Sample records for continuous solid solution

  1. Single crystal structure analyses of scheelite-powellite CaW1-xMoxO4 solidsolutions and unique occurrence in Jisyakuyama skarn deposits

    NASA Astrophysics Data System (ADS)

    Yamashita, K.; Yoshiasa, A.; Miyazaki, H.; Tokuda, M.; Tobase, T.; Isobe, H.; Nishiyama, T.; Sugiyama, K.; Miyawaki, R.

    2017-12-01

    Jisyakuyama skarn deposit, Fukuchi, Fukuoka, Japan, shows a simple occurrenceformed by penetration of hot water into limestone cracks. A unique occurrence of scheelite-powellite CaW1-xMoxO4 minerals is observed in the skarn deposit. Many syntheticexperiments for scheelite-powellite solid solutions have been reported as research onfluorescent materials. In this system it is known that a complete continuous solid solution isformed even at room temperature. In this study, we have carried out the chemical analyses,crystal structural refinements and detail description of occurrence on scheelite-powelliteminerals. We have also attempted synthesis of single crystal of solid solution in a widecomposition range. The chemical compositions were determined by JEOL scanningelectron microscope and EDS, INCA system. We have performed the crystal structurerefinements of the scheelite-powellite CaW1-xMoxO4 solid solutions (x=0.0-1.0) byRIGAKU single-crystal structure analysis system RAPID. The R and S values are around0.0s and 1.03. As the result of structural refinements of natural products and many solidsolutions, we confirm that most large natural single crystals have compositions at bothendmembers, and large solid solution crystals are rare. The lattice constants, interatomicdistances and other crystallographic parameters for the solid solution change uniquely withcomposition and it was confirmed as a continuous solid solution. Single crystals of scheeliteendmember + powellite endmember + solid solution with various compositions form anaggregate in the deposit (Figure 1). Crystal shapes of powellite and scheelite arehypidiomorphic and allotriomorphic, respectively. Many solid solution crystals areaccompanied by scheelite endmember and a compositional gap is observed betweenpowellite and solid-solution crystals. The presence of several penetration solutions withsignificantly different W and Mo contents may be assumed. This research can be expectedto lead to giving restrictive conditions to elucidate the mineralization process. Figure1. Scheelite + Powellite + solid solution aggregate

  2. Method of fabricating lipid bilayer membranes on solid supports

    NASA Technical Reports Server (NTRS)

    Cho, Nam-Joon (Inventor); Frank, Curtis W. (Inventor); Glenn, Jeffrey S. (Inventor); Cheong, Kwang Ho (Inventor)

    2012-01-01

    The present invention provides a method of producing a planar lipid bilayer on a solid support. With this method, a solution of lipid vesicles is first deposited on the solid support. Next, the lipid vesicles are destabilized by adding an amphipathic peptide solution to the lipid vesicle solution. This destabilization leads to production of a planar lipid bilayer on the solid support. The present invention also provides a supported planar lipid bilayer, where the planar lipid bilayer is made of naturally occurring lipids and the solid support is made of unmodified gold or titanium oxide. Preferably, the supported planar lipid bilayer is continuous. The planar lipid bilayer may be made of any naturally occurring lipid or mixture of lipids, including, but not limited to phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinsitol, cardiolipin, cholesterol, and sphingomyelin.

  3. Continuous supercritical synthesis and dielectric behaviour of the whole BST solid solution.

    PubMed

    Reverón, H; Elissalde, C; Aymonier, C; Bousquet, C; Maglione, M; Cansell, F

    2006-07-28

    In this study we show that pure and well crystallized nanoparticles of Ba(x)Sr(1-x)TiO(3) (BST) can be synthesized over the entire range of composition through the hydrolysis and further crystallization of alkoxide precursors under supercritical conditions. To our knowledge, this is the first time that the whole ferroelectric solid solution has been produced in a continuous way, using the same experimental conditions. The composition of the powder can be easily controlled by adjusting the feed solution composition. The powders consist of soft-aggregated monocrystalline nanoparticles with an average particle size ranging from approximately 20 to 40 nm. Ferroelectric ceramics with accurately adjustable Curie temperature (100-390 K) can thus be obtained by sintering.

  4. NEUTRALIZATIONS OF HIGH ALUMINUM LOW URANIUM USED NUCLEAR FUEL SOLUTIONS CONTAINING GADOLINIUM AS A NEUTRON POISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, K.

    2011-06-08

    H-Canyon will begin dissolving High Aluminum - Low Uranium (High Al/Low U) Used Nuclear Fuel (UNF) following approval by DOE which is anticipated in CY2011. High Al/Low U is an aluminum/enriched uranium UNF with small quantities of uranium relative to aluminum. The maximum enrichment level expected is 93% {sup 235}U. The High Al/Low U UNF will be dissolved in H-Canyon in a nitric acid/mercury/gadolinium solution. The resulting solution will be neutralized and transferred to Tank 39H in the Tank Farm. To confirm that the solution generated could be poisoned with Gd, neutralized, and discarded to the Savannah River Site (SRS)more » high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of simulant solutions was examined. Experiments were performed with three simulant solutions representative of the H-Canyon estimated concentrations in the final solutions after dissolution. The maximum U, Gd, and Al concentration were selected for testing from the range of solution compositions provided. Simulants were prepared in three different nitric acid concentrations, ranging from 0.5 to 1.5 M. The simulant solutions were neutralized to four different endpoints: (1) just before a solid phase was formed (pH 3.5-4), (2) the point where a solid phase was obtained, (3) 0.8 M free hydroxide, and (4) 1.2 M free hydroxide, using 50 wt % sodium hydroxide (NaOH). The settling behavior of the neutralized solutions was found to be slower compared to previous studies, with settling continuing over a one week period. Due to the high concentration of Al in these solutions, precipitation of solids was observed immediately upon addition of NaOH. Precipitation continued as additional NaOH was added, reaching a point where the mixture becomes almost completely solid due to the large amount of precipitate. As additional NaOH was added, some of the precipitate began to redissolve, and the solutions neutralized to the final two endpoints mixed easily and had expected densities of typical neutralized waste. Based on particle size and scanning electron microscopy analyses, the neutralized solids were found to be homogeneous and less than 20 microns in size. The majority of solids were less than 4 microns in size. Compared to previous studies, a larger percentage of the Gd was found to precipitate in the partially neutralized solutions (at pH 3.5-4). In addition the Gd:U mass ratio was found to be at least 1.0 in all of the solids obtained after partial or full neutralization. The hydrogen to U (H:U) molar ratios for two accident scenarios were also determined. The first was for transient neutralization and agitator failure. Experimentally this scenario was determined by measuring the H:U ratio of the settled solids. The minimum H:U molar ratio for solids from fully neutralized solutions was 388:1. The second accident scenario is for the solids drying out in an unagitiated pump box. Experimentally, this scenario was determined by measuring the H:U molar ratio in centrifuged solids. The minimum H:U atom ratios for centrifuged precipitated solids was 250:1. It was determined previously that a 30:1 H:Pu atom ratio was sufficient for a 1:1 Gd:Pu mass ratio. Assuming a 1:1 equivalence with {sup 239}Pu, the results of these experiments show Gd is a viable poison for neutralizing U/Gd solutions with the tested compositions.« less

  5. Structural studies of TiC{sub 1−x}O{sub x} solid solution by Rietveld refinement and first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Bo, E-mail: youqin5912@yahoo.com.cn; Hou, Na; Huang, Shanyan

    2013-08-15

    The lattice parameters, structural stability and electronic structure of titanium oxycarbides (TiC{sub 1−x}O{sub x}, 0≤x≤1) solid solution were investigated by Rietveld refinement and first-principles calculations. Series of TiC{sub 1−x}O{sub x} were precisely synthesized by sintering process under the vacuum. Rietveld refinement results of XRD patterns show the properties of continuous solid solution in TiC{sub 1−x}O{sub x} over the whole composition range. The lattice parameters vary from 0.4324 nm to 0.4194 nm decreasing with increasing oxygen concentration. Results of first-principles calculations reveal that the disorder C/O structure is stable than the order C/O structure. Further investigations of the vacancy in Ti{submore » 1−Va}(C{sub 1−x}O{sub x}){sub 1−Va} solid solution present that the structure of vacancy segregated in TiO-part is more stable than the disorder C/O structure, which can be ascribed to the Ti–Ti bond across O-vacancy and the charge redistributed around Ti-vacancy via the analysis of the electron density difference plots and PDOS. - Graphical abstract: XRD of series of titanium oxycarbides (TiC{sub 1−x}O{sub x}, 0≤x≤1) solid solution prepared by adjusting the proportion of TiO in the starting material. Highlights: • Titanium oxycarbides were obtained by sintering TiO and TiC under carefully controlled conditions. • Rietveld refinement results show continuous solid solution with FCC structure in TiC{sub 1−x}O{sub x}. • The disorder C/O structure is stable than the order C/O structure. • Introduction of vacancy segregated in TiO-part is more stable than disorder C/O structure. • Ti–Ti bond across O-vacancy and the charge redistributed around Ti-vacancy enhance structural stability.« less

  6. The mechanical problems on additive manufacturing of viscoelastic solids with integral conditions on a surface increasing in the growth process

    NASA Astrophysics Data System (ADS)

    Parshin, D. A.; Manzhirov, A. V.

    2018-04-01

    Quasistatic mechanical problems on additive manufacturing aging viscoelastic solids are investigated. The processes of piecewise-continuous accretion of such solids are considered. The consideration is carried out in the framework of linear mechanics of growing solids. A theorem about commutativity of the integration over an arbitrary surface increasing in the solid growing process and the time-derived integral operator of viscoelasticity with a limit depending on the solid point is proved. This theorem provides an efficient way to construct on the basis of Saint-Venant principle solutions of nonclassical boundary-value problems for describing the mechanical behaviour of additively formed solids with integral satisfaction of boundary conditions on the surfaces expanding due to the additional material influx to the formed solid. The constructed solutions will retrace the evolution of the stress-strain state of the solids under consideration during and after the processes of their additive formation. An example of applying the proved theorem is given.

  7. Solar-pumped solid state Nd lasers

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Zapata, L.

    1985-01-01

    Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.

  8. Dissolution of aragonite-strontianite solid solutions in nonstoichiometric Sr (HCO3)2-Ca (HCO3)2-CO2-H2O solutions

    USGS Publications Warehouse

    Plummer, Niel; Busenberg, E.; Glynn, P.D.; Blum, A.E.

    1992-01-01

    Synthetic strontianite-aragonite solid-solution minerals were dissolved in CO2-saturated non-stoichiometric solutions of Sr(HCO3)2 and Ca(HCO3)2 at 25??C. The results show that none of the dissolution reactions reach thermodynamic equilibrium. Congruent dissolution in Ca(HCO3)2 solutions either attains or closely approaches stoichiometric saturation with respect to the dissolving solid. In Sr(HCO3)2 solutions the reactions usually become incongruent, precipitating a Sr-rich phase before reaching stoichiometric saturation. Dissolution of mechanical mixtures of solids approaches stoichiometric saturation with respect to the least stable solid in the mixture. Surface uptake from subsaturated bulk solutions was observed in the initial minutes of dissolution. This surficial phase is 0-10 atomic layers thick in Sr(HCO3)2 solutions and 0-4 layers thick in Ca(HCO3)2 solutions, and subsequently dissolves and/or recrystallizes, usually within 6 min of reaction. The initial transient surface precipitation (recrystallization) process is followed by congruent dissolution of the original solid which proceeds to stoichiometric saturation, or until the precipitation of a more stable Sr-rich solid. The compositions of secondary precipitates do not correspond to thermodynamic equilibrium or stoichiometric saturation states. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of solid solutions on surfaces of aragonite and strontianite single crystals immersed in Sr(HCO3)2 and Ca(HCO3)2 solutions, respectively. In Sr(HCO3)2 solutions, the XPS signal from the outer ~ 60 A?? on aragonite indicates a composition of 16 mol% SrCO3 after only 2 min of contact, and 14-18 mol% SrCO3 after 3 weeks of contact. The strontianite surface averages approximately 22 mol% CaCO3 after 2 min of contact with Ca(HCO3)2 solution, and is 34-39 mol% CaCO3 after 3 weeks of contact. XPS analysis suggests the surface composition is zoned with somewhat greater enrichment in the outer ~25 A?? (as much as 26 mol% SrCO3 on aragonite and 44 mol% CaCO3 on strontianite). The results indicate rapid formation of a solid-solution surface phase from subsaturated aqueous solutions. The surface phase continually adjusts in composition in response to changes in composition of the bulk fluid as net dissolution proceeds. Dissolution rates of the endmembers are greatly reduced in nonstoichiometric solutions relative to dissolution rates observed in stoichiometric solutions. All solids dissolve more slowly in solutions spiked with the least soluble component ((Sr(HCO3)2)) than in solutions spiked with the more soluble component (Ca(HCO3)2), an effect that becomes increasingly significant as stoichiometric saturation is approached. It is proposed that the formation of a non-stoichiometric surface reactive zone significantly decreases dissolution rates. ?? 1992.

  9. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID...

  10. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID...

  11. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID...

  12. The Pollution Solution.

    ERIC Educational Resources Information Center

    Stephens, Lillian

    1981-01-01

    Presented are methods to help teachers continue the environmental awareness programs they have already started by providing up-to-date information and activities dealing with air pollution, water pollution, and solid waste disposal. (Author/KC)

  13. Compression behavior of quaternary and higher order solid-solution L1(2) trialuminides

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.

    1992-01-01

    Results from preliminary studies undertaken to evaluate the existence of single-phase L1(2) solid solutions between pairs of ternary L1(2) trialuminides are presented. Two-kilogram ingots of selected quaternary compositions were cast, homogenized and forged into pancakes; compression specimens were machined from the forgings and tested as a function of temperature. The results are compared against existing data for the ternary alloys. The ternary L1(2) trialuminides Al66Ti25Mn9, Al67Ti25Cr8, and Al22Ti8Fe3 were found to exhibit continuous solubility in one another. The quaternary Cr-Mn composition does not indicate any strength advantage over its ternary counterparts. The continuous replacement of Mn with Fe enhances the strength of the quaternary compound over the ternary Al66Ti25 Mn9.

  14. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID MINERALS (OTHER THAN COAL) EXPLORATION AND...

  15. On some problems in a theory of thermally and mechanically interacting continuous media. Ph.D. Thesis; [linearized theory of interacting mixture of elastic solid and viscous fluid

    NASA Technical Reports Server (NTRS)

    Lee, Y. M.

    1971-01-01

    Using a linearized theory of thermally and mechanically interacting mixture of linear elastic solid and viscous fluid, we derive a fundamental relation in an integral form called a reciprocity relation. This reciprocity relation relates the solution of one initial-boundary value problem with a given set of initial and boundary data to the solution of a second initial-boundary value problem corresponding to a different initial and boundary data for a given interacting mixture. From this general integral relation, reciprocity relations are derived for a heat-conducting linear elastic solid, and for a heat-conducting viscous fluid. An initial-boundary value problem is posed and solved for the mixture of linear elastic solid and viscous fluid. With the aid of the Laplace transform and the contour integration, a real integral representation for the displacement of the solid constituent is obtained as one of the principal results of the analysis.

  16. Heat and corrosion resistant cast CN-12 type stainless steel with improved high temperature strength and ductility

    DOEpatents

    Mazias, Philip J [Oak Ridge, TN; McGreevy, Tim [Morton, IL; Pollard, Michael James [East Peoria, IL; Siebenaler, Chad W [Peoria, IL; Swindeman, Robert W [Oak Ridge, TN

    2007-08-14

    A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.

  17. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.

    PubMed

    Bykov, Sergei V; Mao, Michael; Gares, Katie L; Asher, Sanford A

    2015-08-01

    We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high-resolution Echelle Raman spectrograph. We measure the deep UV resonance Raman (UVRR) spectra of solid and solution sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) at a standoff distance of ~2.2 m. For this 2.2 m standoff distance and a 1 min spectral accumulation time, where we only monitor the symmetric stretching band, we find a solid state NaNO3 detection limit of ~100 μg/cm(2). We easily detect ~20 μM nitrate water solutions in 1 cm path length cells. As expected, the aqueous solutions UVRR spectra of NaNO3 and NH4NO3 are similar, showing selective resonance enhancement of the nitrate (NO3(-)) vibrations. The aqueous solution photochemistry is also similar, showing facile conversion of NO3(-) to nitrite (NO2(-)). In contrast, the observed UVRR spectra of NaNO3 and NH4NO3 powders significantly differ, because their solid-state photochemistries differ. Whereas solid NaNO3 photoconverts with a very low quantum yield to NaNO2, the NH4NO3 degrades with an apparent quantum yield of ~0.2 to gaseous species.

  18. New insights into the coordination chemistry of Schiff bases derived from amino acids: Planar [Ni4] complexes with tyrosine side-chains

    NASA Astrophysics Data System (ADS)

    Muche, Simon; Hołyńska, Małgorzata

    2017-08-01

    Structure and properties of a rare metal complex of the chiral Schiff base ligand derived from ortho-vanillin and L-tyrosine are presented. This study is a continuation of research on ligands containing biologically compatible moieties. The ligand is also fully characterized in form of a sodium salt, in particular in solution, for the first time. The metal complex contains a unique bowl-shaped [Ni4] core. Its structure is investigated both in solution (ESI-MS, NMR) and in solid state (X-ray diffraction studies). Under certain conditions the complex can be isolated as crystalline DMF solvate which is studied in solid state.

  19. Pharmacy on Demand Feasibility Assessment

    DTIC Science & Technology

    2008-07-19

    We have successfully carried out the first two steps of the ibuprofen synthesis in our microreactor using homogeneous reactions in a continuous...Average of two trials. c Average of three trials. d Using a 0.25 M stock solution of isobutylbenzene. e Using a 0.5 M stock solution of...the creation of a packed-bed microreactor is the preparation of the solid-supported reagent. We have previously demonstrated that the performance

  20. Synthesis and characterization of cadmium-calcium hydroxyapatite solid solutions

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Zhu, Yi-nian; Dai, Liu-qin

    2014-06-01

    A series of cadmium-calcium hydroxyapatite solid solutions was prepared by an aqueous precipitation method. By various means, the characterizations confirmed the formation of continuous solid solutions over all ranges of Cd/(Cd+Ca) atomic ratio. In the results, both lattice parameters a and c display slight deviations from Vegard's rule when the Cd/(Cd+Ca) atomic ratio is greater than 0.6. The particles change from smaller acicular to larger hexagonal columnar crystals as the Cd/(Cd+Ca) atomic ratio increases from 0-0.60 to 0.60-1.00. The area of the phosphate peak for symmetric P-O stretching decreases with the increase in Cd/(Cd+Ca) atomic ratio, and the peak disappears when the Cd/(Cd+Ca) atomic ratio is greater than 0.6; the two phosphate peaks of P-O stretching gradually merge together for the Cd/(Cd+Ca) atomic ratio near 0.60. These variations can be explained by a slight tendency of larger Cd ions to occupy M(2) sites and smaller Ca ions to prefer M(1) sites in the structure.

  1. Sirolimus formulation with improved pharmacokinetic properties produced by a continuous flow method.

    PubMed

    Solymosi, Tamás; Angi, Réka; Basa-Dénes, Orsolya; Ránky, Soma; Ötvös, Zsolt; Glavinas, Hristos; Filipcsei, Genovéva; Heltovics, Gábor

    2015-08-01

    The oral bioavailability of Sirolimus is limited by poor dissolution of the compound in the gastrointestinal tract resulting in a low bioavailability and large inter-individual differences in blood levels. Several different formulation approaches were applied to overcome these disadvantageous pharmacokinetic properties including the marketed oral solution and a tablet form containing wet milled nanocrystals. These approaches deliver improved pharmacokinetics, yet, they share the characteristics of complex production method and composition. We have developed a nanostructured Sirolimus formulation prepared by the controlled continuous flow precipitation of the compound from its solution in the presence of stabilizers. We have shown that contrary to the batch production the process could be easily intensified and scaled up; apparently the uniformity of the precipitation is heavily dependent on the production parameters, most likely the mixing of the solvent and antisolvent. We compared the physicochemical and pharmacokinetic properties of the nanostructured formula with the marketed nanoformula. We found that our method produces particles in the size range of less than 100nm. The solid form redispersed instantaneously in water and in biorelevant media. Both the solid form and the redispersed colloid solution showed excellent stability even in accelerated test conditions. The oral administration of the nanostructured formula resulted in faster absorption, higher exposure and higher trough concentrations when compared to the marked form. These advantageous properties could allow the development of solid oral Sirolimus formulae with lower strength and gel based topical delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Nanocellular foam with solid flame retardant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liang; Kelly-Rowley, Anne M.; Bunker, Shana P.

    Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23.degree. C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percentmore » flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.« less

  3. End-Member Formulation of Solid Solutions and Reactive Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtner, Peter C.

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed tomore » correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.« less

  4. Experimental cocrystal screening and solution based scale-up cocrystallization methods.

    PubMed

    Malamatari, Maria; Ross, Steven A; Douroumis, Dennis; Velaga, Sitaram P

    2017-08-01

    Cocrystals are crystalline single phase materials composed of two or more different molecular and/or ionic compounds generally in a stoichiometric ratio which are neither solvates nor simple salts. If one of the components is an active pharmaceutical ingredient (API), the term pharmaceutical cocrystal is often used. There is a growing interest among drug development scientists in exploring cocrystals, as means to address physicochemical, biopharmaceutical and mechanical properties and expand solid form diversity of the API. Conventionally, coformers are selected based on crystal engineering principles, and the equimolar mixtures of API and coformers are subjected to solution-based crystallization that are commonly employed in polymorph and salt screening. However, the availability of new knowledge on cocrystal phase behaviour in solid state and solutions has spurred the development and implementation of more rational experimental cocrystal screening as well as scale-up methods. This review aims to provide overview of commonly employed solid form screening techniques in drug development with an emphasis on cocrystal screening methodologies. The latest developments in understanding and the use of cocrystal phase diagrams in both screening and solution based scale-up methods are also presented. Final section is devoted to reviewing the state of the art research covering solution based scale-up cocrystallization process for different cocrystals besides more recent continuous crystallization methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Solid Waste Management in Nigeria: Problems and Issues.

    PubMed

    AGUNWAMBA

    1998-11-01

    / This paper is a presentation of the problems of solid waste management in Nigeria and certain important issues that must be addressed in order to achieve success. At the core of the problems of solid waste management are the absence of adequate policies, enabling legislation, and an environmentally stimulated and enlightened public. Government policies on the environment are piecemeal where they exist and are poorly implemented. Public enlightenment programs lacked the needed coverage, intensity, and continuity to correct the apathetic public attitude towards the environment. Up to now the activities of the state environmental agencies have been hampered by poor funding, inadequate facilities and human resources, inappropriate technology, and an inequitable taxation system. Successful solid waste management in Nigeria will require a holistic program that will integrate all the technical, economic, social, cultural, and psychological factors that are often ignored in solid waste programs.KEY WORDS: Solid waste; Management; Problems; Solutions; Nigeria

  6. Synthesis, second-harmonic generation (SHG), and photoluminescence (PL) properties of noncentrosymmetric bismuth selenite solid solutions, Bi2-xLnxSeO5 (Ln = La and Eu; x = 0-0.3)

    NASA Astrophysics Data System (ADS)

    Qi, Hai-Xin; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min

    2018-02-01

    A series of La3+ or Eu3+-doped noncentrosymmetric (NCS) bismuth selenite solid solutions, Bi2-xLnxSeO5 (x = 0.1, 0.2, and 0.3), have been successfully synthesized via standard solid-state reactions under vacuum with Bi2O3, La2O3 (or Eu2O3), and SeO2 as starting materials. Crystal structures and phase purities of the resultant materials were thoroughly characterized by powder X-ray diffraction using the Rietveld method. The results clearly show that the reported materials crystallize in the orthorhombic space group, Abm2 (No. 39), and exhibit pseudo-three-dimensional frameworks consisting of BiO3, BiO5, and SeO3 polyhedra that share edges and corners. Detailed diffraction studies indicate that the cell volume of Bi2-xLnxSeO5 decreases with an increasing amount of Ln3+ on the Bi3+ sites. However, no ordering between Ln3+ and Bi3+ was observed in the Bi2-xLnxSeO5 solid solutions. Powder second-harmonic generation (SHG) measurements, using 1064 nm radiation, reveal that SHG efficiencies of Bi2-xLnxSeO5 solid solutions continuously decrease as more Ln3+ cations are added to the sites of polarizable Bi3+ cations. Photoluminescence (PL) measurements on Bi2-xEuxSeO5 exhibit three specific emission peaks at 592, 613, and 702 nm (5D0 → 7F1, 2, 4) owing to the 4f-4f intrashell transitions of Eu3+ ions.

  7. Direct Coupling Method for Time-Accurate Solution of Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Soh, Woo Y.

    1992-01-01

    A noniterative finite difference numerical method is presented for the solution of the incompressible Navier-Stokes equations with second order accuracy in time and space. Explicit treatment of convection and diffusion terms and implicit treatment of the pressure gradient give a single pressure Poisson equation when the discretized momentum and continuity equations are combined. A pressure boundary condition is not needed on solid boundaries in the staggered mesh system. The solution of the pressure Poisson equation is obtained directly by Gaussian elimination. This method is tested on flow problems in a driven cavity and a curved duct.

  8. The Influence of Vanadium on Ferrite and Bainite Formation in a Medium Carbon Steel

    NASA Astrophysics Data System (ADS)

    Sourmail, T.; Garcia-Mateo, C.; Caballero, F. G.; Cazottes, S.; Epicier, T.; Danoix, F.; Milbourn, D.

    2017-09-01

    The influence of vanadium additions on transformation kinetics has been investigated in a medium carbon forging steel. Using dilatometry to track transformation during continuous cooling or isothermal transformation, the impact of vanadium on both ferrite-pearlite and bainite has been quantified. Transmission electron microscopy and atom probe tomography have been used to establish whether vanadium was present in solid solution, or as clusters and precipitates. The results show that vanadium in solid solution has a pronounced retarding influence on ferrite-pearlite formation and that, unlike in the case of niobium, this effect can be exploited even during relatively slow cooling. The influence on bainite transformation was found to depend on temperature; an explanation in terms of the effect of vanadium on heterogeneous nucleation is tentatively proposed.

  9. Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs).

    PubMed

    Tan, Davin; Loots, Leigh; Friščić, Tomislav

    2016-06-14

    This overview highlights the emergent area of mechanochemical reactions for making active pharmaceutical ingredients (APIs), and covers the latest advances in the recently established area of mechanochemical screening and synthesis of pharmaceutical solid forms, specifically polymorphs, cocrystals, salts and salt cocrystals. We also provide an overview of the most recent developments in pharmaceutical uses of mechanochemistry, including real-time reaction monitoring, techniques for polymorph control and approaches for continuous manufacture using twin screw extrusion, and more. Most importantly, we show how the overlap of previously unrelated areas of mechanochemical screening for API solid forms, organic synthesis by milling, and mechanochemical screening for molecular recognition, enables the emergence of a new research discipline in which different aspects of pharmaceutical and medicinal chemistry are addressed through mechanochemistry rather than through conventional solution-based routes. The emergence of such medicinal mechanochemistry is likely to have a strong impact on future pharmaceutical and medicinal chemistry, as it offers not only access to materials and reactivity that are sometimes difficult or even impossible to access from solution, but can also provide a general answer to the demands of the pharmaceutical industry for cleaner, safer and efficient synthetic solutions.

  10. Thermal properties of spinel based solid solutions

    NASA Astrophysics Data System (ADS)

    O'Hara, Kelley Rae

    Solid solution formation in spinel based systems proved to be a viable approach to decreasing thermal conductivity. Samples with systematically varied additions of MgGa2O4 to MgAl2O 4 were prepared and thermal diffusivity was measured using the laser flash technique. Additionally, heat capacity was measured using differential scanning calorimetry and modeled for the MgAl2O4-MgGa 2O4 system. At 200°C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. The solid solution continued to decrease the thermal conductivity by 13% up to 1000°C with 5 mol% addition. The decrease in thermal conductivity ultimately resulted in a decrease in heat flux when applied to a theoretical furnace lining, which could lead to energy savings in industrial settings. The MgAl2O4-Al2O3 phase equilibria was investigated to fully understand the system and the thermal properties at elevated temperatures. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al 2O3 at 1500°C, 83.0 wt% Al2O4 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been identified at temperatures up to 1700°C which could have significant implications for material processing and properties. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevated temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present. Thermal properties in the MgAl2O4-Al2O 3 system were investigated in both the single phase solid solution region and the two phase region. The thermal diffusivity decreased through the MgAl 2O4 solid solution region and was at a minimum through the entire metastable (nucleation and growth) region. As Al2O 3 became present as a second phase the thermal diffusivity increased with Al2O3 content. There was an 11.7% increase in thermal diffusivity with a change in overall chemistry of 85.20 wt% Al2O 3 to 87.71 wt% Al2O3, due to the drastic change in final chemistry (38.3 wt% Al20 3) caused by the nucleation and growth region in the system.

  11. Synthesis and characterization of the LDH hydrotalcite-pyroaurite solid-solution series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozov, K., E-mail: urs.berner@psi.c; Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern, Baltzerstrasse 3, CH-3012; Berner, U.

    2010-08-15

    A layered double hydroxide (LDH) hydrotalcite-pyroaurite solid-solution series Mg{sub 3}(Al{sub x}Fe{sub 1-x})(CO{sub 3}){sub 0.5}(OH){sub 8} with 1 - x = 0.0, 0.1...1.0 was prepared by co-precipitation at 23 {+-} 2 {sup o}C and pH = 11.40 {+-} 0.03. The compositions of the solids and the reaction solutions were determined using ICP-OES (Mg, Al, Fe, and Na) and TGA techniques (CO{sub 3}{sup 2-}, OH{sup -}, and H{sub 2}O). Powder X-ray diffraction was employed for phase identification and determination of the unit cell parameters a{sub o} and c{sub o} from peak profile analysis. The parameter a{sub o} = b{sub o} was foundmore » to be a linear function of the composition. This dependency confirms Vegard's law and indicates the presence of a continuous solid-solution series in the hydrotalcite-pyroaurite system. TGA data show that the temperatures at which interlayer H{sub 2}O molecules and CO{sub 3}{sup 2-} anions are lost, and at which dehydroxylation of the layers occurs, all decrease with increasing mole fraction of iron within the hydroxide layers. Features of the Raman spectra also depend on the iron content. The absence of Raman bands for Fe-rich members (x{sub Fe} > 0.5) is attributed to possible fluorescence phenomena. Based on chemical analysis of both the solids and the reaction solutions after synthesis, preliminary Gibbs free energies of formation have been estimated. Values of {Delta}G{sup o}{sub f}(hydrotalcite) = - 3773.3 {+-} 51.4 kJ/mol and {Delta}G{sup o}{sub f}(pyroaurite) = - 3294.5 {+-} 95.8 kJ/mol were found at 296.15 K. The formal uncertainties of these formations constants are very high. Derivation of more precise values would require carefully designed solubility experiments and improved analytical techniques.« less

  12. THE RECIPROCAL SYSTEM FORMED BY THE CHLORIDES AND THE BROMIDES OF LITHIUM AND THALLIUM (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergman, A.G.; Arabadzhan, A.S.

    1963-06-01

    The phase diagrams of 2 series of continuous solid solutions, the Li, K:: Cl,Br and the Li,Tl:: Cl,Br were investigated, as part of a study of the relation between thermal effect of equilibrium reactions and the structure of the melts. In the second system, the heat of the exchange reaction LiCl + TlBr in equilibrium LiBr + TlCl amounts to 8.19 kcal/mole, being larger than that of the corresponding reaction in the Li,K:: Cl,Br system; this affects the crystallization surface in the system. A Pt crucible and Pt, Au, Pd/Pt-Rh thermocouple were used in the thermal studies. It was foundmore » that the liquidus surface consists of 2 fields of continuous series of solid solutions. The joint crystallization curve has a maximum at 392 deg C at the stable portion of the LiCl-TlBr system. There is crest in the liquidus surface corresponding to the stable diagonal LiCl--TlBr; this is visible more markedly in the Li(Cl,Br) field. (TTT)« less

  13. Modified sedimentation-dispersion model for solids in a three-phase slurry column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.N.; Ruether, J.A.; Shah, Y.T.

    1986-03-01

    Solids distribution data for a three-phase, batch-fluidized slurry bubble column (SBC) are presented, using air as the gas phase, pure liquids and solutions as the liquid phase, and glass beads and carborundum catalyst powder as the solid phase. Solids distribution data for the three-phase SBC operated in a continuous mode of operation are also presented, using nitrogen as the gas phase, water as the liquid phase, and glass beads as the solid phase. A new model to provide a reasonable approach to predict solids concentration distributions for systems containing polydispersed solids is presented. The model is a modification of standardmore » sedimentation-dispersion model published earlier. Empirical correlations for prediction of hindered settling velocity and solids dispersion coefficient for systems containing polydispersed solids are presented. A new method of evaluating critical gas velocity (CGV) from concentrations of the sample withdrawn at the same port of the SBC is presented. Also presented is a new mapping for CGV which separates the two regimes in the SBC, namely, incomplete fluidization and complete fluidization.« less

  14. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: pros and cons.

    PubMed

    Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A

    2007-01-01

    The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.

  15. Recent development in osmotic dehydration of fruit and vegetables: a review.

    PubMed

    Chandra, Suresh; Kumari, Durvesh

    2015-01-01

    Osmotic dehydration of fruits and vegetables is achieved by placing the solid/semi solid, whole or in pieces, in a hypertonic solution (sugar and/or salt) with a simultaneous counter diffusion of solutes from the osmotic solution into the tissues. Osmotic dehydration is recommended as a processing method to obtain better quality of food products. Partial dehydration allows structural, nutritional, sensory, and other functional properties of the raw material to be modified. However, the food industry uptake of osmotic dehydration of foods has not been extensive as expected due to the poor understanding of the counter current flow phenomena associated with it. However, these flows are in a dynamic equilibrium with each other and significantly influence the final product in terms of preservation, nutrition, and organoleptic properties. The demand of healthy, natural, nutritious, and tasty processed food products continuously increases, not only for finished products, but also for ingredient to be included in complex foods such as ice cream, cereals, dairy, confectionaries, and bakery products.

  16. La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO 2 reforming of methane

    NASA Astrophysics Data System (ADS)

    Valderrama, Gustavo; Kiennemann, Alain; Goldwasser, Mireya R.

    La 1- xSr xNi 0.4Co 0.6O 3 and La 0.8Sr 0.2Ni 1- yCo yO 3 solid solutions with perovskite-type structure were synthesized by the sol-gel resin method and used as catalytic precursors in the dry reforming of methane with CO 2 to syngas, between 873 and 1073 K at atmospheric pressure under continuous flow of reactant gases with CH 4/CO 2 = 1 ratio. These quaternary oxides were characterized by X-ray diffraction (XRD), BET specific surface area and temperature-programmed reduction (TPR) techniques. XRD analyses of the more intense diffraction peaks and cell parameter measurements showed formation of La-Sr-Ni-Co-O solid solutions with La 0.9Sr 0.1CoO 3 and/or La 0.9Sr 0.1NiO 3 as the main crystallographic phases present on the solids depending on the degree of substitution. TPR analyses showed that Sr doping decreases the temperature of reduction via formation of intermediary species producing Ni 0, Co 0 with particle sizes in the range of nanometers over the SrO and La 2O 3 phases. These metallic nano particles highly dispersed in the solid matrix are responsible for the high activity shown during the reaction and avoid carbon formation. The presence of Sr in doping quantities also promotes the secondary reactions of carbon formation and water-gas shift in a very small extension during the dry reforming reaction.

  17. Thermodynamic modeling of solid solutions between monosulfate and monochromate 3CaO Bullet Al{sub 2}O{sub 3} Bullet Ca[(CrO{sub 4}){sub x}(SO{sub 4}){sub 1-x}] Bullet nH{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leisinger, Sabine M., E-mail: sabine.leisinger@eawag.ch; Institute of Biogeochemistry and Pollutant Dynamics, ETH, CH-8092 Zurich; Lothenbach, Barbara

    2012-01-15

    In hydrated cement paste AFm-phases are regarded to play an important role in the binding of the toxic contaminant chromate through isomorphic substitution with sulfate. Solid solutions formation can lower the solubility of the solids, thus reducing chromate leaching concentrations. Solid solutions between monosulfate and monochromate were synthesized and characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and inductive coupled plasma optical emission spectroscopy (ICP-OES). Based on the measured ion concentrations in solution total solubility products of the solid solution series were determined. For pure monochromate a logK = - 28.4more » {+-} 0.7 was determined. Results from solid and solution analysis showed that limited solid solutions exist. Based on XRD diffractograms a solid solution with a miscibility gap 0.15 < Crx < 0.85 with a dimensionless Guggenheim parameter of 2.43 was proposed.« less

  18. Structural, Electronic, and Optical Properties of BiOX1-xYx (X, Y = F, Cl, Br, and I) Solid Solutions from DFT Calculations.

    PubMed

    Zhao, Zong-Yan; Liu, Qing-Lu; Dai, Wen-Wu

    2016-08-23

    Six BiOX1-xYx (X, Y = F, Cl, Br, and I) solid solutions have been systematically investigated by density functional theory calculations. BiOCl1-xBrx, BiOBr1-xIx, and BiOCl1-xIx solid solutions have very small bowing parameters; as such, some of their properties increase almost linearly with increasing x. For BiOF1-xYx solid solutions, the bowing parameters are very large and it is extremely difficult to fit the related calculated data by a single equation. Consequently, BiOX1-xYx (X, Y = Cl, Br, and I) solid solutions are highly miscible, while BiOF1-xYx (Y = Cl, Br, and I) solid solutions are partially miscible. In other words, BiOF1-xYx solid solutions have miscibility gaps or high miscibility temperature, resulting in phase separation and F/Y inhomogeneity. Comparison and analysis of the calculated results and the related physical-chemical properties with different halogen compositions indicates that the parameters of BiOX1-xYx solid solutions are determined by the differences of the physical-chemical properties of the two halogen compositions. In this way, the large deviation of some BiOX1-xYx solid solutions from Vegard's law observed in experiments can be explained. Moreover, the composition ratio of BiOX1-xYx solid solutions can be measured or monitored using optical measurements.

  19. A flux-enhancing forward osmosis-nanofiltration integrated treatment system for the tannery wastewater reclamation.

    PubMed

    Pal, Parimal; Chakrabortty, Sankha; Nayak, Jayato; Senapati, Suman

    2017-06-01

    Effective treatment of tannery wastewater prior to discharge to the environment as per environmental regulations remains a big challenge despite efforts to bring down the concentrations of the pollutants which are often quite high as measured in terms of chemical oxygen demand (7800 mg/L), total dissolved solids (5400 mg/L), chloride (4260 mg/L), sulphides (250 mg/L) and chromium. A pilot-scale forward osmosis and nanofiltration integrated closed loop system was developed for continuous reclamation of clean water from tannery wastewater at a rate of 52-55 L/m 2 /h at 1.6 bar pressure. The low-cost draw solution was 0.8 M NaCl solution. Continuous recovery for recycling the draw solute was done by nanofiltration of diluted draw solution at an operating pressure of 12 bar and volumetric cross-flow rate of 700 L/h. Fouling study revealed that the specific flat-sheet design of cross-flow forward osmosis module with counter current flow of feed and draw solution prevents the build-up of concentration polarization, thus enabling long-term filtration in continuous mode of operation without significant membrane fouling. This study culminates in the development of a compact, efficient and low-cost industrial wastewater treatment and reclamation technology.

  20. Renierite, Cu10ZnGe2Fe4S16-Cu11GeAsFe4S16: a coupled solid solution series.

    USGS Publications Warehouse

    Bernstein, L.R.

    1986-01-01

    The composition of renierite is found to be Cu10(Zn1-xCux)Ge2-xAsxFe4S16 (0 = or < x = or < 1), with continuous solid solution between the zincian and arsenian end-members, Cu10ZnGe2Fe4S16 and Cu11GeAsFe4S16, through the coupled substitution Zn(II) + Ge(IV) = Cu(I) + As(V). This is the first reported example of extensive coupled solid solution in a sulphide mineral. Arsenian renierite, not previously characterized, is similar to zincian renierite in polished section, with a slightly redder colour and lower anisotropy. It is reddish orange with relief very similar to that of bornite, though it is harder (VHN25 = 286) and does not tarnish in air. It is slightly bireflective, with colours varying from orange-yellow to reddish orange in nearly crossed polarizers. The strongest powder XRD lines are: 3.042(100), 1.861(29), 1.869(16), 1.594(11) and 1.017(10) A; D(calc.) 4.50 g/cm3. Specimens have been found at the Ruby Creek copper deposit, Alaska, where zincian renierite also occurs, and at the Inexco no. 1 mine, Jamestown, Colorado.-J.A.Z.

  1. Microstructure Evolution and Rapid Solidification Behavior of Blended Nickel-Based Superalloy Powders Fabricated by Laser Powder Deposition

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Gauvin, R.; Brochu, M.

    2016-07-01

    Laser powder deposition was performed on a substrate of Inconel 738 using blended powders of Mar M247 and Amdry DF3 with a ratio of 4:1 for repairing purposes. In the as-deposited condition, continuous secondary phases composed of γ-Ni3B eutectics and discrete (Cr, W)B borides were observed in inter-dendritic regions, and time-dependent nucleation simulation results confirmed that (Cr, W)B was the primary secondary phase formed during rapid solidification. Supersaturated solid solution of B was detected in the γ solid solution dendritic cores. The Kurz-Giovanola-Trivedi model was performed to predict the interfacial morphology and correlate the solidification front velocity (SFV) with dendrite tip radius. It was observed from high-resolution scanning electron microscopy that the dendrite tip radius of the upper region was in the range of 15 to 30 nm, which yielded a SFV of approx 30 cm/s. The continuous growth model for solute trapping behavior developed by Aziz and Kaplan was used to determine that the effective partition coefficient of B was approximately 0.025. Finally, the feasibility of the modeling results were rationalized with the Clyne-Kurz segregation simulation of B, where Clyne-Kurz prediction using a partition coefficient of 0.025 was in good agreement with the electron probe microanalysis results.

  2. Mixed oxide solid solutions

    DOEpatents

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  3. Development of a Compact and Efficient Ice Thermal Energy Storage Vessel

    NASA Astrophysics Data System (ADS)

    Sasaguchi, Kengo; Ishikawa, Masatoshi; Muta, Kenji; Yoshino, Kiyotaka; Hayashi, Hiroko; Baba, Yoshiyuki

    In the present study, the authors propose the use of a low concentration aqueous solution as phase change material for static-type ice-storage-vessels, instead of pure water commonly used today. If an aqueous solution with low concentration is used, even when a large amount of solution (aqueous ethylene glycol in this study) is solidified and bridging of ice developed around cold tubes occurs, the pressure increase could be prevented by the existence of a continuous liquid phase in the solid-liquid two-phase layer (mushy layer) which opens to an air gap at the top of a vessel. Therefore, one can continue to solidify an aqueous solution after bridging, achieving a high ice packing factor (IPF). First, experiments using small-scale test cells have been conducted to confirm the present idea, and then we have performed experiments using a large vessel with an early practical size. It was seen that a large pressure increase is prevented for the initial concentration of the solution C0 of 1.0%, and IPF obtained using the solution is much greater than 0.65 using pure water for which the solidification must be stopped before the bridging.

  4. Structural evolution in three and four-layer Aurivillius solid solutions: A comparative study versus relaxor properties

    NASA Astrophysics Data System (ADS)

    Tellier, Jenny; Boullay, Philippe; Ben Jennet, Dorra; Mercurio, Daniele

    2008-02-01

    Two solid solutions of three-layer Ba xBi 4- xNb xTi 3- xO 12 (0 ≤ x ≤ 1.2) and four-layer Aurivillius compounds (Na 0.5Bi 0.5) 1- xBa xBi 4Ti 4O 15 (0 ≤ x ≤ 1), which both present a ferroelectric to relaxor-like transition with increasing x, were synthesized by solid state reaction. The evolution of their crystal structures, as a function of x, was performed using Rietveld refinements from X-ray powder diffraction data. As x increases, the average crystal structures become less distorted with respect to the archetypal high temperature tetragonal one and the coordination number of Bi 3+ in M 2O 2 layers continuously changes from {4 + 2} to {4}. The relaxor behaviour which appears in samples for a tolerance factor t > 0.96 is associated with a general static disorder in A and M sites together with the presence of some Ba 2+ cations in M 2O 2 layers (less than 10%).

  5. Finsler Geometry of Nonlinear Elastic Solids with Internal Structure

    DTIC Science & Technology

    2017-01-01

    should enable regularized numerical solutions with discretization -size independence for representation of materials demonstrating softening, e.g...additional possibility of a discrete larger void/cavity forming at the core of the sphere. In the second case, comparison with the classical...core of the domain. This hollow sphere physically represents a discrete cavity, while the constant field ξH physically represents a continuous

  6. Characterization of corrosion products of AB{sub 5}-type hydrogen storage alloys for nickel-metal hydride batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurel, F.; Knosp, B.; Backhaus-Ricoult, M.

    2000-01-01

    To better understand the decrease in storage capacity of AB{sub 5}-type alloys in rechargeable Ni/MH batteries undergoing repeated charge/discharge cycles, the corrosion of a MnNi{sub 3.55}Co{sub 0.75}Mn{sub 0.4}Al{sub 0.3} alloy in aqueous KOH electrolyte was studied. The crystal structure, chemical composition, and distribution of corrosion products were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Hollow and filed needles of a mixed rare earth hydroxide Mn(OH){sub 3} were found to cover a continuous nanocrystalline corrosion scale composed of metal (Ni, Co) solid solution, oxide (Ni,Co)O solid solution and rare earth hydroxide, and a Mn-depleted alloy subscale. Corrosionmore » kinetics were measured for three different temperatures. Growth kinetics of the continuous corrosion scale and of the Mm(OH){sub 3} needles obeyed linear and parabolic rate laws, respectively. Models for the corrosion mechanism were developed on the basis of diffusional transport of Mn and OH through the hydroxide needles and subsequent diffusion along grain boundaries through the nanocrystalline scale.« less

  7. Synthesis, Rietveld refinements, Infrared and Raman spectroscopy studies of the sodium diphosphate NaCryFe1-yP2O7 (0 ≤ y ≤ 1)

    NASA Astrophysics Data System (ADS)

    Bih, H.; Saadoune, I.; Bih, L.; Mansori, M.; ToufiK, H.; Fuess, H.; Ehrenberg, H.

    2016-01-01

    In the present study we report on the synthesis and crystal structure studies of NaCryFe1-yP2O7 sodium diphosphate solid solution (0 ≤ y ≤ 1). The X-ray diffraction shows that these compounds are isostructural with NaFeP2O7 and NaCrP2O7 (space group P21/c (C2h5) Z = 4). The Rietveld refinements based on the XRD patterns show the existence of a continuous solid solution over the whole composition range (0 ≤ y ≤ 1). A continuous evolution of the monoclinic unit cell parameters was obtained. The transition metal ions (Cr3+ and/or Fe3+) connect the diphosphate anions forming a three-dimensional network with cages filled by Na+ cations. IR and Raman spectra have been interpreted using factor group analysis. A small shift of the band frequencies is observed when Fe is substituted by Cr. The POP bridge angles are determined from Lazarev's relation and agree well with those deduced from the crystal structure refinement.

  8. Detox{sup SM} wet oxidation system studies for engineering scale up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, D.T.; Moslander, J.E.; Zigmond, J.A.

    1995-12-31

    Catalyzed wet oxidation utilizing iron(III) has been shown to have promise for treating many hazardous and mixed wastes. The reaction occurs at the surface of contact between an aqueous iron(III) solution and organic material. Studies with liquid- and vapor-phase organic waste surrogates have established reaction kinetics and the limits of reaction rate based on organic concentration and iron(III) diffusion. Continuing engineering studies have concentrated on reaction vessel agitator and solids feed configurations, an improved bench scale reflux condenser and reflux condenser calculations, sparging of organic compounds from the process condensate water, filtration of solids from the process solution, and flammabilitymore » limits for volatile organic compounds in the headspace of the reaction vessel under the reaction conditions. Detailed engineering design and fabrication of a demonstration unit for treatment of mixed waste is in progress.« less

  9. Magnetic properties of quadruple perovskite solid solutions Ca{sub 1–x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} and Y{sub 1–y}Ce{sub x}Cu{sub 3}Fe{sub 4}O{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Makoto; Mori, Shigeo; Yamada, Ikuya, E-mail: i-yamada@21c.osakafu-u.ac.jp

    Magnetic properties of the quadruple perovskite solid solutions Ca{sub 1–x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} and Y{sub 1–y}Ce{sub y}Cu{sub 3}Fe{sub 4}O{sub 12} are investigated. Ca{sub 1–x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} shows continuous increase in the ferromagnetic transition temperature as x increases. Y{sub 1–y}Ce{sub y}Cu{sub 3}Fe{sub 4}O{sub 12} exhibits a ferromagnetic-antiferromagnetic transition in the vicinity of y = 0.5. These observations demonstrate the electron doping effect on magnetic properties of charge-disproportionated ACu{sub 3}Fe{sub 4}O{sub 12} phases.

  10. Prediction of drug-packaging interactions via molecular dynamics (MD) simulations.

    PubMed

    Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes

    2012-07-15

    The interaction between packaging materials and drug products is an important issue for the pharmaceutical industry, since during manufacturing, processing and storage a drug product is continuously exposed to various packaging materials. The experimental investigation of a great variety of different packaging material-drug product combinations in terms of efficacy and safety can be a costly and time-consuming task. In our work we used molecular dynamics (MD) simulations in order to evaluate the applicability of such methods to pre-screening of the packaging material-solute compatibility. The solvation free energy and the free energy of adsorption of diverse solute/solvent/solid systems were estimated. The results of our simulations agree with experimental values previously published in the literature, which indicates that the methods in question can be used to semi-quantitatively reproduce the solid-liquid interactions of the investigated systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Phase change in CoTi2 induced by MeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Zensho, Akihiro; Sato, Kazuhisa; Yasuda, Hidehiro; Mori, Hirotaro

    2018-07-01

    The phase change induced by MeV electron irradiation in the intermetallic compound E93-CoTi2 was investigated using high-voltage electron microscopy. Under MeV electron irradiation, CoTi2 was first transformed into an amorphous phase and, with continued irradiation, crystallite formation in the amorphous phase (i.e. formation of crystallites of a solid-solution phase within the amorphous phase) was induced. The critical temperature for amorphisation was around 250 K. The total dose (dpa) required for crystallite formation (i.e. that required for partial crystallisation) was high (i.e. 27-80 dpa) and, even after prolonged irradiation, the amorphous phase was retained in the irradiated sample. Such partial crystallisation behaviour of amorphous Co33Ti67 was clearly different from the crystallisation behaviour (i.e. amorphous-to-solid solution, polymorphous transformation) of amorphous Cr67Ti33 reported in the literature. A possible cause of the difference is discussed.

  12. Analysis of lasers as a solution to efficiency droop in solid-state lighting

    DOE PAGES

    Chow, Weng W.; Crawford, Mary H.

    2015-10-06

    This letter analyzes the proposal to mitigate the efficiency droop in solid-state light emitters by replacing InGaN light-emitting diodes (LEDs) with lasers. The argument in favor of this approach is that carrier-population clamping after the onset of lasing limits carrier loss to that at threshold, while stimulated emission continues to grow with injection current. A fully quantized (carriers and light) theory that is applicable to LEDs and lasers (above and below threshold) is used to obtain a quantitative evaluation. The results confirm the potential advantage of higher laser output power and efficiency above lasing threshold, while also indicating disadvantages includingmore » low efficiency prior to lasing onset, sensitivity of lasing threshold to temperature, and the effects of catastrophic laser failure. As a result, a solution to some of these concerns is suggested that takes advantage of recent developments in nanolasers.« less

  13. Structure and magnetic properties of nanostructured MnNi alloys fabricated by mechanical alloying and annealing treatments

    NASA Astrophysics Data System (ADS)

    Jalal, T.; Hossein Nedjad, S.; Khalili Molan, S.

