.
NASA Technical Reports Server (NTRS)
Razzaq, Zia; Prasad, Venkatesh; Darbhamulla, Siva Prasad; Bhati, Ravinder; Lin, Cai
1987-01-01
Parallel computing studies are presented for a variety of structural analysis problems. Included are the substructure planar analysis of rectangular panels with and without a hole, the static analysis of space mast, using NICE/SPAR and FORCE, and substructure analysis of plane rigid-jointed frames using FORCE. The computations are carried out on the Flex/32 MultiComputer using one to eighteen processors. The NICE/SPAR runstream samples are documented for the panel problem. For the substructure analysis of plane frames, a computer program is developed to demonstrate the effectiveness of a substructuring technique when FORCE is enforced. Ongoing research activities for an elasto-plastic stability analysis problem using FORCE, and stability analysis of the focus problem using NICE/SPAR are briefly summarized. Speedup curves for the panel, the mast, and the frame problems provide a basic understanding of the effectiveness of parallel computing procedures utilized or developed, within the domain of the parameters considered. Although the speedup curves obtained exhibit various levels of computational efficiency, they clearly demonstrate the excellent promise which parallel computing holds for the structural analysis problem. Source code is given for the elasto-plastic stability problem and the FORCE program.
Ehrenfeld, Stephan; Butz, Martin V
2013-02-01
Humans show admirable capabilities in movement planning and execution. They can perform complex tasks in various contexts, using the available sensory information very effectively. Body models and continuous body state estimations appear necessary to realize such capabilities. We introduce the Modular Modality Frame (MMF) model, which maintains a highly distributed, modularized body model continuously updating, modularized probabilistic body state estimations over time. Modularization is realized with respect to modality frames, that is, sensory modalities in particular frames of reference and with respect to particular body parts. We evaluate MMF performance on a simulated, nine degree of freedom arm in 3D space. The results show that MMF is able to maintain accurate body state estimations despite high sensor and motor noise. Moreover, by comparing the sensory information available in different modality frames, MMF can identify faulty sensory measurements on the fly. In the near future, applications to lightweight robot control should be pursued. Moreover, MMF may be enhanced with neural encodings by introducing neural population codes and learning techniques. Finally, more dexterous goal-directed behavior should be realized by exploiting the available redundant state representations.
Correction of lobule-type microtia: I. The first stage of costal cartilage grafting.
Yotsuyanagi, Takatoshi; Yamashita, Ken; Yamauchi, Makoto; Sugai, Asuka; Kayama, Musashi; Gonda, Ayako; Kita, Arisa
2014-01-01
Recently, auriculoplasty with costal cartilage grafting has been successfully used for correcting microtia and creating a clearly refined contour and a natural appearance of the ear. However, several important problems remain unsolved in these techniques. The authors describe an improved technique for harvesting costal cartilage with minimal morbidity and a new procedure for fabricating a cartilage frame that ensures a refined shape and rigid structure of the constructed ear. Costal cartilage is harvested directly with a chisel. This technique enables some of the cartilage at the chest wall to remain intact. The base frame is fabricated by two cartilage blocks partly overlapped on the area of the antihelix. The thickness in the overlapping area emphasizes the contour between the antihelix and the helical crus. To prevent absorption of the cartilage, helical and antihelical parts are created using the outer rigid layer of the harvested cartilage and are covered as much as possible by perichondrium. A total of 137 ears in 121 patients were corrected with the authors' technique and followed up for at least 3 years. Almost all of the patients could walk within 2 days after the operation. The structure and contour of the constructed ear were well maintained. Attention should be given not only to successful outcomes of construction of the ear but also to minimal morbidity for the patients. Our technique made it possible to construct a cosmetically refined ear that could be maintained for a long period and minimize the pain and deformity of the donor's chest.
Construction Theory and Noise Analysis Method of Global CGCS2000 Coordinate Frame
NASA Astrophysics Data System (ADS)
Jiang, Z.; Wang, F.; Bai, J.; Li, Z.
2018-04-01
The definition, renewal and maintenance of geodetic datum has been international hot issue. In recent years, many countries have been studying and implementing modernization and renewal of local geodetic reference coordinate frame. Based on the precise result of continuous observation for recent 15 years from state CORS (continuously operating reference system) network and the mainland GNSS (Global Navigation Satellite System) network between 1999 and 2007, this paper studies the construction of mathematical model of the Global CGCS2000 frame, mainly analyzes the theory and algorithm of two-step method for Global CGCS2000 Coordinate Frame formulation. Finally, the noise characteristic of the coordinate time series are estimated quantitatively with the criterion of maximum likelihood estimation.
NASA Astrophysics Data System (ADS)
Baka, N.; Lelieveldt, B. P. F.; Schultz, C.; Niessen, W.; van Walsum, T.
2015-05-01
During percutaneous coronary interventions (PCI) catheters and arteries are visualized by x-ray angiography (XA) sequences, using brief contrast injections to show the coronary arteries. If we could continue visualizing the coronary arteries after the contrast agent passed (thus in non-contrast XA frames), we could potentially lower contrast use, which is advantageous due to the toxicity of the contrast agent. This paper explores the possibility of such visualization in mono-plane XA acquisitions with a special focus on respiratory based coronary artery motion estimation. We use the patient specific coronary artery centerlines from pre-interventional 3D CTA images to project on the XA sequence for artery visualization. To achieve this, a framework for registering the 3D centerlines with the mono-plane 2D + time XA sequences is presented. During the registration the patient specific cardiac and respiratory motion is learned. We investigate several respiratory motion estimation strategies with respect to accuracy, plausibility and ease of use for motion prediction in XA frames with and without contrast. The investigated strategies include diaphragm motion based prediction, and respiratory motion extraction from the guiding catheter tip motion. We furthermore compare translational and rigid respiratory based heart motion. We validated the accuracy of the 2D/3D registration and the respiratory and cardiac motion estimations on XA sequences of 12 interventions. The diaphragm based motion model and the catheter tip derived motion achieved 1.58 mm and 1.83 mm median 2D accuracy, respectively. On a subset of four interventions we evaluated the artery visualization accuracy for non-contrast cases. Both diaphragm, and catheter tip based prediction performed similarly, with about half of the cases providing satisfactory accuracy (median error < 2 mm).
Barr, Margo L; Ferguson, Raymond A; Steel, David G
2014-08-12
Since 1997, the NSW Population Health Survey (NSWPHS) had selected the sample using random digit dialing of landline telephone numbers. When the survey began coverage of the population by landline phone frames was high (96%). As landline coverage in Australia has declined and continues to do so, in 2012, a sample of mobile telephone numbers was added to the survey using an overlapping dual-frame design. Details of the methodology are published elsewhere. This paper discusses the impacts of the sampling frame change on the time series, and provides possible approaches to handling these impacts. Prevalence estimates were calculated for type of phone-use, and a range of health indicators. Prevalence ratios (PR) for each of the health indicators were also calculated using Poisson regression analysis with robust variance estimation by type of phone-use. Health estimates for 2012 were compared to 2011. The full time series was examined for selected health indicators. It was estimated from the 2012 NSWPHS that 20.0% of the NSW population were mobile-only phone users. Looking at the full time series for overweight or obese and current smoking if the NSWPHS had continued to be undertaken only using a landline frame, overweight or obese would have been shown to continue to increase and current smoking would have been shown to continue to decrease. However, with the introduction of the overlapping dual-frame design in 2012, overweight or obese increased until 2011 and then decreased in 2012, and current smoking decreased until 2011, and then increased in 2012. Our examination of these time series showed that the changes were a consequence of the sampling frame change and were not real changes. Both the backcasting method and the minimal coverage method could adequately adjust for the design change and allow for the continuation of the time series. The inclusion of the mobile telephone numbers, through an overlapping dual-frame design, did impact on the time series for some of the health indicators collected through the NSWPHS, but only in that it corrected the estimates that were being calculated from a sample frame that was progressively covering less of the population.
Load balancing and closed chain multiple arm control
NASA Technical Reports Server (NTRS)
Kreutz, Kenneth; Lokshin, Anatole
1988-01-01
The authors give the general dynamical equations for several rigid link manipulators rigidly grasping a commonly held rigid object. It is shown that the number of arm-configuration degrees of freedom lost due to imposing the closed-loop kinematic constraints is the same as the number of degrees of freedom gained for controlling the internal forces of the closed-chain system. This number is equal to the dimension of the kernel of the Jacobian operator which transforms contact forces to the net forces acting on the held object, and it is shown that this kernel can be identified with the subspace of controllable internal forces of the closed-chain system. Control of these forces makes it possible to regulate the grasping forces imparted to the held object or to control the load taken by each arm. It is shown that the internal forces can be influenced without affecting the control of the configuration degrees of freedom. Control laws of the feedback linearization type are shown to be useful for controlling the location and attitude of a frame fixed with respect to the held object, while simultaneously controlling the internal forces of the closed-chain system. Force feedback can be used to linearize and control the system even when the held object has unknown mass properties. If saturation effects are ignored, an unconstrained quadratic optimization can be performed to distribute the load optimally among the joint actuators.
Evaluation of a nontoxic rigid polymer as connecting bar in external skeletal fixators.
Störk, Christoph K; Canivet, Philippe; Baidak, Alexandre A; Balligand, Marc H
2003-01-01
To investigate the mechanical characteristics of a nontoxic, low-cost, rigid polymer (RP) and to compare the structural and mechanical properties of a full-frame external skeletal fixator (ESF) with either RP connecting bars, polymethylmethacrylate (PMMA) connecting bars, or stainless-steel (SS) clamps and connecting bars. In vitro mechanical evaluation. Mechanical properties were assessed using an in vitro bone fracture model with a bilateral uniplanar ESF (type II). Identical ESF were built with connecting bars using RP (n = 8), PMMA (n = 8), and SS connecting bars and clamps (System Meynard; n = 3). Nondestructive mechanical tests were performed in uniaxial compression (AC) and craniocaudal (CC) 4-point bending, as well as fatigue AC. Composite stiffness for each specimen and for each loading mode was calculated from 6 replicate measures using the slope of the load displacement curve at small displacements. RP, PMMA, and SS ESF constructs yielded mean +/- SD composite stiffness values of 227 +/- 15, 381 +/- 30, and 394 +/- 9 N/mm in AC and of 35 +/- 2, 24 +/- 2, and 15 +/- 0 N/mm in CC, respectively. Structural and mechanical properties of RP are satisfactorily rigid and fatigue resistant for its use as a connecting bar in ESF. RP connecting bars in an ESF are a reliable, versatile, nontoxic and inexpensive option for the veterinary surgeon. Copyright 2003 by The American College of Veterinary Surgeons
Real-time CT-video registration for continuous endoscopic guidance
NASA Astrophysics Data System (ADS)
Merritt, Scott A.; Rai, Lav; Higgins, William E.
2006-03-01
Previous research has shown that CT-image-based guidance could be useful for the bronchoscopic assessment of lung cancer. This research drew upon the registration of bronchoscopic video images to CT-based endoluminal renderings of the airway tree. The proposed methods either were restricted to discrete single-frame registration, which took several seconds to complete, or required non-real-time buffering and processing of video sequences. We have devised a fast 2D/3D image registration method that performs single-frame CT-Video registration in under 1/15th of a second. This allows the method to be used for real-time registration at full video frame rates without significantly altering the physician's behavior. The method achieves its speed through a gradient-based optimization method that allows most of the computation to be performed off-line. During live registration, the optimization iteratively steps toward the locally optimal viewpoint at which a CT-based endoluminal view is most similar to a current bronchoscopic video frame. After an initial registration to begin the process (generally done in the trachea for bronchoscopy), subsequent registrations are performed in real-time on each incoming video frame. As each new bronchoscopic video frame becomes available, the current optimization is initialized using the previous frame's optimization result, allowing continuous guidance to proceed without manual re-initialization. Tests were performed using both synthetic and pre-recorded bronchoscopic video. The results show that the method is robust to initialization errors, that registration accuracy is high, and that continuous registration can proceed on real-time video at >15 frames per sec. with minimal user-intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, P
Purpose: To determine causal factors related to high frame definition error when treating GK patients using a pre-planning workflow. Methods: 160 cases were retrospectively reviewed. All patients received treatment using a pre-planning workflow whereby stereotactic coordinates are determined from a CT scan acquired after framing using a fiducial box. The planning software automatically detects the fiducials and compares their location to expected values based on the rigid design of the fiducial system. Any difference is reported as mean and maximum frame definition error. The manufacturer recommends these values be less than 1.0 mm and 1.5 mm. In this study, framemore » definition error was analyzed in comparison with a variety of factors including which neurosurgeon/oncologist/physicist was involved with the procedure, number of post used during framing (3 or 4), type of lesion, and which CT scanner was utilized for acquisition. An analysis of variance (ANOVA) approach was used to statistically evaluate the data and determine causal factors related to instances of high frame definition error. Results: Two factors were identified as significant: number of post (p=0.0003) and CT scanner (p=0.0001). Further analysis showed that one of the four scanners was significantly different than the others. This diagnostic scanner was identified as an older model with localization lasers not tightly calibrated. The average value for maximum frame definition error using this scanner was 1.48 mm (4 posts) and 1.75 mm (3 posts). For the other scanners this value was 1.13 mm (4 posts) and 1.40 mm (3 posts). Conclusion: In utilizing a pre-planning workflow the choice of CT scanner matters. Any scanner utilized for GK should undergo routine QA at a level appropriate for radiation oncology. In terms of 3 vs 4 post, it is hypothesized that three posts provide less stability during CT acquisition. This will be tested in future work.« less
A seismic analysis for masonry constructions: The different schematization methods of masonry walls
NASA Astrophysics Data System (ADS)
Olivito, Renato. S.; Codispoti, Rosamaria; Scuro, Carmelo
2017-11-01
Seismic analysis of masonry structures is usually analyzed through the use of structural calculation software based on equivalent frames method or to macro-elements method. In these approaches, the masonry walls are divided into vertical elements, masonry walls, and horizontal elements, so-called spandrel elements, interconnected by rigid nodes. The aim of this work is to make a critical comparison between different schematization methods of masonry wall underlining the structural importance of the spandrel elements. In order to implement the methods, two different structural calculation software were used and an existing masonry building has been examined.
SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.
1998-09-01
This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.
Implementing the Gaia Astrometric Global Iterative Solution (AGIS) in Java
NASA Astrophysics Data System (ADS)
O'Mullane, William; Lammers, Uwe; Lindegren, Lennart; Hernandez, Jose; Hobbs, David
2011-10-01
This paper provides a description of the Java software framework which has been constructed to run the Astrometric Global Iterative Solution for the Gaia mission. This is the mathematical framework to provide the rigid reference frame for Gaia observations from the Gaia data itself. This process makes Gaia a self calibrated, and input catalogue independent, mission. The framework is highly distributed typically running on a cluster of machines with a database back end. All code is written in the Java language. We describe the overall architecture and some of the details of the implementation.
Do prescribed prompts prime sensemaking during group problem solving?
NASA Astrophysics Data System (ADS)
Martinuk, Mathew "Sandy"; Ives, Joss
2012-02-01
Many researchers and textbooks have promoted the use of rigid prescribed strategies for encouraging development of expert-like problem-solving behavior in novice students. The University of British Columbia's introductory algebra-based course for non-physics majors uses Context-Rich problems with a prescribed six-step strategy. We have coded audio recordings of group problem-solving sessions to analyze students' epistemological framing based on the implicit goal of their discussions. By treating the goal of "understanding the physics of the situation" as sensemaking, we argue that prescribed problem-solving prompts are not sufficient to induce subsequent sensemaking discussion.
1990-12-01
was determined from the difference between the 24-state matrix product, HtP (t’)HT, and the six-state matrix product, HfPf (tT)HT’. For this...The true position for node 7, which represents the rigid body position of the structure, is not damped and can be interpreted as a rigid body...application, considering the same issues as explored in this research. Continue with a physical interpretation of the structure positions for determining the
1985-11-01
Aplications 19. ABTRACT (Continue on reverg if necemar and identify by block, number) This technical report develops a complete system for nondestructive...life of rigid airfield pavements. .04-. V UNLSSFED _ IRCURfTY LA MntP A’rION O THIIS PAGE NA PREFACE This report was submitted as a doctoral thesis to...Engineering and Services Laboratory, Tyndall AFB, Florida 32403. t This thesis is being published in its original format by this laboratory because
NASA Technical Reports Server (NTRS)
Webb, G. M.; Jokipii, J. R.; Morfill, G. E.
1994-01-01
Green's theorem and Green's formula for the diffusive cosmic-ray transport equation in relativistic flows are derived. Green's formula gives the solution of the transport equation in terms of the Green's function of the adjoint transport equation, and in terms of distributed sources throughout the region R of interest, plus terms involving the particle intensity and streaming on the boundary. The adjoint transport equation describes the time-reversed particle transport. An Euler-Lagrange variational principle is then obtained for both the mean scattering frame distribution function f, and its adjoint f(dagger). Variations of the variational functional with respect to f(dagger) yield the transport equation, whereas variations of f yield the adjoint transport equation. The variational principle, when combined with Noether's theorem, yields the conservation law associated with Green's theorem. An investigation of the transport equation for steady, azimuthal, rotating flows suggests the introduction of a new independent variable H to replace the comoving frame momentum variable p'. For the case of rigid rotating flows, H is conserved and is shown to be analogous to the Hamiltonian for a bead on a rigidly rotating wire. The variable H corresponds to a balance between the centrifugal force and the particle inertia in the rotating frame. The physical interpretation of H includes a discussion of nonrelativistic and special relativistic rotating flows as well as the cases of aziuthal, differentially rotating flows about Schwarzs-child and Kerr black holes. Green's formula is then applied to the problem of the acceleration of ultra-high-energy cosmic rays by galactic rotation. The model for galactic rotation assumes an angular velocity law Omega = Omega(sub 0)(omega(sub 0)/omega), where omega denotes radial distance from the axis of rotation. Green's functions for the galactic rotation problem are used to investigate the spectrum of accelerated particles arising from monoenergetic and truncated power-law sources. We conclude that it is possible to accelerate particles beyond the knee by galactic rotation, but not in sufficient number to adequately explain the observed spectrum.
Single-camera visual odometry to track a surgical X-ray C-arm base.
Esfandiari, Hooman; Lichti, Derek; Anglin, Carolyn
2017-12-01
This study provides a framework for a single-camera odometry system for localizing a surgical C-arm base. An application-specific monocular visual odometry system (a downward-looking consumer-grade camera rigidly attached to the C-arm base) is proposed in this research. The cumulative dead-reckoning estimation of the base is extracted based on frame-to-frame homography estimation. Optical-flow results are utilized to feed the odometry. Online positional and orientation parameters are then reported. Positional accuracy of better than 2% (of the total traveled distance) for most of the cases and 4% for all the cases studied and angular accuracy of better than 2% (of absolute cumulative changes in orientation) were achieved with this method. This study provides a robust and accurate tracking framework that not only can be integrated with the current C-arm joint-tracking system (i.e. TC-arm) but also is capable of being employed for similar applications in other fields (e.g. robotics).
Wing walls for enhancing the seismic performance of reinforced concrete frame structures
NASA Astrophysics Data System (ADS)
Yang, Weisong; Guo, Xun; Xu, Weixiao; Yuan, Xin
2016-06-01
A building retrofitted with wing walls in the bottom story, which was damaged during the 2008 M8.0 Wenchuan earthquake in China, is introduced and a corresponding 1/4 scale wing wall-frame model was subjected to shake table motions to study the seismic behavior of this retrofitted structural system. The results show that wing walls can effectively protect columns from damage by moving areas that bear reciprocating tension and compression to the sections of the wing walls, thus achieving an extra measure of seismic fortification. A `strong column-weak beam' mechanism was realized, the flexural rigidity of the vertical member was strengthened, and a more uniform distribution of deformation among all the stories was measured. In addition, the joint between the wing walls and the beams suffered severe damage during the tests, due to an area of local stress concentration. A longer area of intensive stirrup is suggested in the end of the beams.
Guelpa, Valérian; Laurent, Guillaume J; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric
2014-03-12
This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations-leading to high resolution-while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 µs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 µm measurement range.
Guelpa, Valérian; Laurent, Guillaume J.; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric
2014-01-01
This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations—leading to high resolution—while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 μs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 μm measurement range. PMID:24625736
Classical Mechanics: A Modern Introduction
NASA Astrophysics Data System (ADS)
McCall, Martin W.
2000-12-01
Classical Mechanics is a clear introduction to the subject, combining a user-friendly style with an authoritative approach, whilst requiring minimal prerequisite mathematics - only elementary calculus and simple vectors are presumed. The text starts with a careful look at Newton's Laws, before applying them in one dimension to oscillations and collisions. More advanced applications - including gravitational orbits, rigid body dynamics and mechanics in rotating frames - are deferred until after the limitations of Newton's inertial frames have been highlighted through an exposition of Einstein's Special Relativity. The examples given throughout are often unusual for an elementary text, although they are made accessible through discussion and diagrams. Complete revision summaries are given at the end of each chapter, together with problems designed to be both illustrative and challenging. Features: * Comprehensive introduction to classical mechanics and relativity * Many novel examples, e.g. stability of the universe, falling cats, crickets bats and snooker * Includes many problems with numerical answers * Revision notes at the end of each chapter
An Analysis of Frame Semantics of Continuous Processes
2016-08-10
in natural text involving a variety of continuous processes. Keywords: Frame Semantics; Qualitative Reasoning Introduction & Background Daily...We evaluate our mapping on science texts , but expect our approach to be domain general. Qualitative Process Theory In QP theory, changes within a...fragments from text could reason about real-world scenarios, predicting, for example, that our tub of water may overflow. However, the incremental
Cambering effects on Rapidly-Prototyped, Highly-Flexible Membrane Wings
NASA Astrophysics Data System (ADS)
Pepley, David; Wrist, Andrew; Hubner, Paul
2014-11-01
Much of the inspiration for micro air vehicle (MAV) design comes from animals, likes bats, which use membrane wings for flying and gliding at low Reynolds numbers. Previous research has shown that membrane wings are more aerodynamically efficient than rigid wings. This is a result of both time-average cambering of the membrane and dynamic interaction with the shear layer. In most of the previous research, the membrane was attached to a flat (uncambered) frame. Traditional airfoil theory suggests that the cambering of wings improves aerodynamic efficiency and endurance. This research analyzed the effects of cambering the frames on wing efficiency and endurance. Six different cambered membrane wings with an aspect ratio of two, each with two cells with an aspect ratio of one, were 3-D printed using an Objet30 Pro and tested in a low-speed wind tunnel at 10 m/s (Re = 50,000). A NACA 4504 profile was used as a baseline with the frame thickness, percent camber, and maximum camber location being altered for comparison. The lift, drag, and pitching moment of the cambered and flat wings were recorded using a load cell. Results showed that cambering the frame of membrane wings increases aerodynamic and endurance efficiency at low Re. The effects of altering the camber, increasing the batten thickness, and changing the max camber location on aerodynamic and endurance efficiency were also examined. Special thanks to the National Science Foundation for research funding.
Deliyski, Dimitar D; Powell, Maria EG; Zacharias, Stephanie RC; Gerlach, Terri Treman; de Alarcon, Alessandro
2015-01-01
This study investigated the impact of high-speed videoendoscopy (HSV) frame rates on the assessment of nine clinically-relevant vocal-fold vibratory features. Fourteen adult patients with voice disorder and 14 adult normal controls were recorded using monochromatic rigid HSV at a rate of 16000 frames per second (fps) and spatial resolution of 639×639 pixels. The 16000-fps data were downsampled to 16 other rate denominations. Using paired comparisons design, nine common clinical vibratory features were visually compared between the downsampled and the original images. Three raters reported the thresholds at which: (1) a detectable difference between the two videos was first noticed, and (2) differences between the two videos would result in a change of clinical rating. Results indicated that glottal edge, mucosal wave magnitude and extent, aperiodicity, contact and loss of contact of the vocal folds were the vibratory features most sensitive to frame rate. Of these vibratory features, the glottal edge was selected for further analysis, due to its higher rating reliability, universal prevalence and consistent definition. Rates of 8000 fps were found to be free from visually-perceivable feature degradation, and for rates of 5333 fps, degradation was minimal. For rates of 4000 fps and higher, clinical assessments of glottal edge were not affected. Rates of 2000 fps changed the clinical ratings in over 16% of the samples, which could lead to inaccurate functional assessment. PMID:28989342
Arthrodesis after failed knee arthroplasty. A nationwide multicenter investigation of 91 cases.
Knutson, K; Hovelius, L; Lindstrand, A; Lidgren, L
1984-12-01
Ninety-one patients with attempted arthrodesis after failed knee arthroplasty were identified in a prospective nationwide study of knee arthroplasties performed from October 1975 through January 1982 in Sweden. The study included 43 hinged or stabilized, 34 bi- or tricompartment, and 14 unicompartment endoprostheses. Three-fourths of the failures were caused by infections. At follow-up evaluation, two patients had expired from infection and four patients had amputations. Fusion was achieved in only 50% of 108 attempts in 91 knees. Patients with unstable joints had limited function. The fusion rate was relatively high after unicompartment endoprostheses, in cases with sustained rigid fixation, or in cases where infection was brought under control at arthrodesis. Rigid fixation was best achieved with an external double frame or an intramedullary nail. Repeated attempts were worthwhile. Removal of all foreign material, eradication of the infectious lesion, and an arthrodesis performed in a one- or two-stage procedure with insertion of gentamicin beads seemed to be the best way to combat infection. The treatment of prosthetic failures should be referred to centers with special interest in knee arthroplasty.
Manipulator having thermally conductive rotary joint for transferring heat from a test specimen
Haney, S.J.; Stulen, R.H.; Toly, N.F.
1983-05-03
A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.
Pore water sampling in acid sulfate soils: a new peeper method.
Johnston, Scott G; Burton, Edward D; Keene, Annabelle F; Bush, Richard T; Sullivan, Leigh A; Isaacson, Lloyd
2009-01-01
This study describes the design, deployment, and application of a modified equilibration dialysis device (peeper) optimized for sampling pore waters in acid sulfate soils (ASS). The modified design overcomes the limitations of traditional-style peepers, when sampling firm ASS materials over relatively large depth intervals. The new peeper device uses removable, individual cells of 25 mL volume housed in a 1.5 m long rigid, high-density polyethylene rod. The rigid housing structure allows the device to be inserted directly into relatively firm soils without requiring a supporting frame. The use of removable cells eliminates the need for a large glove-box after peeper retrieval, thus simplifying physical handling. Removable cells are easily maintained in an inert atmosphere during sample processing and the 25-mL sample volume is sufficient for undertaking multiple analyses. A field evaluation of equilibration times indicates that 32 to 38 d of deployment was necessary. Overall, the modified method is simple and effective and well suited to acquisition and processing of redox-sensitive pore water profiles>1 m deep in acid sulfate soil or any other firm wetland soils.
Gautier, G; Kelders, L; Groby, J P; Dazel, O; De Ryck, L; Leclaire, P
2011-09-01
Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. The wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently in the case of rigid frame inhomogeneous porous materials. This paper focuses on the solution of the full wave equation in which the acoustic and the elastic properties of the poroelastic material vary in one-dimension. The reflection coefficient of a one-dimensional macroscopically inhomogeneous porous material on a rigid backing is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method at both normal and oblique incidence and to experimental measurements at normal incidence for a known two-layers porous material, considered as a single inhomogeneous layer. Finally, discussion about the absorption coefficient for various inhomogeneity profiles gives further perspectives. © 2011 Acoustical Society of America
Exterior Rigid Foam Insulation at the Edge of a Slab Foundation, Fresno, California (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Exterior rigid foam insulation at the edge of the slab foundation was a unique feature for this low-load, unoccupied test house in a hot-dry climate and may be more appropriate for climates with higher heating loads. U.S. Department of Energy Building America research team IBACOS worked with National Housing Quality Award winner Wathen-Castanos Hybrid Homes, Inc., to assess the performance of this feature in a single-family detached ranch house with three bedrooms and two full bathrooms constructed on a slab-on-grade foundation in Fresno, California. One challenge during installation of the system was the attachment of the butyl flashing to themore » open framing. To solve this constructability issue, the team added a nailer to the base of the wall to properly attach and lap the flashing. In this strategy, R-7.5, 1.5-in.-thick extruded polystyrene was installed on the exterior of the slab for a modeled savings of 4,500 Btu/h on the heating load.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Exterior rigid foam insulation at the edge of the slab foundation was a unique feature for this low-load, unoccupied test house in a hot-dry climate and may be more appropriate for climates with higher heating loads. U.S. Department of Energy Building America research team IBACOS worked with National Housing Quality Award winner Wathen-Castanos Hybrid Homes, Inc., to assess the performance of this feature in a single-family detached ranch house with three bedrooms and two full bathrooms constructed on a slab-on-grade foundation in Fresno, California. One challenge during installation of the system was the attachment of the butyl flashing to themore » open framing. To solve this constructability issue, the team added a nailer to the base of the wall to properly attach and lap the flashing. In this strategy, R-7.5, 1.5-in.-thick extruded polystyrene was installed on the exterior of the slab for a modeled savings of 4,500 Btu/h on the heating load.« less
Clamp for use in winding large magnet coils
Brown, Robert L.; Kenney, Walter J.
1983-01-01
In one aspect, the invention is a novel arrangement for applying forces to urns of a vertically extending helical coil which is wound about a support. The apparatus includes a first rigid member extending towards the turns. A second rigid member extends transversely from the end of the first and has a vertically extending face provided with a generally straight groove extending transversely of the turns. A longitudinal passage in the first member connects to the groove to form therewith a continuous guideway for rollable articles. A rigid lug longitudinally movable in the groove is provided with a projection which extends out of the groove and beneath the bottom of a selected turn of the coil. A train of rigid, rollable articles is disposed in the guideway inwardly of the lug. Means are provided for applying force to that end of the train which is relatively remote from the lug, to urge the latter against the bottom face of the selected turn. As a result, that turn is moved upward along the face of the support, establishing a selected spacing between that turn and the previously formed turn of the coil. When upward movement of the selected turn stops, the force applied to the lug immediately translates to a force which urges the above-mentioned grooved face against all of the formed turns, thus compressing them against the support. The above-mentioned first and second members are swingably mounted so that they can be temporarily moved out of the winding path, thus permitting continuous winding.
