Daniel J. Isaak; Russell F. Thurow
2006-01-01
Spatially continuous sampling designs, when temporally replicated, provide analytical flexibility and are unmatched in their ability to provide a dynamic system view. We have compiled such a data set by georeferencing the network-scale distribution of Chinook salmon (Oncorhynchus tshawytscha) redds across a large wilderness basin (7330 km2) in...
A demonstration that the adaptation of electronic instrumentation and towed survey strategies are effective in providing rapid, spatially extensive, and cost effective data for assessment of the Great Lakes.
Chirombo, James; Lowe, Rachel; Kazembe, Lawrence
2014-01-01
Background After years of implementing Roll Back Malaria (RBM) interventions, the changing landscape of malaria in terms of risk factors and spatial pattern has not been fully investigated. This paper uses the 2010 malaria indicator survey data to investigate if known malaria risk factors remain relevant after many years of interventions. Methods We adopted a structured additive logistic regression model that allowed for spatial correlation, to more realistically estimate malaria risk factors. Our model included child and household level covariates, as well as climatic and environmental factors. Continuous variables were modelled by assuming second order random walk priors, while spatial correlation was specified as a Markov random field prior, with fixed effects assigned diffuse priors. Inference was fully Bayesian resulting in an under five malaria risk map for Malawi. Results Malaria risk increased with increasing age of the child. With respect to socio-economic factors, the greater the household wealth, the lower the malaria prevalence. A general decline in malaria risk was observed as altitude increased. Minimum temperatures and average total rainfall in the three months preceding the survey did not show a strong association with disease risk. Conclusions The structured additive regression model offered a flexible extension to standard regression models by enabling simultaneous modelling of possible nonlinear effects of continuous covariates, spatial correlation and heterogeneity, while estimating usual fixed effects of categorical and continuous observed variables. Our results confirmed that malaria epidemiology is a complex interaction of biotic and abiotic factors, both at the individual, household and community level and that risk factors are still relevant many years after extensive implementation of RBM activities. PMID:24991915
Chirombo, James; Lowe, Rachel; Kazembe, Lawrence
2014-01-01
After years of implementing Roll Back Malaria (RBM) interventions, the changing landscape of malaria in terms of risk factors and spatial pattern has not been fully investigated. This paper uses the 2010 malaria indicator survey data to investigate if known malaria risk factors remain relevant after many years of interventions. We adopted a structured additive logistic regression model that allowed for spatial correlation, to more realistically estimate malaria risk factors. Our model included child and household level covariates, as well as climatic and environmental factors. Continuous variables were modelled by assuming second order random walk priors, while spatial correlation was specified as a Markov random field prior, with fixed effects assigned diffuse priors. Inference was fully Bayesian resulting in an under five malaria risk map for Malawi. Malaria risk increased with increasing age of the child. With respect to socio-economic factors, the greater the household wealth, the lower the malaria prevalence. A general decline in malaria risk was observed as altitude increased. Minimum temperatures and average total rainfall in the three months preceding the survey did not show a strong association with disease risk. The structured additive regression model offered a flexible extension to standard regression models by enabling simultaneous modelling of possible nonlinear effects of continuous covariates, spatial correlation and heterogeneity, while estimating usual fixed effects of categorical and continuous observed variables. Our results confirmed that malaria epidemiology is a complex interaction of biotic and abiotic factors, both at the individual, household and community level and that risk factors are still relevant many years after extensive implementation of RBM activities.
Chicas, S D; Omine, K; Ford, J B; Sugimura, K; Yoshida, K
2017-02-01
Understanding the trans-boundary deforestation history and patterns in protected areas along the Belize-Guatemala border is of regional and global importance. To assess deforestation history and patterns in our study area along a section of the Belize-Guatemala border, we incorporated multi-temporal deforestation rate analysis and spatial metrics with survey results. This multi-faceted approach provides spatial analysis with relevant insights from local stakeholders to better understand historic deforestation dynamics, spatial characteristics and human perspectives regarding the underlying causes thereof. During the study period 1991-2014, forest cover declined in Belize's protected areas: Vaca Forest Reserve 97.88%-87.62%, Chiquibul National Park 99.36%-92.12%, Caracol Archeological Reserve 99.47%-78.10% and Colombia River Forest Reserve 89.22%-78.38% respectively. A comparison of deforestation rates and spatial metrics indices indicated that between time periods 1991-1995 and 2012-2014 deforestation and fragmentation increased in protected areas. The major underlying causes, drivers, impacts, and barriers to bi-national collaboration and solutions of deforestation along the Belize-Guatemala border were identified by community leaders and stakeholders. The Mann-Whitney U test identified significant differences between leaders and stakeholders regarding the ranking of challenges faced by management organizations in the Maya Mountain Massif, except for the lack of assessment and quantification of deforestation (LD, SH: 18.67, 23.25, U = 148, p > 0.05). The survey results indicated that failure to integrate buffer communities, coordinate among managing organizations and establish strong bi-national collaboration has resulted in continued ecological and environmental degradation. The information provided by this research should aid managing organizations in their continued aim to implement effective deforestation mitigation strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Survey of nearby, nearly face-on spiral galaxies
NASA Astrophysics Data System (ADS)
Garmire, Gordon
2014-09-01
This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole.
Niragire, François; Achia, Thomas N O; Lyambabaje, Alexandre; Ntaganira, Joseph
2017-05-11
Child survival programmes are efficient when they target the most significant and area-specific factors. This study aimed to assess the key determinants and spatial variation of child mortality at the district level in Rwanda. Data from the 2010 Rwanda Demographic and Health Survey were analysed for 8817 live births that occurred during five years preceding the survey. Out of the children born, 433 had died before survey interviews were carried out. A full Bayesian geo-additive continuous-time hazard model enabled us to maximise data utilisation and hence improve the accuracy of our estimates. The results showed substantial district- level spatial variation in childhood mortality in Rwanda. District-specific spatial characteristics were particularly associated with higher death hazards in two districts: Musanze and Nyabihu. The model estimates showed that there were lower death rates among children from households of medium and high economic status compared to those from low-economic status households. Factors, such as four antenatal care visits, delivery at a health facility, prolonged breastfeeding and mothers younger than 31 years were associated with lower child death rates. Long preceding birth intervals were also associated with fewer hazards. For these reasons, programmes aimed at reducing child mortality gaps between districts in Rwanda should target maternal factors and take into consideration district-specific spatial characteristics. Further, child survival gains require strengthening or scaling-up of existing programmes pertaining to access to, and utilisation of maternal and child health care services as well as reduction of the household gap in the economic status.
Spatial Disorientation - A Perspective
2003-02-01
aircraft had stopped spinning - the Purkinje phenomenon. During WW2 night take-off accidents were investigated by Collar (1946). He showed from an...that, even today, continues to be a killer in both military and general aviation. Post WW2 Research The first detailed survey of aviators’ experience...of spatial disorientation and other perceptual disturbances in flight was carried out by Vinacke in the US Navy shortly after the end of WW2 in 1945
A Survey of nearby, nearly face-on spiral galaxies
NASA Astrophysics Data System (ADS)
Garmire, Gordon
2014-09-01
This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole. These are alternate targets.
Geostatistical modelling of household malaria in Malawi
NASA Astrophysics Data System (ADS)
Chirombo, J.; Lowe, R.; Kazembe, L.
2012-04-01
Malaria is one of the most important diseases in the world today, common in tropical and subtropical areas with sub-Saharan Africa being the region most burdened, including Malawi. This region has the right combination of biotic and abiotic components, including socioeconomic, climatic and environmental factors that sustain transmission of the disease. Differences in these conditions across the country consequently lead to spatial variation in risk of the disease. Analysis of nationwide survey data that takes into account this spatial variation is crucial in a resource constrained country like Malawi for targeted allocation of scare resources in the fight against malaria. Previous efforts to map malaria risk in Malawi have been based on limited data collected from small surveys. The Malaria Indicator Survey conducted in 2010 is the most comprehensive malaria survey carried out in Malawi and provides point referenced data for the study. The data has been shown to be spatially correlated. We use Bayesian logistic regression models with spatial correlation to model the relationship between malaria presence in children and covariates such as socioeconomic status of households and meteorological conditions. This spatial model is then used to assess how malaria varies spatially and a malaria risk map for Malawi is produced. By taking intervention measures into account, the developed model is used to assess whether they have an effect on the spatial distribution of the disease and Bayesian kriging is used to predict areas where malaria risk is more likely to increase. It is hoped that this study can help reveal areas that require more attention from the authorities in the continuing fight against malaria, particularly in children under the age of five.