    2013-05-01

    A nearly equiatomic MnNi alloy was fabricated from the elemental powders by means of mechanical alloying in a planetary ball milling apparatus. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and measurements of magnetization were conducted to identify the structural states and properties of the prepared alloys. After ball milling for 20 h, a disordered face-centered cubic (f.c.c.) solid solution was formed which increased in lattice parameter by further milling up to 50 h. An exothermic reaction took place at around 300-400°C during continuous heating of the disordered f.c.c. solid solution. This reaction is attributed to a structural ordering leading to the formation of a face-centered tetragonal (f.c.t.) phase with L10 type ordering. Examination of the magnetic properties indicated that the structural ordering increases remnant magnetization and decreases coerecivity.

  14. Determination of induction period and crystal growth mechanism of dexamethasone sodium phosphate in methanol-acetone system

    NASA Astrophysics Data System (ADS)

    Hao, Hongxun; Wang, Jingkang; Wang, Yongli

    2005-02-01

    The induction period of dexamethasone sodium phosphate at different supersaturation was experimentally determined in a methanol-acetone system. The laser monitoring observation technique was used to determine the appearance of the first nucleus in solution. The effect of solution composition on induction period was discussed. Based on classical homogeneous nucleation theory, the solid-liquid interfacial tension and surface entropy factor were calculated from the induction period data. The experimentally determined values of interfacial tension are in agreement with the theoretical values predicted by the Mersmann equation. It was found that the nucleus of dexamethasone sodium phosphate grows continuously in pure methanol and turns from continuous growth to birth and spread growth with increasing acetone content in a methanol-acetone mixture.

  15. Drug delivery properties of macroporous polystyrene solid foams.

    PubMed

    Canal, Cristina; Aparicio, Rosa Maria; Vilchez, Alejandro; Esquena, Jordi; García-Celma, Maria José

    2012-01-01

    Polymeric porous foams have been evaluated as possible new pharmaceutical dosage forms. These materials were obtained by polymerization in the continuous phase of highly concentrated emulsions prepared by the phase inversion temperature method. Their porosity, specific surface and surface topography were characterized, and the incorporation and release of active principles was studied using ketoprofen as model lipophilic molecule. Solid foams with very high pore volume, mainly inside macropores, were obtained by this method. The pore morphology of the materials was characterized, and very rough topography was observed, which contributed to their nearly superhydrophobic properties. These solid foams could be used as delivery systems for active principles with pharmaceutical interest, and in the present work ketoprofen was used as a model lipophilic molecule. Drug incorporation and release was studied from solid foam disks, using different concentrations of the loading solutions, achieving a delayed release with short lag-time.

  16. On stress field near a stationary crack tip

    NASA Technical Reports Server (NTRS)

    Nemat-Nasser, S.; Obata, M.

    1984-01-01

    It is well known that the stress and elastic-plastic deformation fields near a crack tip have important roles in the corresponding fracture process. For elastic-perfectly-plastic solids, different solutions are given in the literature. In this work several of these solutions are examined and compared for Mode I (tension), Mode II (shear), and mixed Modes I and II loading conditions in plane strain. By consideration of the dynamic solution, it is shown that the assumption that the material is yielding all around a crack tip may not be reasonable in all cases. By admitting the existence of some elastic sectors, continuous stress fields are obtained even for mixed Modes I and II.

  17. Structural, thermodynamic, and mechanical properties of WCu solid solutions

    NASA Astrophysics Data System (ADS)

    Liang, C. P.; Wu, C. Y.; Fan, J. L.; Gong, H. R.

    2017-11-01

    Various properties of Wsbnd Cu solid solutions are systematically investigated through a combined use of first-principles calculation, cluster expansion, special quasirandom structures (SQS), and lattice dynamics. It is shown that SQS are effective to unravel the intrinsic nature of solid solutions, and that BCC and FCC W100-xCux solid solutions are energetically more stable when 0 ≤ x ≤ 70 and 70 < x ≤ 100, respectively. Calculations also reveal that the Debye model should be appropriate to derive thermodynamic properties of Wsbnd Cu, and that the coefficients of thermal expansion of W100-xCux solid solutions are much lower than those of corresponding mechanical mixtures. In addition, the G/B values of W100-xCux solid solutions reach a minimum at x = 50, which is fundamentally due to the softening of phonons as well as strong chemical bonding between W and Cu with a mainly metallic feature.

  18. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOEpatents

    Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip

    2001-01-01

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  19. Hydraulic modeling of unsteady debris-flow surges with solid-fluid interactions

    USGS Publications Warehouse

    Iverson, Richard M.

    1997-01-01

    Interactions of solid and fluid constituents produce the unique style of motion that typifies debris flows. To simulate this motion, a new hydraulic model represents debris flows as deforming masses of granular solids variably liquefied by viscous pore fluid. The momentum equation of the model describes how internal and boundary forces change as coarse-grained surge heads dominated by grain-contact friction grade into muddy debris-flow bodies more strongly influenced by fluid viscosity and pressure. Scaling analysis reveals that pore-pressure variations can cause flow resistance in surge heads to surpass that in debris-flow bodies by orders of magnitude. Numerical solutions of the coupled momentum and continuity equations provide good predictions of unsteady, nonuniform motion of experimental debris flows from initiation through deposition.

  20. Phase and structural behavior of SmAlO{sub 3}–RAlO{sub 3} (R = Eu, Gd) systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohon, N.; Vasylechko, L., E-mail: crystal-lov@polynet.lviv.ua; Prots, Yu.

    2014-02-01

    Highlights: • Continuous solid solutions exist in the SmAlO{sub 3}–RAlO{sub 3} (R = Eu, Gd) systems. • Lattice parameter crossover was found in solid solutions Sm{sub 1−x}R{sub x}AlO{sub 3} (R = Eu, Gd). • Thermally induced lattice crossovers occur in Sm{sub 0.9}R{sub 0.1}AlO{sub 3} at elevated temperatures. • First-order structural phase transition Pbnm↔R3{sup ¯}c was found in Sm{sub 1−x}R{sub x}AlO{sub 3} (R = Eu, Gd). • Phase diagram of the systems SmAlO{sub 3}–EuAlO{sub 3} and SmAlO{sub 3}–GdAlO{sub 3} has been constructed. - Abstract: Phase and structural behavior in the SmAlO{sub 3}–RAlO{sub 3} (R = Eu, Gd) systems has been studiedmore » in a whole concentration range by means of laboratory X-ray diffraction, in situ synchrotron powder diffraction and differential thermal analysis techniques. Continuous solid solutions with orthorhombic perovskite structure have been found in both systems. Peculiarity of the solid solutions of Sm{sub 1−x}Eu{sub x}AlO{sub 3} and Sm{sub 1−x}Gd{sub x}AlO{sub 3} is the existence of two lattice parameter crossovers in each system occurred at x{sub Eu} = 0.07 and 0.62 and at x{sub Gd} = 0.04 and 0.33, respectively. The temperature induced lattice crossovers in the Sm{sub 0.9}Eu{sub 0.1}AlO{sub 3} and Sm{sub 0.9}Gd{sub 0.1}AlO{sub 3} samples have been found at 387 and 922 K and at 501 and 894 K. First-order reversible structural phase transformations Pbnm↔R3{sup ¯}c have been detected in both systems at the elevated temperatures. The temperatures of these transitions increase linearly with the decreasing of the samarium content. Phase diagrams of the pseudo-binary systems SmAlO{sub 3}–EuAlO{sub 3} and SmAlO{sub 3}–GdAlO{sub 3} have been constructed.« less

  1. Fully vectorial laser resonator modeling of continuous-wave solid-state lasers including rate equations, thermal lensing and stress-induced birefringence.

    PubMed

    Asoubar, Daniel; Wyrowski, Frank

    2015-07-27

    The computer-aided design of high quality mono-mode, continuous-wave solid-state lasers requires fast, flexible and accurate simulation algorithms. Therefore in this work a model for the calculation of the transversal dominant mode structure is introduced. It is based on the generalization of the scalar Fox and Li algorithm to a fully-vectorial light representation. To provide a flexible modeling concept of different resonator geometries containing various optical elements, rigorous and approximative solutions of Maxwell's equations are combined in different subdomains of the resonator. This approach allows the simulation of plenty of different passive intracavity components as well as active media. For the numerically efficient simulation of nonlinear gain, thermal lensing and stress-induced birefringence effects in solid-state active crystals a semi-analytical vectorial beam propagation method is discussed in detail. As a numerical example the beam quality and output power of a flash-lamp-pumped Nd:YAG laser are improved. To that end we compensate the influence of stress-induced birefringence and thermal lensing by an aspherical mirror and a 90° quartz polarization rotator.

  2. Manipulating the alkali metal charge compensation and tungsten oxide to continuously enhance the red fluorescence in (Li,Na,K)Ca(Mo,W)O4:Eu3+ solid solution compounds

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Li, Jiaxin; Tian, Canxin; Wang, Zesong; Xie, Mubiao; Zou, Changwei; Sun, Guohuan; Kang, Fengwen

    2018-02-01

    When compared to other phosphors typically the blue and green phosphors, red phosphors, which can be used for white light-emitting diodes (wLEDs), always suffer from various problems such as higher cost, lower luminescence efficiency and bad thermal stability. And thus, great interests have been paid to how to enhance the red fluorescence intensity in the recent years. Here we report on a red-emitting solid solutions, (Li,Na,K)Ca(Mo,W)O4:Eu3+, which enable exhibiting continuous Eu3+ emission enhancement through manipulating the alkali metal ions and the relative content ratios between tungsten and molybdenum oxides. X-ray powder diffraction (XRD) has been employed to check the phase purity, and results show that all samples crystallize in a scheelite structure with space group of I41/a (No.88). A regular blue-shifting of XRD peaks, which indicates the increase of crystal plane spacing, appears as the alkali cationic radius increases from 0.92 Å (for Li), 1.18 Å (for Na) and to 1.38 Å (for K). Replacing Mo ion (0.41 Å) by W ion (0.42 Å) enables not only forming the solid solution compounds (Li,Na,K)Ca(Mo,W)O4:Eu3+, but also blue-shifting the XRD position. Similar to the XRD position shifting, our samples also exhibit the regular change in the photoluminescence (PL) spectra, in which the charge transfer (CT) band position as the alkali cationic radii increase from Li, Na and to K and further from Mo to W shows a continuous red-shifting behavior. As for the CT and Eu3+ intensity, our experimental results show that the alkali ion that corresponds to the maximum intensity is Li, and this intensity can be further enhanced by adding W. In coincidence with the change in the excitation spectral intensity, the continuous enhanced Eu3+ emission intensity can be observed up excitation at the CT band and Eu3+ lines. We have discussed the above CT band shifting and Eu3+ fluorescence enhancement and give a feasible mechanism profile that base on the energy transfer from CT band to Eu3+ dopant.

  3. Nonlocal systems of balance laws in several space dimensions with applications to laser technology

    NASA Astrophysics Data System (ADS)

    Colombo, Rinaldo M.; Marcellini, Francesca

    2015-12-01

    For a class of systems of nonlinear and nonlocal balance laws in several space dimensions, we prove the local in time existence of solutions and their continuous dependence on the initial datum. The choice of this class is motivated by a new model devoted to the description of a metal plate being cut by a laser beam. Using realistic parameters, solutions to this model obtained through numerical integrations meet qualitative properties of real cuts. Moreover, the class of equations considered comprises a model describing the dynamics of solid particles along a conveyor belt.

  4. Stabilization of a supersaturated solution of mefenamic acid from a solid dispersion with EUDRAGIT(®) EPO.

    PubMed

    Kojima, Taro; Higashi, Kenjirou; Suzuki, Toyofumi; Tomono, Kazuo; Moribe, Kunikazu; Yamamoto, Keiji

    2012-10-01

    The stabilization mechanism of a supersaturated solution of mefenamic acid (MFA) from a solid dispersion with EUDRAGIT(®) EPO (EPO) was investigated. The solid dispersions were prepared by cryogenic grinding method. Powder X-ray diffractometry, in vitro dissolution test, in vivo oral absorption study, infrared spectroscopy, and solid- and solution-state NMR spectroscopies were used to characterize the solid dispersions. Dissolution tests in acetate buffer (pH 5.5) revealed that solid dispersion showed > 200-fold higher concentration of MFA. Supersaturated solution was stable over 1 month and exhibited improved oral bioavailability of MFA in rats, with a 7.8-fold higher area under the plasma concentration-versus-time curve. Solid-state (1)H spin-lattice relaxation time (T(1)) measurement showed that MFA was almost monomolecularly dispersed in the EPO polymer matrix. Intermolecular interaction between MFA and EPO was indicated by solid-state infrared and (13)C-T(1) measurements. Solution-state (1)H-NMR measurement demonstrated that MFA existed in monomolecular state in supersaturated solution. (1)H-T(1) and difference nuclear Overhauser effect measurements indicated that cross relaxation occurred between MFA and EPO due to the small distance between them. The formation and high stability of the supersaturated solution were attributable to the specifically formed intermolecular interactions between MFA and EPO.

  5. Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure

    USGS Publications Warehouse

    Busenberg, Eurybiades; Plummer, Niel

    1989-01-01

    The stability of magnesian calcites was reexamined, and new results are presented for 28 natural inorganic, 12 biogenic, and 32 synthetic magnesian calcites. The magnesian calcite solid-solutions were separated into two groups on the basis of differences in stoichiometric solubility and other physical and chemical properties. Group I consists of solids of mainly metamorphic and hydrothermal origin, synthetic calcites prepared at high temperatures and pressures, and synthetic solids prepared at low temperature and very low calcite supersaturations () from artificial sea water or NaClMgCl2CaCl2solutions. Group I solids are essentially binary s of CaCO2 and MgCO2, and are thought to be relatively free of structural defects. Group II solid-solutions are of either biogenic origin or are synthetic magnesian calcites and protodolomites (0–20 and ∼ 45 mole percent MgCO3) prepared at high calcite supersaturations () from NaClNa2SO4MgCl2CaCl2 or NaClMgCl2CaCl2 solutions. Group II solid-solutions are treated as massively defective solids. The defects include substitution foreign ions (Na+ and SO42−) in the magnesian calcite lattice (point defects) and dislocations (~2 · 109 cm−2). Within each group, the excess free energy of mixing, GE, is described by the mixing model , where x is the mole fraction of the end-member Ca0.5Mg0.5CO3 in the solid-solution. The values of A0and A1 for Group I and II solids were evaluated at 25°C. The equilibrium constants of all the solids are closely described by the equation ln , where KC and KD are the equilibrium constants of calcite and Ca0.5Mg0.5CO3. Group I magnesian calcites were modeled as sub-regular solid-solutions between calcite and dolomite, and between calcite and “disordered dolomite”. Both models yield almost identical equilibrium constants for these magnesian calcites. The Group II magnesian calcites were modeled as sub-regular solid-solutions between defective calcite and protodolomite. Group I and II solid-solutions differ significantly in stability. The rate of crystal growth and the chemical composition of the aqueous solutions from which the solids were formed are the main factors controlling stoichiometric solubility of the magnesian calcites and the density of crystal defects. The literature on the occurrence and behavior of magnesian calcites in sea water and other aqueous solutions is also examined.

  6. Graphene Based Ultra-Capacitors for Safer, More Efficient Energy Storage

    NASA Technical Reports Server (NTRS)

    Roberson, Luke B.; Mackey, Paul J.; Zide, Carson J.

    2016-01-01

    Current power storage methods must be continuously improved in order to keep up with the increasingly competitive electronics industry. This technological advancement is also essential for the continuation of deep space exploration. Today's energy storage industry relies heavily on the use of dangerous and corrosive chemicals such as lithium and phosphoric acid. These chemicals can prove hazardous to the user if the device is ruptured. Similarly they can damage the environment if they are disposed of improperly. A safer, more efficient alternative is needed across a wide range of NASA missions. One solution would a solid-state carbon based energy storage device. Carbon is a safer, less environmentally hazardous alternative to current energy storage materials. Using the amorphous carbon nanostructure, graphene, this idea of a safer portable energy is possible. Graphene was electrochemically produced in the lab and several coin cell devices were built this summer to create a working prototype of a solid-state graphene battery.

  7. Single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.

    1974-01-01

    The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.

  8. Solid-state and solution /sup 13/C NMR in the conformational analysis of methadone-hydrochloride and related narcotic analgesics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumner, S.C.J.

    1986-01-01

    Solid state and solution /sup 13/C NMR have been used to study the conformations of the racemic mixtures and single enantiomers of methadone hydrochloride, alpha and beta methadol hydrochloride, and alpha and beta acetylmethadol hydrochloride. The NMR spectra acquired for the compounds as solids, and in polar and nonpolar solvents are compared, in order to determine the conformation of the molecules in solution. To determine the reliability of assigning solution conformations by comparing solution and solid state chemical shift data, three bond coupling constants measured in solution are compared with those calculated from X-ray data. The conformations of the racemicmore » mixture and plus enantiomer of methadone hydrochloride have been shown to be very similar in the solid state, where minor differences in conformation can be seen by comparing NMR spectra obtained for the solids. Also shown is that the molecules of methadone hydrochloride have conformations in polar and in nonpolar solvents which are very similar to the conformation of the molecules in the solid state.« less

  9. Thermodynamic Study of Solid-Liquid Equilibrium in NaCl-NaBr-H2O System at 288.15 K

    NASA Astrophysics Data System (ADS)

    Li, Dan; Meng, Ling-zong; Deng, Tian-long; Guo, Ya-fei; Fu, Qing-Tao

    2018-06-01

    The solubility data, composition of the solid solution and refractive indices of the NaCl-NaBr-H2O system at 288.15 K were studied with the isothermal equilibrium dissolution method. The solubility diagram and refractive index diagram of this system were plotted at 288.15 K. The solubility diagram consists of two crystallization zones for solid solution Na(Cl,Br) · 2H2O and Na(Cl,Br), one invariant points cosaturated with two solid solution and two univariant solubility isothermal curves. On the basis of Pitzer and Harvie-Weare (HW) chemical models, the composition equations and solubility equilibrium constant equations of the solid solutions at 288.15 K were acquired using the solubility data, the composition of solid solutions, and binary Pitzer parameters. The solubilities calculated using the new method combining the equations are in good agreement with the experimental data.

  10. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Menon, Sumithra Sivadas; Anitha, R.; Gupta, Bhavana; Baskar, K.; Singh, Shubra

    2016-05-01

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 ° C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.

  11. Ion mobility and conductivity in the M{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} (M=K, Rb) solid solutions with fluorite structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavun, V. Ya., E-mail: kavun@ich.dvo.ru; Uvarov, N.F.; Slobodyuk, A.B.

    Ionic mobility and conductivity in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} and Rb{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} (x=0.05, 0.09) solid solutions with the fluorite structure have been investigated using the methods of {sup 19}F NMR, X-ray diffraction and impedance spectroscopy. Types of ionic motions in the fluoride sublattice of solid solutions have been established and temperature ranges of their realization have been determined (150–450 K). Diffusion of fluoride ions is a dominating type of ionic motions in the fluoride sublattice of solid solutions under study above 350 K. Due to high ionic conductivity, above 10{sup –3} S/cm at 450 K,more » these solid solutions can be used as solid electrolytes in various electrochemical devices and systems. - Graphical abstract: Temperature dependence of the concentration of mobile (2, 4) and immobile (1, 3) F ions in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions. - Highlights: • Studied the ion mobility, conductivity in M{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions (M=K, Rb). • An analysis of {sup 19}F NMR spectra made it possible to identify types of ion mobility. • The main type of ion motion above 300 K in solid solutions is a diffusion of ions F{sup –}. • The ionic conductivity of the solid solutions studied more than 10{sup –3} S/cm at 450 K.« less

  12. An added-mass partition algorithm for fluid–structure interactions of compressible fluids and nonlinear solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, J.W., E-mail: banksj3@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Kapila, A.K., E-mail: kapila@rpi.edu

    We describe an added-mass partitioned (AMP) algorithm for solving fluid–structure interaction (FSI) problems involving inviscid compressible fluids interacting with nonlinear solids that undergo large rotations and displacements. The computational approach is a mixed Eulerian–Lagrangian scheme that makes use of deforming composite grids (DCG) to treat large changes in the geometry in an accurate, flexible, and robust manner. The current work extends the AMP algorithm developed in Banks et al. [1] for linearly elasticity to the case of nonlinear solids. To ensure stability for the case of light solids, the new AMP algorithm embeds an approximate solution of a nonlinear fluid–solidmore » Riemann (FSR) problem into the interface treatment. The solution to the FSR problem is derived and shown to be of a similar form to that derived for linear solids: the state on the interface being fundamentally an impedance-weighted average of the fluid and solid states. Numerical simulations demonstrate that the AMP algorithm is stable even for light solids when added-mass effects are large. The accuracy and stability of the AMP scheme is verified by comparison to an exact solution using the method of analytical solutions and to a semi-analytical solution that is obtained for a rotating solid disk immersed in a fluid. The scheme is applied to the simulation of a planar shock impacting a light elliptical-shaped solid, and comparisons are made between solutions of the FSI problem for a neo-Hookean solid, a linearly elastic solid, and a rigid solid. The ability of the approach to handle large deformations is demonstrated for a problem of a high-speed flow past a light, thin, and flexible solid beam.« less

  13. Investigation of compositional segregation during unidirectional solidification of solid solution semiconducting alloys

    NASA Technical Reports Server (NTRS)

    Wang, J. C.

    1982-01-01

    Compositional segregation of solid solution semiconducting alloys in the radial direction during unidirectional solidification was investigated by calculating the effect of a curved solid liquid interface on solute concentration at the interface on the solid. The formulation is similar to that given by Coriell, Boisvert, Rehm, and Sekerka except that a more realistic cylindrical coordinate system which is moving with the interface is used. Analytical results were obtained for very small and very large values of beta with beta = VR/D, where V is the velocity of solidification, R the radius of the specimen, and D the diffusivity of solute in the liquid. For both very small and very large beta, the solute concentration at the interface in the solid C(si) approaches C(o) (original solute concentration) i.e., the deviation is minimal. The maximum deviation of C(si) from C(o) occurs for some intermediate value of beta.

  14. Continuous enzymatic hydrolysis of lignocellulosic biomass in a membrane-reactor system: Continuous enzymatic hydrolysis of lignocellulosic biomass in a membrane-reactor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stickel, Jonathan J.; Adhikari, Birendra; Sievers, David A.

    Converting abundant lignocellulosic biomass to sugars as fungible precursors to fuels and chemicals has the potential to diversify the supply chain for those products, but further process improvements are needed to achieve economic viability. In the current work, process intensification of the key enzymatic hydrolysis unit operation is demonstrated by means of a membrane reactor system that was operated continuously. Lignocellulosic biomass (pretreated corn stover) and buffered enzyme solution were fed to a continuously stirred-tank reactor, and clarified sugar solution was withdrawn via a commercial tubular ultrafiltration membrane. The membrane permeance decline and membrane cleaning efficacy were studied and didmore » not vary significantly when increasing fraction insoluble solids (FIS) from 2.5% to 5%. Continuous enzymatic hydrolysis was successfully operated for more than 80 h. A model for the reactor system was able to predict dynamic behavior that was in reasonable agreement with experimental results. The modeled technical performance of anticipated commercial batch and continuous enzymatic hydrolysis processes were compared and showed that continuous operation would provide at least twice the volumetric productivity for the conditions studied. Further improvements are anticipated by better membrane selection and by increasing FIS.« less

  15. Continuous enzymatic hydrolysis of lignocellulosic biomass in a membrane-reactor system: Continuous enzymatic hydrolysis of lignocellulosic biomass in a membrane-reactor system

    DOE PAGES

    Stickel, Jonathan J.; Adhikari, Birendra; Sievers, David A.; ...

    2018-02-21

    Converting abundant lignocellulosic biomass to sugars as fungible precursors to fuels and chemicals has the potential to diversify the supply chain for those products, but further process improvements are needed to achieve economic viability. In the current work, process intensification of the key enzymatic hydrolysis unit operation is demonstrated by means of a membrane reactor system that was operated continuously. Lignocellulosic biomass (pretreated corn stover) and buffered enzyme solution were fed to a continuously stirred-tank reactor, and clarified sugar solution was withdrawn via a commercial tubular ultrafiltration membrane. The membrane permeance decline and membrane cleaning efficacy were studied and didmore » not vary significantly when increasing fraction insoluble solids (FIS) from 2.5% to 5%. Continuous enzymatic hydrolysis was successfully operated for more than 80 h. A model for the reactor system was able to predict dynamic behavior that was in reasonable agreement with experimental results. The modeled technical performance of anticipated commercial batch and continuous enzymatic hydrolysis processes were compared and showed that continuous operation would provide at least twice the volumetric productivity for the conditions studied. Further improvements are anticipated by better membrane selection and by increasing FIS.« less

  16. Process for recovering chaotropic anions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1999-01-01

    A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.

  17. Process for recovering chaotropic anions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1999-03-30

    A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 19 figs.

  18. Role of lattice distortion on diffuse phase transition temperatures in Bi0.5Na0.5TiO3-BaTiO3 [BNBTO] solid solutions

    NASA Astrophysics Data System (ADS)

    Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan

    2018-04-01

    Effect of lattice distortion on diffuse phase transition in BNBTO solid solutions near Morphotropic phase boundary (MPB) has been investigated. Solid solutions of (Bi0.5Na0.5)1-xBaxTiO3 (with mole % of x= 0.04, 0.05, 0.06, 0.07 and 0.08) were prepared by the planetary ball mill method in ethanol medium. Rietveld refinement technique with rhombohedral (R3c) and tetragonal (P4bm) crystal symmetry has been employed for structural as well as phase analysis of the solid solutions. Both rhombohedral and tetragonal lattice distortion (c/a) tends toward the pseudo-cubic crystal symmetry with the increase of mole fraction of Ba2+ near MPB (x= 6 mole %). Also, the average crystallite size and grain size decrease with increase of mole fraction of Ba2+ in BNT ceramic are due to larger ionic radius of Ba2+ and grain boundary pinning process in the solid solutions respectively. Additionally, depolarization temperature (Td) and maximum temperature (Tm) reduces due to the lattice distortion of both the phases in BNBTO solid solutions, which is explained extensively. Significant increase of dielectric constant has been observed near MPB composition (x=6%) in BNBTO solid solutions.

  19. Preparation of Sic/AIN Solid Solutions Using Organometallic Precursors

    DTIC Science & Technology

    1989-02-15

    pyrolysis of organoaluminum and organosilicon compounds was investigated as a potential source of SiC /AUI solid solutions. Using two different co... pyrolysis methods, homogeneous mixtures of organoaluminum amides and both a vinylic polysilane and a poly- carbosilane were convertec to a preceramic ...solid that transformed to crystalline SiC /AiN solid solutions at 򒸀 C. Moreover, the liquid, polymeric , form of these precursor mixtures provides a

  20. Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow.

    PubMed

    Peyman, Sally A; Iles, Alexander; Pamme, Nicole

    2009-11-07

    An extremely versatile microfluidic device is demonstrated in which multi-step (bio)chemical procedures can be performed in continuous flow. The system operates by generating several co-laminar flow streams, which contain reagents for specific (bio)reactions across a rectangular reaction chamber. Functionalized magnetic microparticles are employed as mobile solid-supports and are pulled from one side of the reaction chamber to the other by use of an external magnetic field. As the particles traverse the co-laminar reagent streams, binding and washing steps are performed on their surface in one operation in continuous flow. The applicability of the platform was first demonstrated by performing a proof-of-principle binding assay between streptavidin coated magnetic particles and biotin in free solution with a limit of detection of 20 ng mL(-1) of free biotin. The system was then applied to a mouse IgG sandwich immunoassay as a first example of a process involving two binding steps and two washing steps, all performed within 60 s, a fraction of the time required for conventional testing.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, R.N., E-mail: rn_rai@yahoo.co.in; Kant, Shiva; Reddi, R.S.B.

    Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB andmore » UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solution • Solid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.« less

  2. A model for including thermal conduction in molecular dynamics simulations

    NASA Technical Reports Server (NTRS)

    Wu, Yue; Friauf, Robert J.

    1989-01-01

    A technique is introduced for including thermal conduction in molecular dynamics simulations for solids. A model is developed to allow energy flow between the computational cell and the bulk of the solid when periodic boundary conditions cannot be used. Thermal conduction is achieved by scaling the velocities of atoms in a transitional boundary layer. The scaling factor is obtained from the thermal diffusivity, and the results show good agreement with the solution for a continuous medium at long times. The effects of different temperature and size of the system, and of variations in strength parameter, atomic mass, and thermal diffusivity were investigated. In all cases, no significant change in simulation results has been found.

  3. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shulei; Zheng, Shili; Wang, Zheming

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li 2TiO 3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x ≤ 0.15, Fe-doping led to grain shrinkage as compared to Limore » 2TiO 3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g -1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH solutions (1.8 g L -1 Li, pH 12) reached 53.3 mg g -1 within 24 h, which was higher than that of pristine Li 2TiO 3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  4. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shulei; Zheng, Shili; Wang, Zheming

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li2TiO3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x0.15, Fe-doping led to grain shrinkage as compared to Li2TiO3 and at the samemore » time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g-1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH 2 solutions (1.8 g L-1 Li, pH 12) reached 53.3 mg g-1 within 24 h, which was higher than that of pristine Li2TiO3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  5. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE PAGES

    Wang, Shulei; Zheng, Shili; Wang, Zheming; ...

    2018-09-09

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li 2TiO 3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x ≤ 0.15, Fe-doping led to grain shrinkage as compared to Limore » 2TiO 3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g -1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH solutions (1.8 g L -1 Li, pH 12) reached 53.3 mg g -1 within 24 h, which was higher than that of pristine Li 2TiO 3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  6. Precipitation in Al–Mg solid solution prepared by solidification under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jie, J.C., E-mail: jiejc@dlut.edu.cn; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001; Wang, H.W.

    2014-01-15

    The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al{sub 12}Mg{sub 17} phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solutionmore » appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β.« less

  7. Enhanced photocatalytic degradation of 2-propanol over macroporous GaN/ZnO solid solution prepared by a novel sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lizhong; Ouyang, Shuxin; Ren, Bofan

    2015-10-01

    Macroporous GaN/ZnO solid solution photocatalyst is synthesized through a novel sol-gel method under mild conditions. The performance of as-synthesized solid solution photocatalyst is evaluated for decomposition of gaseous 2-propanol (IPA). It is found that due to enhancement in both the adsorption to gaseous IPA and the absorbance to visible light, the porous GaN/ZnO solid solution exhibits a good photocatalytic performance for IPA decomposition. Moreover, the mechanism for photocatalytic degradation IPA over porous GaN/ZnO solid solution is also investigated in comparison with those for the two end materials ZnO and GaN. The trapping effects with different scavengers prove that both themore » photoexcited electrons and holes affect the IPA photodegradation process, simultaneously.« less

  8. Low-temperature synthesis of homogeneous solid solutions of scheelite-structured Ca 1-xSr xWO 4 and Sr 1-xBa xWO 4 nanocrystals

    DOE PAGES

    Culver, Sean P.; Greaney, Matthew J.; Tinoco, Antonio; ...

    2015-07-24

    Here, a series of compositionally complex scheelite-structured nanocrystals of the formula A 1-xA’ xWO 4 (A = Ca, Sr, Ba) have been prepared under benign synthesis conditions using the vapor diffusion sol–gel method. Discrete nanocrystals with sub-20 nm mean diameters were obtained after kinetically controlled hydro- lysis and polycondensation at room temperature, followed by composition-dependent thermal aging at or below 60 °C. Rietveld analysis of X-ray diffraction data and Raman spectroscopy verified the synthesis of continuous and phase-pure nanocrystal solid solutions across the entire composition space for A 1-xA’ xWO 4, where 0 ≤ x ≤ 1. Elemental analysis bymore » X-ray photoelectron and inductively coupled plasma- atomic emission spectroscopies demonstrated excellent agreement between the nominal and experi- mentally determined elemental stoichiometries, while energy dispersive X-ray spectroscopy illustrated good spatial elemental homogeneity within these nanocrystals synthesized under benign conditions.« less

  9. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, Sumithra Sivadas; Anitha, R.; Baskar, K.

    2016-05-23

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 °more » C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.« less

  10. Lattice crossover and phase transitions in NdAlO{sub 3}-GdAlO{sub 3} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasylechko, L., E-mail: crystal-lov@polynet.lviv.ua; Shmanko, H.; Ohon, N.

    2013-02-15

    Phase and structural behaviour in the (1-x)NdAlO{sub 3}-xGdAlO{sub 3} system in a whole concentration range has been studied by means of in situ high-resolution X-ray synchrotron powder diffraction technique and differential thermal analysis. Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} have been found at room temperature: one with rhombohedral (x<0.15) and one with orthorhombic (x{>=}0.20) symmetry. A morphotropic phase transition occurs at x Almost-Equal-To 0.15, where the co-existence of both phases was observed. Peculiarity of the orthorhombic solid solution is the lattice parameter crossover at the compositions with x=0.33, 0.49 and 0.62. First-order structural transition Pbnm{r_reversible}R3{sup Macron }cmore » has been detected both from in situ powder diffraction and thermal analysis data. Continuous phase transformation R3{sup Macron }c{r_reversible}Pm3{sup Macron }m above 2140 K has been predicted for Nd-rich sample Nd{sub 0.85}Gd{sub 0.15}AlO{sub 3} from the extrapolation of high-temperature behaviour of the lattice parameter ratio of the rhombohedral phase. Based on the experimental data, the phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed. - Graphical abstract: Concentration dependencies of normalized lattice parameters of Nd{sub 1-x}Gd{sub x}AlO{sub 3} perovskite solid solutions. Highlights: Black-Right-Pointing-Pointer Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} were found in the NdAlO{sub 3}-GdAlO{sub 3} system. Black-Right-Pointing-Pointer Morphotropic transition between both perovskite phases occurs at x Almost-Equal-To 0.15. Black-Right-Pointing-Pointer Lattice parameter crossover was found in orthorhombic solid solution. Black-Right-Pointing-Pointer Temperature driven first-order phase transition Pbnm{r_reversible}R3{sup Macron }c was found in Nd{sub 1-x}Gd{sub x}AlO{sub 3}. Black-Right-Pointing-Pointer Phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed.« less

  11. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    PubMed Central

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-01-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS. PMID:27725704

  12. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    NASA Astrophysics Data System (ADS)

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-10-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS.

  13. Exploring hardness enhancement in superhard tungsten tetraboride-based solid solutions using radial X-ray diffraction

    DOE PAGES

    Xie, Miao; Mohammadi, Reza; Turner, Christopher L.; ...

    2015-07-29

    In this paper, we explore the hardening mechanisms in WB4-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under nonhydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB 4 solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.

  14. Ion mobility and transport properties of bismuth fluoride-containing solid solutions with tysonite-type structure

    NASA Astrophysics Data System (ADS)

    Kavun, V. Ya.; Uvarov, N. F.; Slobodyuk, A. B.; Merkulov, E. B.; Polyantsev, M. M.

    2018-07-01

    The ion mobility and conductivity of solid solutions with tysonite-type structure obtained by doping bismuth trifluoride with lead (II) fluoride, and zirconium and bismuth oxides have been studied using 19F NMR, X-ray diffraction analysis, and impedance spectroscopy. The types of ionic motions in the fluoride sublattice of the synthesized solid solutions in the temperature range 150-450 K have been determined and the energy of their activation has been estimated. Due to high ionic conductivity, above 10-2 S/cm at 570 K, these solid solutions can be considered as superionic conductors.

  15. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE PAGES

    An, Zhinan; Jia, Haoling; Wu, Yueying; ...

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  16. Modelling solid solutions with cluster expansion, special quasirandom structures, and thermodynamic approaches

    NASA Astrophysics Data System (ADS)

    Saltas, V.; Horlait, D.; Sgourou, E. N.; Vallianatos, F.; Chroneos, A.

    2017-12-01

    Modelling solid solutions is fundamental in understanding the properties of numerous materials which are important for a range of applications in various fields including nanoelectronics and energy materials such as fuel cells, nuclear materials, and batteries, as the systematic understanding throughout the composition range of solid solutions for a range of conditions can be challenging from an experimental viewpoint. The main motivation of this review is to contribute to the discussion in the community of the applicability of methods that constitute the investigation of solid solutions computationally tractable. This is important as computational modelling is required to calculate numerous defect properties and to act synergistically with experiment to understand these materials. This review will examine in detail two examples: silicon germanium alloys and MAX phase solid solutions. Silicon germanium alloys are technologically important in nanoelectronic devices and are also relevant considering the recent advances in ternary and quaternary groups IV and III-V semiconductor alloys. MAX phase solid solutions display a palette of ceramic and metallic properties and it is anticipated that via their tuning they can have applications ranging from nuclear to aerospace industries as well as being precursors for particular MXenes. In the final part, a brief summary assesses the limitations and possibilities of the methodologies discussed, whereas there is discussion on the future directions and examples of solid solution systems that should prove fruitful to consider.

  17. Continuous Data Assimilation for a 2D Bénard Convection System Through Horizontal Velocity Measurements Alone

    NASA Astrophysics Data System (ADS)

    Farhat, Aseel; Lunasin, Evelyn; Titi, Edriss S.

    2017-06-01

    In this paper we propose a continuous data assimilation (downscaling) algorithm for a two-dimensional Bénard convection problem. Specifically we consider the two-dimensional Boussinesq system of a layer of incompressible fluid between two solid horizontal walls, with no-normal flow and stress-free boundary conditions on the walls, and the fluid is heated from the bottom and cooled from the top. In this algorithm, we incorporate the observables as a feedback (nudging) term in the evolution equation of the horizontal velocity. We show that under an appropriate choice of the nudging parameter and the size of the spatial coarse mesh observables, and under the assumption that the observed data are error free, the solution of the proposed algorithm converges at an exponential rate, asymptotically in time, to the unique exact unknown reference solution of the original system, associated with the observed data on the horizontal component of the velocity.

  18. Liquefaction processes and systems and liquefaction process intermediate compositions

    DOEpatents

    Schmidt, Andrew J.; Hart, Todd R.; Billing, Justin M.; Maupin, Gary D.; Hallen, Richard T.; Anderson, Daniel B.

    2014-07-12

    Liquefaction processes are provided that can include: providing a biomass slurry solution having a temperature of at least 300.degree. C. at a pressure of at least 2000 psig; cooling the solution to a temperature of less than 150.degree. C.; and depressurizing the solution to release carbon dioxide from the solution and form at least part of a bio-oil foam. Liquefaction processes are also provided that can include: filtering the biomass slurry to remove particulates; and cooling and depressurizing the filtered solution to form the bio-oil foam. Liquefaction systems are provided that can include: a heated biomass slurry reaction zone maintained above 300.degree. C. and at least 2000 psig and in continuous fluid communication with a flash cooling/depressurization zone maintained below 150.degree. C. and between about 125 psig and about atmospheric pressure. Liquefaction systems are also provided that can include a foam/liquid separation system. Liquefaction process intermediate compositions are provided that can include a bio-oil foam phase separated from an aqueous biomass solids solution.

  19. Quench-age method for the fabrication of niobium-aluminum superconductors

    DOEpatents

    Pickus, Milton R.; Ciardella, Robert L.

    1978-01-01

    A flexible Nb.sub.3 Al superconducting wire is fabricated from a niobium-aluminum composite wire by heating to form a solid solution which is retained at room temperature as a metastable solid solution by quenching. The metastable solid solution is then transformed to the stable superconducting A-15 phase by low temperature aging. The transformation induced by aging can be controlled to yield either a multifilamentary or a solid A-15 core surrounded by ductile niobium.

  20. Correlation of Solid State and Solution Coordination Numbers with Infrared Spectroscopy in Five-, Six-, and Eight-Coordinate Transition Metal Complexes of DOTAM.

    PubMed

    Nagata, Maika K C T; Brauchle, Paul S; Wang, Sen; Briggs, Sarah K; Hong, Young Soo; Laorenza, Daniel W; Lee, Andrea G; Westmoreland, T David

    2016-08-16

    Three new DOTAM (1,4,7,10-tetrakis(acetamido)-1,4,7,10-tetraazacyclododecane) complexes have been synthesized and characterized by X-ray crystallography: [Co(DOTAM)]Cl 2 •3H 2 O, [Ni(DOTAM)]Cl 2 •4H 2 O, and [Cu(DOTAM)](ClO 4 ) 2 •H 2 O. Solid state and solution IR spectroscopic features for a series of [M(DOTAM)] 2+ complexes (M=Mn, Co, Cu, Ni, Ca, Zn) correlate with solid state and solution coordination numbers. [Co(DOTAM)] 2+ , [Ni(DOTAM)] 2+ , and [Zn(DOTAM)] 2+ are demonstrated to be six-coordinate in both the solid state and in solution, while [Mn(DOTAM)] 2+ and [Ca(DOTAM)] 2+ are eight-coordinate in the solid state and remain so in solution. [Cu(DOTAM)] 2+ , which is five-coordinate by X-ray crystallography, is shown to increase its coordination number in solution to six-coordinate.

  1. Solid/liquid interfacial free energies in binary systems

    NASA Technical Reports Server (NTRS)

    Nason, D.; Tiller, W. A.

    1973-01-01

    Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.

  2. 77 FR 16679 - Emergency Planning and Notification; Emergency Planning and List of Extremely Hazardous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ...The U.S. Environmental Protection Agency (EPA or the Agency) is taking final action to revise the manner for applying the threshold planning quantities (TPQs) for those extremely hazardous substances (EHSs) that are non-reactive solid chemicals in solution. This revision allows facilities subject to the Emergency Planning requirements that have a non-reactive solid EHS in solution, to first multiply the amount of the solid chemical in solution on-site by 0.2 before determining if this quantity equals or exceeds the lower published TPQ. This change is based on data that shows less potential for non-reactive solid chemicals in solution to remain airborne and dispersed beyond a facility's fence line in the event of an accidental release. Previously, EPA assumed that 100% of non-reactive solid chemicals in solution could become airborne and dispersed beyond the fenceline in the event of an accidental release.

  3. System and process for dissolution of solids

    DOEpatents

    Liezers, Martin; Farmer, III, Orville T.

    2017-10-10

    A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.

  4. Analytical solution for the transient wave propagation of a buried cylindrical P-wave line source in a semi-infinite elastic medium with a fluid surface layer

    NASA Astrophysics Data System (ADS)

    Shan, Zhendong; Ling, Daosheng

    2018-02-01

    This article develops an analytical solution for the transient wave propagation of a cylindrical P-wave line source in a semi-infinite elastic solid with a fluid layer. The analytical solution is presented in a simple closed form in which each term represents a transient physical wave. The Scholte equation is derived, through which the Scholte wave velocity can be determined. The Scholte wave is the wave that propagates along the interface between the fluid and solid. To develop the analytical solution, the wave fields in the fluid and solid are defined, their analytical solutions in the Laplace domain are derived using the boundary and interface conditions, and the solutions are then decomposed into series form according to the power series expansion method. Each item of the series solution has a clear physical meaning and represents a transient wave path. Finally, by applying Cagniard's method and the convolution theorem, the analytical solutions are transformed into the time domain. Numerical examples are provided to illustrate some interesting features in the fluid layer, the interface and the semi-infinite solid. When the P-wave velocity in the fluid is higher than that in the solid, two head waves in the solid, one head wave in the fluid and a Scholte wave at the interface are observed for the cylindrical P-wave line source.

  5. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

    1998-05-19

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

  6. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1999-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  7. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1998-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  8. Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover.

    PubMed

    Sievers, David A; Tao, Ling; Schell, Daniel J

    2014-09-01

    Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.

    PubMed

    Padois, Karine; Cantiéni, Céline; Bertholle, Valérie; Bardel, Claire; Pirot, Fabrice; Falson, Françoise

    2011-09-15

    Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Control of ice chromatographic retention mechanism by changing temperature and dopant concentration.

    PubMed

    Tasaki, Yuiko; Okada, Tetsuo

    2011-12-15

    A liquid phase coexists with solid water ice in a typical binary system, such as NaCl-water, in the temperature range between the freezing point and the eutectic point (t(eu)) of the system. In ice chromatography with salt-doped ice as the stationary phase, both solid and liquid phase can contribute to solute retention in different fashions; that is, the solid ice surface acts as an adsorbent, while a solute can be partitioned into the liquid phase. Thus, both adsorption and partition mechanisms can be utilized for ice chromatographic separation. An important feature in this approach is that the liquid phase volume can be varied by changing the temperature and the concentration of a salt incorporated into the ice stationary phase. Thus, we can control the relative contribution from the partition mechanism in the entire retention because the liquid phase volume can be estimated from the freezing depression curve. Separation selectivity can thereby be modified. The applicability of this concept has been confirmed for the solutes of different adsorption and partition abilities. The predicted retention based on thermodynamics basically agrees well with the corresponding experimental retention. However, one important inconsistency has been found. The calculation predicts a step-like discontinuity of the solute retention at t(eu) because the phase diagram suggests that the liquid phase abruptly appears at t(eu) when the temperature increases. In contrast, the corresponding experimental plots are continuous over the wider range including the subeutectic temperatures. This discrepancy is explained by the existence of the liquid phase below t(eu). A difference between predicted and measured retention factors allows the estimation of the volume of the subeutectic liquid phase.

  11. Role of the chemical substitution on the luminescence properties of solid solutions Ca{sub (1−x)}Cd{sub (x)}WO{sub 4} (0 ≤ x ≤1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taoufyq, A.; Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir; CEA, DEN, Département d'Etudes des Réacteurs, Service de Physique Expérimentale, Laboratoire Dosimétrie Capteurs Instrumentation, 13108 Saint-Paul-lez-Durance

    2015-10-15

    Highlights: • Luminescence can be modified by chemical substitution in solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4}. • The various emission spectra (charge transfer) were obtained under X-ray excitation. • Scheelite or wolframite solid solutions presented two types of emission spectra. • A luminescence component depended on cadmium substitution in each solid solution. • A component was only characteristic of oxyanion symmetry in each solid solution. - Abstract: We have investigated the chemical substitution effects on the luminescence properties under X-ray excitation of the solid solutions Ca{sub (1−x)}Cd{sub (x)}WO{sub 4} with 0 ≤ x ≤ 1. Two types of wide spectralmore » bands, associated with scheelite-type or wolframite-type solid solutions, have been observed at room temperature. We decomposed each spectral band into several spectral components characterized by energies and intensities varying with composition x. One Gaussian component was characterized by an energy decreasing regularly with the composition x, while the other Gaussian component was only related to the tetrahedral or octahedral configurations of tungstate groups WO{sub 4}{sup 2−} or WO{sub 6}{sup 6−}. The luminescence intensities exhibited minimum values in the composition range x < 0.5 corresponding to scheelite-type structures, then, they regularly increased for cadmium compositions x > 0.5 corresponding to wolframite-type structures.« less

  12. Eutectics as improved pharmaceutical materials: design, properties and characterization.

    PubMed

    Cherukuvada, Suryanarayan; Nangia, Ashwini

    2014-01-28

    Eutectics are a long known class of multi-component solids with important and useful applications in daily life. In comparison to other multi-component crystalline solids, such as salts, solid solutions, molecular complexes and cocrystals, eutectics are less studied in terms of molecular structure organization and bonding interactions. Classically, a eutectic is defined based on its low melting point compared to the individual components. In this article, we attempt to define eutectics not just based on thermal methods but from a structural organization view point, and discuss their microstructures and properties as organic materials vis-a-vis solid solutions and cocrystals. The X-ray crystal structure of a cocrystal is different from that of the individual components whereas the unit cell of a solid solution is similar to that of one of the components. Eutectics are closer to the latter species in that their crystalline arrangement is similar to the parent components but they are different with respect to the structural integrity. A solid solution possesses structural homogeneity throughout the structure (single phase) but a eutectic is a heterogeneous ensemble of individual components whose crystal structures are like discontinuous solid solutions (phase separated). Thus, a eutectic may be better defined as a conglomerate of solid solutions. A structural analysis of cocrystals, solid solutions and eutectics has led to an understanding that materials with strong adhesive (hetero) interactions between the unlike components will lead to cocrystals whereas those having stronger cohesive (homo/self) interactions will more often give rise to solid solutions (for similar structures of components) and eutectics (for different structures of components). We demonstrate that the same crystal engineering principles which have been profitably utilized for cocrystal design in the past decade can now be applied to make eutectics as novel composite materials, illustrated by stable eutectics of the hygroscopic salt of the anti-tuberculosis drug ethambutol as a case study. A current gap in the characterization of eutectic microstructure may be fulfilled through pair distribution function (PDF) analysis of X-ray diffraction data, which could be a rapid signature technique to differentiate eutectics from their components.

  13. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.

    PubMed

    Chan, B; Donzelli, P S; Spilker, R L

    2000-06-01

    The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.

  14. Solution and solid trinitrotoluene (TNT) photochemistry: persistence of TNT-like ultraviolet (UV) resonance Raman bands.

    PubMed

    Gares, Katie L; Bykov, Sergei V; Godugu, Bhaskar; Asher, Sanford A

    2014-01-01

    We examined the 229 nm deep-ultraviolet resonance Raman (DUVRR) spectra of solution and solid-state trinitrotoluene (TNT) and its solution and solid-state photochemistry. Although TNT photodegrades with a solution quantum yield of ϕ ∼ 0.015, the initial photoproducts show DUVRR spectra extraordinarily similar to pure TNT, due to the similar photoproduct enhancement of the -NO2 stretching vibrations. This results in TNT-like DUVRR spectra even after complete TNT photolysis. These ultraviolet resonance Raman spectral bands enable DUVRR of trace as well as DUVRR standoff TNT detection. We determined the structure of various initial TNT photoproducts by using liquid chromatography-mass spectrometry and tandem mass spectrometry. Similar TNT DUVRR spectra and photoproducts are observed in the solution and solid states.

  15. Effect of solute immobilization on the stability problem within the fractional model in the solute analog of the Horton-Rogers-Lapwood problem.

    PubMed

    Klimenko, Lyudmila S; Maryshev, Boris S

    2017-11-24

    The paper is devoted to the linear stability analysis within the solute analogue of the Horton-Rogers-Lapwood (HRL) problem. The solid nanoparticles are treated as solute within the continuous approach. Therefore, we consider the infinite horizontal porous layer saturated with a mixture (carrier fluid and solute). Solute transport in porous media is very often complicated by solute immobilization on a solid matrix of porous media. Solute immobilization (solute sorption) is taken into account within the fractal model of the MIM approach. According to this model a solute in porous media immobilizes within random time intervals and the distribution of such random variable does not have a finite mean value, which has a good agreement with some experiments. The solute concentration difference between the layer boundaries is assumed as constant. We consider two cases of horizontal external filtration flux: constant and time-modulated. For the constant flux the system of equations that determines the frequency of neutral oscillations and the critical value of the Rayleigh-Darcy number is derived. Neutral curves of the critical parameters on the governing parameters are plotted. Stability maps are obtained numerically in a wide range of parameters of the system. We have found that taking immobilization into account leads to an increase in the critical value of the Rayleigh-Darcy number with an increase in the intensity of the external filtration flux. The case of weak time-dependent external flux is investigated analytically. We have shown that the modulated external flux leads to an increase in the critical value of the Rayleigh-Darcy number and a decrease in the critical wave number. For moderate time-dependent filtration flux the differential equation with Caputo fractional derivatives has been obtained for the description of the behavior near the convection instability threshold. This equation is analyzed numerically by the Floquet method; the parametric excitation of convection is observed.

  16. Status of Solid State Lighting Product Development and Future Trends for General Illumination.

    PubMed

    Katona, Thomas M; Pattison, P Morgan; Paolini, Steve

    2016-06-07

    After decades of research and development on fabrication of efficient light-emitting diodes (LEDs) throughout the visible spectrum, LED-based lighting has reached unparalleled performance with respect to energy efficiency and has become the light source for virtually all new lighting products being designed today. The development of the core light sources and their subsequent integration into lighting systems continue to present unique challenges and opportunities for product designers. We review these systems and the current development status, as well as provide context for the trends in solid state lighting that are leading to the development of value-added lighting solutions that extend the domain of lighting beyond light generation, into fields as diverse as communications, healthcare, and agricultural production.

  17. Capacity Fading Mechanism of the Commercial 18650 LiFePO4-Based Lithium-Ion Batteries: An in Situ Time-Resolved High-Energy Synchrotron XRD Study.