Clamp for use in winding large magnet coils
Brown, R.L.; Kenney, W.J.
1981-05-05
In one aspect, the invention is a novel arrangement for applying forces to turns of a vertically extending helical coil which is wound about a support. The apparatus includes a first rigid member extending towards the turns. A second rigid member extends transversely from the end of the first and has a vertically extending face provided with a generally straight groove extending transversely of the turns. A longitudinal passage in the first member connects to the groove to form therewith a continuous guideway for rollable articles. A rigid lug longitudinally movable in the groove is provided with a projection which extends out of the groove and beneath the bottom of a selected turn of the coil. A train of rigid, rollable articles is disposed in the guideway inwardly of the lug. Means are provided for applying force to that end of the train which is relatively remote from the lug, to urge the latter against the bottom face of the selected turn. As a result, that turn is moved upward along the face of the support, establishing a selected spacing between that turn and the previously formed turn of the coil. When upward movement of the selected turn stops, the force applied to the lug immediately translates to a force which urges the above-mentioned grooved face against all of the formed turns, thus compressing them against the support. The above-mentioned first and second members are swingably mounted so that they can be temporarily moved out of the winding path, thus permitting continuous winding.
Zhao, Sipei; Qiu, Xiaojun; Cheng, Jianchun
2015-09-01
This paper proposes a different method for calculating a sound field diffracted by a rigid barrier based on the integral equation method, where a virtual boundary is assumed above the rigid barrier to divide the whole space into two subspaces. Based on the Kirchhoff-Helmholtz equation, the sound field in each subspace is determined with the source inside and the boundary conditions on the surface, and then the diffracted sound field is obtained by using the continuation conditions on the virtual boundary. Simulations are carried out to verify the feasibility of the proposed method. Compared to the MacDonald method and other existing methods, the proposed method is a rigorous solution for whole space and is also much easier to understand.
NASA Astrophysics Data System (ADS)
Villegas-Lanza, J. C.; Chlieh, M.; Cavalié, O.; Tavera, H.; Baby, P.; Chire-Chira, J.; Nocquet, J.-M.
2016-10-01
Over 100 GPS sites measured in 2008-2013 in Peru provide new insights into the present-day crustal deformation of the 2200 km long Peruvian margin. This margin is squeezed between the eastward subduction of the oceanic Nazca Plate at the South America trench axis and the westward continental subduction of the South American Plate beneath the Eastern Cordillera and Subandean orogenic wedge. Continental active faults and GPS data reveal the rigid motion of a Peruvian Forearc Sliver that extends from the oceanic trench axis to the Western-Eastern Cordilleras boundary and moves southeastward at 4-5 mm/yr relative to a stable South America reference frame. GPS data indicate that the Subandean shortening increases southward by 2 to 4 mm/yr. In a Peruvian Sliver reference frame, the residual GPS data indicate that the interseismic coupling along the Nazca megathrust is highly heterogeneous. Coupling in northern Peru is shallow and coincides with the site of previous moderate-sized and shallow tsunami-earthquakes. Deep coupling occurs in central and southern Peru, where repeated large and great megathrust earthquakes have occurred. The strong correlation between highly coupled areas and large ruptures suggests that seismic asperities are persistent features of the megathrust. Creeping segments appear at the extremities of great ruptures and where oceanic fracture zones and ridges enter the subduction zone, suggesting that these subducting structures play a major role in the seismic segmentation of the Peruvian margin. In central Peru, we estimate a recurrence time of 305 ± 40 years to reproduce the great 1746 Mw 8.8 Lima-Callao earthquake.
Spatiotemporal alignment of in utero BOLD-MRI series.
Turk, Esra Abaci; Luo, Jie; Gagoski, Borjan; Pascau, Javier; Bibbo, Carolina; Robinson, Julian N; Grant, P Ellen; Adalsteinsson, Elfar; Golland, Polina; Malpica, Norberto
2017-08-01
To present a method for spatiotemporal alignment of in-utero magnetic resonance imaging (MRI) time series acquired during maternal hyperoxia for enabling improved quantitative tracking of blood oxygen level-dependent (BOLD) signal changes that characterize oxygen transport through the placenta to fetal organs. The proposed pipeline for spatiotemporal alignment of images acquired with a single-shot gradient echo echo-planar imaging includes 1) signal nonuniformity correction, 2) intravolume motion correction based on nonrigid registration, 3) correction of motion and nonrigid deformations across volumes, and 4) detection of the outlier volumes to be discarded from subsequent analysis. BOLD MRI time series collected from 10 pregnant women during 3T scans were analyzed using this pipeline. To assess pipeline performance, signal fluctuations between consecutive timepoints were examined. In addition, volume overlap and distance between manual region of interest (ROI) delineations in a subset of frames and the delineations obtained through propagation of the ROIs from the reference frame were used to quantify alignment accuracy. A previously demonstrated rigid registration approach was used for comparison. The proposed pipeline improved anatomical alignment of placenta and fetal organs over the state-of-the-art rigid motion correction methods. In particular, unexpected temporal signal fluctuations during the first normoxia period were significantly decreased (P < 0.01) and volume overlap and distance between region boundaries measures were significantly improved (P < 0.01). The proposed approach to align MRI time series enables more accurate quantitative studies of placental function by improving spatiotemporal alignment across placenta and fetal organs. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:403-412. © 2017 International Society for Magnetic Resonance in Medicine.
Development of stiffer and ductile glulam portal frame
NASA Astrophysics Data System (ADS)
Komatsu, Kohei
2017-11-01
Portal frame structures, which are constituted of straight glulam beams and columns connected semi-rigidly by steel insert gusset plate with a lot of drift pins, were the first successful glulam structures widely used in Japan. In addition to this connection system, the author invented also a new type of jointing devise for glulam structures named as "Lagscrewbolt" which had a full threaded portion at inner part to grip wooden member as well as another thread part at the end of shank to connect with other member. The initial type of "Lagscrewbolt" was successfully applied to a various types of glulam buildings which could be rapidly built-up on construction site. Its strength performance, however, was rather brittle therefore the improvement of the ductility was a crucial research subject. In order to give a sufficient ductility on the "Lagscrewbolted joint system", so-called "Slotted Bolted Connection" concept was adopted for making use of large energy dissipation characteristics due to high-tension bolted steel connection with slotted bolt holes. Static & dynamic performance of glulam portal frame specimens was evaluated by static cyclic loading test as well as shaking table test. Current latest form of the jointing system can show very high ductility as well as stable hysteretic cyclic loops by inserting brass-shim between steel-to-steel friction interfaces
NASA Astrophysics Data System (ADS)
Ajeesh, M. O.; Yogi, A.; Padmanabhan, M.; Nath, R.
2015-04-01
Single crystalline and polycrystalline samples of S = 1 / 2 Kagomé lattices { [Cu3(CO3)2(bpe)3 ](CLO4)2 } n and { [Cu3(CO3)2(bpy)3 ](CLO4)2 } n, respectively were synthesized. Their structural and magnetic properties were characterized by means of x-ray diffraction and magnetization measurements. Both compounds crystalize in a hexagonal structure (space group P-6) consisting of CuO4 Kagomé layers in the ab-plane but linked along c direction through either rigid bpy or flexible bpe ligands to form 3D frame works. Magnetic measurements reveal that both the compounds undergo ferromagnetic ordering (TC) at low temperatures and the TC and the extent of frustration could be tuned by changing the nature of the pillar ligands. {[Cu3(CO3)2(bpe)3](CLO4)2}n which is made up of flexible bpe ligands has a TC of 5.7 K and a Curie-Weiss temperature (θCW) of -39.7 K giving rise to a frustration parameter of |θCW | /TC ≃ 6.96. But the replacement of bpe by a more rigid and electronically delocalized bpy ligand leads to an enhanced TC ≃ 9.3 K and a reduced frustration parameter of |θCW | /TC ≃ 3.54.
Out-of-plane (SH) soil-structure interaction: a shear wall with rigid and flexible ring foundation
NASA Astrophysics Data System (ADS)
Le, Thang; Lee, Vincent W.; Luo, Hao
2016-02-01
Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerous papers have been published since the early 1970s; however, very few of these papers have analytic closed-form solutions available. The soil-structure interaction problem is one of the most classic problems connecting the two disciplines of earthquake engineering and civil engineering. The interaction effect represents the mechanism of energy transfer and dissipation among the elements of the dynamic system, namely the soil subgrade, foundation, and superstructure. This interaction effect is important across many structure, foundation, and subgrade types but is most pronounced when a rigid superstructure is founded on a relatively soft lower foundation and subgrade. This effect may only be ignored when the subgrade is much harder than a flexible superstructure: for instance a flexible moment frame superstructure founded on a thin compacted soil layer on top of very stiff bedrock below. This paper will study the interaction effect of the subgrade and the superstructure. The analytical solution of the interaction of a shear wall, flexible-rigid foundation, and an elastic half-space is derived for incident SH waves with various angles of incidence. It found that the flexible ring (soft layer) cannot be used as an isolation mechanism to decouple a superstructure from its substructure resting on a shaking half-space.
NASA Astrophysics Data System (ADS)
Menze, Moritz; Heipke, Christian; Geiger, Andreas
2018-06-01
This work investigates the estimation of dense three-dimensional motion fields, commonly referred to as scene flow. While great progress has been made in recent years, large displacements and adverse imaging conditions as observed in natural outdoor environments are still very challenging for current approaches to reconstruction and motion estimation. In this paper, we propose a unified random field model which reasons jointly about 3D scene flow as well as the location, shape and motion of vehicles in the observed scene. We formulate the problem as the task of decomposing the scene into a small number of rigidly moving objects sharing the same motion parameters. Thus, our formulation effectively introduces long-range spatial dependencies which commonly employed local rigidity priors are lacking. Our inference algorithm then estimates the association of image segments and object hypotheses together with their three-dimensional shape and motion. We demonstrate the potential of the proposed approach by introducing a novel challenging scene flow benchmark which allows for a thorough comparison of the proposed scene flow approach with respect to various baseline models. In contrast to previous benchmarks, our evaluation is the first to provide stereo and optical flow ground truth for dynamic real-world urban scenes at large scale. Our experiments reveal that rigid motion segmentation can be utilized as an effective regularizer for the scene flow problem, improving upon existing two-frame scene flow methods. At the same time, our method yields plausible object segmentations without requiring an explicitly trained recognition model for a specific object class.
High performance frame synchronization for continuous variable quantum key distribution systems.
Lin, Dakai; Huang, Peng; Huang, Duan; Wang, Chao; Peng, Jinye; Zeng, Guihua
2015-08-24
Considering a practical continuous variable quantum key distribution(CVQKD) system, synchronization is of significant importance as it is hardly possible to extract secret keys from unsynchronized strings. In this paper, we proposed a high performance frame synchronization method for CVQKD systems which is capable to operate under low signal-to-noise(SNR) ratios and is compatible with random phase shift induced by quantum channel. A practical implementation of this method with low complexity is presented and its performance is analysed. By adjusting the length of synchronization frame, this method can work well with large range of SNR values which paves the way for longer distance CVQKD.
The Contact Dynamics method: A nonsmooth story
NASA Astrophysics Data System (ADS)
Dubois, Frédéric; Acary, Vincent; Jean, Michel
2018-03-01
When velocity jumps are occurring, the dynamics is said to be nonsmooth. For instance, in collections of contacting rigid bodies, jumps are caused by shocks and dry friction. Without compliance at the interface, contact laws are not only non-differentiable in the usual sense but also multi-valued. Modeling contacting bodies is of interest in order to understand the behavior of numerous mechanical systems such as flexible multi-body systems, granular materials or masonry. These granular materials behave puzzlingly either like a solid or a fluid and a description in the frame of classical continuous mechanics would be welcome though far to be satisfactory nowadays. Jean-Jacques Moreau greatly contributed to convex analysis, functions of bounded variations, differential measure theory, sweeping process theory, definitive mathematical tools to deal with nonsmooth dynamics. He converted all these underlying theoretical ideas into an original nonsmooth implicit numerical method called Contact Dynamics (CD); a robust and efficient method to simulate large collections of bodies with frictional contacts and impacts. The CD method offers a very interesting complementary alternative to the family of smoothed explicit numerical methods, often called Distinct Elements Method (DEM). In this paper developments and improvements of the CD method are presented together with a critical comparative review of advantages and drawbacks of both approaches. xml:lang="fr"
NASA Astrophysics Data System (ADS)
Wang, Y. Q.; Kabra, S.; Zhang, S. Y.; Truman, C. E.; Smith, D. J.
2018-05-01
A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.
Wang, Y Q; Kabra, S; Zhang, S Y; Truman, C E; Smith, D J
2018-05-01
A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.
Overall properties of the Gaia DR1 reference frame
NASA Astrophysics Data System (ADS)
Liu, N.; Zhu, Z.; Liu, J.-C.; Ding, C.-Y.
2017-03-01
Aims: The first Gaia data release (Gaia DR1) provides 2191 ICRF2 sources with their positions in the auxiliary quasar solution and five astrometric parameters - positions, parallaxes, and proper motions - for stars in common between the Tycho-2 catalogue and Gaia in the joint Tycho-Gaia astrometric solution (TGAS). We aim to analyze the overall properties of Gaia DR1 reference frame. Methods: We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the Gaia DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J2015.0 period. Then we estimate the global rotation between TGAS with Tycho-2 proper motion systems to investigate the property of the Gaia DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of Gaia DR1 reference frame. Results: The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of -0.1mas in Gaia quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset 0.01mas of the Z axis direction of Gaia DR1 reference frame. The global rotation between TGAS and Tycho-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.24mas yr-1. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG = -0.38±0.15mas yr-1 and the differential part ω^primeYG = -0.29±0.19mas yr-1 around the YG axis of Galactic coordinates, which indicates possible residual rotation in Gaia DR1 reference frame or problems in the current Galactic kinematical model. Conclusions: The Gaia DR1 reference frame is well aligned to ICRF2, and the possible influence of the Galactic aberration effect should be taken into consideration for the future Gaia-ICRF link. The cause of the rather small global rotation between TGAS and Tycho-2 proper motion systems is unclear and needs further investigation. The possible residual rotation in Gaia DR1 reference frame inferred from the Galactic kinematic analysis should be noted and examined in future data release.
Endoscopic pulsed digital holography for 3D measurements
NASA Astrophysics Data System (ADS)
Saucedo, A. Tonatiuh; Mendoza Santoyo, Fernando; de La Torre-Ibarra, Manuel; Pedrini, Giancarlo; Osten, Wolfgang
2006-02-01
A rigid endoscope and three different object illumination source positions are used in pulsed digital holography to measure the three orthogonal displacement components from hidden areas of a harmonically vibrating metallic cylinder. In order to obtain simultaneous 3D information from the optical set up, it is necessary to match the optical paths of each of the reference object beam pairs, but to incoherently mismatch the three reference object beam pairs, such that three pulsed digital holograms are incoherently recorded within a single frame of the CCD sensor. The phase difference is obtained using the Fourier method and by subtracting two digital holograms captured for two different object positions.
Advanced one-dimensional optical strain measurement system, phase 4
NASA Technical Reports Server (NTRS)
Lant, Christian T.
1992-01-01
An improved version of the speckle-shift strain measurement system was developed. The system uses a two-dimensional sensor array to maintain speckle correlation in the presence of large off-axis rigid body motions. A digital signal processor (DSP) is used to calculate strains at a rate near the RS-170 camera frame rate. Strain measurements were demonstrated on small diameter wires and fibers used in composite materials research. Accurate values of Young's modulus were measured on tungsten wires, and silicon carbide and sapphire fibers. This optical technique has measured surface strains at specimen temperatures above 750 C and has shown the potential for measurements at much higher temperatures.
Collapse Causes Analysis and Numerical Simulation for a Rigid Frame Multiple Arch Bridge
NASA Astrophysics Data System (ADS)
Zuo, XinDai
2018-03-01
Following the collapse accident of Baihe Bridge, the author built a plane model of the whole bridge firstly and analyzed the carrying capacity of the structure for a 170-tons lorry load. Then the author built a spatial finite element model which can accurately simulate the bridge collapse course. The collapse course was simulated and the accident scene was reproduced. Spatial analysis showed rotational stiffness of the pier bottom had a large influence on the collapse from of the superstructures. The conclusion was that the170 tons lorry load and multiple arch bridge design were the important factors leading to collapse.
Wenski, Edward G [Lenexa, KS
2007-08-21
A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.
Wenski, Edward G.
2006-01-10
A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.
Wenski, Edward G [Lenexa, KS
2007-07-17
A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.
1. U.S. Route 250 grade separation structure. This reinforced concrete, ...
1. U.S. Route 250 grade separation structure. This reinforced concrete, rigid frame structure was built in 1941. Its relatively flat arch provided maximum useful clearance in a short span and the physics of the design eliminated the need for extensive abutments to contain the thrust of traditional arches, making it ideally suited as a grade separation structure. BLRI designers made extensive use of theses bridges for crossing small streams and creeks, and grade separation structures, ornamenting them with a rustic stone facade. View is of the south-southeast elevation. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC
InSAR datum connection using GNSS-augmented radar transponders
NASA Astrophysics Data System (ADS)
Mahapatra, Pooja; der Marel, Hans van; van Leijen, Freek; Samiei-Esfahany, Sami; Klees, Roland; Hanssen, Ramon
2018-01-01
Deformation estimates from Interferometric Synthetic Aperture Radar (InSAR) are relative: they form a `free' network referred to an arbitrary datum, e.g. by assuming a reference point in the image to be stable. However, some applications require `absolute' InSAR estimates, i.e. expressed in a well-defined terrestrial reference frame, e.g. to compare InSAR results with those of other techniques. We propose a methodology based on collocated InSAR and Global Navigation Satellite System (GNSS) measurements, achieved by rigidly attaching phase-stable millimetre-precision compact active radar transponders to GNSS antennas. We demonstrate this concept through a simulated example and practical case studies in the Netherlands.
An efficient method for computation of the manipulator inertia matrix
NASA Technical Reports Server (NTRS)
Fijany, Amir; Bejczy, Antal K.
1989-01-01
An efficient method of computation of the manipulator inertia matrix is presented. Using spatial notations, the method leads to the definition of the composite rigid-body spatial inertia, which is a spatial representation of the notion of augmented body. The previously proposed methods, the physical interpretations leading to their derivation, and their redundancies are analyzed. The proposed method achieves a greater efficiency by eliminating the redundancy in the intrinsic equations as well as by a better choice of coordinate frame for their projection. In this case, removing the redundancy leads to greater efficiency of the computation in both serial and parallel senses.
The treatment of loss of penile rigidity associated with Peyronie's disease.
Krane, R J
1996-01-01
Patients with Peyronie's Disease on occasion present with loss of rigid erections. A full evaluation is required to determine the presence or absence of arterial insufficiency or corporal veno-occlusive dysfunction. Treatment for these patients include intracavernosal pharmacotherapy, a vacuum/constrictor device, venous ligation surgery or a penile prosthesis. Whatever the therapeutic approach, the angulation produced by the Peyronie's plaque must be taken into account. Patients with Peyronie's Disease will present to their physicians with a variety of clinical scenarios. They may merely be concerned with the presence of an asymptomatic penile plaque and will simply require reassurance. More typically, however, penile curvature, pain, and/or difficulty with sexual relations will prompt the desire for medical advice. Treatment of penile pain which usually abates with time and attempts at non surgically treating the Peyronies plaque will not be discussed in this paper. Patients with penile plaque and curvature present in three distinct ways: a. penile rigidity preserved and the ability to continue sexual relations; b, penile rigidity preserved and the inability to continue with sexual relations because of significant angulation; c. the inability to have rigid erections. The patient who is able to continue sexual relations with preserved penile rigidity and the lack of significant penile angulation requires no treatment. However, the patient who has lost his ability to have sexual relations because of significant angulation is a candidate for penile straightening surgery (e.g. graft) (1, 11). It is the last group of patients. Namely those who are not able to maintain penile rigidity because of their Peyronie's Disease that will be addressed in this paper. Patients who present with impotence (i.e. loss of penile rigidity) and Peyronie's disease should be evaluated in a similar manner as patients who present with erectile dysfunction and do not have Peyronie's Disease. The standard approach would therefore include a detailed medical and sexual history, a measurement of penile arterial pressure or flow to determine adequate arterial inflow (5,8), a measurement of penile sensation (10) to determine if an underlying neurological problem is present and lastly an evaluation of the veno-occlusive mechanism (12,17). In addition, the presence of penile curvature and plaque may cause significant and disturbing psychological manifestations and it is advisable that these patients undergo a psychological interview to determine the presence or absence of psychiatric influences. Obviously, many older patients with Peyronie's Disease may suffer concomitant arterial insufficiency leading to loss of rigidity and impotence. An evaluation of arterial input into the penis by penile Doppler studies, duplex ultrasound, or cavernosal occlusion pressures is required to determine the presence of arterial insufficiency. Patients who are found to have significant decreases in arterial flow and/or pressure would therefore become candidates for either self-injection with vasoactive agents or a vacuum constrictor device. It is our feeling in general that these nonsurgical therapies should be tried prior to considering the implantation of a penile prosthesis in any patient who presents with erectile dysfunction. It should be noted, however, that many patients with Peyronie's Disease who present with loss of penile rigidity will have an underlying veno-occlusive dysfunction secondary to the plaque itself. Normally, venules draining the corpora are passively compressed between the expanding corporal tissue and the tunica albugince (6). When a Peyronie's plaque is present compliance of the underlying corporal smooth musculature may be decreased thus preventing venous compression. In a recent evaluation of 92 patients who presented in this manner 87% were noted to have veno-occlusive dysfunction as determined by dynamic cavernosometry and cavernosography (3)...
Electrical conductivity of rigid polyurethane foam at high temperature
NASA Astrophysics Data System (ADS)
Johnson, R. T., Jr.
1982-08-01
The electrical conductivity of rigid polyurethane foam, used for electronic encapsulation, was measured during thermal decomposition to 3400 C. At higher temperatures the conductance continues to increase. With pressure loaded electrical leads, sample softening results in eventual contact between electrodes which produces electrical shorting. Air and nitrogen environments show no significant dependence of the conductivity on the atmosphere over the temperature range. The insulating characteristics of polyurethane foam below approx. 2700 C are similar to those for silicone based materials used for electronic case housings and are better than those for phenolics. At higher temperatures (greater than or equal to 2700 C) the phenolics appear to be better insulators to approx. 5000 C and the silicones to approx. 6000 C. It is concluded that the Sylgard 184/GMB encapsulant is a significantly better insulator at high temperature than the rigid polyurethane foam.
Heo, Min Sook; Rakowski, Cathy A
2014-05-01
Korean feminists are keenly aware that transnational feminists emphasize a human rights framework to eradicate violence against women. But in the 1990s, they based their anti-domestic violence campaign on a frame of "preservation of the family" because it was more culturally resonant at the time than a human rights frame. The results include passage of two legislative Acts, failure to implement as intended, and a continued search for a more effective frame. Ironically, the human rights frame has re-emerged as a possible solution. © The Author(s) 2014.
Pushing x-ray photon correlation spectroscopy beyond the continuous frame rate limit
Dufresne, Eric M.; Narayanan, Suresh; Sandy, Alec R.; ...
2016-01-06
We demonstrate delayed-frame X-ray Photon Correlation Spectroscopy with 120 microsecond time resolution, limited only by sample scattering rates, with a prototype Pixel-array detector capable of taking two image frames separated by 153 ns or less. Although the overall frame rate is currently limited to about 4 frame pairs per second, we easily measured millisecond correlation functions. In conclusion, this technology, coupled to the use of brighter synchrotrons such as Petra III or the NSLS-II should enable X-ray Photon Correlation Spectroscopy on microsecond time scales on a wider variety of materials.
NASA Technical Reports Server (NTRS)
Gasch, Matthew J.
2011-01-01
NASA Exploration Systems Mission Directorate s (ESMD) Entry, Descent, and Landing (EDL) Technology Development Project (TDP) and the NASA Aeronautics Research Mission Directorate s (ARMD) Hypersonics Project are developing new advanced rigid ablators in an effort to substantially increase reliability, decrease mass, and reduce life cycle cost of rigid aeroshell-based entry systems for multiple missions. Advanced Rigid Ablators combine ablation resistant top layers capable of high heat flux entry and enable high-speed EDL with insulating mass-efficient bottom that, insulate the structure and lower the areal weight. These materials may benefit Commercial Orbital Transportation Services (COTS) vendors and may potentially enable new NASA missions for higher velocity returns (e.g. asteroid, Mars). The materials have been thermally tested to 400-450 W/sq cm at the Laser Hardened Materials Evaluation Lab (LHMEL), Hypersonics Materials Evaluation Test System (HyMETS) and in arcjet facilities. Tested materials exhibit much lower backface temperatures and reduced recession over the baseline materials (PICA). Although the EDL project is ending in FY11, NASA in-house development of advanced ablators will continue with a focus on varying resin systems and fiber/resin interactions.
Lunkenheimer, Erika; Lichtwarck-Aschoff, Anna; Hollenstein, Tom; Kemp, Christine J.; Granic, Isabela
2016-01-01
Objective Parent-child coercive cycles have been associated with both rigidity and inconsistency in parenting behavior. To explain these mixed findings, we examined real-time variability in maternal responses to children's off-task behavior to determine whether this common trigger of the coercive cycle (responding to child misbehavior) is associated with rigidity or inconsistency in parenting. We also examined the effects of risk factors for coercion (maternal hostility, maternal depressive symptoms, child externalizing problems, and dyadic negativity) on patterns of parenting. Design Mother-child dyads (N = 96; M child age = 41 months) completed a difficult puzzle task, and observations were coded continuously for parent (e.g., directive, teaching) and child behavior (e.g., on-task, off-task). Results Multilevel continuous-time survival analyses revealed that parenting behavior is less variable when children are off-task. However, when risk factors are higher, a different profile emerges. Combined maternal and child risk is associated with markedly lower variability in parenting behavior overall (i.e., rigidity) paired with shifts towards higher variability specifically when children are off-task (i.e., inconsistency). Dyadic negativity (i.e., episodes when children are off-task and parents engage in negative behavior) are also associated with higher parenting variability. Conclusions Risk factors confer rigidity in parenting overall, but in moments when higher-risk parents must respond to child misbehavior, their parenting becomes more variable, suggesting inconsistency and ineffectiveness. This context-dependent shift in parenting behavior may help explain prior mixed findings and offer new directions for family interventions designed to reduce coercive processes. PMID:28190978
Understanding geological processes: Visualization of rigid and non-rigid transformations
NASA Astrophysics Data System (ADS)
Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.
2012-12-01
Visualizations are used in the geological sciences to support reasoning about structures and events. Research in cognitive sciences offers insights into the range of skills of different users, and ultimately how visualizations might support different users. To understand the range of skills needed to reason about earth processes we have developed a program of research that is grounded in the geosciences' careful description of the spatial and spatiotemporal patterns associated with earth processes. In particular, we are pursuing a research program that identifies specific spatial skills and investigates whether and how they are related to each other. For this study, we focus on a specific question: Is there an important distinction in the geosciences between rigid and non-rigid deformation? To study a general spatial thinking skill we employed displays with non-geological objects that had been altered by rigid change (rotation), and two types of non-rigid change ("brittle" (or discontinuous) and "ductile" (or continuous) deformation). Disciplinary scientists (geosciences and chemistry faculty), and novices (non-science faculty and undergraduate psychology students) answered questions that required them to visualize the appearance of the object before the change. In one study, geologists and chemists were found to be superior to non-science faculty in reasoning about rigid rotations (e.g., what an object would look like from a different perspective). Geologists were superior to chemists in reasoning about brittle deformations (e.g., what an object looked like before it was broken - here the object was a word cut into many fragments displaced in different directions). This finding is consistent with two hypotheses: 1) Experts are good at visualizing the types of changes required for their domain; and 2) Visualization of rigid and non-rigid changes are not the same skill. An additional important finding is that there was a broad range of skill in both rigid and non-rigid reasoning within the panels of science experts. In a second study, individual differences in reasoning about brittle deformations were correlated with reasoning about ductile deformations (e.g., what a bent plastic sheet would look like when unbent). Students who were good at visualizing what something looked like before it was broken were also good at visualizing what something looked like before it was bent, and this skill was not correlated to reasoning about rigid rotations. These findings suggest the cognitive processes that support reasoning about rigid and non-rigid events may differ and thus may require different types of support and training. We do not know if differences between experts and novices result from experience or self-selection, or both. Nevertheless, the range of spatial skill evinced by novices and experts strongly argues for designing visualizations to support a variety of users.
A New Global Geodetic Strain Rate Model
NASA Astrophysics Data System (ADS)
Kreemer, C.; Blewitt, G.; Klein, E. C.; Shen, Z.; Wang, M.; Estey, L.; Wier, S.