Evaluation of Potential LSST Spatial Indexing Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolaev, S; Abdulla, G; Matzke, R
2006-10-13
The LSST requirement for producing alerts in near real-time, and the fact that generating an alert depends on knowing the history of light variations for a given sky position, both imply that the clustering information for all detections is available at any time during the survey. Therefore, any data structure describing clustering of detections in LSST needs to be continuously updated, even as new detections are arriving from the pipeline. We call this use case ''incremental clustering'', to reflect this continuous updating of clustering information. This document describes the evaluation results for several potential LSST incremental clustering strategies, using: (1)more » Neighbors table and zone optimization to store spatial clusters (a.k.a. Jim Grey's, or SDSS algorithm); (2) MySQL built-in R-tree implementation; (3) an external spatial index library which supports a query interface.« less
NASA Astrophysics Data System (ADS)
Gao, Tian; Qiu, Ling; Hammer, Mårten; Gunnarsson, Allan
2012-02-01
Temporal and spatial vegetation structure has impact on biodiversity qualities. Yet, current schemes of biotope mapping do only to a limited extend incorporate these factors in the mapping. The purpose of this study is to evaluate the application of a modified biotope mapping scheme that includes temporal and spatial vegetation structure. A refined scheme was developed based on a biotope classification, and applied to a green structure system in Helsingborg city in southern Sweden. It includes four parameters of vegetation structure: continuity of forest cover, age of dominant trees, horizontal structure, and vertical structure. The major green structure sites were determined by interpretation of panchromatic aerial photographs assisted with a field survey. A set of biotope maps was constructed on the basis of each level of modified classification. An evaluation of the scheme included two aspects in particular: comparison of species richness between long-continuity and short-continuity forests based on identification of woodland continuity using ancient woodland indicators (AWI) species and related historical documents, and spatial distribution of animals in the green space in relation to vegetation structure. The results indicate that (1) the relationship between forest continuity: according to verification of historical documents, the richness of AWI species was higher in long-continuity forests; Simpson's diversity was significantly different between long- and short-continuity forests; the total species richness and Shannon's diversity were much higher in long-continuity forests shown a very significant difference. (2) The spatial vegetation structure and age of stands influence the richness and abundance of the avian fauna and rabbits, and distance to the nearest tree and shrub was a strong determinant of presence for these animal groups. It is concluded that continuity of forest cover, age of dominant trees, horizontal and vertical structures of vegetation should now be included in urban biotope classifications.
We combine three elements for a comprehensive characterization that links nearshore conditions with coastal watershed disturbance metrics. The three elements are: 1) a shore-parallel, high-resolution nearshore survey using continuous in situ towed sensors; 2) a spatially-balanc...
USING BAYESIAN SPATIAL MODELS TO FACILITATE WATER QUALITY MONITORING
The Clean Water Act of 1972 requires states to monitor the quality of their surface water. The number of sites sampled on streams and rivers varies widely by state. A few states are now using probability survey designs to select sites, while most continue to rely on other proce...
Land subsidence and recovery in the Albuquerque Basin, New Mexico, 1993–2014
Driscoll, Jessica M.; Brandt, Justin T.
2017-08-14
The Albuquerque Bernalillo County Water Utility Authority (ABCWUA) drinking water supply was almost exclusively sourced from groundwater from within the Albuquerque Basin before 2008. In 2008, the San Juan-Chama Drinking Water Project (SJCDWP) provided surface-water resources to augment the groundwater supply, allowing for a reduction in groundwater pumping in the Albuquerque Basin. In 2013, the U.S. Geological Survey, in cooperation with the ABCWUA, began a study to measure and compare aquifer-system and land-surface elevation change before and after the SJCDWP in 2008. Three methods of data collection with different temporal and spatial resolutions were used for this study: (1) aquifer-system compaction data collected continuously at a single extensometer from 1994 to 2013; (2) land-surface elevation change from Global Positioning System (GPS) surveys of a network of monuments collected in 1994–95, 2005, and 2014; and (3) spatially distributed Interferometric Synthetic Aperture Radar (InSAR) satellite data from 1993 to 2010. Collection of extensometer data allows for direct and continuous measurement of aquifer-system compaction at the extensometer location. The GPS surveys of a network of monuments allow for periodic measurements of land-surface elevation change at monument locations. Interferograms are limited in time by lifespan of the satellite, orbital pattern, and data quality but allow for measurement of gridded land-surface elevation change over the study area. Each of these methods was employed to provide a better understanding of aquifer-system compaction and land-surface elevation change for the Albuquerque Basin.Results do not show large magnitudes of subsidence in the Albuquerque Basin. High temporal-resolution but low spatial-resolution data measurements of aquifer-system compaction at the Albuquerque extensometer show elastic aquifer-system response to recovering groundwater levels. Results from the GPS survey of the network of monuments show inconsistent land-surface elevation changes over the Albuquerque Basin, likely because of the lack of significant change and the complexity of subsurface stratigraphy in addition to the spatial and temporal heterogeneity of groundwater withdrawals over the study period. Results from the InSAR analysis show areas of land-surface elevation increase after 2008, which could be attributed to elastic recovery of the aquifer system. The spatial extent to which elastic recovery of the aquifer system has resulted in recovery of land-surface elevation is limited to the in-situ measurements at the extensometer. Examination of spatially distributed InSAR data relative to limited spatial extent of the complex heterogeneity subsurface stratigraphy may explain some of the heterogeneity of land-surface elevation changes over this study period.
USDA-ARS?s Scientific Manuscript database
Developing national wind erosion models for the continental United States requires a comprehensive spatial representation of continuous soil particle size distributions (PSD) for model input. While the current coverage of soil survey is nearly complete, the most detailed particle size classes have c...
Urban Dynamics: Analyzing Land Use Change in Urban Environments
NASA Technical Reports Server (NTRS)
Acevedo, William; Richards, Lora R.; Buchanan, Janis T.; Wegener, Whitney R.
2000-01-01
In FY99, the Earth Resource Observation System (EROS) staff at Ames continued managing the U.S. Geological Survey's (USGS) Urban Dynamics Research program, which has mapping and analysis activities at five USGS mapping centers. Historic land use reconstruction work continued while activities in geographic analysis and modeling were expanded. Retrospective geographic information system (GIS) development - the spatial reconstruction of a region's urban land-use history - focused on the Detroit River Corridor, California's Central Valley, and the city of Sioux Falls, South Dakota.
Chen, Yong
2017-01-01
The expansion of shell disease is an emerging threat to the inshore lobster fisheries in the northeastern United States. The development of models to improve the efficiency and precision of existing monitoring programs is advocated as an important step in mitigating its harmful effects. The objective of this study is to construct a statistical model that could enhance the existing monitoring effort through (1) identification of potential disease-associated abiotic and biotic factors, and (2) estimation of spatial variation in disease prevalence in the lobster fishery. A delta-generalized additive modeling (GAM) approach was applied using bottom trawl survey data collected from 2001–2013 in Long Island Sound, a tidal estuary between New York and Connecticut states. Spatial distribution of shell disease prevalence was found to be strongly influenced by the interactive effects of latitude and longitude, possibly indicative of a geographic origin of shell disease. Bottom temperature, bottom salinity, and depth were also important factors affecting the spatial variability in shell disease prevalence. The delta-GAM projected high disease prevalence in non-surveyed locations. Additionally, a potential spatial discrepancy was found between modeled disease hotspots and survey-based gravity centers of disease prevalence. This study provides a modeling framework to enhance research, monitoring and management of emerging and continuing marine disease threats. PMID:28196150
Dorazio, Robert; Karanth, K. Ullas
2017-01-01
MotivationSeveral spatial capture-recapture (SCR) models have been developed to estimate animal abundance by analyzing the detections of individuals in a spatial array of traps. Most of these models do not use the actual dates and times of detection, even though this information is readily available when using continuous-time recorders, such as microphones or motion-activated cameras. Instead most SCR models either partition the period of trap operation into a set of subjectively chosen discrete intervals and ignore multiple detections of the same individual within each interval, or they simply use the frequency of detections during the period of trap operation and ignore the observed times of detection. Both practices make inefficient use of potentially important information in the data.Model and data analysisWe developed a hierarchical SCR model to estimate the spatial distribution and abundance of animals detected with continuous-time recorders. Our model includes two kinds of point processes: a spatial process to specify the distribution of latent activity centers of individuals within the region of sampling and a temporal process to specify temporal patterns in the detections of individuals. We illustrated this SCR model by analyzing spatial and temporal patterns evident in the camera-trap detections of tigers living in and around the Nagarahole Tiger Reserve in India. We also conducted a simulation study to examine the performance of our model when analyzing data sets of greater complexity than the tiger data.BenefitsOur approach provides three important benefits: First, it exploits all of the information in SCR data obtained using continuous-time recorders. Second, it is sufficiently versatile to allow the effects of both space use and behavior of animals to be specified as functions of covariates that vary over space and time. Third, it allows both the spatial distribution and abundance of individuals to be estimated, effectively providing a species distribution model, even in cases where spatial covariates of abundance are unknown or unavailable. We illustrated these benefits in the analysis of our data, which allowed us to quantify differences between nocturnal and diurnal activities of tigers and to estimate their spatial distribution and abundance across the study area. Our continuous-time SCR model allows an analyst to specify many of the ecological processes thought to be involved in the distribution, movement, and behavior of animals detected in a spatial trapping array of continuous-time recorders. We plan to extend this model to estimate the population dynamics of animals detected during multiple years of SCR surveys.