    PubMed

    Liu, Qi; Liu, Yadong; Yang, Fan; He, Hao; Xiao, Xianghui; Ren, Yang; Lu, Wenquan; Stach, Eric; Xie, Jian

    2018-02-07

    In situ high-energy synchrotron XRD studies were carried out on commercial 18650 LiFePO 4 cells at different cycles to track and investigate the dynamic, chemical, and structural changes in the course of long-term cycling to elucidate the capacity fading mechanism. The results indicate that the crystalline structural deterioration of the LiFePO 4 cathode and the graphite anode is unlikely to happen before capacity fades below 80% of the initial capacity. Rather, the loss of the active lithium source is the primary cause for the capacity fade, which leads to the appearance of inactive FePO 4 that is proportional to the absence of the lithium source. Our in situ HESXRD studies further show that the lithium-ion insertion and deinsertion behavior of LiFePO 4 continuously changed with cycling. For a fresh cell, the LiFePO 4 experienced a dual-phase solid-solution behavior, whereas with increasing cycle numbers, the dynamic change, which is characteristic of the continuous decay of solid solution behavior, is obvious. The unpredicted dynamic change may result from the morphology evolution of LiFePO 4 particles and the loss of the lithium source, which may be the cause of the decreased rate capability of LiFePO 4 cells after long-term cycling.

  18. Process for recovering pertechnetate ions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1997-01-01

    A solid/liquid process for the separation and recovery of TcO.sub.4.sup.-1 ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO.sub.4.sup.-1 ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO.sub.4.sup.-1 ions in such an aqueous solution that is free from MoO.sub.4.sup.-2 ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.

  19. LEACHING OF TITANIUM FROM MONOSODIUM TITANATE AND MODIFIED MST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, K.; Fondeur, F.; Fink, S.

    2012-08-01

    Analysis of a fouled coalescer and pre-filters from Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU) operations showed evidence of Ti containing solids. Based on these results a series of tests were planned to examine the extent of Ti leaching from monosodium titanate (MST) and modified monosodium titanate (mMST) in various solutions. The solutions tested included a series of salt solutions with varying free hydroxide concentrations, two sodium hydroxide concentrations, 9 wt % and 15 wt %, nitric and oxalic acid solutions. Overall, the amount of Ti leached from the MST and mMST was much greater in the acidmore » solutions compared to the sodium hydroxide or salt solutions, which is consistent with the expected trend. The leaching data also showed that increasing hydroxide concentration, whether pure NaOH solution used for filter cleaning in ARP or the waste salt solution, increased the amount of Ti leached from both the MST and mMST. For the respective nominal contact times with the MST solids - for filter cleaning or the normal filter operation, the dissolved Ti concentrations are comparable suggesting either cause may contribute to the increased Ti fouling on the MCU coalescers. Tests showed that Ti containing solids could be precipitated from solution after the addition of scrub acid and a decrease in temperature similar to expected in MCU operations. FTIR analysis of these solids showed some similarity to the solids observed on the fouled coalescer and pre-filters. Although only a cursory study, this information suggests that the practice of increasing free hydroxide in feed solutions to MCU as a mitigation to aluminosilicate formation may be offset by the impact of formation of Ti solids in the overall process. Additional consideration of this finding from MCU and SWPF operation is warranted.« less

  20. Solid lithium ion conducting electrolytes and methods of preparation

    DOEpatents

    Narula, Chaitanya K; Daniel, Claus

    2013-05-28

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  1. Solid lithium ion conducting electrolytes and methods of preparation

    DOEpatents

    Narula, Chaitanya K.; Daniel, Claus

    2015-11-19

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  2. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Simple formula for the thermal conductivity of a quaternary solid solution

    NASA Astrophysics Data System (ADS)

    Nakwaski, W.

    1988-11-01

    An analysis is made of the thermal conductivity of quaternary solid solutions (alloys) allowing for their disordered structure on the basis of a phenomenological analysis proposed by Abeles. This method is applied to a quaternary solid solution In1 - xGaxAsyP1 - y. A simple analytic expression is derived for the thermal conductivity of this material.

  3. Lattice Parameter Behavior with Different Nd and O Concentrations in (U 1-yNd y)O 2±x Solid Solution

    DOE PAGES

    Lee, Seung Min; Knight, Travis W.; Voit, Stwart L.; ...

    2016-02-02

    The solid solution of (U1-yFPy)O- 2±x, has the same fluorite structure as UO 2±x lambda, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. We investigated the relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U 1-yNd y)O 2±x using X-ray diffraction. Moreover, the lattice parameter behavior in the (U 1-yNd y)O 2±x, solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can bemore » expressed by a particular rule (modified Vegard's law). Furthermore, the numerical analyses of the lattice parameters for the stoichiometric and nonstoichionietric solid solutions were conducted, and the lattice parameter model for the (U1-yNdy)O 2±x, solid solution was assessed. There is a very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U 1-yNd y)O 2±x solid solution was verified.« less

  4. Revisiting HgCl 2: A solution- and solid-state 199Hg NMR and ZORA-DFT computational study

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Carver, Colin T.; Larsen, Ross E.; Dmitrenko, Olga; Bai, Shi; Dybowski, C.

    2009-07-01

    The 199Hg chemical-shift tensor of solid HgCl 2 was determined from spectra of polycrystalline materials, using static and magic-angle spinning (MAS) techniques at multiple spinning frequencies and field strengths. The chemical-shift tensor of solid HgCl 2 is axially symmetric ( η = 0) within experimental error. The 199Hg chemical-shift anisotropy (CSA) of HgCl 2 in a frozen solution in dimethylsulfoxide (DMSO) is significantly smaller than that of the solid, implying that the local electronic structure in the solid is different from that of the material in solution. The experimental chemical-shift results (solution and solid state) are compared with those predicted by density functional theory (DFT) calculations using the zeroth-order regular approximation (ZORA) to account for relativistic effects. 199Hg spin-lattice relaxation of HgCl 2 dissolved in DMSO is dominated by a CSA mechanism, but a second contribution to relaxation arises from ligand exchange. Relaxation in the solid state is independent of temperature, suggesting relaxation by paramagnetic impurities or defects.

  5. Continuous manufacturing of solid lipid nanoparticles by hot melt extrusion.

    PubMed

    Patil, Hemlata; Kulkarni, Vijay; Majumdar, Soumyajit; Repka, Michael A

    2014-08-25

    Solid lipid nanoparticles (SLN) can either be produced by hot homogenization of melted lipids at higher temperatures or by a cold homogenization process. This paper proposes and demonstrates the formulation of SLN for pharmaceutical applications by combining two processes: hot melt extrusion (HME) technology for melt-emulsification and high-pressure homogenization (HPH) for size reduction. This work aimed at developing continuous and scalable processes for SLN by mixing a lipid and aqueous phase containing an emulsifier in the extruder barrel at temperatures above the melting point of the lipid and further reducing the particle size of emulsion by HPH linked to HME in a sequence. The developed novel platform demonstrated better process control and size reduction compared to the conventional process of hot homogenization (batch process). Varying the process parameters enabled the production of SLN below 200 nm (for 60 mg/ml lipid solution at a flow rate of 100ml/min). Among the several process parameters investigated, the lipid concentration, residence time and screw design played major roles in influencing the size of the SLN. This new process demonstrates the potential use of hot melt extrusion technology for continuous and large-scale production of SLN. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Magnetism and Solid Solution Effects in NiAI (40% AI) Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chain T; Fu, Chong Long; Chisholm, Matthew F

    2007-01-01

    The solid solution effects of ternary additions of transition elements in intermetallic Ni-40% Al were investigated by both experimental studies and theoretical calculations. Co solute atoms when sitting at Ni sublattice sites do not affect the lattice parameter and hardening behavior of Ni-40Al. On the other hand, Fe, Mn, and Cr solutes, which are mainly on Al sublattice sites, substantially expand the lattice parameter and produce an unusual solid solution softening effect. First-principles calculations predict that these solute atoms with large unfilled d-band electrons develop large magnetic moments and effectively expand the lattice parameter when occupying Al sublattice sites. Themore » theoretical predictions were verified by both electron loss-energy spectroscopy (EELS) analyses and magnetic susceptibility measurements. The observed softening behavior can be explained quantitatively by the replacement of Ni anti-site defects (potent hardeners) by Fe, Mn, and Cr anti-site defects with smaller atom size mismatch between solute and Al atoms. This study has led to the identification of magnetic interaction as an important physical parameter affecting the solid solution hardening in intermetallic alloys containing transition elements.« less

  7. Research on the synergistic doped effects and the catalysis properties of Cu2+ and Zn2+ co-doped CeO2 solid solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Guofang; Li, Yiming; Hou, Zhonghui; Xv, Jianyi; Wang, Qingchun; Zhang, Yanghuan

    2018-08-01

    The Cu2+ and Zn2+ co-doped CeO2-based solid solutions were synthesized via hydrothermal method. The microstructure and the spectra features of the solid solutions were characterized systematically. The XRD results showed that the dopants were incorporated into the CeO2 lattice to form Ce1-xCu0.5xZn0.5xO2 solid solutions when x was lower than 0.14. The cell parameters and the crystalline size decreased linearly, and the lattice strain gradually increased with increasing the doping level. The TEM patterns showed that the particle size in the solid solution was lower than 10 nm which is in accordance with the XRD results. The ICP analysis indicated that the real doped content in the solid solution was close to the nominal proportion. XPS proved that the Ce3+ component was increased by doping. The Raman and PL spectra indicated that the lattice distortion and the oxygen vacancies also increased following the same trend. At the same time, the synergistic effects of two ions co-doped solid solutions were studied by comparing them with that of single ions doped samples. The catalysis effects of Cu2+ and Zn2+ co-doped CeO2-based solid solutions on the hydrogen storage electrochemical and kinetic properties of Mg2Ni alloys were detected. The electrochemistry properties of the Mg2Ni-Ni-5 wt% Ce1-xCu0.5xZn0.5xO2 composites indicated that the doped catalysts could provide better optimizations to improve the maximum discharge capacities and the discharge potentials. On the other hand, the charge transfer abilities on the surface and diffusion rate of H atoms in the bulk of alloys also got improved. The DSC measurements showed that the hydrogen desorption activation of the hydrogenated composites with Ce0.88Cu0.06Zn0.06O2 solid solutions decreased to 77.03 kJ mol-1, while that of the composites with pure CeO2 was 97.62 kJ mol-1. The catalysis effect was enhanced by the doped content increase that means that the catalysis mechanism had close links to the oxygen vacancy concentration and the lattice defects in the solid solutions. On the other hand, the doped Cu2+ and Zn2+ ions could also play an important role in the catalytic process.

  8. Separation by solvent extraction

    DOEpatents

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  9. Creation of Novel Solid-Solution Alloy Nanoparticles on the Basis of Density-of-States Engineering by Interelement Fusion.

    PubMed

    Kobayashi, Hirokazu; Kusada, Kohei; Kitagawa, Hiroshi

    2015-06-16

    Currently 118 known elements are represented in the periodic table. Of these 118 elements, only about 80 elements are stable, nonradioactive, and widely available for our society. From the viewpoint of the "elements strategy", we need to make full use of the 80 elements to bring out their latent ability and create innovative materials. Furthermore, there is a strong demand that the use of rare or toxic elements be reduced or replaced while their important properties are retained. Advanced science and technology could create higher-performance materials even while replacing or reducing minor or harmful elements through the combination of more abundant elements. The properties of elements are correlated directly with their electronic states. In a solid, the magnitude of the density of states (DOS) at the Fermi level affects the physical and chemical properties. In the present age, more attention has been paid to improving the properties of materials by means of alloying elements. In particular, the solid-solution-type alloy is advantageous because the properties can be continuously controlled by tuning the compositions and/or combinations of the constituent elements. However, the majority of bulk alloys are of the phase-separated type under ambient conditions, where constituent elements are immiscible with each other. To overcome the challenge of the bulk-phase metallurgical aspects, we have focused on the nanosize effect and developed methods involving "nonequilibrium synthesis" or "a process of hydrogen absorption/desorption". We propose a new concept of "density-of-states engineering" for the design of materials having the most desirable and suitable properties by means of "interelement fusion". In this Account, we describe novel solid-solution alloys of Pd-Pt, Ag-Rh, and Pd-Ru systems in which the constituent elements are immiscible in the bulk state. The homogeneous solid-solution alloys of Pd and Pt were created from Pd core/Pt shell nanoparticles using a hydrogen absorption/desorption process as a trigger. Several atom percent replacements of Pd with Pt atoms resulted in a significantly enhanced hydrogen absorption capacity compared with Pd nanoparticles. AgxRh1-x and PdxRu1-x solid-solution alloy nanoparticles were also developed by nonequilibrium synthesis based on a polyol method. The AgxRh1-x nanoparticles demonstrated hydrogen storage properties, although pure metal nanoparticles of each constituent element do not adsorb hydrogen. AgxRh1-x is therefore considered to possess a similar electronic structure to Pd as a synthetic pseudo-palladium. The PdxRu1-x nanoparticles showed enhanced catalytic activity for CO oxidation, with the highest catalytic activity found using the equimolar Pd0.5Ru0.5 nanoparticles. The catalytic activity of the Pd0.5Ru0.5 nanoparticles exceeds that of the widely used and best-performing Ru catalysts for CO oxidation and is also higher than that of neighboring Rh on the periodic table. Our present work provides a guiding principle for the design of a suitable DOS shape according to the intended physical and/or chemical properties and a method for the development of novel solid-solution alloys.

  10. A Semianalytical Analysis of Compressible Electrophoretic Cake Formation

    NASA Astrophysics Data System (ADS)

    Kambham, Kiran K. R.; Tuncay, Kagan; Corapcioglu, M. Yavuz

    1995-05-01

    Leaks in geomembrane liners of waste landfills and liquid impoundments cause chemical contaminants to leak into the subsurface environment. A mathematical model is presented to simulate electrophoretic sealing of impoundment leaks. The model describes the formation of a compressible clay cake because of electrical and gravitational forces. The model includes mass balance equations for the solid particles and liquid phase, modified Darcy's law in an electrical field, and Terzaghi's definition of effective stress. The formulation is presented in the Eulerian coordinates. The resulting second-order, nonlinear partial differential equation and the lower boundary condition are linearized to obtain an analytical solution for time-dependent settlement. After discretizing in time the analytical solution is applied to simulate compression of an accreting sediment. In the simulation of an accreting sediment, solid fluxes on either side of suspension/sediment interface are coupled using a no-jump condition. The velocity of a discrete particle in the suspension zone is assumed to be equal to the algebraic sum of electrophoretic and Stoke's settling velocities. An empirical relationship available in the literature is used to account for the effect of concentration on the velocity of solid particles in the suspension zone. The validity of the semianalytical approach is partially verified using an exact steady state solution for self-weight consolidation. The simulation results obtained for a set of material parameters are presented graphically. It is noted that the electrokinetic consolidation of sediment continues even after the completion of electrophoretic settling of all clay particles. An analysis reveals that the electrophoretic cake formation process is quite sensitive to voltage gradient and the coefficient of compressibility.

  11. Process for recovering pertechnetate ions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1997-02-18

    A solid/liquid process for the separation and recovery of TcO{sub 4}{sup {minus}1} ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO{sub 4}{sup {minus}1} ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO{sub 4}{sup {minus}1} ions in such an aqueous solution that is free from MoO{sub 4}{sup {minus}2} ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 15 figs.

  12. Influence of carbonate ion in the crystallization medium on the formation and chemical composition of CaHA-SrHA solid solutions

    NASA Astrophysics Data System (ADS)

    Nikolaev, Anton; Kuz'mina, Maria; Frank-Kamenetskaya, Olga; Zorina, Maina

    2015-06-01

    The study of the influence of carbonate ions in a solution to Sr-distribution in system «solution-crystal» and to ion substitutions and the non-stoichiometry of formed CaHA-SrHA solid solutions was carried out. The CaHA-SrHA solid solutions were synthesized by precipitation from aqueous solutions with the atomic C/P ratio equal to 0, 0.05 and 0.1 at T = 90 °C. Resulting precipitates were studied using various methods including X-ray powder diffraction, infrared spectroscopy and different chemical analyses. The results of the study have shown that in the range of values of (Ca + Sr)/P in the water solution from 40% to 85%, the presence of carbonate ions (C/P = 0.05-0.1) promotes the incorporation of strontium in the apatite. Crystalline apatite solid solutions formed from water solutions of such composition are more defective compared to apatites that are mainly calcium or strontium. They are characterized by a smaller size coherence scattering domain length along [0 0 1] direction and a greater number of carbonate ions, water molecules and vacancies at the Ca-sites.

  13. New laser media based on microporous glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altshuler, G.B.; Bakanov, V.A.; Dulneva, E.G.

    The results of the investigation of new class of the laser media based on dye solutions impregnated microporous glasses are presented. Based on such media highly effective active elements of tunable dye lasers and passive modulators for solid-state lasers are created. This article is devoted to laser media of the new type - the heterogenous solid-liquid media on the basis of the impregnated by the solutions of the dyes of the microporous glasses. The microporous glasses represent themselves the products of the leaching of heat - treated sodium borosilicate glasses of a certain composition range. As a result of heatmore » treatment is realized the phase separated glass. It consists of two interconnected phases: the silica rich phase and the chemical unstable sodium - borate - rich phase. If we place this glass in the acid then the ions of sodium and borate will be transfered to the solution. As a result we obtain the porous glass and this process produces the continuous claster. Therefore it could be easily impregnated by liquids and gases. We now have the technology that permits us to obtain the samples with the volume porosity from ten to fifty percent and the size of this poroses could be varied from twenty angstroms up to one thousand angstroms.« less

  14. Lax-Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic-plastic solids

    NASA Astrophysics Data System (ADS)

    Heuzé, Thomas

    2017-10-01

    We present in this work two finite volume methods for the simulation of unidimensional impact problems, both for bars and plane waves, on elastic-plastic solid media within the small strain framework. First, an extension of Lax-Wendroff to elastic-plastic constitutive models with linear and nonlinear hardenings is presented. Second, a high order TVD method based on flux-difference splitting [1] and Superbee flux limiter [2] is coupled with an approximate elastic-plastic Riemann solver for nonlinear hardenings, and follows that of Fogarty [3] for linear ones. Thermomechanical coupling is accounted for through dissipation heating and thermal softening, and adiabatic conditions are assumed. This paper essentially focuses on one-dimensional problems since analytical solutions exist or can easily be developed. Accordingly, these two numerical methods are compared to analytical solutions and to the explicit finite element method on test cases involving discontinuous and continuous solutions. This allows to study in more details their respective performance during the loading, unloading and reloading stages. Particular emphasis is also paid to the accuracy of the computed plastic strains, some differences being found according to the numerical method used. Lax-Wendoff two-dimensional discretization of a one-dimensional problem is also appended at the end to demonstrate the extensibility of such numerical scheme to multidimensional problems.

  15. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

    PubMed Central

    Ghosh, Tanushree; Rieger, Jana

    2017-01-01

    Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN) was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h) for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode. PMID:29099804

  16. Modal element method for scattering of sound by absorbing bodies

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1992-01-01

    The modal element method for acoustic scattering from 2-D body is presented. The body may be acoustically soft (absorbing) or hard (reflecting). The infinite computational region is divided into two subdomains - the bounded finite element domain, which is characterized by complicated geometry and/or variable material properties, and the surrounding unbounded homogeneous domain. The acoustic pressure field is represented approximately in the finite element domain by a finite element solution, and is represented analytically by an eigenfunction expansion in the homogeneous domain. The two solutions are coupled by the continuity of pressure and velocity across the interface between the two subdomains. Also, for hard bodies, a compact modal ring grid system is introduced for which computing requirements are drastically reduced. Analysis for 2-D scattering from solid and coated (acoustically treated) bodies is presented, and several simple numerical examples are discussed. In addition, criteria are presented for determining the number of modes to accurately resolve the scattered pressure field from a solid cylinder as a function of the frequency of the incoming wave and the radius of the cylinder.

  17. Closantel nano-encapsulated polyvinyl alcohol (PVA) solutions.

    PubMed

    Vega, Abraham Faustino; Medina-Torres, Luis; Calderas, Fausto; Gracia-Mora, Jesus; Bernad-Bernad, MaJosefa

    2016-08-01

    The influence of closantel on the rheological and physicochemical properties (particle size and by UV-Vis absorption spectroscopy) of PVA aqueous solutions is studied here. About 1% PVA aqueous solutions were prepared by varying the closantel content. The increase of closantel content led to a reduction in the particle size of final solutions. All the solutions were buffered at pH 7.4 and exhibited shear-thinning behavior. Furthermore, in oscillatory flow, a "solid-like" type behavior was observed for the sample containing 30 μg/mL closantel. Indicating a strong interaction between the dispersed and continuous phases and evidencing an interconnected network between the nanoparticle and PVA, this sample also showed the highest shear viscosity and higher shear thinning slope, indicating a more intrincate structure disrupted by shear. In conclusion, PVA interacts with closantel in aqueous solution and the critical concentration for closantel encapsulation by PVA was about 30 μg/mL; above this concentration, the average particle size decreased notoriously which was associated to closantel interacting with the surface of the PVA aggregates and thus avoiding to some extent direct polymer-polymer interaction.

  18. ZrB 2-HfB 2 solid solutions as electrode materials for hydrogen reaction in acidic and basic solutions

    DOE PAGES

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    2016-11-09

    Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less

  19. Calculation of open and closed system elastic coefficients for multicomponent solids

    NASA Astrophysics Data System (ADS)

    Mishin, Y.

    2015-06-01

    Thermodynamic equilibrium in multicomponent solids subject to mechanical stresses is a complex nonlinear problem whose exact solution requires extensive computations. A few decades ago, Larché and Cahn proposed a linearized solution of the mechanochemical equilibrium problem by introducing the concept of open system elastic coefficients [Acta Metall. 21, 1051 (1973), 10.1016/0001-6160(73)90021-7]. Using the Ni-Al solid solution as a model system, we demonstrate that open system elastic coefficients can be readily computed by semigrand canonical Monte Carlo simulations in conjunction with the shape fluctuation approach. Such coefficients can be derived from a single simulation run, together with other thermodynamic properties needed for prediction of compositional fields in solid solutions containing defects. The proposed calculation approach enables streamlined solutions of mechanochemical equilibrium problems in complex alloys. Second order corrections to the linear theory are extended to multicomponent systems.

  20. Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy

    DOE PAGES

    Zhang, F. X.; Zhao, Shijun; Jin, Ke; ...

    2017-05-19

    Multi-element solid solution alloys are intrinsically disordered on the atomic scale, and many of their advanced properties originate from the unique local structural characteristics. We measured the local structure of a NiCoCr solid solution alloy with X-ray/neutron total scattering and extended X-ray absorption fine structure (EXAFS) techniques. The atomic pair distribution function analysis (PDF) did not exhibit distinct structural distortion. But, EXAFS analysis suggested that the Cr atoms are favorably bonded with Ni and Co in the solid solution alloys. This short-range order (SRO) plays a role in the distinct low values of electrical and thermal conductivities in Ni-based solidmore » solution alloys when Cr is incorporated. Both the long-range and local structures of the NiCoCr alloy upon Ni ion irradiation were studied and an irradiation-induced enhancement of SRO was found.« less

  1. Surface Defects Enhanced Visible Light Photocatalytic H2 Production for Zn-Cd-S Solid Solution.

    PubMed

    Zhang, Xiaoyan; Zhao, Zhao; Zhang, Wanwan; Zhang, Guoqiang; Qu, Dan; Miao, Xiang; Sun, Shaorui; Sun, Zaicheng

    2016-02-10

    In order to investigate the defect effect on photocatalytic performance of the visible light photocatalyst, Zn-Cd-S solid solution with surface defects is prepared in the hydrazine hydrate. X-ray photoelectron spectra and photoluminescence results confirm the existence of defects, such as sulfur vacancies, interstitial metal, and Zn and Cd in the low valence state on the top surface of solid solutions. The surface defects can be effectively removed by treating with sulfur vapor. The solid solution with surface defect exhibits a narrower band gap, wider light absorption range, and better photocatalytic perfomance. The optimized solid solution with defects exhibits 571 μmol h(-1) for 50 mg photocatalyst without loading Pt as cocatalyst under visible light irradiation, which is fourfold better than that of sulfur vapor treated samples. The wavelength dependence of photocatalytic activity discloses that the enhancement happens at each wavelength within the whole absorption range. The theoretical calculation shows that the surface defects induce the conduction band minimum and valence band maximum shift downward and upward, respectively. This constructs a type I junction between bulk and surface of solid solution, which promotes the migration of photogenerated charges toward the surface of nanostructure and leads to enhanced photocatalytic activity. Thus a new method to construct highly efficient visible light photocatalysts is opened. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Stabilized antiferroelectricity in xBiScO3-(1-x)NaNbO3 lead-free ceramics with established double hysteresis loops

    NASA Astrophysics Data System (ADS)

    Gao, Lisheng; Guo, Hanzheng; Zhang, Shujun; Randall, Clive A.

    2018-02-01

    We previously reported various solid solution systems that demonstrated the stabilized antiferroelectric (P) phases in NaNbO3 through lowering the tolerance factor. However, all those reported modifications were achieved by adding A2+B4+O3 type solid solutions. A lead-free antiferroelectric (AFE) solid solution xBiScO3-(1-x)NaNbO3 was rationalized by adopting the tolerance factor design rule. Specifically, adding BiScO3 was found to effectively stabilize the AFE phase without changing the crystal symmetry of NaNbO3. Microstructure and electron zone axis diffraction patterns from transmission electron microscopy revealed the stabilized AFE (P) phase in this solid solution. Besides, the electric-field-induced polarization with a double-hysteresis loop was observed. The present results pointed out that the strategy could also be applied while adding A3+B3+O3 type solid solutions. In addition, it expanded the compositional design that can be applied to antiferroelectric materials.

  3. Lithium-Based High Energy Density Flow Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  4. Materials research for passive solar systems: Solid-state phase-change materials

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  5. The determination of solubility and diffusion coefficient for solids in liquids by an inverse measurement technique using cylinders of amorphous glucose as a model compound

    NASA Astrophysics Data System (ADS)

    Hu, Chengyao; Huang, Pei

    2011-05-01

    The importance of sugar and sugar-containing materials is well recognized nowadays, owing to their application in industrial processes, particularly in the food, pharmaceutical and cosmetic industries. Because of the large numbers of those compounds involved and the relatively small number of solubility and/or diffusion coefficient data for each compound available, it is highly desirable to measure the solubility and/or diffusion coefficient as efficiently as possible and to be able to improve the accuracy of the methods used. In this work, a new technique was developed for the measurement of the diffusion coefficient of a stationary solid solute in a stagnant solvent which simultaneously measures solubility based on an inverse measurement problem algorithm with the real-time dissolved amount profile as a function of time. This study differs from established techniques in both the experimental method and the data analysis. The experimental method was developed in which the dissolved amount of solid solute in quiescent solvent was investigated using a continuous weighing technique. In the data analysis, the hybrid genetic algorithm is used to minimize an objective function containing a calculated and a measured dissolved amount with time. This is measured on a cylindrical sample of amorphous glucose in methanol or ethanol. The calculated dissolved amount, that is a function of the unknown physical properties of the solid solute in the solvent, is calculated by the solution of the two-dimensional nonlinear inverse natural convection problem. The estimated values of the solubility of amorphous glucose in methanol and ethanol at 293 K were respectively 32.1 g/100 g methanol and 1.48 g/100 g ethanol, in agreement with the literature values, and support the validity of the simultaneously measured diffusion coefficient. These results show the efficiency and the stability of the developed technique to simultaneously estimate the solubility and diffusion coefficient. Also the influence of the solution density change and the initial concentration conditions on the dissolved amount was investigated by the numerical results using the estimated parameters. It is found that the theoretical assumption to simplify the inverse measurement problem algorithm is reasonable for low solubility.

  6. Electrolyte for batteries with regenerative solid electrolyte interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  7. Design principles for radiation-resistant solid solutions

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas; Trinkle, Dallas R.; Bellon, Pascal; Averback, Robert

    2017-05-01

    We develop a multiscale approach to quantify the increase in the recombined fraction of point defects under irradiation resulting from dilute solute additions to a solid solution. This methodology provides design principles for radiation-resistant materials. Using an existing database of solute diffusivities, we identify Sb as one of the most efficient solutes for this purpose in a Cu matrix. We perform density-functional-theory calculations to obtain binding and migration energies of Sb atoms, vacancies, and self-interstitial atoms in various configurations. The computed data informs the self-consistent mean-field formalism to calculate transport coefficients, allowing us to make quantitative predictions of the recombined fraction of point defects as a function of temperature and irradiation rate using homogeneous rate equations. We identify two different mechanisms according to which solutes lead to an increase in the recombined fraction of point defects; at low temperature, solutes slow down vacancies (kinetic effect), while at high temperature, solutes stabilize vacancies in the solid solution (thermodynamic effect). Extension to other metallic matrices and solutes are discussed.

  8. Lipid immiscibility and biophysical properties: Molecular order within and among unit cell volumes

    USDA-ARS?s Scientific Manuscript database

    Saturated and unsaturated fatty acids clearly have a discrete chemical structure in the solid state. In a saturated solution, the solid state and solution state are in chemical equilibrium. The lipid stearic acid packs in unit cell volumes in the liquid state as well as in the solid state. Normal...

  9. Multiferroic properties in NdFeO3-PbTiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Pal, Jaswinder; Kaur, Shubhpreet; Agrawal, P.; Singh, Mandeep; Singh, Anupinder

    2018-05-01

    The x(NdFeO3) - 1-x(PbTiO3) where x = 0.2 solid solution was prepared using solid state reaction route. The X-ray diffraction (XRD) data reveals the single phase formation. The microstructure shows grain growth with lesser porosity. The energy dispersive analysis confirms the presence of elements in stochiometric proportion. The polarization vs. Electric field loop estabilished a ferroelectric type behavior but lossy in nature. This lossy nature may be due to the presence of large leakage current in solid solution. The Magnetization vs. Magnetic field plot exhibits a unsaturated hysteriss loop indicates that the sample is not purely ferromagnetic.

  10. Synthesis of continuous boron nitride nanofibers by solution coating electrospun template fibers

    NASA Astrophysics Data System (ADS)

    Qiu, Yejun; Yu, Jie; Yin, Jing; Tan, Cuili; Zhou, Xiaosong; Bai, Xuedong; Wang, Enge

    2009-08-01

    Continuous boron nitride nanofibers (BNNFs) have been synthesized from boric oxide (B2O3) coatings deposited on stabilized electrospun polyacrylonitrile fibers (S-PANFs). The B2O3 overcoatings were prepared by impregnating the S-PANFs with B2O3 ethanol solutions. By successive heat treatments at 800 °C in NH3/O2 mixture, 1100 °C in pure NH3, and 1500 °C in N2, the S-PANFs were fully removed and the B2O3 coatings deflate to form solid fibers and transform into the BNNFs. The S-PANF template was fully removed by introducing O2 during nitridation, and thus resulted in the formation of the BNNFs. The diameter of the BNNFs can be effectively controlled by changing the mass concentration of the B2O3 solution, and diameters from 43 to 230 nm were obtained by changing the B2O3 mass concentration from 0.25% to 4.8%. The obtained BNNFs are crystallized with the (002) planes oriented in parallel to the fiber axis. This method provides a powerful tool for obtaining BNNFs with controllable diameters, especially extremely thin BNNFs.

  11. Synthesis of continuous boron nitride nanofibers by solution coating electrospun template fibers.

    PubMed

    Qiu, Yejun; Yu, Jie; Yin, Jing; Tan, Cuili; Zhou, Xiaosong; Bai, Xuedong; Wang, Enge

    2009-08-26

    Continuous boron nitride nanofibers (BNNFs) have been synthesized from boric oxide (B(2)O(3)) coatings deposited on stabilized electrospun polyacrylonitrile fibers (S-PANFs). The B(2)O(3) overcoatings were prepared by impregnating the S-PANFs with B(2)O(3) ethanol solutions. By successive heat treatments at 800 degrees C in NH(3)/O(2) mixture, 1100 degrees C in pure NH(3), and 1500 degrees C in N(2), the S-PANFs were fully removed and the B(2)O(3) coatings deflate to form solid fibers and transform into the BNNFs. The S-PANF template was fully removed by introducing O(2) during nitridation, and thus resulted in the formation of the BNNFs. The diameter of the BNNFs can be effectively controlled by changing the mass concentration of the B(2)O(3) solution, and diameters from 43 to 230 nm were obtained by changing the B(2)O(3) mass concentration from 0.25% to 4.8%. The obtained BNNFs are crystallized with the (002) planes oriented in parallel to the fiber axis. This method provides a powerful tool for obtaining BNNFs with controllable diameters, especially extremely thin BNNFs.

  12. Study of low-temperature active rare-earth oxide catalysts for automotive exhaust clean-up.

    DOT National Transportation Integrated Search

    2014-02-01

    We report a facile onepot synthesis of CexZr1-xO2 (0x1) solid solution nanocrystals using hydrothermal reactions. A direct formation of oxide solid solutions in aqueous solution under pressure at low temperatures was clearly revealed by X-ra...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Miao; Mohammadi, Reza; Turner, Christopher L.

    In this paper, we explore the hardening mechanisms in WB4-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under nonhydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB 4 solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Miao; Turner, Christopher L.; Mohammadi, Reza

    In this work, we explore the hardening mechanisms in WB{sub 4}-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under non-hydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB{sub 4} solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.

  15. Solid-solution thermodynamics in Al-Li alloys

    NASA Astrophysics Data System (ADS)

    Alekseev, A. A.; Lukina, E. A.

    2016-05-01

    The relative equilibrium concentrations of lithium atoms distributed over different electron-structural states has been estimated. The possibility of the existence of various nonequilibrium electron-structural states of Li atoms in the solid solution in Al has been substantiated thermodynamically. Upon the decomposition of the supersaturated solid solution, the supersaturation on three electron-structural states of Li atoms that arises upon the quenching of the alloy can lead to the formation of lithium-containing phases in which the lithium atoms enter in one electron-structural state.

  16. Concentration Dependent Physical Properties of Ge1-xSnx Solid Solution

    NASA Astrophysics Data System (ADS)

    Jivani, A. R.; Jani, A. R.

    2011-12-01

    Our own proposed potential is used to investigate few physical properties like total energy, bulk modulus, pressure derivative of bulk modulus, elastic constants, pressure derivative of elastic constants, Poisson's ratio and Young's modulus of Ge1-xSnx solid solution with x is atomic concentration of α-Sn. The potential combines linear plus quadratic types of electron-ion interaction. First time screening function proposed by Sarkar et al is used to investigate the properties of the Ge-Sn solid solution system.

  17. New anatase-type Til-2xNbxAlxO2 solid solution nanoparticles: direct formation, phase stability, and photocatalytic performance.

    PubMed

    Hirano, Masanori; Ito, Takaharu

    2006-12-01

    New anatase-type titania solid solutions co-doped with niobium and aluminum (Til-2xNbxAIlxO2 (X = 0 -0.20)) were synthesized as nanoparticles from precursor solutions of TiOSO4, NbCl5, and Al(NO3)3 under mild hydrothermal conditions at 180 degrees C for 5 h using the hydrolysis of urea. The lattice parameters a0 and c0 of anatase slightly and gradually increased, when the content of niobium and aluminum increased from X = 0 to 0.20. The crystallite size of anatase increased from 12 to 28 nm with increasing the value of X from 0 to 0.20. Their photocatalytic activity and adsorptivity were evaluated separately by the measurement of the concentration of methylene blue (MB) remained in the solution in the dark or under UV-light irradiation. The adsorptivity of TiO2 was improved by the formation of anatase-type Til-2xNbxAlxO2 solid solutions. The photocatalytic activity of anatase-type Til-2xNbxAlxO2 solid solutions was superior to that of commercially available anatase-type pure TiO2 (ST-01) and anatase-type pure TiO2 hydrothermally prepared. The new anatase phase of Til-2xNbxAlxO2 (X = 0-0.20) solid solutions existed stably up to 850 0C during heat treatment in air. In comparison with hydrothermal pure TiO2, the starting temperature of anatase-to-rutile phase transformation was delayed by the formation of Ti1-2xNbxAlxO, (X = 0-0.20) solid solutions, although its completing temperature was accelerated.

  18. Nonclassical nucleation pathways in protein crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Fajun

    2017-11-01

    Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.

  19. Nonclassical nucleation pathways in protein crystallization.

    PubMed

    Zhang, Fajun

    2017-11-08

    Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.

  20. On the application of Chimera/unstructured hybrid grids for conjugate heat transfer

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing

    1995-01-01

    A hybrid grid system that combines the Chimera overset grid scheme and an unstructured grid method is developed to study fluid flow and heat transfer problems. With the proposed method, the solid structural region, in which only the heat conduction is considered, can be easily represented using an unstructured grid method. As for the fluid flow region external to the solid material, the Chimera overset grid scheme has been shown to be very flexible and efficient in resolving complex configurations. The numerical analyses require the flow field solution and material thermal response to be obtained simultaneously. A continuous transfer of temperature and heat flux is specified at the interface, which connects the solid structure and the fluid flow as an integral system. Numerical results are compared with analytical and experimental data for a flat plate and a C3X cooled turbine cascade. A simplified drum-disk system is also simulated to show the effectiveness of this hybrid grid system.

  1. Major- and minor-metal composition of three distinct solid material fractions associated with Juan de Fuca hydrothermal fluids (northeast Pacific), and calculation of dilution fluid samples

    USGS Publications Warehouse

    Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.

    1988-01-01

    Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.

  2. NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay; DelCastillo, Linda

    2009-01-01

    Experiments and theoretical study have demonstrated the promise of all-solid-state, high-temperature electrochemical battery cells based on NiF2 as the active cathode material, CaF2 doped with NaF as the electrolyte material, and Ca as the active anode material. These and other all-solid-state cells have been investigated in a continuing effort to develop batteries for instruments that must operate in environments much hotter than can be withstood by ordinary commercially available batteries. Batteries of this type are needed for exploration of Venus (where the mean surface temperature is about 450 C), and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal wells and oil wells. All-solid-state high-temperature power cells are sought as alternatives to other high-temperature power cells based, variously, on molten anodes and cathodes or molten eutectic salt electrolytes. Among the all-solid-state predecessors of the present NiF2/NaF:CaF2/Ca cells are those described in "Solid-State High-Temperature Power Cells" (NPO-44396), NASA Tech Briefs, Vol. 32, No. 5 (May 2008), page 40. In those cells, the active cathode material is FeS2, the electrolyte material is a crystalline solid solution of equimolar amounts of Li3PO4 and LiSiO4, and the active anode material is Li contained within an alloy that remains solid in the intended high operational temperature range.

  3. Effect of varying Ga content in ZnO:GaN solid solution synthesized by solution combustion technique for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Menon, Sumithra Sivadas; Janani, R.; Baskar, K.; Gupta, Bhavana; Singh, Shubra

    2017-05-01

    ZnO:GaN (oxy)nitride solid solution has been established as the most efficient non-oxide photocatalyst for water splitting under visible irradiation with one step photoexcitation and also boasts a band gap tunability from 2.8 eV to 2.5 eV[1]. The solid solution of GaN in ZnO is formed by the intersubstitution of few of Zn/O ions by Ga/N ions, and this results in the introduction of new defect levels above the valence band which narrows the effective band gap enabling activity under visible region of spectra. In this work, we report the synthesis of ZnO:GaN solid solution by a solution combustion technique where metal nitrates and urea are used as precursors. The Zn/Ga ratio was varied from 16 to 1 in the precursors. The as synthesized samples were characterized as phase pure by X-ray diffraction, where the wurtzite structure was retained up to Zn/Ga ratio of 5. The Diffuse reflectance spectroscopy studies revealed that as the Ga content in the solid solution increases there is a reduction in band gap, from 2.9 eV to 2.4 eV. The reduced band gap of the samples facilitates its photocatalytic activity under visible region of the spectra as evaluated by photoelectrochemical measurements.

  4. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol

    NASA Astrophysics Data System (ADS)

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-07-01

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03894h

  5. Planet Patrol. An Educational Unit on Solid Waste Solutions for Grades 4-6.

    ERIC Educational Resources Information Center

    Shively, Patti J.; And Others

    This educational unit on solid waste solutions is intended to convey to students an understanding of the four methods of solid waste handling, in priority order, as recommended by the Environmental Protection Agency: (1) reduction in the volume of waste produced; (2) recycling and composting; (3) waste combustion, i.e., incineration of waste; and…

  6. Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering

    NASA Astrophysics Data System (ADS)

    Zhong, Donglai; Zhao, Chenyi; Liu, Lijun; Zhang, Zhiyong; Peng, Lian-Mao

    2018-04-01

    In this letter, we report a gate engineering method to adjust threshold voltage of carbon nanotube (CNT) based field-effect transistors (FETs) continuously in a wide range, which makes the application of CNT FETs especially in digital integrated circuits (ICs) easier. Top-gated FETs are fabricated using solution-processed CNT network films with stacking Pd and Sc films as gate electrodes. By decreasing the thickness of the lower layer metal (Pd) from 20 nm to zero, the effective work function of the gate decreases, thus tuning the threshold voltage (Vt) of CNT FETs from -1.0 V to 0.2 V. The continuous adjustment of threshold voltage through gate engineering lays a solid foundation for multi-threshold technology in CNT based ICs, which then can simultaneously provide high performance and low power circuit modules on one chip.

  7. Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids.

    PubMed

    Singh, Amol; Li, Xiangyang; Protasenko, Vladimir; Galantai, Gabor; Kuno, Masaru; Xing, Huili Grace; Jena, Debdeep

    2007-10-01

    Polarization-sensitive photodetectors are demonstrated using solution-synthesized CdSe nanowire (NW) solids. Photocurrent action spectra taken with a tunable white light source match the solution linear absorption spectra of the NWs, showing that the NW network is responsible for the device photoconductivity. Temperature-dependent transport measurements reveal that carriers responsible for the dark current through the nanowire solids are thermally excited across CdSe band gap. The NWs are aligned using dielectrophoresis between prepatterned electrodes using conventional optical photolithography. The photocurrent through the NW solid is found to be polarization-sensitive, consistent with complementary absorption (emission) measurements of both single wires and their ensembles. The range of solution-processed semiconducting NW materials, their facile synthesis, ease of device fabrication, and compatibility with a variety of substrates make them attractive for potential nanoscale polarization-sensitive photodetectors.

  8. The solid-solution region for the langasite-type Ca3TaGa3Si2O14 crystal as determined by a lever rule

    NASA Astrophysics Data System (ADS)

    Zhao, Hengyu; Uda, Satoshi; Maeda, Kensaku; Nozawa, Jun; Koizumi, Haruhiko; Fujiwara, Kozo

    2015-04-01

    A lever rule was applied to data concerning the compositions and proportions of secondary phases coexisting with a Ca3TaGa3Si2O14 (CTGS) matrix to determine the boundary compositions of the solid-solution region for CTGS at 1320 °C, as a means of ascertaining the solid-solution for the langasite-type phase in the quaternary CaO-Ta2O5-Ga2O3-SiO2 system. The compositions and proportions of secondary phases were assessed by electron probe micro-analysis as well as through back-scattered electron images. The experimental results showed that the narrow solid-solution region for CTGS is located in a Ta-poor, Ga-poor and Si-rich region relative to its stoichiometric composition.

  9. Dynamics of Re(2,2'-bipyridine)(CO)3Cl MLCT formation and decay after picosecond pulsed X-ray excitation and femtosecond UV excitation.

    PubMed

    Zhao, Liyan; Odaka, Hideho; Ono, Hiroshi; Kajimoto, Shinji; Hatanaka, Koji; Hobley, Jonathan; Fukumura, Hiroshi

    2005-01-01

    The dynamics of Re(2,2'-bipyridine)(CO)3Cl MLCT state formation and decay were determined after femtosecond UV laser excitation and picosecond pulsed X-ray excitation, in an N,N-dimethylformamide (DMF) solution as well as in its solid form. At room temperature, after UV excitation, this MLCT excited state emits both in DMF solution and in the solid form. Transient absorption spectra were measured in solution at various delay times following excitation by a 160 fs, 390 nm laser pulse. There was a prompt absorption increase at around 460 nm occurring within the pump probe convolution (<1 ps), which was assigned to the formation of the 3MLCT state. This transient absorbance was constant over 100 ps. In contrast to the solution state, in the solid state, the emission maximum slightly red-shifts with increasing time after laser excitation. In both solid and solution the emission rises within the system response time. The solid sample exhibited a 1.4 ns emission decay that was not observed for the solution sample. The emission rise from a solid sample after 20 ps pulsed X-ray excitation was significantly slower than the system's time resolution. It is proposed that kinetically energetic electrons are ejected following X-ray induced ionisation, creating ionised tracks in which energetic cations and electrons take time to recombine yielding delayed 3MLCT states that emit.

  10. Ab initio calculation of excess properties of La{sub 1−x}(Ln,An){sub x}PO{sub 4} solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yan; JARA High-Performance Computing, Schinkelstrasse 2, 52062 Aachen; Kowalski, Piotr M., E-mail: p.kowalski@fz-juelich.de

    2014-12-15

    We used ab initio computational approach to predict the excess enthalpy of mixing and the corresponding regular/subregular model parameters for La{sub 1−x}Ln{sub x}PO{sub 4} (Ln=Ce,…, Tb) and La{sub 1−x}An{sub x}PO{sub 4} (An=Pu, Am and Cm) monazite-type solid solutions. We found that the regular model interaction parameter W computed for La{sub 1−x}Ln{sub x}PO{sub 4} solid solutions matches the few existing experimental data. Within the lanthanide series W increases quadratically with the volume mismatch between LaPO{sub 4} and LnPO{sub 4} endmembers (ΔV=V{sub LaPO{sub 4}}−V{sub LnPO{sub 4}}), so that W(kJ/mol)=0.618(ΔV(cm{sup 3}/mol)){sup 2}. We demonstrate that this relationship also fits the interaction parameters computedmore » for La{sub 1−x}An{sub x}PO{sub 4} solid solutions. This shows that lanthanides can be used as surrogates for investigation of the thermodynamic mixing properties of actinide-bearing solid solutions. - Highlights: • The excess enthalpies of mixing for monazite-type solid solutions are computed. • The excess enthalpies increase with the endmembers volume mismatch. • The relationship derived for lanthanides is transferable to La{sub 1−x}An{sub x}PO{sub 4} systems.« less

  11. X-ray absorption investigation of local structural disorder in Ni 1-xFe x (x=0.10, 0.20, 0.35, and 0.50) alloys

    DOE PAGES

    Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun; ...

    2017-04-27

    Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less

  12. X-ray absorption investigation of local structural disorder in Ni 1-xFe x (x=0.10, 0.20, 0.35, and 0.50) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun

    Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less

  13. Solid-water detoxifying reagents for chemical and biological agents

    DOEpatents

    Hoffman, Dennis M [Livermore, CA; Chiu, Ing Lap [Castro Valley, CA

    2006-04-18

    Formation of solid-water detoxifying reagents for chemical and biological agents. Solutions of detoxifying reagent for chemical and biological agents are coated using small quantities of hydrophobic nanoparticles by vigorous agitation or by aerosolization of the solution in the presence of the hydrophobic nanoparticles to form a solid powder. For example, when hydrophobic fumed silica particles are shaken in the presence of IN oxone solution in approximately a 95:5-weight ratio, a dry powder results. The hydrophobic silica forms a porous coating of insoluble fine particles around the solution. Since the chemical or biological agent tends to be hydrophobic on contact with the weakly encapsulated detoxifying solution, the porous coating breaks down and the detoxifying reagent is delivered directly to the chemical or biological agent for maximum concentration at the point of need. The solid-water (coated) detoxifying solutions can be blown into contaminated ventilation ducting or other difficult to reach sites for detoxification of pools of chemical or biological agent. Once the agent has been detoxified, it can be removed by flushing the area with air or other techniques.

  14. Influence of isotopic disorder on solid state amorphization and polyamorphism in solid H2O -D2O solutions

    NASA Astrophysics Data System (ADS)

    Gromnitskaya, E. L.; Danilov, I. V.; Lyapin, A. G.; Brazhkin, V. V.

    2015-10-01

    We present a low-temperature and high-pressure ultrasonic study of elastic properties of isotopic H2O-D2O solid solutions, comparing their properties with those of the isotopically pure H2O and D2O ices. Measurements were carried out for solid state amorphization (SSA) from 1h to high-density amorphous (HDA) ice upon compression up to 1.8 GPa at 77 K and for the temperature-induced (77 -190 K ) u-HDA (unrelaxed HDA) → e-HDA (expanded HDA) → low-density amorphous (LDA )→1 c cascade of ice transformations near room pressure. There are many similarities in the elasticity behaviour of H2O ,D2O , and H2O-D2O solid solutions, including the softening of the shear elastic modulus as a precursor of SSA and the HDA →LDA transition. We have found significant isotopic effects during H/D substitution, including elastic softening of H2O -D2O solid solutions with respect to the isotopically pure ices in the case of the bulk moduli of ices 1c and 1h and for both bulk and shear elastic moduli of HDA ice at high pressures (>1 GPa ) . This softening is related to the configurational isotopic disorder in the solid solutions. At low pressures, the isotope concentration dependence of the elastic moduli of u-HDA ice changes remarkably and becomes monotonic with pronounced change of the bulk modulus (≈20 %) .

  15. Coatable Li4 SnS4 Solid Electrolytes Prepared from Aqueous Solutions for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Choi, Young Eun; Park, Kern Ho; Kim, Dong Hyeon; Oh, Dae Yang; Kwak, Hi Ram; Lee, Young-Gi; Jung, Yoon Seok

    2017-06-22

    Bulk-type all-solid-state lithium-ion batteries (ASLBs) for large-scale energy-storage applications have emerged as a promising alternative to conventional lithium-ion batteries (LIBs) owing to their superior safety. However, the electrochemical performance of bulk-type ASLBs is critically limited by the low ionic conductivity of solid electrolytes (SEs) and poor ionic contact between the active materials and SEs. Herein, highly conductive (0.14 mS cm -1 ) and dry-air-stable SEs (Li 4 SnS 4 ) are reported, which are prepared using a scalable aqueous-solution process. An active material (LiCoO 2 ) coated by solidified Li 4 SnS 4 from aqueous solutions results in a significant improvement in the electrochemical performance of ASLBs. Side-effects of the exposure of LiCoO 2 to aqueous solutions are minimized by using predissolved Li 4 SnS 4 solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  17. 76 FR 21299 - Emergency Planning and Notification; Emergency Planning and List of Extremely Hazardous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ...EPA is proposing to revise the manner by which the regulated community would apply the threshold planning quantities (TPQs) for those extremely hazardous substances (EHSs) that are non-reactive solid chemicals in solution form. Specifically, facilities with a solid EHS in solution would be subject to the Emergency Planning requirements if the amount of the solid chemical on-site, when multiplied by 0.2, equaled or exceeded the lower published TPQ, based on data that shows less potential for the solid chemical in solution to remain airborne in the event of an accidental release. Previously, EPA assumed that 100% of the chemical could become airborne in the event of an accidental release.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seung Min; Knight, Travis W.; Voit, Stwart L.

    The solid solution of (U1-yFPy)O- 2±x, has the same fluorite structure as UO 2±x lambda, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. We investigated the relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U 1-yNd y)O 2±x using X-ray diffraction. Moreover, the lattice parameter behavior in the (U 1-yNd y)O 2±x, solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can bemore » expressed by a particular rule (modified Vegard's law). Furthermore, the numerical analyses of the lattice parameters for the stoichiometric and nonstoichionietric solid solutions were conducted, and the lattice parameter model for the (U1-yNdy)O 2±x, solid solution was assessed. There is a very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U 1-yNd y)O 2±x solid solution was verified.« less

  19. Kinetics of dissolution of UO2 in nitric acid solutions: A multiparametric study of the non-catalysed reaction

    NASA Astrophysics Data System (ADS)

    Cordara, T.; Szenknect, S.; Claparede, L.; Podor, R.; Mesbah, A.; Lavalette, C.; Dacheux, N.