2013-12-01
As part of the Global Earthquake Model (GEM) effort to improve global seismic hazard models, we present a new global geodetic strain rate model. This model (GSRM v. 2) is a vast improvement on the previous model from 2004 (v. 1.2). The model is still based on a finite-element type approach and has deforming cells in between the assumed rigid plates. The new model contains ~144,700 cells of 0.25° by 0.2° dimension. We redefined the geometries of the deforming zones based on the definitions of Bird (2003) and Chamot-Rooke and Rabaute (2006). We made some adjustments to the grid geometry at places where seismicity and/or GPS velocities suggested either the presence of deforming areas or a rigid block where those previous studies did not. GSRM v.2 includes 50 plates and blocks, including many not considered by Bird (2003). The new GSRM model is based on over 20,700 horizontal geodetic velocities at over 17,000 unique locations. The GPS velocity field consists of a 1) Over 6500 velocities derived by the University of Nevada, Reno, for CGPS stations for which >2.5 years of RINEX data are available until April 2013, 2) ~1200 velocities for China from a new analysis of all data from the Crustal Movement Network of China (CMONOC), and 3) about 13,000 velocities from 212 studies published in the literature or made otherwise available to us. Velocities from all studies were combined into the same reference frame by a 6-parameter transformation using velocities at collocated stations. We model co-seismic jumps while estimating velocities, ignore periods of post-seismic deformation, and exclude time-series that reflect magmatic and anthropogenic activity. GPS velocities were used to estimate angular velocities for 36 of the 50 rigid plates and blocks (the rest being taken from the literature), and these were used as boundary conditions in the strain rate calculations. For the strain rate calculations we used the method of Haines and Holt. In order to fit the data equally well in slowly and rapidly deforming areas, we first calculated a very smooth model by setting the a priori variances of the strain rate components very low. We then used this model as a proxy for the a priori standard deviations of the final model, at least for the areas that are well constrained by the GPS data. We will show examples of the strain rate and velocity field results. We will also highlight how and where the results can be viewed and accessed through a dedicated webportal (gsrm2.unavco.org). New GPS velocities (in any reference frame) can be uploaded to a new tool and displayed together with velocities used in GSRM v.2 in 53 reference frames (http://facility.unavco.org/data/maps/GPSVelocityViewer/GSRMViewer.html) .
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-28
... or incomplete, suitable for any use, and certain parts thereof, namely the vertical frame, the... assembled hand truck is a hand-propelled barrow consisting of a vertically disposed frame having a handle or more than one handle at or near the upper section of the vertical frame; at least two wheels at or near...
NASA Technical Reports Server (NTRS)
Bryant, N. A.; Mcleod, R. G.; Zobrist, A. L.; Johnson, H. B.
1979-01-01
Procedures for adjustment of brightness values between frames and the digital mosaicking of Landsat frames to standard map projections are developed for providing a continuous data base for multispectral thematic classification. A combination of local terrain variations in the Californian deserts and a global sampling strategy based on transects provided the framework for accurate classification throughout the entire geographic region.
Jeffery, Anne
2009-12-01
In the current economic climate, even the best known charities are facing reduced income and need to raise their profiles to ensure continued support. FRAME has always been well known among scientific organisations, but is less familiar to the public. The traditional sources of funding are drying up, and FRAME needs to promote itself to new audiences, if it is to succeed for another 40 years. 2009 FRAME.
Accurate free and forced rotational motions of rigid Venus
NASA Astrophysics Data System (ADS)
Cottereau, L.; Souchay, J.; Aljbaae, S.
2010-06-01
Context. The precise and accurate modelling of a terrestrial planet like Venus is an exciting and challenging topic, all the more interesting because it can be compared with that of Earth for which such a modelling has already been achieved at the milli-arcsecond level. Aims: We aim to complete a previous study, by determining the polhody at the milli-arcsecond level, i.e. the torque-free motion of the angular momentum axis of a rigid Venus in a body-fixed frame, as well as the nutation of its third axis of figure in space, which is fundamental from an observational point of view. Methods: We use the same theoretical framework as Kinoshita (1977, Celest. Mech., 15, 277) did to determine the precession-nutation motion of a rigid Earth. It is based on a representation of the rotation of a rigid Venus, with the help of Andoyer variables and a set of canonical equations in Hamiltonian formalism. Results: In a first part we computed the polhody, we showed that this motion is highly elliptical, with a very long period of 525 cy compared with 430 d for the Earth. This is due to the very small dynamical flattening of Venus in comparison with our planet. In a second part we precisely computed the Oppolzer terms, which allow us to represent the motion in space of the third Venus figure axis with respect to the Venus angular momentum axis under the influence of the solar gravitational torque. We determined the corresponding tables of the nutation coefficients of the third figure axis both in longitude and in obliquity due to the Sun, which are of the same order of amplitude as for the Earth. We showed that the nutation coefficients for the third figure axis are significantly different from those of the angular momentum axis on the contrary of the Earth. Our analytical results have been validated by a numerical integration, which revealed the indirect planetary effects.
EFT for vortices with dilaton-dependent localized flux
NASA Astrophysics Data System (ADS)
Burgess, C. P.; Diener, Ross; Williams, M.
2015-11-01
We study how codimension-two objects like vortices back-react gravitationally with their environment in theories (such as 4D or higher-dimensional supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system. We do so both in the full theory, for which the vortex is an explicit classical `fat brane' solution, and in the effective theory of `point branes' appropriate when the vortices are much smaller than the scales of interest for their back-reaction (such as the transverse Kaluza-Klein scale). We extend the standard Nambu-Goto description to include the physics of flux-localization wherein the ambient flux of the external Maxwell field becomes partially localized to the vortex, generalizing the results of a companion paper [4] from N=2 supergravity as the end-point of a hierarchical limit in which the Planck mass first and then the supersymmetry breaking scale are sent to infinity. We define, in the parent supergravity model, a new symplectic frame in which, in the rigid limit, manifest symplectic invariance is preserved and the electric and magnetic Fayet-Iliopoulos terms are fully originated from the dyonic components of the embedding tensor. The supergravity origin of several features of the resulting rigid supersymmetric theory are then elucidated, such as the presence of a traceless SU(2)- Lie algebra term in the Ward identity and the existence of a central charge in the supersymmetry algebra which manifests itself as a harmless gauge transformation on the gauge vectors of the rigid theory; we show that this effect can be interpreted as a kind of "superspace non-locality" which does not affect the rigid theory on space-time. To set the stage of our analysis we take the opportunity in this paper to provide and prove the relevant identities of the most general dyonic gauging of Special-Kaehler and Quaternionic-Kaehler isometries in a generic N=2 model, which include the supersymmetry Ward identity, in a fully symplectic-covariant formalism.
Attitude stabilization of a rigid spacecraft using two momentum wheel actuators
NASA Technical Reports Server (NTRS)
Krishnan, Hariharan; Mcclamroch, N. Harris; Reyhanoglu, Mahmut
1993-01-01
It is well known that three momentum wheel actuators can be used to control the attitude of a rigid spacecraft and that arbitrary reorientation maneuvers of the spacecraft can be accomplished using smooth feedback. If failure of one of the momentum wheel actuators occurs, it is demonstrated that two momentum wheel actuators can be used to control the attitude of a rigid spacecraft and that arbitrary reorientation maneuvers of the spacecraft can be accomplished. Although the complete spacecraft equations are not controllable, the spacecraft equations are small time locally controllable in a reduced nonlinear sense. The reduced spacecraft dynamics cannot be asymptotically stabilized to any equilibrium attitude using a time-variant continuous feedback control law, but discontinuous feedback control strategies are constructed which stabilize any equilibrium attitude of the spacecraft in finite time. Consequently, reorientation of the spacecraft can be accomplished using discontinuous feedback control.
Modulation of cosmic-ray protons and helium nuclei near solar maximum
NASA Technical Reports Server (NTRS)
Rygg, T. A.; Ogallagher, J. J.; Earl, J. A.
1974-01-01
Balloon observations of proton and helium spectra in 1970, 1971 and 1972, reveal a factor of approximately 1.85 deviation from a single valued regression at low rigidities. This deviation decreases with increasing rigidity for both species. The period 1969-1970 is unique because time variations at low and high energies were anti-correlated. When satellite observations are used to extend the balloon observations to energies below 100 MeV/Nucleon, the proton spectrum showed a steeper slope in 1970 and 1972 than the characteristic J = AT spectrum observed during 1965-1969. The slope of the helium spectrum became continuously flatter during the same period (1970-1972). Computer generated spectra based on simple two parameter modulation models describe the basic features of the observations if one of the variable parameters is used to characterize the rigidity dependence of the diffusion coefficient. Models which do not allow such a variation are not consistent with the observations.
Simpson, G; Fisher, C; Wright, D K
2001-01-01
Continuing earlier studies into the relationship between the residual limb, liner and socket in transtibial amputees, we describe a geometrically accurate non-linear model simulating the donning of a liner and then a socket. The socket is rigid and rectified and the liner is a polyurethane geltype which is accurately described using non-linear (Mooney-Rivlin) material properties. The soft tissue of the residual limb is modelled as homogeneous, non-linear and hyperelastic and the bone structure within the residual limb is taken as rigid. The work gives an indication of how the stress induced by the process of donning the rigid socket is redistributed by the liner. Ultimately we hope to understand how the liner design might be modified to reduce discomfort. The ANSYS finite element code, version 5.6 is used.
Roberts, W E; Marshall, K J; Mozsary, P G
1990-01-01
A two-stage endosseous implant, placed in the retromolar area of the mandible was utilized as rigid anchorage to translate two molars 10-12 millimeters mesially into an atrophic endentulous ridge. Despite substantial anchorage demand over a three year period, the endosseous implant remained rigid ("osseointegrated"). At the end of treatment the implant and adjacent, intravitally labeled bone were recovered. Microradiographic and polarized light analyses revealed that about 80 percent of the endosseous portion of the implant was in direct contact with mature lamellar bone. Bone labels demonstrated a remarkably high remodeling rate (about 30 percent/year) for cortical bone within 0.5 millimeter of the interface. Continuous remodeling may be the long-term mechanism whereby loaded implants resist bone fatigue and maintain "osseointegration." Clinical use of orthodontic implants, placed outside the dental arches, requires careful attention to soft tissue management.
Soft-rigid interaction mechanism towards a lobster-inspired hybrid actuator
NASA Astrophysics Data System (ADS)
Chen, Yaohui; Wan, Fang; Wu, Tong; Song, Chaoyang
2018-01-01
Soft pneumatic actuators (SPAs) are intrinsically light-weight, compliant and therefore ideal to directly interact with humans and be implemented into wearable robotic devices. However, they also pose new challenges in describing and sensing their continuous deformation. In this paper, we propose a hybrid actuator design with bio-inspirations from the lobsters, which can generate reconfigurable bending movements through the internal soft chamber interacting with the external rigid shells. This design with joint and link structures enables us to exactly track its bending configurations that previously posed a significant challenge to soft robots. Analytic models are developed to illustrate the soft-rigid interaction mechanism with experimental validation. A robotic glove using hybrid actuators to assist grasping is assembled to illustrate their potentials in safe human-robot interactions. Considering all the design merits, our work presents a practical approach to the design of next-generation robots capable of achieving both good accuracy and compliance.
Project Level Performance Database for Rigid Pavements in Texas, II
DOT National Transportation Integrated Search
2011-08-01
Over the years, the Texas Department of Transportation (TxDOT) has built a number of CRCP (continuously reinforced : concrete pavement) experimental sections to investigate the effects of design, materials, and construction variables on CRCP : struct...
To end life or not to prolong life: the effect of message framing on attitudes toward euthanasia.
Gamliel, Eyal
2013-05-01
People ascribe "euthanasia" different values and view it differently. This study hypothesized that a different framing of objectively the same euthanasia situations would affect people's attitudes toward it. Indeed, "positive" framing of euthanasia as not prolonging life resulted in more support for both passive and active euthanasia relative to "negative" framing of the objectively same situations as ending life. Two experiments replicated this pattern using either continuous measures of attitude or dichotomous measures of choice. The article offers two theoretical explanations for the effect of message framing on attitudes toward euthanasia, discusses implications of this effect, and suggests future research.
NASA Astrophysics Data System (ADS)
Boyer, Frederic; Porez, Mathieu; Renda, Federico
This talk presents recent geometric tools developed to model the locomotion dynamics of bio-inspired robots. Starting from the model of discrete rigid multibody systems we will rapidly shift to the case of continuous systems inspired from snakes and fish. To that end, we will build on the model of Cosserat media. This extended picture of geometric locomotion dynamics (inspired from fields' theory) will allow us to introduce models of swimming recently used in biorobotics. We will show how modeling a fish as a one-dimensional Cosserat medium allows to recover and extend the Large Amplitude Elongated Body theory of J. Lighthill and to apply it to an eel-like robot. In the same vein, modeling the mantle of cephalopods as a two dimensional Cosserat medium will build a basis for studying the jet propelling of a soft octopus like robot.
Guenther, Lars; Froehlich, Klara; Milde, Jutta; Heidecke, Gitte; Ruhrmann, Georg
2015-01-01
Journalists portray health issues within different frames, which may shape news recipients' evaluations, attitudes, and behaviors. As the research on framing continues to face theoretical challenges and methodological concerns, this study examines the transformation and establishing of evaluative schemas, which are steps in the process toward attitudinal change. The study measures recipients' evaluations of actual television clips dealing with cancer diagnoses and cancer therapies. Two valenced (positive vs. negative) media frames were tested in a 3-week online panel (n = 298) using a pretest-posttest design with a German sample. The results offer limited support for the hypothesis that media frames transform participants' schemas, but do not support the hypothesis that new schemas are established in response to media frames. The study also investigates interactions between framing and participants' issue involvement, as well as between framing and topic-specific interest and media use.
High-performance electronic image stabilisation for shift and rotation correction
NASA Astrophysics Data System (ADS)
Parker, Steve C. J.; Hickman, D. L.; Wu, F.
2014-06-01
A novel low size, weight and power (SWaP) video stabiliser called HALO™ is presented that uses a SoC to combine the high processing bandwidth of an FPGA, with the signal processing flexibility of a CPU. An image based architecture is presented that can adapt the tiling of frames to cope with changing scene dynamics. A real-time implementation is then discussed that can generate several hundred optical flow vectors per video frame, to accurately calculate the unwanted rigid body translation and rotation of camera shake. The performance of the HALO™ stabiliser is comprehensively benchmarked against the respected Deshaker 3.0 off-line stabiliser plugin to VirtualDub. Eight different videos are used for benchmarking, simulating: battlefield, surveillance, security and low-level flight applications in both visible and IR wavebands. The results show that HALO™ rivals the performance of Deshaker within its operating envelope. Furthermore, HALO™ may be easily reconfigured to adapt to changing operating conditions or requirements; and can be used to host other video processing functionality like image distortion correction, fusion and contrast enhancement.
Munce, Nigel R; Mariampillai, Adrian; Standish, Beau A; Pop, Mihaela; Anderson, Kevan J; Liu, George Y; Luk, Tim; Courtney, Brian K; Wright, Graham A; Vitkin, I Alex; Yang, Victor X D
2008-04-01
A novel flexible scanning optical probe is constructed with a finely etched optical fiber strung through a platinum coil in the lumen of a dissipative polymer. The packaged probe is 2.2 mm in diameter with a rigid length of 6mm when using a ball lens or 12 mm when scanning the fiber proximal to a gradient-index (GRIN) lens. Driven by constant high voltage (1-3 kV) at low current (< 5 microA), the probe oscillates to provide wide forward-viewing angle (13 degrees and 33 degrees with ball and GRIN lens designs, respectively) and high-frame-rate (10-140 fps) operation. Motion of the probe tip is observed with a high-speed camera and compared with theory. Optical coherence tomography (OCT) imaging with the probe is demonstrated with a wavelength-swept source laser. Images of an IR card as well as in vivo Doppler OCT images of a tadpole heart are presented. This optomechanical design offers a simple, inexpensive method to obtain a high-frame-rate forward-viewing scanning probe.
Building and using a statistical 3D motion atlas for analyzing myocardial contraction in MRI
NASA Astrophysics Data System (ADS)
Rougon, Nicolas F.; Petitjean, Caroline; Preteux, Francoise J.
2004-05-01
We address the issue of modeling and quantifying myocardial contraction from 4D MR sequences, and present an unsupervised approach for building and using a statistical 3D motion atlas for the normal heart. This approach relies on a state-of-the-art variational non rigid registration (NRR) technique using generalized information measures, which allows for robust intra-subject motion estimation and inter-subject anatomical alignment. The atlas is built from a collection of jointly acquired tagged and cine MR exams in short- and long-axis views. Subject-specific non parametric motion estimates are first obtained by incremental NRR of tagged images onto the end-diastolic (ED) frame. Individual motion data are then transformed into the coordinate system of a reference subject using subject-to-reference mappings derived by NRR of cine ED images. Finally, principal component analysis of aligned motion data is performed for each cardiac phase, yielding a mean model and a set of eigenfields encoding kinematic ariability. The latter define an organ-dedicated hierarchical motion basis which enables parametric motion measurement from arbitrary tagged MR exams. To this end, the atlas is transformed into subject coordinates by reference-to-subject NRR of ED cine frames. Atlas-based motion estimation is then achieved by parametric NRR of tagged images onto the ED frame, yielding a compact description of myocardial contraction during diastole.
Support surface related changes in feedforward and feedback control of standing posture
Mohapatra, Sambit; Kukkar, Komal K.; Aruin, Alexander S.
2013-01-01
The aim of the study was to investigate the effect of different support surfaces on feedforward and feedback components of postural control. Nine healthy subjects were exposed to external perturbations applied to their shoulders while standing on a rigid platform, foam, and wobble board with eyes open or closed. Electrical activity of nine trunk and leg muscles and displacements of the center of pressure were recorded and analyzed during the time frames typical of feedforward and feedback postural adjustments. Feedforward control of posture was characterized by earlier activation of anterior muscles when the subjects stood on foam compared to a wobble board or a firm surface. In addition, the magnitude of feedforward muscle activity was the largest when the foam was used. During the feedback control, anterior muscles were activated prior to posterior muscles irrespective of the nature of surface. Moreover, the largest muscle activity was seen when the supporting surface was foam. Maximum CoP displacement occurred when subjects were standing on a rigid surface. Altering support surface affects both feedforward and feedback components of postural control. This information should be taken into consideration in planning rehabilitation interventions geared towards improvement of balance. PMID:24268589
Real-Time Interactive Tree Animation.
Quigley, Ed; Yu, Yue; Huang, Jingwei; Lin, Winnie; Fedkiw, Ronald
2018-05-01
We present a novel method for posing and animating botanical tree models interactively in real time. Unlike other state of the art methods which tend to produce trees that are overly flexible, bending and deforming as if they were underwater plants, our approach allows for arbitrarily high stiffness while still maintaining real-time frame rates without spurious artifacts, even on quite large trees with over ten thousand branches. This is accomplished by using an articulated rigid body model with as-stiff-as-desired rotational springs in conjunction with our newly proposed simulation technique, which is motivated both by position based dynamics and the typical algorithms for articulated rigid bodies. The efficiency of our algorithm allows us to pose and animate trees with millions of branches or alternatively simulate a small forest comprised of many highly detailed trees. Even using only a single CPU core, we can simulate ten thousand branches in real time while still maintaining quite crisp user interactivity. This has allowed us to incorporate our framework into a commodity game engine to run interactively even on a low-budget tablet. We show that our method is amenable to the incorporation of a large variety of desirable effects such as wind, leaves, fictitious forces, collisions, fracture, etc.
Support surface related changes in feedforward and feedback control of standing posture.
Mohapatra, Sambit; Kukkar, Komal K; Aruin, Alexander S
2014-02-01
The aim of the study was to investigate the effect of different support surfaces on feedforward and feedback components of postural control. Nine healthy subjects were exposed to external perturbations applied to their shoulders while standing on a rigid platform, foam, and wobble board with eyes open or closed. Electrical activity of nine trunk and leg muscles and displacements of the center of pressure were recorded and analyzed during the time frames typical of feedforward and feedback postural adjustments. Feedforward control of posture was characterized by earlier activation of anterior muscles when the subjects stood on foam compared to a wobble board or a firm surface. In addition, the magnitude of feedforward muscle activity was the largest when the foam was used. During the feedback control, anterior muscles were activated prior to posterior muscles irrespective of the nature of surface. Moreover, the largest muscle activity was seen when the supporting surface was foam. Maximum CoP displacement occurred when subjects were standing on a rigid surface. Altering support surface affects both feedforward and feedback components of postural control. This information should be taken into consideration in planning rehabilitation interventions geared towards improvement of balance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hosbach-Cannon, Carly J; Lowell, Soren Y; Kelley, Richard T; Colton, Raymond H
2016-07-01
The purpose of this study was to establish preliminary, quantitative data on amplitude of vibration during stroboscopic assessment in healthy speakers with normal voice characteristics. Amplitude of vocal fold vibration is a core physiological parameter used in diagnosing voice disorders, yet quantitative data are lacking to guide the determination of what constitutes normal vibratory amplitude. Eleven participants were assessed during sustained vowel production using rigid and flexible endoscopy with stroboscopy. Still images were extracted from digital recordings of a sustained /i/ produced at a comfortable pitch and loudness, with F0 controlled so that levels were within ±15% of each participant's comfortable mean level as determined from connected speech. Glottal width (GW), true vocal fold (TVF) length, and TVF width were measured from still frames representing the maximum open phase of the vibratory cycle. To control for anatomic and magnification differences across participants, GW was normalized to TVF length. GW as a ratio of TVF width was also computed for comparison with prior studies. Mean values and standard deviations were computed for the normalized measures. Paired t tests showed no significant differences between rigid and flexible endoscopy methods. Interrater and intrarater reliability values for raw measurements were found to be high (0.89-0.99). These preliminary quantitative data may be helpful in determining normality or abnormality of vocal fold vibration. Results indicate that quantified amplitude of vibration is similar between endoscopic methods, a clinically relevant finding for individuals performing and interpreting stroboscopic assessments. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Benchtop evaluation of pressure barrier insufflator and standard insufflator systems.
Nepple, Kenneth G; Kallogjeri, Dorina; Bhayani, Sam B
2013-01-01
Previous experimental research has reported minimal differences in pressure maintenance between different versions of standard insufflators (SI). However, a recent report identified potential clinical benefits with a valveless pressure barrier insufflator (PBI). We sought to perform a benchtop objective evaluation of SI and PBI systems. A rigid box system with continuous pressure manometry was used to evaluate a PBI (Surgiquest Airseal) and two SIs (SI1 = Stryker PneumoSure High Flow Insufflator and SI2 = Storz SCB Thermoflator). Pressure maintenance of 15 mmHg was evaluated during experimental conditions of leakage from a 5 mm port site, leakage from a 12 mm port site, and continuous suction. With leakage from the 5 mm port site, the PBI maintained pressure of >13 mmHg whereas the pressures dropped moderately with the SI1 (7-13 mmHg) and SI2 insufflators (3-7 mmHg) and did not regain goal pressure until leakage was stopped. With leakage from 12 mm port site, the PBI pressure decreased to 9-11 mmHg, whereas the SI1 and SI2 lost insufflation pressures completely. The PBI maintained pressure of >11 mmHg during continuous suction while the SI1 and SI2 lost pressure entirely, and actually showed negative pressure from air suction into the rigid box system. When evaluated statistically with the mixed model repeated measures ANOVA, the SI1 and SI2 performed similarly while the PBI maintained increased pressure. In the experimental rigid box system, the PBI more successfully maintained pressure in response to leakage and suction than SIs.
Multiscale multiphysics and multidomain models—Flexibility and rigidity
Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei
2013-01-01
The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of \\documentclass[12pt]{minimal}\\begin{document}${\\cal O}(N^2)$\\end{document}O(N2) at most, where N is the number of atoms or residues, in contrast to \\documentclass[12pt]{minimal}\\begin{document}${\\cal O}(N^3)$\\end{document}O(N3) for Hamiltonian based methods. We demonstrate that the proposed FRI gives rise to accurate prediction of protein B-Factor for a set of 263 proteins. We show that a parameter free FRI is able to achieve about 95% accuracy of the parameter optimized FRI. An interpolation algorithm is developed to construct continuous atomic flexibility functions for visualization and use with CEWAR. PMID:24320318
Multiscale multiphysics and multidomain models—Flexibility and rigidity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei, E-mail: wei@math.msu.edu
The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomicmore » charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of O(N{sup 2}) at most, where N is the number of atoms or residues, in contrast to O(N{sup 3}) for Hamiltonian based methods. We demonstrate that the proposed FRI gives rise to accurate prediction of protein B-Factor for a set of 263 proteins. We show that a parameter free FRI is able to achieve about 95% accuracy of the parameter optimized FRI. An interpolation algorithm is developed to construct continuous atomic flexibility functions for visualization and use with CEWAR.« less
Lin, Zhicheng; He, Sheng
2012-10-25
Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.
NChina16: A stable geodetic reference frame for geological hazard studies in North China
NASA Astrophysics Data System (ADS)
Wang, Guoquan; Bao, Yan; Gan, Weijun; Geng, Jianghui; Xiao, Gengru; Shen, Jack S.
2018-04-01
We have developed a stable North China Reference Frame 2016 (NChina16) using five years of continuous GPS observations (2011.8-2016.8) from 12 continuously operating reference stations (CORS) fixed to the North China Craton. Applications of NChina16 in landslide and subsidence studies are illustrated in this article. A method for realizing a regional geodetic reference frame is introduced. The primary result of this study is the seven parameters for transforming Cartesian ECEF (Earth-Centered, Earth-Fixed) coordinates X, Y, and Z from the International GNSS Service Reference Frame 2008 (IGS08) to NChina16. The seven parameters include the epoch that is used to align the regional reference frame to IGS08 and the time derivatives of three translations and three rotations. The GIPSY-OASIS (V6.4) software package was used to obtain the precise point positioning (PPP) daily solutions with respect to IGS08. The frame stability of NChina16 is approximately 0.5 mm/year in both horizontal and vertical directions. This study also developed a regional model for correcting seasonal motions superimposed into the vertical component of the GPS-derived displacement time series. Long-term GPS observations (1999-2016) from five CORS in North China were used to develop the seasonal model. According to this study, the PPP daily solutions with respect to NChina16 could achieve 2-3 mm horizontal accuracy and 4-5 mm vertical accuracy after being modified by the regional model. NChina16 will be critical to study geodynamic problems in North China, such as earthquakes, faulting, subsidence, and landslides. The regional reference frame will be periodically updated every few years to mitigate degradation of the frame with time and be synchronized with the update of IGS reference frame.
Gwarjanski, Anna Rae; Parrott, Scott
2018-08-01
A quantitative content analysis examined the portrayal of schizophrenia in eight of the most read online news publications in the United States. The analysis documented the prevalence of stigma frames, which communicate stereotypes concerning schizophrenia, and stigma-challenge frames, which contradict stereotypes, in 558 articles related to schizophrenia. The study also examined the relationship between media framing and reader commentary, including the likelihood of readers posting stigmatizing comments, stigma-challenging comments, and comments in which they disclosed personal experience with mental illness. Stigma frames were prevalent in the sample, suggesting the news media continue associating schizophrenia with violent and criminal behavior. Stigma frames stood greater chance of being accompanied by stigmatizing comments from readers when compared to stigma-challenging frames. Conversely, stigma-challenging frames stood greater chance of being accompanied by stigma-challenging comments from readers. Readers were more likely to disclose personal experience with mental illness when they encountered a stigma-challenging frame. Recommendations are made for journalists and health communicators.
20 CFR 220.186 - When and how often the Board will conduct a continuing disability review.
Code of Federal Regulations, 2011 CFR
2011-04-01
... period will be the length of the training, therapy, or program of education. Permanent impairment medical... are not intended to be all inclusive: (1) Parkinsonian syndrome with significant rigidity, brady...
NASA Astrophysics Data System (ADS)
Lopez, A. M.; Jansma, P. E.; Mattioli, G. S.; James, S. A.; Ihemedu, D.; Quintana, S. M.; Salazar, J. S.
2011-12-01
The Puerto Rico - Virgin Island microplate, a crustal block within the deformation region of the Northern Caribbean Plate Boundary Zone has been monitored with campaign and permanent Global Positioning System stations for almost 20 years. Within this time period a total of 37 sites have been used to describe and quantify internal deformation of the plate and estimate elastic strain accumulation along the key geological bounding features. In June 2011, 12 of the 20 sites that comprise the campaign GPS network in Puerto Rico were re-occupied and their results were merged with at least three years of continuous GPS data from the Puerto Rico - Virgin Islands cGPS network. The remaining 8 in PR sites will be reoccupied soon, while sites from the Virgin Islands were last reoccupied in 2007. All data were processed with v5 of GOAII using an APP strategy. Here we present the latest results of the newly computed velocity field of our mixed network in both North America and Caribbean fixed frames employing the latest IGS05 reference frame and updated satellite orbits, earth orientation, and xfiles from JPL. Of particular importance in this study are the results of a three station transect across the Lajas Valley, the most seismically active area on southwestern Puerto Rico. Relative to a fixed velocity for a campaign site on Isla Magueyes in La Parguera, the southernmost site in the Lajas Valley has a residual motion of -4.38±1.39 and 2.41±2.10 mm/yr in the north and east components, respectively. This suggests that there is SSE-directed shortening across a structure located between these two sites. In contrast, sites near Mayagüez are moving toward SW at ˜2 mm/yr relative to La Parguera. These results demonstrate the PRVI block shows small internal deformation in addition to its generally westward rigid block translation relative the stable interior of the Caribbean plate.
Nonlocal description of sound propagation through an array of Helmholtz resonators
NASA Astrophysics Data System (ADS)
Nemati, Navid; Kumar, Anshuman; Lafarge, Denis; Fang, Nicholas X.
2015-12-01
A generalized macroscopic nonlocal theory of sound propagation in rigid-framed porous media saturated with a viscothermal fluid has been recently proposed, which takes into account both temporal and spatial dispersion. Here, we consider applying this theory, which enables the description of resonance effects, to the case of sound propagation through an array of Helmholtz resonators whose unusual metamaterial properties, such as negative bulk moduli, have been experimentally demonstrated. Three different calculations are performed, validating the results of the nonlocal theory, related to the frequency-dependent Bloch wavenumber and bulk modulus of the first normal mode, for 1D propagation in 2D or 3D periodic structures. xml:lang="fr"
Simulating Asymmetric Top Impurities in Superfluid Clusters: A para-Water Dopant in para-Hydrogen.
Zeng, Tao; Li, Hui; Roy, Pierre-Nicholas
2013-01-03
We present the first simulation study of bosonic clusters doped with an asymmetric top molecule. The path-integral Monte Carlo method with the latest methodological advance in treating rigid-body rotation [Noya, E. G.; Vega, C.; McBride, C. J. Chem. Phys.2011, 134, 054117] is employed to study a para-water impurity in para-hydrogen clusters with up to 20 para-hydrogen molecules. The growth pattern of the doped clusters is similar in nature to that of pure clusters. The para-water molecule appears to rotate freely in the cluster. The presence of para-water substantially quenches the superfluid response of para-hydrogen with respect to the space-fixed frame.