Stunting in Children (0-59 Months): What Is the Current Trend in South Africa?
ERIC Educational Resources Information Center
Dukhi, Natisha; Sartorius, Benn; Taylor, Myra
2017-01-01
Background: Stunting continues to affect young children as a global nutritional disorder. The aim of our study was to assess the prevalence, associated risk factors and spatial clustering for stunting in a disadvantaged South African District. Methods: A community-based cross-sectional weighted survey of households was conducted in the iLembe…
The California Baseline Methane Survey
NASA Astrophysics Data System (ADS)
Duren, R. M.; Thorpe, A. K.; Hopkins, F. M.; Rafiq, T.; Bue, B. D.; Prasad, K.; Mccubbin, I.; Miller, C. E.
2017-12-01
The California Baseline Methane Survey is the first systematic, statewide assessment of methane point source emissions. The objectives are to reduce uncertainty in the state's methane budget and to identify emission mitigation priorities for state and local agencies, utilities and facility owners. The project combines remote sensing of large areas with airborne imaging spectroscopy and spatially resolved bottom-up data sets to detect, quantify and attribute emissions from diverse sectors including agriculture, waste management, oil and gas production and the natural gas supply chain. Phase 1 of the project surveyed nearly 180,000 individual facilities and infrastructure components across California in 2016 - achieving completeness rates ranging from 20% to 100% per emission sector at < 5 meters spatial resolution. Additionally, intensive studies of key areas and sectors were performed to assess source persistence and variability at times scales ranging from minutes to months. Phase 2 of the project continues with additional data collection in Spring and Fall 2017. We describe the survey design and measurement, modeling and analysis methods. We present initial findings regarding the spatial, temporal and sectoral distribution of methane point source emissions in California and their estimated contribution to the state's total methane budget. We provide case-studies and lessons learned about key sectors including examples where super-emitters were identified and mitigated. We summarize challenges and recommendations for future methane research, inventories and mitigation guidance within and beyond California.
NASA Astrophysics Data System (ADS)
Harder, S. R.; Roulet, N. T.; Strachan, I. B.; Crill, P. M.; Persson, A.; Pelletier, L.; Watt, C.
2014-12-01
Various microforms, created by spatial differential thawing of permafrost, make up the subarctic heterogeneous Stordalen peatland complex (68°22'N, 19°03'E), near Abisko, Sweden. This results in significantly different peatland vegetation communities across short distances, as well as differences in wetness, temperature and peat substrates. We have been measuring the spatially integrated CO2, heat and water vapour fluxes from this peatland complex using eddy covariance and the CO2 exchange from specific plant communities within the EC tower footprint since spring 2008. With this data we are examining if it is possible to derive the spatially integrated ecosystem-wide fluxes from community-level simple light use efficiency (LUE) and ecosystem respiration (ER) models. These models have been developed using several years of continuous autochamber flux measurements for the three major plant functional types (PFTs) as well as knowledge of the spatial variability of the vegetation, water table and active layer depths. LIDAR was used to produce a 1 m resolution digital evaluation model of the complex and the spatial distribution of PFTs was obtained from concurrent high-resolution digital colour air photography trained from vegetation surveys. Continuous water table depths have been measured for four years at over 40 locations in the complex, and peat temperatures and active layer depths are surveyed every 10 days at more than 100 locations. The EC footprint is calculated for every half-hour and the PFT based models are run with the corresponding environmental variables weighted for the PFTs within the EC footprint. Our results show that the Sphagnum, palsa, and sedge PFTs have distinctly different LUE models, and that the tower fluxes are dominated by a blend of the Sphagnum and palsa PFTs. We also see a distinctly different energy partitioning between the fetches containing intact palsa and those with thawed palsa: the evaporative efficiency is higher and the Bowen ration lower for the thawed palsa fetches.
Modeling and measuring snow for assessing climate change impacts in Glacier National Park, Montana
Fagre, Daniel B.; Selkowitz, David J.; Reardon, Blase; Holzer, Karen; Mckeon, Lisa L.
2002-01-01
A 12-year program of global change research at Glacier National Park by the U.S. Geological Survey and numerous collaborators has made progress in quantifying the role of snow as a driver of mountain ecosystem processes. Spatially extensive snow surveys during the annual accumulation/ablation cycle covered two mountain watersheds and approximately 1,000 km2 . Over 7,000 snow depth and snow water equivalent (SWE) measurements have been made through spring 2002. These augment two SNOTEL sites, 9 NRCS snow courses, and approximately 150 snow pit analyses. Snow data were used to establish spatially-explicit interannual variability in snowpack SWE. East of the Continental Divide, snowpack SWE was lower but also less variable than west of the Divide. Analysis of snowpacks suggest downward trends in SWE, a reduction in snow cover duration, and earlier melt-out dates during the past 52 years. Concurrently, high elevation forests and treelines have responded with increased growth. However, the 80 year record of snow from 3 NRCS snow courses reflects a strong influence from the Pacific Decadal Oscillation, resulting in 20-30 year phases of greater or lesser mean SWE. Coupled with the fine-resolution spatial snow data from the two watersheds, the ecological consequences of changes in snowpack can be empirically assessed at a habitat patch scale. This will be required because snow distribution models have had varied success in simulating snowpack accumulation/ablation dynamics in these mountain watersheds, ranging from R2=0.38 for individual south-facing forested snow survey routes to R2=0.95 when aggregated to the watershed scale. Key ecological responses to snowpack changes occur below the watershed scale, such as snow-mediated expansion of forest into subalpine meadows, making continued spatially-explicit snow surveys a necessity.
Haenssgen, Marco J
2015-01-01
The increasing availability of online maps, satellite imagery, and digital technology can ease common constraints of survey sampling in low- and middle-income countries. However, existing approaches require specialised software and user skills, professional GPS equipment, and/or commercial data sources; they tend to neglect spatial sampling considerations when using satellite maps; and they continue to face implementation challenges analogous to conventional survey implementation methods. This paper presents an alternative way of utilising satellite maps and digital aides that aims to address these challenges. The case studies of two rural household surveys in Rajasthan (India) and Gansu (China) compare conventional survey sampling and implementation techniques with the use of online map services such as Google, Bing, and HERE maps. Modern yet basic digital technology can be integrated into the processes of preparing, implementing, and monitoring a rural household survey. Satellite-aided systematic random sampling enhanced the spatial representativeness of the village samples and entailed savings of approximately £4000 compared to conventional household listing, while reducing the duration of the main survey by at least 25 %. This low-cost/low-tech satellite-aided survey sampling approach can be useful for student researchers and resource-constrained research projects operating in low- and middle-income contexts with high survey implementation costs. While achieving transparent and efficient survey implementation at low costs, researchers aiming to adopt a similar process should be aware of the locational, technical, and logistical requirements as well as the methodological challenges of this strategy.
Barnard, P.L.; Hubbard, D.M.; Dugan, J.E.
2012-01-01
A 17-year time series of near-daily sand thickness measurements at a single intertidal location was compared with 5. years of semi-annual 3-dimensional beach surveys at the same beach, and at two other beaches within the same littoral cell. The daily single point measurements correlated extremely well with the mean beach elevation and shoreline position of ten high-spatial resolution beach surveys. Correlations were statistically significant at all spatial scales, even for beach surveys 10s of kilometers downcoast, and therefore variability at the single point monitoring site was representative of regional coastal behavior, allowing us to examine nearly two decades of continuous coastal evolution. The annual cycle of beach oscillations dominated the signal, typical of this region, with additional, less intense spectral peaks associated with seasonal wave energy fluctuations (~. 45 to 90. days), as well as full lunar (~. 29. days) and semi-lunar (~. 13. days; spring-neap cycle) tidal cycles. Sand thickness variability was statistically linked to wave energy with a 2. month peak lag, as well as the average of the previous 7-8. months of wave energy. Longer term anomalies in sand thickness were also apparent on time scales up to 15. months. Our analyses suggest that spatially-limited morphological data sets can be extremely valuable (with robust validation) for understanding the details of beach response to wave energy over timescales that are not resolved by typical survey intervals, as well as the regional behavior of coastal systems. ?? 2011.
Spatial modelling and mapping of female genital mutilation in Kenya.