    2017-12-01

    UO2 pellets were prepared by densification of oxides obtained from the conversion of the oxalate precursor. Then characterized in order to perform a multiparametric study of the dissolution in nitric acid medium. In this frame, for each sample, the densification rate, the grain size and the specific surface area of the prepared pellets were determined prior to the final dissolution experiments. By varying the concentration of the nitric acid solution and temperature, three different and successive steps were identified during the dissolution. Under the less aggressive conditions considered, a first transient step corresponding to the dissolution of the most reactive phases was observed at the solid/solution interface. Then, for all the tested conditions, a steady state step was established during which the normalised dissolution rate was found to be constant. It was followed by a third step characterized by a strong and continuous increase of the normalised dissolution rate. The duration of the steady state, also called "induction period", was found to vary drastically as a function of the HNO3 concentration and temperature. However, independently of the conditions, this steady state step stopped at almost similar dissolved material weight loss and dissolved uranium concentration. During the induction period, no important evolution of the topology of the solid/liquid interface was evidenced authorizing the use of the starting reactive specific surface area to evaluate the normalised dissolution rates thus the chemical durability of the sintered pellets. From the multiparametric study of UO2 dissolution proposed, oxidation of U(IV) to U(VI) by nitrate ions at the solid/liquid interface constitutes the limiting step in the overall dissolution mechanism associated to this induction period.

  20. Computer simulation of concentrated solid solution strengthening

    NASA Technical Reports Server (NTRS)

    Kuo, C. T. K.; Arsenault, R. J.

    1976-01-01

    The interaction forces between a straight edge dislocation moving through a three-dimensional block containing a random array of solute atoms were determined. The yield stress at 0 K was obtained by determining the average maximum solute-dislocation interaction force that is encountered by edge dislocation, and an expression relating the yield stress to the length of the dislocation and the solute concentration is provided. The magnitude of the solid solution strengthening due to solute atoms can be determined directly from the numerical results, provided the dislocation line length that moves as a unit is specified.

  1. Supercritical fluid molecular spray film deposition and powder formation

    DOEpatents

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  2. A solid solution series of atacamite type Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bette, Sebastian; Dinnebier, Robert E.; Röder, Christian

    2015-08-15

    For the first time a complete solid solution series Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3} of an atacamite type alkaline main group metal chloride, Mg{sub 2}Cl(OH){sub 3}, and a transition group metal chloride, Ni{sub 2}Cl(OH){sub 3}, was prepared and characterized by chemical and thermal analysis as well as by Raman and IR spectroscopy, and high resolution laboratory X-ray powder diffraction. All members of the solid solution series crystallize in space group Pnam (62). The main building units of these crystal structures are distorted, edge-linked Ni/MgO{sub 4}Cl{sub 2} and Ni/MgO{sub 5}Cl octahedra. The distribution of Ni{sup 2+}- and Mg{sup 2+}-ions among these twomore » metal-sites within the solid solution series is discussed in detail. The crystallization of the solid solution phases occurs via an intermediate solid solution series, (Ni/Mg)Cl{sub 2x}(OH){sub 2−2x}, with variable Cl: OH ratio up to the 1:3 ratio according to the formula Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}. For one isolated intermediate solid solution member, Ni{sub 0.70}Mg{sub 0.30}Cl{sub 0.58}(OH){sub 1.42}, the formation and crystal structure is presented as well. - Graphical abstract: For the first time a complete solid solution series, Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}, was synthesized and characterized. Structure solution by revealed that Ni{sup 2+} prefers to occupy the Jahn–Teller-like distorted hole, out of two available cation sites. Substitution of Ni{sup 2+} by Mg{sup 2+} in atacamite type Ni{sub 2}Cl(OH){sub 3} results in systematic band shifts in Raman and IR spectra as well as in systematic changes in thermal properties. The α-polymorphs M{sub 2}Cl(OH){sub 3} with M=Mg{sup 2+}, Ni{sup 2+} and other divalent transition metal ions, as described in literature, were identified as separate compounds. - Highlights: • First synthesis of solid solution series between main and transition metal chloride. • Ni{sup 2+} prefers to occupy Jahn–Teller-like distorted octahedral holes. • Substitution of Ni{sup 2+} by Mg{sup 2+} results in systematic Raman and IR band shifts. • α-Polymorphs M{sub 2}Cl(OH){sub 3} with M=Mg{sup 2+}, Ni{sup 2+}, … as described in literature do not exist.« less

  3. SOLIDS PRECIPITATION EVENT IN MCU CAUSAL ANALYSIS AND RECOMMENDATIONS FROM SOLIDS RECOVERY TEAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, A.; Aponte, C.

    A process upset occurred in the Modular Caustic-Side Solvent Extraction Unit (MCU) facility on April 6th, 2014. During recovery efforts, a significant amount of solids were found in the Salt Solution Feed Tank (SSFT), Salt Solution Receipt Tanks (SSRTs), two extraction contactors, and scrub contactors. The solids were identified by Savannah River National Laboratory (SRNL) as primarily sodium oxalate and sodium alumina silicate (NAS) with the presence of some aluminum hydroxide. NAS solids have been present in the SSFT since simulant runs during cold chemical startup of MCU in 2007, and have not hindered operations since that time. During themore » process upset in April 2014, the oxalate solids partially blocked the aqueous outlet of the extraction contactors, causing salt solution to exit through the contactor organic outlet to the scrub contactors with the organic phase. This salt solution overwhelmed the scrub contactors and passed with the organic phase to the strip section of MCU. The partially reversed flow of salt solution resulted in a Strip Effluent (SE) stream that was high in Isopar™ L, pH and sodium. The primary cause of the excessive solids accumulation in the SSRTs and SSFT at MCU is attributed to an increase in the frequency of oxalic acid cleaning of the 512-S primary filter. Agitation in the SSRTs at MCU in response to cold weather likely provided the primary mechanism to transfer the solids to the contactors. Sources of the sodium oxalate solids are attributed to the oxalic acid cleaning solution used to clean the primary filter at the Actinide Removal Process (ARP) filtration at 512-S, as well as precipitation from the salt batch feed, which is at or near oxalate saturation. The Solids Recovery Team was formed to determine the cause of the solids formation and develop recommendations to prevent or mitigate this event in the future. A total of 53 recommendations were generated. These recommendations were organized into 4 focus areas: • Improve understanding of oxalate equilibrium and kinetics in salt solutions • Reduction/elimination of oxalic acid cleaning in 512-S • Flowsheet optimization • Improving diagnostic capability The recommendations implemented prior to resumption of MCU operations provide a risk mitigation or detection function through additional sampling and observation. The longer term recommendations provide a framework to increase the basic process knowledge of both oxalate chemistry and filtration behavior and then facilitate decisions that improve the salt flowsheet as a system.« less

  4. Finite element analysis of the effect of a non-planar solid-liquid interface on the lateral solute segregation during unidirectional solidification

    NASA Technical Reports Server (NTRS)

    Carlson, F. M.; Chin, L.-Y.; Fripp, A. L.; Crouch, R. K.

    1982-01-01

    The effect of solid-liquid interface shape on lateral solute segregation during steady-state unidirectional solidification of a binary mixture is calculated under the assumption of no convection in the liquid. A finite element technique is employed to compute the concentration field in the liquid and the lateral segregation in the solid with a curved boundary between the liquid and solid phases. The computational model is constructed assuming knowledge of the solid-liquid interface shape; no attempt is made to relate this shape to the thermal field. The influence of interface curvature on the lateral compositional variation is investigated over a range of system parameters including diffusivity, growth speed, distribution coefficient, and geometric factors of the system. In the limiting case of a slightly nonplanar interface, numerical results from the finite element technique are in good agreement with the analytical solutions of Coriell and Sekerka obtained by using linear theory. For the general case of highly non-planar interface shapes, the linear theory fails and the concentration field in the liquid as well as the lateral solute segregation in the solid can be calculated by using the finite element method.

  5. Band-gap tailoring and visible-light-driven photocatalytic performance of porous (GaN)1-x(ZnO)x solid solution.

    PubMed

    Wu, Aimin; Li, Jing; Liu, Baodan; Yang, Wenjin; Jiang, Yanan; Liu, Lusheng; Zhang, Xinglai; Xiong, Changmin; Jiang, Xin

    2017-02-21

    (GaN) 1-x (ZnO) x solid solution has attracted extensive attention due to its feasible band-gap tunability and excellent photocatalytic performance in overall water splitting. However, its potential application in the photodegradation of organic pollutants and environmental processing has rarely been reported. In this study, we developed a rapid synthesis process to fabricate porous (GaN) 1-x (ZnO) x solid solution with a tunable band gap in the range of 2.38-2.76 eV for phenol photodegradation. Under visible-light irradiation, (GaN) 0.75 (ZnO) 0.25 solid solution achieved the highest photocatalytic performance compared to other (GaN) 1-x (ZnO) x solid solutions with x = 0.45, 0.65 and 0.85 due to its higher redox capability and lower lattice deformation. Slight Ag decoration with a content of 1 wt% on the surface of the (GaN) 0.75 (ZnO) 0.25 solid solution leads to a significant enhancement in phenol degradation, with a reaction rate eight times faster than that of pristine (GaN) 0.75 (ZnO) 0.25 . Interestingly, phenol in aqueous solution (10 mg L -1 ) can also be completely degraded within 60 min, even under the direct exposure of sunlight irradiation. The photocurrent response indicates that the enhanced photocatalytic activity of (GaN) 0.75 (ZnO) 0.25 /Ag is directly induced by the improved transfer efficiency of the photogenerated electrons at the interface. The excellent phenol degradation performance of (GaN) 1-x (ZnO) x /Ag further broadens their promising photocatalytic utilization in environmental processing, besides in overall water splitting for hydrogen production.

  6. Fabrication of Heterogeneous-Phase Solid-Solution Promoting Band Structure and Charge Separation for Enhancing Photocatalytic CO2 Reduction: A Case of ZnXCa1-XIn2S4.

    PubMed

    Zeng, Chao; Huang, Hongwei; Zhang, Tierui; Dong, Fan; Zhang, Yihe; Hu, Yingmo

    2017-08-23

    Photocatalytic CO 2 reduction into solar fuels illustrates huge charm for simultaneously settling energy and environmental issues. The photoreduction ability of a semiconductor is closely correlated to its conduction band (CB) position. A homogeneous-phase solid-solution with the same crystal system always has a monotonously changed CB position, and the high CB level has to be sacrificed to achieve a benign photoabsorption. Herein, we report the fabrication of heterogeneous-phase solid-solution Zn X Ca 1-X In 2 S 4 between trigonal ZnIn 2 S 4 and cubic CaIn 2 S 4 . The Zn X Ca 1-X In 2 S 4 solid solutions with orderly tuned photoresponsive range from 540 to 640 nm present a more negative CB level and highly enhanced charge-separation efficiency. Profiting from these merits, all of these Zn X Ca 1-X In 2 S 4 solid solutions exhibit remarkably strengthened photocatalytic CO 2 reduction performance under visible light (λ > 420 nm) irradiation. Zn 0.4 Ca 0.6 In 2 S 4 , bearing the most negative CB position and highest charge-separation efficiency, casts the optimal photocatalytic CH 4 and CO evolution rates, which reach 16.7 and 6.8 times higher than that of ZnIn 2 S 4 and 7.2 and 3.9 times higher than that of CaIn 2 S 4 , respectively. To verify the crucial role of the heterogeneous-phase solid solution in promoting the band structure and photocatalytic performance, another heterogeneous-phase solid-solution Zn X Cd 1-X In 2 S 4 has been synthesized. It also displays an upshifted CB level and promoted charge separation. This work may provide a new perspective into the development of an efficient visible-light driven photocatalyst for CO 2 reduction and other photoreduction reactions.

  7. The exchange interactions and the state of manganese atoms in the solid solutions in Bi{sub 3}NbO{sub 7} of cubic and tetragonal modifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chezhina, N.V., E-mail: chezhina@nc2490.spb.edu; Zhuk, N.A.; Korolev, D.A.

    2016-01-15

    The comparative analysis of magnetic behavior of manganese-containing solid solutions Bi{sub 3}Nb{sub 1−x}Mn{sub x}O{sub 7−δ} (x=0.01−0.10) of cubic and tetragonal modifications was performed. Based on the results of magnetic susceptibility studies paramagnetic manganese atoms in solid solutions of cubic and tetragonal modifications were found to be in the form of Mn(III), Mn(IV) monomers and exchange-coupled dimers of Mn(III)–O–Mn(III), Mn(IV)–O–Mn(IV), Mn(III)–O–Mn(IV). The exchange parameters and the distribution of monomers and dimers in solid solutions as a function of the content of paramagnetic atoms were calculated. - Graphical abstract: Structural transition of cubic to tetragonal Bi{sub 3}NbO{sub 7−δ}.

  8. Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins

    PubMed Central

    Verardi, Raffaello; Traaseth, Nathaniel J.; Masterson, Larry R.; Vostrikov, Vitaly V.; Veglia, Gianluigi

    2013-01-01

    In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578

  9. Efficacy of pectin solution for preventing gastro-esophageal reflux events in patients with percutaneous endoscopic gastrostomy.

    PubMed

    Adachi, Kyoichi; Furuta, Kenji; Aimi, Masahito; Fukazawa, Kousuke; Shimura, Shino; Ohara, Shunji; Nakata, Shuji; Inoue, Yukiko; Ryuko, Kanji; Ishine, Junichi; Katoh, Kyoko; Hirata, Toshiaki; Ohhata, Shuzo; Katoh, Setsushi; Moriyama, Mika; Sumikawa, Masuko; Sanpei, Mari; Kinoshita, Yoshikazu

    2012-05-01

    The aim of this study was to determine the efficacy of pectin solution, which increases the viscosity of liquid nutrient, for prevention of gastro-esophageal reflux in comparison with half-solid nutrient. The subjects were 10 elderly patients undergoing percutaneous endoscopic gastrostomy feeding. Twenty-four-hour esophageal multichannel intraluminal impedance and pH testing was performed during intake of half-solid nutrient and a combination of pectin solution and liquid nutrient. During 4 h after delivery, there was no significant difference in the total number of gastro-esophageal reflux events between the feeding of the half-solid nutrient and the combination of pectin solution and liquid nutrient (5.7 ± 1.2 vs 5.3 ± 1.0/4 h). Acidic reflux after delivery of the half-solid nutrient was significantly more frequent than that after delivery of the combination of pectin solution and liquid nutrient (80.7% vs 60.4%, p = 0.018). The incidence of gastro-esophageal reflux reaching the upper portion of the esophagus tended to be higher during delivery of the half-solid nutrient than during delivery of the combination of pectin solution and liquid nutrient (47.4% vs 34.0%, p = 0.153). In conclusion, the usage of pectin solution combined with liquid nutrient is effective for preventing acidic gastro-esophageal reflux and gastro-esophageal reflux reaching the upper portion of the esophagus.

  10. Design, integration and demonstration of a 50 W JP8/kerosene fueled portable SOFC power generator

    NASA Astrophysics Data System (ADS)

    Cheekatamarla, Praveen K.; Finnerty, Caine M.; Robinson, Charles R.; Andrews, Stanley M.; Brodie, Jonathan A.; Lu, Y.; DeWald, Paul G.

    A man-portable solid oxide fuel cell (SOFC) system integrated with desulfurized JP8 partial oxidation (POX) reformer was demonstrated to supply a continuous power output of 50 W. This paper discusses some of the design paths chosen and challenges faced during the thermal integration of the stack and reformer in aiding the system startup and shutdown along with balance of plant and power management solutions. The package design, system capabilities, and test results of the prototype unit are presented.

  11. Why is hydrofluoric acid a weak acid?

    PubMed

    Ayotte, Patrick; Hébert, Martin; Marchand, Patrick

    2005-11-08

    The infrared vibrational spectra of amorphous solid water thin films doped with HF at 40 K reveal a strong continuous absorbance in the 1000-3275 cm(-1) range. This so-called Zundel continuum is the spectroscopic hallmark for aqueous protons. The extensive ionic dissociation of HF at such low temperature suggests that the reaction enthalpy remains negative down to 40 K. These observations support the interpretation that dilute HF aqueous solutions behave as weak acids largely due to the large positive reaction entropy resulting from the structure making character of the hydrated fluoride ion.

  12. Acoustic and vibrational damping in porous solids.

    PubMed

    Göransson, Peter

    2006-01-15

    A porous solid may be characterized as an elastic-viscoelastic and acoustic-viscoacoustic medium. For a flexible, open cell porous foam, the transport of energy is carried both through the sound pressure waves propagating through the fluid in the pores, and through the elastic stress waves carried through the solid frame of the material. For a given situation, the balance between energy dissipated through vibration of the solid frame, changes in the acoustic pressure and the coupling between the waves varies with the topological arrangement, choice of material properties, interfacial conditions, etc. Engineering of foams, i.e. designs built on systematic and continuous relationships between polymer chemistry, processing, micro-structure, is still a vision for the future. However, using state-of-the-art simulation techniques, multiple layer arrangements of foams may be tuned to provide acoustic and vibrational damping at a low-weight penalty. In this paper, Biot's modelling of porous foams is briefly reviewed from an acoustics and vibrations perspective with a focus on the energy dissipation mechanisms. Engineered foams will be discussed in terms of results from simulations performed using finite element solutions. A layered vehicle-type structure is used as an example.

  13. The effect of solute additions on the steady-state creep behavior of dispersion-strengthened aluminum.

    NASA Technical Reports Server (NTRS)

    Reynolds, G. H.; Lenel, F. V.; Ansell, G. S.

    1971-01-01

    The effect of solute additions on the steady-state creep behavior of coarse-grained dispersion-strengthened aluminum alloys was studied. Recrystallized dispersion-strengthened solid solutions were found to have stress and temperature sensitivities quite unlike those observed in single-phase solid solutions having the same composition and grain size. The addition of magnesium or copper to the matrix of a recrystallized dispersion-strengthened aluminum causes a decrease in the steady-state creep rate which is much smaller than that caused by similar amounts of solute in single-phase solid solutions. All alloys exhibited essentially a 4.0 power stress exponent in agreement with the model of Ansell and Weertman. The activation energy for steady-state creep in dispersion-strengthened Al-Mg alloys, as well as the stress dependence, was in agreement with the physical model of dislocation climb over the dispersed particles.

  14. An experimental study of wall-injected flows in a rectangular cylinder

    NASA Astrophysics Data System (ADS)

    Perrotta, A.; Romano, G. P.; Favini, B.

    2018-01-01

    An experimental investigation of the flow inside a rectangular cylinder with air injected continuously along the wall is performed. This kind of flow is a two-dimensional approximation of what happens inside a solid rocket motor, where the lateral grain burns expelling exhaust gas or in processes with air filtration or devices to attain uniform flows. We propose a brief derivation of some analytical solutions and a comparison between these solutions and experimental data, which are obtained using the particle image velocimetry technique, to provide a global reconstruction of the flowfield. The flow, which enters orthogonal to the injecting wall, turns suddenly its direction being pushed towards the exit of the chamber. Under the incompressible and inviscid flow hypothesis, two analytical solutions are reported and compared. The first one, known as Hart-McClure solution, is irrotational and the injection velocity is non-perpendicular to the injecting wall. The other one, due to Taylor and Culick, has non-zero vorticity and constant, vertical injection velocity. The comparison with laminar solutions is useful to assess whether transition to turbulence is reached and how the disturbance thrown in by the porous injection influences and modifies those solutions.

  15. Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs.

    PubMed

    Raina, Shweta A; Zhang, Geoff G Z; Alonzo, David E; Wu, Jianwei; Zhu, Donghua; Catron, Nathaniel D; Gao, Yi; Taylor, Lynne S

    2014-09-01

    Amorphous solid dispersions (ASDs) give rise to supersaturated solutions (solution concentration greater than equilibrium crystalline solubility). We have recently found that supersaturating dosage forms can exhibit the phenomenon of liquid-liquid phase separation (LLPS). Thus, the high supersaturation generated by dissolving ASDs can lead to a two-phase system wherein one phase is an initially nanodimensioned and drug-rich phase and the other is a drug-lean continuous aqueous phase. Herein, the membrane transport of supersaturated solutions, at concentrations above and below the LLPS concentration has been evaluated using a side-by-side diffusion cell. Measurements of solution concentration with time in the receiver cell yield the flux, which reflects the solute thermodynamic activity in the donor cell. As the nominal concentration of solute in the donor cell increases, a linear increase in flux was observed up to the concentration where LLPS occurred. Thereafter, the flux remained essentially constant. Both nifedipine and felodipine solutions exhibit such behavior as long as crystallization is absent. This suggests that there is an upper limit in passive membrane transport that is dictated by the LLPS concentration. These results have several important implications for drug delivery, especially for poorly soluble compounds requiring enabling formulation technologies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  17. Suppression of vacancy cluster growth in concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Velisa, Gihan; Xue, Haizhou; ...

    2016-12-13

    Large vacancy clusters, such as stacking-fault tetrahedra, are detrimental vacancy-type defects in ion-irradiated structural alloys. Suppression of vacancy cluster formation and growth is highly desirable to improve the irradiation tolerance of these materials. In this paper, we demonstrate that vacancy cluster growth can be inhibited in concentrated solid solution alloys by modifying cluster migration pathways and diffusion kinetics. The alloying effects of Fe and Cr on the migration of vacancy clusters in Ni concentrated alloys are investigated by molecular dynamics simulations and ion irradiation experiment. While the diffusion coefficients of small vacancy clusters in Ni-based binary and ternary solid solutionmore » alloys are higher than in pure Ni, they become lower for large clusters. This observation suggests that large clusters can easily migrate and grow to very large sizes in pure Ni. In contrast, cluster growth is suppressed in solid solution alloys owing to the limited mobility of large vacancy clusters. Finally, the differences in cluster sizes and mobilities in Ni and in solid solution alloys are consistent with the results from ion irradiation experiments.« less

  18. Perovskite photonic sources

    NASA Astrophysics Data System (ADS)

    Sutherland, Brandon R.; Sargent, Edward H.

    2016-05-01

    The field of solution-processed semiconductors has made great strides; however, it has yet to enable electrically driven lasers. To achieve this goal, improved materials are required that combine efficient (>50% quantum yield) radiative recombination under high injection, large and balanced charge-carrier mobilities in excess of 10 cm2 V-1 s-1, free-carrier densities greater than 1017 cm-3 and gain coefficients exceeding 104 cm-1. Solid-state perovskites are -- in addition to galvanizing the field of solar electricity -- showing great promise in photonic sources, and may be the answer to realizing solution-cast laser diodes. Here, we discuss the properties of perovskites that benefit light emission, review recent progress in perovskite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.

  19. Geochemical evolution of brines in the Salar of Uyuni, Bolivia.

    USGS Publications Warehouse

    Rettig, S.L.; Jones, B.F.; Risacher, F.

    1980-01-01

    Recent analyses of brines from the Salars of Uyuni and Coipasa have been compared with published data for Lakes Titicaca and Poopo to evaluate solute compositional trends in these remnants of two large Pleistocene lakes once connected by overflow from the N to the S of the Bolivian Altiplano. From Titicaca to Poopo the water shows an increase in Cl and N somewhat greater than the total solutes. Ca and SO4 increase to a lesser extent than total dissolved solids, and carbonate species are relatively constant. Between Poopo and Coipasa proportions of Ca, SO4 and CO3 continue to decrease. At Coipasa and Uyuni, the great salars frequently evaporate to halite saturation. Halite crystallization is accompanied by an increased K, Mg and SO4 in residual brines. - from Authors

  20. Topology optimization of natural convection: Flow in a differentially heated cavity

    NASA Astrophysics Data System (ADS)

    Saglietti, Clio; Schlatter, Philipp; Berggren, Martin; Henningson, Dan

    2017-11-01

    The goal of the present work is to develop methods for optimization of the design of natural convection cooled heat sinks, using resolved simulation of both fluid flow and heat transfer. We rely on mathematical programming techniques combined with direct numerical simulations in order to iteratively update the topology of a solid structure towards optimality, i.e. until the design yielding the best performance is found, while satisfying a specific set of constraints. The investigated test case is a two-dimensional differentially heated cavity, in which the two vertical walls are held at different temperatures. The buoyancy force induces a swirling convective flow around a solid structure, whose topology is optimized to maximize the heat flux through the cavity. We rely on the spectral-element code Nek5000 to compute a high-order accurate solution of the natural convection flow arising from the conjugate heat transfer in the cavity. The laminar, steady-state solution of the problem is evaluated with a time-marching scheme that has an increased convergence rate; the actual iterative optimization is obtained using a steepest-decent algorithm, and the gradients are conveniently computed using the continuous adjoint equations for convective heat transfer.

  1. Combined operando X-ray diffraction–electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries

    PubMed Central

    Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr

    2015-01-01

    Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4. PMID:26345306

  2. Combined operando X-ray diffraction-electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries.

    PubMed

    Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr

    2015-09-08

    Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4.

  3. Seasonal multiphase equilibria in the atmospheres of Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.

    2017-12-01

    At the extremely low temperatures in Titan's upper troposphere and on Pluto's surface, the atmospheres as a whole are subject to freeze into solid solutions, not pure ices. The presence of the solid phases introduces conditions with rich phase equilibria upon seasonal changes, even if the temperature undergoes only small changes. For the first time, the profile of atmospheric methane in Titan's troposphere will be reproduced complete with the solid solutions. This means that the freezing point, i.e. the altitude where the first solid phase appears, is determined. The seasonal change will also be evaluated both at the equator and the northern polar region. For Pluto, also for the first time, the seasonal solid-vapor equilibria will be evaluated. The fate of the two solid phases, the methane-rich and carbon-monoxide-rich solid solutions, will be analyzed upon temperature and pressure changes. Such investigations are enabled by the development of a molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, which includes solid solutions in its phase-equilibria calculations. The atmospheres of Titan and Pluto are modeled as ternary gas mixtures: nitrogen-methane-ethane and nitrogen-methane-carbon monoxide, respectively. Calculations using CRYOCHEM can provide us with compositions not only in two-phase equilibria, but also that in three-phase equilibria. Densities of all phases involved will also be calculated. For Titan, density inversion between liquid and solid phases will be identified and presented. In the inversion, the density of solid phase is less than that in the liquid phase. The method and results of this work will be useful for further investigations and modeling on the atmospheres of Titan, Pluto, and other bodies with similar conditions in the Solar System and beyond.

  4. Scattering of focused ultrasonic beams by cavities in a solid half-space.

    PubMed

    Rahni, Ehsan Kabiri; Hajzargarbashi, Talieh; Kundu, Tribikram

    2012-08-01

    The ultrasonic field generated by a point focused acoustic lens placed in a fluid medium adjacent to a solid half-space, containing one or more spherical cavities, is modeled. The semi-analytical distributed point source method (DPSM) is followed for the modeling. This technique properly takes into account the interaction effect between the cavities placed in the focused ultrasonic field, fluid-solid interface and the lens surface. The approximate analytical solution that is available in the literature for the single cavity geometry is very restrictive and cannot handle multiple cavity problems. Finite element solutions for such problems are also prohibitively time consuming at high frequencies. Solution of this problem is necessary to predict when two cavities placed in close proximity inside a solid can be distinguished by an acoustic lens placed outside the solid medium and when such distinction is not possible.

  5. Regulatory Perspectives on Continuous Pharmaceutical Manufacturing: Moving From Theory to Practice: September 26-27, 2016, International Symposium on the Continuous Manufacturing of Pharmaceuticals.

    PubMed

    Nasr, Moheb M; Krumme, Markus; Matsuda, Yoshihiro; Trout, Bernhardt L; Badman, Clive; Mascia, Salvatore; Cooney, Charles L; Jensen, Keith D; Florence, Alastair; Johnston, Craig; Konstantinov, Konstantin; Lee, Sau L

    2017-11-01

    Continuous manufacturing plays a key role in enabling the modernization of pharmaceutical manufacturing. The fate of this emerging technology will rely, in large part, on the regulatory implementation of this novel technology. This paper, which is based on the 2nd International Symposium on the Continuous Manufacturing of Pharmaceuticals, describes not only the advances that have taken place since the first International Symposium on Continuous Manufacturing of Pharmaceuticals in 2014, but the regulatory landscape that exists today. Key regulatory concepts including quality risk management, batch definition, control strategy, process monitoring and control, real-time release testing, data processing and management, and process validation/verification are outlined. Support from regulatory agencies, particularly in the form of the harmonization of regulatory expectations, will be crucial to the successful implementation of continuous manufacturing. Collaborative efforts, among academia, industry, and regulatory agencies, are the optimal solution for ensuring a solid future for this promising manufacturing technology. Copyright © 2017 American Pharmacists Association®. All rights reserved.

  6. Garnet: featured mineral group at the 1993 Tucson Show

    USGS Publications Warehouse

    Modreski, P.J.

    1993-01-01

    The garnets are a common but complex group of minerals. They are perhaps the mineral kingdom's best example of solid solution: a relationship in which minerals have chemical compositions that are intermediate between two or more ideal end-member species. In garnet, we deal with a complex group of solid-solution series between as many as 14 end-member minerals. The varying intergradations of solid solution between these different end-members help to explain the garnet group's variety of color, environment of occurrence, gem use, and variation in such physical properties as specific gravity, refractive index, and hardness. -from Author

  7. Atomic-level simulation of ferroelectricity in perovskite solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepliarsky, M.; Instituto de Fisica Rosario, CONICET-UNR, Rosario,; Phillpot, S. R.

    2000-06-26

    Building on the insights gained from electronic-structure calculations and from experience obtained with an earlier atomic-level method, we developed an atomic-level simulation approach based on the traditional Buckingham potential with shell model which correctly reproduces the ferroelectric phase behavior and dielectric and piezoelectric properties of KNbO{sub 3}. This approach now enables the simulation of solid solutions and defected systems; we illustrate this capability by elucidating the ferroelectric properties of a KTa{sub 0.5}Nb{sub 0.5}O{sub 3} random solid solution. (c) 2000 American Institute of Physics.

  8. [Experimental investigation of the straw pre-treatment to enhance its high solid anaerobic digestion].

    PubMed

    Jiang, Jian-Guo; Zhao, Zhen-Zhen; Du, Xue-Juan; Sui, Ji-Chao; Wu, Shi-Yao

    2007-04-01

    The straw contains a high content of lignin, which cannot be well utilized by anaerobic bacteria in high solid anaerobic digestion process. This paper presents the experimental investigation of the straw pre-treatment, which aims to destroy the complex structure of the lignin to enhance its high solid anaerobic digestion. The straw is pre-treated in different solutions including NaOH, ammonia, H2SO4, and carbamide. The pre-treating effects are expressed by COD concentration dissolved in the solutions and the 14-day biogas generation in the enhanced aerogenic experiment. Different affecting factors, such as the concentration of the chemical solution, the species of the straw, the pre-treatment reaction time, the reaction temperature and the size of the straw, are investigated. The results show that NaOH solution is the most effective pre-treatment chemical among the four different solutions. The experimental results still indicate that the accumulative biogas production can be 1 500 mL (10 g straw) in 14 days after pre-treatment in 4 mg/L NaOH solution and the dissolved COD in the solution reaches 39 000 mg/L after 24 hours. In addition, the experiment shows that the lignin content in the straw is reduced from 28% to 19% after pre-treatment in 1.5% (in weight) NaOH solution, and it can improve the straw treatment efficiency using high solid anaerobic digestion process.

  9. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation

    PubMed Central

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-01

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge. PMID:26755070

  10. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation.

    PubMed

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-12

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.

  11. Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.

    2018-03-01

    We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.

  12. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-01

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.

  13. Zinc-aluminum oxide solid solution nanosheets obtained by pyrolysis of layered double hydroxide as the photoanodes for dye-sensitized solar cells.

    PubMed

    Xu, Zhiyuan; Shi, Jingjing; Haroone, Muhammad Sohail; Chen, Wenpeng; Zheng, Shufang; Lu, Jun

    2018-04-01

    Due to the superiority of metal-doped ZnO compared to TiO 2 , the Zn-M (M = Al 3+ , Ga 3+ , Cr 3+ , Ti 4+ , Ce 4+ ) mixed metal oxide solid solutions have been extensively studied for photocatalytic and photovoltaic applications. In this work, a systematic research has proceeded for the preparation of a zinc-aluminum oxide semiconductor as a photoanode for the dye-sensitized solar cells (DSSCs) by a simple pyrolysis route with the Zn-Al layered double hydroxide (LDH) as a precursor. The Zn-Al oxide solid solution has been applied for DSSCs as an electron acceptor, which is used to study the influence of different Al content and sintering temperature on the device efficiency. Finally, the Zn-Al oxide solid solution with calcination temperature 600 °C and Al 27 at.% content exhibits the best performance. The photoelectric efficiency improved 100 times when the Al 3+ content decreased from 44 to 27 at.%. The Zn x Al y O solid solution show a reasonable efficiency as photoanode materials in DSSCs, with the best preliminary performance reported so far, and shows its potential application for the photovoltaic devices. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    PubMed

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  15. A solid criterion based on strict LMI without invoking equality constraint for stabilization of continuous singular systems.

    PubMed

    Zhang, Xuefeng; Chen, YangQuan

    2017-11-01

    The paper considers the stabilization issue of linear continuous singular systems by dealing with strict linear matrix inequalities (LMIs) without invoking equality constraint and proposes a complete and effective solved LMIs formulation. The criterion is necessary and sufficient condition and can be directly solved the feasible solutions with LMI toolbox and is much more tractable and reliable in numerical simulation than existing results, which involve positive semi-definite LMIs with equality constraints. The most important property of the criterion proposed in the paper is that it can overcome the drawbacks of the invalidity caused by the singularity of Ω=PE T +SQ for stabilization of singular systems. Two counterexamples are presented to avoid the disadvantages of the existing condition of stabilization of continuous singular systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Method of making supercritical fluid molecular spray films, powder and fibers

    DOEpatents

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a heated nozzle having a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. In another embodiment, the temperature of the solution and nozzle is elevated above the melting point of the solute, which is preferably a polymer, and the solution is maintained at a pressure such that, during expansion, the solute precipitates out of solution within the nozzle in a liquid state. Alternatively, a secondary solvent mutually soluble with the solute and primary solvent and having a higher critical temperature than that of primary solvent is used in a low concentration (<20%) to maintain the solute in a transient liquid state. The solute is discharged in the form of long, thin fibers. The fibers are collected at sufficient distance from the orifice to allow them to solidify in the low pressure/temperature region.

  17. Using solid 13C NMR coupled with solution 31P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China

    USDA-ARS?s Scientific Manuscript database

    Aquatic plants are involved in the storage and release capacity for organic matter and nutrients. In this study, solid 13C and solution 31P nuclear magnetic resonance (NMR) spectroscopy were used to characterize the biomass samples of six aquatic plants. Solid 13C NMR spectroscopy revealed the domin...

  18. Effect of Minor Alloying Elements on Localized Corrosion Behavior of Aluminum-Copper-Magnesium based Solid Solution Alloys

    NASA Astrophysics Data System (ADS)

    Aburada, Tomohiro

    2011-12-01

    The effects and mechanistic roles of a minor alloying element, Ni, on the localized corrosion behavior were explored by studying (Al75Cu 17Mg8)97Ni3 and Al70Cu 18Mg12 amorphous alloys. To explore the minor alloying element limited to the outer surface layers, the corrosion behavior of Al70Cu 18Mg12 amorphous alloy in solutions with and without Ni 2+ was also studied. Both Ni alloying and Ni2+ in solution improved the localized corrosion resistance of the alloys by ennobling the pitting and repassivation potentials. Pit growth by the selective dissolution of Al and Mg was also suppressed by Ni alloying. Remaining Cu and Ni reorganized into a Cu-rich polycrystalline nanoporous structure with continuous ligaments in pits. The minor Ni alloying and Ni2+ in solution suppressed the coarsening of the ligaments in the dealloyed nanoporous structure. The presence of relatively immobile Ni atoms at the surface suppressed the surface diffusion of Cu, which reduced the coarsening of the nanoporous structure, resulting in the formation of 10 to 30 nm wide Cu ligaments. Two mechanistic roles of minor alloying elements in the improvement of the pitting corrosion resistance of the solid solution alloys are elucidated. The first role is the suppression of active dissolution by altering the atomic structure. Ni in solid solution formed stronger bonds with Al, and reduces the probability of weaker Al-Al bonds. The second role is to hinder dissolution by producing a greater negative shift of the true interfacial potential at the dissolution front under the dealloyed layer due to the greater Ohmic resistance through the finer porous structure. These effects contributed to the elevation of pitting potentials by ennobling the applied potential required to produce enough dissolution for the stabilization of pits. Scientifically, this thesis advances the state of understanding of alloy dissolution, particularly the role of minor alloying elements on preferential oxidation at the atomic, nanometer, and micrometer scales. Technological implementations of the findings of the research are also discussed, including a new route to synthesize nanoporous materials with tunable porosity and new corrosion mitigation strategies for commercial Al-based alloys containing the detrimental Al2CuMg phase.

  19. Solute partitioning under continuous cooling conditions as a cooling rate indicator. [in lunar rocks

    NASA Technical Reports Server (NTRS)

    Onorato, P. I. K.; Hopper, R. W.; Yinnon, H.; Uhlmann, D. R.; Taylor, L. A.; Garrison, J. R.; Hunter, R.

    1981-01-01

    A model of solute partitioning in a finite body under conditions of continuous cooling is developed for the determination of cooling rates from concentration profile data, and applied to the partitioning of zirconium between ilmenite and ulvospinel in the Apollo 15 Elbow Crater rocks. Partitioning in a layered composite solid is described numerically in terms of concentration profiles and diffusion coefficients which are functions of time and temperature, respectively; a program based on the model can be used to calculate concentration profiles for various assumed cooling rates given the diffusion coefficients in the two phases and the equilibrium partitioning ratio over a range of temperatures. In the case of the Elbow Rock gabbros, the cooling rates are calculated from measured concentration ratios 10 microns from the interphase boundaries under the assumptions of uniform and equilibrium initial conditions at various starting temperatures. It is shown that the specimens could not have had uniform concentrations profiles at the previously suggested initial temperature of 1350 K. It is concluded that even under conditions where the initial temperature, grain sizes and solute diffusion coefficients are not well characterized, the model can be used to estimate the cooling rate of a grain assemblage to within an order of magnitude.

  20. Simulation of radial solute segregation in vertical Bridgman growth of pyridine-doped benzene, a surrogate for binary organic nonlinear optical materials

    NASA Astrophysics Data System (ADS)

    Lee, Hanjie; Pearlstein, Arne J.

    2000-09-01

    We present steady axisymmetric computations of solute distributions and radial segregation for vertical Bridgman growth of pyridine-doped benzene, a binary aromatic system with anisotropic solid-phase thermal conductivity, that serves as a model of solute transport in crystal growth of organic nonlinear optical materials. The radial variation of solid-phase mass fraction ( Cs) of pyridine, which is rejected at the growing interface, depends strongly on growth conditions. High growth velocities tend to increase Cs near the centerline, the ampoule wall, or both, and low growth velocities give more nearly uniform radial distributions. The maximum ampoule-wall temperature gradient also affects radial segregation, with convex-to-the-liquid interfaces at small temperature gradients being associated with radially monotonic Cs distributions, and ridged interfaces at higher gradients being associated with nonmonotonic distributions having maxima at the centerline and ampoule wall. Nonuniformity is strongly determined by both interface shape and the nature of the flow near the interface. Solute is transported down to the interface by a large toroidal vortex, and swept radially inward to the centerline by a second, flattened toroidal cell. When the interface is depressed at its junction with the ampoule wall, rejected solute accumulates in the overlying liquid, where convection is relatively weak, resulting in local solute enrichment of the solid. Computations at normal and zero gravity show that for two very similar interface shapes, a maximum in the radial solid-phase solute distribution at the ampoule wall is associated with the interface shape, while the maximum on the centerline is associated with sweeping of solute to the centerline by a vortical flow on the interface. We also show that radial solute segregation depends significantly on whether account is taken of the anisotropy of the solid-phase thermal conductivity. Finally, the computations provide guidance as to the minimum ampoule length required to produce an axially uniform solute distribution over at least part of the length of a boule.

  1. Smoothed Particle Hydrodynamics Continuous Boundary Force method for Navier-Stokes equations subject to Robin boundary condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wenxiao; Bao, Jie; Tartakovsky, Alexandre M.

    2014-02-15

    Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel Continuous Boundary Force (CBF) method is proposed for solving the Navier-Stokes equations subject to Robin boundary condition. In the CBF method, the Robin boundary condition at boundary is replaced by the homogeneous Neumann boundary condition at the boundary and a volumetric force term added to the momentum conservation equation. Smoothed Particle Hydrodynamics (SPH) method is used to solve the resulting Navier-Stokes equations. We present solutions for two-dimensional and three-dimensional flows in domains bounded by flat and curved boundaries subject to variousmore » forms of the Robin boundary condition. The numerical accuracy and convergence are examined through comparison of the SPH-CBF results with the solutions of finite difference or finite element method. Taken the no-slip boundary condition as a special case of slip boundary condition, we demonstrate that the SPH-CBF method describes accurately both no-slip and slip conditions.« less

  2. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.101 Corrective action for...

  3. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...

  4. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  5. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.101 Corrective action for...

  6. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...

  7. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  8. 40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.30 Non-waste determinations and variances from classification as a solid waste. In...

  9. 40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.30 Non-waste determinations and variances from classification as a solid waste. In...

  10. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  11. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  12. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  13. Free energies of formation of WC and WzC and the thermodynamic properties of carbon in solid tungsten

    NASA Technical Reports Server (NTRS)

    Gupta, D. K.; Seigle, L. L.

    1974-01-01

    The activity of carbon in the two-phase regions - W + WC and W + W2C was obtained from the carbon content of iron rods equilibrated with mixtures of metal plus carbide powders. From this activity data the standard free energies of formation of WC and W2C were calculated. The temperature of the invariant reaction W2C = W + WC was fixed at 1570 + or - 5K. Using available solubility data for C in solid W, the partial molar free energy of C in the dilute solid solution was also calculated. The heat of solution of C in W, and the excess entropy for the interstitial solid solution, were computed, assuming that the carbon atoms reside in the octahedral interstices of bcc W.

  14. New interpretation of data of the Earth's solid core

    NASA Astrophysics Data System (ADS)

    Guliyev, H. H.

    2017-06-01

    The commonly accepted scientific opinions on the inner core as the deformable solid globe are based on the solution of the problem on the distribution of elastic parameters in the inner structures of the Earth. The given solution is obtained within the necessary integral conditions on its self-weight, moment of inertia concerning the axes of rotation and periods of free oscillations of the Earth. It is shown that this solution does not satisfy the mechanics of the deformable solid body with sufficient local conditions following from basic principles concerning the strength, stability and actuality of velocities of propagation of elastic waves. The violation of local conditions shows that the inner core cannot exist in the form of the deformable solid body within the commonly accepted elastic parameters.

  15. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe.

    PubMed

    Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena

    2016-09-28

    The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La 3+ -Mn 4+ and Eu 3+ -Fe 3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La 3+ -Mn 4+ and Eu 3+ -Fe 3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.

  16. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe

    PubMed Central

    Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena

    2016-01-01

    The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications. PMID:28773925

  17. Trace element abundances in single presolar silicon carbide grains by synchrotron X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Kashiv, Yoav

    2004-12-01

    Synchrotron x-ray fluorescence (SXRF) was applied to the study of presolar grains for the first time in this study. 41 single SiC grains of the KJF size fraction (mass-weighted median size of 1.86 μm) from the Murchison (CM2) Meteorite were analyzed. The absolute abundances of the following elements were determined (not every element in every grain): S, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Sr, Y, Zr, Nb, Mo, Ru, Os, Ir and Pt (underlined elements were detected here for the first time in single grains). There is good agreement between the heavier trace element abundances in the grains and s-process nucleosynthesis calculations. It suggests that smaller 13C pocket sizes are needed in the parent stars, a free parameter in the stellar models, than is deduced from isotopic analyses of s-, and s-mainly, elements, such as Zr and Mo. In addition, the data confirms the radiogenic nature of the Nb in the grains, due to the in situ decay of 93Zr (t 1/2 = 1.5 × 106 year). The data suggest that the trace elements condensed into the host SiC grains by a combination of condensation in solid solution and incorporation of subgrains. It seems that many of the trace elements reside mainly in subgrains of two solid solution: (1)a TiC based solid solution, and (2)a Mo-Ru carbide based solid solution. The presence of subgrains of an Fe-Ni alloy solid solution is suggested as well. Subgrains of all 3 solid solutions were observed previously in presolar graphite grains.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chezhina, N.V., E-mail: chezhina@nc2490.spb.edu; Korolev, D.A.; Zhuk, N.A.

    On the basis of the results of magnetic susceptibility and ESR studies of the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions iron atoms in the solid solutions of cubic modification of bismuth niobate were found to exist as Fe(III) monomers and exchange bound Fe(III)-O-Fe(III) dimers with antiferro- and ferromagnetic type of superexchange. The exchange parameters and the distribution of monomers and dimers in the solid solutions were calculated as a function of paramagnetic atom content. - Graphical abstract: The study of the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions showed that the introduction of iron atoms into the structure ofmore » Bi{sub 3}NbO{sub 7} stabilizes the cubic structure of bismuth niobate making the phase transition tetragonal ↔ cubic structure irreversible. In the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions we observe the formation of dimers with antiferro- and ferromagnetic exchange. Such clusters are partially retained even at the infinite dilution of the solid solution, which testifies for their rigidity. A sufficiently high parameter of ferromagnetic exchange in a dimer (+53 cm{sup −1}) seems to result from iron atoms being located in the vicinity of oxygen vacancy. - Highlights: • The reversible transition cubic – tetragonal modifications in Bi{sub 3}NbO{sub 7} becomes irreversible. • Only cubic modification of Bi{sub 3}Nb{sub 1-x}Fe{sub x}O{sub 7-δ} is stable due to clusters of Fe atoms. • These clusters are sufficiently strong and retained even at the infinite dilution. • The calculations of magnetic susceptibility give the distribution of the clusters and single atoms.« less

  19. Using colloidal silica as isolator, diverter and blocking agent for subsurface geological applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.

    A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.

  20. Containerless synthesis of amorphous and nanophase organic materials

    DOEpatents

    Benmore, Chris J.; Weber, Johann R.

    2016-05-03

    The invention provides a method for producing a mixture of amorphous compounds, the method comprising supplying a solution containing the compounds; and allowing at least a portion of the solvent of the solution to evaporate while preventing the solute of the solution from contacting a nucleation point. Also provided is a method for transforming solids to amorphous material, the method comprising heating the solids in an environment to form a melt, wherein the environment contains no nucleation points; and cooling the melt in the environment.

  1. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  2. Theory, Solution Methods, and Implementation of the HERMES Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaugh, John E.; White, Bradley W.; Curtis, John P.

    The HERMES (high explosive response to mechanical stimulus) model was developed over the past decade to enable computer simulation of the mechanical and subsequent energetic response of explosives and propellants to mechanical insults such as impacts, perforations, drops, and falls. The model is embedded in computer simulation programs that solve the non-linear, large deformation equations of compressible solid and fluid flow in space and time. It is implemented as a user-defined model, which returns the updated stress tensor and composition that result from the simulation supplied strain tensor change. Although it is multi-phase, in that gas and solid species aremore » present, it is single-velocity, in that the gas does not flow through the porous solid. More than 70 time-dependent variables are made available for additional analyses and plotting. The model encompasses a broad range of possible responses: mechanical damage with no energetic response, and a continuous spectrum of degrees of violence including delayed and prompt detonation. This paper describes the basic workings of the model.« less

  3. Formation of sodium bismuth titanate-barium titanate during solid-state synthesis

    DOE PAGES

    Hou, Dong; Aksel, Elena; Fancher, Chris M.; ...

    2017-01-12

    Phase formation of sodium bismuth titanate (Na 0.5Bi 0.5TiO 3 or NBT) and its solid solution with barium titanate (BaTiO 3 or BT) during the calcination process is studied using in situ high-temperature diffraction. The reactant powders were mixed and heated to 1000°C, while X-ray diffraction patterns were recorded continuously. Phase evolutions from starting materials to final perovskite products are observed, and different transient phases are identified. The formation mechanism of NBT and NBT–xBT perovskite structures is discussed, and a reaction sequence is suggested based on the observations. The in situ study leads to a new processing approach, which ismore » the use of nano-TiO 2, and gives insights to the particle size effect for solid-state synthesis products. Lastly, it was found that the use of nano-TiO 2 as reactant powder accelerates the synthesis process, decreases the formation of transient phases, and helps to obtain phase-pure products using a lower thermal budget.« less

  4. First-principles study of band gap engineering via oxygen vacancy doping in perovskite ABB'O₃ solid solutions

    DOE PAGES

    Qi, Tingting; Curnan, Matthew T.; Kim, Seungchul; ...

    2011-12-15

    Oxygen vacancies in perovskite oxide solid solutions are fundamentally interesting and technologically important. However, experimental characterization of the vacancy locations and their impact on electronic structure is challenging. We have carried out first-principles calculations on two Zr-modified solid solutions, Pb(Zn 1/3Nb 2/3)O₃ and Pb(Mg 1/3Nb 2/3)O₃, in which vacancies are present. We find that the vacancies are more likely to reside between low-valent cation-cation pairs than high-valent cation-cation pairs. Based on the analysis of our results, we formulate guidelines that can be used to predict the location of oxygen vacancies in perovskite solid solutions. Our results show that vacancies canmore » have a significant impact on both the conduction and valence band energies, in some cases lowering the band gap by ≈0.5 eV. The effects of vacancies on the electronic band structure can be understood within the framework of crystal field theory.« less

  5. Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys

    NASA Astrophysics Data System (ADS)

    Zadesenets, A. V.; Asanova, T. I.; Vikulova, E. S.; Filatov, E. Yu.; Plyusnin, P. E.; Baidina, I. A.; Asanov, I. P.; Korenev, S. V.

    2013-03-01

    A solid solution of platinum (II) and palladium (II) oxalato-complex salt, (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O, has been synthesized and studied as a precursor for preparing bimetallic PtPd nanoparticles through its thermal decomposition. The smallest homogenous bimetallic PtPd nanoparticles were found to form in hydrogen and helium atmospheres. The annealing temperature and time have low effect on the bimetallic particles size. Comparative analysis of structural and thermal properties of the solid solution and individual Pt, Pd oxalato-complex salts was performed to investigate a mechanism of thermal decomposition of (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O. Based on in situ X-ray photoemission spectroscopy investigation it was proposed a mechanism of formation of bimetallic PtPd nanoparticles from the solid-solution oxalato-complex salt during thermal decomposition.

  6. Design of high-strength refractory complex solid-solution alloys

    DOE PAGES

    Singh, Prashant; Sharma, Aayush; Smirnov, A. V.; ...

    2018-03-28

    Nickel-based superalloys and near-equiatomic high-entropy alloys containing molybdenum are known for higher temperature strength and corrosion resistance. Yet, complex solid-solution alloys offer a huge design space to tune for optimal properties at slightly reduced entropy. For refractory Mo-W-Ta-Ti-Zr, we showcase KKR electronic structure methods via the coherent-potential approximation to identify alloys over five-dimensional design space with improved mechanical properties and necessary global (formation enthalpy) and local (short-range order) stability. Deformation is modeled with classical molecular dynamic simulations, validated from our first-principle data. We predict complex solid-solution alloys of improved stability with greatly enhanced modulus of elasticity (3× at 300 K)more » over near-equiatomic cases, as validated experimentally, and with higher moduli above 500 K over commercial alloys (2.3× at 2000 K). We also show that optimal complex solid-solution alloys are not described well by classical potentials due to critical electronic effects.« less

  7. Atomistic simulation of mineral-melt trace-element partitioning

    NASA Astrophysics Data System (ADS)

    Allan, Neil L.; Du, Zhimei; Lavrentiev, Mikhail Yu.; Blundy, Jon D.; Purton, John A.; van Westrenen, Wim

    2003-09-01

    We discuss recent advances in computational approaches to trace-element incorporation in minerals and melts. It is crucial to take explicit account of the local structural environment of each ion in the solid and the change in this environment following the introduction of a foreign atom or atoms. Particular attention is paid to models using relaxation (strain) energies and solution energies, and the use of these different models for isovalent and heterovalent substitution in diopside and forsterite. Solution energies are also evaluated for pyrope and grossular garnets, and pyrope-grossular solid solutions. Unfavourable interactions between dodecahedral sites containing ions of the same size and connected by an intervening tetrahedron lead to larger solubilities of trace elements in the garnet solid solution than in either end member compound and to the failure of Goldschmidt's first rule. Our final two examples are the partitioning behaviour of noble gases, which behave as 'ions of zero charge' and the direct calculation of high-temperature partition coefficients between CaO solid and melt via Monte Carlo simulations.