Shear Shock Waves Observed in the Brain
NASA Astrophysics Data System (ADS)
Espíndola, David; Lee, Stephen; Pinton, Gianmarco
2017-10-01
The internal deformation of the brain is far more complex than the rigid motion of the skull. An ultrasound imaging technique that we have developed has a combination of penetration, frame-rate, and motion-detection accuracy required to directly observe the formation and evolution of shear shock waves in the brain. Experiments at low impacts on the traumatic-brain-injury scale demonstrate that they are spontaneously generated and propagate within the porcine brain. Compared to the initially smooth impact, the acceleration at the shock front is amplified up to a factor of 8.5. This highly localized increase in acceleration suggests that shear shock waves are a previously unappreciated mechanism that could play a significant role in traumatic brain injury.
The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, Stephen, E-mail: syip@lroc.harvard.edu; Rottmann, Joerg; Berbeco, Ross
2014-06-15
Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained bymore » continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID image acquisition at the frame rate of at least 4.29 Hz is recommended. Motion blurring in the images with frame rates below 4.29 Hz can significantly reduce the accuracy of autotracking.« less
Czaban, Marcin; Berry, Marc P.; Nirmalan, Prajeshan; Brown, Richard; Birdseye, Adam; Woroszyl, Asia; Chapman, Julia; Kent, Brian D.; Hart, Nicholas; Rossi, Gian Paolo; Steier, Joerg
2018-01-01
Background Continuous positive airway pressure (CPAP), the best available treatment for obstructive sleep apnea (OSA), requires long-term compliance to be effective. Behavioral interventions may be used to improve adherence to CPAP. We aimed to investigate whether positive or negative message framing impacts on CPAP compliance in patients with OSA, when compared to standard care. Methods Consenting patients with confirmed OSA were randomly allocated to receive along with their CPAP either positively or negatively framed messages (Pos; Neg), or standard care (Con). Standardized motivational messages were read out to patients during an initial teaching session and through weekly telephone calls. Patients’ compliance data were reviewed 2 and 6 weeks following CPAP initiation. Results We randomized 112 patients to groups that were matched for age, BMI, and OSA severity. The positively framed group (Pos) showed greater CPAP usage after 2 weeks (total use 53.7±31.4 hours) as compared to the negatively framed and the control group (35.6±27.4 and 40.8±33.5 hours, P<0.05); however, no differences were seen at 6 weeks. There were more dropouts in the control group than in either framed groups (Pos n=5; Neg n=8; Con n=11; P<0.05). Conclusions Positively framed messages can improve CPAP adherence in patients with OSA in the short-term; however, strategies for implementing its long-term use need to be developed. PMID:29445540
Pengo, Martino F; Czaban, Marcin; Berry, Marc P; Nirmalan, Prajeshan; Brown, Richard; Birdseye, Adam; Woroszyl, Asia; Chapman, Julia; Kent, Brian D; Hart, Nicholas; Rossi, Gian Paolo; Steier, Joerg
2018-01-01
Continuous positive airway pressure (CPAP), the best available treatment for obstructive sleep apnea (OSA), requires long-term compliance to be effective. Behavioral interventions may be used to improve adherence to CPAP. We aimed to investigate whether positive or negative message framing impacts on CPAP compliance in patients with OSA, when compared to standard care. Consenting patients with confirmed OSA were randomly allocated to receive along with their CPAP either positively or negatively framed messages (Pos; Neg), or standard care (Con). Standardized motivational messages were read out to patients during an initial teaching session and through weekly telephone calls. Patients' compliance data were reviewed 2 and 6 weeks following CPAP initiation. We randomized 112 patients to groups that were matched for age, BMI, and OSA severity. The positively framed group (Pos) showed greater CPAP usage after 2 weeks (total use 53.7±31.4 hours) as compared to the negatively framed and the control group (35.6±27.4 and 40.8±33.5 hours, P<0.05); however, no differences were seen at 6 weeks. There were more dropouts in the control group than in either framed groups (Pos n=5; Neg n=8; Con n=11; P<0.05). Positively framed messages can improve CPAP adherence in patients with OSA in the short-term; however, strategies for implementing its long-term use need to be developed.
A device for synchronizing biomechanical data with cine film.
Rome, L C
1995-03-01
Biomechanists are faced with two problems in synchronizing continuous physiological data to discrete, frame-based kinematic data from films. First, the accuracy of most synchronization techniques is good only to one frame and hence depends on framing rate. Second, even if perfectly correlated at the beginning of a 'take', the film and physiological data may become progressively desynchronized as the 'take' proceeds. A system is described, which provides synchronization between cine film and continuous physiological data with an accuracy of +/- 0.2 ms, independent of framing rate and the duration of the film 'take'. Shutter pulses from the camera were output to a computer recording system where they were recorded and counted, and to a digital device which counted the pulses and illuminated the count on the bank of LEDs which was filmed with the subject. Synchronization was performed by using the rising edge of the shutter pulse and by comparing the frame number imprinted on the film to the frame number recorded by the computer system. In addition to providing highly accurate synchronization over long film 'takes', this system provides several other advantages. First, having frame numbers imprinted both on the film and computer record greatly facilitates analysis. Second, the LEDs were designed to show the 'take number' while the camera is coming up to speed, thereby avoiding the use of cue cards which disturb the animal. Finally, use of this device results in considerable savings in film.
NASA Astrophysics Data System (ADS)
Chen, Yumin; Zhang, Zhichao; Liu, Hanlong
2017-04-01
The Hybrid A-Frame Micropile/MSE (mechanically stabilized earth) Wall suitable for mountain roadways is put forward in this study: a pair of vertical and inclined micropiles goes through the backfill region of a highway MSE Wall from the road surface and are then anchored into the foundation. The pile cap and grade beam are placed on the pile tops, and then a road barrier is connected to the grade beam by connecting pieces. The MSE wall's global stability, local stability and impact resistance of the road barrier can be enhanced simultaneously by this design. In order to validate the serviceability of the hybrid A-frame micropile/MSE wall and the reliability of the numerical method, scale model tests and a corresponding numerical simulation were conducted. Then, the seismic performance of the MSE walls before and after reinforcement with micropiles was studied comparatively through numerical methods. The results indicate that the hybrid A-frame micropile/MSE wall can effectively control earthquake-induced deformation, differential settlement at the road surface, bearing pressure on the bottom and acceleration by means of a rigid-soft combination of micropiles and MSE. The accumulated displacement under earthquakes with amplitude of 0.1‒0.5 g is reduced by 36.3%‒46.5%, and the acceleration amplification factor on the top of the wall is reduced by 13.4%, 15.7% and 19.3% based on 0.1, 0.3 and 0.5 g input earthquake loading, respectively. In addition, the earthquake-induced failure mode of the MSE wall in steep terrain is the sliding of the MSE region along the backslope, while the micropiles effectively control the sliding trend. The maximum earthquake-induced pile bending moment is in the interface between MSE and slope foundation, so it is necessary to strengthen the reinforcement of the pile body in the interface. Hence, it is proven that the hybrid A-frame micropile/MSE wall system has good seismic performance.
Obeidat, Shadi; Badin, Shadi; Khawaja, Imran
2010-04-01
Dynamic Y stents are used in tracheobronchial obstruction, tracheal stenosis, and tracheomalacia. Placement may be difficult and is usually accomplished using a rigid grasping forceps (under fluoroscopic guidance) or a rigid bronchoscope. We report using a new stent placement technique on an elderly patient with a central tracheobronchial tumor. It included using a flexible bronchoscope, video laryngoscope, and laryngeal mask airway. The new technique we used has the advantages of continuous direct endoscopic visualization during stent advancement and manipulation, and securing the airways with a laryngeal mask airway at the same time. This technique eliminates the need for intraoperative fluoroscopy.
Lin, Zhicheng; He, Sheng
2012-01-01
Object identities (“what”) and their spatial locations (“where”) are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects (“files”) within the reference frame (“cabinet”) are orderly coded relative to the frame. PMID:23104817
SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, S; Rottmann, J; Berbeco, R
2014-06-01
Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantommore » moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the accuracy of auto-tracking. This work is supported in part by the Varian Medical Systems, Inc.« less
Health risks of vibration exposure to wheelchair users in the community
Garcia-Mendez, Yasmin; Pearlman, Jonathan L.; Boninger, Michael L.; Cooper, Rory A.
2013-01-01
Objective The purpose of this study was to evaluate whole-body vibration (WBV) exposure to wheelchair (WC) users in their communities and to determine the effect of WC frame type (folding, rigid, and suspension) in reducing WBV transmitted to the person. Design An observational case-control study of the WBV exposure levels among WC users. Participants Thirty-seven WC users, with no pressure sores, 18 years old or older and able to perform independent transfers. Main outcome measures WC users were monitored for 2 weeks to collect WBV exposure, as well as activity levels, by using custom vibration and activity data-loggers. Vibration levels were evaluated using ISO 2631-1 methods. Results All WC users who participated in this study were continuously exposed to WBV levels at the seat that were within and above the health caution zone specified by ISO 2631-1 during their day-to-day activities (0.83 ± 0.17 m/second2, weighted root-mean-squared acceleration, for 13.07 ± 3.85 hours duration of exposure). WCs with suspension did not attenuate vibration transmitted to WC users (V = 0.180, F(8, 56) = 0.692, P = 0.697). Conclusions WBV exposure to WC users exceeds international standards. Suspension systems need to be improved to reduce vibrations transmitted to the users. PMID:23820152
Observation of galactic cosmic ray spallation events from the SoHO mission 20-yr operation of LASCO
NASA Astrophysics Data System (ADS)
Koutchmy, S.; Tavabi, E.; Urtado, O.
2018-07-01
A shower of secondary cosmic ray (CR) particles is produced at high altitudes in the Earth's atmosphere, so the primordial galactic cosmic rays (GCRs) are never directly measured outside the Earth magnetosphere and atmosphere. They approach the Earth and other planets in the complex pattern of rigidity's dependence, generally excluded by the magnetosphere. GCRs revealed by images of single nuclear reactions also called spallation events are described here. Such an event was seen on 2015 November 29 using a unique Large Angle and Spectrometric Coronagraphs C3 space coronagraph routine image taken during the Solar and Heliospheric Observatory (SoHO) mission observing uninterruptedly at the Lagrangian L1 point. The spallation signature of a GCR identified well outside the Earth's magnetosphere is obtained for the first time. The resulting image includes different diverging linear `tracks' of varying intensity, leading to a single pixel; this frame identifies the site on the silicon CCD chip of the coronagraph camera. There was no solar flare reported at that time, nor coronal mass ejection and no evidence of optical debris around the spacecraft. More examples of smaller CR events have been discovered through the 20 yr of continuous observations from SoHO. This is the first spallation event from a CR, recorded outside the Earth's magnetosphere. We evaluate the probable energy of these events suggesting a plausible galactic source.
NASA Astrophysics Data System (ADS)
Koutchmy, S.; Tavabi, E.; Urtado, O.
2018-05-01
A shower of secondary Cosmic Ray (CR) particles is produced at high altitudes in the Earth's atmosphere, so the primordial Galactic Cosmic Rays (GCRs) are never directly measured outside the Earth magnetosphere and atmosphere. They approach the Earth and other planets in the complex pattern of rigidity's dependence, generally excluded by the magnetosphere. GCRs revealed by images of single nuclear reactions also called spallation events are described here. Such an event was seen on Nov. 29, 2015 using a unique LASCO C3 space coronagraph routine image taken during the Solar and Heliospheric Observatory (SoHO) mission observing uninterruptedly at the Lagrangian L1 point. The spallation signature of a GCR identified well outside the Earth's magnetosphere is obtained for the 1st time. The resulting image includes different diverging linear "tracks" of varying intensity, leading to a single pixel; this frame identifies the site on the silicon CCD chip of the coronagraph camera. There was no solar flare reported at that time, nor Coronal Mass Ejection (CME) and no evidence of optical debris around the spacecraft. More examples of smaller CR events have been discovered through the 20 years of continuous observations from SoHO. This is the first spallation event from a CR, recorded outside the Earth's magnetosphere. We evaluate the probable energy of these events suggesting a plausible galactic source.
Xu, M T; Sun, S; Zhang, L; Xu, F; Du, S L; Zhang, X D; Wang, D W
2016-01-01
Transforming growth factor beta 1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) are important regulators of bone repair and regeneration. In this study, we examined whether TGF-β1 and BMP-2 expressions were delayed during bone healing in type 1 diabetes mellitus. Tibial fractures were created in 95 diabetic and 95 control adult male Wistar rats of 10 weeks of age. At 1, 2, 3, 4, and 5 weeks after fracture induction, five rats were sacrificed from each group. The expressions of TGF-β1 and BMP2 in the fractured tibias were measured by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction, weekly for the first 5 weeks post-fracture. Mechanical parameters (bending rigidity, torsional rigidity, destruction torque) of the healing bones were also assessed at 3, 4, and 5 weeks post-fracture, after the rats were sacrificed. The bending rigidity, torsional rigidity and destruction torque of the two groups increased continuously during the healing process. The diabetes group had lower mean values for bending rigidity, torsional rigidity and destruction torque compared with the control group (P<0.05). TGF-β1 and BMP-2 expression were significantly lower (P<0.05) in the control group than in the diabetes group at postoperative weeks 1, 2, and 3. Peak levels of TGF-β1 and BMP-2 expression were delayed by 1 week in the diabetes group compared with the control group. Our results demonstrate that there was a delayed recovery in the biomechanical function of the fractured bones in diabetic rats. This delay may be associated with a delayed expression of the growth factors TGF-β1 and BMP-2.
Continental Deformation in Madagascar from GNSS Observations
NASA Astrophysics Data System (ADS)
Stamps, D. S.; Rajaonarison, T.; Rambolamanana, G.; Herimitsinjo, N.; Carrillo, R.; Jesmok, G.
2015-12-01
D.S. Stamps, T. Rajaonarison, G. Rambolamanana Madagascar is the easternmost continental segment of the East African Rift System (EARS). Plate reconstructions assume the continental island behaves as a rigid block, but studies of geologically recent kinematics suggest Madagascar undergoes extension related to the broader EARS. In this work we test for rigidity of Madagascar in two steps. First, we quantify surface motions using a novel dataset of episodic and continuous GNSS observations that span Madagascar from north to south. We established a countrywide network of precision benchmarks fixed in bedrock and with open skyview in 2010 that we measured for 48-72 hours with dual frequency receivers. The benchmarks were remeasured in 2012 and 2014. We processed the episodic GNSS data with ABPO, the only continuous GNSS station in Madagascar with >2.5 years of data, for millimeter precision positions and velocities at 7 locations using GAMIT-GLOBK. Our velocity field shows 2 mm/yr of differential motion between southern and northern Madagascar. Second, we test a suite of kinematic predictions from previous studies and find residual velocities are greater than 95% uncertainties. We also calculate angular velocity vectors assuming Madagascar moves with the Lwandle plate or the Somalian plate. Our new velocity field in Madagascar is inconsistent with all models that assume plate rigidity at the 95% uncertainty level; this result indicates the continental island undergoes statistically significant internal deformation.
Constrained Sintering in Fabrication of Solid Oxide Fuel Cells
Lee, Hae-Weon; Park, Mansoo; Hong, Jongsup; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook
2016-01-01
Solid oxide fuel cells (SOFCs) are inevitably affected by the tensile stress field imposed by the rigid substrate during constrained sintering, which strongly affects microstructural evolution and flaw generation in the fabrication process and subsequent operation. In the case of sintering a composite cathode, one component acts as a continuous matrix phase while the other acts as a dispersed phase depending upon the initial composition and packing structure. The clustering of dispersed particles in the matrix has significant effects on the final microstructure, and strong rigidity of the clusters covering the entire cathode volume is desirable to obtain stable pore structure. The local constraints developed around the dispersed particles and their clusters effectively suppress generation of major process flaws, and microstructural features such as triple phase boundary and porosity could be readily controlled by adjusting the content and size of the dispersed particles. However, in the fabrication of the dense electrolyte layer via the chemical solution deposition route using slow-sintering nanoparticles dispersed in a sol matrix, the rigidity of the cluster should be minimized for the fine matrix to continuously densify, and special care should be taken in selecting the size of the dispersed particles to optimize the thermodynamic stability criteria of the grain size and film thickness. The principles of constrained sintering presented in this paper could be used as basic guidelines for realizing the ideal microstructure of SOFCs. PMID:28773795
Dielectric elastomer generators that stack up
NASA Astrophysics Data System (ADS)
McKay, T. G.; Rosset, S.; Anderson, I. A.; Shea, H.
2015-01-01
This paper reports the design, fabrication, and testing of a soft dielectric elastomer power generator with a volume of less than 1 cm3. The generator is well suited to harvest energy from ambient and from human body motion as it can harvest from low frequency (sub-Hz) motions, and is compact and lightweight. Dielectric elastomers are highly stretchable variable capacitors. Electrical energy is produced when the deformation of a stretched, charged dielectric elastomer is relaxed; like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. This technology provides an opportunity to produce soft, high energy density generators with unparalleled robustness. Two major issues block this goal: current configurations require rigid frames that maintain the dielectric elastomer in a prestretched state, and high energy densities have come at the expense of short lifetime. This paper presents a self-supporting stacked generator configuration which does not require rigid frames. The generator consists of 48 generator films stacked on top of each other, resulting in a structure that fits within an 11 mm diameter footprint while containing enough active material to produce useful power. To ensure sustainable power production, we also present a mathematical model for designing the electronic control of the generator which optimizes energy production while limiting the electrical stress on the generator below failure limits. When cyclically compressed at 1.6 Hz, our generator produced 1.8 mW of power, which is sufficient for many low-power wireless sensor nodes. This performance compares favorably with similarly scaled electromagnetic, piezoelectric, and electrostatic generators. The generator’s small form factor and ability to harvest useful energy from low frequency motions such as tree swaying or shoe impact provides an opportunity to deliver power to remote wireless sensor nodes or to distributed points in the human body without the need for costly periodic battery replacement.
Interactive CT-Video Registration for the Continuous Guidance of Bronchoscopy
Merritt, Scott A.; Khare, Rahul; Bascom, Rebecca
2014-01-01
Bronchoscopy is a major step in lung cancer staging. To perform bronchoscopy, the physician uses a procedure plan, derived from a patient’s 3D computed-tomography (CT) chest scan, to navigate the bronchoscope through the lung airways. Unfortunately, physicians vary greatly in their ability to perform bronchoscopy. As a result, image-guided bronchoscopy systems, drawing upon the concept of CT-based virtual bronchoscopy (VB), have been proposed. These systems attempt to register the bronchoscope’s live position within the chest to a CT-based virtual chest space. Recent methods, which register the bronchoscopic video to CT-based endoluminal airway renderings, show promise but do not enable continuous real-time guidance. We present a CT-video registration method inspired by computer-vision innovations in the fields of image alignment and image-based rendering. In particular, motivated by the Lucas–Kanade algorithm, we propose an inverse-compositional framework built around a gradient-based optimization procedure. We next propose an implementation of the framework suitable for image-guided bronchoscopy. Laboratory tests, involving both single frames and continuous video sequences, demonstrate the robustness and accuracy of the method. Benchmark timing tests indicate that the method can run continuously at 300 frames/s, well beyond the real-time bronchoscopic video rate of 30 frames/s. This compares extremely favorably to the ≥1 s/frame speeds of other methods and indicates the method’s potential for real-time continuous registration. A human phantom study confirms the method’s efficacy for real-time guidance in a controlled setting, and, hence, points the way toward the first interactive CT-video registration approach for image-guided bronchoscopy. Along this line, we demonstrate the method’s efficacy in a complete guidance system by presenting a clinical study involving lung cancer patients. PMID:23508260
Geometry and the onset of rigidity in a disordered network
NASA Astrophysics Data System (ADS)
Vermeulen, Mathijs F. J.; Bose, Anwesha; Storm, Cornelis; Ellenbroek, Wouter G.
2017-11-01
Disordered spring networks that are undercoordinated may abruptly rigidify when sufficient strain is applied. Since the deformation in response to applied strain does not change the generic quantifiers of network architecture, the number of nodes and the number of bonds between them, this rigidity transition must have a geometric origin. Naive, degree-of-freedom-based mechanical analyses such as the Maxwell-Calladine count or the pebble game algorithm overlook such geometric rigidity transitions and offer no means of predicting or characterizing them. We apply tools that were developed for the topological analysis of zero modes and states of self-stress on regular lattices to two-dimensional random spring networks and demonstrate that the onset of rigidity, at a finite simple shear strain γ★, coincides with the appearance of a single state of self-stress, accompanied by a single floppy mode. The process conserves the topologically invariant difference between the number of zero modes and the number of states of self-stress but imparts a finite shear modulus to the spring network. Beyond the critical shear, the network acquires a highly anisotropic elastic modulus, resisting further deformation most strongly in the direction of the rigidifying shear. We confirm previously reported critical scaling of the corresponding differential shear modulus. In the subcritical regime, a singular value decomposition of the network's compatibility matrix foreshadows the onset of rigidity by way of a continuously vanishing singular value corresponding to the nascent state of self-stress.
Rapid iconic erasure without masking.
Tijus, Charles Albert; Reeves, Adam
2004-01-01
We report on the erasure of the iconic memory of an array of 12 black letters flashed on a continuously- present white field. Erasure is accomplished by replacing the 16 ms letter array (frame 1) with a blank white frame for 16 ms (frame 2). The letter array returns in frame 3, with from one to six letters missing. Report of the missing letters is accurate without the blank white frame but is impoverished with it, as if interposing the blank erases the icon. Erasure occurs without any obvious luminance masking, 'mud splashes', pattern masking (backward, forward, or metacontrast), lateral masking, or masking by object substitution. Erasure is greatly decreased if the blank is presented one frame earlier or later. We speculate that erasure is due to a rapid reset of the icon produced by an informational mis-match.
Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities
NASA Astrophysics Data System (ADS)
Kamenshchik, Alexander Yu.; Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Tronconi, Alessandro; Venturi, Giovanni
2016-09-01
We study the relation between the Jordan-Einstein frame transition and the possible description of the crossing of singularities in flat Friedmann universes, using the fact that the regular evolution in one frame can correspond to crossing singularities in the other frame. We show that some interesting effects arise in simple models such as one with a massless scalar field or another wherein the potential is constant in the Einstein frame. The dynamics in these models and in their conformally coupled counterparts are described in detail, and a method for the continuation of such cosmological evolutions beyond the singularity is developed. We compare our approach with some other, recently developed, approaches to the problem of the crossing of singularities.
Lin, Kuan-Chia; Twisk, Jos W R; Rong, Jiin-Ru
2011-04-01
This study is part of the Amsterdam Growth and Health Longitudinal Study, which was undertaken to assess the long-term interrelationships between cumulative frequency of geographic relocation (CFGR) and the development of personality characteristics (i.e., Inadequacy, Rigidity, Social Inadequacy, Dominance, Self-sufficiency, Self-esteem, and Hostility). We found that participants who had more mobility experiences had lower consistency in their personality characteristics (the exception being Rigidity). Residential mobility from different life stages was positively associated with the continuity and change of Inadequacy and Dominance. In addition, young adults with higher Rigidity personality experienced fewer geographic moves during the transition from young adulthood to mid-life. Our study provides evidence that CFGR in different life stages may be associated with the development of personality characteristics from young adulthood to mid-life in different ways. Increased awareness of the potential interrelationships between frequent geographic relocation and personality development may have positive consequences for adult psychological health. © 2011 American Orthopsychiatric Association.
Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handayani, Gunawan
The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. Thismore » paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.« less
Application of remote sensing for prediction and detection of thermal pollution, phase 2
NASA Technical Reports Server (NTRS)
Veziroglu, T. N.; Lee, S. S.
1975-01-01
The development of a predictive mathematical model for thermal pollution in connection with remote sensing measurements was continued. A rigid-lid model has been developed and its application to far-field study has been completed. The velocity and temperature fields have been computed for different atmospheric conditions and for different boundary currents produced by tidal effects. In connection with the theoretical work, six experimental studies of the two sites in question (Biscayne Bay site and Hutchinson Island site) have been carried out. The temperature fields obtained during the tests at the Biscayne Bay site have been compared with the predictions of the rigid-lid model and these results are encouraging. The rigid-lid model is also being applied to near-field study. Preliminary results for a simple case have been obtained and execution of more realistic cases has been initiated. The development of a free-surface model also been initiated. The governing equations have been formulated and the computer programs have been written.
Formation Flying of Tethered and Nontethered Spacecraft
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.
2005-01-01
A paper discusses the effect of the dynamic interaction taking place within a formation composed of a rigid and a deformable vehicle, and presents the concept of two or more tethered spacecraft flying in formation with one or more separated free-flying spacecraft. Although progress toward formation flight of nontethered spacecraft has already been achieved, the document cites potential advantages of tethering, including less consumption of fuel to maintain formation, very high dynamic stability of a rotating tethered formation, and intrinsically passive gravity-gradient stabilization. The document presents a theoretical analysis of the dynamics of a system comprising one free-flying spacecraft and two tethered spacecraft in orbit, as a prototype of more complex systems. The spacecraft are modeled as rigid bodies and the tether as a mass-less spring with structural viscous damping. Included in the analysis is a study of the feasibility of a centralized control system for maintaining a required formation in low Earth orbit. A numerical simulation of a retargeting maneuver is reported to show that even if the additional internal dynamics of the system caused by flexibility is considered, high pointing precision can be achieved if a fictitious rigid frame is used to track the tethered system, and it should be possible to position the spacecraft with centimeter accuracy and to orient the formation within arc seconds of the desired direction also in the presence of low Earth orbit environmental perturbations. The results of the study demonstrate that the concept is feasible in Earth orbit and point the way to further study of these hybrid tethered and free-flying systems for related applications in orbit around other Solar System bodies.
49 CFR 572.77 - Instrumentation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Instrumentation. 572.77 Section 572.77 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Instrumentation. (a)(1) Test probe. For the head, thorax, and knee impact test, use a test probe that is rigid, of...
49 CFR 572.77 - Instrumentation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Instrumentation. 572.77 Section 572.77 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Instrumentation. (a)(1) Test probe. For the head, thorax, and knee impact test, use a test probe that is rigid, of...
49 CFR 572.77 - Instrumentation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Instrumentation. 572.77 Section 572.77 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Instrumentation. (a)(1) Test probe. For the head, thorax, and knee impact test, use a test probe that is rigid, of...
49 CFR 572.77 - Instrumentation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Instrumentation. 572.77 Section 572.77 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Instrumentation. (a)(1) Test probe. For the head, thorax, and knee impact test, use a test probe that is rigid, of...
NASA Astrophysics Data System (ADS)
Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang
2017-03-01
A 3D kinematic measurement of joint movement is crucial for orthopedic surgery assessment and diagnosis. This is usually obtained through a frame-by-frame registration of the 3D bone volume to a fluoroscopy video of the joint movement. The high cost of a high-quality fluoroscopy imaging system has hindered the access of many labs to this application. This is while the more affordable and low-dosage version, the mini C-arm, is not commonly used for this application due to low image quality. In this paper, we introduce a novel method for kinematic analysis of joint movement using the mini C-arm. In this method the bone of interest is recovered and isolated from the rest of the image using a non-rigid registration of an atlas to each frame. The 3D/2D registration is then performed using the weighted histogram of image gradients as an image feature. In our experiments, the registration error was 0.89 mm and 2.36° for human C2 vertebra. While the precision is still lacking behind a high quality fluoroscopy machine, it is a good starting point facilitating the use of mini C-arms for motion analysis making this application available to lower-budget environments. Moreover, the registration was highly resistant to the initial distance from the true registration, converging to the answer from anywhere within +/-90° of it.
Advanced Extended Plate and Beam Wall System in a Cold-Climate House
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallay, Dave; Wiehagen, Joseph; Kochkin, Vladimir
This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wallmore » system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.« less
NASA Astrophysics Data System (ADS)
Kahrs, Lueder A.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Labadie, Robert F.
2012-02-01
During endoscopic procedures it is often desirable to determine the distance between anatomical features. One such clinical application is percutaneous cochlear implantation (PCI), which is a minimally invasive approach to the cochlea via a single, straight drill path and can be achieved accurately using bone-implanted markers and customized microstereotactic frame. During clinical studies to validate PCI, traditional open-field cochlear implant surgery was performed and prior to completion of the surgery, a customized microstereotactic frame designed to achieve the desired PCI trajectory was attached to the bone-implanted markers. To determine whether this trajectory would have safely achieved the target, a sham drill bit is passed through the frame to ensure that the drill bit would reach the cochlea without damaging vital structures. Because of limited access within the facial recess, the distances from the bit to anatomical features could not be measured with calipers. We hypothesized that an endoscope mounted on a sliding stage that translates only along the trajectory, would provide sufficient triangulation to accurately measure these distances. In this paper, the design, fabrication, and testing of such a system is described. The endoscope is mounted so that its optical axis is approximately aligned with the trajectory. Several images are acquired as the stage is moved, and threedimensional reconstruction of selected points allows determination of distances. This concept also has applicability in a large variety of rigid endoscopic interventions including bronchoscopy, laparoscopy, and sinus endoscopy.
Hypervelocity impact studies using a rotating mirror framing laser shadowgraph camera
NASA Technical Reports Server (NTRS)
Parker, Vance C.; Crews, Jeanne Lee
1988-01-01
The need to study the effects of the impact of micrometeorites and orbital debris on various space-based systems has brought together the technologies of several companies and individuals in order to provide a successful instrumentation package. A light gas gun was employed to accelerate small projectiles to speeds in excess of 7 km/sec. Their impact on various targets is being studied with the help of a specially designed continuous-access rotating-mirror framing camera. The camera provides 80 frames of data at up to 1 x 10 to the 6th frames/sec with exposure times of 20 nsec.
General Equations of Motion for a Damaged Asymmetric Aircraft
NASA Technical Reports Server (NTRS)
Bacon, Barton J.; Gregory, Irene M.