Achia, Thomas N O
2014-03-25
Female genital mutilation/cutting (FGM/C) is still prevalent in several communities in Kenya and other areas in Africa, as well as being practiced by some migrants from African countries living in other parts of the world. This study aimed at detecting clustering of FGM/C in Kenya, and identifying those areas within the country where women still intend to continue the practice. A broader goal of the study was to identify geographical areas where the practice continues unabated and where broad intervention strategies need to be introduced. The prevalence of FGM/C was investigated using the 2008 Kenya Demographic and Health Survey (KDHS) data. The 2008 KDHS used a multistage stratified random sampling plan to select women of reproductive age (15-49 years) and asked questions concerning their FGM/C status and their support for the continuation of FGM/C. A spatial scan statistical analysis was carried out using SaTScan™ to test for statistically significant clustering of the practice of FGM/C in the country. The risk of FGM/C was also modelled and mapped using a hierarchical spatial model under the Integrated Nested Laplace approximation approach using the INLA library in R. The prevalence of FGM/C stood at 28.2% and an estimated 10.3% of the women interviewed indicated that they supported the continuation of FGM. On the basis of the Deviance Information Criterion (DIC), hierarchical spatial models with spatially structured random effects were found to best fit the data for both response variables considered. Age, region, rural-urban classification, education, marital status, religion, socioeconomic status and media exposure were found to be significantly associated with FGM/C. The current FGM/C status of a woman was also a significant predictor of support for the continuation of FGM/C. Spatial scan statistics confirm FGM clusters in the North-Eastern and South-Western regions of Kenya (p<0.001). This suggests that the fight against FGM/C in Kenya is not yet over. There are still deep cultural and religious beliefs to be addressed in a bid to eradicate the practice. Interventions by government and other stakeholders must address these challenges and target the identified clusters.
UAV magnetometry in mineral exploration and infrastructure detection
NASA Astrophysics Data System (ADS)
Braun, A.; Parvar, K.; Burns, M.
2015-12-01
Magnetic surveys are critical tools in mineral exploration and UAVs have the potential to carry magnetometers. UAV surveys can offer higher spatial resolution than traditional airborne surveys, and higher coverage than terrestrial surveys. However, the main advantage is their ability to sense the magnetic field in 3-D, while most airborne or terrestrial surveys are restricted to 2-D acquisition. This study compares UAV magnetic data from two different UAVs (JIB drone, DJI Phantom 2) and three different magnetometers (GEM GSPM35, Honeywell HMR2300, GEM GST-19). The first UAV survey was conducted using a JIB UAV with a GSPM35 flying at 10-15 m above ground. The survey's goal was to detect intrusive Rhyolite bodies for primary mineral exploration. The survey resulted in a better understanding of the validity/resolution of UAV data and led to improved knowledge about the geological structures in the area. The results further drove the design of a following terrestrial survey. Comparing the UAV data with an available airborne survey (upward continued to 250 m) reveals that the UAV data has superior spatial resolution, but exhibits a higher noise level. The magnetic anomalies related to the Rhyolite intrusions is about 109 nT and translates into an estimated depth of approximately 110 meters. The second survey was conducted using an in-house developed UAV magnetometer system equipped with a DJI Phantom 2 and a Honeywell HMR2300 fluxgate magnetometer. By flying the sensor in different altitudes, the vertical and horizontal gradients can be derived leading to full 3-D magnetic data volumes which can provide improved constraints for source depth/geometry characterization. We demonstrate that a buried steam pipeline was detectable with the UAV magnetometer system and compare the resulting data with a terrestrial survey using a GEM GST-19 Proton Precession Magnetometer.
NASA Astrophysics Data System (ADS)
Ursic, M.; Langendoen, E. J.
2017-12-01
Interactions between point bar growth, bank migration, and hydraulics on meandering rivers are complicated and not well understood. For ephemeral streams, rapid fluctuations in flow further complicate studying and understanding these interactions. This study seeks to answer the following `cause-and-effect' question: Does point bar morphologic adjustment determine where bank erosion occurs (for example, through topographic steering of the flow), or does local bank retreat determine where accretion/erosion occurs on the point bar, or do bank erosion and point bar morphologic adjustment co-evolve? Further, is there a response time between the `cause-and-effect' processes and what variables determine its magnitude and duration? In an effort to answer these questions for an ephemeral stream, a dataset of forty-eight repeat topographic surveys over a ten-year period (1996-2006) of a low sinuosity bend within the Goodwin Creek Experimental Watershed, located near Batesville, MS, were utilized in conjunction with continuous discharge measurements to correlate flow variability and erosional and depositional zones, spatially and temporally. Hydraulically, the bend is located immediately downstream of a confluence with a major tributary. Supercritical flumes on both the primary and tributary channels just upstream of the confluence provide continuous measured discharges to the bend over the survey period. In addition, water surface elevations were continuously measured at the upstream and downstream ends of the bend. No spatial correlation trends could be discerned between reach-scale bank retreat, point bar morphologic adjustment, and flow discharge. Because detailed flow patterns were not available, the two-dimensional computer model Telemac2D was used to provide these details. The model was calibrated and validated for a set of runoff events for which more detailed flow data were available. Telemac2D simulations were created for each topographic survey period. Flows greater than baseflow were combined to create contiguous hydrographs for each survey period. Statistical examination of local flow variability and morphological changes throughout the bend will be conducted and presented.
NASA Astrophysics Data System (ADS)
Bingham, R. G.; Rippin, D. M.; Karlsson, N. B.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Le Brocq, A.; Ross, N.; Wright, A.; Siegert, M. J.
2012-12-01
Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial migration of those tributaries, with likely consequences for the relative positions of Institute and Möller Ice Streams over recent history. Secondly, the subglacial roughness, in part a function of the underlying geology across the region, imposes a strong influence on the continuity of the overlying deep internal layers, though whether it controls, or is a function of, ice flow, remains undetermined. We conclude that in the subglacially mountainous Ellsworth Subglacial Highlands sector, there is long-term stability in the spatial configuration of ice flow, but that elsewhere across Insitute and Möller Ice Streams, the ice-flow configuration has the potential to switch.
Radar-imaged internal layering in the Weddell Sea sector of West Antarctica
NASA Astrophysics Data System (ADS)
Bingham, Robert G.; Rippin, David M.; Karlsson, Nanna B.; Corr, Hugh F. J.; Ferraccioli, Fausto; Jordan, Tom A.; Le Brocq, Anne M.; Ross, Neil; Wright, Andrew P.; Siegert, Martin J.
2013-04-01
Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial migration of those tributaries, with likely consequences for the relative positions of Institute and Möller Ice Streams over recent history. Secondly, the subglacial roughness, in part a function of the underlying geology across the region, imposes a strong influence on the continuity of the overlying deep internal layers, though whether it controls, or is a function of, ice flow, remains undetermined. We conclude that in the subglacially mountainous Ellsworth Subglacial Highlands sector, there is long-term stability in the spatial configuration of ice flow, but that elsewhere across Insitute and Möller Ice Streams, the ice-flow configuration is not stable.
Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review
Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen
2018-01-01
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on. PMID:29614024
Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review.
Ding, Zhenyang; Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen
2018-04-03
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.
Estimating under-five mortality in space and time in a developing world context.
Wakefield, Jon; Fuglstad, Geir-Arne; Riebler, Andrea; Godwin, Jessica; Wilson, Katie; Clark, Samuel J
2018-01-01
Accurate estimates of the under-five mortality rate in a developing world context are a key barometer of the health of a nation. This paper describes a new model to analyze survey data on mortality in this context. We are interested in both spatial and temporal description, that is wishing to estimate under-five mortality rate across regions and years and to investigate the association between the under-five mortality rate and spatially varying covariate surfaces. We illustrate the methodology by producing yearly estimates for subnational areas in Kenya over the period 1980-2014 using data from the Demographic and Health Surveys, which use stratified cluster sampling. We use a binomial likelihood with fixed effects for the urban/rural strata and random effects for the clustering to account for the complex survey design. Smoothing is carried out using Bayesian hierarchical models with continuous spatial and temporally discrete components. A key component of the model is an offset to adjust for bias due to the effects of HIV epidemics. Substantively, there has been a sharp decline in Kenya in the under-five mortality rate in the period 1980-2014, but large variability in estimated subnational rates remains. A priority for future research is understanding this variability. In exploratory work, we examine whether a variety of spatial covariate surfaces can explain the variability in under-five mortality rate. Temperature, precipitation, a measure of malaria infection prevalence, and a measure of nearness to cities were candidates for inclusion in the covariate model, but the interplay between space, time, and covariates is complex.
Brunyé, Tad T; Taylor, Holly A
2008-02-01
Spatial descriptions symbolically represent environmental information through language and are written in two primary perspectives: survey, analogous to viewing a map, and route, analogous to navigation. Readers of survey or route descriptions form abstracted perspective flexible representations of the described environment, or spatial mental models. The present two experiments investigated the maintenance of perspective in spatial mental models as a function of description perspective and experience (operationalized through repetition), and as reflected in self-paced reading times. Experiment 1 involved studying survey and route descriptions either once or three times, then completing map drawing and true/false statement verification. Results demonstrated that spatial mental models are readily formed with survey descriptions, but require relatively more experience with route descriptions; further, some limited evidence suggests perspective dependence in spatial mental models, even following extended experience. Experiment 2 measured self-paced reading during three successive description presentations. Average reading times over the three presentations reduced more for survey relative to route descriptions, and there was no evidence for perspective specificity in resulting spatial mental models. This supports Experiment 1 findings demonstrating the relatively time-consuming nature of acquiring spatial mental models from route, but not survey descriptions. Results are discussed with regard to developmental, discourse processing, and spatial mental model theory.