  8. Design of high-strength refractory complex solid-solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Prashant; Sharma, Aayush; Smirnov, A. V.

    Nickel-based superalloys and near-equiatomic high-entropy alloys containing molybdenum are known for higher temperature strength and corrosion resistance. Yet, complex solid-solution alloys offer a huge design space to tune for optimal properties at slightly reduced entropy. For refractory Mo-W-Ta-Ti-Zr, we showcase KKR electronic structure methods via the coherent-potential approximation to identify alloys over five-dimensional design space with improved mechanical properties and necessary global (formation enthalpy) and local (short-range order) stability. Deformation is modeled with classical molecular dynamic simulations, validated from our first-principle data. We predict complex solid-solution alloys of improved stability with greatly enhanced modulus of elasticity (3× at 300 K)more » over near-equiatomic cases, as validated experimentally, and with higher moduli above 500 K over commercial alloys (2.3× at 2000 K). We also show that optimal complex solid-solution alloys are not described well by classical potentials due to critical electronic effects.« less

  9. Hydrothermal synthesis of pollucite, analcime and their solid solutions and analysis of their properties

    NASA Astrophysics Data System (ADS)

    Jing, Zhenzi; Cai, Kunchuan; Li, Yan; Fan, Junjie; Zhang, Yi; Miao, Jiajun; Chen, Yuqian; Jin, Fangming

    2017-05-01

    Pollucite, as a perfect long-term potential host for radioactive Cs immobilization, barely exists in pure form naturally but in an isomorphism form between pollucite and analcime due to coexistence of Cs and Na. Pollucite could be hydrothermally synthesized with Cs-polluted soil or clay minerals which contain Cs and Na, and it is necessary to study the properties of the synthesis if Cs and Na contained. Pure pollucite, analcime and their solid solutions were hydrothermally synthesized with chemicals, and it was found that the most formed pollucite analcime solid solutions with Cs/(Cs + Na) ratios of 2/6-5/6 had very similar properties in mineral composition, morphology and size, structural water (Cs cations) and coordination environment to pollucite. This also suggests that even coexistence of Cs and Na in nature, pollucite favors to form due to site preference for Cs over Na, which leads to the property and the structure of the most solid solutions similar to that of pollucite.

  10. Elastic constants and pressure derivative of elastic constants of Si1-xGex solid solution

    NASA Astrophysics Data System (ADS)

    Jivani, A. R.; Baria, J. K.; Vyas, P. S.; Jani, A. R.

    2013-02-01

    Elastic properties of Si1-xGex solid solution with arbitrary (atomic) concentration (x) are studied using the pseudo-alloy atom model based on the pseudopotential theory and on the higher-order perturbation scheme with the application of our own proposed model potential. We have used local-field correction function proposed by Sarkar et al to study Si-Ge system. The Elastic constants and pressure derivatives of elastic constants of the solid solution is investigated with different concentration x of Ge. It is found in the present study that the calculated numerical values of the aforesaid physical properties of Si-Ge system are function of x. The elastic constants (C11, C12 and C44) decrease linearly with increase in concentration x and pressure derivative of elastic constants (C11, C12 and C44) increase with the concentration x of Ge. This study provides better set of theoretical results for such solid solution for further comparison either with theoretical or experimental results.

  11. Experimental constraints on reconstruction of Archean seawater Ni isotopic composition from banded iron formations

    NASA Astrophysics Data System (ADS)

    Wang, Shui-Jiong; Wasylenki, Laura E.

    2017-06-01

    The Ni isotopic systematics in banded iron formations (BIFs) potentially recorded the Ni isotopic composition of ancient seawater over Precambrian geological history. However, the utility of BIFs as proxies requires quantitative knowledge of how Ni isotopes fractionated as dissolved Ni was initially incorporated into iron-rich sediments and how diagenesis may have affected the Ni isotopic systematics. Here we report results of synthesis experiments to investigate the behavior of Ni isotopes during Ni coprecipitation with ferrihydrite and then transformation of ferrihydrite to hematite. Ferrihydrite coprecipitation experiments at neutral pH demonstrated that the dissolved Ni was variably heavier than coprecipitated Ni (likely a mixture of surface-adsorbed and structurally incorporated Ni), with the isotope fractionation becoming larger as the fraction of Ni associated with solid increased (Δ60/58Nisolution-solid = +0.08 to +0.50‰). Further experiments at lower pH (3.7-6.7), in which structurally incorporated Ni likely dominated in solids, documented a decrease in Δ60/58Nisolution-solid from +0.44‰ to -0.18‰ as the pH decreased. The negative value for Δ60/58Nisolution-solid at low pH indicates the enrichment of heavier isotopes in incorporated Ni relative to dissolved and adsorbed Ni, possibly as a result of the presence of a small amount of tetrahedral Ni2+ in addition to octahedral Ni2+ in the ferrihydrite structure. The results of the ferrihydrite experiments thus reflect equilibrium isotope fractionation between three pools of Ni, with δ60/58Ni values in the order of incorporated > dissolved > adsorbed. Hematite was synthesized by transformation of Ni-bearing ferrihydrite in aqueous solution at ∼100 °C. A significant amount of Ni (up to 60%) was released (desorbed) from solids into solutions as pH dropped from ∼7 to 4.5-5.5 upon phase transformation. Rinsing of the synthesized hematite in 2 M acetic acid released only very small amounts of Ni (<4% of total Ni, presumably surface-adsorbed) that were isotopically heavier (δ60/58Ni = +0.11 ± 0.06‰) than the residues (presumably dominated by incorporated Ni), which had δ60/58Ni of -0.26 ± 0.07‰. The preference of lighter isotopes for the incorporated Ni relative to the surface-adsorbed Ni after phase transformation (most had been released into solution) is probably due to distortion of Nisbnd O octahedra in the hematite structure, with weaker Nisbnd O bond strengths on average. Hence, the more variable Δ60/58Nisolution-solid values (-0.04 to +0.77‰) observed in hematite experiments most likely reflect thermodynamically driven Rayleigh fractionation, with incorporated Ni unavailable to exchange with dissolved Ni due to continuous reduction in size of the highly reactive surface pool of Ni, through which all solid-solution exchange must occur. Overall, the synthesized hematite was isotopically lighter than the ferrihydrite by ∼0.08‰ in δ60/58Ni, which is however within the current analytical uncertainties (±0.09‰). This implies that earliest diagenesis of BIFs results in very limited change in the isotopic composition of solid-associated Ni. Our experimental results, although conducted in a very simple system that differs from Archean seawater, represent an important step toward reconstruction of the Ni isotopic composition of ancient seawater from Ni isotopic signatures in BIFs.

  12. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices.

    PubMed

    Li, Bin; Konecke, Stephanie; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J

    2013-10-15

    Amorphous solid dispersions (ASD) of curcumin (Cur) in cellulose derivative matrices, hydroxypropylmethylcellulose acetate succinate (HPMCAS), carboxymethylcellulose acetate butyrate (CMCAB), and cellulose acetate adipate propionate (CAAdP) were prepared in order to investigate the structure-property relationship and identify polymer properties necessary to effectively increase Cur aqueous solution concentration. XRD results indicated that all investigated solid dispersions were amorphous, even at a 9:1 Cur:polymer ratio. Both stability against crystallization and Cur solution concentration from these ASDs were significantly higher than those from physical mixtures and crystalline Cur. Remarkably, curcumin was also stabilized against chemical degradation in solution. Chemical stabilization was polymer-dependent, with stabilization in CAAdP>CMCAB>HPMCAS>PVP, while matrices enhanced solution concentration as PVP>HPMCAS>CMCAB≈CAAdP. HPMCAS/Cur dispersions have useful combinations of pH-triggered release profile, chemical stabilization, and strong enhancement of Cur solution concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Energetics of a uranothorite (Th 1–xU xSiO 4) solid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xiaofeng; Szenknect, Stephanie; Mesbah, Adel

    High-temperature oxide melt solution calorimetric measurements were completed to determine the enthalpies of formation of the uranothorite, (USiO 4) x–(ThSiO 4) 1–x, solid solution. Phase-pure samples with x values of 0, 0.11, 0.21, 0.35, 0.71, and 0.84 were prepared, purified, and characterized by powder X-ray diffraction, electron probe microanalysis, thermogravimetric analysis and differential scanning calorimetry coupled with in situ mass spectrometry, and high-temperature oxide melt solution calorimetry. This work confirms the energetic metastability of coffinite, USiO 4, and U-rich intermediate silicate phases with respect to a mixture of binary oxides. Furthermore, variations in unit cell parameters and negative excess volumesmore » of mixing, coupled with strongly exothermic enthalpies of mixing in the solid solution, suggest short-range cation ordering that can stabilize intermediate compositions, especially near x = 0.5.« less

  14. Energetics of a uranothorite (Th 1–xU xSiO 4) solid solution

    DOE PAGES

    Guo, Xiaofeng; Szenknect, Stephanie; Mesbah, Adel; ...

    2016-10-11

    High-temperature oxide melt solution calorimetric measurements were completed to determine the enthalpies of formation of the uranothorite, (USiO 4) x–(ThSiO 4) 1–x, solid solution. Phase-pure samples with x values of 0, 0.11, 0.21, 0.35, 0.71, and 0.84 were prepared, purified, and characterized by powder X-ray diffraction, electron probe microanalysis, thermogravimetric analysis and differential scanning calorimetry coupled with in situ mass spectrometry, and high-temperature oxide melt solution calorimetry. This work confirms the energetic metastability of coffinite, USiO 4, and U-rich intermediate silicate phases with respect to a mixture of binary oxides. Furthermore, variations in unit cell parameters and negative excess volumesmore » of mixing, coupled with strongly exothermic enthalpies of mixing in the solid solution, suggest short-range cation ordering that can stabilize intermediate compositions, especially near x = 0.5.« less

  15. Evaluation of ground-water flow and solute transport in the Lompoc area, Santa Barbara County, California

    USGS Publications Warehouse

    Bright, Daniel J.; Nash, David B.; Martin, Peter

    1997-01-01

    Ground-water quality in the Lompoc area, especially in the Lompoc plain, is only marginally acceptable for most uses. Demand for ground water has increased for municipal use since the late 1950's and has continued to be high for irrigation on the Lompoc plain, the principal agricultural area in the Santa Ynez River basin. As use has increased, the quality of ground water has deteriorated in some areas of the Lompoc plain. The dissolved-solids concentration in the main zone of the upper aquifer beneath most of the central and western plains has increased from less than 1,000 milligrams per liter in the 1940's to greater than 2,000 milligrams per liter in the 1960's. Dissolved- solids concentration have remained relatively constant since the 1960's. A three-dimensional finite-difference model was used to simulate ground-water flow in the Lompoc area and a two-dimensional finite-element model was used to simulate solute transport to gain a better understanding of the ground-water system and to evaluate the effects of proposed management plans for the ground-water basin. The aquifer system was simulated in the flow model as four horizontal layers. In the area of the Lompoc plain, the layers represent the shallow, middle, and main zones of the upper aquifer, and the lower aquifer. For the Lompoc upland and Lompoc terrace, the four layers represent the lower aquifer. The solute transport model was used to simulate dissolved-solids transport in the main zone of the upper aquifer beneath the Lompoc plain. The flow and solute-transport models were calibrated to transient conditions for 1941-88. A steady-state simulation was made to provide initial conditions for the transient-state simulation by using long-term average (1941-88) recharge rates. Model- simulated hydraulic heads generally were within 5 feet of measured heads in the main zone for transient conditions. Model-simulated dissolved- solids concentrations for the main zone generally differed less than 200milligrams per liter from concentrations in 1988. During 1941-88 about 1,096,000 acre-feet of water was pumped from the aquifer system. Average pumpage for this period (22,830 acre-feet per year) exceeded pumpage for the steady-state simulation by 16,590 acre-feet per year. The results of the transient simulation indicate that about 60 percent of this increase in pumpage was contributed by increased recharge, 28 percent by decreased natural discharge from the system (primarily discharge to the Santa Ynez River and transpiration), and 13 percent was withdrawn from storage. Total simulated downward leakage from the middle zone to the main zone in the central plain and upward leakage from the consolidated rocks to the main zone significantly increased in response to increased pumpage, which increased from about 6,240 to 30,870 acre-feet per year from 1941 to 1988. Average dissolved-solid concentration in the middle zone in 1987-88 ranged from 2,000 to 3,000 milligrams per liter beneath the northeastern plain and the dissolved-solids concentration of two samples from the consolidated rocks beneath the western plain averaged 4,300 milligrams per liter. Because the dissolved-solids concentration for the middle zone and the consolidated rocks is higher than the simulated steady-state dissolved-solids concentration of the main zone, the increase in the leakage from these two sources resulted in increased dissolved-solids concentration in the main zone during the transient period. The model results indicate that the main source of increased dissolved- solids concentration in the northeastern and central plains was downward leakage from the middle zone; whereas, upward leakage from the consolidated rocks was the main source of the increased dissolved-solids concentrations in the northwestern and western plains. The models were used to estimate changes in hydraulic head and in dissolved-solids concentration resulting from three proposed management alternatives: (1) average recharge

  16. A facile synthesis of Zn(x)Cd(1-x)S/CNTs nanocomposite photocatalyst for H2 production.

    PubMed

    Wang, Lei; Yao, Zhongping; Jia, Fangzhou; Chen, Bin; Jiang, Zhaohua

    2013-07-21

    The sulfide solid solution has become a promising and important visible-light-responsive photocatalyst for hydrogen production nowadays. Zn(x)Cd(1-x)S/CNT nanocomposites were synthesized to improve the dispersion, adjust the energy band gap, and enhance the separation of the photogenerated electrons and holes. The as-prepared photocatalysts were characterized by scanning electron-microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectra (UV-visible), respectively. And the effects of CNTs on structure, composition and optical absorption property of the sulfide solid solutions were investigated along with their inherent relationships. For Zn0.83Cd0.17S/CNTs, sulfide solid solution is assembled along the CNTs orderly, with a diameter of 100 nm or so. XPS analysis shows that there is bonding effect between the solid solutions and the CNTs due to the strong adsorption of Zn(2+) and Cd(2+) on the surface of CNTs. There are two obvious absorption edges for Zn0.83Cd0.17S/CNTs, corresponding to two kinds of sulfide solid solutions with different molar ratios of Zn/Cd. The hybridization of solid solutions with CNTs makes the absorption spectrum red shift. The photocatalytic property was evaluated by splitting Na2S + Na2SO3 solution into H2, and the highest rate of H2 evolution of 6.03 mmol h(-1) g(-1) was achieved over Zn0.83Cd0.17S/CNTs. The high activity of photocatalytic H2 production is attributed to the following factors: (1) the optimum band gap and a moderate position of the conduction band (which needs to match the irradiation spectrum of the Xe lamp best), (2) the efficient separation of photogenerated electrons and holes by hybridization, and (3) the improvement of the dispersion of nanocomposites by assembling along the CNTs as well.

  17. Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar

    2018-05-01

    We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.

  18. Role of Precursor-Conversion Chemistry in the Crystal-Phase Control of Catalytically Grown Colloidal Semiconductor Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2017-12-26

    Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.

  19. Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite.

    PubMed

    Pettes, Michael Thompson; Ji, Hengxing; Ruoff, Rodney S; Shi, Li

    2012-06-13

    At a very low solid concentration of 0.45 ± 0.09 vol %, the room-temperature thermal conductivity (κ(GF)) of freestanding graphene-based foams (GF), comprised of few-layer graphene (FLG) and ultrathin graphite (UG) synthesized through the use of methane chemical vapor deposition on reticulated nickel foams, was increased from 0.26 to 1.7 W m(-1) K(-1) after the etchant for the sacrificial nickel support was changed from an aggressive hydrochloric acid solution to a slow ammonium persulfate etchant. In addition, κ(GF) showed a quadratic dependence on temperature between 11 and 75 K and peaked at about 150 K, where the solid thermal conductivity (κ(G)) of the FLG and UG constituents reached about 1600 W m(-1) K(-1), revealing the benefit of eliminating internal contact thermal resistance in the continuous GF structure.

  20. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1988-01-01

    This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  1. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1989-01-01

    This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  2. [Effect of organic and inorganic toxic compounds on luminescence of luminous fungi].

    PubMed

    Vydriakova, G A; Gusev, A A; Medvedeva, S E

    2011-01-01

    The possibility of the development of the solid phase bioluminescent biotest using aerial mycelium of the luminous fungi was investigated. Effect of organic and inorganic toxic compounds (TC) at concentrations from 10(-6) to 1 mg/ml on luminescence of aerial mycelia of four species of luminous fungi-Armillaria borealis (Culture Collection of the Institute of Forest, Siberian Branch, Russian Academy of Sciences), A. mellea, A. gallica, and Lampteromyces japonicus (Fungi Collection of the Botanical Institute, Russian Academy of Sciences)--has been studied. Culture of A. mellea was shown to be most sensitive to solutions of the model TC. It was demonstrated that the sensitivity of the luminous fungi is comparable with the sensitivity of the bacteria that are used for environmental monitoring. Use of the aerial mycelium of the luminous fungi on the solid support as a test object is a promising approach in biotesting for the development of continuous biosensors for air monitoring.

  3. Dynamic analysis for solid waste management systems: an inexact multistage integer programming approach.

    PubMed

    Li, Yongping; Huang, Guohe

    2009-03-01

    In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability.

  4. High temperature resistant cermet and ceramic compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  5. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    DOEpatents

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  6. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  7. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  8. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  9. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  10. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  11. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If an...

  12. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If an...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less

  14. Electrical resistivity of the UAs 1- xSex solid solutions

    NASA Astrophysics Data System (ADS)

    Breandon, C.; Bartholin, H.; Tchapoutian, R.; Therond, P. G.; Schoenes, J.; Vogt, O.

    1987-01-01

    The electrical resistivity ϱ of UAs 1- xSex solid solutions has been measured between 13 K and room temperature. The magnetic phase diagram has been deduced. Effects of uniaxial stress on ϱ allow to understand some results and to reveal anisotropy of ϱ.

  15. TANK 26F SUPERNATANT AND 2F EVAPORATOR EDUCTOR PUMP SAMPLE CHARACTERIZATION RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, W.; Hay, M.; Coleman, C.

    2011-08-23

    In an effort to understand the reasons for system plugging problems in the SRS 2F evaporator, supernatant samples were retrieved from the evaporator feed tank (Tank 26F) and solids were collected from the evaporator eductor feed pump for characterization. The variable depth supernatant samples were retrieved from Tank 26F in early December of 2010 and samples were provided to SRNL and the F/H Area laboratories for analysis. Inspection and analysis of the samples at SRNL was initiated in early March of 2011. During the interim period, samples were frequently exposed to temperatures as low as 12 C with daily temperaturemore » fluctuations as high as 10 C. The temperature at the time of sample collection from the waste tank was 51 C. Upon opening the supernatant bottles at SRNL, many brown solids were observed in both of the Tank 26F supernatant samples. In contrast, no solids were observed in the supernatant samples sent to the F/H Area laboratories, where the analysis was completed within a few days after receipt. Based on these results, it is believed that the original Tank 26F supernatant samples did not contain solids, but solids formed during the interim period while samples were stored at ambient temperature in the SRNL shielded cells without direct climate control. Many insoluble solids (>11 wt. % for one sample) were observed in the Tank 26F supernatant samples after three months of storage at SRNL which would not dissolve in the supernatant solution in two days at 51 C. Characterization of these solids along with the eductor pump solids revealed the presence of sodium oxalate and clarkeite (uranyl oxyhydroxide) as major crystalline phases. Sodium nitrate was the dominant crystalline phase present in the unwashed Eductor Pump solids. Crystalline sodium nitrate may have formed during the drying of the solids after filtration or may have been formed in the Tank 26F supernatant during storage since the solution was found to be very concentrated (9-12 M Na{sup +}). Concentrated mineral acids and elevated temperature were required to dissolve all of these solids. The refractory nature of some of the solids is consistent with the presence of metal oxides such as aluminosilicates (observed as a minor phase by XRD). Characterization of the water wash solutions and the digested solids confirmed the presence of oxalate salts in both solid samples. Sulfate enrichment was also observed in the Tank 26F solids wash solution, indicating the presence of sulfate precipitates such as burkeite. OLI modeling of the Tank 26F filtered supernatant composition revealed that sodium oxalate has a very low solubility in this solution. The model predicts that the sodium oxalate solubility in the Tank 26F supernatant is only 0.0011 M at 50 C. The results indicate that the highly concentrated nature of the evaporator feed solution and the addition of oxalate anion to the waste stream each contribute to the formation of insoluble solids in the 2F evaporator system.« less

  16. Calorimetric determination of energetics of solid solutions of UO 2+ x with CaO and Y 2O 3

    NASA Astrophysics Data System (ADS)

    Mazeina, Lena; Navrotsky, Alexandra; Greenblatt, Martha

    2008-02-01

    Quantitative study of thermodynamic properties of solid solutions of UO 2+ x with divalent and trivalent oxides is important for predicting the behavior of oxide fuel. Although early literature work measured vapor pressure in some of these solid solutions, direct calorimetric measurements of enthalpies of formation have been hampered by the refractory nature of such oxides. First measurements of the enthalpies of formation in the systems UO 2+ x-CaO and UO 2+ x-YO 1.5, obtained by high-temperature oxide melt solution calorimetry, are reported. Both systems show significantly negative (exothermic) heats of formation from binary oxides (UO 2, plus O 2 and CaO or YO 1.5, as well as from UO 2 plus UO 3 and CaO or YO 1.5), consistent with reported free energy measurements in the urania-yttria system. The energetic contributions of oxygen content (oxidation of U 4+) and of charge balanced ionic substitution as well as defect clustering are discussed. Behavior of urania-yttria is compared to that of corresponding systems in which the tetravalent ion is Ce, Zr, or Hf. The substantial additional stability in the solid solutions compared to pure UO 2+ x may retard, in both thermodynamic and kinetic sense, the oxidation and leaching of spent fuel to form aqueous U 6+ and solid uranyl phases.

  17. Molten-salt synthesis and composition-dependent luminescent properties of barium tungsto-molybdate-based solid solution phosphors

    NASA Astrophysics Data System (ADS)

    Xiang-Hong, He; Zhao-Lian, Ye; Ming-Yun, Guan; Ning, Lian; Jian-Hua, Sun

    2016-02-01

    Pr3+-activated barium tungsto-molybdate solid solution phosphor Ba(Mo1-zWz)O4:Pr3+ is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated octahedron and exhibits deep-red-emitting upon blue light excitation. Powder x-ray diffraction and Raman spectroscopy techniques are utilized to investigate the formation of solid solution phosphor. The luminescence behaviors depend on the resulting composition of the microcrystals with fixed Pr3+-doping concentration, while the host lattices remain in a scheelite structure. The forming solid solution via the substitution of [WO4] for [MoO4] can significantly enhance its luminescence, which may be due to the fact that Ba(Mo1-zWz)O4:Pr3+ owns well-defined facets and uniform morphologies. Owing to its properties of high phase purity, well-defined facets, highly uniform morphologies, exceptional chemical and thermal stabilities, and stronger emission intensity, the resulting solid solution phosphor is expected to find potential applications in phosphor-converted white light-emitting diodes (LEDs). Project supported by the Construction Fund for Science and Technology Innovation Group from Jiangsu University of Technology, China, the Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, China (Grant No. KHK1409), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the National Natural Science Foundation of China (Grant No. 21373103).

  18. Incorporation of Cadmium and Nickel into Ferrite Spinel Solid Solution: X-ray Diffraction and X-ray Absorption Fine Structure Analyses.

    PubMed

    Su, Minhua; Liao, Changzhong; Chan, Tingshan; Shih, Kaimin; Xiao, Tangfu; Chen, Diyun; Kong, Lingjun; Song, Gang

    2018-01-16

    The feasibility of incorporating Cd and Ni in hematite was studied by investigating the interaction mechanism for the formation of Cd x Ni 1-x Fe 2 O 4 solid solutions (CNFs) from CdO, NiO, and α-Fe 2 O 3 . X-ray diffraction results showed that the CNFs crystallized into spinel structures with increasing lattice parameters as the Cd content in the precursors was increased. Cd 2+ ions were found to occupy the tetrahedral sites, as evidenced by Rietveld refinement and extended X-ray absorption fine structure analyses. The incorporation of Cd and Ni into ferrite spinel solid solution strongly relied on the processing parameters. The incorporation of Cd and Ni into the CNFs was greater at high x values (0.7 < x ≤ 1.0) than at low x values (0.0 ≤ x ≤ 0.7). A feasible treatment technique based on the investigated mechanism of CNF formation was developed, involving thermal treatment of waste sludge containing Cd and Ni. Both of these metals in the waste sludge were successfully incorporated into a ferrite spinel solid solution, and the concentrations of leached Cd and Ni from this solid solution were substantially reduced, stabilizing at low levels. This research offers a highly promising approach for treating the Cd and Ni content frequently encountered in electronic waste and its treatment residues.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Hongliang; Zhou Wancheng; Luo Fa

    The (1-x)(K{sub 0.5}Na{sub 0.5})NbO{sub 3}-x(Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (KNN-BST) solid solution has been synthesized by conventional solid-state sintering in order to search for the new lead-free relaxor ferroelectrics for high temperature applications. The phase structure, dielectric properties, and relaxor behavior of the (1-x)KNN-xBST solid solution are systematically investigated. The phase structure of the (1-x)KNN-xBST solid solution gradually changes from pure perovskite phase with an orthorhombic symmetry to the tetragonal symmetry, then to the pseudocubic phase, and to the cubic phase with increasing addition of BST. The 0.90KNN-0.10BST solid solution shows a broad dielectric peak with permittivity maximum near 2500 andmore » low dielectric loss (<4%) in the temperature range of 100-250 deg. C. The result indicates that this material may have great potential for a variety of high temperature applications. The diffuse phase transition and the temperature of the maximum dielectric permittivity shifting toward higher temperature with increasing frequency, which are two typical characteristics for relaxor ferroelectrics, are observed in the (1-x)KNN-xBST solid solution. The dielectric relaxor behavior obeys a modified Curie-Weiss law and a Vogel-Fulcher relationship. The relaxor nature is attributed to the appearance of polar nanoregions owing to the formation of randon fields including local electric fields and elastic fields. These results confirm that the KNN-based relaxor ferroelectrics can be regarded as an alternative direction for the development of high temperature lead-free relaxor ferroelectrics.« less

  20. A new description of Earth's wobble modes using Clairaut coordinates: 1. Theory

    NASA Astrophysics Data System (ADS)

    Rochester, M. G.; Crossley, D. J.; Zhang, Y. L.

    2014-09-01

    This paper presents a novel mathematical reformulation of the theory of the free wobble/nutation of an axisymmetric reference earth model in hydrostatic equilibrium, using the linear momentum description. The new features of this work consist in the use of (i) Clairaut coordinates (rather than spherical polars), (ii) standard spherical harmonics (rather than generalized spherical surface harmonics), (iii) linear operators (rather than J-square symbols) to represent the effects of rotational and ellipticity coupling between dependent variables of different harmonic degree and (iv) a set of dependent variables all of which are continuous across material boundaries. The resulting infinite system of coupled ordinary differential equations is given explicitly, for an elastic solid mantle and inner core, an inviscid outer core and no magnetic field. The formulation is done to second order in the Earth's ellipticity. To this order it is shown that for wobble modes (in which the lowest harmonic in the displacement field is degree 1 toroidal, with azimuthal order m = ±1), it is sufficient to truncate the chain of coupled displacement fields at the toroidal harmonic of degree 5 in the solid parts of the earth model. In the liquid core, however, the harmonic expansion of displacement can in principle continue to indefinitely high degree at this order of accuracy. The full equations are shown to yield correct results in three simple cases amenable to analytic solution: a general earth model in rigid rotation, the tiltover mode in a homogeneous solid earth model and the tiltover and Chandler periods for an incompressible homogeneous solid earth model. Numerical results, from programmes based on this formulation, are presented in part II of this paper.

  1. Barium isotope fractionation during witherite (BaCO3) dissolution, precipitation and at equilibrium

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; van Zuilen, Kirsten; Purgstaller, Bettina; Baldermann, Andre; Nägler, Thomas F.; Dietzel, Martin

    2016-10-01

    This study examines the behavior of Ba isotope fractionation between witherite and fluid during mineral dissolution, precipitation and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 10-2 M NaCl solution where the pH was adjusted by continuous bubbling of a water saturated gas phase of CO2 or atmospheric air. During witherite dissolution no Ba isotope fractionation was observed between solid and fluid. In contrast, during witherite precipitation, caused by a pH increase, a preferential uptake of the lighter 134Ba isotopomer in the solid phase was observed. In this case, the isotope fractionation factor αwitherite-fluid is calculated to be 0.99993 ± 0.00004 (or Δ137/134Bawitherite-fluid ≈ -0.07 ± 0.04‰, 2 sd). The most interesting feature of this study, however, is that after the attainment of chemical equilibrium, the Ba isotope composition of the aqueous phase is progressively becoming lighter, indicating a continuous exchange of Ba2+ ions between witherite and fluid. Mass balance calculations indicate that the detachment of Ba from the solid is not only restricted to the outer surface layer of the solid, but affects several (∼7 unit cells) subsurface layers of the crystal. This observation comes in excellent agreement with the concept of a dynamic system at chemical equilibrium in a mineral-fluid system, denoting that the time required for the achievement of isotopic equilibrium in the witherite-fluid system is longer compared to that observed for chemical equilibrium. Overall, these results indicate that the isotopic composition of Ba bearing carbonates in natural environments may be altered due to changes in fluid composition without a net dissolution/precipitation to be observed.

  2. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    PubMed Central

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007

  3. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    PubMed

    Nakayama, Hirokazu; Hayashi, Aki

    2014-07-30

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  4. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    DOE PAGES

    Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.; ...

    2017-11-30

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. We investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side-chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically and is strongly dependent on side-chain identity. These results show that it may be necessary to carefullymore » engineer the solid-state microstructure of these 'singlet fission polymers' to produce the long-lived triplets needed to realize efficient photovoltaic devices.« less

  5. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. We investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side-chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically and is strongly dependent on side-chain identity. These results show that it may be necessary to carefullymore » engineer the solid-state microstructure of these 'singlet fission polymers' to produce the long-lived triplets needed to realize efficient photovoltaic devices.« less

  6. Characterization, dissolution and solubility of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3OH] at 25 °C and pH 2-9.

    PubMed

    Zhu, Yinian; Huang, Bin; Zhu, Zongqiang; Liu, Huili; Huang, Yanhua; Zhao, Xin; Liang, Meina

    2016-01-01

    The interaction between Ca-HAP and Pb(2+) solution can result in the formation of a hydroxyapatite-hydroxypyromorphite solid solution [(PbxCa1-x)5(PO4)3(OH)], which can greatly affect the transport and distribution of toxic Pb in water, rock and soil. Therefore, it's necessary to know the physicochemical properties of (PbxCa1-x)5(PO4)3(OH), predominantly its thermodynamic solubility and stability in aqueous solution. Nevertheless, no experiment on the dissolution and related thermodynamic data has been reported. Dissolution of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3(OH)] in aqueous solution at 25 °C was experimentally studied. The aqueous concentrations were greatly affected by the Pb/(Pb + Ca) molar ratios (XPb) of the solids. For the solids with high XPb [(Pb0.89Ca0.11)5(PO4)3OH], the aqueous Pb(2+) concentrations increased rapidly with time and reached a peak value after 240-720 h dissolution, and then decreased gradually and reached a stable state after 5040 h dissolution. For the solids with low XPb (0.00-0.80), the aqueous Pb(2+) concentrations increased quickly with time and reached a peak value after 1-12 h dissolution, and then decreased gradually and attained a stable state after 720-2160 h dissolution. The dissolution process of the solids with high XPb (0.89-1.00) was different from that of the solids with low XPb (0.00-0.80). The average K sp values were estimated to be 10(-80.77±0.20) (10(-80.57)-10(-80.96)) for hydroxypyromorphite [Pb5(PO4)3OH] and 10(-58.38±0.07) (10(-58.31)-10(-58.46)) for calcium hydroxyapatite [Ca5(PO4)3OH]. The Gibbs free energies of formation (ΔG f (o) ) were determined to be -3796.71 and -6314.63 kJ/mol, respectively. The solubility decreased with the increasing Pb/(Pb + Ca) molar ratios (XPb) of (PbxCa1‒x)5(PO4)3(OH). For the dissolution at 25 °C with an initial pH of 2.00, the experimental data plotted on the Lippmann diagram showed that the solid solution (PbxCa1-x)5(PO4)3(OH) dissolved stoichiometrically at the early stage of dissolution and moved gradually up to the Lippmann solutus curve and the saturation curve for Pb5(PO4)3OH, and then the data points moved along the Lippmann solutus curve from right to left. The Pb-rich (PbxCa1-x)5(PO4)3(OH) was in equilibrium with the Ca-rich aqueous solution. Graphical abstractLippmann diagrams for dissolution of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3OH] at 25 ˚C and an initial pH of 2.00.

  7. Kinetic precipitation of solution-phase polyoxomolybdate followed by transmission electron microscopy: a window to solution-phase nanostructure.

    PubMed

    Zhu, Yan; Cammers-Goodwin, Arthur; Zhao, Bin; Dozier, Alan; Dickey, Elizabeth C

    2004-05-17

    This study aimed to elucidate the structural nature of the polydisperse, nanoscopic components in the solution and the solid states of partially reduced polyoxomolybdate derived from the [Mo132] keplerate, [(Mo)Mo5]12-[Mo2 acetate]30. Designer tripodal hexamine-tris-crown ethers and nanoscopic molybdate coprecipitated from aqueous solution. These microcrystalline solids distributed particle radii between 2-30 nm as assayed by transmission electron microscopy (TEM). The solid materials and their particle size distributions were snap shots of the solution phase. The mother liquor of the preparation of the [Mo132] keplerate after three days revealed large species (r=20-30 nm) in the coprecipitate, whereas [Mo132] keplerate redissolved in water revealed small species (3-7 nm) in the coprecipitate. Nanoparticles of coprecipitate were more stable than solids derived solely from partially reduced molybdate. The TEM features of all material analyzed lacked facets on the nanometer length scale; however, the structures diffracted electrons and appeared to be defect-free as evidenced by Moiré patterns in the TEM images. Moiré patterns and size-invariant optical densities of the features in the micrographs suggested that the molybdate nanoparticles were vesicular.

  8. Solute redistribution in dendritic solidification with diffusion in the solid

    NASA Technical Reports Server (NTRS)

    Ganesan, S.; Poirier, D. R.

    1989-01-01

    An investigation of solute redistribution during dendritic solidification with diffusion in the solid has been performed using numerical techniques. The extent of diffusion is characterized by the instantaneous and average diffusion parameters. These parameters are functions of the diffusion Fourier number, the partition ratio and the fraction solid. Numerical results are presented as an approximate model, which is used to predict the average diffusion parameter and calculate the composition of the interdendritic liquid during solidification.

  9. Calibration-free quantification of interior properties of porous media with x-ray computed tomography.

    PubMed

    Hussein, Esam M A; Agbogun, H M D; Al, Tom A

    2015-03-01

    A method is presented for interpreting the values of x-ray attenuation coefficients reconstructed in computed tomography of porous media, while overcoming the ambiguity caused by the multichromatic nature of x-rays, dilution by void, and material heterogeneity. The method enables determination of porosity without relying on calibration or image segmentation or thresholding to discriminate pores from solid material. It distinguishes between solution-accessible and inaccessible pores, and provides the spatial and frequency distributions of solid-matrix material in a heterogeneous medium. This is accomplished by matching an image of a sample saturated with a contrast solution with that saturated with a transparent solution. Voxels occupied with solid-material and inaccessible pores are identified by the fact that they maintain the same location and image attributes in both images, with voxels containing inaccessible pores appearing empty in both images. Fully porous and accessible voxels exhibit the maximum contrast, while the rest are porous voxels containing mixtures of pore solutions and solid. This matching process is performed with an image registration computer code, and image processing software that requires only simple subtraction and multiplication (scaling) processes. The process is demonstrated in dolomite (non-uniform void distribution, homogeneous solid matrix) and sandstone (nearly uniform void distribution, heterogeneous solid matrix) samples, and its overall performance is shown to compare favorably with a method based on calibration and thresholding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Experimental thermochemistry of neptunium oxides: Np2O5 and NpO2

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Dzik, Ewa A.; Sigmon, Ginger E.; Szymanowski, Jennifer E. S.; Navrotsky, Alexandra; Burns, Peter C.

    2018-04-01

    Neptunium (Np) compounds are important in the nuclear fuel cycle because of the buildup and long half-life (2.14 Ma) of Np-237 in nuclear waste, especially during long-term disposal in a geological repository. Neptunium in environmental conditions exists mainly in two oxidation states (+5 and + 4) and can substitute for uranium and/or rare earths in solid phases. Yet thermochemical data for solid neptunium compounds are scarce, despite being critical for evaluating the environmental transport of this radioactive and toxic element. Although high temperature oxide melt solution calorimetry has proven very useful in obtaining thermodynamic data for the formation of uranium and thorium oxide materials, it has not yet been applied to transuranium compounds. Continuing a program at Notre Dame to study the thermodynamics of transuranium compounds, we report the first determination of the enthalpies of drop solution of well-characterized neptunium oxides (Np2O5 and NpO2) using oxide melt solution calorimetry in molten sodium molybdate solvent at 973 K. The enthalpy of the decomposition reaction, Np2O5(cr) = 2NpO2(cr) + 1/2O2(g) at 298 K, is determined to be 7.70 ± 5.86 kJ/mol, and this direct measurement is consistent with existing thermodynamic data. The calorimetric methodology is straightforward and produces reliable data using milligram quantities of radioactive materials, and can be applied to many other transuranium compounds.

  11. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel-tungsten composite coatings

    NASA Astrophysics Data System (ADS)

    Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar

    2016-02-01

    Silicon carbide (SiC) reinforced nickel-tungsten (Ni-W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni-W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni-W-5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni-W-5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, Ecorr) compared to Ni-W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni-W-5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO4 and SiO2.

  12. Assessing the Selectivity of Extractant Solutions for Recovering Labile Arsenic Associated with Iron (Hydr)oxides and Sulfides in Sediments

    EPA Science Inventory

    Sequential extractions can provide analytical constraints on the identification of mineral phases that control arsenic speciation in sediments. Model solids were used in this study to evaluate different solutions designed to extract arsenic from relatively labile solid phases. ...

  13. Thermodynamics of aragonite-strontianite solid solutions: Results from stoichiometric solubility at 25 and 76°C

    USGS Publications Warehouse

    Plummer, Niel; Busenberg, E.

    1987-01-01

    Neither equilibrium nor stoichiometric saturation is observed at 76°C during laboratory recrystallization of strontianite-aragonite solid solutions even after apparent 100 percent conversion to a narrow secondary composition and demonstration of a nearly constant composition system for periods of 300 hours.

  14. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    PubMed

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.

  15. Probing the coordination environment of Ti(3+) ions coordinated to nitrogen-containing Lewis bases.

    PubMed

    Morra, E; Maurelli, S; Chiesa, M; Van Doorslaer, S

    2015-08-28

    Multi-frequency continuous-wave and pulsed EPR techniques are employed to investigate the coordination of nitrogen-containing ligands to Ti(3+)-chloro complexes. Frozen solutions of TiCl3 and TiCl3(Py)3 dissolved in nitrogen-containing solvents have been investigated together with the TiCl3(Py)3 solid-state complex. For these different systems, the hyperfine and nuclear quadrupole data of Ti(3+)-bound (14)N nuclei are reported and discussed in the light of DFT computations, allowing for a detailed description of the microscopic structure of these systems.

  16. Plasmon-assisted radiolytic energy conversion in aqueous solutions

    PubMed Central

    Kim, Baek Hyun; Kwon, Jae W.

    2014-01-01

    The field of conventional energy conversion using radioisotopes has almost exclusively focused on solid-state materials. Herein, we demonstrate that liquids can be an excellent media for effective energy conversion from radioisotopes. We also show that free radicals in liquid, which are continuously generated by beta radiation, can be utilized for electrical energy generation. Under beta radiation, surface plasmon obtained by the metallic nanoporous structures on TiO2 enhanced the radiolytic conversion via the efficient energy transfer between plasmons and free radicals. This work introduces a new route for the development of next-generation power sources. PMID:24918356

  17. High-Solids Polyimide Precursor Solutions

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2004-01-01

    The invention is a highly concentrated stable solution of polymide precursors (monometers) having a solids content ranging from about 80 to 98 percent by weight in lower aliphatic alcohols i.e. methyl and/or ethylalcohol. the concentrated polyimide precursos solution comparisons effective amounts of at least one aromatic diamine, at least one aromatic dianhydride, and a monofunctional endcap including monoamines, monoanhydrides and lower alkyl esters of said monoanhydrides. These concentrated polyimide precursor solutions are particularly useful for the preparation of fibrous prepregs and composites for use in structural materials for military and civil applications.

  18. PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION

    DOEpatents

    Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.

    1959-01-13

    A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.

  19. Emergency deployable core catcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewell, M.P.

    An emergency melt down core catcher apparatus for a nuclear reactor having a retrofitable eutectic solute holding vessel connected to a core containment vessel with particle transferring fluid and particles or granules of solid eutectic solute materials contained therein and transferable by automatically operated valve means to transport and position the solid eutectic solute material in a position below the core to catch and react with any partial or complete melt down of the fuel core.

  20. Effects of drug-carrier interactions on drug dissolution from binary and ternary matrices

    NASA Astrophysics Data System (ADS)

    Iqbal, Zafar

    For nearly five decades, pharmaceutical researchers have studied solid solutions of drugs in polymers as a potential means to enhance the dissolution of drugs with poor aqueous solubility. This has become of greater importance in recent years because most new potential drug compounds (new chemical entities) exhibit poor water solubility and present great challenges to scientists who must design dosage forms from which the drugs are bioavailable. During the formulation of a solid solution, the drug undergoes physical but not chemical alterations that increase its chemical potential in the formulation relative to that of the pure drug in its stable form. This increased chemical potential is responsible for enhanced dissolution as well as physical instabilities, such as amorphous to crystalline conversions and precipitation within the solid state. The chemical potential is derived from the Gibbs free energy, so it is reasonable to explain the behavior of solid solution systems in terms of thermodynamics. Solid solutions and dispersions have been extensively studied by pharmaceutical scientists, both with regard to manufacturing aspects and the proposal of various models in attempts to explain the physical bases for how these systems work. Recently, Dave and Bellantone proposed a model based on the thermodynamic changes resulting from the formulation of binary solid solutions of a drug in the polymer PVP. Their model introduced a modification of the F-H theory, which was used to quantify the drug-polymer interaction energies and calculate the entropy of mixing of the drug and polymer. In this work, the model of Dave and Bellantone was extended to include three-component systems, consisting of one drug mixed in a carrier matrix consisting of mixture of two polymers or a polymer and a surfactant. For this research, solid solutions were formed using various drug weight fractions in the formulations. The study focused on the following points: (1) Prepare solid solution formulations and perform appropriate physical characterizations. (2) Characterize the increase in drug dissolution rates resulting from solid solution formulations. (3) Relate the initial dissolution rates to the drug solubility. (4) Explain the solubility enhancement from solid solution dosage in terms of the drug polymer interactions using the extended thermodynamic model. Two poorly water soluble drugs, levonorgestrel (LEVO) and ethinyl estradiol (EE) were formulated in seven solid solution preparations comprised of four carrier systems. Materials used as carriers included various combinations of the polymers PVP K-30, Copovidone (COP), Poloxamer 182, and the surfactant TweenRTM 20. Additionally, ibuprofen (IBU) was used in three formulations consisting of various combinations of PVP K-30, Copovidone and TweenRTM 20. Formulations with various drug weight fractions (0.5%--30%) were prepared using the solvent evaporation technique. Each formulation was tested for dissolution using intrinsic dissolution apparatus (USP). The solid solutions were compressed into tablets into the sample die that maintained a constant surface area during the dissolution process. DSC, XRD and NIRS scans identified that the crystalline peaks of the drug disappeared with the addition of the polymer for all ratios of EE, indicating the formation of solid solutions (to within the limits of detection of the equipment). This was also observed for the LEVO dispersions up to 10% drug loading. At higher drug loading, solutions were formed but some small degree crystallinity was also present. For each experiment, the initial dissolution rates were obtained from the slope of the mass dissolved vs. time plots taken at early times, and volume normalized initial dissolution rates RV were calculated by dividing the initial dissolution rate by the volume fraction of the drug in the formulation. Comparison of the RV values for the various formulations with a reference RV (typically that of the pure drug or of the formulation with the highest polymer content) allowed calculation of relative volume normalized dissolution rates (RNV). The various RNV were used in the thermodynamic model for data analyses and to determine the interactions between the drug and carrier molecules. It was generally seen that RNV increased with decreased drug fraction, and was adequately modeled by the equations derived from the extended thermodynamic model. It was concluded that the model proposed for the binary and ternary systems successfully represented the mechanism of drug-polymer interaction and the energy changes taken place within the dispersion systems. The dissolution data analysis and subsequent understanding of physical modifications in the dispersion systems characterized by XRD, NIRS and DSC further substantiated the findings. The understanding of the fundamental physical might help scientists to predict the effects of mixing various drugs and polymers, and the effects of varying ratios.

  1. MBSSAS: A code for the computation of margules parameters and equilibrium relations in binary solid-solution aqueous-solution systems

    USGS Publications Warehouse

    Glynn, P.D.

    1991-01-01

    The computer code MBSSAS uses two-parameter Margules-type excess-free-energy of mixing equations to calculate thermodynamic equilibrium, pure-phase saturation, and stoichiometric saturation states in binary solid-solution aqueous-solution (SSAS) systems. Lippmann phase diagrams, Roozeboom diagrams, and distribution-coefficient diagrams can be constructed from the output data files, and also can be displayed by MBSSAS (on IBM-PC compatible computers). MBSSAS also will calculate accessory information, such as the location of miscibility gaps, spinodal gaps, critical-mixing points, alyotropic extrema, Henry's law solid-phase activity coefficients, and limiting distribution coefficients. Alternatively, MBSSAS can use such information (instead of the Margules, Guggenheim, or Thompson and Waldbaum excess-free-energy parameters) to calculate the appropriate excess-free-energy of mixing equation for any given SSAS system. ?? 1991.

  2. The structure investigations of dehydroacetic acid and 1,8-diaminonaphthalene condensation product by NMR, MS, and X-ray measurements

    NASA Astrophysics Data System (ADS)

    Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.

    2016-05-01

    A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.

  3. High temperature resistant cermet and ceramic compositions. [for thermal resistant insulators and refractory coatings

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.

  4. Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium.

    PubMed

    Yang, Lei; Ma, Liangong; Huang, Yuanding; Feyerabend, Frank; Blawert, Carsten; Höche, Daniel; Willumeit-Römer, Regine; Zhang, Erlin; Kainer, Karl Ulrich; Hort, Norbert

    2017-06-01

    Rare earth element Dy is one of the promising alloying elements for magnesium alloy as biodegradable implants. To understand the effect of Dy in solid solution on the degradation of Mg-Dy alloys in simulated physiological conditions, the present work studied the microstructure and degradation behavior of Mg-Dy alloys in cell culture medium. It is found the corrosion resistance enhances with the increase of Dy content in solid solution in Mg. This can be attributed to the formation of a relatively more corrosion resistant Dy-enriched film which decreases the anodic dissolution of Mg. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Synthesis of solid solutions of perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dambekalne, M.Y.; Antonova, M.K.; Perro, I.T.

    The authors carry out thermographic studies, using a derivatograph, in order to understand the nature of the processes taking place during the synthesis of solid solutions of perovskites. Based on the detailed studies on the phase transformations occurring in the charges of the PSN-PMN solid solutions and on the selection of the optimum conditions for carrying out their synthesis, the authors obtained a powder containing a minimum quantity of the undesirable pyrochlore phase and by sintering it using the hot pressing method, they produced single phase ceramic specimens containing the perovskite phase alone with a density close to the theoreticalmore » value and showing zero apparent porosity and water absorption.« less

  6. Approach to the vadose zone monitoring in hazardous and solid waste disposal facilities

    NASA Astrophysics Data System (ADS)

    Twardowska, Irena

    2004-03-01

    In the solid waste (SW)disposal sites, in particular at the unlined facilities, at the remediated or newly-constructed units equipped with novel protective/reactive permeable barriers or at lined facilities with leachate collection systems that are prone to failure, the vadose zone monitoring should comprise besides the natural soil layer beneath the landfill, also the anthropogenic vadose zone, i.e. the waste layer and pore solutions in the landfill. The vadose zone screening along the vertical profile of SW facilities with use of direct invasive soil-core and soil-pore liquid techniques shows vertical downward redistribution of inorganic (macroconstituents and heavy metals) and organic (PAHs) contaminant loads in water infiltrating through the waste layer. These loads can make ground water down-gradient of the dump unfit for any use. To avoid damage of protective/reactive permeable barriers and liners, an installation of stationary monitoring systems along the waste layer profile during the construction of a landfill, which are amenable to generate accurate data and information in a near-real time should be considered including:(i) permanent samplers of pore solution, with a periodic pump-induced transport of collected solution to the surface, preferably with instant field measurements;(ii)chemical sensors with continuous registration of critical parameters. These techniques would definitely provide an early alert in case when the chemical composition of pore solution percolating downward the waste profile shows unfavorable transformations, which indicate an excessive contaminant load approaching ground water. The problems concerning invasive and stationary monitoring of the vadose zone in SW disposal facilities will be discussed at the background of results of monitoring data and properties of permeable protective/reactive barriers considered for use.

  7. Multiligand Metal-Phenolic Assembly from Green Tea Infusions.

    PubMed

    Rahim, Md Arifur; Björnmalm, Mattias; Bertleff-Zieschang, Nadja; Ju, Yi; Mettu, Srinivas; Leeming, Michael G; Caruso, Frank

    2018-03-07

    The synthesis of hybrid functional materials using the coordination-driven assembly of metal-phenolic networks (MPNs) is of interest in diverse areas of materials science. To date, MPN assembly has been explored as monoligand systems (i.e., containing a single type of phenolic ligand) where the phenolic components are primarily obtained from natural sources via extraction, isolation, and purification processes. Herein, we demonstrate the fabrication of MPNs from a readily available, crude phenolic source-green tea (GT) infusions. We employ our recently introduced rust-mediated continuous assembly strategy to prepare these GT MPN systems. The resulting hollow MPN capsules contain multiple phenolic ligands and have a shell thickness that can be controlled through the reaction time. These multiligand MPN systems have different properties compared to the analogous MPN systems reported previously. For example, the Young's modulus (as determined using colloidal-probe atomic force microscopy) of the GT MPN system presented herein is less than half that of MPN systems prepared using tannic acid and iron salt solutions, and the disassembly kinetics are faster (∼50%) than other, comparable MPN systems under identical disassembly conditions. Additionally, the use of rust-mediated assembly enables the formation of stable capsules under conditions where the conventional approach (i.e., using iron salt solutions) results in colloidally unstable dispersions. These differences highlight how the choice of phenolic ligand and its source, as well as the assembly protocol (e.g., using solution-based or solid-state iron sources), can be used to tune the properties of MPNs. The strategy presented herein expands the toolbox of MPN assembly while also providing new insights into the nature and robustness of metal-phenolic interfacial assembly when using solution-based or solid-state metal sources.

  8. Mechanism of drug release from polymethacrylate-based extrudates and milled strands prepared by hot-melt extrusion.

    PubMed

    Albers, Jessica; Alles, Rainer; Matthée, Karin; Knop, Klaus; Nahrup, Julia Schulze; Kleinebudde, Peter

    2009-02-01

    The aim of the study was the formulation of solid dispersions of the poorly water-soluble drug celecoxib and a polymethacrylate carrier by hot-melt extrusion. The objectives were to elucidate the mechanism of drug release from obtained extrudates and milled strands addicted to the solid-state properties of the solid dispersions and to examine and eliminate stability problems occurring under storage, exposure of mechanical stress, and in vitro dissolution. Transparent extrudates containing up to 60% drug could be prepared with a temperature setting below the melting point of celecoxib. XRPD and DSC measurements indicated the formation of a glassy solid solution, where the drug is molecularly dispersed in the carrier. The amorphous state of the glassy solid solution could be maintained during the exposure of mechanical stress in a milling process, and was stable under storage for at least 6 months. Solid-state properties and SEM images of extrudates after dissolution indicated a carrier-controlled dissolution, whereby the drug is molecularly dispersed within the concentrated carrier layer. The glassy solid solution showed a 58-fold supersaturation in 0.1 N HCl within the first 10 min, which was followed by a recrystallization process. Recrystallization could be inhibited by an external addition of HPMC.