2007-01-01
There is a renewed interest in dynamic characteristics of damaged aircraft both in order to assess survivability and to develop control laws to enhance survivability. This paper presents a set of flight dynamics equations of motion for a rigid body not necessarily referenced to the body's center of mass. Such equations can be used when the body loses a portion of its mass and it is desired to track the motion of the body s previous center of mass/reference frame now that the mass center has moved to a new position. Furthermore, results for equations presented in this paper and equations in standard aircraft simulations are compared for a scenario involving a generic transport aircraft configuration subject to wing damage.
Advances in the management of orbital fractures.
Nguyen, P N; Sullivan, P
1992-01-01
Great progress has been made in both the basic science and the clinical knowledge base used in orbital reconstruction. With this, increasing complex orbital reconstructive problems are better managed. The diagnosis, treatment plan, and the actual reconstruction have evolved to a higher level. Several areas of progress are of note: the greater appreciation of the intimate relation between the bony orbit's shape and the position of the globe; application of computer technology in orbital injuries; effect of rigid fixation on autogenous and alloplastic graft; and the use of advanced biocompatible synthetic materials in orbital reconstruction. Although this progress has great impact on treatment of orbital injuries, there are many unanswered challenges in the treatment of the fragile frame of the window to the human soul.
A migratory mantle plume on Venus: Implications for Earth?
Chapman, M.G.; Kirk, R.L.
1996-01-01
A spatially fixed or at least internally rigid hotspot reference frame has been assumed for determining relative plate motions on Earth. Recent 1:5,000,000 scale mapping of Venus, a planet without terrestrial-style plate tectonics and ocean cover, reveals a systematic age and dimensional progression of corona-like arachnoids occurring in an uncinate chain. The nonrandom associations between arachnoids indicate they likely formed from a deep-seated mantle plume in a manner similar to terrestrial hotspot features. However, absence of expected convergent "plate" margin deformation suggests that the arachnoids are the surface expression of a migratory mantle plume beneath a stationary surface. If mantle plumes are not stationary on Venus, what if any are the implications for Earth?
Horoshenkov, Kirill V; Khan, Amir; Bécot, François-Xavier; Jaouen, Luc; Sgard, Franck; Renault, Amélie; Amirouche, Nesrine; Pompoli, Francesco; Prodi, Nicola; Bonfiglio, Paolo; Pispola, Giulio; Asdrubali, Francesco; Hübelt, Jörn; Atalla, Noureddine; Amédin, Celse K; Lauriks, Walter; Boeckx, Laurens
2007-07-01
This paper reports the results of reproducibility experiments on the interlaboratory characterization of the acoustical properties of three types of consolidated porous media: granulated porous rubber, reticulated foam, and fiberglass. The measurements are conducted in several independent laboratories in Europe and North America. The studied acoustical characteristics are the surface complex acoustic impedance at normal incidence and plane wave absorption coefficient which are determined using the standard impedance tube method. The paper provides detailed procedures related to sample preparation and installation and it discusses the dispersion in the acoustical material property observed between individual material samples and laboratories. The importance of the boundary conditions, homogeneity of the porous material structure, and stability of the adopted signal processing method are highlighted.
Improvement of Wearable Power Assist Wear for Low Back Support using Pneumatic Actuator
NASA Astrophysics Data System (ADS)
Cho, Feifei; Sugimoto, Riku; Noritsugu, Toshiro; Li, Xiangpan
2017-10-01
This study focuses on developing a safe, lightweight, power assist device that can be worn by people who like caregivers during lifting or static holding tasks to prevent low back pain (LBP). Therefore in consideration of their flexibility, light weight, and large force to weight ratio we have developed a Wearable Power Assist Wear for caregivers, two types of pneumatic actuators are employed in assisting low back movement for their safety and comfort. The device can be worn directly on the body like normal clothing. Because there is no rigid exoskeleton frame structure, it is lightweight and user friendly. In this paper, we proposed the new type of the wearable power assist wear and improved the controller of control system.
Planar reorientation maneuvers of space multibody systems using internal controls
NASA Technical Reports Server (NTRS)
Reyhanoglu, Mahmut; Mcclamroch, N. H.
1992-01-01
In this paper a reorientation maneuvering strategy for an interconnection of planar rigid bodies in space is developed. It is assumed that there are no exogeneous torques, and torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero in this paper. The maneuver strategy uses the nonintegrability of the expression for the angular momentum. We demonstrate that large-angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is briefly summarized. Specifications and computer simulations of a specific reorientation maneuver, and the corresponding control strategies, are described.
Back-illuminated large area frame transfer CCDs for space-based hyper-spectral imaging applications
NASA Astrophysics Data System (ADS)
Philbrick, Robert H.; Gilmore, Angelo S.; Schrein, Ronald J.
2016-07-01
Standard offerings of large area, back-illuminated full frame CCD sensors are available from multiple suppliers and they continue to be commonly deployed in ground- and space-based applications. By comparison the availability of large area frame transfers CCDs is sparse, with the accompanying 2x increase in die area no doubt being a contributing factor. Modern back-illuminated CCDs yield very high quantum efficiency in the 290 to 400 nm band, a wavelength region of great interest in space-based instruments studying atmospheric phenomenon. In fast framing (e.g. 10 - 20 Hz), space-based applications such as hyper-spectral imaging, the use of a mechanical shutter to block incident photons during readout can prove costly and lower instrument reliability. The emergence of large area, all-digital visible CMOS sensors, with integrate while read functionality, are an alternative solution to CCDs; but, even after factoring in reduced complexity and cost of support electronics, the present cost to implement such novel sensors is prohibitive to cost constrained missions. Hence, there continues to be a niche set of applications where large area, back-illuminated frame transfer CCDs with high UV quantum efficiency, high frame rate, high full well, and low noise provide an advantageous solution. To address this need a family of large area frame transfer CCDs has been developed that includes 2048 (columns) x 256 (rows) (FT4), 2048 x 512 (FT5), and 2048 x 1024 (FT6) full frame transfer CCDs; and a 2048 x 1024 (FT7) split-frame transfer CCD. Each wafer contains 4 FT4, 2 FT5, 2 FT6, and 2 FT7 die. The designs have undergone radiation and accelerated life qualification and the electro-optical performance of these CCDs over the wavelength range of 290 to 900 nm is discussed.
Dynamics and Control of a Disordered System in Space
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.
2013-01-01
In this paper, we present some ideas regarding the modeling, dynamics and control aspects of granular spacecraft. Granular spacecraft are complex multibody systems composed of a spatially disordered distribution of a large number of elements, for instance a cloud of N grains in orbit, with N greater than 10(exp 3). These grains can be large (Cubesat-size) or small (mm-size), and can be active, i.e., a fully equipped vehicle capable sensing their own position and attitude, and enabled with propulsion means, or entirely passive. The ultimate objective would be to study the behavior of the single grains and of large ensembles of grains in orbit and to identify ways to guide and control the shape of a cloud composed of these grains so that it can perform a useful function in space, for instance, as an element of an optical imaging system for astrophysical applications. This concept, in which the aperture does not need to be continuous and monolithic, would increase the aperture size several times compared to large NASA observatories such as ATLAST, allowing for a true Terrestrial Planet Imager that would be able to resolve exo-planet details and do meaningful spectroscopy on distant world. In the paper, we address the modeling and autonomous operation of a distributed assembly (the cloud) of large numbers of highly miniaturized space-borne elements (the grains). A multi-scale, multi-physics model is proposed of the dynamics of the cloud in orbit, as well as a control law for cloud shape maintenance, and preliminary simulation studies yield an estimate of the computational effort, indicating a scale factor of approximately N(exp 1.4) as a function of the number of grains. A granular spacecraft can be defined as a collection of a large number of space-borne elements (in the 1000s) designed and controlled such that a desirable collective behavior emerges, either from the interactions among neighboring grains, and/or between the grains and the environment. In this paper, each grain is considered to be a highly miniaturized spacecraft which has limited size and mass, hence it has limited actuation, limited propulsive capability, limited power, limited sensing, limited communication, limited computational resources, limited range of motion, limited lifetime, and may be expendable. The modeling and dynamics of clouds of vehicles is more challenging than with conventional vehicles because we are faced with a probabilistic vehicle composed of a large number of physically disconnected vehicles. First, different scales of motion occur simultaneously in a cloud: translations and rotations of the cloud as a whole (macro-dynamics), relative rotation and translation of one cloud member with respect to another (meso-dynamics), and individual cloud member dynamics (micro-dynamics). Second, the control design needs to be tolerant of the system complexity, of the system architecture (centralized vs. decentralized large scale system control) as well as robust to un-modeled dynamics and noise sources. Figure 1, top left, shows the kinematic parameters of a 1000 element cloud in orbit. The motion of the system is described with respect to a local vertical-local horizontal (LV-LH) orbiting reference frame (x,y,z)=F(sub ORF) of origin O(sub ORF) which rotates with mean motion omega and orbital semi-major axis R(sub 0). The orbital geometry at the initial time is defined in terms of its six orbital elements, and the orbital dynamics equation for point O(sub ORF) is propagated forward in time under the influence of the gravitational field of the primary and other external perturbations, described below. The origin of this frame coincides with the initial position of the center of mass of the system, and the coordinate axes are z along the local vertical, x toward the flight direction, and y in the orbit normal direction. The assumptions we used to model the dynamics are as follows: 1) The inertial frame is fixed at Earth's center. 2) The orbiting Frame ORF follows Keplerian orbit. 3) the cloud system dynamics is referred to ORF. 4) the attitude of each grain uses the principal body frame as body fixed frame. 5) the atmosphere is assumed to be rigidly rotating with the Earth. Regarding the grains forming the cloud: 1) each grain is modeled as a rigid body; 2) a simple attitude estimator provides attitude estimates, 3) a simple guidance logic commands the position and attitude of each grain, 4) a simple local feedback controller based on PD control of local states is used to stabilize the attitude of the vehicle. Regarding the cloud: 1) the cloud as a whole is modeled as an equivalent rigid body in orbit, and 2) an associated graph establishes agent connectivity and enables coupling between modes of motion at the micro and macro scales; 3) a simple guidance and estimation logic is modeled to estimate and command the attitude of this equivalent rigid body; 4) a cloud shape maintenance controller is based on the dynamics of a stable virtual truss in the orbiting frame. Regarding the environmental perturbations acting on the cloud: 1) a non-spherical gravity field including JO (Earth's spherical field) zonal component, J2 (Earth's oblateness) and J3 zonal components is implemented; 2) atmospheric drag is modeled with an exponential model; 3) solar pressure is modeled assuming the Sun is inertially fixed; and 4) the Earth's magnetic field is model using an equivalent dipole model. The equations of motion are written in a referential system with respect to the origin of the orbiting frame and the state is propagated forward in time using an incremental predictor-corrector scheme. A representative cloud with varying number of grains is simulated to identify the limitations in computation time as the number of grains grows. We derive a control law to track a desired surface in the ORF (equivalently to maintain a reference cloud shape) by defining an error from a desired surface shape, and designing a control law that is exponentially stable and reduces the tracking error to zero. Figure 1 (top right) shows a comparison of various requirements for simulation of single spacecraft vs. granular spacecraft, indicating the high degree of complexity that needs to be taken into consideration. The ORF components of control force required by one of the grains is, for this particular case, in the micro-Newton range. However, no attempt has been made yet to reconfigure (or re-orient) the cloud configuration internally, for which forces in the milli-Newton level are expected, depending on the time required to do the reconfiguration. Figure 1, bottom, shows the computation time as a function of the number of grains, indicating an order N(exp 1.43) scaling on a 8 Gb, 1067 MHz RAM MacOSX computer with a 3.06 GHz Intel Core 2 Duo processor. With this metric, the same simulation for a system of N=1000 grains would take 5.4 hours, and 146 hours (i.e., 6 days) for a system with N=10,000 grains. Therefore, efficient ways to simulate this complex system, where not only the time scales of natural system dynamics, but also the sampling times of the Guidance, Navigation, and Control are included, remain to be explored. Additional details on the cloud modeling, dynamics, and control will be described in the paper.
A fast combination method in DSmT and its application to recommender system
Liu, Yihai
2018-01-01
In many applications involving epistemic uncertainties usually modeled by belief functions, it is often necessary to approximate general (non-Bayesian) basic belief assignments (BBAs) to subjective probabilities (called Bayesian BBAs). This necessity occurs if one needs to embed the fusion result in a system based on the probabilistic framework and Bayesian inference (e.g. tracking systems), or if one needs to make a decision in the decision making problems. In this paper, we present a new fast combination method, called modified rigid coarsening (MRC), to obtain the final Bayesian BBAs based on hierarchical decomposition (coarsening) of the frame of discernment. Regarding this method, focal elements with probabilities are coarsened efficiently to reduce computational complexity in the process of combination by using disagreement vector and a simple dichotomous approach. In order to prove the practicality of our approach, this new approach is applied to combine users’ soft preferences in recommender systems (RSs). Additionally, in order to make a comprehensive performance comparison, the proportional conflict redistribution rule #6 (PCR6) is regarded as a baseline in a range of experiments. According to the results of experiments, MRC is more effective in accuracy of recommendations compared to original Rigid Coarsening (RC) method and comparable in computational time. PMID:29351297
Time-odd mean fields in covariant density functional theory: Rotating systems
NASA Astrophysics Data System (ADS)
Afanasjev, A. V.; Abusara, H.
2010-09-01
Time-odd mean fields (nuclear magnetism) and their impact on physical observables in rotating nuclei are studied in the framework of covariant density functional theory (CDFT). It is shown that they have profound effect on the dynamic and kinematic moments of inertia. Particle number, configuration, and rotational frequency dependencies of their impact on the moments of inertia have been analyzed in a systematic way. Nuclear magnetism can also considerably modify the band crossing features such as crossing frequencies and the properties of the kinematic and dynamic moments of inertia in the band crossing region. The impact of time-odd mean fields on the moments of inertia in the regions away from band crossing only weakly depends on the relativistic mean-field parametrization, reflecting good localization of the properties of time-odd mean fields in CDFT. The moments of inertia of normal-deformed nuclei considerably deviate from the rigid-body value. On the contrary, superdeformed and hyperdeformed nuclei have the moments of inertia which are close to rigid-body value. The structure of the currents in rotating frame, their microscopic origin, and the relations to the moments of inertia have been systematically analyzed. The phenomenon of signature separation in odd-odd nuclei, induced by time-odd mean fields, has been analyzed in detail.
Spin-symmetry conversion and internal rotation in high J molecular systems
NASA Astrophysics Data System (ADS)
Mitchell, Justin; Harter, William
2006-05-01
Dynamics and spectra of molecules with internal rotation or rovibrational coupling is approximately modeled by rigid or semi-rigid rotors with attached gyroscopes. Using Rotational Energy (RE)^1 surfaces, high resolution molecular spectra for high angular momentum show two distinct but related phenomena; spin-symmetry conversion and internal rotation. For both cases the high total angular momentum allows for transitions that would otherwise be forbidden. Molecular body-frame J-localization effects associated with tight energy level-clusters dominate the rovibronic spectra of high symmetry molecules, particularly spherical tops at J>10. ^2 The effects include large and widespread spin-symmetry mixing contrary to conventional wisdom^3 about weak nuclear moments. Such effects are discussed showing how RE surface plots may predict them even at low J. Classical dynamics of axially constrained rotors are approximated by intersecting rotational-energy-surfaces (RES) that have (J-S).B.(J-S) forms in the limit of constraints that do no work. Semi-classical eigensolutions are compared to those found by direct diagonalization. ^1 W.G Hater, in Handbook of Atomic, Molecular and Optical Physics, edited by G.W.F Drake (Springer, Germany 2006) ^2 W. G. Harter, Phys. Rev. A24,192-262(1981). ^3 G. Herzberg, Infrared and Raman Spectra (VanNostrand 1945) pp. 458,463.
FMRI 3D registration based on Fourier space subsets using neural networks.
Freire, Luis C; Gouveia, Ana R; Godinho, Fernando M
2010-01-01
In this work, we present a neural network (NN) based method designed for 3D rigid-body registration of FMRI time series, which relies on a limited number of Fourier coefficients of the images to be aligned. These coefficients, which are comprised in a small cubic neighborhood located at the first octant of a 3D Fourier space (including the DC component), are then fed into six NN during the learning stage. Each NN yields the estimates of a registration parameter. The proposed method was assessed for 3D rigid-body transformations, using DC neighborhoods of different sizes. The mean absolute registration errors are of approximately 0.030 mm in translations and 0.030 deg in rotations, for the typical motion amplitudes encountered in FMRI studies. The construction of the training set and the learning stage are fast requiring, respectively, 90 s and 1 to 12 s, depending on the number of input and hidden units of the NN. We believe that NN-based approaches to the problem of FMRI registration can be of great interest in the future. For instance, NN relying on limited K-space data (possibly in navigation echoes) can be a valid solution to the problem of prospective (in frame) FMRI registration.
Pasqual, Alexander Mattioli; Herzog, Philippe; Arruda, José Roberto de França
2010-12-01
Sound directivity control is made possible by a compact array of independent loudspeakers operating at the same frequency range. The drivers are usually distributed over a sphere-like frame according to a Platonic solid geometry to obtain a highly symmetrical configuration. The radiation pattern of spherical loudspeaker arrays has been predicted from the surface velocity pattern by approximating the drivers membranes as rigid vibrating spherical caps, although a rigorous assessment of this model has not been provided so far. Many aspects concerning compact array electromechanics remain unclear, such as the effects on the acoustical performance of the drivers interaction inside the array cavity, or the fact that voltages rather than velocities are controlled in practice. This work presents a detailed investigation of the electromechanical behavior of spherical loudspeaker arrays. Simulation results are shown to agree with laser vibrometer measurements and experimental sound power data obtained for a 12-driver spherical array prototype at low frequencies, whereas the non-rigid body motion and the first cavity eigenfrequency yield a discrepancy between theoretical and experimental results at high frequencies. Finally, although the internal acoustic coupling affects the drivers vibration in the low-frequency range, it does not play an important role on the radiated sound power.
Frames and knowledge in mixed media: how activation changes information intake.
Veenstra, Aaron S; Sayre, Ben; Shah, Dhavan V; McLeod, Douglas M
2008-08-01
Many people consider strategic framing, the journalistic tendency to reduce politics to a game or competition focused on the tactical maneuvers of political actors, to be harmful to democracy because it erodes citizen interest in the democratic process. Our results demonstrate that this is not always the case. Testing the effects of textual strategic frames and video processing in a digital environment, we show that strategic frames may also provide a context that is more conducive to learning in mixed media news environments than that provided by value frames, those focused on the value conflict between principled policy opponents. Further analysis reveals that this effect is most clearly seen among people who read political blogs (i.e., those who are already active and interested in politics). Our data suggest that for individuals with cognitive networks built around ideological concerns, such as blog readers, value-framed messages provide cues to stop encoding new information, while strategically framed messages lead people to continue absorbing and learning in mixed media environments.
Osseous adaptation to continuous loading of rigid endosseous implants
NASA Technical Reports Server (NTRS)
Roberts, W. E.; Smith, R. K.; Mozsary, P. G.; Zilberman, Y.; Smith, R. S.
1984-01-01
The effect of loading on etched Ti implants in the femurs of young (3 mo) and adult (6 mo) rabbits is investigated experimentally. The results are presented in photographs, fluorescence and polarization micrographs, radiographs, and drawings and discussed. Implantation is followed by formation of coarse woven bone within 3 d and mature lamellar bone by 6 wks, with nonspecific subperiosteal bony hypertrophy in the young rabbits only. Spring loading at 100 g produces spontaneous spiral-type fractures when applied immediately, but the implants remain rigid when loads are applied after 6-12 wks of healing. The mechanisms of bone formation involved are examined, and the potential of endosseous implants as anchors in orthodontics or dentofacial-orthopedics is confirmed.
3D indoor modeling using a hand-held embedded system with multiple laser range scanners
NASA Astrophysics Data System (ADS)
Hu, Shaoxing; Wang, Duhu; Xu, Shike
2016-10-01
Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.
Non-rigid estimation of cell motion in calcium time-lapse images
NASA Astrophysics Data System (ADS)
Hachi, Siham; Lucumi Moreno, Edinson; Desmet, An-Sofie; Vanden Berghe, Pieter; Fleming, Ronan M. T.
2016-03-01
Calcium imaging is a widely used technique in neuroscience permitting the simultaneous monitoring of electro- physiological activity of hundreds of neurons at single cell resolution. Identification of neuronal activity requires rapid and reliable image analysis techniques, especially when neurons fire and move simultaneously over time. Traditionally, image segmentation is performed to extract individual neurons in the first frame of a calcium sequence. Thereafter, the mean intensity is calculated from the same region of interest in each frame to infer calcium signals. However, when cells move, deform and fire, this segmentation on its own generates artefacts and therefore biased neuronal activity. Therefore, there is a pressing need to develop a more efficient cell tracking technique. We hereby present a novel vision-based cell tracking scheme using a thin-plate spline deformable model. The thin-plate spline warping is based on control points detected using the Fast from Accelerated Segment Test descriptor and tracked using the Lucas-Kanade optical flow. Our method is able to track neurons in calcium time-series, even when there are large changes in intensity, such as during a firing event. The robustness and efficiency of the proposed approach is validated on real calcium time-lapse images of a neuronal population.
Achieving real-time capsule endoscopy (CE) video visualization through panoramic imaging
NASA Astrophysics Data System (ADS)
Yi, Steven; Xie, Jean; Mui, Peter; Leighton, Jonathan A.
2013-02-01
In this paper, we mainly present a novel and real-time capsule endoscopy (CE) video visualization concept based on panoramic imaging. Typical CE videos run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. To date, there is no commercially available tool capable of providing stabilized and processed CE video that is easy to analyze in real time. The burden on physicians' disease finding efforts is thus big. In fact, since the CE camera sensor has a limited forward looking view and low image frame rate (typical 2 frames per second), and captures very close range imaging on the GI tract surface, it is no surprise that traditional visualization method based on tracking and registration often fails to work. This paper presents a novel concept for real-time CE video stabilization and display. Instead of directly working on traditional forward looking FOV (field of view) images, we work on panoramic images to bypass many problems facing traditional imaging modalities. Methods on panoramic image generation based on optical lens principle leading to real-time data visualization will be presented. In addition, non-rigid panoramic image registration methods will be discussed.
21 CFR 868.5860 - Pressure tubing and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pressure tubing and accessories. 868.5860 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5860 Pressure tubing and accessories. (a) Identification. Pressure tubing and accessories are flexible or rigid devices intended to...
Vishwanath, Arun
2009-07-01
The American College of Medical Informatics rated the lack of willingness to pay for the patient health record (PHR) as the biggest obstacles to its rapid diffusion. Extending research propositions from the decision sciences and political communication, this study tests the influence of different types of emphasis frames on increasing consumer willingness to pay for the PHR. Using a randomized experiment embedded within a probability survey, the effects of 3 different types of emphasis frames (individual-focused, collective-focused, and joint), along with a no-frames control, are tested on a sample of early and later technology adopters. The results indicate a significant relationship between the type of frame and the type of adopter. Early adopters were more susceptible to individual-focused frames that made causal attributions at the individual level, whereas later adopters were significantly influenced by collective-focused frames that made causal attributions at the societal level. Interestingly, the framing effect continued and significantly influenced both early and later adopters' willingness to pay for the PHR. The findings demonstrate the need to carefully communicate the value of a technology to adopters and suggest the possibility of using frames to spur the diffusion of PHRs.
A Reconfigurable Real-Time Compressive-Sampling Camera for Biological Applications
Fu, Bo; Pitter, Mark C.; Russell, Noah A.
2011-01-01
Many applications in biology, such as long-term functional imaging of neural and cardiac systems, require continuous high-speed imaging. This is typically not possible, however, using commercially available systems. The frame rate and the recording time of high-speed cameras are limited by the digitization rate and the capacity of on-camera memory. Further restrictions are often imposed by the limited bandwidth of the data link to the host computer. Even if the system bandwidth is not a limiting factor, continuous high-speed acquisition results in very large volumes of data that are difficult to handle, particularly when real-time analysis is required. In response to this issue many cameras allow a predetermined, rectangular region of interest (ROI) to be sampled, however this approach lacks flexibility and is blind to the image region outside of the ROI. We have addressed this problem by building a camera system using a randomly-addressable CMOS sensor. The camera has a low bandwidth, but is able to capture continuous high-speed images of an arbitrarily defined ROI, using most of the available bandwidth, while simultaneously acquiring low-speed, full frame images using the remaining bandwidth. In addition, the camera is able to use the full-frame information to recalculate the positions of targets and update the high-speed ROIs without interrupting acquisition. In this way the camera is capable of imaging moving targets at high-speed while simultaneously imaging the whole frame at a lower speed. We have used this camera system to monitor the heartbeat and blood cell flow of a water flea (Daphnia) at frame rates in excess of 1500 fps. PMID:22028852
Boundary shear stress along rigid trapezoidal bends
Christopher I. Thornton; Kyung-Seop Sin; Paul Sclafani; Steven R. Abt
2012-01-01
The migration of alluvial channels through the geologic landform is an outcome of the natural erosive processes. Mankind continually attempts to stabilize channel meandering processes, both vertically and horizontally, to reduce sediment discharge, provide boundary definition, and enable economic development along the river's edge. A critical component in the...
Context-Aware Design for Process Flexibility and Adaptation
ERIC Educational Resources Information Center
Yao, Wen
2012-01-01
Today's organizations face continuous and unprecedented changes in their business environment. Traditional process design tools tend to be inflexible and can only support rigidly defined processes (e.g., order processing in the supply chain). This considerably restricts their real-world applications value, especially in the dynamic and…
Evaluation of Force Transfer Around Openings - Experimental and Analytical Studies
Borjen Yeh; Tom Skaggs; Frank Lam; Minghao Li; Douglas Rammer; James Wacker
2011-01-01
Wood structural panel (WSP) sheathed shear walls and diaphragms are the primary lateral-load-resistingelements in wood-frame construction. The historical performance of light-frame structures in North America is very good due, in part, to model building codes that are designed to safeguard life safety. These model building codes have spawned continual improvement and...
Variables to Consider in Planning Research for Effective Instruction: A Conceptual Framework.
ERIC Educational Resources Information Center
Uprichard, A. Edward
In this paper the belief is stated that researchers need to develop some type of conceptual frame for improving continuity of studies and specificity of treatment. This paper describes such a conceptual frame and its implications for research. The paper states that the framework was designed to help researchers identify, classify, and/or quantify…
Low-energy electron scattering from CO. 2: Ab-initio study using the frame-transformation theory
NASA Technical Reports Server (NTRS)
Chandra, N.
1976-01-01
The Wigner-Eisenbud R matrix method has been combined with the frame transformation theory to study electron scattering from molecular systems. The R matrix, calculated at the boundary point of the molecular core radius, has been transformed to the space frame in order to continue the solution of the scattering equations in the outer region where rotational motion of the nuclei is taken into account. This procedure has been applied to a model calculation of thermal energy electron scattering from CO.
Analysis of the Use of Frame Construction and Modular Additions in City Centre
NASA Astrophysics Data System (ADS)
Milwicz, Roman; Milwicz, Natalia; Dubas, Sebastian
2017-10-01
The living urban fabric can be characterized by the continuous introduction of changes and additions. The city centre is subject to specific restrictions due to the conservation protection and high demand on aesthetics aspect, thermal insulation, construction cost and the ratio of usable area of the building area. This article presents a comparative analysis of traditional construction with light frame and modular construction for the above-mentioned issues. Timber frame structure technology was suggested as effective, economic and innovative solutions for modular additions on buildings in city centres.
Rivera, Gabriel; Rivera, Angela R V; Dougherty, Erin E; Blob, Richard W
2006-11-01
The ability to capture prey and avoid predation in aquatic habitats depends strongly on the ability to perform unsteady maneuvers (e.g. turns), which itself depends strongly on body flexibility. Two previous studies of turning performance in rigid-bodied taxa have found either high maneuverability or high agility, but not both. However, examinations of aquatic turning performance in rigid-bodied animals have had limited taxonomic scope and, as such, the effects of many body shapes and designs on aquatic maneuverability and agility have yet to be examined. Turtles represent the oldest extant lineage of rigid-bodied vertebrates and the only aquatic rigid-bodied tetrapods. We evaluated the aquatic turning performance of painted turtles, Chrysemys picta (Schneider, 1783) using the minimum length-specific radius of the turning path (R/L) and the average turning rate (omega(avg)) as measures of maneuverability and agility, respectively. We filmed turtles conducting forward and backward turns in an aquatic arena. Each type of turn was executed using a different pattern of limb movements. During forward turns, turtles consistently protracted the inboard forelimb and held it stationary into the flow, while continuing to move the outboard forelimb and both hindlimbs as in rectilinear swimming. The limb movements of backward turns were more complex than those of forward turns, but involved near simultaneous retraction and protraction of contralateral fore- and hindlimbs, respectively. Forward turns had a minimum R/L of 0.0018 (the second single lowest value reported from any animal) and a maximum omega(avg) of 247.1 degrees. Values of R/L for backward turns (0.0091-0.0950 L) were much less variable than that of forward turns (0.0018-1.0442 L). The maneuverability of turtles is similar to that recorded previously for rigid-bodied boxfish. However, several morphological features of turtles (e.g. shell morphology and limb position) appear to increase agility relative to the body design of boxfish.
A Geodetic Strain Rate Model for the Pacific-North American Plate Boundary, western United States
NASA Astrophysics Data System (ADS)
Kreemer, C.; Hammond, W. C.; Blewitt, G.; Holland, A. A.; Bennett, R. A.