Hu, Yi; Xiong, Chenglong; Zhang, Zhijie; Luo, Can; Cohen, Ted; Gao, Jie; Zhang, Lijuan; Jiang, Qingwu
2014-01-03
We compared changes in the spatial clustering of schistosomiasis in Southwest China at the conclusion of and six years following the end of the World Bank Loan Project (WBLP), the control strategy of which was focused on the large-scale use of chemotherapy. Parasitological data were obtained through standardized surveys conducted in 1999-2001 and again in 2007-2008. Two alternate spatial cluster methods were used to identify spatial clusters of cases: Anselin's Local Moran's I test and Kulldorff's spatial scan statistic. Substantial reductions in the burden of schistosomiasis were found after the end of the WBLP, but the spatial extent of schistosomiasis was not reduced across the study area. Spatial clusters continued to occur in three regions: Chengdu Plain, Yangtze River Valley, and Lancang River Valley during the two periods, and regularly involved five counties. These findings suggest that despite impressive reductions in burden, the hilly and mountainous regions of Southwest China remain at risk of schistosome re-emergence. Our results help to highlight specific locations where integrated control programs can focus to speed the elimination of schistosomiasis in China.
Quantifying killing of orangutans and human-orangutan conflict in Kalimantan, Indonesia.
Meijaard, Erik; Buchori, Damayanti; Hadiprakarsa, Yokyok; Utami-Atmoko, Sri Suci; Nurcahyo, Anton; Tjiu, Albertus; Prasetyo, Didik; Nardiyono; Christie, Lenny; Ancrenaz, Marc; Abadi, Firman; Antoni, I Nyoman Gede; Armayadi, Dedy; Dinato, Adi; Ella; Gumelar, Pajar; Indrawan, Tito P; Kussaritano; Munajat, Cecep; Priyono, C Wawan Puji; Purwanto, Yadi; Puspitasari, Dewi; Putra, M Syukur Wahyu; Rahmat, Abdi; Ramadani, Harri; Sammy, Jim; Siswanto, Dedi; Syamsuri, Muhammad; Andayani, Noviar; Wu, Huanhuan; Wells, Jessie Anne; Mengersen, Kerrie
2011-01-01
Human-orangutan conflict and hunting are thought to pose a serious threat to orangutan existence in Kalimantan, the Indonesian part of Borneo. No data existed prior to the present study to substantiate these threats. We investigated the rates, spatial distribution and causes of conflict and hunting through an interview-based survey in the orangutan's range in Kalimantan, Indonesia. Between April 2008 and September 2009, we interviewed 6983 respondents in 687 villages to obtain socio-economic information, assess knowledge of local wildlife in general and orangutan encounters specifically, and to query respondents about their knowledge on orangutan conflicts and killing, and relevant laws. This survey revealed estimated killing rates of between 750 and 1800 animals killed in the last year, and between 1950 and 3100 animals killed per year on average within the lifetime of the survey respondents. These killing rates are higher than previously thought and are high enough to pose a serious threat to the continued existence of orangutans in Kalimantan. Importantly, the study contributes to our understanding of the spatial variation in threats, and the underlying causes of those threats, which can be used to facilitate the development of targeted conservation management.
Quantifying Killing of Orangutans and Human-Orangutan Conflict in Kalimantan, Indonesia
Meijaard, Erik; Buchori, Damayanti; Hadiprakarsa, Yokyok; Utami-Atmoko, Sri Suci; Nurcahyo, Anton; Tjiu, Albertus; Prasetyo, Didik; Nardiyono; Christie, Lenny; Ancrenaz, Marc; Abadi, Firman; Antoni, I Nyoman Gede; Armayadi, Dedy; Dinato, Adi; Ella; Gumelar, Pajar; Indrawan, Tito P.; Kussaritano; Munajat, Cecep; Priyono, C. Wawan Puji; Purwanto, Yadi; Puspitasari, Dewi; Putra, M. Syukur Wahyu; Rahmat, Abdi; Ramadani, Harri; Sammy, Jim; Siswanto, Dedi; Syamsuri, Muhammad; Andayani, Noviar; Wu, Huanhuan; Wells, Jessie Anne; Mengersen, Kerrie
2011-01-01
Human-orangutan conflict and hunting are thought to pose a serious threat to orangutan existence in Kalimantan, the Indonesian part of Borneo. No data existed prior to the present study to substantiate these threats. We investigated the rates, spatial distribution and causes of conflict and hunting through an interview-based survey in the orangutan's range in Kalimantan, Indonesia. Between April 2008 and September 2009, we interviewed 6983 respondents in 687 villages to obtain socio-economic information, assess knowledge of local wildlife in general and orangutan encounters specifically, and to query respondents about their knowledge on orangutan conflicts and killing, and relevant laws. This survey revealed estimated killing rates of between 750 and 1800 animals killed in the last year, and between 1950 and 3100 animals killed per year on average within the lifetime of the survey respondents. These killing rates are higher than previously thought and are high enough to pose a serious threat to the continued existence of orangutans in Kalimantan. Importantly, the study contributes to our understanding of the spatial variation in threats, and the underlying causes of those threats, which can be used to facilitate the development of targeted conservation management. PMID:22096582
Spatial modelling and mapping of female genital mutilation in Kenya
2014-01-01
Background Female genital mutilation/cutting (FGM/C) is still prevalent in several communities in Kenya and other areas in Africa, as well as being practiced by some migrants from African countries living in other parts of the world. This study aimed at detecting clustering of FGM/C in Kenya, and identifying those areas within the country where women still intend to continue the practice. A broader goal of the study was to identify geographical areas where the practice continues unabated and where broad intervention strategies need to be introduced. Methods The prevalence of FGM/C was investigated using the 2008 Kenya Demographic and Health Survey (KDHS) data. The 2008 KDHS used a multistage stratified random sampling plan to select women of reproductive age (15–49 years) and asked questions concerning their FGM/C status and their support for the continuation of FGM/C. A spatial scan statistical analysis was carried out using SaTScan™ to test for statistically significant clustering of the practice of FGM/C in the country. The risk of FGM/C was also modelled and mapped using a hierarchical spatial model under the Integrated Nested Laplace approximation approach using the INLA library in R. Results The prevalence of FGM/C stood at 28.2% and an estimated 10.3% of the women interviewed indicated that they supported the continuation of FGM. On the basis of the Deviance Information Criterion (DIC), hierarchical spatial models with spatially structured random effects were found to best fit the data for both response variables considered. Age, region, rural–urban classification, education, marital status, religion, socioeconomic status and media exposure were found to be significantly associated with FGM/C. The current FGM/C status of a woman was also a significant predictor of support for the continuation of FGM/C. Spatial scan statistics confirm FGM clusters in the North-Eastern and South-Western regions of Kenya (p < 0.001). Conclusion This suggests that the fight against FGM/C in Kenya is not yet over. There are still deep cultural and religious beliefs to be addressed in a bid to eradicate the practice. Interventions by government and other stakeholders must address these challenges and target the identified clusters. PMID:24661558
Application of geo-spatial technology in schistosomiasis modelling in Africa: a review.
Manyangadze, Tawanda; Chimbari, Moses John; Gebreslasie, Michael; Mukaratirwa, Samson
2015-11-04
Schistosomiasis continues to impact socio-economic development negatively in sub-Saharan Africa. The advent of spatial technologies, including geographic information systems (GIS), Earth observation (EO) and global positioning systems (GPS) assist modelling efforts. However, there is increasing concern regarding the accuracy and precision of the current spatial models. This paper reviews the literature regarding the progress and challenges in the development and utilization of spatial technology with special reference to predictive models for schistosomiasis in Africa. Peer-reviewed papers identified through a PubMed search using the following keywords: geo-spatial analysis OR remote sensing OR modelling OR earth observation OR geographic information systems OR prediction OR mapping AND schistosomiasis AND Africa were used. Statistical uncertainty, low spatial and temporal resolution satellite data and poor validation were identified as some of the factors that compromise the precision and accuracy of the existing predictive models. The need for high spatial resolution of remote sensing data in conjunction with ancillary data viz. ground-measured climatic and environmental information, local presence/absence intermediate host snail surveys as well as prevalence and intensity of human infection for model calibration and validation are discussed. The importance of a multidisciplinary approach in developing robust, spatial data capturing, modelling techniques and products applicable in epidemiology is highlighted.
Brenkman, S.J.; Duda, J.J.; Torgersen, C.E.; Welty, E.; Pess, G.R.; Peters, R.; McHenry, M.L.