  9. A multi-scale Lattice Boltzmann model for simulating solute transport in 3D X-ray micro-tomography images of aggregated porous materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxian; Crawford, John W.; Flavel, Richard J.; Young, Iain M.

    2016-10-01

    The Lattice Boltzmann (LB) model and X-ray computed tomography (CT) have been increasingly used in combination over the past decade to simulate water flow and chemical transport at pore scale in porous materials. Because of its limitation in resolution and the hierarchical structure of most natural soils, the X-ray CT tomography can only identify pores that are greater than its resolution and treats other pores as solid. As a result, the so-called solid phase in X-ray images may in reality be a grey phase, containing substantial connected pores capable of conducing fluids and solute. Although modified LB models have been developed to simulate fluid flow in such media, models for solute transport are relatively limited. In this paper, we propose a LB model for simulating solute transport in binary soil images containing permeable solid phase. The model is based on the single-relaxation time approach and uses a modified partial bounce-back method to describe the resistance caused by the permeable solid phase to chemical transport. We derive the relationship between the diffusion coefficient and the parameter introduced in the partial bounce-back method, and test the model against analytical solution for movement of a pulse of tracer. We also validate it against classical finite volume method for solute diffusion in a simple 2D image, and then apply the model to a soil image acquired using X-ray tomography at resolution of 30 μm in attempts to analyse how the ability of the solid phase to diffuse solute at micron-scale affects the behaviour of the solute at macro-scale after a volumetric average. Based on the simulated results, we discuss briefly the danger in interpreting experimental results using the continuum model without fully understanding the pore-scale processes, as well as the potential of using pore-scale modelling and tomography to help improve the continuum models.

  10. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    PubMed

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  11. Effect of Process Parameter on Barium Titanate Stannate (BTS) Materials Sintered at Low Sintering

    NASA Astrophysics Data System (ADS)

    Shukla, Alok; Bajpai, P. K.

    2011-11-01

    Ba(Ti1-xSnx)O3 solid solutions with (x = 0.15, 0.20, 0.30 and 0.40) are synthesized using conventional solid state reaction method. Formation of solid solutions in the range 0 ≤ x ≤0.40 is confirmed using X-ray diffraction technique. Single phase solid solutions with homogeneous grain distribution are observed at relatively low sintering by controlling process parameters viz. sintering time. Composition at optimized temperature (1150 °C) sintered by varying the sintering time, stabilize in cubic perovskite phase. The % experimental density increase with increasing the time of sintering instead of increasing sintering temperature. The lattice parameter increases by increasing the tin composition in the material. This demonstrates that process parameter optimization can lead to single phase at relatively lower sintering-a major advantage for the materials used as capacitor element in MLCC.

  12. Cooking with Fire: The Mutagenicity- and PAH-Emission Factors of Solid-Fuel Cookstoves

    EPA Science Inventory

    Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. We evaluated two categories of solid...

  13. Nickel Nanocatalyst Ex-Solution from Ceria-Nickel Oxide Solid Solution for Low Temperature CO Oxidation.

    PubMed

    Singhania, Amit; Gupta, Shipra Mital

    2018-07-01

    In this work, in situ growth of Ni nanocatalysts to attach onto the ceria (CeO2) surface through direct Ni ex-solution from the NiO-CeO2 solid solution in a reducing atmosphere at high temperatures with an aim to improve the catalytic activity, and stability for low temperature carbon monoxide (CO) oxidation reaction have been reported. The NiO-CeO2 solid solutions were prepared by solution combustion method, and the results of XRD and RAMAN showed that doping of Ni increases the oxygen vacancies due to charge compensation. Ni is clearly visible in XRD and TEM of Ni ex-solved sample (R-UCe5Ni10) after reduction of NiO-CeO2 (UCe5Ni10) sample by 5% H2/Ar reduction at 1000 °C. TEM analysis revealed a size of 9.2 nm of Ni nanoparticle that is ex-solved on the surface CeO2. This ex-solved sample showed very high catalytic activity (T50 ~ 110 °C), and stability (100 h) for CO oxidation reaction as compared to prepared solid solution samples. This is due to the highly active metallic nano-phase which is ex-solved on the surface of CeO2 and strongly adherent to the support. The apparent activation energy Ni ex-solved sample is found out to be 48.4 kJ mol-1. Thus, the above Ni ex-solved sample shows a practical applicability for the CO reaction.

  14. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    DOE PAGES

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; ...

    2016-03-05

    We investigate Irradiation-induced damage accumulation in Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  15. Preparation and Analysis of Solid Solutions in the Potassium Perchlorate-Permanganate System.

    ERIC Educational Resources Information Center

    Johnson, Garrett K.

    1979-01-01

    Describes an experiment, designed for and tested in an advanced inorganic laboratory methods course for college seniors and graduate students, that prepares and analyzes several samples in the nearly ideal potassium perchlorate-permanganate solid solution series. The results are accounted for by a theoretical treatment based upon aqueous…

  16. Hydration mechanisms of two polymorphs of synthetic ye'elimite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuesta, A.; Álvarez-Pinazo, G.; Sanfélix, S.G.

    2014-09-15

    Ye'elimite is the main phase in calcium sulfoaluminate cements and also a key phase in sulfobelite cements. However, its hydration mechanism is not well understood. Here we reported new data on the hydration behavior of ye'elimite using synchrotron and laboratory powder diffraction coupled to the Rietveld methodology. Both internal and external standard methodologies have been used to determine the overall amorphous contents. We have addressed the standard variables: water-to-ye'elimite ratio and additional sulfate sources of different solubilities. Moreover, we report a deep study of the role of the polymorphism of pure ye'elimites. The hydration behavior of orthorhombic stoichiometric and pseudo-cubicmore » solid-solution ye'elimites is discussed. In the absence of additional sulfate sources, stoichiometric-ye'elimite reacts slower than solid-solution-ye'elimite, and AFm-type phases are the main hydrated crystalline phases, as expected. Moreover, solid-solution-ye'elimite produces higher amounts of ettringite than stoichiometric-ye'elimite. However, in the presence of additional sulfates, stoichiometric-ye'elimite reacts faster than solid-solution-ye'elimite.« less

  17. Solid Solution Photocatalyst with Spontaneous Polarization Exhibiting Low Recombination Toward Efficient CO2 Photoreduction.

    PubMed

    Zhou, Peng; Wang, Xin; Yan, Shicheng; Zou, Zhigang

    2016-08-23

    Decreasing the recombination of photogenerated carriers is a major challenge for efficiently converting solar energy into chemical energy by photocatalysis. Here, we have demonstrated that growth of a polar GaN:ZnO solid solution single crystal along its polarization axis is beneficial to efficient separation of photogenerated carriers, owing to the periodic potential barriers and wells generated from the periodically positive and negative atom arrangements in crystal structure. Local charge imbalance caused by replacing Ga(3+) with Zn(2+) leads to a polarization vector in the {0 0 0 1} planes of GaN:ZnO solid solution, thus forming a 1 D electron transport path along [2 1‾  1‾  0] in the {0 0 0 1} planes of GaN:ZnO solid solution to decrease recombination. Shorting the hole-transport distance by synthesizing porous nanoplates can further decrease recombination under the polarization field and improve the performance of polar photocatalyst in photoreduction of CO2 into CH4 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Crystal-chemistry insight into the photocatalytic activity of BiOCl x Br1- x nanoplate solid solutions

    NASA Astrophysics Data System (ADS)

    Xu, Huan-Yan; Han, Xu; Tan, Qu; Wu, Ke-Jia; Qi, Shu-Yan

    2017-06-01

    In this study, a facile alcoholysis method was developed to synthesize BiOCl x Br1- x nanoplates at room temperature and atmospheric pressure. In this route, strong acid or alkaline environment was absolutely avoided to realize the high exposure of {001} crystal facets. The regular changes in XRD peaks and cell parameters as a function of the Br content strongly declared that the obtained BiOCl x Br1- x products belonged to a group of solid solutions. The 2D nanosheets with in-plane wrinkles were clearly observed in TEM images. Interestingly, as the Br content increased, band gaps of BiOCl x Br1- x solid solutions gradually decreased. The photocatalytic degradation of RhB under simulated sunlight irradiation indicated that BiOCl0.5Br0.5 had the best photocatalytic activity. From the viewpoint of crystal chemistry, the photocatalytic activity of BiOCl x Br1- x solid solutions was closely related with the exposure amount of {001} facets, interlayer spacing of (001) plane and energy-level position of valence band.

  19. Mechanochemical synthesis and physico-chemical investigations of new materials for gas sensors

    NASA Astrophysics Data System (ADS)

    Shubenkova, E. G.

    2018-01-01

    Solid solutions of the InSb-ZnTe semiconductor system containing up to 20 mol.% of ZnTe were synthesized for the first time. The role of mechanochemical treatment in the process of obtaining solid solutions of this system is shown. Solid solutions in the InSb-ZnTe system have been identified by Raman spectroscopy, and the optical properties of its components have been studied. On the basis of an analysis of the anti-stokes spectral radiation distribution the solid solutions formation was identified both on the dependence of the spectral distribution maximum’s shift on the composition of the InSb1-x-ZnTex system, and by estimating the radiation intensity of the initial binary semiconductors at frequencies corresponding to the LO- and TO- vibrations of the binary compounds crystal lattice. The values of the band gap for InSb, (InSb)0.95(ZnTe)0.05 and (InSb)0.9(ZnTe)0.1 were calculated, their values were 0.22 eV, 0.30 eV and 0.38 eV, respectively.

  20. Structural modifications of polymethacrylates: impact on thermal behavior and release characteristics of glassy solid solutions.

    PubMed

    Claeys, Bart; De Coen, Ruben; De Geest, Bruno G; de la Rosa, Victor R; Hoogenboom, Richard; Carleer, Robert; Adriaensens, Peter; Remon, Jean Paul; Vervaet, Chris

    2013-11-01

    Polymethacrylates such as Eudragit® polymers are well established as drug delivery matrix. Here, we synthesize several Eudragit E PO (n-butyl-, dimethylaminoethyl-, methyl-methacrylate-terpolymer) analogues via free radical polymerization. These polymers are processed via hot melt extrusion, followed by injection molding and evaluated as carriers to produce immediate release solid solution tablets. Three chemical modifications increased the glass transition temperature of the polymer: (a) substitution of n-butyl by t-butyl groups, (b) reduction of the dimethylaminoethyl methacrylate (DMAEMA) content, and (c) incorporation of a bulky isobornyl repeating unit. These structural modifications revealed the possibility to increase the mechanical stability of the tablets via altering the polymer Tg without influencing the drug release characteristics and glassy solid solution forming properties. The presence of DMAEMA units proved to be crucial with respect to API/polymer interaction (essential in creating glassy solid solutions) and drug release characteristics. Moreover, these chemical modifications accentuate the need for a more rational design of (methacrylate) polymer matrix excipients for drug formulation via hot melt extrusion and injection molding. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Influence of anionic substitution on the electrolyte electroreflectance study of band edge transitions in single crystal Cu2ZnSn(SxSe1-x)4 solid solutions

    NASA Astrophysics Data System (ADS)

    Levcenco, S.; Dumcenco, D.; Wang, Y. P.; Huang, Y. S.; Ho, C. H.; Arushanov, E.; Tezlevan, V.; Tiong, K. K.

    2012-06-01

    Single crystals of Cu2ZnSn(SxSe1-x)4 (CZTSSe) solid solutions were grown by chemical vapor transport technique using iodine trichloride as a transport agent. As confirmed by X-ray investigations, the as-grown CZTSSe solid solutions are single phase and crystallized in kesterite structure. The lattice parameters of CZTSSe were determined and the S contents of the obtained crystals were estimated by Vegard's law. The composition dependent band gaps of CZTSSe solid solutions were studied by electrolyte electroreflectance (EER) measurements at room temperature. From a detailed lineshape fit of the EER spectra, the band gaps of CZTSSe were determined accurately and were found to decrease almost linearly with the increase of Se content, which agreed well with the recent theoretical first-principle calculations by S. Chen, A. Walsh, J.H. Yang, X.G. Gong, L. Sun, P. X. Yang, J.H. Chu, S.H. Wei, Phys. Rev. B 83 (2011) 125201 (5pp).

  2. Effect of Boron Doping on Cellular Discontinuous Precipitation for Age-Hardenable Cu–Ti Alloys

    PubMed Central

    Semboshi, Satoshi; Ikeda, Jun; Iwase, Akihiro; Takasugi, Takayuki; Suzuki, Shigeru

    2015-01-01

    The effects of boron doping on the microstructural evolution and mechanical and electrical properties of age-hardenable Cu–4Ti (at.%) alloys are investigated. In the quenched Cu–4Ti–0.03B (at.%) alloy, elemental B (boron) is preferentially segregated at the grain boundaries of the supersaturated solid-solution phase. The aging behavior of the B-doped alloy is mostly similar to that of conventional age-hardenable Cu–Ti alloys. In the early stage of aging at 450 °C, metastable β′-Cu4Ti with fine needle-shaped precipitates continuously form in the matrix phase. Cellular discontinuous precipitates composed of the stable β-Cu4Ti and solid-solution laminates are then formed and grown at the grain boundaries. However, the volume fraction of the discontinuous precipitates is lower in the Cu–4Ti–0.03B alloy than the Cu–4Ti alloy, particularly in the over-aging period of 72–120 h. The suppression of the formation of discontinuous precipitates eventually results in improvement of the hardness and tensile strength. It should be noted that minor B doping of Cu–Ti alloys also effectively enhances the elongation to fracture, which should be attributed to segregation of B at the grain boundaries.

  3. Synthesis and stability of hetaerolite, ZnMn2O4, at 25°C

    USGS Publications Warehouse

    Hem, J.D.; Roberson, C.E.; Lind, C.J.

    1987-01-01

    A precipitate of nearly pure hetaerolite, ZnMn2O4, a spinel-structured analog of hausmannite, Mn3O4, was prepared by an irreversible wprecipitation of zinc with manganese at 25°C. The synthesis technique entailed constant slow addition of a dilute solution of Mn2+ and Zn2+ chlorides having a Mn/Zn ratio of 2:1 to a reaction vessel that initially contained distilled deionized water, maintained at a pH of 8.50 by addition of dilute NaOH by an automated pH stat, with continuous bubbling of CO2-free air. The solid was identified by means of X-ray diffraction and transmission electron microscopy and consisted of bipyramidal crystals generally less than 0.10 μm in diameter. Zn2+ ions are able to substitute extensively for Mn2+ ions that occupy tetrahedral sites in the hausmannite structure.Hetaerolite appears to be more stable than hausmannite with respect to spontaneous conversion to γMnOOH. The value of the standard free energy of formation of hetaerolite was estimated from the experimental data to be −289.4 ± 0.8 kcal per mole. Solids intermediate in composition between hetaerolite and hausmannite can be prepared by altering the Mn/Zn ratio in the feed solution.

  4. Transient Liquid-Phase Diffusion Bonding of Aluminum Metal Matrix Composite Using a Mixed Cu-Ni Powder Interlayer

    NASA Astrophysics Data System (ADS)

    Maity, Joydeep; Pal, Tapan Kumar

    2012-07-01

    In the present study, the transient liquid-phase diffusion bonding of an aluminum metal matrix composite (6061-15 wt.% SiCp) has been investigated for the first time using a mixed Cu-Ni powder interlayer at 560 °C, 0.2 MPa, for different holding times up to 6 h. The microstructure of the isothermally solidified zone contains equilibrium precipitate CuAl2, metastable precipitate Al9Ni2 in the matrix of α-solid solution along with the reinforcement particles (SiC). On the other hand, the microstructure of the central bond zone consists of equilibrium phases such as NiAl3, Al7Cu4Ni and α-solid solution along with SiC particles (without any segregation) and the presence of microporosities. During shear test, the crack originates from microporosities and propagates along the interphase interfaces resulting in poor bond strength for lower holding times. As the bonding time increases, with continual diffusion, the structural heterogeneity is diminished, and the microporosities are eliminated at the central bond zone. Accordingly, after 6-h holding, the microstructure of the central bond zone mainly consists of NiAl3 without any visible microporosity. This provides a joint efficiency of 84% with failure primarily occurring through decohesion at the SiC particle/matrix interface.

  5. [Formulation and special investigations of innovative intraoral solid dosage forms.

    PubMed

    Kristo, K; kATONA, B; Piukovics, P; Olah, I; Sipos, B; Sipos, S E; Sovany, T; Hodi, K; Ifi Regdon, G

    During our work, we summarized the types of solid dosage forms which were in the focus of attention in the last years because of their innovative pharmaceutical technology solution and simple use. The biopharmaceutics of solid dosage forms for intraoral use and the advantages of the use of these dosages forms were presented in general. However, these dosage forms cannot always be prepared with conventional pharmaceutical processes, therefore the special pharmaceutical solutions which can be applied for their preparation were presented. In addition to testing the European Pharmacopoeia dosage forms, the special tests which can be applied for the characterization of innovative solid dosage forms were highlighted.

  6. Process for desulfurizing petroleum feedstocks

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2014-06-10

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  7. Formation of III–V ternary solid solutions on GaAs and GaSb plates via solid-phase substitution reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasil’ev, V. I.; Gagis, G. S., E-mail: galina.gagis@gmail.com; Kuchinskii, V. I.

    2015-07-15

    Processes are considered in which ultrathin layers of III–V ternary solid solutions are formed via the delivery of Group-V element vapors to GaAs and GaSb semiconductor plates, with solid-phase substitution reactions occurring in the surface layers of these plates. This method can form defect-free GaAs{sup 1–x}P{sup x}, GaAs{sup x}Sb{sup 1–x}, and GaP{sup x}Sb{sup 1–x} layers with thicknesses of 10–20 nm and a content x of the embedded components of up to 0.04.

  8. Possibility of adjusting the photoluminescence spectrum of Ca scheelites to the emission spectrum of incandescent lamps: [ nCaWO4-(1- n)CaMoO4]: Eu3+ solid solutions

    NASA Astrophysics Data System (ADS)

    Bakovets, V. V.; Zolotova, E. S.; Antonova, O. V.; Korol'kov, I. V.; Yushina, I. V.

    2016-12-01

    The specific features of the photoluminescence of [ nCaWO4-(1- n)CaMoO4]:Eu3+ solid solutions with the scheelite structure are examined using X-ray phase analysis and photoluminescence, Raman scattering, and diffuse reflectance spectroscopy. The studied features are associated with a change in the long- and short-range orders of the crystal lattice upon variations in the composition of solutions in the range n = 0-1.0 (with a pitch of 0.2) at a concentration of red photoluminescence activator Eu3+ of 2 mol %. The mechanism of the modification of photoluminescence of solid solutions upon variations in their composition has been discussed. Anomalies in the variations in parameters of the crystal lattice, its short-range order, and luminescence spectra have been observed in the transition from pure compounds CaMoO4:Eu3+ and CaWO4:Eu3+ to solutions; the concentration of Eu3+ ions in the centrosymmetric localization increases (decreases) in the transition from the molybdate (tungstate). It has been demonstrated that the spectral radiant emittance of solid solution [0.4CaWO4-0.6CaMoO4]:Eu3+ (2 mol %) is the closest to that of an incandescent lamp.

  9. Synthesis and photocatalytic degradation study of methylene blue dye under visible light irradiation by Fe1-xBixVO4 solid solutions (0 ≤ x ≤ 1.0)

    NASA Astrophysics Data System (ADS)

    Bera, Ganesh; Reddy, V. R.; Mal, Priyanath; Das, Pradip; Turpu, G. R.

    2018-05-01

    The novel hetero-structures Fe1-xBixVO4 solid solutions (0 ≤ x ≤ 1.0) with the two dissimilar end member of FeVO4 - BiVO4, were successfully synthesized by the standard solid state reaction method. The structural and chemical properties of as prepared photo-catalyst samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and UV-visible absorption spectroscopy techniques. It is confirmed from the results of XRD, Raman and FT-IR that FeVO4 and BiVO4 are in triclinic (space group P-1 (2)) and monoclinic (space group I2/b (15)) phases respectively. The Bi incorporation into Fe site of FeVO4 emerges as hetero-structures of both the end members of the solid solutions. In addition, the photocatalytic activity in the degradation of methylene blue (MB) dye under visible light irradiation was carried out through UV-visible spectroscopy measurement of photo-catalysts FeVO4, BiVO4 and mixed phases of both photo-catalyst. The results indicate that under visible light irradiation the photocatalytic activity of mixed phases were very effective and higher than the both single phases of the solid solutions. The composition x= 0.25 exhibits an excellent photocatalytic property for the degradation of MB solution under visible light irradiation rather than other.

  10. Enhancement of dissolution rate through eutectic mixture and solid solution of posaconazole and benznidazole.

    PubMed

    Figueirêdo, Camila Bezerra Melo; Nadvorny, Daniela; de Medeiros Vieira, Amanda Carla Quintas; Soares Sobrinho, José Lamartine; Rolim Neto, Pedro José; Lee, Ping I; de La Roca Soares, Monica Felts

    2017-06-15

    Benznidazole (BNZ), the only commercialized antichagasic drug, and the antifungal compound posaconazole (PCZ) have shown synergistic action in the therapy of Chagas disease, however both active pharmaceutical ingredients (APIs) exhibit low aqueous solubility potentially limiting their bioavailability and therapeutic efficacy. In this paper, we report for the first time the formation of a eutectic mixture as well as an amorphous solid solution of PCZ and BNZ (at the same characteristic ratio of 80:20wt%), which provided enhanced solubility and dissolution rate for both APIs. This eutectic system was characterized by DSC and the melting points obtained were used for the construction of a phase diagram. The preservation of the characteristic PXRD patterns and the IR spectra of the parent APIs, and the visualization of a characteristic eutectic lamellar crystalline microstructure using Confocal Raman Microscopy confirm this system as a true eutectic mixture. The PXRD result also confirms the amorphous nature of the prepared solid solution. Theoretical chemical analyses indicate the predominance of π-stacking interactions in the amorphous solid solution, whereas an electrostatic interaction between the APIs is responsible for maintaining the alternating lamellar crystalline microstructure in the eutectic mixture. Both the eutectic mixture and the amorphous solid solution happen to have a characteristic PCZ to BNZ ratio similar to that of their pharmacological doses for treating Chagas disease, thus providing a unique therapeutic combination dose with enhanced apparent solubility and dissolution rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide

    NASA Astrophysics Data System (ADS)

    Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.

    2015-02-01

    A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.

  12. (Nbx, Zr1-x)4AlC3 MAX Phase Solid Solutions: Processing, Mechanical Properties, and Density Functional Theory Calculations.

    PubMed

    Lapauw, Thomas; Tytko, Darius; Vanmeensel, Kim; Huang, Shuigen; Choi, Pyuck-Pa; Raabe, Dierk; Caspi, El'ad N; Ozeri, Offir; To Baben, Moritz; Schneider, Jochen M; Lambrinou, Konstantina; Vleugels, Jozef

    2016-06-06

    The solubility of zirconium (Zr) in the Nb4AlC3 host lattice was investigated by combining the experimental synthesis of (Nbx, Zr1-x)4AlC3 solid solutions with density functional theory calculations. High-purity solid solutions were prepared by reactive hot pressing of NbH0.89, ZrH2, Al, and C starting powder mixtures. The crystal structure of the produced solid solutions was determined using X-ray and neutron diffraction. The limited Zr solubility (maximum of 18.5% of the Nb content in the host lattice) in Nb4AlC3 observed experimentally is consistent with the calculated minimum in the energy of mixing. The lattice parameters and microstructure were evaluated over the entire solubility range, while the chemical composition of (Nb0.85, Zr0.15)4AlC3 was mapped using atom probe tomography. The hardness, Young's modulus, and fracture toughness at room temperature as well as the high-temperature flexural strength and E-modulus of (Nb0.85, Zr0.15)4AlC3 were investigated and compared to those of pure Nb4AlC3. Quite remarkably, an appreciable increase in fracture toughness was observed from 6.6 ± 0.1 MPa/m(1/2) for pure Nb4AlC3 to 10.1 ± 0.3 MPa/m(1/2) for the (Nb0.85, Zr0.15)4AlC3 solid solution.

  13. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    PubMed

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  14. Transport properties of dilute α -Fe (X ) solid solutions (X = C, N, O)

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas; Nastar, Maylise

    2016-06-01

    We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster. The formalism is applied to vacancy-interstitial solute pairs in α -Fe (V X pairs, X = C, N, O), with ab initio based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties. Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.

  15. Analytical close-form solutions to the elastic fields of solids with dislocations and surface stress

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Paliwal, Bhasker; Ougazzaden, Abdallah; Cherkaoui, Mohammed

    2013-07-01

    The concept of eigenstrain is adopted to derive a general analytical framework to solve the elastic field for 3D anisotropic solids with general defects by considering the surface stress. The formulation shows the elastic constants and geometrical features of the surface play an important role in determining the elastic fields of the solid. As an application, the analytical close-form solutions to the stress fields of an infinite isotropic circular nanowire are obtained. The stress fields are compared with the classical solutions and those of complex variable method. The stress fields from this work demonstrate the impact from the surface stress when the size of the nanowire shrinks but becomes negligible in macroscopic scale. Compared with the power series solutions of complex variable method, the analytical solutions in this work provide a better platform and they are more flexible in various applications. More importantly, the proposed analytical framework profoundly improves the studies of general 3D anisotropic materials with surface effects.

  16. Reactive solute transport in streams: 1. Development of an equilibrium- based model

    USGS Publications Warehouse

    Runkel, Robert L.; Bencala, Kenneth E.; Broshears, Robert E.; Chapra, Steven C.

    1996-01-01

    An equilibrium-based solute transport model is developed for the simulation of trace metal fate and transport in streams. The model is formed by coupling a solute transport model with a chemical equilibrium submodel based on MINTEQ. The solute transport model considers the physical processes of advection, dispersion, lateral inflow, and transient storage, while the equilibrium submodel considers the speciation and complexation of aqueous species, precipitation/dissolution and sorption. Within the model, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (water-borne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach.

  17. Stir-bar supported micro-solid-phase extraction for the determination of polychlorinated biphenyl congeners in serum samples.

    PubMed

    Sajid, Muhammad; Basheer, Chanbasha

    2016-07-15

    In present work, a new configuration of micro-solid phase extraction was introduced and termed as stir-bar supported micro-solid-phase extraction (SB-μ-SPE). A tiny stir-bar was packed inside the porous polypropylene membrane along with sorbent material and the edges of membrane sheet were heat sealed to secure the contents. The packing of stir-bar inside the μ-SPE device does not allow the device to stick with the wall or any corner of the sample vial during extraction, which is, however, a frequent observation in routine μ-SPE. Moreover, it enhances effective surface area of the sorbent exposed to sample solution through continuous agitation (motion and rotation). It also completely immerses the SB-μ-SPE device in the sample solution even for non-polar sorbents. Polychlorinated biphenyls (PCBs) were selected as model compounds and the method performance was evaluated in human serum samples. After extraction, samples were analyzed by gas chromatography mass spectrometry (GC-MS). The factors that affect extraction efficiency of SB-μ-SPE were optimized. Under optimum conditions, a good linearity (0.1-100ngmL(-1)) with coefficients of determinations ranging from 0.9868 to 0.9992 was obtained. Limits of detections were ranged between 0.003 and 0.047ngmL(-1). Acceptable values for inter-day (3.2-9.1%) and intra-day (3.1-7.2%) relative standard deviations were obtained. The optimized method was successfully applied to determine the concentration of PCB congeners in human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Different amorphous solid-state forms of roxithromycin: A thermodynamic and morphological study.

    PubMed

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique Elizabeth

    2016-02-10

    The striking impact that different preparation methods have on the characteristics of amorphous solid-state forms has attracted considerable attention during the last two decades. The pursuit of more extensive knowledge regarding polyamorphism therefore continues. The aim of this study was firstly, to investigate the influence of different preparation techniques to obtain amorphous solid-state forms for the same active pharmaceutical ingredient, namely roxithromycin. The preparation techniques also report on a method utilizing hot air, which although it is based on a melt intermediary step, is considered a novel preparation method. Secondly, to conduct an in-depth investigation into any physico-chemical differences between the resulting amorphous forms and thirdly, to bring our findings into context with that of previous work done, whilst simultaneously discussing a well-defined interpretation for the term polyamorphism and propose a discernment between true polyamorphism and pseudo-polyamorphism/atypical-polyamorphism. The preparation techniques included melt, solution, and a combination of solution-mechanical disruption as intermediary steps. The resulting amorphous forms were investigated using differential scanning calorimetry, X-ray powder diffraction, hot-stage microscopy, scanning electron microscopy, and vapor sorption. Clear and significant thermodynamic differences were determined between the four amorphous forms. It was also deduced from this study that different preparation techniques have a mentionable impact on the morphological properties of the resulting amorphous roxithromycin powders. Thermodynamic properties as well as the physical characteristics of the amorphous forms greatly governed other physico-chemical properties i.e. solubility and dissolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4}: Novel keesterite type solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Vergara, F., E-mail: fer_martina@u.uchile.cl; Galdamez, A., E-mail: agaldamez@uchile.cl; Manriquez, V.

    2013-02-15

    A new family of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} chalcogenides has been synthesized by conventional solid-state reactions at 850 Degree-Sign C. The reactions products were characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray analysis (SEM-EDS), Raman spectroscopy and magnetic susceptibility. The crystal structures of two members of the solid solution series Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4} have been determined by single-crystal X-ray diffraction. Both phases crystallize in the tetragonal keesterite-type structure (space group I4{sup Macron }). The distortions of the tetrahedral volume of Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4}more » were calculated and compared with the corresponding differences in the Cu{sub 2}MnSnS{sub 4} (stannite-type) end-member. The compounds show nearly the same Raman spectral features. Temperature-dependent magnetization measurements (ZFC/FC) and high-temperature susceptibility indicate that these solid solutions are antiferromagnetic. - Graphical abstract: View along [100] of the Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} structure showing tetrahedral units and magnetic measurement ZFC-FC at 500 Oe. The insert shows the 1/{chi}-versus-temperature plot fitted by a Curie-Weiss law. Highlights: Black-Right-Pointing-Pointer Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} solid solutions belong to the family of compounds adamantine. Black-Right-Pointing-Pointer Resolved single crystals of the solid solutions have space group I4{sup Macron }. Black-Right-Pointing-Pointer The distortion of the tetrahedral volume of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} were calculated. Black-Right-Pointing-Pointer These solid solutions are antiferromagnetic.« less

  20. Thiol surface functionalization via continuous phase plasma polymerization of allyl mercaptan, with subsequent maleimide-linked conjugation of collagen.

    PubMed

    Stynes, Gil D; Gengenbach, Thomas R; Kiroff, George K; Morrison, Wayne A; Kirkland, Mark A

    2017-07-01

    Thiol groups can undergo a large variety of chemical reactions and are used in solution phase to conjugate many bioactive molecules. Previous research on solid substrates with continuous phase glow discharge polymerization of thiol-containing monomers may have been compromised by oxidation. Thiol surface functionalization via glow discharge polymerization has been reported as requiring pulsing. Herein, continuous phase glow discharge polymerization of allyl mercaptan (2-propene-1-thiol) was used to generate significant densities of thiol groups on a mixed macrodiol polyurethane and tantalum. Three general classes of chemistry are used to conjugate proteins to thiol groups, with maleimide linkers being used most commonly. Here the pH specificity of maleimide reactions was used effectively to conjugate surface-bound thiol groups to amine groups in collagen. XPS demonstrated surface-bound thiol groups without evidence of oxidation, along with the subsequent presence of maleimide and collagen. Glow discharge reactor parameters were optimized by testing the resistance of bound collagen to degradation by 8 M urea. The nature of the chemical bonding of collagen to surface thiol groups was effectively assessed by colorimetric assay (ELISA) of residual collagen after incubation in 8 M urea over 8 days and after incubation with keratinocytes over 15 days. The facile creation of useable solid-supported thiol groups via continuous phase glow discharge polymerization of allyl mercaptan opens a route for attaching a vast array of bioactive molecules. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1940-1948, 2017. © 2017 Wiley Periodicals, Inc.

  1. Roles of Bi, M and VO{sub 4} tetrahedron in photocatalytic properties of novel Bi{sub 0.5}M{sub 0.5}VO{sub 4} (M=La, Eu, Sm and Y) solid solutions for overall water splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Hui; Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, shanghai 200240; Faculty of Engineering Sciences, Kyushu University, Fukuoka 816-8580

    2012-02-15

    Novel Bi{sub 0.5}M{sub 0.5}VO{sub 4} (BMV; M=La, Eu, Sm and Y) solid solutions were prepared and studied in this paper. All the samples were proved to produce H{sub 2} and O{sub 2} simultaneously from pure water under the irradiation of UV light. M-O bond lengths were proved to increase with M cations by refining cell parameters and atomic positions. Besides, band gaps, energy gaps and photocatalytic activities of BMV also changed with M cations. Both of M-O and V-O bond lengths were suggested to account for this phenomenon. Inactive A{sub 0.5}Y{sub 0.5}VO{sub 4} (A=La, Ce) for water splitting proved incorporationmore » of Bi rather than distortion of VO{sub 4} tetrahedron was a critical factor for improving efficiency of overall water splitting by facilitating the generation of electron and hole with lighter effective masses. Replacement of Bi by M cations not only gave indirect effect on band structure but also raised position of conduction band minimum to meet requirement of H{sub 2} production. - Graphical abstract: Novel Bi{sub 0.5}M{sub 0.5}VO{sub 4} (M=La, Eu, Sm and Y) solid solutions showed the high and stable photocatalytic activities for overall water splitting with their crystal radii of M elements. Highlights: Black-Right-Pointing-Pointer BMV solid solutions were novel highly efficient V-based photocatalysts for overall water splitting. Black-Right-Pointing-Pointer Photocatalytic activity of BMV solid solution related to the effective ionic radii of M cations. Black-Right-Pointing-Pointer Incorporation of Bi is one of key factors for the highly efficient activity of BMV solid solution. Black-Right-Pointing-Pointer Incorporation of Y is dispensable for H{sub 2} production.« less

  2. Layered composites made from bimetallic strips produced by plasma spraying of TiAl on niobium

    NASA Astrophysics Data System (ADS)

    Burmistrov, V. I.; Antonova, A. V.; Povarova, K. B.; Bannykh, I. O.

    2007-12-01

    The production and structure of a multilayer TiAl/Nb composite material made from bimetallic TiAl/Nb strips fabricated by plasma spraying of TiAl granules onto niobium plates are studied. Here, 3-mm-and 2-mm-thick plates of a layered composite material (LCM) are produced by hot isostatic pressing of a stack of 35 bimetallic plates followed by hot rolling (the total degree of reduction is 78.6 and 85.7%, respectively). The LCM consists of discontinuous TiAl layers separated by niobium layers, and the adhesion between the layers is good. Diffusional intermediate layers form at the TiAl/Nb interfaces in the 3-mm-thick LCM and consist of the following two solid solutions: an α2-Ti3Al-based solid solution contains up to 28 at % Nb, and a niobiumbased solid solution contains up to 27 at % Ti and 32 at % Al. The diffusional intermediate layers in the 2-mmthick LCM plates consist of an α2-Ti3Al-based solid solution with up to 16.0 at % Nb; a τ-Ti3Al2Nb-or Ti4Al3Nb-based solid solution with 51.5 at % Ti, 32 at % Al, and 16.5 at % Nb; and a niobium-based solid solution with up to 22 at % Ti and 30.5 at % Al. When a bimetallic TiAl/Nb strip is fabricated by plasma spraying of granules of the Ti-48 at % Al alloy, this alloy is depleted of aluminum to 42 45 at %, and the fraction of the α2-Ti3Al phase in the sprayed layer increases. When the LCM is produced by hot isostatic pressing followed by hot rolling, the layer of plain niobium (Nb1) dissolves up to 5 at % Ti and 7 at % Al.

  3. Microstructural Characteristics of Plasma Nitrided Layer on Hot-Rolled 304 Stainless Steel with a Small Amount of α-Ferrite

    NASA Astrophysics Data System (ADS)

    Xu, Xiaolei; Yu, Zhiwei; Cui, Liying; Niu, Xinjun; Cai, Tao

    2016-02-01

    The hot-rolled 304 stainless steel with γ-austenite and approximately 5 pct α-ferrite elongated along the rolling direction was plasma-nitrided at a low temperature of 693 K (420 °C). X-ray diffraction results revealed that the nitrided layer was mainly composed of the supersaturated solid solution of nitrogen in austenite ( γ N). Transmission electron microscopy (TEM) observations showed that the microstructure of the γ N phase exhibited "fracture factor contrast" reflective of the occurrence of fine pre-precipitations in γ N by the continuous precipitation. The occurrence of a diffuse scattering effect on the electron diffraction spots of γ N indicated that the pre-precipitation took place in γ N in the form of strongly bonded Cr-N clusters or pairs due to a strong attractive interaction of nitrogen with chromium. Scanning electron microscopy and TEM observations indicated that the discontinuous precipitation initiated from the γ/ α interfaces and grew from the austenite boundaries into austenite grains to form a lamellar structure consisting of CrN and ferrite. The orientation relationship between CrN and ferrite corresponded to a Baker-Nutting relationship: (100)CrN//(100) α ; [011]CrN//[001] α . A zigzag boundary line following the banded structure of alternating γ-austenite and elongated α-ferrite was presented between the nitrided layer and the substrate to form a continuous varying layer thickness, which resulted from the difference in diffusivities of nitrogen in α-ferrite and γ-austenite, along the γ/ α interfaces and through the lattice. Microstructural features similar to the γ N were also revealed in the ferrite of the nitrided layer by TEM. It was not excluded that a supersaturated solid solution of nitrogen in ferrite ( α N) formed in the nitrided layer.

  4. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...

  5. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...

  6. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...

  7. The assembly and use of continuous flow systems for chemical synthesis.

    PubMed

    Britton, Joshua; Jamison, Timothy F

    2017-11-01

    The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.

  8. Normal and anomalous nuclear spin-lattice relaxation at high temperatures in Sc-H(D), Y-H, and Lu-H solid solutions

    NASA Astrophysics Data System (ADS)

    Barnes, R. G.; Han, J.-W.; Torgeson, D. R.; Baker, D. B.; Conradi, M. S.; Norberg, R. E.

    1995-02-01

    We report the results of measurements of the proton (1H) spin-lattice relaxation rate R1 at high temperatures (to ~1400 K) in the hcp (α) solid-solution phases of the Sc-H, Y-H, and Lu-H systems, and of R1(45Sc) in Sc-H and Sc-D solid solutions. The latter measurements show unambiguous evidence of an anomalous increase at ~1000 K, whereas R1(1H) shows no such increase at any temperature. This behavior of R1(1H) contrasts with that in the bcc V-H, etc., solid solutions where anomalous relaxation occurs below ~1000 K, and in all investigated metal dihydride phases, MH2-x. The anomalous R1(1H) behavior in α-VHx, α-NbHx, etc., may be understood in terms of fast spin relaxation in the H2 gas in equilibrium with the solid, mediated by fast gas-solid exchange of hydrogen. However, in the present systems, α-ScHx, α-YHx, etc., the H2 gas pressure in equilibrium with the hcp systems is extremely low, resulting in negligible H2 concentration in the gas phase, and consequently a negligible contribution to R1(1H). In contrast, some of the present measurements indicate that the R1(45Sc) anomaly does result from the hydrogen content of the metal, but the mechanism remains unexplained.

  9. Evolution of mixed surfactant aggregates in solutions and at solid/solution interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Rui

    Surfactant systems have been widely used in such as enhanced oil recovery, waste treatment and metallurgy, etc., in order to solve the problem of global energy crisis, to remove the pollutants and to generate novel energy resources. Almost all surfactant systems are invariably mixtures due to beneficial and economic considerations. The sizes and shapes of aggregates in solutions and at solid/solution interfaces become important, since the nanostructures of mixed aggregates determine solution and adsorption properties. A major hurdle in science is the lack of information on the type of complexes and aggregates formed by mixtures and the lack of techniques for deriving such information. Using techniques such as analytical ultracentrifuge, small angle neutron scattering, surface tension, fluorescence, cryo-TEM, light scattering and ultrafiltration, the nanostructures of aggregates of sugar based n-dodecyl-beta-D-maltoside (DM) and nonionic pentaethyleneglycol monododecyl ether or nonyl phenol ethoxylated decyl ether (NP-10) and their mixtures have been investigated to prove the hypothesis that the aggregation behavior is linked to packing of the surfactant governed by the molecular interactions as well as the molecular structures. The results from both sedimentation velocity and sedimentation equilibrium experiments suggest coexistence of two types of micelles in nonyl phenol ethoxylated decyl ether solutions and its mixtures with n-dodecyl-beta-D-maltoside while only one micellar species is present in n-dodecyl-beta-D-maltoside solutions, in good agreement with those from small angle neutron scattering, cryo-TEM, light scattering and ultrafiltration. Type I micelles were primary micelles at cmc while type II micelles were elongated micelles. On the other hand, the nanostructures of mixed surface aggregates have been quantitatively predicted for the first time using a modified packing index. As a continuation of the Somasundaran-Fuersteneau adsorption model, a modified one-step model has been developed to fully understand the adsorption behavior of surfactant mixtures and obtained thermodynamic information on aggregation number and standard free energy for surface aggregation. The findings are expected to provide fundamental basis for the design optimal surfactant schemes for desired purposes.

  10. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

    PubMed

    Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V

    2015-09-21

    A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

  11. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.

    PubMed

    Wang, Dong-Hong; Wang, Lei; Xu, An-Wu

    2012-03-21

    Visible light photocatalytic H(2) production from water splitting is of great significance for its potential applications in converting solar energy into chemical energy. In this study, a series of Zn(1-x)Cd(x)S solid solutions with a nanoporous structure were successfully synthesized via a facile template-free method at room temperature. The obtained solid solutions were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS) and N(2) adsorption-desorption analysis. The solid solutions show efficient photocatalytic activity for H(2) evolution from aqueous solutions containing sacrificial reagents S(2-) and SO(3)(2-) under visible-light irradiation without a Pt cocatalyst, and loading of the Pt cocatalyst further improves the visible-light photocatalytic activity. The optimal photocatalyst with x = 0.20 prepared at pH = 7.3 displays the highest activity for H(2) evolution. The bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S nanoparticles exhibit a high H(2) evolution rate of 193 μmol h(-1) and 458 μmol h(-1) under visible-light irradiation (λ ≥ 420 nm), respectively. In addition, the bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S catalysts show a high H(2) evolution rate of 252 and 640 μmol h(-1) under simulated solar light irradiation, respectively. Moreover, the Zn(0.80)Cd(0.20)S catalyst displays a high photocatalytic stability for H(2) evolution under long-term light irradiation. The incorporation of Cd in the solid solution leads to the visible light absorption, and the high content of Zn in the solid solution results in a relatively negative conduction band, a modulated band gap and a rather wide valence bandwidth, which are responsible for the excellent photocatalytic performance of H(2) production and for the high photostability. This journal is © The Royal Society of Chemistry 2012

  12. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. (c) 2009 European Peptide Society and John Wiley & Sons, Ltd.

  13. Intermediate couplings: NMR at the solids-liquids interface

    NASA Astrophysics Data System (ADS)

    Spence, Megan

    2006-03-01

    Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.

  14. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...

  15. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...

  16. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...

  17. 40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Non-waste determinations and variances from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking...

  18. 40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Non-waste determinations and variances from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking...

  19. 40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Non-waste determinations and variances from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking...

  20. Numerical solution of a coupled pair of elliptic equations from solid state electronics

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.

    1983-01-01

    Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem.

  1. Improvements in geothermal electric power and silica production

    DOEpatents

    Hill, J.H.; Fulk, M.M.

    Electricity is generated from hot geothermal solution by extracting heat therefrom, mineral solids which form in a so cooled geothermal solution are separated to recover minerals and facilitate reinjection of the solution into the ground. The separated solids are treated to recover silica by addition of an acid (amorphous silica precipitates) or a base (other minerals precipitate and soulble silicates are formed which are subsequently precipitated by acid neutralization). If desired, after silica is separated, other minerals can be separated and recovered.

  2. Characterizing the Solid-Solution Coefficient and Plant Uptake Factor of As, Cd and Pb in California Croplands

    USDA-ARS?s Scientific Manuscript database

    In risk assessment models, the solid-solution partition coefficient (Kd), and plant uptake factor (PUF), are often employed to model the fate and transport of trace elements in soils. The trustworthiness of risk assessments depends on the reliability of the parameters used. In this study, we exami...

  3. Extending atomistic simulation timescale in solid/liquid systems: crystal growth from solution by a parallel-replica dynamics and continuum hybrid method.

    PubMed

    Lu, Chun-Yaung; Voter, Arthur F; Perez, Danny

    2014-01-28

    Deposition of solid material from solution is ubiquitous in nature. However, due to the inherent complexity of such systems, this process is comparatively much less understood than deposition from a gas or vacuum. Further, the accurate atomistic modeling of such systems is computationally expensive, therefore leaving many intriguing long-timescale phenomena out of reach. We present an atomistic/continuum hybrid method for extending the simulation timescales of dynamics at solid/liquid interfaces. We demonstrate the method by simulating the deposition of Ag on Ag (001) from solution with a significant speedup over standard MD. The results reveal specific features of diffusive deposition dynamics, such as a dramatic increase in the roughness of the film.

  4. Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR

    DOE PAGES

    Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...

    2016-03-21

    Elucidation of structural changes involved in protein misfolding and amyloid formation is crucial for unraveling the molecular basis of amyloid formation. We report structural analyses of the amyloidogenic intermediate and amyloid aggregates of transthyretin using solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. These NMR solution results show that one of the two main β-sheet structures (CBEF β-sheet) is maintained in the aggregation-competent intermediate, while the other DAGH β-sheet is more flexible on millisecond time scales. Magic-angle-spinning solid-state NMR revealed that AB loop regions interacting with strand A in the DAGH β-sheet undergo conformational changes, leading to the destabilized DAGHmore » β-sheet.« less

  5. Protein Adsorption and Deposition onto Microfiltration Membranes: The Role of Solute-Solid Interactions.

    PubMed

    Martínez; Martín; Prádanos; Calvo; Palacio; Hernández

    2000-01-15

    The mass of gamma-globulin fouling an Anodisc alumina membrane with a nominal pore diameter of 0.1 µm has been measured at several concentrations and pHs. This fouling resulted from filtering through the membrane in a continuous recirculation device. The low-concentration fouling can be attributed mainly to adsorption. The complete concentration dependence of fouling mass has been obtained and fitted to a Freundlich heterogeneous isotherm, from which the pH dependence of active fouling sites and energies has been also obtained. Adsorption is studied as a function of the electrostatic forces between the solute and the membrane. A sharp maximum in the adsorbed mass for zero electrostatic force is observed. At high concentrations, accumulation plays a relevant role at alkaline pH, as confirmed by flux decay experiments, retention measurements, and AFM (atomic force microscopy) pictures. Copyright 2000 Academic Press.

  6. Elements of an improved model of debris‐flow motion

    USGS Publications Warehouse

    Iverson, Richard M.

    2009-01-01

    A new depth‐averaged model of debris‐flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore‐fluid pressure. Non‐hydrostatic pore‐fluid pressure is produced by dilatancy, a state‐dependent property that links the depth‐averaged shear rate and volumetric strain rate of the granular phase. Pore‐pressure changes caused by shearing allow the model to exhibit rate‐dependent flow resistance, despite the fact that the basal shear traction involves only rate‐independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore‐pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states.

  7. Elements of an improved model of debris-flow motion

    USGS Publications Warehouse

    Iverson, R.M.

    2009-01-01

    A new depth-averaged model of debris-flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore-fluid pressure. Non-hydrostatic pore-fluid pressure is produced by dilatancy, a state-dependent property that links the depth-averaged shear rate and volumetric strain rate of the granular phase. Pore-pressure changes caused by shearing allow the model to exhibit rate-dependent flow resistance, despite the fact that the basal shear traction involves only rate-independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore-pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states. ?? 2009 American Institute of Physics.

  8. Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems

    USGS Publications Warehouse

    Glynn, P.D.; Reardon, E.J.; Plummer, Niel; Busenberg, E.

    1990-01-01

    Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/ or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO4 and (Sr, Ca)C??O3orth. solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO3orth. solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallisation experiments in the highly soluble KCl-KBr-H2O system demonstrate equilibrium. The excess free energy of mixing calculated for K(Cl, Br) solids is closely modeled by the relation GE = ??KBr??KClRT[a0 + a1(2??KBr-1)], where a0 is 1.40 ?? 0.02, a1, is -0.08 ?? 0.03 at 25??C, and ??KBr and ??KCl are the mole fractions of KBr and KCl in the solids. The phase diagram constructed using this fit reveals an alyotropic maximum located at ??KBr = 0.676 and at a total solubility product, ???? = [K+]([Cl-] + [Br-]) = 15.35. ?? 1990.

  9. Lubrication of rigid ellipsida solids

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1982-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza' classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared by using the exact expression for the film in the analysis. Contour plots are known that indicate in detail the pressure developed between the solids.

  10. Crystal Violet Lactone Salicylaldehyde Hydrazone Zn(II) Complex: a Reversible Photochromic Material both in Solution and in Solid Matrix

    PubMed Central

    Li, Kai; Li, Yuanyuan; Tao, Jing; Liu, Lu; Wang, Lili; Hou, Hongwei; Tong, Aijun

    2015-01-01

    Crystal violet lactone (CVL) is a classic halochromic dye which has been widely used as chromogenic reagent in thermochromic and piezochromic systems. In this work, a very first example of CVL-based reversible photochromic compound was developed, which showed distinct color change upon UV-visible light irradiation both in solution and in solid matrix. Moreover, metal complex of CVL salicylaldehyde hydrozone was facilely synthesized, exhibiting reversible photochromic properties with good fatigue resistance. It was served as promising solid material for photo-patterning. PMID:26412101

  11. Three-dimensional finite element analysis of acoustic instability of solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Hackett, R. M.; Juruf, R. S.

    1976-01-01

    A three dimensional finite element solution of the acoustic vibration problem in a solid propellant rocket motor is presented. The solution yields the natural circular frequencies of vibration and the corresponding acoustic pressure mode shapes, considering the coupled response of the propellant grain to the acoustic oscillations occurring in the motor cavity. The near incompressibility of the solid propellant is taken into account in the formulation. A relatively simple example problem is solved in order to illustrate the applicability of the analysis and the developed computer code.

  12. 9-Fluorenylmethyloxycarbonyl/ tbutyl-based convergent protein synthesis.

    PubMed

    Barlos, K; Gatos, D

    1999-01-01

    Besides linear solid phase peptide synthesis, segment condensation in solution and chemical ligation, convergent peptide synthesis (CPS) was developed in order to enable the efficient preparation of complex peptides and small proteins. According to this synthetic strategy, solid phase synthesized and suitably protected peptide fragments corresponding to the entire peptide/protein-sequence are condensed on a solid support or in solution, to the target protein. This review summarizes CPS performed utilizing the mild 9-fluorenylmethyloxycarbonyl/tbutyloxycarbonyl-based protecting scheme for the amino acids. Copyright 1999 John Wiley & Sons, Inc.

  13. Fluorescence from polystyrene - Photochemical processes in polymeric systems, 7

    NASA Technical Reports Server (NTRS)

    Gupta, M. C.; Gupta, A.

    1983-01-01

    Results are presented for measurements of the fluorescence spectra of polystyrene in dilute solution and in pure solid films. It is determined that a major potential source of experimental error is the concurrent photooxidative degradation in air which may obscure fluorescence emission from monomeric sites in solid films at 25 C. The fluorescence spectra of oriented films are evaluated in terms of the monomer to excimer fluorescence intensity ratio and the excimer 'red shift'. The monomer to excimer fluorescence intensity ratio is determined to be significantly higher in fluid solution than in solid film.