2012-04-01
We present a model of crustal strain rates derived from GPS measurements of horizontal station velocities in the Pacific-North American plate boundary in the western United States. The model reflects a best estimate of present-day deformation from the San Andreas fault system in the west to the Basin and Range province in the east. Of the total 2,846 GPS velocities used in the model, 1,197 are derived by ourselves, and 1,649 are taken from (mostly) published results. The velocities derived by ourselves (the "UNR solution") are estimated from GPS position time-series of continuous and semi-continuous stations for which data are publicly available. We estimated ITRF2005 positions from 2002-2011.5 using JPL's GIPSY-OASIS II software with ambiguity resolution applied using our custom Ambizap software. Only stations with time-series that span at least 2.25 years are considered. We removed from the time-series continental-scale common-mode errors using a spatially-varying filtering technique. Velocity uncertainties (typically 0.1-0.3 mm/yr) assume that the time-series contain flicker plus white noise. We used a subset of stations on the stable parts of the Pacific and North American plates to estimate the Pacific-North American pole of rotation. This pole is applied as a boundary condition to the model and the North American - ITRF2005 pole is used to rotate our velocities into a North America fixed reference frame. We do not include parts of the time-series that show curvature due to post-seismic deformation after major earthquakes and we also exclude stations whose time-series display a significant unexplained non-linearity or that are near volcanic centers. Transient effects longer than the observation period (i.e., slow viscoelastic relaxation) are left in the data. We added to the UNR solution velocities from 12 other studies. The velocities are transformed onto the UNR solution's reference frame by estimating and applying a translation and rotation that minimizes the velocities at collocated stations. We removed obvious outliers and velocities in areas that we identified to undergo subsidence likely due to excessive water pumping. For the strain rate calculations we excluded GPS stations with anomalous vertical motion or annual horizontal periodicity, which are indicators of local site instability. First, we used the stations from the UNR solution to create a Delaunay triangulation and estimated the horizontal strain rate components (and rigid body rotation) for each triangle in a linear least-squares inversion using the horizontal velocities as input. Some level of spatial damping was applied to minimize unnecessary spatial variation in the model parameters. The strain rates estimates were then used as a priori strain rate variances in a method that fits continuous bi-cubic Bessel spline functions through the velocity gradient field while minimizing the weighted misfit to all velocities. A minimal level of spatial smoothing of the variances was applied. The strain rate tensor model is shown by contours of the second invariant of the tensor, which is a measure of the amplitude that is coordinate frame independent. We also show a map of the tensor style and of the signal-to-noise ratio of the model.
Chaotic sources of noise in machine acoustics
NASA Astrophysics Data System (ADS)
Moon, F. C., Prof.; Broschart, Dipl.-Ing. T.
1994-05-01
In this paper a model is posited for deterministic, random-like noise in machines with sliding rigid parts impacting linear continuous machine structures. Such problems occur in gear transmission systems. A mathematical model is proposed to explain the random-like structure-borne and air-borne noise from such systems when the input is a periodic deterministic excitation of the quasi-rigid impacting parts. An experimental study is presented which supports the model. A thin circular plate is impacted by a chaotically vibrating mass excited by a sinusoidal moving base. The results suggest that the plate vibrations might be predicted by replacing the chaotic vibrating mass with a probabilistic forcing function. Prechaotic vibrations of the impacting mass show classical period doubling phenomena.
Folser, George R.
1980-01-01
Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.
Ice-coupled wave propagation across an abrupt change in ice rigidity, density, or thickness
NASA Astrophysics Data System (ADS)
Barrett, Murray D.; Squire, Vernon A.
1996-09-01
The model of Fox and Squire [1990, 1991, 1994], which discusses the oblique propagation of surface gravity waves from the open sea into an ice sheet of constant thickness and properties, is augmented to include propagation across an abrupt transition of properties within a continuous ice sheet or across two dissimilar ice sheets that abut one another but are free to move independently. Rigidity, thickness, and/or density may change across the transition, allowing, for example, the modeling of ice-coupled waves into, across, and out of refrozen leads and polynyas, across cracks, and through coherent pressure ridges. Reflection and transmission behavior is reported for various changes in properties under both types of transition conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duchaineau, M.; Wolinsky, M.; Sigeti, D.E.
Terrain visualization is a difficult problem for applications requiring accurate images of large datasets at high frame rates, such as flight simulation and ground-based aircraft testing using synthetic sensor stimulation. On current graphics hardware, the problem is to maintain dynamic, view-dependent triangle meshes and texture maps that produce good images at the required frame rate. We present an algorithm for constructing triangle meshes that optimizes flexible view-dependent error metrics, produces guaranteed error bounds, achieves specified triangle counts directly, and uses frame-to-frame coherence to operate at high frame rates for thousands of triangles per frame. Our method, dubbed Real-time Optimally Adaptingmore » Meshes (ROAM), uses two priority queues to drive split and merge operations that maintain continuous triangulations built from pre-processed bintree triangles. We introduce two additional performance optimizations: incremental triangle stripping and priority-computation deferral lists. ROAM execution time is proportionate to the number of triangle changes per frame, which is typically a few percent of the output mesh size, hence ROAM performance is insensitive to the resolution and extent of the input terrain. Dynamic terrain and simple vertex morphing are supported.« less
How does symmetry impact the flexibility of proteins?
Schulze, Bernd; Sljoka, Adnan; Whiteley, Walter
2014-02-13
It is well known that (i) the flexibility and rigidity of proteins are central to their function, (ii) a number of oligomers with several copies of individual protein chains assemble with symmetry in the native state and (iii) added symmetry sometimes leads to added flexibility in structures. We observe that the most common symmetry classes of protein oligomers are also the symmetry classes that lead to increased flexibility in certain three-dimensional structures-and investigate the possible significance of this coincidence. This builds on the well-developed theory of generic rigidity of body-bar frameworks, which permits an analysis of the rigidity and flexibility of molecular structures such as proteins via fast combinatorial algorithms. In particular, we outline some very simple counting rules and possible algorithmic extensions that allow us to predict continuous symmetry-preserving motions in body-bar frameworks that possess non-trivial point-group symmetry. For simplicity, we focus on dimers, which typically assemble with twofold rotational axes, and often have allosteric function that requires motions to link distant sites on the two protein chains.
Deformable devices with integrated functional nanomaterials for wearable electronics.
Kim, Jaemin; Lee, Jongsu; Son, Donghee; Choi, Moon Kee; Kim, Dae-Hyeong
2016-01-01
As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.
How does symmetry impact the flexibility of proteins?
Schulze, Bernd; Sljoka, Adnan; Whiteley, Walter
2014-01-01
It is well known that (i) the flexibility and rigidity of proteins are central to their function, (ii) a number of oligomers with several copies of individual protein chains assemble with symmetry in the native state and (iii) added symmetry sometimes leads to added flexibility in structures. We observe that the most common symmetry classes of protein oligomers are also the symmetry classes that lead to increased flexibility in certain three-dimensional structures—and investigate the possible significance of this coincidence. This builds on the well-developed theory of generic rigidity of body–bar frameworks, which permits an analysis of the rigidity and flexibility of molecular structures such as proteins via fast combinatorial algorithms. In particular, we outline some very simple counting rules and possible algorithmic extensions that allow us to predict continuous symmetry-preserving motions in body–bar frameworks that possess non-trivial point-group symmetry. For simplicity, we focus on dimers, which typically assemble with twofold rotational axes, and often have allosteric function that requires motions to link distant sites on the two protein chains. PMID:24379431
Deformable devices with integrated functional nanomaterials for wearable electronics
NASA Astrophysics Data System (ADS)
Kim, Jaemin; Lee, Jongsu; Son, Donghee; Choi, Moon Kee; Kim, Dae-Hyeong
2016-03-01
As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.
Crack identification for rigid pavements using unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker
2017-09-01
Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.
NASA Astrophysics Data System (ADS)
Phan, Duoc T.; Lim, James B. P.; Sha, Wei; Siew, Calvin Y. M.; Tanyimboh, Tiku T.; Issa, Honar K.; Mohammad, Fouad A.
2013-04-01
Cold-formed steel portal frames are a popular form of construction for low-rise commercial, light industrial and agricultural buildings with spans of up to 20 m. In this article, a real-coded genetic algorithm is described that is used to minimize the cost of the main frame of such buildings. The key decision variables considered in this proposed algorithm consist of both the spacing and pitch of the frame as continuous variables, as well as the discrete section sizes. A routine taking the structural analysis and frame design for cold-formed steel sections is embedded into a genetic algorithm. The results show that the real-coded genetic algorithm handles effectively the mixture of design variables, with high robustness and consistency in achieving the optimum solution. All wind load combinations according to Australian code are considered in this research. Results for frames with knee braces are also included, for which the optimization achieved even larger savings in cost.
NASA Astrophysics Data System (ADS)
Murray, Natalie; Bourne, Neil; Field, John
1997-07-01
Brar and Bless pioneeered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass. We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test. In this configuration two rods impact one upon the other in a symmetrical version of the Taylor test geometry in which the impact is perfectly rigid in the centre of mass frame. Previous work in the laboratory has characterised the three glass types (float, borosilicate and a high density lead glass). These experiments will identify the 1D stress failure mechanisms from high-speed photography and the stress and particle velocity histories will be interpreted in the light of these results. The differences in response of the three glasses will be highlighted.
1967-09-09
This image depicts a firing of a single H-1 engine at the Marshall Space Flight Center’s (MSFC’s) Power Plant test stand. This 1950s test stand, inherited from the Army, was used to test fire engines until the Test Area was completed in the latter 1960s. The H-1 engine was the workhorse of the first Saturn launch vehicles and used in the Saturn I, Block 1 and II, and in the Saturn IB. The eight H-1 engines were attached to a thrust frame on the vehicle’s aft end in two different ways. Four engines are rigidly attached to the inboard position and canted at a three degree angle to the long axis of the booster. The other four engines, mounted in the outboard position, are canted at six degrees.
Hypersonic Wind Tunnel Test of a Flare-type Membrane Aeroshell for Atmospheric Entry Capsules
NASA Astrophysics Data System (ADS)
Yamada, Kazuhiko; Koyama, Masashi; Kimura, Yusuke; Suzuki, Kojiro; Abe, Takashi; Koichi Hayashi, A.
A flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system. In this study, hypersonic wind tunnel tests were carried out to investigate the behavior, aerodynamic characteristics and aerodynamic heating environment in hypersonic flow for a previously developed capsule-type vehicle with a flare-type membrane aeroshell made of ZYLON textile sustained by a rigid torus frame. Two different models with different flare angles (45º and 60º) were tested to experimentally clarify the effect of flare angle. Results indicate that flare angle of aeroshell has significant and complicate effect on flow field and aerodynamic heating in hypersonic flow at Mach 9.45 and the flare angle is very important parameter for vehicle design with the flare-type membrane aeroshell.
Procedure for utilizing the lift and thrust forces of ornithopters
NASA Technical Reports Server (NTRS)
Bezard, C.
1985-01-01
This procedure is distinguished by two beating wings which together describe, in space, a succession of interlaced triangles. On these wings, whose incidence varies automatically, identical forces are exerted: simultaneous lift and thrust when they make their descent, which is inclined toward the front of the craft, and lift alone when they make their ascent, which is inclined toward the rear of the craft and follows a slide horizontal movement. A mechanical device makes these movements possible. It includes: two wings with hollow profiles, connected by a framework located above a rigid frame and attached to it by bars with joints. These bars are moved with control rods which gear down the drive force. A mechanism with elastic bands or springs automatically varies the incidence of the wings.
NASA Astrophysics Data System (ADS)
Fenz, Wolfgang; Dirnberger, Johannes
2015-03-01
Providing suitable training for aspiring neurosurgeons is becoming more and more problematic. The increasing popularity of the endovascular treatment of intracranial aneurysms leads to a lack of simple surgical situations for clipping operations, leaving mainly the complex cases, which present even experienced surgeons with a challenge. To alleviate this situation, we have developed a training simulator with haptic interaction allowing trainees to practice virtual clipping surgeries on real patient-specific vessel geometries. By using specialized finite element (FEM) algorithms (fast finite element method, matrix condensation) combined with GPU acceleration, we can achieve the necessary frame rate for smooth real-time interaction with the detailed models needed for a realistic simulation of the vessel wall deformation caused by the clamping with surgical clips. Vessel wall geometries for typical training scenarios were obtained from 3D-reconstructed medical image data, while for the instruments (clipping forceps, various types of clips, suction tubes) we use models provided by manufacturer Aesculap AG. Collisions between vessel and instruments have to be continuously detected and transformed into corresponding boundary conditions and feedback forces, calculated using a contact plane method. After a training, the achieved result can be assessed based on various criteria, including a simulation of the residual blood flow into the aneurysm. Rigid models of the surgical access and surrounding brain tissue, plus coupling a real forceps to the haptic input device further increase the realism of the simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
This report presents the design and evaluation of a innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wallmore » system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.« less
Spherical-wave expansions of piston-radiator fields.
Wittmann, R C; Yaghjian, A D
1991-09-01
Simple spherical-wave expansions of the continuous-wave fields of a circular piston radiator in a rigid baffle are derived. These expansions are valid throughout the illuminated half-space and are useful for efficient numerical computation in the near-field region. Multipole coefficients are given by closed-form expressions which can be evaluated recursively.
Removing flicker based on sparse color correspondences in old film restoration
NASA Astrophysics Data System (ADS)
Huang, Xi; Ding, Youdong; Yu, Bing; Xia, Tianran
2018-04-01
In the long history of human civilization, archived film is an indispensable part of it, and using digital method to repair damaged film is also a mainstream trend nowadays. In this paper, we propose a sparse color correspondences based technique to remove fading flicker for old films. Our model, combined with multi frame images to establish a simple correction model, includes three key steps. Firstly, we recover sparse color correspondences in the input frames to build a matrix with many missing entries. Secondly, we present a low-rank matrix factorization approach to estimate the unknown parameters of this model. Finally, we adopt a two-step strategy that divide the estimated parameters into reference frame parameters for color recovery correction and other frame parameters for color consistency correction to remove flicker. Our method combined multi-frames takes continuity of the input sequence into account, and the experimental results show the method can remove fading flicker efficiently.
A semi-automatic 2D-to-3D video conversion with adaptive key-frame selection
NASA Astrophysics Data System (ADS)
Ju, Kuanyu; Xiong, Hongkai
2014-11-01
To compensate the deficit of 3D content, 2D to 3D video conversion (2D-to-3D) has recently attracted more attention from both industrial and academic communities. The semi-automatic 2D-to-3D conversion which estimates corresponding depth of non-key-frames through key-frames is more desirable owing to its advantage of balancing labor cost and 3D effects. The location of key-frames plays a role on quality of depth propagation. This paper proposes a semi-automatic 2D-to-3D scheme with adaptive key-frame selection to keep temporal continuity more reliable and reduce the depth propagation errors caused by occlusion. The potential key-frames would be localized in terms of clustered color variation and motion intensity. The distance of key-frame interval is also taken into account to keep the accumulated propagation errors under control and guarantee minimal user interaction. Once their depth maps are aligned with user interaction, the non-key-frames depth maps would be automatically propagated by shifted bilateral filtering. Considering that depth of objects may change due to the objects motion or camera zoom in/out effect, a bi-directional depth propagation scheme is adopted where a non-key frame is interpolated from two adjacent key frames. The experimental results show that the proposed scheme has better performance than existing 2D-to-3D scheme with fixed key-frame interval.
TH-AB-202-01: Daily Lung Tumor Motion Characterization On EPIDs Using a Markerless Tiling Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozario, T; University of Texas at Dallas, Richardson, TX; Chiu, T
Purpose: Tracking lung tumor motion in real time allows for target dose escalation while simultaneously reducing dose to sensitive structures, thus increasing local control without increasing toxicity. We present a novel intra-fractional markerless lung tumor tracking algorithm using MV treatment beam images acquired during treatment delivery. Strong signals superimposed on the tumor significantly reduced the soft tissue resolution; while different imaging modalities involved introduce global imaging discrepancies. This reduced the comparison accuracies. A simple yet elegant Tiling algorithm is reported to overcome the aforementioned issues. Methods: MV treatment beam images were acquired continuously in beam’s eye view (BEV) by anmore » electronic portal imaging device (EPID) during treatment and analyzed to obtain tumor positions on every frame. Every frame of the MV image was simulated by a composite of two components with separate digitally reconstructed radiographs (DRRs): all non-moving structures and the tumor. This Titling algorithm divides the global composite DRR and the corresponding MV projection into sub-images called tiles. Rigid registration is performed independently on tile-pairs in order to improve local soft tissue resolution. This enables the composite DRR to be transformed accurately to match the MV projection and attain a high correlation value through a pixel-based linear transformation. The highest cumulative correlation for all tile-pairs achieved over a user-defined search range indicates the 2-D coordinates of the tumor location on the MV projection. Results: This algorithm was successfully applied to cine-mode BEV images acquired during two SBRT plans delivered five times with different motion patterns to each of two phantoms. Approximately 15000 beam’s eye view images were analyzed and tumor locations were successfully identified on every projection with a maximum/average error of 1.8 mm / 1.0 mm. Conclusion: Despite the presence of strong anatomical signal overlapping with tumor images, this markerless detection algorithm accurately tracks intrafractional lung tumor motions. This project is partially supported by an Elekta research grant.« less
2014-09-29
Framing Reinforcement Learning from Human Reward: Reward Positivity, Temporal Discounting, Episodicity , and Performance W. Bradley Knox...positive a trainer’s reward values are; temporal discounting, the extent to which future reward is discounted in value; episodicity , whether task...learning occurs in discrete learning episodes instead of one continuing session; and task performance, the agent’s performance on the task the trainer
Thaler, Lore; Todd, James T; Spering, Miriam; Gegenfurtner, Karl R
2007-04-20
Four experiments in which observers judged the apparent "rubberiness" of a line segment undergoing different types of rigid motion are reported. The results reveal that observers perceive illusory bending when the motion involves certain combinations of translational and rotational components and that the illusion is maximized when these components are presented at a frequency of approximately 3 Hz with a relative phase angle of approximately 120 degrees . Smooth pursuit eye movements can amplify or attenuate the illusion, which is consistent with other results reported in the literature that show effects of eye movements on perceived image motion. The illusion is unaffected by background motion that is in counterphase with the motion of the line segment but is significantly attenuated by background motion that is in-phase. This is consistent with the idea that human observers integrate motion signals within a local frame of reference, and it provides strong evidence that visual persistency cannot be the sole cause of the illusion as was suggested by J. R. Pomerantz (1983). An analysis of the motion patterns suggests that the illusory bending motion may be due to an inability of observers to accurately track the motions of features whose image displacements undergo rapid simultaneous changes in both space and time. A measure of these changes is presented, which is highly correlated with observers' numerical ratings of rubberiness.
Biologically-inspired soft exosuit.
Asbeck, Alan T; Dyer, Robert J; Larusson, Arnar F; Walsh, Conor J
2013-06-01
In this paper, we present the design and evaluation of a novel soft cable-driven exosuit that can apply forces to the body to assist walking. Unlike traditional exoskeletons which contain rigid framing elements, the soft exosuit is worn like clothing, yet can generate moments at the ankle and hip with magnitudes of 18% and 30% of those naturally generated by the body during walking, respectively. Our design uses geared motors to pull on Bowden cables connected to the suit near the ankle. The suit has the advantages over a traditional exoskeleton in that the wearer's joints are unconstrained by external rigid structures, and the worn part of the suit is extremely light, which minimizes the suit's unintentional interference with the body's natural biomechanics. However, a soft suit presents challenges related to actuation force transfer and control, since the body is compliant and cannot support large pressures comfortably. We discuss the design of the suit and actuation system, including principles by which soft suits can transfer force to the body effectively and the biological inspiration for the design. For a soft exosuit, an important design parameter is the combined effective stiffness of the suit and its interface to the wearer. We characterize the exosuit's effective stiffness, and present preliminary results from it generating assistive torques to a subject during walking. We envision such an exosuit having broad applicability for assisting healthy individuals as well as those with muscle weakness.
Kakinohana, O; Hefferan, M P; Nakamura, S; Kakinohana, M; Galik, J; Tomori, Z; Marsala, J; Yaksh, T L; Marsala, M
2006-09-01
Transient spinal cord ischemia may lead to a progressive degeneration of spinal interneurons and subsequently to increased hind limb motor tone. In the present work we sought to characterize the rigidity and spasticity components of this altered motor function by: i) tonic electromyographic activity measured in gastrocnemius muscle before and after ischemia, ii) measurement of muscle resistance during the period of ankle flexion and corresponding changes in electromyographic activity, iii) changes in Hoffmann reflex, and, iv) motor evoked potentials. In addition the effect of intrathecal treatment with baclofen (GABAB receptor agonist; 1 microg), nipecotic acid (GABA uptake inhibitor; 300 microg) and dorsal L2-L5 rhizotomy on spasticity and rigidity was studied. Finally, the changes in spinal choline acetyltransferase (ChAT) and vesicular glutamate transporter 2 and 1 (VGLUT2 and VGLUT1) expression were characterized using immunofluorescence and confocal microscopy. At 3-7 days after ischemia an increase in tonic electromyographic activity with a variable degree of rigidity was seen. In animals with modest rigidity a velocity-dependent increase in muscle resistance and corresponding appearance in electromyographic activity (consistent with the presence of spasticity) was measured during ankle rotation (4-612 degrees /s rotation). Measurement of the H-reflex revealed a significant increase in Hmax/Mmax ratio and a significant loss of rate-dependent inhibition. In the same animals a potent increase in motor evoked potential amplitudes was measured and this change correlated positively with the increased H-reflex responses. Spasticity and rigidity were consistently present for a minimum of 3 months after ischemia. Intrathecal treatment with baclofen (GABA B receptor agonist) and nipecotic acid (GABA uptake inhibitor) provided a significant suppression of spasticity, rigidity, H-reflex or motor evoked potentials. Dorsal L2-L5 rhizotomy significantly decreased muscle resistance but had no effect on increased amplitudes of motor evoked potentials. Confocal analysis of spinal cord sections at 8 weeks-12 months after ischemia revealed a continuing presence of ChAT positive alpha-motoneurons, Ia afferents and VGLUT2 and VGLUT1-positive terminals but a selective loss of small presumably inhibitory interneurons between laminae V-VII. These data demonstrate that brief transient spinal cord ischemia in rat leads to a consistent development of spasticity and rigidity. The lack of significant suppressive effect of dorsal L2-L5 rhizotomy on motor evoked potentials response indicates that descending motor input into alpha-motoneurons is independent on Ia afferent couplings and can independently contribute to increased alpha-motoneuronal excitability. The pharmacology of this effect emphasizes the potent role of GABAergic type B receptors in regulating both the spasticity and rigidity.
Jersey number detection in sports video for athlete identification
NASA Astrophysics Data System (ADS)
Ye, Qixiang; Huang, Qingming; Jiang, Shuqiang; Liu, Yang; Gao, Wen
2005-07-01
Athlete identification is important for sport video content analysis since users often care about the video clips with their preferred athletes. In this paper, we propose a method for athlete identification by combing the segmentation, tracking and recognition procedures into a coarse-to-fine scheme for jersey number (digital characters on sport shirt) detection. Firstly, image segmentation is employed to separate the jersey number regions with its background. And size/pipe-like attributes of digital characters are used to filter out candidates. Then, a K-NN (K nearest neighbor) classifier is employed to classify a candidate into a digit in "0-9" or negative. In the recognition procedure, we use the Zernike moment features, which are invariant to rotation and scale for digital shape recognition. Synthetic training samples with different fonts are used to represent the pattern of digital characters with non-rigid deformation. Once a character candidate is detected, a SSD (smallest square distance)-based tracking procedure is started. The recognition procedure is performed every several frames in the tracking process. After tracking tens of frames, the overall recognition results are combined to determine if a candidate is a true jersey number or not by a voting procedure. Experiments on several types of sports video shows encouraging result.
NChina16: A stable geodetic reference frame for geological hazard studies in north China
NASA Astrophysics Data System (ADS)
Wang, G.; Yan, B.; Gan, W.; Geng, J.
2017-12-01
This study established a stable North China Reference Frame 2016 (NChina16) using five years of continuous GPS observations (2011.8 to 2016.8) from 12 continuously operating reference stations (CORS) fixed to the stable interior of the North China Craton. Applications of NChina16 in landslide, subsidence, and post-seismic displacement studies are illustrated. The primary result of this study is the seven parameters for transforming Cartesian ECEF (Earth-Centered, Earth-Fixed) coordinates X, Y, and Z from the International GNSS Service Reference Frame 2008 (IGS08) to NChina16. The seven parameters include the epoch that is used to tie the regional reference frame to IGS08 and the time derivatives of three translations and three rotations. A method for developing a regional geodetic reference frame is introduced in detail. The GIPSY-OASIS (V6.4) software package was used to obtain the precise point positioning (PPP) time series with respect to IGS08. The stability (accuracy) of NChina16 is about 0.5 mm/year in both vertical and horizontal directions. This study also developed a regional seasonal model for correcting vertical displacement time series data derived from the PPP solutions. Long-term GPS observations (1999-2016) from five CORS in north China were used to develop the seasonal model. According to this study, the PPP daily solutions with respect to NChina16 could achieve 2-3 mm horizontal accuracy and 4-5 mm vertical accuracy after being modified by the regional model. NChina16 will be critical to the long-term landslide, subsidence, fault, and structural monitoring in north China and for ongoing post-seismic crustal deformation studies in Japan. NChina16 will be incrementally improved and synchronized with the IGS reference frame update.
Ultra-fast high-resolution hybrid and monolithic CMOS imagers in multi-frame radiography
NASA Astrophysics Data System (ADS)
Kwiatkowski, Kris; Douence, Vincent; Bai, Yibin; Nedrow, Paul; Mariam, Fesseha; Merrill, Frank; Morris, Christopher L.; Saunders, Andy
2014-09-01
A new burst-mode, 10-frame, hybrid Si-sensor/CMOS-ROIC FPA chip has been recently fabricated at Teledyne Imaging Sensors. The intended primary use of the sensor is in the multi-frame 800 MeV proton radiography at LANL. The basic part of the hybrid is a large (48×49 mm2) stitched CMOS chip of 1100×1100 pixel count, with a minimum shutter speed of 50 ns. The performance parameters of this chip are compared to the first generation 3-frame 0.5-Mpixel custom hybrid imager. The 3-frame cameras have been in continuous use for many years, in a variety of static and dynamic experiments at LANSCE. The cameras can operate with a per-frame adjustable integration time of ~ 120ns-to- 1s, and inter-frame time of 250ns to 2s. Given the 80 ms total readout time, the original and the new imagers can be externally synchronized to 0.1-to-5 Hz, 50-ns wide proton beam pulses, and record up to ~1000-frame radiographic movies typ. of 3-to-30 minute duration. The performance of the global electronic shutter is discussed and compared to that of a high-resolution commercial front-illuminated monolithic CMOS imager.
NASA Astrophysics Data System (ADS)
Rahmouni, A.; Beidouri, Z.; Benamar, R.
2013-09-01
The purpose of the present paper was the development of a physically discrete model for geometrically nonlinear free transverse constrained vibrations of beams, which may replace, if sufficient degrees of freedom are used, the previously developed continuous nonlinear beam constrained vibration models. The discrete model proposed is an N-Degrees of Freedom (N-dof) system made of N masses placed at the ends of solid bars connected by torsional springs, presenting the beam flexural rigidity. The large transverse displacements of the bar ends induce a variation in their lengths giving rise to axial forces modelled by longitudinal springs. The calculations made allowed application of the semi-analytical model developed previously for nonlinear structural vibration involving three tensors, namely the mass tensor mij, the linear rigidity tensor kij and the nonlinearity tensor bijkl. By application of Hamilton's principle and spectral analysis, the nonlinear vibration problem is reduced to a nonlinear algebraic system, examined for increasing numbers of dof. The results obtained by the physically discrete model showed a good agreement and a quick convergence to the equivalent continuous beam model, for various fixed boundary conditions, for both the linear frequencies and the nonlinear backbone curves, and also for the corresponding mode shapes. The model, validated here for the simply supported and clamped ends, may be used in further works to present the flexural linear and nonlinear constrained vibrations of beams with various types of discontinuities in the mass or in the elasticity distributions. The development of an adequate discrete model including the effect of the axial strains induced by large displacement amplitudes, which is predominant in geometrically nonlinear transverse constrained vibrations of beams [1]. The investigation of the results such a discrete model may lead to in the case of nonlinear free vibrations. The development of the analogy between the previously developed models of geometrically nonlinear vibrations of Euler-Bernoulli continuous beams, and multidof system models made of N masses placed at the end of elastic bars connected by linear spiral springs, presenting the beam flexural rigidity. The validation of the new model via the analysis of the convergence conditions of the nonlinear frequencies obtained by the N-dof system, when N increases, and those obtained in previous works using a continuous description of the beam. In addition to the above points, the models developed in the present work, may constitute, in our opinion, a good illustration, from the didactic point of view, of the origin of the geometrical nonlinearity induced by large transverse vibration amplitudes of constrained continuous beams, which may appear as a Pythagorean Theorem effect. The first step of the work presented here was the formulation of the problem of nonlinear vibrations of the discrete system shown in Fig. 1 in terms of the semi-analytical method, denoted as SAA, developed in the early 90's by Benamar and coauthors [3], and discussed for example in [6,7]. This method has been applied successfully to various types of geometrically nonlinear problems of structural dynamics [1-3,6-8,10-12] and the objective here was to use it in order to develop a flexible discrete nonlinear model which may be useful for presenting in further works geometrically nonlinear vibrations of real beams with discontinuities in the mass, the section, or the stiffness distributions. The purpose in the present work was restricted to developing and validating the model, via comparison of the obtained dependence of the resonance frequencies of such a system on the amplitude of vibration, with the results obtained previously by continuous beams nonlinear models. In the SAA method, the dynamic system under consideration is described by the mass matrix [M], the rigidity matrix [K], and the nonlinear rigidity matrix [B], which depends on the amplitude of vibration, and involves a fourth-order nonlinearity tensor bijkl. Details are given below, corresponding to the definition of the tensors mentioned above. The analogy between the classical continuous Euler-Bernoulli model of beams and the present discrete model is developed, leading to the expressions for the equivalent spiral and axial stiffness, in terms of the continuous beam geometrical and mechanical characteristics. Some numerical results are also given, showing the amplitude dependence of the frequencies on the amplitude of vibration, and compared to the backbone curves obtained previously by the continuous nonlinear classical beam theory, presented for example in [3,5,8,15-22]. A convergence study is performed by increasing the number of masses and bars, showing a good convergence to the theoretical values of continuous beams.