2012-01-01
Dam removal has been increasingly proposed as a river restoration technique. In 2011, two large hydroelectric dams will be removed from Washington State’s Elwha River. Ten anadromous fish populations are expected to recolonise historical habitats after dam removal. A key to understanding watershed recolonisation is the collection of spatially continuous information on fish and aquatic habitats. A riverscape approach with an emphasis on biological data has rarely been applied in mid-sized, wilderness rivers, particularly in consecutive years prior to dam removal. Concurrent snorkel and habitat surveys were conducted from the headwaters to the mouth (rkm 65–0) of the Elwha River in 2007 and 2008. This riverscape approach characterised the spatial extent, assemblage structure and patterns of relative density of Pacific salmonids. The presence of dams influenced the longitudinal patterns of fish assemblages, and species richness was the highest downstream of the dams, where anadromous salmonids still have access. The percent composition of salmonids was similar in both years for rainbow trout, Oncorhynchus mykiss (Walbaum), coastal cutthroat trout, Oncorhynchus clarkii clarkii (Richardson) (89%; 88%), Chinook salmon, Oncorhynchus tshawytscha (Walbaum) (8%; 9%), and bull trout, Salvelinus confluentus (Suckley) (3% in both years). Spatial patterns of abundance for rainbow and cutthroat trout (r = 0.76) and bull trout (r = 0.70) were also consistent between years. Multivariate and univariate methods detected differences in habitat structure along the river profile caused by natural and anthropogenic factors. The riverscape view highlighted species-specific biological hotspots and revealed that 60–69% of federally threatened bull trout occurred near or below the dams. Spatially continuous surveys will be vital in evaluating the effectiveness of upcoming dam removal projects at restoring anadromous salmonids.
Spatial prediction of Plasmodium falciparum prevalence in Somalia
Noor, Abdisalan M; Clements, Archie CA; Gething, Peter W; Moloney, Grainne; Borle, Mohammed; Shewchuk, Tanya; Hay, Simon I; Snow, Robert W
2008-01-01
Background Maps of malaria distribution are vital for optimal allocation of resources for anti-malarial activities. There is a lack of reliable contemporary malaria maps in endemic countries in sub-Saharan Africa. This problem is particularly acute in low malaria transmission countries such as those located in the horn of Africa. Methods Data from a national malaria cluster sample survey in 2005 and routine cluster surveys in 2007 were assembled for Somalia. Rapid diagnostic tests were used to examine the presence of Plasmodium falciparum parasites in finger-prick blood samples obtained from individuals across all age-groups. Bayesian geostatistical models, with environmental and survey covariates, were used to predict continuous maps of malaria prevalence across Somalia and to define the uncertainty associated with the predictions. Results For analyses the country was divided into north and south. In the north, the month of survey, distance to water, precipitation and temperature had no significant association with P. falciparum prevalence when spatial correlation was taken into account. In contrast, all the covariates, except distance to water, were significantly associated with parasite prevalence in the south. The inclusion of covariates improved model fit for the south but not for the north. Model precision was highest in the south. The majority of the country had a predicted prevalence of < 5%; areas with ≥ 5% prevalence were predominantly in the south. Conclusion The maps showed that malaria transmission in Somalia varied from hypo- to meso-endemic. However, even after including the selected covariates in the model, there still remained a considerable amount of unexplained spatial variation in parasite prevalence, indicating effects of other factors not captured in the study. Nonetheless the maps presented here provide the best contemporary information on malaria prevalence in Somalia. PMID:18717998
Spatial prediction of Plasmodium falciparum prevalence in Somalia.
Noor, Abdisalan M; Clements, Archie C A; Gething, Peter W; Moloney, Grainne; Borle, Mohammed; Shewchuk, Tanya; Hay, Simon I; Snow, Robert W
2008-08-21
Maps of malaria distribution are vital for optimal allocation of resources for anti-malarial activities. There is a lack of reliable contemporary malaria maps in endemic countries in sub-Saharan Africa. This problem is particularly acute in low malaria transmission countries such as those located in the horn of Africa. Data from a national malaria cluster sample survey in 2005 and routine cluster surveys in 2007 were assembled for Somalia. Rapid diagnostic tests were used to examine the presence of Plasmodium falciparum parasites in finger-prick blood samples obtained from individuals across all age-groups. Bayesian geostatistical models, with environmental and survey covariates, were used to predict continuous maps of malaria prevalence across Somalia and to define the uncertainty associated with the predictions. For analyses the country was divided into north and south. In the north, the month of survey, distance to water, precipitation and temperature had no significant association with P. falciparum prevalence when spatial correlation was taken into account. In contrast, all the covariates, except distance to water, were significantly associated with parasite prevalence in the south. The inclusion of covariates improved model fit for the south but not for the north. Model precision was highest in the south. The majority of the country had a predicted prevalence of < 5%; areas with > or = 5% prevalence were predominantly in the south. The maps showed that malaria transmission in Somalia varied from hypo- to meso-endemic. However, even after including the selected covariates in the model, there still remained a considerable amount of unexplained spatial variation in parasite prevalence, indicating effects of other factors not captured in the study. Nonetheless the maps presented here provide the best contemporary information on malaria prevalence in Somalia.
McGarvey, Richard; Burch, Paul; Matthews, Janet M
2016-01-01
Natural populations of plants and animals spatially cluster because (1) suitable habitat is patchy, and (2) within suitable habitat, individuals aggregate further into clusters of higher density. We compare the precision of random and systematic field sampling survey designs under these two processes of species clustering. Second, we evaluate the performance of 13 estimators for the variance of the sample mean from a systematic survey. Replicated simulated surveys, as counts from 100 transects, allocated either randomly or systematically within the study region, were used to estimate population density in six spatial point populations including habitat patches and Matérn circular clustered aggregations of organisms, together and in combination. The standard one-start aligned systematic survey design, a uniform 10 x 10 grid of transects, was much more precise. Variances of the 10 000 replicated systematic survey mean densities were one-third to one-fifth of those from randomly allocated transects, implying transect sample sizes giving equivalent precision by random survey would need to be three to five times larger. Organisms being restricted to patches of habitat was alone sufficient to yield this precision advantage for the systematic design. But this improved precision for systematic sampling in clustered populations is underestimated by standard variance estimators used to compute confidence intervals. True variance for the survey sample mean was computed from the variance of 10 000 simulated survey mean estimates. Testing 10 published and three newly proposed variance estimators, the two variance estimators (v) that corrected for inter-transect correlation (ν₈ and ν(W)) were the most accurate and also the most precise in clustered populations. These greatly outperformed the two "post-stratification" variance estimators (ν₂ and ν₃) that are now more commonly applied in systematic surveys. Similar variance estimator performance rankings were found with a second differently generated set of spatial point populations, ν₈ and ν(W) again being the best performers in the longer-range autocorrelated populations. However, no systematic variance estimators tested were free from bias. On balance, systematic designs bring more narrow confidence intervals in clustered populations, while random designs permit unbiased estimates of (often wider) confidence interval. The search continues for better estimators of sampling variance for the systematic survey mean.
Dorazio, Robert; Delampady, Mohan; Dey, Soumen; Gopalaswamy, Arjun M.; Karanth, K. Ullas; Nichols, James D.
2017-01-01
Conservationists and managers are continually under pressure from the public, the media, and political policy makers to provide “tiger numbers,” not just for protected reserves, but also for large spatial scales, including landscapes, regions, states, nations, and even globally. Estimating the abundance of tigers within relatively small areas (e.g., protected reserves) is becoming increasingly tractable (see Chaps. 9 and 10), but doing so for larger spatial scales still presents a formidable challenge. Those who seek “tiger numbers” are often not satisfied by estimates of tiger occupancy alone, regardless of the reliability of the estimates (see Chaps. 4 and 5). As a result, wherever tiger conservation efforts are underway, either substantially or nominally, scientists and managers are frequently asked to provide putative large-scale tiger numbers based either on a total count or on an extrapolation of some sort (see Chaps. 1 and 2).
Spatial data analysis and the use of maps in scientific health articles.
Nucci, Luciana Bertoldi; Souccar, Patrick Theodore; Castilho, Silvia Diez
2016-07-01
Despite the growing number of studies with a characteristic element of spatial analysis, the application of the techniques is not always clear and its continuity in epidemiological studies requires careful evaluation. To verify the spread and use of those processes in national and international scientific papers. An assessment was made of periodicals according to the impact index. Among 8,281 journals surveyed, four national and four international were selected, of which 1,274 articles were analyzed regarding the presence or absence of spatial analysis techniques. Just over 10% of articles published in 2011 in high impact journals, both national and international, showed some element of geographical location. Although these percentages vary greatly from one journal to another, denoting different publication profiles, we consider this percentage as an indication that location variables have become an important factor in studies of health.