  14. Conformational polymorphism and thermochemical analysis of 5,5' ''-bis[(2,2,5,5-tetramethyl-1-aza-2,5-disila-1-cyclopentyl)ethyl]-2,2':5',2' ':5' ',2' ''-quaterthiophene.

    PubMed

    Muguruma, Hitoshi; Hotta, Shu

    2006-11-23

    The titled compound exists as two polymorphic solid phases (denoted form-I and form-II). Form-I obtained by as-synthesized material is a more stable phase. Form-II is a less stable phase. Spontaneous solid-solid transformation from form-II to form-I is observed in the temperature range between room temperature and the melting point of form-I (Tm = 156.5 degrees C), and its activation energy is estimated to be 96 kJ mol-1 by Arrhenius plot. The solid-solute-solid transformation (recrystallization from solution) from form-II to form-I is also observed. In contrast, form-II is obtained only by a solid-melt-solid transformation from form-I. Therefore, the system of two polymorphs is monotropic. The solid-state NMR measurement shows that form-I has the molecular conformation of complete S-syn-anti-syn in the oligothiophene backbone, whereas form-II has that of S-all-anti. With the solution NMR data, the polymorphism could not be observed. Therefore, the polymorphs originate from the different molecular packing involving the conformational change of the molecule. This unique property is attributed to the extra bulky terminal groups of the compounds. However, despite the extra bulky terminal groups, the mentioned polymorphism is not observed in the titled compound analogue which has S-all-anti conformation (like form-II).

  15. Structural and compositional characterization of synthetic (Ca,Sr)-tremolite and (Ca,Sr)-diopside solid solutions

    NASA Astrophysics Data System (ADS)

    Gottschalk, M.; Najorka, J.; Andrut, M.

    Tremolite (CaxSr1-x)2Mg5[Si8O22/(OH)2] and diopside (CaxSr1-x)Mg[Si2O6] solid solutions have been synthesized hydrothermally in equilibrium with a 1 molar (Ca,Sr)Cl2 aqueous solution at 750°C and 200 MPa. The solid run products have been investigated by optical, electron scanning and high resolution transmission electron microscopy, electron microprobe, X-ray-powder diffraction and Fourier-transform infrared spectroscopy. The synthesized (Ca,Sr)-tremolites are up to 2000 µm long and 30 µm wide, the (Ca,Sr)-diopsides are up to 150 µm long and 20 µm wide. In most runs the tremolites and diopsides are well ordered and chain multiplicity faults are rare. Nearly pure Sr-tremolite (tr0.02Sr-tr0.98) and Sr-diopside (di0.01Sr-di0.99) have been synthesized. A continuous solid solution series, i.e. complete substitution of Sr2+ for Ca2+ on M4-sites exists for (Ca,Sr)-tremolite. Total substitution of Sr2+ for Ca2+ on M2-sites can be assumed for (Ca,Sr)-diopsides. For (Ca,Sr)-tremolites the lattice parameters a, b and β are linear functions of composition and increase with Sr-content whereas c is constant. For the diopside series all 4 lattice parameters are a linear function of composition; a, b, c increase and β decreases with rising Sr-content. The unit cell volume for tremolite increases 3.47% from 906.68 Å3 for tremolite to 938.21 Å3 for Sr-tremolite. For diopside the unit cell volume increases 4.87 % from 439.91 Å3 for diopside to 461.30 Å3 for Sr-diopside. The observed splitting of the OH stretching band in tremolite is caused by different configurations of the next nearest neighbors (multi mode behavior). Resolved single bands can be attributed to the following configurations on the M4-sites: SrSr, SrCa, CaCa and CaMg. The peak positions of these 4 absorption bands are a linear function of composition. They are shifted to lower wavenumbers with increasing Sr-content. No absorption band due to the SrMg configuration on the M4-site is observed. This indicates a very low or negligible cummingtonite component in Sr-rich tremolites, which is also supported by electron microprobe analysis.

  16. A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2014-01-01

    A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.

  17. On the use of adaptive multiresolution method with time-varying tolerance for compressible fluid flows

    NASA Astrophysics Data System (ADS)

    Soni, V.; Hadjadj, A.; Roussel, O.

    2017-12-01

    In this paper, a fully adaptive multiresolution (MR) finite difference scheme with a time-varying tolerance is developed to study compressible fluid flows containing shock waves in interaction with solid obstacles. To ensure adequate resolution near rigid bodies, the MR algorithm is combined with an immersed boundary method based on a direct-forcing approach in which the solid object is represented by a continuous solid-volume fraction. The resulting algorithm forms an efficient tool capable of solving linear and nonlinear waves on arbitrary geometries. Through a one-dimensional scalar wave equation, the accuracy of the MR computation is, as expected, seen to decrease in time when using a constant MR tolerance considering the accumulation of error. To overcome this problem, a variable tolerance formulation is proposed, which is assessed through a new quality criterion, to ensure a time-convergence solution for a suitable quality resolution. The newly developed algorithm coupled with high-resolution spatial and temporal approximations is successfully applied to shock-bluff body and shock-diffraction problems solving Euler and Navier-Stokes equations. Results show excellent agreement with the available numerical and experimental data, thereby demonstrating the efficiency and the performance of the proposed method.

  18. Reflection and transmission coefficients of a single layer in poroelastic media.

    PubMed

    Corredor, Robiel Martinez; Santos, Juan E; Gauzellino, Patricia M; Carcione, José M

    2014-06-01

    Wave propagation in poroelastic media is a subject that finds applications in many fields of research, from geophysics of the solid Earth to material science. In geophysics, seismic methods are based on the reflection and transmission of waves at interfaces or layers. It is a relevant canonical problem, which has not been solved in explicit form, i.e., the wave response of a single layer, involving three dissimilar media, where the properties of the media are described by Biot's theory. The displacement fields are recast in terms of potentials and the boundary conditions at the two interfaces impose continuity of the solid and fluid displacements, normal and shear stresses, and fluid pressure. The existence of critical angles is discussed. The results are verified by taking proper limits-zero and 100% porosity-by comparison to the canonical solutions corresponding to single-phase solid (elastic) media and fluid media, respectively, and the case where the layer thickness is zero, representing an interface separating two poroelastic half-spaces. As examples, it was calculated the reflection and transmission coefficients for plane wave incident at a highly permeable and compliant fluid-saturated porous layer, and the case where the media are saturated with the same fluid.

  19. Improved Ocular Delivery of Nepafenac by Cyclodextrin Complexation.

    PubMed

    Shelley, Haley; Grant, Makenzie; Smith, Forrest T; Abarca, Eva M; Jayachandra Babu, R

    2018-06-13

    Nepafenac is a nonsteroidal anti-inflammatory drug (NSAID), currently only available as 0.1% ophthalmic suspension (Nevanac®). This study utilized hydroxypropyl-β-cyclodextrin (HPBCD) to increase the water solubility and trans-corneal permeation of nepafenac. The nepafenac-HPBCD complexation in the liquid and solid states were confirmed by phase solubility, differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance spectroscopy (NMR) analyses. Nepafenac 0.1% ophthalmic solution was formulated using HPBCD (same pH and osmolality as that of Nevanac®) and pig eye trans-corneal permeation was studied versus Nevanac®. Furthermore, nepafenac content in cornea, sclera, iris, lens, aqueous humor, choroid, ciliary body, retina, and vitreous humor was studied in a continuous isolated pig eye perfusion model in comparison to the suspension and Nevanac®. Permeation studies using porcine corneas revealed that the solution formulation had a permeation rate 18 times higher than Nevanac®. Furthermore, the solution had 11 times higher corneal retention than Nevanac®. Drug distribution studies using porcine eyes revealed that the solution formulation enables detectable levels in various ocular tissues while the drug was undetectable by Nevanac®. The ocular solution formulation had a significantly higher drug concentration in the cornea compared to the suspension or Nevanac®.

  20. Technical note: Use of a digital and an optical Brix refractometer to estimate total solids in milk replacer solutions for calves.

    PubMed

    Floren, H K; Sischo, W M; Crudo, C; Moore, D A

    2016-09-01

    The Brix refractometer is used on dairy farms and calf ranches for colostrum quality (estimation of IgG concentration), estimation of serum IgG concentration in neonatal calves, and nonsalable milk evaluation of total solids for calf nutrition. Another potential use is to estimate the total solids concentrations of milk replacer mixes as an aid in monitoring feeding consistency. The purpose of this study was to evaluate the use of Brix refractometers to estimate total solids in milk replacer solutions and evaluate different replacer mixes for osmolality. Five different milk replacer powders (2 milk replacers with 28% crude protein and 25% fat and 3 with 22% crude protein and 20% fat) were mixed to achieve total solids concentrations from approximately 5.5 to 18%, for a total of 90 different solutions. Readings from both digital and optical Brix refractometers were compared with total solids. The 2 types of refractometers' readings correlated well with one another. The digital and optical Brix readings were highly correlated with the total solids percentage. A value of 1.08 to 1.47 would need to be added to the Brix reading to estimate the total solids in the milk replacer mixes with the optical and digital refractometers, respectively. Osmolality was correlated with total solids percentage of the mixes, but the relationship was different depending on the type of milk replacer. The Brix refractometer can be beneficial in estimating total solids concentration in milk replacer mixes to help monitor milk replacer feeding consistency. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1998-01-01

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.

  2. Formation of the racemic compound of ephedrine base from a physical mixture of its enantiomers in the solid, liquid, solution, or vapor state.

    PubMed

    Duddu, S P; Grant, D J

    1992-08-01

    Physical mixtures (conglomerates) of the two enantiomers of ephedrine base, each containing 0.5% (w/w) of water, were observed to be converted to the 1:1 racemic compound in the solid, liquid, solution, or vapor state. From a geometrically mixed racemic conglomerate of particle size 250-300 microns (50-60 mesh), the formation of the racemic compound follows second-order kinetics (first order with respect to each enantiomer), with a rate constant of 392 mol-1 hr-1 at 22 degrees C. The reaction appears to proceed via the vapor phase as indicated by the growth of the crystals of the racemic compound between diametrically separated crystals of the two enantiomers in a glass petri dish. The observed kinetics of conversion in the solid state are explained by a homogeneous reaction model via the vapor and/or liquid states. Formation of the racemic compound from the crystals of ephedrine enantiomers in the solution state may explain why Schmidt et al. (Pharm. Res. 5:391-395, 1988) observed a consistently lower aqueous solubility of the mixture than of the pure enantiomers. The solid phase in equilibrium with the solution at the end of the experiment was found to be the racemic compound, whose melting point and heat of fusion are higher than those of the enantiomers. An association reaction, of measurable rate, between the opposite enantiomers in a binary mixture in the solid, liquid, solution, or vapor state to form the racemic compound may be more common than is generally realized.

  3. Recovery of soluble chloride salts from the wastewater generated during the washing process of municipal solid wastes incineration fly ash.

    PubMed

    Tang, Hailong; Erzat, Aris; Liu, Yangsheng

    2014-01-01

    Water washing is widely used as the pretreatment method to treat municipal solid waste incineration fly ash, which facilitates the further solidification/stabilization treatment or resource recovery of the fly ash. The wastewater generated during the washing process is a kind of hydrosaline solution, usually containing high concentrations of alkali chlorides and sulphates, which cause serious pollution to environment. However, these salts can be recycled as resources instead of discharge. This paper explored an effective and practical recovery method to separate sodium chloride, potassium chloride, and calcium chloride salts individually from the hydrosaline water. In laboratory experiments, a simulating hydrosaline solution was prepared according to composition of the waste washing water. First, in the three-step evaporation-crystallization process, pure sodium chloride and solid mixture of sodium and potassium chlorides were obtained separately, and the remaining solution contained potassium and calcium chlorides (solution A). And then, the solid mixture was fully dissolved into water (solution B obtained). Finally, ethanol was added into solutions A and B to change the solubility of sodium, potassium, and calcium chlorides within the mixed solvent of water and ethanol. During the ethanol-adding precipitation process, each salt was separated individually, and the purity of the raw production in laboratory experiments reached about 90%. The ethanol can be recycled by distillation and reused as the solvent. Therefore, this technology may bring both environmental and economic benefits.

  4. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  5. In Operando XRD and TXM Study on the Metastable Structure Change of NaNi 1/3Fe 1/3Mn 1/3O 2 under Electrochemical Sodium-Ion Intercalation

    DOE PAGES

    Xie, Yingying; Wang, Hong; Xu, Guiliang; ...

    2016-09-02

    In operando XRD and TXM-XANES approaches demonstrate that structure evolution in NaNi 1/3Fe 1/3Mn 1/3O 2 during cycling follows a continuous change, and the formation of a nonequilibrium solid solution phase in the existence of two phases. Here, an O3' and P3' monoclinic phase occur, and redox couples of Ni 3+/Ni 4+ and Fe 3+/Fe 4+ are mainly responsible in the charge voltage range from 4.0 to 4.3 V.

  6. Hyperbaric hydrothermal atomic force microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2002-01-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  7. Hyperbaric Hydrothermal Atomic Force Microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2003-07-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  8. Metal biosorption-flotation. Application to cadmium removal.

    PubMed

    Matis, K A; Zouboulis, A I; Grigoriadou, A A; Lazaridis, N K; Ekateriniadou, L V

    1996-05-01

    Biosorption using suspended non-living biomass, and flotation (for consequent solid/liquid separation of the metal-loaded biomass) have been studied in the laboratory as a possible combined process, for the removal of toxic metals (i.e., cadmium) from dilute aqueous solutions. The various parameters of the process were investigated in depth, including re-use of biosorbent. A filter aid (contained in the biomass industrial waste used) was found not really to interfere. Zeta-potential measurements of the aforementioned system were also carried out. Promising results were obtained during continuous-flow experiments. A flotation residence time of 4 min was achieved. Metal removal and suspended biomass recovery were generally over 95%.

  9. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations.

    PubMed

    Dai, Peng; Jiang, Nan; Tan, Ren-Xiang

    2016-01-01

    Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zhang; Wanjun, Tang, E-mail: tangmailbox@126.com

    Highlights: • Iso-structural garnet-type Na{sub 2}(Y,Eu)Mg{sub 2}V{sub 3}O{sub 12} solid solution were synthesized. • Efficient energy transfer from [VO{sub 4}]{sup 3−} to Eu{sup 3+} ions in this phosphor is observed obviously. • Tuning the Y/Eu ratio generates the varied hues from yellowish-green to reddish-orange. • This kind of phosphor can be potentially used in UV pumped LEDs. - Abstract: A series of solid-solution phosphors Na{sub 2}(Y,Eu)Mg{sub 2}V{sub 3}O{sub 12} were prepared using solution combustion reaction. X-ray diffraction studies verified the formation of single phase Na{sub 2}(Y,Eu)Mg{sub 2}V{sub 3}O{sub 12} with garnet structure. Na{sub 2}(Y,Eu)Mg{sub 2}V{sub 3}O{sub 12} phosphors show notmore » only a broad emission band with a maximum at 510 nm due to the [VO{sub 4}]{sup 3−} group but also several sharp emission lines due to the Eu{sup 3+} ions. The energy transfer from [VO{sub 4}]{sup 3−} to Eu{sup 3+} was discussed on the base of the spectral analysis. The color-tunable emissions of the Na{sub 2}(Y,Eu)Mg{sub 2}V{sub 3}O{sub 12} phosphor as a function of Y/Eu ratio are realized by continuously generating the varied hues from yellowish-green to reddish-orange. This indicates that the obtained phosphor may have potential applications in the field of UV-based white LEDs.« less

  11. Inorganic chemistry of water and bed sediment in selected tributaries of the south Umpqua River, Oregon, 1998

    USGS Publications Warehouse

    Hinkle, Stephen R.

    1999-01-01

    Ten sites on small South Umpqua River tributaries were sampled for inorganic constituents in water and streambed sediment. In aqueous samples, high concentrations (concentrations exceeding U.S. Environmental Protection Agency criterion continuous concentration for the protection of aquatic life) of zinc, copper, and cadmium were detected in Middle Creek at Silver Butte, and the concentration of zinc was high at Middle Creek near Riddle. Similar patterns of trace-element occurrence were observed in streambed-sediment samples.The dissolved aqueous load of zinc carried by Middle Creek along the stretch between the upper site (Middle Creek at Silver Butte) and the lower site (Middle Creek near Riddle) decreased by about 0.3 pounds per day. Removal of zinc from solution between the upper and lower sites on Middle Creek evidently was occurring at the time of sampling. However, zinc that leaves the aqueous phase is not necessarily permanently lost from solution. For example, zinc solubility is pH-dependent, and a shift between solid and aqueous phases towards release of zinc to solution in Middle Creek could occur with a perturbation in stream-water pH. Thus, at least two potentially significant sources of zinc may exist in Middle Creek: (1) the upstream source(s) producing the observed high aqueous zinc concentrations and (2) the streambed sediment itself (zinc-bearing solid phases and/or adsorbed zinc). Similar behavior may be exhibited by copper and cadmium because these trace elements also were present at high concentrations in streambed sediment in the Middle Creek Basin.

  12. Exact Solution of the Two-Level System and the Einstein Solid in the Microcanonical Formalism

    ERIC Educational Resources Information Center

    Bertoldi, Dalia S.; Bringa, Eduardo M.; Miranda, E. N.

    2011-01-01

    The two-level system and the Einstein model of a crystalline solid are taught in every course of statistical mechanics and they are solved in the microcanonical formalism because the number of accessible microstates can be easily evaluated. However, their solutions are usually presented using the Stirling approximation to deal with factorials. In…

  13. Modifying Optical Properties of ZnO Films by Forming Zn[subscript 1-x] Co[subscript x]O Solid Solutions via Spray Pyrolysis

    ERIC Educational Resources Information Center

    Bentley, Anne K.; Weaver, Gabriela C.; Russell, Cianan B.; Fornes, William L.; Choi, Kyoung-Shin; Shih, Susan M.

    2007-01-01

    A simple and cost-effective experiment for the development and characterization of semiconductors using Uv-vis spectroscopy is described. The study shows that the optical properties of ZnO films can be easily modified by forming Zn[subscript 1-x] Co[subscript x]O solid solutions via spray pyrolysis.

  14. A study of room-temperature LixMn1.5Ni0.5O4 solid solutions

    NASA Astrophysics Data System (ADS)

    Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying

    2015-01-01

    Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 <= x <= 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.

  15. Method for polymer synthesis in a reaction well

    DOEpatents

    Brennan, Thomas M.

    1998-01-01

    A method of synthesis for building a polymer chain, oligonucleotides in particular, by sequentially adding monomer units to at least one solid support for growing and immobilizing a polymer chain thereon in a liquid reagent solution. The method includes the step of: A) depositing a liquid reagent in a reaction well (26) in contact with at least one solid support and at least one monomer unit of the polymer chain affixed to the solid support. The well (26) includes at least one orifice (74) extending into the well (26), and is of a size and dimension to form a capillary liquid seal to retain the reagent solution in the well (26) to enable polymer chain growth on the solid support. The method further includes the step of B) expelling the reagent solution from the well (26), while retaining the polymer chain therein. This is accomplished by applying a first gas pressure to the reaction well such that a pressure differential between the first gas pressure and a second gas pressure exerted on an exit (80) of the orifice (74) exceeds a predetermined amount sufficient to overcome the capillary liquid seal and expel the reagent solution from the well (26) through the orifice exit (80).

  16. Method for polymer synthesis in a reaction well

    DOEpatents

    Brennan, T.M.

    1998-09-29

    A method of synthesis is described for building a polymer chain, oligonucleotides in particular, by sequentially adding monomer units to at least one solid support for growing and immobilizing a polymer chain thereon in a liquid reagent solution. The method includes the step of: (A) depositing a liquid reagent in a reaction well in contact with at least one solid support and at least one monomer unit of the polymer chain affixed to the solid support. The well includes at least one orifice extending into the well, and is of a size and dimension to form a capillary liquid seal to retain the reagent solution in the well to enable polymer chain growth on the solid support. The method further includes the step of (B) expelling the reagent solution from the well, while retaining the polymer chain therein. This is accomplished by applying a first gas pressure to the reaction well such that a pressure differential between the first gas pressure and a second gas pressure exerted on an exit of the orifice exceeds a predetermined amount sufficient to overcome the capillary liquid seal and expel the reagent solution from the well through the orifice exit. 9 figs.

  17. Composition design for Laves phase-related body-centered cubic-V solid solution alloys with large hydrogen storage capacities.

    PubMed

    Wang, H B; Wang, Q; Dong, C; Yuan, L; Xu, F; Sun, L X

    2008-03-19

    This paper analyzes the characteristics of alloy compositions with large hydrogen storage capacities in Laves phase-related body-centered cubic (bcc) solid solution alloy systems using the cluster line approach. Since a dense-packed icosahedral cluster A(6)B(7) characterizes the local structure of AB(2) Laves phases, in an A-B-C ternary system, such as Ti-Cr (Mn, Fe)-V, where A-B forms AB(2) Laves phases while A-C and B-C tend to form solid solutions, a cluster line A(6)B(7)-C is constructed by linking A(6)B(7) to C. The alloy compositions with large hydrogen storage capacities are generally located near this line and are approximately expressed with the cluster-plus-glue-atom model. The cluster line alloys (Ti(6)Cr(7))(100-x)V(x) (x = 2.5-70 at.%) exhibit different structures and hence different hydrogen storage capacities with increasing V content. The alloys (Ti(6)Cr(7))(95)V(5) and Ti(30)Cr(40)V(30) with bcc solid solution structure satisfy the cluster-plus-glue-atom model.

  18. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys

    DOE PAGES

    Fleischmann, Ernst; Miller, Michael K.; Affeldt, Ernst; ...

    2015-01-31

    Here, the solid-solution hardening potential of the refractory elements rhenium, tungsten and molybdenum in the matrix of single-crystal nickel-based superalloys was experimentally quantified. Single-phase alloys with the composition of the nickel solid-solution matrix of superalloys were cast as single crystals, and tested in creep at 980 °C and 30–75 MPa. The use of single-phase single-crystalline material ensures very clean data because no grain boundary or particle strengthening effects interfere with the solid-solution hardening. This makes it possible to quantify the amount of rhenium, tungsten and molybdenum necessary to reduce the creep rate by a factor of 10. Rhenium is moremore » than two times more effective for matrix strengthening than either tungsten or molybdenum. The existence of rhenium clusters as a possible reason for the strong strengthening effect is excluded as a result of atom probe tomography measurements. If the partitioning coefficient of rhenium, tungsten and molybdenum between the γ matrix and the γ' precipitates is taken into account, the effectiveness of the alloying elements in two-phase superalloys can be calculated and the rhenium effect can be explained.« less

  19. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties

    PubMed Central

    Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng

    2017-01-01

    P–type SnS compound and SnS1−xSex solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS–pressurizing direction in the temperature range 323–823 Κ. SnS compound and SnS1−xSex solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m−1 K−1 at 823 K for the composition SnS0.5Se0.5. With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS0.2Se0.8 along the parallel direction. PMID:28240324

  20. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties.

    PubMed

    Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng

    2017-02-27

    P-type SnS compound and SnS 1-x Se x solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS-pressurizing direction in the temperature range 323-823 Κ. SnS compound and SnS 1-x Se x solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m -1  K -1 at 823 K for the composition SnS 0.5 Se 0.5 . With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS 0.2 Se 0.8 along the parallel direction.

  1. In situ polymerization of monomers for polyphenylquinoxaline/graphite

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1973-01-01

    Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.

  2. Solid-phase microextraction for qualitative and quantitative determination of migrated degradation products of antioxidants in an organic aqueous solution.

    PubMed

    Burman, Lina; Albertsson, Ann-Christine; Höglund, Anders

    2005-07-08

    Low molecular weight aromatic substances may migrate out from plastic packaging to their contents, especially if they consist of organic aqueous solutions or oils. It is, therefore, extremely important to be able to identify and quantify any migrated substances in such solutions, even at very low concentrations. We have in this work investigated and evaluated the use of solid-phase microextraction for the specific task of extraction from an organic aqueous solution such as a simulated pharmaceutical solution consisting of 10 vol.% ethanol in water. The goal was furthermore to investigate the possibility of simultaneously identifying and quantifying the substances in spite of differences in their chemical structures. Methods were developed and evaluated for extraction both with direct sampling and with headspace sampling. Difficulties appeared due to the ethanol in the solution and the minute amounts of substances present. We have shown that a simultaneous quantification of migrated low molecular weight degradation products of antioxidants using only one fibre is possible if the extraction method and temperature are adjusted in relation to the concentration levels of the analytes. Comparions were made with solid-phase extraction.

  3. Methods for analysis of cracks in three-dimensional solids

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.

  4. Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution

    NASA Astrophysics Data System (ADS)

    Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.

    2018-02-01

    A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.

  5. Recovery of uranium from an irradiated solid target after removal of molybdenum-99 produced from the irradiated target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, Sean Douglas; May, Iain; Copping, Roy

    A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted tomore » concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.« less

  6. A finite difference method for a coupled model of wave propagation in poroelastic materials.

    PubMed

    Zhang, Yang; Song, Limin; Deffenbaugh, Max; Toksöz, M Nafi

    2010-05-01

    A computational method for time-domain multi-physics simulation of wave propagation in a poroelastic medium is presented. The medium is composed of an elastic matrix saturated with a Newtonian fluid, and the method operates on a digital representation of the medium where a distinct material phase and properties are specified at each volume cell. The dynamic response to an acoustic excitation is modeled mathematically with a coupled system of equations: elastic wave equation in the solid matrix and linearized Navier-Stokes equation in the fluid. Implementation of the solution is simplified by introducing a common numerical form for both solid and fluid cells and using a rotated-staggered-grid which allows stable solutions without explicitly handling the fluid-solid boundary conditions. A stability analysis is presented which can be used to select gridding and time step size as a function of material properties. The numerical results are shown to agree with the analytical solution for an idealized porous medium of periodically alternating solid and fluid layers.

  7. Free energy of formation of Mo2C and the thermodynamic properties of carbon in solid molybdenum

    NASA Technical Reports Server (NTRS)

    Seigle, L. L.; Chang, C. L.; Sharma, T. P.

    1979-01-01

    As part of a study of the thermodynamical properties of interstitial elements in refractory metals, the free energy of formation of Mo2C is determined, and the thermodynamical properties of C in solution in solid Mo evaluated. The activity of C in the two-phase region Mo + Mo2C is obtained from the C content of iron rods equilibrated with metal + carbide powder mixtures. The free energy of formation of alpha-Mo2C is determined from the activity data. The thermodynamic properties of C in the terminal solid solution are calculated from available data on the solid solubility of C in Mo. Lattice distortion due to misfit of the C atoms in the interstitial sites appears to play a significant role in determining the thermodynamic properties of C in solid Mo.

  8. An Investigation into the Polymorphism and Crystallization of Levetiracetam and the Stability of its Solid Form.

    PubMed

    Xu, Kailin; Xiong, Xinnuo; Guo, Liuqi; Wang, Lili; Li, Shanshan; Tang, Peixiao; Yan, Jin; Wu, Di; Li, Hui

    2015-12-01

    Levetiracetam (LEV) crystals were prepared using different solvents at different temperatures. The LEV crystals were systematically characterized by X-ray powder diffraction (XRPD) and morphological analysis. The results indicated that many kinds of crystal habits exist in a solid form of LEV. To investigate the effects of LEV concentration, crystallization temperature, and crystallization type on crystallization and solid phase transformation of LEV, multiple methods were performed for LEV aqueous solution to determine if a new solid form exists in solid-state LEV. However, XRPD data demonstrate that the LEV solid forms possess same spatial arrangements that are similar to the original solid form. This result indicates that the LEV concentration, crystallization temperature, and crystallization type in aqueous solution have no influence on the crystallization and solid phase transformation of LEV. Moreover, crystallization by sublimation, melt cooling, and quench cooling, as well as mechanical effect, did not result in the formation of new LEV solid state. During melt cooling, the transformation of solid form LEV is a direct process from melting amorphous phase to the original LEV crystal phase, and the conversion rate is very quick. In addition, stability investigation manifested that LEV solid state is very stable under various conditions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Method for treating liquid wastes

    DOEpatents

    Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

    1995-12-26

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

  10. Method for treating liquid wastes

    DOEpatents

    Katti, Kattesh V.; Volkert, Wynn A.; Singh, Prahlad; Ketring, Alan R.

    1995-01-01

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

  11. Salt-assistant combustion synthesis of nanocrystalline Nd{sub 2}(Zr{sub 1-x}Sn{sub x}){sub 2}O{sub 7} (0 {<=} x {<=} 1) solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong Yuping, E-mail: huabeitong@yahoo.cn; Wang Yanping

    2009-11-15

    Nanocrystalline Nd{sub 2}(Zr{sub 1-x}Sn{sub x}){sub 2}O{sub 7} series solid solutions were prepared by a convenient salt-assisted combustion process using glycine as fuel. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The results showed the Zr ion can be partially replaced by Sn ion. The partial substituted products were still single-phase solid solutions and the crystal form remained unchanged. TEM images reveal that the products are composed of well-dispersed square-shaped nanocrystals. The method provides a convenient and low-cost route for the synthesis of nanostructures of oxide materials.

  12. Tunable Porosities and Shapes of Fullerene-Like Spheres

    PubMed Central

    Dielmann, Fabian; Fleischmann, Matthias; Heindl, Claudia; Peresypkina, Eugenia V; Virovets, Alexander V; Gschwind, Ruth M; Scheer, Manfred

    2015-01-01

    The formation of reversible switchable nanostructures monitored by solution and solid-state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with CuI halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete spherically shaped fullerene-like assemblies possessing an Ih-C80 topology at one side and to a tetrahedral-structured aggregate at the other. In the solid state, the formed nano-sized aggregates reach an outer diameter of 3.14 and 3.56 nm, respectively. This feature is used to reversibly encapsulate and release guest molecules in solution. PMID:25759976

  13. Efficient estimation of diffusion during dendritic solidification

    NASA Technical Reports Server (NTRS)

    Yeum, K. S.; Poirier, D. R.; Laxmanan, V.

    1989-01-01

    A very efficient finite difference method has been developed to estimate the solute redistribution during solidification with diffusion in the solid. This method is validated by comparing the computed results with the results of an analytical solution derived by Kobayashi (1988) for the assumptions of a constant diffusion coefficient, a constant equilibrium partition ratio, and a parabolic rate of the advancement of the solid/liquid interface. The flexibility of the method is demonstrated by applying it to the dendritic solidification of a Pb-15 wt pct Sn alloy, for which the equilibrium partition ratio and diffusion coefficient vary substantially during solidification. The fraction eutectic at the end of solidification is also obtained by estimating the fraction solid, in greater resolution, where the concentration of solute in the interdendritic liquid reaches the eutectic composition of the alloy.

  14. Mathematical Analysis of the Solidification Behavior of Plain Steel Based on Solute- and Heat-Transfer Equations in the Liquid-Solid Zone

    NASA Astrophysics Data System (ADS)

    Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.

    2018-04-01

    An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.

  15. Pretreatment of Hanford medium-curie wastes by fractional crystallization.

    PubMed

    Nassif, Laurent; Dumont, George; Alysouri, Hatem; Rousseau, Ronald W

    2008-07-01

    Acceleration of the schedule for decontamination of the Hanford site using bulk vitrification requires implementation of a pretreatment operation. Medium-curie waste must be separated into two fractions: one is to go to a waste treatment and immobilization plant and a second, which is low-activity waste, is to be processed by bulk vitrification. The work described here reports research on using fractional crystallization for that pretreatment. Sodium salts are crystallized by evaporation of water from solutions simulating those removed from single-shell tanks, while leaving cesium in solution. The crystalline products are then recovered and qualified as low-activity waste, which is suitable upon redissolution for processing by bulk vitrification. The experimental program used semibatch operation in which a feed solution was continuously added to maintain a constant level in the crystallizer while evaporating water. The slurry recovered at the end of a run was filtered to recover product crystals, which were then analyzed to determine their composition. The results demonstrated that targets on cesium separation from the solids, fractional recovery of sodium salts, and sulfate content of the recovered salts can be achieved by the process tested.

  16. Investigation of Artificial Forced Cooling in the Bridgman Crystal Growth of Cadmium Zinc Telluride

    NASA Astrophysics Data System (ADS)

    Liu, Juncheng; Li, Jiao; Zhang, Guodong; Li, Changxing; Lennon, Craig; Sivananthan, Siva

    2007-08-01

    The effects of artificial forced cooling on the solid liquid interface and on solute segregation were investigated by modeling the vertical Bridgman method for the single-crystal growth of CdZnTe, taking into consideration effects such as increasing the axial outward heat flux from the crucible bottom, the radial outward heat flux from the crucible wall, and the carbon film thickness on the crucible inner wall. Axial artificially forced cooling noticeably increases convection and the temperature gradient in the melt next to the solid liquid interface, and substantially reduces interface concavity at the initial solidification stage. Interface concavity increases a little when the solidification proceeds further, however. Axial artificially forced cooling reduces radial solute segregation of the initial segment of the grown crystal and slightly increases the solute iso-concentration segment. Radial artificially forced cooling enhances melt convection substantially, affects solid liquid interface concavity only slightly, and hardly affects solute segregation in the grown crystal. Doubling the carbon film thickness weakens convection of the melt in front of the interface, substantially increases interface concavity, and hardly affects solute segregation in the grown crystal.

  17. Triclinic-monoclinic-orthorhombic (T-M-O) structural transitions in phase diagram of FeVO4-CrVO4 solid solutions

    NASA Astrophysics Data System (ADS)

    Bera, Ganesh; Reddy, V. R.; Rambabu, P.; Mal, P.; Das, Pradip; Mohapatra, N.; Padmaja, G.; Turpu, G. R.

    2017-09-01

    Phase diagram of FeVO4-CrVO4 solid solutions pertinent with structural and magnetic phases is presented with unambiguous experimental evidences. Solid solutions Fe1-xCrxVO4 (0 ≤ x ≤ 1.0) were synthesized through the standard solid state route and studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectra of X-rays, Raman spectroscopy, d.c. magnetization, and 57Fe Mössbauer spectroscopic studies. FeVO4 and CrVO4 were found to be in triclinic (P-1 space group) and orthorhombic structures (Cmcm space group), respectively. Cr incorporation into the FeVO4 lattice leads to the emergence of a new monoclinic phase dissimilar to the both end members of the solid solutions. In Fe1-xCrxVO4 up to x = 0.10, no discernible changes in the triclinic structure were found. A new structural monoclinic phase (C2/m space group) emerges within the triclinic phase at x = 0.125, and with the increase in Cr content, it gets stabilized with clear single phase signatures in the range of x = 0.175-0.25 as evidenced by the Rietveld analysis of the structures. Beyond x = 0.33, orthorhombic phase similar to CrVO4 (Cmcm space group) emerges and coexists with a monoclinic structure up to x = 0.85, which finally tends to stabilize in the range of x = 0.90-1.00. The Raman spectroscopic studies also confirm the structural transition. FeVO4 Raman spectra show the modes related to three nonequivalent V ions in the triclinic structure, where up to 42 Raman modes are observed in the present study. With the stabilization of structures having higher symmetry, the number of Raman modes decreases and the modes related to symmetry inequivalent sites collate into singular modes from the doublet structure. A systematic crossover from two magnetic transitions in FeVO4, at 21.5 K and 15.4 K to single magnetic transition in CrVO4, at 71 K (antiferromagnetic transition), is observed in magnetization studies. The intermediate solid solution with x = 0.15 shows two magnetic transitions, whereas in the compound with x = 0.33 one of the magnetic transitions disappears. 57Fe Mössbauer spectroscopic studies show a finger print evidence for disappearance of non-equivalent sites of Fe as the structure changes from Triclinic-Monoclinic-Orthorhombic phases with the increasing Cr content in Fe1-xCrxVO4. Comprehensive studies related to the structural changes in Fe1-xCrxVO4 solid solutions lead us to detailed phase diagrams which shall be characteristic for room temperature structural and temperature dependent magnetic transitions in these solid solutions, respectively.

  18. Deformation-related recrystallization processes

    NASA Astrophysics Data System (ADS)

    Drury, Martyn R.; Urai, Janos L.

    1990-02-01

    Recrystallization is a common microstructural transformation that occurs during deformation, metamorphism and diagenesis of rocks. Studies on minerals and rock analogues have demonstrated that a wide range of recrystallization mechanisms can occur. The range of mechanisms is related to the various ways in which two basic processes, grain boundary migration and new grain boundary formation combine to transform the microstructure. Two recent papers (Drury et al., 1985; Urai et al., 1986) have proposed different schemes for the description of recrystallization mechanisms. The purpose of this paper is to provide a unified framework for the description of mechanisms. Recrystallization mechanisms are divided into three main types; rotation mechanisms which principally involve the formation of new grain boundaries; migration mechanisms which principally involve grain boundary migration; and general mechanisms which involve both basic processes. A further distinction is made on the basis of the continuity of the microstructural transformation with respect to time. Each of the three main types of mechanism can be divided into a number of sub-types depending on whether the processes of grain boundary migration, new grain boundary formation and new grain formation occur in a discontinuous or continuous manner with respect to time. As the terms continuous and discontinuous have been used in the metallurgical literature to signify the spatial continuity of the microstructural transformation, the terms discontinuai and continual are used to refer to the temporal continuity of the transformation. It is recommended that the following aspects should be specified, if possible, in a general description of recrystallization mechanisms: (1) How do the basic processes combine to transform the microstructure. (2) If new grain development occurs, what is the development mechanism, and does new grain formation occur in a continual or discontinuai manner. (3) If grain boundary migration is involved in the transformation, what is the migration mechanism (i.e. fast solute escape migration, slow solute loaded migration, fluid assisted migration, etc.), and is migration a continual or discontinuai process. The application of the unified scheme is illustrated by reviewing studies that have provided detailed information on the recrystallization mechanisms involved. The complicating effects of solid solution impurities, dispersed second phase particles and grain boundary fluid films are also considered and it is demonstrated that variations in content of these types of impurity can significantly effect the types of recrystallization that occur in a given material.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saidov, A. S., E-mail: amin@uzsci.net; Usmonov, Sh. N., E-mail: sh-usmonov@rambler.ru; Saidov, M. S.

    (Si{sub 2}){sub 1−x−y}(Ge{sub 2}){sub x}(GaAs){sub y} substitutional solid solutions (0 ≤ x ≤ 0.91, 0 ≤ y ≤ 0.94) are grown by liquid-phase epitaxy from a Pb-based solution-melt on Si substrates with the (111) crystallographic orientation. The chemical composition of the epitaxial films is studied by X-rays probe microanalysis, and the distribution profile of solid solution components is determined. Spectral dependences of the photosensitivity and photoluminescence of the n-Si-p(Si{sub 2}){sub 1−x−y}(Ge{sub 2}){sub x}(GaAs){sub y} heterostructures are studied at room and liquid-nitrogen temperatures. Two maxima are found in the photoluminescence spectra of the (Si{sub 2}){sub 1−x−y}(Ge{sub 2}){sub x}(GaAs){sub y} films (0more » ≤ x ≤ 0.91, 0 ≤ y ≤ 0.94) against the background of a broad emission spectrum. The fundamental maximum with an energy of 1.45 eV is caused by the band-to-band recombination of solid solution carriers, and an additional maximum with an energy of 1.33 eV is caused by the recombination of carriers with the participation of impurity levels of the Si-Si bond (Si{sub 2} is covalently coupled with the tetrahedral lattice of the solid solution host)« less

  20. One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Blackwell, Ben F.; Edwards, Jack R.

    2007-01-01

    The development and verification of a one-dimensional material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of residual equations have been implemented and verified for the thermochemical ablation of internally decomposing materials. This study is a continuation of the work presented in "One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure" (AIAA-2006-2910), which described the derivation, implementation, and verification of the constant density solid energy equation terms and boundary conditions. The present study extends the model to decomposing materials including decomposition kinetics, pyrolysis gas flow through the porous char layer, and a mixture (solid and gas) energy equation. Verification results are presented for the thermochemical ablation of a carbon-phenolic ablator which involves the solution of the entire system of governing equations.

  1. Solid-liquid like phase transition in a confined granular suspension

    NASA Astrophysics Data System (ADS)

    Sakai, Nariaki; Lechenault, Frederic; Adda Bedia, Mokhtar

    We present an experimental study of a liquid-solid like phase transition in a two-dimensional granular media. Particles are placed in a vertical Hele-Show cell filled with a denser solution of cesium-chloride. Thus, when the cell is rotated around its axis, hydrostatic pressure exerts a centripetal force on the particles which confines them towards the center. This force is in competition with gravity, thus by modifying the rotation rate, it is possible to transform continuously and reversibly the sample from a disordered loose state to an ordered packed state. The system presents many similarities with thermal systems at equilibrium like density and interface fluctuations, and the transition between the two phases goes through a coexistence state, where there is nucleation and growth of locally ordered domains which are captured by the correlation function of the hexatic order parameter. We discuss the possibility to extend the grand-canonical formalism to out-of equilibrium systems, in order to uncover a state equation between the density and the pressure in the medium.

  2. 40 CFR 260.33 - Procedures for variances from classification as a solid waste, for variances to be classified as...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... classification as a solid waste, for variances to be classified as a boiler, or for non-waste determinations. 260.33 Section 260.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.33 Procedures for variances...

  3. 40 CFR 260.33 - Procedures for variances from classification as a solid waste, for variances to be classified as...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... classification as a solid waste, for variances to be classified as a boiler, or for non-waste determinations. 260.33 Section 260.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.33 Procedures for variances...

  4. 40 CFR 260.33 - Procedures for variances from classification as a solid waste, for variances to be classified as...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... classification as a solid waste, for variances to be classified as a boiler, or for non-waste determinations. 260.33 Section 260.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.33 Procedures for variances...

  5. 78 FR 35258 - Solid Agricultural Grade Ammonium Nitrate from Ukraine: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... Ammonium Nitrate from Ukraine: Continuation of Antidumping Duty Order AGENCY: Import Administration... agricultural grade ammonium nitrate from Ukraine would likely lead to continuation or recurrence of dumping... Order: Solid Agricultural Grade Ammonium Nitrate from Ukraine, 66 FR 47451 (September 12, 2001) (``the...

  6. Single Protein Structural Analysis with a Solid-state Nanopore Sensor

    NASA Astrophysics Data System (ADS)

    Li, Jiali; Golovchenko, Jene; McNabb, David

    2005-03-01

    We report on the use of solid-state nanopore sensors to detect single polypeptides. These solid-state nanopores are fabricated in thin membranes of silicon nitride by ion beam sculpting...[1]. When an electrically biased nanopore is exposed to denatured proteins in ionic solution, discrete transient electronic signals: current blockages are observed. We demonstrate examples of such transient electronic signals for Bovine Serum Albumin (BSA) and human placental laminin M proteins in Guanidine hydrochloride solution, which suggest that these polypeptides are individually translocating through the nanopore during the detecting process. The amplitude of the current blockages is proportional to the bias voltage. No transient current blockages are observed when proteins are not present in the solution. To probe protein-folding state, pH and temperature dependence experiments are performed. The results demonstrate a solid-state nanopore sensor can be used to detect and analyze single polypeptide chains. Similarities and differences with signals obtained from double stranded DNA in a solid-state nanopore and single stranded DNA in a biological nanopore are discussed. [.1] Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169.

  7. Aromatic hydrazones derived from nicotinic acid hydrazide as fluorimetric pH sensing molecules: Structural analysis by computational and spectroscopic methods in solid phase and in solution

    NASA Astrophysics Data System (ADS)

    Benković, T.; Kenđel, A.; Parlov-Vuković, J.; Kontrec, D.; Chiş, V.; Miljanić, S.; Galić, N.

    2018-02-01

    Structural analyses of aroylhydrazones were performed by computational and spectroscopic methods (solid state NMR, 1 and 2D NMR spectroscopy, FT-IR (ATR) spectroscopy, Raman spectroscopy, UV-Vis spectrometry and spectrofluorimetry) in solid state and in solution. The studied compounds were N‧-(2,3-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (1), N‧-(2,5-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (2), N‧-(3-chloro-2-hydroxy-phenylmethylidene)-3-pyridinecarbohydrazide (3), and N‧-(2-hydroxy-4-methoxyphenyl-methylidene)-3-pyridinecarbohydrazide (4). Both in solid state and in solution, all compounds were in ketoamine form (form I, sbnd COsbnd NHsbnd Ndbnd Csbnd), stabilized by intramolecular H-bond between hydroxyl proton and nitrogen atom of the Cdbnd N group. In solid state, the Cdbnd O group of 1-4 were involved in additional intermolecular H-bond between closely packed molecules. Among hydrazones studied, the chloro- and methoxy-derivatives have shown pH dependent and reversible fluorescence emission connected to deprotonation/protonation of salicylidene part of the molecules. All findings acquired by experimental methods (NMR, IR, Raman, and UV-Vis spectra) were in excellent agreement with those obtained by computational methods.

  8. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  9. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  10. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1998-01-13

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution. 7 figs.

  11. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  12. Solid state RF power: The route to 1W per euro cent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heid, Oliver

    2013-04-19

    In most particle accelerators RF power is a decisive design constraint due to high costs and relative inflexibility of current electron beam based RF sources, i.e. Klystrons, Magnetrons, Tetrodes etc. At VHF/UHF frequencies the transition to solid state devices promises to fundamentally change the situation. Recent progress brings 1 Watt per Euro cent installed cost within reach. We present a Silicon Carbide semiconductor solution utilising the Solid State Direct Drive technology at unprecedented efficiency, power levels and power densities. The proposed solution allows retrofitting of existing RF accelerators and opens the route to novel particle accelerator concepts.

  13. Results of Copper-Silver Rail Materials Tests

    DTIC Science & Technology

    2006-05-01

    dislocation-dense grain structure. An annealing, recrystallization , and re-straining model is proposed to predict the bandwidth within which the...darker phase is the copper-rich solid solution, while the lighter regions are the eutectic structure consisting of both copper-rich and silver-rich solid...solutions. The eutectic phase ribbons consist of finer copper and silver filaments [1], [5]. The two phases are inhomogeneously deformed during the

  14. Community Solutions to Solid Waste Pollution. Operation Waste Watch: The New Three Rs for Elementary School. Grade 6. [Second Edition.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    This publication, the last in a series of seven for elementary schools, is an environmental education curriculum guide with a focus on waste management issues. It contains a unit of exercises selected for sixth grade students focusing on community solutions to solid waste pollution. Waste management activities included in this unit seek to…

  15. Phase Relations in Ternary Systems in the Subsolidus Region: Methods to Formulate Solid Solution Equations and to Find Particular Compositions

    ERIC Educational Resources Information Center

    Alvarez-Montan~o, Victor E.; Farías, Mario H.; Brown, Francisco; Mun~oz-Palma, Iliana C.; Cubillas, Fernando; Castillon-Barraza, Felipe F.

    2017-01-01

    A good understanding of ternary phase diagrams is required to advance and/or to reproduce experimental research in solid-state and materials chemistry. The aim of this paper is to describe the solutions to problems that appear when studying or determining ternary phase diagrams. A brief description of the principal features shown in phase diagrams…

  16. Destruction of Navy Hazardous Wastes by Supercritical Water Oxidation

    DTIC Science & Technology

    1994-08-01

    cleaning and derusting (nitrite and citric acid solutions), electroplating ( acids and metal bearing solutions), electronics and refrigeration... acid forming chemical species or that contain a large amount of dissolved solids present a challenge to current SCWO •-chnology. Approved for public...Waste streams that contain a large amount of mineral- acid forming chemical species or that contain a large amount of dissolved solids present a challenge

  17. A closed-loop biorefining system to convert organic residues into fuels

    NASA Astrophysics Data System (ADS)

    Chen, Rui

    This project delivers an energy positive and water neutral, closed-loop biorefining system that converts organic wastes into renewable energy and reduces the overall impacts on the environment. The research consisted of three major stages: The first stage of this project was conducted in an anaerobic co-digestion system. Effects of the ratio of dairy manure-to-food waste as well as operating temperature were tested on the performance of the co-digestion system. Results illustrated an increase in biogas productivity with the increase of supplemental food waste; fiber analysis revealed similar chemical composition (cellulose, hemicellulose and lignin) of final solid digestate regardless their different initial feedstock blends and digestion conditions. The molecular genetic analyses demonstrated that anaerobic methanogenic microorganisms were able to adjust their community assemblage to maximize biogas production and produce homogenized solid digestate. The second stage utilized electrocoagulation (EC) pretreated liquid digestate from previous stage to culture freshwater algae. Kinetics study showed a similar maximum growth rate (0.201-0.207 g TS day-1) in both 2x and 5x dilutions of EC solution; however, the algal growth was inhibited in original EC solution (1x), possibly due to the high ammonia-to-phosphate ratio. Algal community assemblage changed drastically in different dilutions of EC solution after a 9-day culture. The following semi-continuous culture in 2x and 5x EC media established steady biomass productivities and nitrogen removal rates; in addition, both conditions illustrated a phenomenon of phosphorus luxury uptake. Biomass composition analyses showed that algae cultured in medium containing higher nitrogen (2x EC medium) accumulated more protein but less carbohydrate and lipid than the 5x EC medium. The last stage involved hydrolyzing the algal biomass cultured in anaerobic digestion effluent and analyzing the effects of the neutralized algal hydrolysate on the performance of enzymatic hydrolysis of acid or alkali pretreated lignocelluosic substrates (poplar, corn stover, switchgrass, and solid fiber from anaerobic digestion). Results found that algal hydrolysate significantly improved the efficiency of enzymatic hydrolysis of lignin-rich, structurally recalcitrant biomass such as poplar and solid fiber from anaerobic digestion. This discovery broadened the potential application of algal biomass besides direct use for biofuel production.

  18. Flexible continuous manufacturing platforms for solid dispersion formulations

    NASA Astrophysics Data System (ADS)

    Karry-Rivera, Krizia Marie

    In 2013 16,000 people died in the US due to overdose from prescription drugs and synthetic narcotics. As of that same year, 90% of new molecular entities in the pharmaceutical drug pipeline are classified as poor water-soluble. The work in this dissertation aims to design, develop and validate platforms that solubilize weak acids and can potentially deter drug abuse. These platforms are based on processing solid dispersions via solvent-casting and hot-melt extrusion methods to produce oral transmucosal films and melt tablets. To develop these platforms, nanocrystalline suspensions and glassy solutions were solvent-casted in the form of films after physicochemical characterizations of drug-excipient interactions and design of experiment approaches. A second order model was fitted to the emulsion diffusion process to predict average nanoparticle size and for process optimization. To further validate the manufacturing flexibility of the formulations, glassy solutions were also extruded and molded into tablets. This process included a systematic quality-by-design (QbD) approach that served to identify the factors affecting the critical quality attributes (CQAs) of the melt tablets. These products, due to their novelty, lack discriminatory performance tests that serve as predictors to their compliance and stability. Consequently, Process Analytical Technology (PAT) tools were integrated into the continuous manufacturing platform for films. Near-infrared (NIR) spectroscopy, including chemical imaging, combined with deconvolution algorithms were utilized for a holistic assessment of the effect of formulation and process variables on the product's CQAs. Biorelevant dissolution protocols were then established to improve the in-vivo in-vitro correlation of the oral transmucosal films. In conclusion, the work in this dissertation supports the delivery of poor-water soluble drugs in products that may deter abuse. Drug nanocrystals ensured high bioavailability, while glassy solutions enabled drug solubilization in polymer matrices. PAT tools helped in characterizing the micro and macro structure of the product while also used as a control strategy for manufacturing. The systematic QbD assessment enabled identification of the variables that significantly affected melt tablet performance and their potential as an abuse deterrent product. Being that these glassy products are novel systems, biorelevant protocols for testing dissolution performance of films were also developed.

  19. Chemical effects induced by gamma-irradiation in solid and in aqueous methanol solutions of 4-iodophenol

    NASA Astrophysics Data System (ADS)

    Mahfouz, R. M.; Siddiqui, M. R. H.; Al-Wassil, A. I.; Al-Resayes, S. I.; Al-Otaibi, A. M.