Mollen, Saar; Engelen, Susanne; Kessels, Loes T E; van den Putte, Bas
2017-01-01
Current warning labels on cigarette packages are generally focused on long-term losses that can be incurred if one continues smoking. This study compares the effects of these labels against warning labels that stress short-term losses of smoking as well as labels that stress short- and long-term benefits that can be obtained when one quits smoking. A 2 (message frame: gain vs. loss) × 2 (temporal context: short vs. long term) between-subjects experiment was conducted among 132 smokers, with attitude toward quitting smoking and intention to quit smoking, as well as information-seeking behavior and message recall, as the dependent variables. Findings were in line with theory regarding message framing and temporal discounting, showing enhanced effects of gain over loss frames and short-term over long-term consequences on warning labels for attitudes and intentions. In addition, an interaction between message frame and temporal context was found. Especially, gain-framed messages showed stronger effects on intentions to quit smoking than loss-framed messages when warning labels concerned short-term outcomes. Findings suggest that current warning labels, with an emphasis on long-term negative health outcomes, should be reconsidered.
Inexpensive high vacuum feedthroughs.
NASA Technical Reports Server (NTRS)
Gerber, S.; Post, D.
1973-01-01
Description of the use of rigid coaxial cable in the construction of high vacuum coaxial and coaxial push-pull rotary motion feedthroughs. This type of feedthroughs is shown to be extremely cheap and simple to make and modify. It can be used for moderately high voltages and provides a continuous, well shielded, low-noise feedthrough cable in any desired configuration.
21 CFR 872.6650 - Massaging pick or tip for oral hygiene.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Massaging pick or tip for oral hygiene. 872.6650... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6650 Massaging pick or tip for oral hygiene. (a) Identification. A massaging pick or tip for oral hygiene is a rigid, pointed device intended...
Correction of projective distortion in long-image-sequence mosaics without prior information
NASA Astrophysics Data System (ADS)
Yang, Chenhui; Mao, Hongwei; Abousleman, Glen; Si, Jennie
2010-04-01
Image mosaicking is the process of piecing together multiple video frames or still images from a moving camera to form a wide-area or panoramic view of the scene being imaged. Mosaics have widespread applications in many areas such as security surveillance, remote sensing, geographical exploration, agricultural field surveillance, virtual reality, digital video, and medical image analysis, among others. When mosaicking a large number of still images or video frames, the quality of the resulting mosaic is compromised by projective distortion. That is, during the mosaicking process, the image frames that are transformed and pasted to the mosaic become significantly scaled down and appear out of proportion with respect to the mosaic. As more frames continue to be transformed, important target information in the frames can be lost since the transformed frames become too small, which eventually leads to the inability to continue further. Some projective distortion correction techniques make use of prior information such as GPS information embedded within the image, or camera internal and external parameters. Alternatively, this paper proposes a new algorithm to reduce the projective distortion without using any prior information whatsoever. Based on the analysis of the projective distortion, we approximate the projective matrix that describes the transformation between image frames using an affine model. Using singular value decomposition, we can deduce the affine model scaling factor that is usually very close to 1. By resetting the image scale of the affine model to 1, the transformed image size remains unchanged. Even though the proposed correction introduces some error in the image matching, this error is typically acceptable and more importantly, the final mosaic preserves the original image size after transformation. We demonstrate the effectiveness of this new correction algorithm on two real-world unmanned air vehicle (UAV) sequences. The proposed method is shown to be effective and suitable for real-time implementation.
High-sensitivity, high-speed continuous imaging system
Watson, Scott A; Bender, III, Howard A
2014-11-18
A continuous imaging system for recording low levels of light typically extending over small distances with high-frame rates and with a large number of frames is described. Photodiode pixels disposed in an array having a chosen geometry, each pixel having a dedicated amplifier, analog-to-digital convertor, and memory, provide parallel operation of the system. When combined with a plurality of scintillators responsive to a selected source of radiation, in a scintillator array, the light from each scintillator being directed to a single corresponding photodiode in close proximity or lens-coupled thereto, embodiments of the present imaging system may provide images of x-ray, gamma ray, proton, and neutron sources with high efficiency.
NASA Astrophysics Data System (ADS)
Slack, Christopher L.; Pankratov, Michail M.; Perrault, Donald F., Jr.; Shapshay, Stanley M.; Aretz, H. Thomas
1993-07-01
The CO2 laser has been limited in its application within the tracheobronchial tree by its lack of a fiber delivery system. Recently a new product has been marketed, Luxar's flexible CO2 laser waveguide or FlexiguideTM, a spin-off of the presently used rigid waveguide or MicroguideTM. The study was undertaken so as to delineate the properties and thus the usefulness of this new product which promised an increased ease of delivery of the CO2 laser wavelength. We compared the flexiguide with its rigid counterpart along two parameters. Specifically, we determined the total energy necessary to endoscopically resect bovine tracheal rings with each guide and then examined the histologic crater characteristics of each guide at a given energy setting. In so doing we endeavored to see if the experience of the surgeon with the microguide could be translated to the use of the flexiguide. We found the flexiguide to require a greater total energy than the microguide in the continuous wave (cw) and chopped pulse (cp) operational modes p < 0.01. There was, however, no demonstrated difference in required energy in the superpulse (sp) operational mode. Preliminary histologic evidence when measuring such indices as crater depth, crater width, and shoulder width thermal damage seem to suggest that the flexiguide is less efficient at tissue ablation than its rigid counterpart at the same given energy. It also appears to cause a greater degree of associated thermal injury.
Evaluation of Eye Metrics as a Detector of Fatigue
2010-03-01
eyeglass frames . The cameras are angled upward toward the eyes and extract real-time pupil diameter, eye-lid movement, and eye-ball movement. The...because the cameras were mounted on eyeglass -like frames , the system was able to continuously monitor the eye throughout all sessions. Overall, the...of “ fitness for duty” testing and “real-time monitoring” of operator performance has been slow (Institute of Medicine, 2004). Oculometric-based
Taming the complexity of granular materials with vector calculus
2009-07-29
by 13 c c jk k ke l l or 1 3ˆ c cl l x , where eijk is the Levi - Civita symbol, defi ned by: 0 for , or 1 for , , 1, 2, 3 , 2, 3,1 , 3,1, 2 1...the assumption that the body is continuous and comprises material points that bear only translational degrees of freedom. By contrast, a granular...a continuous body gives rise to a combination of rigid body motion and a change in shape of the body . The change in shape is called deformation
New constraints on the active tectonic deformation of the Aegean
Nyst, M.; Thatcher, W.
2004-01-01
Site velocities from six separate Global Positioning System (GPS) networks comprising 374 stations have been referred to a single common Eurasia-fixed reference frame to map the velocity distribution over the entire Aegean. We use the GPS velocity field to identify deforming regions, rigid elements, and potential microplate boundaries, and build upon previous work by others to initially specify rigid elements in central Greece, the South Aegean, Anatolia, and the Sea of Marmara. We apply an iterative approach, tentatively defining microplate boundaries, determining best fit rigid rotations, examining misfit patterns, and revising the boundaries to achieve a better match between model and data. Short-term seismic cycle effects are minor contaminants of the data that we remove when necessary to isolate the long-term kinematics. We find that present day Aegean deformation is due to the relative motions of four microplates and straining in several isolated zones internal to them. The RMS misfit of model to data is about 2-sigma, very good when compared to the typical match between coseismic fault models and GPS data. The simplicity of the microplate description of the deformation and its good fit to the GPS data are surprising and were not anticipated by previous work, which had suggested either many rigid elements or broad deforming zones that comprise much of the Aegean region. The isolated deforming zones are also unexpected and cannot be explained by the kinematics of the microplate motions. Strain rates within internally deforming zones are extensional and range from 30 to 50 nanostrain/year (nstrain/year, 10-9/year), 1 to 2 orders of magnitude lower than rates observed across the major microplate boundaries. Lower strain rates may exist elsewhere withi the microplates but are only resolved in Anatolia, where extension of 13 ?? 4 nstrain/ year is required by the data. Our results suggest that despite the detailed complexity of active continental deformation revealed by seismicity, active faulting, fault geomorphology, and earthquake fault plane solutions, continental tectonics, at least in the Aegean, is to first order very similar to global plate tectonics and obeys the same simple kinematic rules. Although the widespread distribution of Aegean seismicity and active faulting might suggest a rather spatially homogeneous seismic hazard, the focusing of deformation near microplate boundaries implies the highest hazard is comparably localized.
Lightweight diaphragm mirror module system for solar collectors
Butler, Barry L.
1985-01-01
A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.
Lightweight diaphragm mirror module system for solar collectors
Butler, B.L.
1984-01-01
A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.
Recent Enhancements To The FUN3D Flow Solver For Moving-Mesh Applications
NASA Technical Reports Server (NTRS)
Biedron, Robert T,; Thomas, James L.
2009-01-01
An unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been extended to handle general mesh movement involving rigid, deforming, and overset meshes. Mesh deformation is achieved through analogy to elastic media by solving the linear elasticity equations. A general method for specifying the motion of moving bodies within the mesh has been implemented that allows for inherited motion through parent-child relationships, enabling simulations involving multiple moving bodies. Several example calculations are shown to illustrate the range of potential applications. For problems in which an isolated body is rotating with a fixed rate, a noninertial reference-frame formulation is available. An example calculation for a tilt-wing rotor is used to demonstrate that the time-dependent moving grid and noninertial formulations produce the same results in the limit of zero time-step size.
Motion control of rigid bodies in SE(3)
NASA Astrophysics Data System (ADS)
Roza, Ashton
This thesis investigates the control of motion for a general class of vehicles that rotate and translate in three-space, and are propelled by a thrust vector which has fixed direction in body frame. The thesis addresses the problems of path following and position control. For path following, a feedback linearization controller is presented that makes the vehicle follow an arbitrary closed curve while simultaneously allowing the designer to specify the velocity profile of the vehicle on the path and its heading. For position control, a two-stage approach is presented that decouples position control from attitude control, allowing for a modular design and yielding almost global asymptotic stability of any desired hovering equilibrium. The effectiveness of the proposed method is verified both in simulation and experimentally by means of a hardware-in-the-loop setup emulating a co-axial helicopter.
Prediction and control of slender-wing rock
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Salman, Ahmed A.
1992-01-01
The unsteady Euler equations and the Euler equations of rigid-body dynamics, both written in the moving frame of reference, are sequentially solved to simulate the limit-cycle rock motion of slender delta wings. The governing equations of the fluid flow and the dynamics of the present multidisciplinary problem are solved using an implicit, approximately-factored, central-difference-like, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. For the control of wing-rock motion, leading-edge flaps are forced to oscillate anti-symmetrically at prescribed frequency and amplitude, which are tuned in order to suppress the rock motion. Since the computational grid deforms due to the leading-edge flaps motion, the grid is dynamically deformed using the Navier-displacement equations. Computational applications cover locally-conical and three-dimensional solutions for the wing-rock simulation and its control.
Recent graduate nurse views of nursing, work and leadership.
Cleary, Michelle; Horsfall, Jan; Jackson, Debra; Muthulakshmi, Paulpandi; Hunt, Glenn E
2013-10-01
To assess recent nurse graduates of a large university and seeks their views of university preparation, requisite nursing skills and qualities, workplace transition, supports received, nurse leadership and role models, and career development and retention. Concern about attracting and retaining registered nurses is a continuing workforce issue in parts of Asia and throughout the world. Qualitative interviews with recent nursing graduates. Seventeen face-to-face interviews took place using a structured schedule of 23 questions. Data were coded and analysed by hand to determine clusters of interest and develop themes. Four broad topics emerged: (1) skills and qualities graduates consider central to nursing; (2) the support they received during the transition from graduate to novice practitioner and that which continues; (3) elements they value in nursing role models and leaders; and (4) the ward characteristics that will encourage them to remain in nursing and develop a career. Interviewees expressed concerns about retention-related issues, making suggestions for improvements. Unique findings focus on the blaming culture that many respondents consider they are working in, and the system whereby they are not free to access postgraduate studies until a specific time frame has elapsed, and when they do pursue further studies, they are bonded to the auspicing hospital/health service. Responses unique to this research are the explicit concerns about a blaming culture, and complaints about rigid rules (bonding system) that virtually prevent an individual from accessing postgraduate studies independent of the hospital system. Interviewees strongly resent the bonding system that indentures them to that place of work. Quality health care is dependent on a well-educated, sustainable and skilled nursing workforce. Recognition of the concerns of newly graduated nurses in relation to nursing skill acquisition, workplace support issues and career concerns can assist in ensuring these issues are adequately addressed and in turn contribute to a stronger, more stable and competent nursing workforce. © 2013 John Wiley & Sons Ltd.
Safer Roadside Crash Walls Would Limit Deceleration
NASA Technical Reports Server (NTRS)
Schneider, William C.; Locke, James P.
2003-01-01
The figure depicts the aspects of a proposed deceleration-limiting design for crash walls at the sides of racetracks and highways. The proposal is intended to overcome the disadvantages of both rigid barriers and kinetic-energy-absorbing barriers of prior design. Rigid barriers can keep high-speed crashing motor vehicles from leaving roadways and thereby prevent injury to nearby persons and objects, but they can also subject the occupants of the vehicles to deceleration levels high enough to cause injury or death. Kinetic-energy-absorbing barriers of prior design reduce deceleration levels somewhat, but are not designed to soften impacts optimally; moreover, some of them allow debris to bounce back onto roadways or onto roadside areas, and, in cases of glancingly incident vehicles, some of them can trap the vehicles in such a manner as to cause more injury than would occur if the vehicles were allowed to skid along the rigid barriers. The proposed crash walls would (1) allow tangentially impacting vehicles to continue sliding along the racetrack without catching them, (2) catch directly impacting vehicles to prevent them from injuring nearby persons and objects, and (3) absorb kinetic energy in a more nearly optimum way to limit decelerations to levels that human occupants could survive.
Radio-Optical Reference Frame Link Using the U.S. Naval Observatory Astrograph and Deep CCD Imaging
NASA Astrophysics Data System (ADS)
Zacharias, N.; Zacharias, M. I.
2014-05-01
Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reduced following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.
HiPERCAM: a high-speed quintuple-beam CCD camera for the study of rapid variability in the universe
NASA Astrophysics Data System (ADS)
Dhillon, Vikram S.; Marsh, Thomas R.; Bezawada, Naidu; Black, Martin; Dixon, Simon; Gamble, Trevor; Henry, David; Kerry, Paul; Littlefair, Stuart; Lunney, David W.; Morris, Timothy; Osborn, James; Wilson, Richard W.
2016-08-01
HiPERCAM is a high-speed camera for the study of rapid variability in the Universe. The project is funded by a ɛ3.5M European Research Council Advanced Grant. HiPERCAM builds on the success of our previous instrument, ULTRACAM, with very significant improvements in performance thanks to the use of the latest technologies. HiPERCAM will use 4 dichroic beamsplitters to image simultaneously in 5 optical channels covering the u'g'r'I'z' bands. Frame rates of over 1000 per second will be achievable using an ESO CCD controller (NGC), with every frame GPS timestamped. The detectors are custom-made, frame-transfer CCDs from e2v, with 4 low noise (2.5e-) outputs, mounted in small thermoelectrically-cooled heads operated at 180 K, resulting in virtually no dark current. The two reddest CCDs will be deep-depletion devices with anti-etaloning, providing high quantum efficiencies across the red part of the spectrum with no fringing. The instrument will also incorporate scintillation noise correction via the conjugate-plane photometry technique. The opto-mechanical chassis will make use of additive manufacturing techniques in metal to make a light-weight, rigid and temperature-invariant structure. First light is expected on the 4.2m William Herschel Telescope on La Palma in 2017 (on which the field of view will be 10' with a 0.3"/pixel scale), with subsequent use planned on the 10.4m Gran Telescopio Canarias on La Palma (on which the field of view will be 4' with a 0.11"/pixel scale) and the 3.5m New Technology Telescope in Chile.
Radio-optical reference frame link using the U.S. Naval observatory astrograph and deep CCD imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharias, N.; Zacharias, M. I., E-mail: nz@usno.navy.mil
2014-05-01
Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reducedmore » following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.« less
Expression of Cassini's third law for Callisto, and theory of its rotation
NASA Astrophysics Data System (ADS)
Noyelles, Benoît
2009-07-01
The rotation of the main natural satellites of the Solar System is widely assumed to be synchronous, because this corresponds to an equilibrium state. In the case of the Moon, 3 laws have been formulated by Cassini, assuming a spin-orbit resonance and a 1:1 nodal resonance. The recent gravitational data collected by the spacecrafts Galileo (in the jovian system) and Cassini (in the saturnian system) allows us to study the rotation of other natural satellites, and to check the universality of Cassini's laws. This paper deals with the rotation of the Galilean satellites of Jupiter J-4 Callisto. In this study we use both analytical (like Lie transforms) and numerical methods (numerical detection of chaos, numerical integration, frequency analysis) to first check the reliability of Cassini Laws for Callisto, and then to give a first theory of its rotation, Callisto's being considered as a rigid body. We first show that the Third Cassini Law (i.e. the nodal resonance), is not satisfied in every reference frame, in particular in the most natural one (i.e. the J2000 jovian equator). The difference of the nodes presents a chaotic-like behavior, that we prove to be just a geometrical illusion. Moreover, we give a mathematical condition ruling the choice of an inertial reference frame in which the Third Cassini Law is fulfilled. Secondly, we give a theory of Callisto's rotation in the International Celestial Reference Frame (ICRF). We highlight a small motion (i.e. <200 m) of its rotation axis about its body figure, a 11.86-yr periodicity in Callisto's length-of-day, and the proximity of a resonance that forces 182-yr librations in Callisto's obliquity.
Space-plasma campaign on UCLA's Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Koepke, M. E.; Finnegan, S. M.; Knudsen, D. J.; Vincena, S.
2007-05-01
Knudsen [JGR, 1996] describes a potential role for stationary Alfvén (StA) waves in auroral arcs' frequency dependence. Magnetized plasmas are predicted to support electromagnetic perturbations that are static in a fixed frame if there is uniform background plasma convection. These stationary waves should not be confused with standing waves that oscillate in time with a fixed, spatially varying envelope. Stationary waves have no time variation in the fixed frame. In the drifting frame, there is an apparent time dependence as plasma convects past fixed electromagnetic structures. We describe early results from an experimental campaign to reproduce in the lab the basic conditions necessary for the creation of StA waves, namely quasi-steady-state convection across magnetic field-aligned current channels. We show that an off-axis, fixed channel of electron current (and depleted density) is created in the Large Plasma Device Upgrade (LAPD) at UCLA, using a small, heated, oxide-coated electrode at one plasma-column end and we show that the larger plasma column rotates about its cylindrical axis from a radial electric field imposed by a special termination electrode on the same end. Initial experimentation with plasma-rotation-inducing termination electrodes began in May 2006 in the West Virginia Q Machine, leading to two designs that, in January 2007, were tested in LAPD. The radial profile of azimuthal velocity was consistent with predictions of rigid-body rotation. Current-channel experiments in LAPD, in August 2006, showed that inertial Alfvén waves could be concentrated in an off-axis channel of electron current and depleted plasma density. These experimental results will be presented and discussed. This research is supported by DOE and NSF.
Rigidity and definition of Caribbean plate motion from COCONet and campaign GPS observations
NASA Astrophysics Data System (ADS)
Mattioli, G. S.; Miller, J. A.; DeMets, C.; Jansma, P. E.
2015-12-01
The kinematic model of the Caribbean plate presented by DeMets et al. (2007) is based on velocities from 6 continuous and 14 campaign GPS sites. COCONet is a multi-hazard GPS-Met observatory, which extends the existing infrastructure of the PBO in North America into the Caribbean basin. In 2010, UNAVCO in collaboration with UCAR, was funded by NSF to design, build, and initially maintain a network of 50 new cGPS/Met sites and include data from another 50 existing sites in the Caribbean region. The COCONet siting plan is for 46 new stations, 21 refurbished stations, and 77 existing stations across 26 nations in the Caribbean region. Data from all COCONet sites flow into the UNAVCO archive and are processed by the PBO analysis centers and are also processed independently by the UTA Geodesy Lab using GIPSY-OASISII (v.6.3) using an APP strategy and final, precise orbits, clocks, and EOP from JPL in the IGS08r frame. We present a refined estimate of Caribbean plate motion by evaluating data from an expanded number of stations with an improved spatial distribution. In order to better constrain the eastern margin of the plate near the Lesser Antilles subduction interface, campaign GPS observations have been collected on the island of Dominica over the last decade. These are combined with additional campaign observations from the western Caribbean, specifically from Honduras and Nicaragua. We have analyzed a total of 117 sites from the Caribbean region, including campaign data and the data from the cGPS stations that comprise COCONet. An updated velocity field for the Caribbean plate is presented and an inversion of the velocities for 24 sites yields a plate angular velocity that differs from previously published models. Our best fitting inversion to GPS velocities from these 24 sites suggests that 2-plate model for the Caribbean is required to fit the GPS observations, which implies that the Caribbean is undergoing modest (1-3 mm/yr) deformation within its interior. Some sites in the western Caribbean included in our analysis may be biased by small, but significant coseismic deformation, which has not been removed from the site velocities used in our inversion to define Caribbean motion and rigidity. Scenarios for possible east-west deformation accommodated across the Lower Nicaraguan Rise and Beata Ridge will be presented.
Ballasted photovoltaic module and module arrays
Botkin, Jonathan [El Cerrito, CA; Graves, Simon [Berkeley, CA; Danning, Matt [Oakland, CA
2011-11-29
A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.
JPL VLBI Analysis Center IVS Annual Report for 2004
NASA Technical Reports Server (NTRS)
Jacobs, Chris
2005-01-01
This report describes the activities of the JPL VLBI analysis center for the year 2004. We continue to be celestial reference frame, terrestrial reference frame, earth orientation, and spacecraft navigation work using the VLBI technique. There are several areas of our work that are undergoing active development. In 2004 we demonstrated 1 mm level troposphere calibration on an intercontinental baseline. We detected our first X/Ka (8.4/32 GHz) VLBI fringes. We began to deploy Mark 5 recorders and to interface the Mark 5 units to our software correlator. We also have actively participated in the international VLBI community through our involvement in six papers at the February IVS meeting and by collaborating on a number of projects such as densifying the S/X celestial frame creating celestial frames at K (24 GHz) and Q-bands ($# GHz)>
A-3 Test Stand continues with test cell installation
2010-07-20
Employees at Stennis Space Center continue work on the A-3 Test Stand. As shown, a section of the test cell is lifted for installation on the stand's structural steel frame. Work on the A-3 Test Stand began in 2007. It is scheduled for activation in 2012.
"Faces" and Complexities of Continuing Higher Education Units: A Postmodern Approach
ERIC Educational Resources Information Center
Stephenson, Sandria S.
2010-01-01
This study examines the dynamics of continuing higher education units within the sociopolitical context of higher education institutions. A qualitative approach to data collection and analysis was the study's design, while the theoretical frame was a postmodern, symbolic, theoretical approach to organizational studies. Results show that continuing…
Access to Mathematics: "A Possessive Investment in Whiteness"
ERIC Educational Resources Information Center
Battey, Dan
2013-01-01
While mathematics education gives access to elite universities, higher-paying jobs, and the accumulation of wealth, it continues to be framed as a neutral curricular domain. However, data continually show differential access provided to students of color and their White peers through tracking, the availability of Advance Placement courses, and…
78 FR 41280 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-10
... Transportation (DOT). ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain... left-hand and right-hand sides of the continuity fittings at the front windshield lower framing on a... cracking on the left- hand and right-hand sides of the windshield central lower node continuity fittings...
Reactions to framing of cessation messages: insights from dual-smoker couples.
Lipkus, Isaac M; Ranby, Krista W; Lewis, Megan A; Toll, Benjamin
2013-12-01
Couples in which both members smoke (dual-smoker couples) have not been the explicit target of cessation interventions. Quit rates are lower and relapse rates are higher among individuals in dual-smoker couples. A potentially effective strategy to motivate dual-smoker couples to quit is to convey messages that highlight how the positive outcomes of quitting (gain frame) or the negative outcomes of continued smoking (loss frame) affect the couple rather than the individual smoker. We explored whether dual-smoker couples' smoking behaviors (e.g., amount smoked) and desire to quit would differ as a function of message frame (gain vs. loss) or outcome focus (individual vs. couple). Dual-smoker couples (N = 40) completed a baseline survey and were then randomized to review gain- or loss-framed messages that varied whether the outcomes influenced the individual or the couple. Main outcomes were desire to quit after reading messages and smoking behaviors at a 1-month follow-up. Couple-focused messages produced the strongest desire to quit and decreased amount of cigarettes smoked at follow-up. The latter effect was mediated by desire to quit. Loss-framed messages produced inconsistent effects on desire to quit. There were no significant interactions between outcome focus and message framing. Findings suggest that messages emphasizing how smoking affects both partners can motivate cessation among dual-smoker couples. Contrary to findings showing that gain-framed messages motivate cessation targeting individual smokers, results suggest that loss-framed messages may be more persuasive than gain-framed messages when the target of the outcome involves significant others.
Proton and electron mean free paths: The Palmer consensus revisited
NASA Technical Reports Server (NTRS)
Bieber, John W.; Matthaeus, William H.; Smith, Charles W.; Wanner, Wolfgang; Kallenrode, May-Britt; Wibberenz, Gerd
1994-01-01
We present experimental and theoretical evidence suggesting that the mean free path of cosmic-ray electrons and protons may be fundamentally different at low to intermediate (less than 50 MV) rigidities. The experimental evidence is from Helios observations of solar energetic particles, which show that the mean free path of 1.4 MV electrons is often similar to that of 187 MV protons, even though proton mean free paths continue to decrease comparatively rapidly with decreasing rigidty down to the lowest channels (about 100 MV) observed. The theoretical evidence is from computations of particle scattering in dynamical magnetic turbulence, which predict that electrons will have a larger mean free path than protons of the same rigidity. In the light of these new results, 'consensus' ideas about cosmic-ray mean free paths may require drastic revision.
NASA Technical Reports Server (NTRS)
Gagliani, J.; Lee, R.; Sorathia, U. A.; Wilcoxson, A. L.
1980-01-01
A terpolyimide precursor was developed which can be foamed by microwave methods and yields foams possessing the best seating properties. A continuous process, based on spray drying techniques, permits production of polyimide powder precursors in large quantities. The constrained rise foaming process permits fabrication of rigid foam panels with improved mechanical properties and almost unlimited density characteristics. Polyimide foam core rigid panels were produced by this technique with woven fiberglass fabric bonded to each side of the panel in a one step microwave process. The fire resistance of polyimide foams was significantly improved by the addition of ceramic fibers to the powder precursors. Foams produced from these compositions are flexible, possess good acoustical attenuation and meet the minimum burnthrough requirements when impinged by high flux flame sources.
Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid
NASA Astrophysics Data System (ADS)
Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.
2012-11-01
We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.
Topological transitions in continuously deformed photonic crystals
NASA Astrophysics Data System (ADS)
Zhu, Xuan; Wang, Hai-Xiao; Xu, Changqing; Lai, Yun; Jiang, Jian-Hua; John, Sajeev
2018-02-01
We demonstrate that multiple topological transitions can occur, with high sensitivity, by continuous change of the geometry of a simple two-dimensional dielectric-frame photonic crystal consisting of circular air holes. By changing the radii of the holes and/or the distance between them, multiple transitions between normal and topological photonic band gaps (PBGs) can appear. The time-reversal symmetric topological PBGs resemble the quantum spin Hall insulator of electrons and have two counterpropagating edge states. We search for optimal topological transitions, i.e., sharp transitions sensitive to the geometry, and optimal topological PBGs, i.e., large PBGs with a clean spectrum of edge states. Such optimizations reveal that dielectric-frame photonic crystals are promising for optical sensors and unidirectional waveguides.
Spatial Updating Strategy Affects the Reference Frame in Path Integration.
He, Qiliang; McNamara, Timothy P
2018-06-01
This study investigated how spatial updating strategies affected the selection of reference frames in path integration. Participants walked an outbound path consisting of three successive waypoints in a featureless environment and then pointed to the first waypoint. We manipulated the alignment of participants' final heading at the end of the outbound path with their initial heading to examine the adopted reference frame. We assumed that the initial heading defined the principal reference direction in an allocentric reference frame. In Experiment 1, participants were instructed to use a configural updating strategy and to monitor the shape of the outbound path while they walked it. Pointing performance was best when the final heading was aligned with the initial heading, indicating the use of an allocentric reference frame. In Experiment 2, participants were instructed to use a continuous updating strategy and to keep track of the location of the first waypoint while walking the outbound path. Pointing performance was equivalent regardless of the alignment between the final and the initial headings, indicating the use of an egocentric reference frame. These results confirmed that people could employ different spatial updating strategies in path integration (Wiener, Berthoz, & Wolbers Experimental Brain Research 208(1) 61-71, 2011), and suggested that these strategies could affect the selection of the reference frame for path integration.
NASA Astrophysics Data System (ADS)
Hua, Yujin; Zhang, Shuangxi; Li, Mengkui; Wu, Tengfei; Qin, Weibing; Wang, Fang; Zhang, Bo
2018-05-01
The southeastern margin of the Tibetan Plateau (SETP) presents the highest level of seismicity in mainland China. To understand the seismicity in this region, a new seismic experiment is carried out based on the tomographic inversion of P- and S-wave arrival times from the regional earthquakes recorded by 49 seismic stations in Yunnan Province of Southwest China. In this study, we reduce the extreme disproportionality of the data distribution using an events-combination method, and we use arrival times to construct the reference velocity model. Checkerboard tests and odd/even data tests are carried out to assess the reliability of the inversion results. The reliable P-wave velocity model reveals two low-velocity anomaly zones (LVAZs) bounded by major strike-slip faults. Almost all the large earthquakes in this region occurred in the two LVAZs and the trend of the two LVAZs is consistent with a GPS velocity field based on the Eurasia-fixed reference frame. We propose that the two LVAZs are material migration passageways in the SETP. In the vertical direction, the mechanically weak crustal materials are sliding southward with the rigid block, while the underlying mantle materials continue to be compressed by the collision. This vertical model is broadly consistent with the seismic anisotropy in the crust and lithospheric mantle from shear-wave splitting. The new regional geodynamic model gives a reasonable interpretation of the seismicity of the SETP, and we suggest that the material migration in the passageway zones plays an important role in the tectonic evolution of the SETP.