Nicolas, Delphine; Rochette, Sébastien; Llope, Marcos; Licandro, Priscilla
2014-01-01
The North Sea cod (Gadus morhua, L.) stock has continuously declined over the past four decades linked with overfishing and climate change. Changes in stock structure due to overfishing have made the stock largely dependent on its recruitment success, which greatly relies on environmental conditions. Here we focus on the spatio-temporal variability of cod recruitment in an effort to detect changes during the critical early life stages. Using International Bottom Trawl Survey (IBTS) data from 1974 to 2011, a major spatio-temporal change in the distribution of cod recruits was identified in the late 1990s, characterized by a pronounced decrease in the central and southeastern North Sea stock. Other minor spatial changes were also recorded in the mid-1980s and early 1990s. We tested whether the observed changes in recruits distribution could be related with direct (i.e. temperature) and/or indirect (i.e. changes in the quantity and quality of zooplankton prey) effects of climate variability. The analyses were based on spatially-resolved time series, i.e. sea surface temperature (SST) from the Hadley Center and zooplankton records from the Continuous Plankton Recorder Survey. We showed that spring SST increase was the main driver for the most recent decrease in cod recruitment. The late 1990s were also characterized by relatively low total zooplankton biomass, particularly of energy-rich zooplankton such as the copepod Calanus finmarchicus, which have further contributed to the decline of North Sea cod recruitment. Long-term spatially-resolved observations were used to produce regional distribution models that could further be used to predict the abundance of North Sea cod recruits based on temperature and zooplankton food availability.
Nicolas, Delphine; Rochette, Sébastien; Llope, Marcos; Licandro, Priscilla
2014-01-01
The North Sea cod (Gadus morhua, L.) stock has continuously declined over the past four decades linked with overfishing and climate change. Changes in stock structure due to overfishing have made the stock largely dependent on its recruitment success, which greatly relies on environmental conditions. Here we focus on the spatio-temporal variability of cod recruitment in an effort to detect changes during the critical early life stages. Using International Bottom Trawl Survey (IBTS) data from 1974 to 2011, a major spatio-temporal change in the distribution of cod recruits was identified in the late 1990s, characterized by a pronounced decrease in the central and southeastern North Sea stock. Other minor spatial changes were also recorded in the mid-1980s and early 1990s. We tested whether the observed changes in recruits distribution could be related with direct (i.e. temperature) and/or indirect (i.e. changes in the quantity and quality of zooplankton prey) effects of climate variability. The analyses were based on spatially-resolved time series, i.e. sea surface temperature (SST) from the Hadley Center and zooplankton records from the Continuous Plankton Recorder Survey. We showed that spring SST increase was the main driver for the most recent decrease in cod recruitment. The late 1990s were also characterized by relatively low total zooplankton biomass, particularly of energy-rich zooplankton such as the copepod Calanus finmarchicus, which have further contributed to the decline of North Sea cod recruitment. Long-term spatially-resolved observations were used to produce regional distribution models that could further be used to predict the abundance of North Sea cod recruits based on temperature and zooplankton food availability. PMID:24551103
NASA Astrophysics Data System (ADS)
Lowry, D.; Fisher, R. E.; Zazzeri, G.; Lanoisellé, M.; France, J.; Allen, G.; Nisbet, E. G.
2017-12-01
Unlike the big open landscapes of many continents with large area sources dominated by one particular methane emission type that can be isotopically characterized by flight measurements and sampling, the complex patchwork of urban, fossil and agricultural methane sources across NW Europe require detailed ground surveys for characterization (Zazzeri et al., 2017). Here we outline the findings from multiple seasonal urban and rural measurement campaigns in the United Kingdom. These surveys aim to: 1) Assess source distribution and baseline in regions of planned fracking, and relate to on-site continuous baseline climatology. 2) Characterize spatial and seasonal differences in the isotopic signatures of the UNFCCC source categories, and 3) Assess the spatial validity of the 1 x 1 km UK inventory for large continuous emitters, proposed point sources, and seasonal / ephemeral emissions. The UK inventory suggests that 90% of methane emissions are from 3 source categories, ruminants, landfill and gas distribution. Bag sampling and GC-IRMS delta13C analysis shows that landfill gives a constant signature of -57 ±3 ‰ throughout the year. Fugitive gas emissions are consistent regionally depending on the North Sea supply regions feeding the network (-41 ± 2 ‰ in N England, -37 ± 2 ‰ in SE England). Ruminant, mostly cattle, emissions are far more complex as these spend winters in barns and summers in fields, but are essentially a mix of 2 end members, breath at -68 ±3 ‰ and manure at -51 ±3 ‰, resulting in broad summer field emission plumes of -64 ‰ and point winter barn emission plumes of -58 ‰. The inventory correctly locates emission hotspots from landfill, larger sewage treatment plants and gas compressor stations, giving a broad overview of emission distribution for regional model validation. Mobile surveys are adding an extra layer of detail to this which, combined with isotopic characterization, has identified spatial distribution of gas pipe leaks, some persisting since 2013 (Zazzeri et al., 2015), and seasonality and spatial variability of livestock emissions. Importantly existing significant gas leaks close to proposed fracking sites have been characterized so that any emissions to atmosphere with a different isotopic signature will be detected. Zazzeri, G., Atm. Env. 110, 151-162 (2015); Zazzeri, G., Sci. Rep. 7, 4854 (2017).
Insecticide resistance, control failure likelihood and the First Law of Geography.
Guedes, Raul Narciso C
2017-03-01
Insecticide resistance is a broadly recognized ecological backlash resulting from insecticide use and is widely reported among arthropod pest species with well-recognized underlying mechanisms and consequences. Nonetheless, insecticide resistance is the subject of evolving conceptual views that introduces a different concept useful if recognized in its own right - the risk or likelihood of control failure. Here we suggest an experimental approach to assess the likelihood of control failure of an insecticide allowing for consistent decision-making regarding management of insecticide resistance. We also challenge the current emphasis on limited spatial sampling of arthropod populations for resistance diagnosis in favor of comprehensive spatial sampling. This necessarily requires larger population sampling - aiming to use spatial analysis in area-wide surveys - to recognize focal points of insecticide resistance and/or control failure that will better direct management efforts. The continuous geographical scale of such surveys will depend on the arthropod pest species, the pattern of insecticide use and many other potential factors. Regardless, distance dependence among sampling sites should still hold, following the maxim that the closer two things are, the more they resemble each other, which is the basis of Tobler's First Law of Geography. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
GLASS: The Grism Lens-Amplified Survey From Space. HST Grism Spectroscopy of the Frontier Fields.
NASA Astrophysics Data System (ADS)
Borello Schmidt, Kasper
2015-08-01
The Grism Lens-Amplified Survey From Space (GLASS) is a 140 orbit spectroscopic survey of 10 massive galaxy clusters, including the six Hubble Frontier Fields. GLASS has observed the cluster cores in the HST-WFC3 G102 and G141 grisms providing a wide wavelength coverage in the near-infrared from roughly 0.8 - 1.7 μm. The parallel fields were observed through the optical ACS G800L grism. Taking advantage of the lensing magnification of the clusters, GLASS reaches excellent spectroscopic limits of ˜10-18 erg/s/cm2 and improved spatial resolution for lensed sources behind the clusters. These features are particularly useful for the three main science drivers of GLASS, which are: I) Use the hundreds of spectra of galaxies at z>6 to shed light on the epoch of reionization, the role galaxies play in reionizing the universe, and the Lyα escape fraction at the cosmic dawn. II) Study gas accretion, star formation, and outflows by spatially mapping resolved star formation and determine metallicity gradients from emission lines at z˜2. III) Explore the environmental dependence of galaxy evolution using the first comprehensive census of spatially resolved star formation in dense environments, i.e., the cluster cores as well as the cluster infall regions. The former two benefit highly from the improved depth and increased resolution provided by the cluster lensing. Apart from the main science drivers, a slew of ancillary science has been enabled by the survey. One particularly interesting example is the search for supernovae in the more than 40 GLASS visits, which resulted in the detection of the first multiple imaged supernova, SN Refsdal. I will present the survey, give an update on the current science results, in particular on the GLASS galaxies at the epoch of reionization, and provide a status report on the GLASS data releases, which are continuously being made available to the community.
Pinto, Ameet J.; Schroeder, Joanna; Lunn, Mary; Sloan, William
2014-01-01
ABSTRACT Bacterial communities migrate continuously from the drinking water treatment plant through the drinking water distribution system and into our built environment. Understanding bacterial dynamics in the distribution system is critical to ensuring that safe drinking water is being supplied to customers. We present a 15-month survey of bacterial community dynamics in the drinking water system of Ann Arbor, MI. By sampling the water leaving the treatment plant and at nine points in the distribution system, we show that the bacterial community spatial dynamics of distance decay and dispersivity conform to the layout of the drinking water distribution system. However, the patterns in spatial dynamics were weaker than those for the temporal trends, which exhibited seasonal cycling correlating with temperature and source water use patterns and also demonstrated reproducibility on an annual time scale. The temporal trends were driven by two seasonal bacterial clusters consisting of multiple taxa with different networks of association within the larger drinking water bacterial community. Finally, we show that the Ann Arbor data set robustly conforms to previously described interspecific occupancy abundance models that link the relative abundance of a taxon to the frequency of its detection. Relying on these insights, we propose a predictive framework for microbial management in drinking water systems. Further, we recommend that long-term microbial observatories that collect high-resolution, spatially distributed, multiyear time series of community composition and environmental variables be established to enable the development and testing of the predictive framework. PMID:24865557
Two centuries of masting data for European beech and Norway spruce across the European continent.