    2005-05-01

    The present work is a study on radiolyses of 4-iodophenol in aqueous methanol solutions. The radiolysis products are separated and identified using spectrophotometric and chromatographic techniques. The radiolytic products (I-2, I- and IO3-) formed in aerated solutions at room temperature were identified and the yields are investigated as a function of absorbed gamma-ray dose. The formation of I-2 is mainly dependent on the acidity of solution and produced via the pathway of secondary free radical reactions. Aromatic products of lower and higher molecular weight than the corresponding investigated compound were analysed and separated by HPLC. The results have been discussed in view of mechanisms based on free radicals and ion-molecule interactions. The chemical effects induced by gamma-irradiation in solid 4-iodophenol have also been investigated and the degradation products were identified in solid state by NMR, GC/MS experiments and HPLC after dissolution in aqueous methanol. The results were evaluated and compared with radiolysis data.

  20. Influence of an americium solid phase on americium concentrations in solutions

    NASA Astrophysics Data System (ADS)

    Rai, Dhanpat; Strickert, R. G.; Moore, D. A.; Serne, R. J.

    1981-11-01

    Americium-241 concentrations in solutions contacting contaminated sediments for up to 2 yr were measured as a function of pH. Steady-state concentrations were reached within a few days. The solubility-limited Am concentration was found to decrease approximately 10-fold with one unit increase in pH. The log equilibrium constant for the solubility of Am (soil) solid [Am (soil) + H + ⇌ Am (aq complex)+] was found to be -4.12. The predictions based upon thermodynamic data suggest that Am (aq complex)+ is likely to be Am(OH) 2+. Although the chemical formula of Am (soil) was not determined, it does not appear to be Am(OH) 3(a). Published data on sorption coefficients of Am by different rocks, soils, and minerals were critically evaluated. Final Am solution concentrations calculated from the sorption coefficients of a variety of earth materials with several solutions agreed well with the concentrations predicted from the solubility of Am (soil) solid, indicating that the sorption coefficient data are controlled by Am precipitation.

  1. Fluorous tagging strategy for solution-phase synthesis of small molecules, peptides and oligosaccharides

    PubMed Central

    Zhang, Wei

    2005-01-01

    The purification of reaction mixtures is a slow process in organic synthesis, especially during the production of large numbers of analogs and compound libraries. Phase-tag methods such as solid-phase synthesis and fluorous synthesis, provide efficient ways of addressing the separation issue. Fluorous synthesis employs functionalized perfluoroalkyl groups attached to substrates or reagents. The separation of the resulting fluorous molecules can be achieved using strong and selective fluorous liquid-liquid extraction, fluorous silica gel-based solid-phase extraction or high-performance liquid chromatography. Fluorous technology is a novel solution-phase method, which has the advantages of fast reaction times in homogeneous environments, being readily adaptable to literature conditions, having easy intermediate analysis, and having flexibility in reaction scale and scope. In principle, any synthetic methods that use a solid-support could be conducted in solution-phase by replacing the polymer linker with a corresponding fluorous tag. This review summarizes the progress of fluorous tags in solution-phase synthesis of small molecules, peptides and oligosaccharides. PMID:15595439

  2. Identification and optimization of parameters for the semi-continuous production of garbage enzyme from pre-consumer organic waste by green RP-HPLC method.

    PubMed

    Arun, C; Sivashanmugam, P

    2015-10-01

    Reuse and management of organic solid waste, reduce the environmental impact on human health and increase the economic status by generating valuable products for current and novel applications. Garbage enzyme is one such product produced from fermentation of organic solid waste and it can be used as liquid fertilizer, antimicrobial agents, treatment of domestic wastewater, municipal and industrial sludge treatment, etc. The semi-continuous production of garbage enzyme in large quantity at minimal time period and at lesser cost is needed to cater for treatment of increasing quantities of industrial waste activated sludge. This necessitates a parameter for monitoring and control for the scaling up of current process on semi-continuous basis. In the present study a RP-HPLC (Reversed Phase-High Performance Liquid Chromatography) method is used for quantification of standard organic acid at optimized condition 30°C column oven temperature, pH 2.7, and 0.7 ml/min flow rate of the mobile phase (potassium dihydrogen phosphate in water) at 50mM concentration. The garbage enzyme solution collected in 15, 30, 45, 60, 75 and 90 days were used as sample to determine the concentration of organic acid. Among these, 90th day sample showed the maximum concentration of 78.14 g/l of acetic acid in garbage enzyme, whereas other organic acids concentration got decreased when compare to the 15th day sample. This result confirms that the matured garbage enzyme contains a higher concentration of acetic acid and thus it can be used as a monitoring parameter for semi-continuous production of garbage enzyme in large scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Synthesis of oligonucleotides on a soluble support

    PubMed Central

    2017-01-01

    Oligonucleotides are usually prepared in lab scale on a solid support with the aid of a fully automated synthesizer. Scaling up of the equipment has allowed industrial synthesis up to kilogram scale. In spite of this, solution-phase synthesis has received continuous interest, on one hand as a technique that could enable synthesis of even larger amounts and, on the other hand, as a gram scale laboratory synthesis without any special equipment. The synthesis on a soluble support has been regarded as an approach that could combine the advantageous features of both the solution and solid-phase syntheses. The critical step of this approach is the separation of the support-anchored oligonucleotide chain from the monomeric building block and other small molecular reagents and byproducts after each coupling, oxidation and deprotection step. The techniques applied so far include precipitation, extraction, chromatography and nanofiltration. As regards coupling, all conventional chemistries, viz. phosphoramidite, H-phosphonate and phosphotriester strategies, have been attempted. While P(III)-based phosphoramidite and H-phosphonate chemistries are almost exclusively used on a solid support, the “outdated” P(V)-based phosphotriester chemistry still offers one major advantage for the synthesis on a soluble support; the omission of the oxidation step simplifies the coupling cycle. Several of protocols developed for the soluble-supported synthesis allow the preparation of both DNA and RNA oligomers of limited length in gram scale without any special equipment, being evidently of interest for research groups that need oligonucleotides in large amounts for research purposes. However, none of them has really tested at such a scale that the feasibility of their industrial use could be critically judged. PMID:28781703

  4. Interdiffusion and Intrinsic Diffusion in the Mg-Al System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho

    2012-01-01

    Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96%) and Al (99.999%). Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were utilized to identify the formation of the intermetallic phases, -Al12Mg17 and -Al3Mg2 and absence of the -phase in the diffusion couples. Thicknesses of the -Al12Mg17 and -Al3Mg2 phases were measured and the parabolic growth constants were calculated to determine the activation energies for the growth, 165 and 86 KJ/mole, respectively. Concentration profiles were determined with electronmore » microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, -Al12Mg17 and - Al3Mg2 and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the -Al3Mg2 phase, followed by -Al12Mg17, Al-solid solution and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann s analysis (e.g., marker plane) were determined for the ~38 at.% Mg in the -Al3Mg2 phase. Activation energies and the pre-exponential factors for the inter- and intrinsic diffusion coefficients were calculated for the temperature range examined. The -Al3Mg2 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the -Al3Mg2 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared to the available self- and impurity diffusion data from literature. Thermodynamic factor, tracer diffusion coefficients and atomic mobilities at the marker plane composition were approximated using available literature values of Mg activity in the -Al3Mg2 phase.« less

  5. Solid state electrochemical current source

    DOEpatents

    Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  6. Robotics and general surgery.

    PubMed

    Jacob, Brian P; Gagner, Michel

    2003-12-01

    Robotics are now being used in all surgical fields, including general surgery. By increasing intra-abdominal articulations while operating through small incisions, robotics are increasingly being used for a large number of visceral and solid organ operations, including those for the gallbladder, esophagus, stomach, intestines, colon, and rectum, as well as for the endocrine organs. Robotics and general surgery are blending for the first time in history and as a specialty field should continue to grow for many years to come. We continuously demand solutions to questions and limitations that are experienced in our daily work. Laparoscopy is laden with limitations such as fixed axis points at the trocar insertion sites, two-dimensional video monitors, limited dexterity at the instrument tips, lack of haptic sensation, and in some cases poor ergonomics. The creation of a surgical robot system with 3D visual capacity seems to deal with most of these limitations. Although some in the surgical community continue to test the feasibility of these surgical robots and to question the necessity of such an expensive venture, others are already postulating how to improve the next generation of telemanipulators, and in so doing are looking beyond today's horizon to find simpler solutions. As the robotic era enters the world of the general surgeon, more and more complex procedures will be able to be approached through small incisions. As technology catches up with our imaginations, robotic instruments (as opposed to robots) and 3D monitoring will become routine and continue to improve patient care by providing surgeons with the most precise, least traumatic ways of treating surgical disease.

  7. Raman effect in multiferroic Bi5Fe1+xTi3-xO15 solid solutions: A temperature study

    NASA Astrophysics Data System (ADS)

    Rodríguez Aranda, Ma. Del Carmen; Rodríguez-Vázquez, Ángel G.; Salazar-Kuri, Ulises; Mendoza, María Eugenia; Navarro-Contreras, Hugo R.

    2018-02-01

    In this work, a Raman study of powder samples of multiferroic Bi5Fe1+xTi3-xO15 solid solutions and Bi6Fe2Ti3O18 as a function of temperature from 27 °C (room temperature) to 850 °C is presented. The values of x (i.e., the Fe composition) for the solid solutions were 1.0, 1.1, 1.3, and 1.4. The temperature coefficients of eight phonon frequencies were determined for all the samples. The large observed phonon broadenings with increasing temperature precluded the observation of several of the phonon bands above defined temperatures in the range of 200-700 °C depending on the sample. These phonon broadenings were explained on the basis of the Klemens model, which considers that the broadenings are due to the thermal expansion of the lattice with a major contribution in terms of magnitude from anharmonic phonon-phonon interactions. However, some evidence for the presence of several of the phonons persisted up to 800-850 °C. These solid solutions are expected to exhibit a ferroelectric-paraelectric phase transition at 742 to 750 °C and a ferromagnetic-antiferromagnetic transition at 426 °C. We also observed changes in the slopes of the temperature dependence of the phonon frequencies for the lines at 228 cm-1 for Bi5FeTi3O15 and 330 cm-1 for Bi6Fe2Ti3O18 at temperatures of 247 °C and 347 °C, respectively. No similar temperature-frequency slope changes indicative of possible phase transitions were observed for any of the phonon lines of the other three Bi5Fe1+xTi3-xO15 solid solutions examined.

  8. Continuous process to produce lithium-polymer batteries

    DOEpatents

    Chern, Terry Song-Hsing; Keller, David Gerard; MacFadden, Kenneth Orville

    1998-01-01

    Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte-electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be overcoated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance.

  9. 99mTc ovalbumin labelled eggs for gastric emptying scintigraphy: in-vitro comparison of solid food markers.

    PubMed

    Blanc, Frédérique; Salaun, Pierre Y; Couturier, Olivier; Querellou, Solène; Le Duc-Pennec, Alexandra; Mougin-Degraef, Marie; Bizais, Yves; Legendre, Jean M

    2005-11-01

    The reliability of solid phase gastric emptying measurements by scintigraphy requires a marker that remains within the solid component of the test meal, and which is not degraded by the gastric juice throughout the scintigraphic procedure. In Europe, foods are most often labelled with 99mTc rhenium sulfide macrocolloid (RSMC) but this solid phase marker was withdrawn from the market in January 2004. To test other potential solid phase markers and to compare them to the reference marker RSMC. These markers were rhenium sulfide nanocolloid (RSNC), tin fluoride colloid (TFC), phytates and two albumins (Alb and AlbC). All were radiolabelled with 99mTc. After quality control, each 99mTc marker was incorporated into the albumin of one egg. Then, egg white and yolk were mixed together, and a well-cooked omelette was prepared. Aliquots of the omelette were incubated with an acidic solution of pepsin at 37 degrees C which mimicked gastric juice. Unbound radioactivity in the supernatant fraction was measured at various times up to 3 h. The radiochemical purity was > 95% for all radiopharmaceuticals. During the in-vitro incubation, the percentage of 99mTc labelled colloids released from the omelette increased continuously: after 3 h, 5% for TFC and RSMC, 8% for phytates, and > 9% for the two albumins and RSNC. Considering quality controls and release of 99mTc during in-vitro incubation of the omelette, TFC showed the same behaviour as the reference marker RSMC. Thus, TFC seems to be the best candidate to replace RSMC for the radiolabelling of the solid phase of the gastric emptying test meal.

  10. A phase field model for segregation and precipitation induced by irradiation in alloys

    NASA Astrophysics Data System (ADS)

    Badillo, A.; Bellon, P.; Averback, R. S.

    2015-04-01

    A phase field model is introduced to model the evolution of multicomponent alloys under irradiation, including radiation-induced segregation and precipitation. The thermodynamic and kinetic components of this model are derived using a mean-field model. The mobility coefficient and the contribution of chemical heterogeneity to free energy are rescaled by the cell size used in the phase field model, yielding microstructural evolutions that are independent of the cell size. A new treatment is proposed for point defect clusters, using a mixed discrete-continuous approach to capture the stochastic character of defect cluster production in displacement cascades, while retaining the efficient modeling of the fate of these clusters using diffusion equations. The model is tested on unary and binary alloy systems using two-dimensional simulations. In a unary system, the evolution of point defects under irradiation is studied in the presence of defect clusters, either pre-existing ones or those created by irradiation, and compared with rate theory calculations. Binary alloys with zero and positive heats of mixing are then studied to investigate the effect of point defect clustering on radiation-induced segregation and precipitation in undersaturated solid solutions. Lastly, irradiation conditions and alloy parameters leading to irradiation-induced homogeneous precipitation are investigated. The results are discussed in the context of experimental results reported for Ni-Si and Al-Zn undersaturated solid solutions subjected to irradiation.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jeong

    The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method ismore » a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these solute trapping models are not rigorously verified due to the difficulty in experimentally measuring under rapid growth conditions. Moreover, since these solute trapping models include kinetic parameters which are difficult to directly measure from experiments, application of the solute trapping models or the associated analytic rapid solidification model is limited. These theoretical models for steady state rapid solidification which incorporate the solute trapping models do not describe the interdependency of solute diffusion, interface kinetics, and alloy thermodynamics. The phase-field approach allows calculating, spontaneously, the non-equilibrium growth effects of alloys and the associated time-dependent growth dynamics, without making the assumptions that solute partitioning is an explicit function of velocity, as is the current convention. In the research described here, by utilizing the phase-field model in the thin-interface limit, incorporating the anti-trapping current term, more quantitatively valid interface kinetics and solute diffusion across the interface are calculated. In order to sufficiently resolve the physical length scales (i.e. interface thickness and diffusion boundary length), grid spacings are continually adjusted in calculations. The full trajectories of transient planar growth dynamics under rapid directional solidification conditions with different pulling velocities are described. As a validation of a model, the predicted steady state conditions are consistent with the analytic approach for rapid growth. It was confirmed that rapid interface dynamics exhibits the abrupt acceleration of the planar front when the effect of the non-equilibrium solute partitioning at the interface becomes signi ficant. This is consistent with the previous linear stability analysis for the non-equilibrium interface dynamics. With an appropriate growth condition, the continuous oscillation dynamics was able to be simulated using continually adjusting grid spacings. This oscillatory dynamics including instantaneous jump of interface velocities are consistent with a previous phenomenological model by and a numerical investigation, which may cause the formation of banded structures. Additionally, the selection of the steady state growth dynamics in the highly undercooled melt is demonstrated. The transition of the growth morphology, interface velocity selection, and solute trapping phenomenon with increasing melt supersaturations was described by the phase-field simulation. The tip selection for the dendritic growth was consistent with Ivantsov's function, and the non-equilibrium chemical partitioning behavior shows good qualitative agreement with the Aziz's solute trapping model even though the model parameter(V D) remains as an arbitrary constant. This work is able to show the possibility of comprehensive description of rapid alloy growth over the entire time-dependent non-equilibrium phenomenon.« less

  12. In situ polymerization of monomers for polyphenylquinoxaline/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1974-01-01

    Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.

  13. Providing solid angle formalism for skyshine calculations.

    PubMed

    Gossman, Michael S; Pahikkala, A Jussi; Rising, Mary B; McGinley, Patton H

    2010-08-17

    We detail, derive and correct the technical use of the solid angle variable identified in formal guidance that relates skyshine calculations to dose-equivalent rate. We further recommend it for use with all National Council on Radiation Protection and Measurements (NCRP), Institute of Physics and Engineering in Medicine (IPEM) and similar reports documented. In general, for beams of identical width which have different resulting areas, within ± 1.0 % maximum deviation the analytical pyramidal solution is 1.27 times greater than a misapplied analytical conical solution through all field sizes up to 40 × 40 cm². Therefore, we recommend determining the exact results with the analytical pyramidal solution for square beams and the analytical conical solution for circular beams.

  14. Planet Patrol. An Environmental Unit on Solid Waste Solutions for Grades 4-6.

    ERIC Educational Resources Information Center

    Procter and Gamble Educational Services, Cincinnati, OH.

    This classroom unit was developed for use in grades 4-6 to help teach the concept of solid waste management. The teacher's guide provides an overview of the issue of solid waste disposal, a description of government, industry, and consumer roles in resolving the solid waste issue, and four lessons involving sanitary landfills, the reduction of…

  15. 40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...

  16. 40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...

  17. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1993-07-27

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  18. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1991-12-10

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  19. Activities of the components in a spinel solid solution of the Fe-Al-O system

    NASA Astrophysics Data System (ADS)

    Lykasov, A. A.; Kimyashev, A. A.

    2011-09-01

    The conditions of the equilibrium between the Fe3O4-FeAl2O4 solution and wustite are determined by measuring the EMF of galvanic cells containing a solid electrolyte, and the activities of the components in the Fe3O4-FeAl2O4 solution are calculated by treating the results of the experiment on the equilibrium between the spinel solution and wustite. Their properties are found to be different from those of ideal solutions at temperatures of 1000-1300 K. A significant positive deviation from the Raoult's law is believed to indicate the tendency of the solution to decompose. The experimental data are treated in terms of the theory of regular solutions, assuming the energy of mixing to be a function of temperature only. The critical temperature of decomposition for the Fe3O4-FeAl2O4 solution is found to be 1084 K.

  20. Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions.

    PubMed

    Li, Tao; Hauptmann, Jonas Rahlf; Wei, Zhongming; Petersen, Søren; Bovet, Nicolas; Vosch, Tom; Nygård, Jesper; Hu, Wenping; Liu, Yunqi; Bjørnholm, Thomas; Nørgaard, Kasper; Laursen, Bo W

    2012-03-08

    A novel method using solution-processed ultrathin chemically derived graphene films as soft top contacts for the non-destructive fabrication of molecular junctions is demonstrated. We believe this protocol will greatly enrich the solid-state test beds for molecular electronics due to its low-cost, easy-processing and flexible nature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Lunar Rotation and the Lunar Interior

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.; Dickey, J. O.

    2003-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/ solid-mantle boundary, and tidal Love number k2. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core plus Love number. Past detection of CMB flattening has been marginal but is improving, while direct detection of the core moment has not yet been achieved. Three decades of Lunar Laser Ranging (LLR) data are analyzed using a weighted least-squares approach. The lunar solution parameters include dissipation at the fluid-core/solid-mantle boundary, tidal dissipation, dissipation-related coefficients for rotation and orientation terms, potential Love number k2, a correction to the constant term in the tilt of the equator to the ecliptic which is meant to approximate the influence of core-mantle boundary flattening, and displacement Love numbers h2 and l2. Several solutions, with different combinations of solution parameters and constraints, are considered.

  2. Fe–Ni solid solutions in nano-size dimensions: Effect of hydrogen annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Asheesh, E-mail: asheeshk@barc.gov.in; Meena, S.S.; Banerjee, S.

    Highlights: • Fe–Ni solid solution with nano-size dimensions were prepared and characterized. • Both as prepared and hydrogenated solid solutions have FCC structure of Ni. • Paramagnetic and ferromagnetic domains coexist in these samples. - Abstract: Nanoparticles of Ni{sub 0.50}Fe{sub 0.50} and Ni{sub 0.75}Fe{sub 0.25} alloys were prepared by chemical reduction in ethylene glycol medium. XRD and {sup 57}Fe Mössbauer studies have confirmed the formation of Fe–Ni solid solution in nano-size dimensions with FCC structure. These samples consist of both ferromagnetic and paramagnetic domains which have been attributed to the coexistence of large and small particles as confirmed by atomicmore » force microscopic (AFM) and {sup 57}Fe Mössbauer spectroscopic studies. Improved extent of Fe–Fe exchange interaction existing in Ni{sub 0.50}Fe{sub 0.50} alloy compared to Ni{sub 0.75}Fe{sub 0.25} alloy explains the observed increase in the relative extent of ferromagnetic domains compared to paramagnetic domains in the former sample. Increase in the relative extent of ferromagnetic domains for hydrogenated alloys is due to increase in particle size brought about by the high temperature activation prior to hydrogenation.« less

  3. Bi2MoxW1-xO6 solid solutions with tunable band structure and enhanced visible-light photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Li, Wenqi; Ding, Xingeng; Wu, Huating; Yang, Hui

    2018-07-01

    Semiconductor photocatalysis is an effective green way to combat water pollution. For the first time, this study reports a novel method to develop Bi2MoxW1-xO6 solid solution with microsphere structure through anion-exchange method. All Bi2MoxW1-xO6 samples exhibit an Aurivillius-type crystal structure without any secondary phase, confirming that in complete solid solutions as the value of x increases, the band gap energy of Bi2MoxW1-xO6 solid solutions decreases, while the optical absorption edge moves to longer wavelength. The Raman spectra research shows an increase in orthorhombic distortion with progressive replacement of W sites in Bi2WO6 with Mo6+ ions. Compared to Bi2MoO6 and Bi2WO6 samples, Bi2Mo0.4W0.6O6 sample displayed best photocatalytic activity and cycling stability for degradation of RhB dye. The enhanced photocatalytic activity of Bi2Mo0.4W0.6O6 sample can be synergetically linked to hierarchical hollow structure, enhanced light absorbance, and high carrier-separation efficiency. Additionally, the hollow Bi2MoxW1-xO6 microspheres formation can be attributed to the Kirkendall effect.

  4. Theoretical prediction of morphotropic compositions in Na1/2Bi1/2TiO3-based solid solutions from transition pressures

    NASA Astrophysics Data System (ADS)

    Gröting, Melanie; Albe, Karsten

    2014-02-01

    In this article we present a method based on ab initio calculations to predict compositions at morphotropic phase boundaries in lead-free perovskite solid solutions. This method utilizes the concept of flat free energy surfaces and involves the monitoring of pressure-induced phase transitions as a function of composition. As model systems, solid solutions of Na1/2Bi1/2TiO3 with the alkali substituted Li1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 and the alkaline earth substituted CaTiO3 and BaTiO3 are chosen. The morphotropic compositions are identified by determining the composition at which the phase transition pressure equals zero. In addition, we discuss the different effects of hydrostatic pressure (compression and tension) and chemical substitution on the antiphase tilts about the [111] axis (a-a-a-) present in pure Na1/2Bi1/2TiO3 and how they develop in the two solid solutions Na1/2Bi1/2TiO3-CaTiO3 and Na1/2Bi1/2TiO3-BaTiO3. Finally, we discuss the advantages and shortcomings of this simple computational approach.

  5. A study of room-temperature LixMn1.5Ni0.5O4 solid solutions

    PubMed Central

    Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying

    2015-01-01

    Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance. PMID:25619504

  6. A study of room-temperature Li xMn 1.5Ni 0.5O 4 solid solutions

    DOE PAGES

    Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; ...

    2015-01-26

    Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature Li xMn 1.5Ni 0.5O 4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of Li xMn 1.5Ni 0.5O 4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn 1.5Ni 0.5O 4 (Phase I), Li 0.5Mnmore » 1.5Ni 0.5O 4 (Phase II) and Mn 1.5Ni 0.5O 4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. In conclusion, the work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.« less

  7. High-throughput 96-well solvent mediated sonic blending synthesis and on-plate solid/solution stability characterization of pharmaceutical cocrystals.

    PubMed

    Luu, Van; Jona, Janan; Stanton, Mary K; Peterson, Matthew L; Morrison, Henry G; Nagapudi, Karthik; Tan, Helming

    2013-01-30

    A 96-well high-throughput cocrystal screening workflow has been developed consisting of solvent-mediated sonic blending synthesis and on-plate solid/solution stability characterization by XRPD. A strategy of cocrystallization screening in selected blend solvents including water mixtures is proposed to not only manipulate solubility of the cocrystal components but also differentiate physical stability of the cocrystal products. Caffeine-oxalic acid and theophylline-oxalic acid cocrystals were prepared and evaluated in relation to saturation levels of the cocrystal components and stability of the cocrystal products in anhydrous and hydrous solvents. AMG 517 was screened with a number of coformers, and solid/solution stability of the resulting cocrystals on the 96-well plate was investigated. A stability trend was observed and confirmed that cocrystals comprised of lower aqueous solubility coformers tended to be more stable in water. Furthermore, cocrystals which could be isolated under hydrous solvent blending condition exhibited superior physical stability to those which could only be obtained under anhydrous condition. This integrated HTS workflow provides an efficient route in an API-sparing approach to screen and identify cocrystal candidates with proper solubility and solid/solution stability properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Application of a thiourea-containing task-specific ionic liquid for the solid-phase extraction cleanup of lead ions from red lipstick, pine leaves, and water samples.

    PubMed

    Saljooqi, Asma; Shamspur, Tayebeh; Mohamadi, Maryam; Mostafavi, Ali

    2014-07-01

    Here, task-specific ionic liquid solid-phase extraction is proposed for the first time. In this approach, a thiourea-functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid-phase extraction column are used for the selective extraction and preconcentration of ultra-trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5-40.0 ng/mL with the detection limit of 0.13 ng/mL (3(Sb)/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. CSBB-ConeExclusion, adapting structure based solution virtual screening to libraries on solid support.

    PubMed

    Shave, Steven; Auer, Manfred

    2013-12-23

    Combinatorial chemical libraries produced on solid support offer fast and cost-effective access to a large number of unique compounds. If such libraries are screened directly on-bead, the speed at which chemical space can be explored by chemists is much greater than that addressable using solution based synthesis and screening methods. Solution based screening has a large supporting body of software such as structure-based virtual screening tools which enable the prediction of protein-ligand complexes. Use of these techniques to predict the protein bound complexes of compounds synthesized on solid support neglects to take into account the conjugation site on the small molecule ligand. This may invalidate predicted binding modes, the linker may be clashing with protein atoms. We present CSBB-ConeExclusion, a methodology and computer program which provides a measure of the applicability of solution dockings to solid support. Output is given in the form of statistics for each docking pose, a unique 2D visualization method which can be used to determine applicability at a glance, and automatically generated PyMol scripts allowing visualization of protein atom incursion into a defined exclusion volume. CSBB-ConeExclusion is then exemplarically used to determine the optimum attachment point for a purine library targeting cyclin-dependent kinase 2 CDK2.

  10. Structural and ferroelectric phase evolution in [KNbO3]1-x[BaNi1/2Nb1/2O3 -δ] x (x =0 ,0.1 )

    NASA Astrophysics Data System (ADS)

    Hawley, Christopher J.; Wu, Liyan; Xiao, Geoffrey; Grinberg, Ilya; Rappe, Andrew M.; Davies, Peter K.; Spanier, Jonathan E.

    2017-08-01

    The phase transition evolution for [KNbO3]1-x[BaNi1/2Nb1/2O3 -δ] x(x =0 ,0.1 ) is determined via complementary dielectric permittivity and Raman-scattering measurements. Raman scattering by optical phonons over the range of 100-1000 cm-1 for 83 K

  11. Short-range order in the Ca sub 1-x La sub x F sub 2+x solid solution: 1:0:3 or 1:0:4 clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laval, J.P.; Abaouz, A.; Frit, B.

    1989-08-01

    The defect structure of the Ca{sub 1-x}La{sub x}F{sub 2+x} solid solution (0 {le} x {le} 0.38) has been examined at room temperature by powder neutron diffraction. Two kinds of (xxx) interstitial anions, whose respective numbers increase linearly with increasing dopant cation concentration, have been found: one labeled F{sup 0} (x {approx} 0.41) is a true interstitial; the other labeled F{sup {prime}{double prime}} (x {approx} 0.31) can be considered a relaxed normal anion. Two 1:0:n defect clusters are compatible, within the experimental errors, with these results: the 1:0:3 (1V{sub F}, OF{prime}, 3F{sup {double prime}}, 2 La{sup 3+}) and the 1:0:4 (1V{submore » F}, OF{prime}, 4F{sup {double prime}}, 3La{sup 3+}) clusters. Charge balance considerations and comparisons with the homologous Ca{sub 1-x}M{sub x}{sup IV}F{sub 2+2x} solid solutions (M{sup IV} = Th, U) allow us to think that the less dense 1:0:3 cluster is present for the whole domain of both kinds of solid solutions.« less

  12. Bioavailable cadmium during the bioremediation of phenanthrene-contaminated soils using the diffusive gradients in thin-film technique.

    PubMed

    Amezcua-Allieri, M A; Rodríguez-Vázquez, R

    2006-03-01

    To study the impact of fungal bioremediation of phenanthrene on trace cadmium solid-solution fluxes and solution phase concentration. The bioremediation of phenanthrene in soils was performed using the fungus Penicillium frequentans. Metal behaviour was evaluated by the techniques of diffusive gradient in thin-films (DGT) and filtration. Fluxes of cadmium (Cd) show a significant (P < 0.002) increase after the start of bioremediation, indicating that the bioremediation process itself releases significant amount of Cd into solution from the soil solid-phase. Unlike DGT devices, the solution concentration from filtration shows a clear bimodal distribution. We postulate that the initial action of the fungi is most likely to breakdown the surface of the solid phase to smaller, 'solution-phase' material (<0.45 microm) leading to a peak in Cd concentration in solution. Phenanthrene removal from soils by bioremediation ironically results in the mobilization of another toxic pollutant (Cd). Bioremediation of organic pollutants in contaminated soil will likely lead to large increases in the mobilization of toxic metals, increasing metal bio-uptake and incorporation into the wider food chain. Bioremediation strategies need to account for this behaviour and further research is required both to understand the generality of this behaviour and the operative mechanisms.

  13. Cellular interface morphologies in directional solidification. III - The effects of heat transfer and solid diffusivity

    NASA Technical Reports Server (NTRS)

    Ungar, Lyle H.; Bennett, Mark J.; Brown, Robert A.

    1985-01-01

    The shape and stability of two-dimensional finite-amplitude cellular interfaces arising during directional solidification are compared for several solidification models that account differently for latent heat released at the interface, unequal thermal conductivities of melt and solid, and solute diffusivity in the solid. Finite-element analysis and computer-implemented perturbation methods are used to analyze the families of steadily growing cellular forms that evolve from the planar state. In all models a secondary bifurcation between different families of finite-amplitude cells exists that halves the spatial wavelength of the stable interface. The quantitative location of this transition is very dependent on the details of the model. Large amounts of solute diffusion in the solid retard the growth of large-amplitude cells.

  14. Pseudomorphic Semiconducting Heterostructures from Combinations of AlN, GaN and Selected SiC Polytypes: Theoretical Advancement and its Coordination with Experimental Studies of Nucleation, Growth, Characterization and Device Development

    DTIC Science & Technology

    1994-06-01

    simultaneously expluiting the favorable characteristics of these materials include the thin film deposition of both pseudomorphic beterostructure and alloys ...diagram proposed by Zangvil and Ruh [10] shows a flat miscibility gap at =1900*C between -20 and 80 wt % AIN. Above this temperature, a 2H solid solution...was reported from >20 wt % AIN. For .20 wt % AIN, 8 I I solutions and two phase mixtures of 6H, 4H, and 2H were observed. Thin film solid solutions

  15. Metal/Metal Oxide Differential Electrode pH Sensors

    NASA Technical Reports Server (NTRS)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  16. Analyses of Noise from Reusable Solid Rocket Motor (RSRM) Firings

    NASA Technical Reports Server (NTRS)

    Gee, Kent L.; Kenny, R. Jeremy; Jerome, Trevor W.; Neilsen, Tracianne B.; Hobbs, Christopher M.; James, Michael M.

    2012-01-01

    NASA s Space Launch Vehicle (SLS) program has chosen the Reusable Solid Rocket Motor V (RSRMV) as the booster system for initial flights. Lift off acoustics continue to be a consideration in overall vehicle vibroacoustic evaluations and launch pad modifications. Work started with the Ares program to understand solid rocket noise mechanisms is continuing through SLS program in conjunction with BYU/Blue Ridge Research Consulting.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasukawa, Akemi, E-mail: yasukawa@cc.hirosaki-u.ac.jp; Kandori, Kazuhiko; Tanaka, Hidekazu

    Highlights: Black-Right-Pointing-Pointer LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. Black-Right-Pointing-Pointer The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln{sup 3+} contents. Black-Right-Pointing-Pointer A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0-0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y{sup 3+}, Gd{sup 3+}, Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+}) were synthesized using a precipitation method and characterized using various means. Thesemore » Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([X{sub Ln}]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [X{sub Y}] {<=} 0.10 for substituting Y system and at [X{sub Ln}] {<=} 0.01-0.03 for substituting the other Ln systems. LnPO{sub 4} was mixed with LnCaHap at higher [X{sub Ln}] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [X{sub Y}] = 0-0.10 were investigated using XRD, TEM, ICP-AES, IR and TG-DTA in detail.« less

  18. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  19. Overall Control on Solid Rocket Motor Hazard Zone: Example of VEGA an Innovative Solution at System Level

    NASA Astrophysics Data System (ADS)

    Vertueux, M.

    2013-09-01

    The arrival of additional Space launch vehicles Soyouz and Vega in Guiana Space Center facilities faced a new ground range safety major question: The technical hazards assessment and management related to the preparation of these three launchers simultaneously with the same high level of safety. The objective of this publication is to highlight the new safety solutions that are applied in CSG to reduce the risk of self-propulsion of the stages of VEGA launcher. During all the preparation campaign of VEGA launch vehicle, the explosive risk due to the use of solid propellant is permanent. Uncontrolled propulsion of a solid rocket motor is capable of destruction of other important installations with catastrophic effects. This event could cause loss of human lives and great damages to the CSG launch site structures. Early in the space program development phases of VEGA, the risk of self- propulsion of solid rocket motors and the solutions to avoid the "domino effects" on neighboring facilities have been issued as one of the major concern in term of safety.

  20. Study on structural and optical properties of α-(AlxCr1-x)2O3 (0 ≤ x ≤ 1) solid solutions

    NASA Astrophysics Data System (ADS)

    Jangir, Ravindra; Kumar, Dharmendra; Srihari, Velaga; Ganguli, Tapas

    2018-04-01

    We report on structural and optical properties for ternary α-(AlxCr1-x)2O3 (0 ≤ x ≤ 1) solid solutions synthesized by using solid sate reaction method. Single R-3c phase was obtained for the Aluminum composition of 0 ≤ x ≤ 1. Due to difference in the ionic radia of Al3+ and Cr3+, in plane lattice parameter showed deviation from the vegard's law. Optical absorption spectra for the solid solutions showed a blue shift of ˜ 0.5 eV in the optical gap. It has also been observed that Cr 3d level shifted towards the O 2p level in the valance band which indicates the enhancement of hybridization in the d and p levels, which is related to the delocalization of hole states, responsible for p-type conduction in wide band gap semiconductors. The results suggests that ternary α-(AlxCr1-x)2O3 (0 ≤ x ≤ 1) can be useful in the field of UV transparent electronics and UV photodetectors.

  1. High-field 95 Mo and 183 W static and MAS NMR study of polyoxometalates.

    PubMed

    Haouas, Mohamed; Trébosc, Julien; Roch-Marchal, Catherine; Cadot, Emmanuel; Taulelle, Francis; Martineau-Corcos, Charlotte

    2017-10-01

    The potential of high-field NMR to measure solid-state 95 Mo and 183 W NMR in polyoxometalates (POMs) is explored using some archetypical structures like Lindqvist, Keggin and Dawson as model compounds that are well characterized in solution. NMR spectra in static and under magic angle spinning (MAS) were obtained, and their analysis allowed extraction of the NMR parameters, including chemical shift anisotropy and quadrupolar coupling parameters. Despite the inherent difficulties of measurement in solid state of these low-gamma NMR nuclei, due mainly to the low spectral resolution and poor signal-to-noise ratio, the observed global trends compare well with the solution-state NMR data. This would open an avenue for application of solid-state NMR to POMs, especially when liquid-state NMR is not possible, e.g., for poorly soluble or unstable compounds in solution, and for giant molecules with slow tumbling motion. This is the case of Keplerate where we provide here the first NMR characterization of this class of POMs in the solid state. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Characterization of Sb-doped Bi(2)UO(6) solid solutions by X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D

    2013-01-01

    The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.

  3. Approximate analytical solution for induction heating of solid cylinders

    DOE PAGES

    Jankowski, Todd Andrew; Pawley, Norma Helen; Gonzales, Lindsey Michal; ...

    2015-10-20

    An approximate solution to the mathematical model for induction heating of a solid cylinder in a cylindrical induction coil is presented here. The coupled multiphysics model includes equations describing the electromagnetic field in the heated object, a heat transfer simulation to determine temperature of the heated object, and an AC circuit simulation of the induction heating power supply. A multiple-scale perturbation method is used to solve the multiphysics model. The approximate analytical solution yields simple closed-form expressions for the electromagnetic field and heat generation rate in the solid cylinder, for the equivalent impedance of the associated tank circuit, and formore » the frequency response of a variable frequency power supply driving the tank circuit. The solution developed here is validated by comparing predicted power supply frequency to both experimental measurements and calculated values from finite element analysis for heating of graphite cylinders in an induction furnace. The simple expressions from the analytical solution clearly show the functional dependence of the power supply frequency on the material properties of the load and the geometrical characteristics of the furnace installation. In conclusion, the expressions developed here provide physical insight into observations made during load signature analysis of induction heating.« less

  4. Dibutyl Phosphoric Acid Solubility in High-Acid, Uranium-Bearing Solutions at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.A.

    1998-10-02

    The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The concentrations in solution are approximately 6 g/L U and about 0.1 M nitric acid. Residual tributylphosphate in the solutions has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 50 mg/L. Uranium is known to form compounds with the dibutylphosphate ion (DBP) which have limited solubility. The potential to form uranium-DBP solids raises a nuclear criticality safety issue. Prior SRTC tests (WSRC-TR-98-00188) showed that U-DBPmore » solids precipitate at concentrations potentially attainable during the storage of enriched uranium solutions. Furthermore, evaporation of the existing EUS solution without additional acidification could result in the precipitation of U-DBP solids if the DBP concentration in the resulting solution exceeds 110 mg/L at ambient temperature. The same potential exists for evaporation of unwashed 1CU solutions. As a follow-up to the earlier studies, SRTC studied the solubility limits for solutions containing acid concentrations above 0.5M HNO3. The data obtained in these tests reveals a shift to higher levels of DBP solubility above 0.5M HNO3 for both 6 g/L and 12 g/L uranium solutions. Analysis of U-DBP solids from the tests identified a mixture of different molecular structures for the solids created. The analysis distinguished UO2(DBP)2 as the dominant compound present at low acid concentrations. As the acid concentration increases, the crystalline UO2(DBP)2 shows molecular substitutions and an increase in amorphous content. Further analysis by methods not available at SRS will be needed to better identify the specific compounds present. This data indicates that acidification prior to evaporation can be used to increase the margin of safety for the storage of the EUS solutions. Subsequent experimentation evaluated options for absorbing HDBP from solution using either activated carbon or anion exchange resin. The activated carbon outperformed the anion exchange resin. Activated carbon absorbs DBP rapidly and has demonstrated the capability of absorbing 15 mg of DBP per gram of activated carbon. Analytical results also show that activated carbon absorbs uranium up to 17 mg per gram of carbon. It is speculated that the uranium absorbed is part of a soluble U-DBP complex that has been absorbed. Additional testing must still be performed to 1) establish absorption limits for uranium for anion exchange resin, 2) evaluate desorption characteristics of uranium and DBP, and 3) study the possibility of re-using the absorbent.« less

  5. 40 CFR 240.201 - Solid wastes excluded.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Solid wastes excluded. 240.201 Section 240.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.201 Solid...

  6. 40 CFR 240.201 - Solid wastes excluded.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Solid wastes excluded. 240.201 Section 240.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.201 Solid...

  7. 40 CFR 240.200 - Solid wastes accepted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Solid wastes accepted. 240.200 Section 240.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200 Solid...

  8. 40 CFR 240.200 - Solid wastes accepted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Solid wastes accepted. 240.200 Section 240.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200 Solid...

  9. Opto-mechatronics issues in solid immersion lens based near-field recording

    NASA Astrophysics Data System (ADS)

    Park, No-Cheol; Yoon, Yong-Joong; Lee, Yong-Hyun; Kim, Joong-Gon; Kim, Wan-Chin; Choi, Hyun; Lim, Seungho; Yang, Tae-Man; Choi, Moon-Ho; Yang, Hyunseok; Rhim, Yoon-Chul; Park, Young-Pil

    2007-06-01

    We analyzed the effects of an external shock on a collision problem in a solid immersion lens (SIL) based near-field recording (NFR) through a shock response analysis and proposed a possible solution to this problem with adopting a protector and safety mode. With this proposed method the collision between SIL and media can be avoided. We showed possible solution for contamination problem in SIL based NFR through a numerical air flow analysis. We also introduced possible solid immersion lens designs to increase the fabrication and assembly tolerances of an optical head with replicated lens. Potentially, these research results could advance NFR technology for commercial product.

  10. Graphene quantum dots as the electrolyte for solid state supercapacitors

    PubMed Central

    Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu

    2016-01-01

    We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitors. Moreover, we found that the ionic conductivity and ion-donating ability of the GQDs could be markedly improved by simply neutralizing their acidic functional groups by using KOH. These neutralized GQDs as the solution- or solid-type electrolytes greatly enhanced the capacitive performance and rate capability of the supercapacitors. The reason for the enhancement can be ascribed to the fully ionization of the weak acidic oxygen-bearing functional groups after neutralization. PMID:26763275

  11. 40 CFR 264.96 - Compliance period.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.96 Compliance period. (a) The Regional Administrator will...

  12. Sea urchins have teeth? A review of their microstructure, biomineralization, development and mechanical properties

    PubMed Central

    Stock, Stuart R.

    2015-01-01

    Sea urchins possess a set of five teeth which are self-sharpening and which continuously replace material lost through abrasion. The continuous replacement dictates that each tooth consists of the range of developmental states from discrete plates in the plumula, the least mineralized and least mature portion, to plates and needle-prisms separated by cellular syncytia at the beginning of the tooth shaft to a highly dense structure at the incisal end. The microstructures and their development are reviewed prior to a discussion of current understanding of the biomineralization processes operating during tooth formation. For example, the mature portions of each tooth consist of single crystal calcite but the early stages of mineral formation (e.g. solid amorphous calcium carbonate, ions in solution) continue to be investigated. The second stage mineral that cements the disparate plates and prisms together has a much higher Mg content than the first stage prisms and needles and allows the tooth to be self-sharpening. Mechanically, the urchin tooth’s calcite performs better than inorganic calcite, and aspects of tooth functionality that are reviewed include the materials properties themselves and the role of the orientations of the plates and prisms relative to the axes of the applied loads. Although the properties and microarchitecture of sea urchin teeth or other mineralized tissues are often described as optimized, this view is inaccurate because these superb solutions to the problem of constructing functional structures are intermediaries not endpoints of evolution. PMID:24437604

  13. Sea urchins have teeth? A review of their microstructure, biomineralization, development and mechanical properties.

    PubMed

    Stock, Stuart R

    2014-01-01

    Sea urchins possess a set of five teeth which are self-sharpening and which continuously replace material lost through abrasion. The continuous replacement dictates that each tooth consists of the range of developmental states from discrete plates in the plumula, the least mineralized and least mature portion, to plates and needle-prisms separated by cellular syncytia at the beginning of the tooth shaft to a highly dense structure at the incisal end. The microstructures and their development are reviewed prior to a discussion of current understanding of the biomineralization processes operating during tooth formation. For example, the mature portions of each tooth consist of single crystal calcite but the early stages of mineral formation (e.g. solid amorphous calcium carbonate, ions in solution) continue to be investigated. The second stage mineral that cements the disparate plates and prisms together has a much higher Mg content than the first stage prisms and needles and allows the tooth to be self-sharpening. Mechanically, the urchin tooth's calcite performs better than inorganic calcite, and aspects of tooth functionality that are reviewed include the materials properties themselves and the role of the orientations of the plates and prisms relative to the axes of the applied loads. Although the properties and microarchitecture of sea urchin teeth or other mineralized tissues are often described as optimized, this view is inaccurate because these superb solutions to the problem of constructing functional structures are intermediaries not endpoints of evolution.

  14. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy.

    PubMed

    Fan, Fengjia; Voznyy, Oleksandr; Sabatini, Randy P; Bicanic, Kristopher T; Adachi, Michael M; McBride, James R; Reid, Kemar R; Park, Young-Shin; Li, Xiyan; Jain, Ankit; Quintero-Bermudez, Rafael; Saravanapavanantham, Mayuran; Liu, Min; Korkusinski, Marek; Hawrylak, Pawel; Klimov, Victor I; Rosenthal, Sandra J; Hoogland, Sjoerd; Sargent, Edward H

    2017-04-06

    Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material, as well as a narrow emission linewidth. Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature. This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses, limiting the gain lifetime to sub-nanoseconds and preventing steady laser action. State degeneracy also broadens the photoluminescence linewidth at the single-particle level. Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultra-narrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.

  15. Lead sorption by biochar produced from digestates: Consequences of chemical modification and washing.

    PubMed

    Wongrod, Suchanya; Simon, Stéphane; Guibaud, Gilles; Lens, Piet N L; Pechaud, Yoan; Huguenot, David; van Hullebusch, Eric D

    2018-08-01

    The main objectives of this work are to investigate the consequences of different chemical treatments (i.e. potassium hydroxide (KOH) and hydrogen peroxide (H 2 O 2 )) and the effect of biochar washing on the Pb sorption capacity. Biochars derived from sewage sludge digestate and the organic fraction of municipal solid waste digestate were separately modified with 2 M KOH or 10% H 2 O 2 followed by semi-continuous or continuous washing with ultrapure water using batch or a column reactor, respectively. The results showed that the Pb adsorption capacity could be enhanced by chemical treatment of sludge-based biochar. Indeed, for municipal solid waste biochar, the Pb maximum sorption capacity was improved from 73 mg g -1 for unmodified biochar to 90 mg g -1 and 106 mg g -1 after H 2 O 2 and KOH treatment, respectively. In the case of sewage sludge biochar, it increased from 6.5 mg g -1 (unmodified biochar) to 25 mg g -1 for H 2 O 2 treatment. The sorption capacity was not determined after KOH treatment, since the Langmuir model did not fit the experimental data. The study also highlights that insufficient washing after KOH treatment can strongly hinder Pb sorption due to the release of organic matter from the modified biochar. This organic matter may interact in solution with Pb, resulting in an inhibition of its sorption onto the biochar surface. Continuous column-washing of modified biochars was able to correct this issue, highlighting the importance of implementing a proper treated biochar washing procedure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Investigation of Different Colloidal Porous Silicon Solutions and Their Composite Solid Matrix Rods by Optical Techniques

    NASA Astrophysics Data System (ADS)

    Khan, M. Naziruddin; Aldalbahi, Ali; Almohammedi, Abdullah

    2018-03-01

    Colloidal porous silicon (PSi) in different solvents was synthesized by simple chemical etching. Colloidal solutions were then prepared using different quantities of silicon wafer pieces (Pcs) and chloroplatinic (Pt) acid in catalyst solution. The effect on the properties of the colloidal solutions and composite rods were investigated using various optical characterization techniques. Absorption and photoluminescence (PL) intensity of the colloidal PSi solutions are observed to depend on the quantity of wafer Pcs, the Pt-solution, and the porosity formation on the wafer surface. The morphological structure of the PSi in a solvent and the solid-rod environments were studied using field-emission scanning electron microscopy (FE-SEM) and were observed to have different structures. A mono-oriented structure of PSi exists in tetrahydrofuran, which has stereo orientation in dioxane and dimethylsulfoxide (approximately 5-8 nm as confirmed using high resolution transmission electron microscopy). Subsequently, some colloidal PSi solutions were directly embedded in three types of sol-gel-based matrices, silica, ormosils (or organically modified silica) and polymer, which easily generated solid rods. Spontaneous emission (SE) of the PSi solutions and their composite rods were examined using a high power picosecond 355 nm laser source. The emitted PL and SE signals of the colloidal PSi solutions were dependent on the Pt volume, nature of the solvent, quantity of Si wafer piece, and pumping energy. The response of SE signals from the PSi composites rods is an interesting phenomenon, and such nanocomposites may be used for future research on light amplification.

  17. Investigation of Different Colloidal Porous Silicon Solutions and Their Composite Solid Matrix Rods by Optical Techniques

    NASA Astrophysics Data System (ADS)

    Khan, M. Naziruddin; Aldalbahi, Ali; Almohammedi, Abdullah

    2018-07-01

    Colloidal porous silicon (PSi) in different solvents was synthesized by simple chemical etching. Colloidal solutions were then prepared using different quantities of silicon wafer pieces (Pcs) and chloroplatinic (Pt) acid in catalyst solution. The effect on the properties of the colloidal solutions and composite rods were investigated using various optical characterization techniques. Absorption and photoluminescence (PL) intensity of the colloidal PSi solutions are observed to depend on the quantity of wafer Pcs, the Pt-solution, and the porosity formation on the wafer surface. The morphological structure of the PSi in a solvent and the solid-rod environments were studied using field-emission scanning electron microscopy (FE-SEM) and were observed to have different structures. A mono-oriented structure of PSi exists in tetrahydrofuran, which has stereo orientation in dioxane and dimethylsulfoxide (approximately 5-8 nm as confirmed using high resolution transmission electron microscopy). Subsequently, some colloidal PSi solutions were directly embedded in three types of sol-gel-based matrices, silica, ormosils (or organically modified silica) and polymer, which easily generated solid rods. Spontaneous emission (SE) of the PSi solutions and their composite rods were examined using a high power picosecond 355 nm laser source. The emitted PL and SE signals of the colloidal PSi solutions were dependent on the Pt volume, nature of the solvent, quantity of Si wafer piece, and pumping energy. The response of SE signals from the PSi composites rods is an interesting phenomenon, and such nanocomposites may be used for future research on light amplification.

  18. An Investigation of the Effects of Self-Assembled Monolayers on Protein Crystallisation

    PubMed Central

    Zhang, Chen-Yan; Shen, He-Fang; Wang, Qian-Jin; Guo, Yun-Zhu; He, Jin; Cao, Hui-Ling; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan

    2013-01-01

    Most protein crystallisation begins from heterogeneous nucleation; in practice, crystallisation typically occurs in the presence of a solid surface in the solution. The solid surface provides a nucleation site such that the energy barrier for nucleation is lower on the surface than in the bulk solution. Different types of solid surfaces exhibit different surface energies, and the nucleation barriers depend on the characteristics of the solid surfaces. Therefore, treatment of the solid surface may alter the surface properties to increase the chance to obtain protein crystals. In this paper, we propose a method to modify the glass cover slip using a self-assembled monolayer (SAM) of functional groups (methyl, sulfydryl and amino), and we investigated the effect of each SAM on protein crystallisation. The results indicated that both crystallisation success rate in a reproducibility study, and crystallisation hits in a crystallisation screening study, were increased using the SAMs, among which, the methyl-modified SAM demonstrated the most significant improvement. These results illustrated that directly modifying the crystallisation plates or glass cover slips to create surfaces that favour heterogeneous nucleation can be potentially useful in practical protein crystallisation, and the utilisation of a SAM containing a functional group can be considered a promising technique for the treatment of the surfaces that will directly contact the crystallisation solution. PMID:23749116

  19. Continuous process to produce lithium-polymer batteries

    DOEpatents

    Chern, T.S.H.; Keller, D.G.; MacFadden, K.O.

    1998-05-12

    Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be over coated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance. 1 fig.

  20. 40 CFR 240.101 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Solid wastes means garbage, refuse, sludges, and other discarded solid materials resulting from... common water pollutants. (z) Special wastes means nonhazardous solid wastes requiring handling other than... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL...

Top