NASA Astrophysics Data System (ADS)
Garcia, Gregory A.; Wettergren, Thomas A.
2012-06-01
This paper presents a discussion of U.S. naval mine countermeasures (MCM) theory modernization in light of advances in the areas of autonomy, tactics, and sensor processing. The unifying theme spanning these research areas concerns the capability for in situ adaptation of processing algorithms, plans, and vehicle behaviors enabled through run-time situation assessment and performance estimation. Independently, each of these technology developments impact the MCM Measures of Effectiveness1 [MOE(s)] of time and risk by improving one or more associated Measures of Performance2 [MOP(s)]; the contribution of this paper is to outline an integrated strategy for realizing the cumulative benefits of these technology enablers to the United States Navy's minehunting capability. An introduction to the MCM problem is provided to frame the importance of the foundational research and the ramifications of the proposed strategy on the MIW community. We then include an overview of current and future adaptive capability research in the aforementioned areas, highlighting a departure from the existing rigid assumption-based approaches while identifying anticipated technology acceptance issues. Consequently, the paper describes an incremental strategy for transitioning from the current minehunting paradigm where tactical decision aids rely on a priori intelligence and there is little to no in situ adaptation or feedback to a future vision where unmanned systems3, equipped with a representation of the commander's intent, are afforded the authority and ability to adapt to environmental perturbations with minimal human-in-the-loop supervision. The discussion concludes with an articulation of the science and technology issues which the MCM research community must continue to address.
Chen, Philip Kuo-Ting; Por, Yong-Chen; Liou, Eric Jein-Wein; Chang, Frank Chun-Shin
2011-07-01
To assess the results of maxillary distraction osteogenesis with the Rigid External Distraction System using three-dimensional computed tomography scan volume-rendered images with respect to stability and facial growth at three time frames: preoperative (T0), 1-year postoperative (T1), and 5-years postoperative (T2). Retrospective analysis. Tertiary. A total of 12 patients with severe cleft maxillary hypoplasia were treated between June 30, 1997, and July 15, 1998. The mean age at surgery was 11 years 1 month. Le Fort I maxillary distraction osteogenesis. Distraction was started 2 to 5 days postsurgery at a rate of 1 mm per day. The consolidation period was 3 months. No face mask was used. A paired t test was used for statistical analysis. Overjet, ANB, and SNA and maxillary, pterygoid, and mandibular volumes. From T0 to T1, there were statistically significant increments of overjet, ANB, and SNA and maxillary, pterygoid, and mandibular volumes. The T1 to T2 period demonstrated a reduction of overjet (30.07%) and ANB (54.42%). The maxilla showed a stable SNA and a small but statistically significant advancement of the ANS point. There was a significant increase in the mandibular volume. However, there was no significant change in the maxillary and pterygoid volumes. Maxillary distraction osteogenesis demonstrated linear and volumetric maxillary growth during the distraction phase without clinically significant continued growth thereafter. Overcorrection is required to take into account recurrence of midface retrusion over the long term.
Visual tracking using neuromorphic asynchronous event-based cameras.
Ni, Zhenjiang; Ieng, Sio-Hoi; Posch, Christoph; Régnier, Stéphane; Benosman, Ryad
2015-04-01
This letter presents a novel computationally efficient and robust pattern tracking method based on a time-encoded, frame-free visual data. Recent interdisciplinary developments, combining inputs from engineering and biology, have yielded a novel type of camera that encodes visual information into a continuous stream of asynchronous, temporal events. These events encode temporal contrast and intensity locally in space and time. We show that the sparse yet accurately timed information is well suited as a computational input for object tracking. In this letter, visual data processing is performed for each incoming event at the time it arrives. The method provides a continuous and iterative estimation of the geometric transformation between the model and the events representing the tracked object. It can handle isometry, similarities, and affine distortions and allows for unprecedented real-time performance at equivalent frame rates in the kilohertz range on a standard PC. Furthermore, by using the dimension of time that is currently underexploited by most artificial vision systems, the method we present is able to solve ambiguous cases of object occlusions that classical frame-based techniques handle poorly.
Formulation of blade-flutter spectral analyses in stationary reference frame
NASA Technical Reports Server (NTRS)
Kurkov, A. P.
1984-01-01
Analytic representations are developed for the discrete blade deflection and the continuous tip static pressure fields in a stationary reference frame. Considered are the sampling rates equal to the rotational frequency, equal to blade passing frequency, and for the pressure, equal to a multiple of the blade passing frequency. For the last two rates the expressions for determining the nodal diameters from the spectra are included. A procedure is presented for transforming the complete unsteady pressure field into a rotating frame of reference. The determination of the true flutter frequency by using two sensors is described. To illustrate their use, the developed procedures are used to interpret selected experimental results.
Loss tolerant speech decoder for telecommunications
NASA Technical Reports Server (NTRS)
Prieto, Jr., Jaime L. (Inventor)
1999-01-01
A method and device for extrapolating past signal-history data for insertion into missing data segments in order to conceal digital speech frame errors. The extrapolation method uses past-signal history that is stored in a buffer. The method is implemented with a device that utilizes a finite-impulse response (FIR) multi-layer feed-forward artificial neural network that is trained by back-propagation for one-step extrapolation of speech compression algorithm (SCA) parameters. Once a speech connection has been established, the speech compression algorithm device begins sending encoded speech frames. As the speech frames are received, they are decoded and converted back into speech signal voltages. During the normal decoding process, pre-processing of the required SCA parameters will occur and the results stored in the past-history buffer. If a speech frame is detected to be lost or in error, then extrapolation modules are executed and replacement SCA parameters are generated and sent as the parameters required by the SCA. In this way, the information transfer to the SCA is transparent, and the SCA processing continues as usual. The listener will not normally notice that a speech frame has been lost because of the smooth transition between the last-received, lost, and next-received speech frames.
Devendra, Jaya; Agarwal, Smita; Singh, Pankaj Kumar
2014-11-01
Low socio-economic group patients from rural areas often opt for free cataract surgeries offered by charitable organisations. SICS continues to be a time tested technique for cataract removal in such patients. In recent times, camp patients are sometimes treated by clear corneal phacoemulsification with implantation of a rigid IOL, which being more cost effective is often provided for camp patients. This study was undertaken to find out which surgical technique yielded better outcomes and was more suited for high volume camp surgery. To find the better surgical option- phacoemulsification with rigid IOL or SICS, in poor patients from rural areas. A prospective randomised controlled trial of cataract patients operated by two different techniques. One hundred and twelve eyes were selected and were randomly allocated into two groups of 56 eyes each. At completion of the study, data was analysed for 52 eyes operated by clear corneal phacoemulsification and implantation of a rigid IOL, and 56 eyes operated by SICS. Unpaired t-test was used to calculate the p- value. The results were evaluated on the following criteria. The mean post-operative astigmatism at the end of four weeks - was significantly higher in phacoemulsification group as compared to SICS group The BCVA (best corrected visual acuity) at the end of four weeks - was comparable in both groups. Subjective complaints and/ or complications: In phaco group two patients required sutures and seven had striate keratitis , while none in SICS group. Complaint of irritation was similar in both groups. Surgical time- was less for SICS group as compared to phaco group. SICS by virtue of being a faster surgery with more secure wound and significantly less astigmatism is a better option in camp patients from rural areas as compared to phacoemulsification with rigid IOL.
Extended cocaine-seeking produces a shift from goal-directed to habitual responding in rats.
Leong, Kah-Chung; Berini, Carole R; Ghee, Shannon M; Reichel, Carmela M
2016-10-01
Cocaine addiction is often characterized by a rigid pattern of behavior in which cocaine users continue seeking and taking drug despite negative consequences associated with its use. As such, full acquisition and relapse of drug-seeking behavior may be attributed to a shift away from goal-directed responding and a shift towards the maladaptive formation of rigid and habit-like responses. This rigid nature of habitual responding can be developed with extended training and is typically characterized by insensitivity to changes in outcome value. The present study determined whether cocaine (primary reinforcer) and cocaine associated cues (secondary reinforcer) could be devalued in rats with different histories of cocaine self-administration. Specifically, rats were trained on two schedules of cocaine self-administration (long-access vs. short-access). Following training the cocaine reinforcer was devalued through three separate pairings of lithium chloride with cocaine infusions. Cocaine history did not have an impact on devaluation of cocaine-associated cues. However, the reinforcing properties of cocaine were devalued only in rats on a short-access cocaine schedule but not those trained on a long-access schedule. Taken together this pattern of findings suggests that, in short access rats, devaluation is specific to the primary reinforcer and not associative stimuli such as cues. Importantly, rats that received extended training during self-administration displayed insensitivity to outcome devaluation of the primary reinforcer as well as all associative stimuli, thus displaying rigid behavioral responding similar to behavioral patterns found in addiction. Alternatively, long access cocaine exposure may have altered the devaluation threshold. Copyright © 2016 Elsevier Inc. All rights reserved.
Parallel processing spacecraft communication system
NASA Technical Reports Server (NTRS)
Bolotin, Gary S. (Inventor); Donaldson, James A. (Inventor); Luong, Huy H. (Inventor); Wood, Steven H. (Inventor)
1998-01-01
An uplink controlling assembly speeds data processing using a special parallel codeblock technique. A correct start sequence initiates processing of a frame. Two possible start sequences can be used; and the one which is used determines whether data polarity is inverted or non-inverted. Processing continues until uncorrectable errors are found. The frame ends by intentionally sending a block with an uncorrectable error. Each of the codeblocks in the frame has a channel ID. Each channel ID can be separately processed in parallel. This obviates the problem of waiting for error correction processing. If that channel number is zero, however, it indicates that the frame of data represents a critical command only. That data is handled in a special way, independent of the software. Otherwise, the processed data further handled using special double buffering techniques to avoid problems from overrun. When overrun does occur, the system takes action to lose only the oldest data.
Systemic racism and U.S. health care.
Feagin, Joe; Bennefield, Zinobia
2014-02-01
This article draws upon a major social science theoretical approach-systemic racism theory-to assess decades of empirical research on racial dimensions of U.S. health care and public health institutions. From the 1600s, the oppression of Americans of color has been systemic and rationalized using a white racial framing-with its constituent racist stereotypes, ideologies, images, narratives, and emotions. We review historical literature on racially exploitative medical and public health practices that helped generate and sustain this racial framing and related structural discrimination targeting Americans of color. We examine contemporary research on racial differentials in medical practices, white clinicians' racial framing, and views of patients and physicians of color to demonstrate the continuing reality of systemic racism throughout health care and public health institutions. We conclude from research that institutionalized white socioeconomic resources, discrimination, and racialized framing from centuries of slavery, segregation, and contemporary white oppression severely limit and restrict access of many Americans of color to adequate socioeconomic resources-and to adequate health care and health outcomes. Dealing justly with continuing racial "disparities" in health and health care requires a conceptual paradigm that realistically assesses U.S. society's white-racist roots and contemporary racist realities. We conclude briefly with examples of successful public policies that have brought structural changes in racial and class differentials in health care and public health in the U.S. and other countries. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Henrard, Jacques
2005-11-01
The paper develops, in the framework of Hamiltonian mechanics, a theory of the rotation of Io, considered as a rigid body. The theory includes the perturbation due to Jupiter (considered as an oblate body) and the indirect perturbations due to the other Galilean satellites. In order to describe the orbit of Io around Jupiter, we use the synthetic theory of Lainey [2002, PhD dissertation, Observatoire de Paris], the result of a frequency analysis of a numerically integrated jovian system. The direct effects of the other Galilean satellites are found to be negligible, but their indirect effects are important. Our theory is consistent with the rigid body model and with Lainey's description of the orbit of Io, at least down to 10 rad (0.2 arc-second). Of course the effects of the nonrigidity of Io and of a probable liquid core should be considered. We find a mean obliquity of 7.619×10 rad (157 arc-second) and the period of the three free librations to be 13.25 days (free libration in longitude), 159.39 days (free libration in latitude), and 229.85 days (free wobble). Fourier series are produced describing, in the body frame, the motion of the polar axis of Jupiter, the motion of the unit vector pointing toward Jupiter, and the "motion of the pole" (the motion of the angular momentum with respect to the axis of largest inertia). Free librations (depending on three arbitrary parameters) are also computed.
Fisheye Multi-Camera System Calibration for Surveying Narrow and Complex Architectures
NASA Astrophysics Data System (ADS)
Perfetti, L.; Polari, C.; Fassi, F.
2018-05-01
Narrow spaces and passages are not a rare encounter in cultural heritage, the shape and extension of those areas place a serious challenge on any techniques one may choose to survey their 3D geometry. Especially on techniques that make use of stationary instrumentation like terrestrial laser scanning. The ratio between space extension and cross section width of many corridors and staircases can easily lead to distortions/drift of the 3D reconstruction because of the problem of propagation of uncertainty. This paper investigates the use of fisheye photogrammetry to produce the 3D reconstruction of such spaces and presents some tests to contain the degree of freedom of the photogrammetric network, thereby containing the drift of long data set as well. The idea is that of employing a multi-camera system composed of several fisheye cameras and to implement distances and relative orientation constraints, as well as the pre-calibration of the internal parameters for each camera, within the bundle adjustment. For the beginning of this investigation, we used the NCTech iSTAR panoramic camera as a rigid multi-camera system. The case study of the Amedeo Spire of the Milan Cathedral, that encloses a spiral staircase, is the stage for all the tests. Comparisons have been made between the results obtained with the multi-camera configuration, the auto-stitched equirectangular images and a data set obtained with a monocular fisheye configuration using a full frame DSLR. Results show improved accuracy, down to millimetres, using a rigidly constrained multi-camera.
Image sequence analysis workstation for multipoint motion analysis
NASA Astrophysics Data System (ADS)
Mostafavi, Hassan
1990-08-01
This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.
Teachers' Continuing Professional Development: Framing a Model of Outcomes
ERIC Educational Resources Information Center
Harland, John; Kinder, Kay
2014-01-01
In order to contribute towards the construction of an empirically-grounded theory of effective continuing professional development (CPD), this paper seeks to develop a model of the effects of teachers' CPD or in-service education and training (INSET). It builds on an earlier typology of INSET outcomes and compares it to two previous classification…
ERIC Educational Resources Information Center
Fleming, Josephine
2013-01-01
This article argues that Burton Clark's notion of the expanded developmental periphery provides a useful conceptual framework for examining the differing relationships between continuing and professional education units and the institutional core of traditional research universities. The intent is to examine how Clark's notion offers a means to…
Volunteerism as Purpose: Examining the Long-Term Predictors of Continued Community Engagement
ERIC Educational Resources Information Center
Barber, Carolyn; Mueller, Conrad T.; Ogata, Sachiko
2013-01-01
This study frames continued long-term participation in community engagement activities as indicative of a sense of "purpose" as defined by Damon, Menon, and Cotton Bronk (2003). Using data from US-based National Longitudinal Study of Adolescent Health, we examined factors that predict whether students participating in civic engagement…
Dynamics and Control of Tethered Satellite Formations for the Purpose of Space-Based Remote Sensing
2006-08-01
remote sensing mission. Energy dissipation is found to have an adverse effect on foundational rigid body (Likins-Pringle) equilibria. It is shown that a continuously earth-facing equilibrium condition for a fixed-length tethered system does not exist since the spin rate required for the proper precession would not be high enough to maintain tether tension. The range of required spin rates for steady-spin motion is numerically defined here, but none of these conditions can meet the continuously earth-facing criteria. Of particular note is the discovery that applying certain
NASA Astrophysics Data System (ADS)
Gurfil, Pini; Lainey, Valéry; Efroimsky, Michael
2007-12-01
Construction of an accurate theory of orbits about a precessing and nutating oblate planet, in terms of osculating elements defined in a frame associated with the equator of date, was started in Efroimsky and Goldreich (2004) and Efroimsky (2004, 2005, 2006a, b). Here we continue this line of research by combining that analytical machinery with numerical tools. Our model includes three factors: the J 2 of the planet, its nonuniform equinoctial precession described by the Colombo formalism, and the gravitational pull of the Sun. This semianalytical and seminumerical theory, based on the Lagrange planetary equations for the Keplerian elements, is then applied to Deimos on very long time scales (up to 1 billion years). In parallel with the said semianalytical theory for the Keplerian elements defined in the co-precessing equatorial frame, we have also carried out a completely independent, purely numerical, integration in a quasi-inertial Cartesian frame. The results agree to within fractions of a percent, thus demonstrating the applicability of our semianalytical model over long timescales. Another goal of this work was to make an independent check of whether the equinoctial-precession variations predicted for a rigid Mars by the Colombo model could have been sufficient to repel its moons away from the equator. An answer to this question, in combination with our knowledge of the current position of Phobos and Deimos, will help us to understand whether the Martian obliquity could have undergone the large changes ensuing from the said model (Ward 1973; Touma and Wisdom 1993, 1994; Laskar and Robutel 1993), or whether the changes ought to have been less intensive (Bills 2006; Paige et al. 2007). It has turned out that, for low initial inclinations, the orbit inclination reckoned from the precessing equator of date is subject only to small variations. This is an extension, to non-uniform equinoctial precession given by the Colombo model, of an old result obtained by Goldreich (1965) for the case of uniform precession and a low initial inclination. However, near-polar initial inclinations may exhibit considerable variations for up to ±10 deg in magnitude. This result is accentuated when the obliquity is large. Nevertheless, the analysis confirms that an oblate planet can, indeed, afford large variations of the equinoctial precession over hundreds of millions of years, without repelling its near-equatorial satellites away from the equator of date: the satellite inclination oscillates but does not show a secular increase. Nor does it show secular decrease, a fact that is relevant to the discussion of the possibility of high-inclination capture of Phobos and Deimos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everett, T.D.
1982-12-14
A buoyancy prime mover that converts the potential energy of a gas buoyant within a liquid into rotating mechanical energy comprises a plurality of rigid or collapsible buckets joined by one or more chains with rotatable sprockets and shafts to form a continuous loop so that when the buoyant gas is trapped within the buckets, the buckets rise through the liquid and rotate the chain and sprockets to generate power.
Magnetic refrigeration in space - Practical considerations
NASA Technical Reports Server (NTRS)
Kittel, P.
1980-01-01
Various schemes of using adiabatic demagnetization to provide refrigeration in the 10-1000 mK range are discussed with particular reference to the requirements for use in space. The methods considered are complete demagnetization, isothermal demagnetization, moving magnet demagnetization, and continuous refrigeration. The requirements that are important for use in space are low mass, low power dissipation, high mechanical rigidity, modular design, and ease of use.
Jet meandering by a foil pitching in quiescent fluid
NASA Astrophysics Data System (ADS)
Shinde, Sachin Y.; Arakeri, Jaywant H.
2013-04-01
The flow produced by a rigid symmetric NACA0015 airfoil purely pitching at a fixed location in quiescent fluid (the limiting case of infinite Strouhal number) is studied using visualizations and particle image velocimetry. A weak jet is generated whose inclination changes continually with time. This meandering is observed to be random and independent of the initial conditions, over a wide range of pitching parameters.
Dynamic Grouping of Hippocampal Neural Activity During Cognitive Control of Two Spatial Frames
Kelemen, Eduard; Fenton, André A.
2010-01-01
Cognitive control is the ability to coordinate multiple streams of information to prevent confusion and select appropriate behavioral responses, especially when presented with competing alternatives. Despite its theoretical and clinical significance, the neural mechanisms of cognitive control are poorly understood. Using a two-frame place avoidance task and partial hippocampal inactivation, we confirmed that intact hippocampal function is necessary for coordinating two streams of spatial information. Rats were placed on a continuously rotating arena and trained to organize their behavior according to two concurrently relevant spatial frames: one stationary, the other rotating. We then studied how information about locations in these two spatial frames is organized in the action potential discharge of ensembles of hippocampal cells. Both streams of information were represented in neuronal discharge—place cell activity was organized according to both spatial frames, but almost all cells preferentially represented locations in one of the two spatial frames. At any given time, most coactive cells tended to represent locations in the same spatial frame, reducing the risk of interference between the two information streams. An ensemble's preference to represent locations in one or the other spatial frame alternated within a session, but at each moment, location in the more behaviorally relevant spatial frame was more likely to be represented. This discharge organized into transient groups of coactive neurons that fired together within 25 ms to represent locations in the same spatial frame. These findings show that dynamic grouping, the transient coactivation of neural subpopulations that represent the same stream of information, can coordinate representations of concurrent information streams and avoid confusion, demonstrating neural-ensemble correlates of cognitive control in hippocampus. PMID:20585373
GEO light imaging national testbed (GLINT) heliostat design and testing status
NASA Astrophysics Data System (ADS)
Thornton, Marcia A.; Oldenettel, Jerry R.; Hult, Dane W.; Koski, Katrina; Depue, Tracy; Cuellar, Edward L.; Balfour, Jim; Roof, Morey; Yarger, Fred W.; Newlin, Greg; Ramzel, Lee; Buchanan, Peter; Mariam, Fesseha G.; Scotese, Lee
2002-01-01
The GEO Light Imaging National Testbed (GLINT) will use three laser beams producing simultaneous interference fringes to illuminate satellites in geosynchronous earth orbit (GEO). The reflected returns will be recorded using a large 4,000 m2 'light bucket' receiver. This imaging methodology is termed Fourier Telescopy. A major component of the 'light bucket' will be an array of 40 - 80 heliostats. Each heliostat will have a mirrored surface area of 100 m2 mounted on a rigid truss structure which is supported by an A-frame. The truss structure attaches to the torque tube elevation drive and the A-frame structure rests on an azimuth ring that could provide nearly full coverage of the sky. The heliostat is designed to operate in 15 mph winds with jitter of less than 500 microradians peak-to- peak. One objective of the design was to minimize receiver cost to the maximum extent possible while maintaining GLINT system performance specifications. The mechanical structure weights approximately seven tons and is a simple fabricated steel framework. A prototype heliostat has been assembled at Stallion Range Center, White Sands Missile Range, New Mexico and is being tested under a variety of weather and operational conditions. The preliminary results of that testing will be presented as well as some finite element model analyses that were performed to predict the performance of the structure.
Saito, Kazuya; Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji
2017-05-30
Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: ( i ) the wing rigidity with relatively thick veins and ( ii ) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure.
Stuck with/in a 'turn': Can we metaphorize better in Science and Technology Studies?
Vasileva, Bistra
2015-06-01
This contribution encourages loosening the cast-iron mould of the 'turn' metaphor that the practices of general and ontology-related turn-talking/making in Science and Technology Studies forge and fortify. Could framing novel themes and thinking in terms of 'turn' be as good as fettering? Not specific to the 'ontological turn' or 'turn to ontology', but haunting Science and Technology Studies across the board to signify supposed tidal change, the metaphor warrants dissection. Thus, this commentary expounds four distinct yet not unrelated versions of 'turn'--rotation, change of course/direction, change in general and occasion/opportunity to act--together with the worlds they beget. Then, the operation of these 'turns' in the debates on the 'ontological turn' is pursued. Enactments of the first three modes/moulds of 'turn', all entailing and tainted by the inexorable directedness of change the coupled 'turn to' framing imparts, either debunk or qualify the extent of the professed 'turn', with the effect of betraying its conceptual and methodological offerings. The fourth version, less substitutable with 'turn to' and thus less infected by intransigent directedness, escapes the rigidity that diminishes the value of ontology-minded studies. Clear of either a resolution to the debate or an alternative trope to cure the maladies of 'turn', the conclusion wishes to open space for pondering how to metaphorize more consciously and judiciously evolution and innovation in Science and Technology Studies.
Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji
2017-01-01
Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: (i) the wing rigidity with relatively thick veins and (ii) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure. PMID:28507159
Development of sheet-metal parabolic-trough reflector panels
NASA Astrophysics Data System (ADS)
Biester, A. W.
1982-06-01
Efforts to develop accurate, durable, and mass producible sheet metal parabolic trough solar collectors and the associated support for the collectors are described. The design considered is similar to an automobile hood, a two-piece sheet metal structure consisting of a formed steel frame or stiffening panel and a smooth contoured skin. The two pieces may be bonded or welded to form a rigid structure, and a reflective surface applied such as a film, glass mirror, or any of the presently utilized materials. The work encompassed material selection, adhesive selection and testing, tool design and fabrication, prototype panel production, and design and development of torque tube assemblies on which the trough is inclined. Results of adhesive bonding studies are given. It is found that high volume technology can be used to produce accurate and structurally sound reflector panels, and one configuration was selected for fabrication in suitable quantities for performance testing.
3D endoscopic pulsed digital holography
NASA Astrophysics Data System (ADS)
Saucedo Anaya, T.; Mendoza Santoyo, F.; Pedrini, G.; Osten, W.
2006-06-01
A rigid endoscope is used in pulsed digital holography to simultaneously evaluate the three orthogonal displacement components from hidden areas of a harmonically vibrating metallic cylinder. The cylinder is illuminated from three different illuminating directions. The optical path for each illumination direction is matched to its corresponding reference beam, but also in such a way that each object-reference beam pair optical path is mismatched such that they are incoherent and can be stored in a single CCD frame. As is typical in these types of interferometric arrangements, two digital holograms are needed in order to compare two different states of the cylinder. Each hologram is Fourier transformed and due to the incoherence introduced three separate spectra are readily identified, each belonging to a object-reference beam pair. On comparing by subtraction the phase obtained from the two pulsed digital holograms it is possible to gather quantitative 3D results from harmonic displacements.
Molecular symmetry: Why permutation-inversion (PI) groups don't render the point groups obsolete
NASA Astrophysics Data System (ADS)
Groner, Peter
2018-01-01
The analysis of spectra of molecules with internal large-amplitude motions (LAMs) requires molecular symmetry (MS) groups that are larger than and significantly different from the more familiar point groups. MS groups are described often by the permutation-inversion (PI) group method. It is shown that point groups still can and should play a significant role together with the PI groups for a class of molecules with internal rotors. In molecules of this class, several simple internal rotors are attached to a rigid molecular frame. The PI groups for this class are semidirect products like H ^ F, where the invariant subgroup H is a direct product of cyclic groups and F is a point group. This result is used to derive meaningful labels for MS groups, and to derive correlation tables between MS groups and point groups. MS groups of this class have many parallels to space groups of crystalline solids.
Nycz, Christopher J; Delph, Michael A; Fischer, Gregory S
2015-01-01
Robotic technology has recently been explored as a means to rehabilitate and assist individuals suffering from hemiparesis of their upper limbs. Robotic approaches allow for targeted rehabilitation routines which are more personalized and adaptable while providing quantitative measurements of patient outcomes. Development of these technologies into inherently safe and portable devices has the potential to extend the therapy outside of the clinical setting and into the patient's home with benefits to the cost and accessibility of care. To this end, a soft, cable actuated robotic glove and sleeve was designed, modeled, and constructed to provide assistance of finger and elbow movements in a way that mimics the biological function of the tendons. The resulting design increases safety through greater compliance as well as greater tolerance for misalignment with the user's skeletal frame over traditional rigid exoskeletons. Overall this design provides a platform to expand and study the concepts around soft robotic rehabilitation.
Eltoukhy, Moataz; Travascio, Francesco; Asfour, Shihab; Elmasry, Shady; Heredia-Vargas, Hector; Signorile, Joseph
2016-09-01
Loading during concurrent bending and compression associated with deadlift, hang clean and hang snatch lifts carries the potential for injury to the intervertebral discs, muscles and ligaments. This study examined the capacity of a newly developed spinal model to compute shear and compressive forces, and bending moments in lumbar spine for each lift. Five male subjects participated in the study. The spine was modeled as a chain of rigid bodies (vertebrae) connected via the intervertebral discs. Each vertebral reference frame was centered in the center of mass of the vertebral body, and its principal directions were axial, anterior-posterior, and medial-lateral. The results demonstrated the capacity of this spinal model to assess forces and bending moments at and about the lumbar vertebrae by showing the variations among these variables with different lifting techniques. These results show the model's potential as a diagnostic tool.
Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam
NASA Technical Reports Server (NTRS)
Allen, Albert R.; Schiller, Noah H.
2016-01-01
Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.
NASA Technical Reports Server (NTRS)
Jain, Abhinandan
2011-01-01
Ndarts software provides algorithms for computing quantities associated with the dynamics of articulated, rigid-link, multibody systems. It is designed as a general-purpose dynamics library that can be used for the modeling of robotic platforms, space vehicles, molecular dynamics, and other such applications. The architecture and algorithms in Ndarts are based on the Spatial Operator Algebra (SOA) theory for computational multibody and robot dynamics developed at JPL. It uses minimal, internal coordinate models. The algorithms are low-order, recursive scatter/ gather algorithms. In comparison with the earlier Darts++ software, this version has a more general and cleaner design needed to support a larger class of computational dynamics needs. It includes a frames infrastructure, allows algorithms to operate on subgraphs of the system, and implements lazy and deferred computation for better efficiency. Dynamics modeling modules such as Ndarts are core building blocks of control and simulation software for space, robotic, mechanism, bio-molecular, and material systems modeling.
Propagation of a transverse wave on a foam microchannel
NASA Astrophysics Data System (ADS)
Derec, C.; Leroy, V.; Kaurin, D.; Arbogast, L.; Gay, C.; Elias, F.
2015-11-01
In a dry foam, soap films meet by three in the liquid microchannels, called Plateau borders, which contain most of the liquid of the foam. We investigated here the transverse vibration of a single Plateau border isolated on a rigid frame. We measured and we computed numerically and analytically the propagation of a transverse pulse along the channel in the 20-2000 Hz frequency range. The dispersion relation shows different scaling regimes, which provide information on the role of inertial and elastic forces acting on the Plateau border. At low frequency, the dispersion relation is dominated by the vibration of the air set into motion by the transverse vibration of the adjacent soap films. The inertia of the liquid in the Plateau border plays a role at high frequency, the critical frequency separating the low-frequency and the high-frequency regimes being a decreasing function of the radius R of the Plateau border.