Ascoli, Davide; Maringer, Janet; Hacket-Pain, Andy; Conedera, Marco; Drobyshev, Igor; Motta, Renzo; Cirolli, Mara; Kantorowicz, Władysław; Zang, Christian; Schueler, Silvio; Croisé, Luc; Piussi, Pietro; Berretti, Roberta; Palaghianu, Ciprian; Westergren, Marjana; Lageard, Jonathan G A; Burkart, Anton; Gehrig Bichsel, Regula; Thomas, Peter A; Beudert, Burkhard; Övergaard, Rolf; Vacchiano, Giorgio
2017-05-01
Tree masting is one of the most intensively studied ecological processes. It affects nutrient fluxes of trees, regeneration dynamics in forests, animal population densities, and ultimately influences ecosystem services. Despite a large volume of research focused on masting, its evolutionary ecology, spatial and temporal variability, and environmental drivers are still matter of debate. Understanding the proximate and ultimate causes of masting at broad spatial and temporal scales will enable us to predict tree reproductive strategies and their response to changing environment. Here we provide broad spatial (distribution range-wide) and temporal (century) masting data for the two main masting tree species in Europe, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.). We collected masting data from a total of 359 sources through an extensive literature review and from unpublished surveys. The data set has a total of 1,747 series and 18,348 yearly observations from 28 countries and covering a time span of years 1677-2016 and 1791-2016 for beech and spruce, respectively. For each record, the following information is available: identification code; species; year of observation; proxy of masting (flower, pollen, fruit, seed, dendrochronological reconstructions); statistical data type (ordinal, continuous); data value; unit of measurement (only in case of continuous data); geographical location (country, Nomenclature of Units for Territorial Statistics NUTS-1 level, municipality, coordinates); first and last record year and related length; type of data source (field survey, peer reviewed scientific literature, gray literature, personal observation); source identification code; date when data were added to the database; comments. To provide a ready-to-use masting index we harmonized ordinal data into five classes. Furthermore, we computed an additional field where continuous series with length >4 yr where converted into a five classes ordinal index. To our knowledge, this is the most comprehensive published database on species-specific masting behavior. It is useful to study spatial and temporal patterns of masting and its proximate and ultimate causes, to refine studies based on tree-ring chronologies, to understand dynamics of animal species and pests vectored by these animals affecting human health, and it may serve as calibration-validation data for dynamic forest models. © 2017 by the Ecological Society of America.
Spatial Data from Transportation Studies and Surveys | Transportation
transportation studies and surveys, submit an application for approval to connect to a restricted secure portal environment. For a list of studies and surveys, see cleansed data. Application Process For accessing spatial data, learn about the application and approval process. If you'd like to apply to access the spatial
Jansen, Teunis; Kristensen, Kasper; Payne, Mark; Edwards, Martin; Schrum, Corinna; Pitois, Sophie
2012-01-01
We present a unique view of mackerel (Scomber scombrus) in the North Sea based on a new time series of larvae caught by the Continuous Plankton Recorder (CPR) survey from 1948-2005, covering the period both before and after the collapse of the North Sea stock. Hydrographic backtrack modelling suggested that the effect of advection is very limited between spawning and larvae capture in the CPR survey. Using a statistical technique not previously applied to CPR data, we then generated a larval index that accounts for both catchability as well as spatial and temporal autocorrelation. The resulting time series documents the significant decrease of spawning from before 1970 to recent depleted levels. Spatial distributions of the larvae, and thus the spawning area, showed a shift from early to recent decades, suggesting that the central North Sea is no longer as important as the areas further west and south. These results provide a consistent and unique perspective on the dynamics of mackerel in this region and can potentially resolve many of the unresolved questions about this stock.
Jansen, Teunis; Kristensen, Kasper; Payne, Mark; Edwards, Martin; Schrum, Corinna; Pitois, Sophie
2012-01-01
We present a unique view of mackerel (Scomber scombrus) in the North Sea based on a new time series of larvae caught by the Continuous Plankton Recorder (CPR) survey from 1948-2005, covering the period both before and after the collapse of the North Sea stock. Hydrographic backtrack modelling suggested that the effect of advection is very limited between spawning and larvae capture in the CPR survey. Using a statistical technique not previously applied to CPR data, we then generated a larval index that accounts for both catchability as well as spatial and temporal autocorrelation. The resulting time series documents the significant decrease of spawning from before 1970 to recent depleted levels. Spatial distributions of the larvae, and thus the spawning area, showed a shift from early to recent decades, suggesting that the central North Sea is no longer as important as the areas further west and south. These results provide a consistent and unique perspective on the dynamics of mackerel in this region and can potentially resolve many of the unresolved questions about this stock. PMID:22737221
Toward a Federal Land Information System: Experiences and issues
Sturdevant, James A.
1988-01-01
From 1983 to 1987, the U.S. Geological Survey conducted research to develop a national resource data base of Federal lands under the auspices of the Federal Land Information System (FLIS) program. The program's goal was to develop the capability to provide information to national mineral-use policymakers. Prototype spatial data bases containing mineral, land status, and base cartographic data were developed for the Medford, Oreg., area, the State of Alaska, and the Silver City, N. Mex., area. Other accomplishments included (1) the preparation of a digital format for U.S. Geological Survey mineral assessment data and (2) the development of a procedure for integrating parcel-level tabular Alaska land status data into a section-level geographic information system. Overall findings indicated that both vector and raster capabilities are required for a FLIS and that nationwide data availability is a limiting factor in FLIS development. As a result of a 1986 interbureau (U.S. Geological Survey, Bureau of Land Management, and Bureau of Mines) review of the FLIS program, activities were redirected to undertake research on large-area geographic information system techniques. Land use and land cover data generalization strategies were tested, and areafiltering software was found to be the optimum type. In addition, a procedure was developed for transferring tabular land status data of surveyed areas in the contiguous 48 States to spatial data for use in geographic information systems. The U.S. Geological Survey FLIS program, as an administrative unit, ended in 1987, but FLIS-related research on large-area geographic information systems continues.
Fulton, James L.
1992-01-01
Spatial data analysis has become an integral component in many surface and sub-surface hydrologic investigations within the U.S. Geological Survey (USGS). Currently, one of the largest costs in applying spatial data analysis is the cost of developing the needed spatial data. Therefore, guidelines and standards are required for the development of spatial data in order to allow for data sharing and reuse; this eliminates costly redevelopment. In order to attain this goal, the USGS is expanding efforts to identify guidelines and standards for the development of spatial data for hydrologic analysis. Because of the variety of project and database needs, the USGS has concentrated on developing standards for documenting spatial sets to aid in the assessment of data set quality and compatibility of different data sets. An interim data set documentation standard (1990) has been developed that provides a mechanism for associating a wide variety of information with a data set, including data about source material, data automation and editing procedures used, projection parameters, data statistics, descriptions of features and feature attributes, information on organizational contacts lists of operations performed on the data, and free-form comments and notes about the data, made at various times in the evolution of the data set. The interim data set documentation standard has been automated using a commercial geographic information system (GIS) and data set documentation software developed by the USGS. Where possible, USGS developed software is used to enter data into the data set documentation file automatically. The GIS software closely associates a data set with its data set documentation file; the documentation file is retained with the data set whenever it is modified, copied, or transferred to another computer system. The Water Resources Division of the USGS is continuing to develop spatial data and data processing standards, with emphasis on standards needed to support hydrologic analysis, hydrologic data processing, and publication of hydrologic thermatic maps. There is a need for the GIS vendor community to develop data set documentation tools similar to those developed by the USGS, or to incorporate USGS developed tools in their software.
Spatial capture-recapture models for search-encounter data
Royle, J. Andrew; Kery, Marc; Guelat, Jerome
2011-01-01
1. Spatial capture–recapture models make use of auxiliary data on capture location to provide density estimates for animal populations. Previously, models have been developed primarily for fixed trap arrays which define the observable locations of individuals by a set of discrete points. 2. Here, we develop a class of models for 'search-encounter' data, i.e. for detections of recognizable individuals in continuous space, not restricted to trap locations. In our hierarchical model, detection probability is related to the average distance between individual location and the survey path. The locations are allowed to change over time owing to movements of individuals, and individual locations are related formally by a model describing individual activity or home range centre which is itself regarded as a latent variable in the model. We provide a Bayesian analysis of the model in WinBUGS, and develop a custom MCMC algorithm in the R language. 3. The model is applied to simulated data and to territory mapping data for the Willow Tit from the Swiss Breeding Bird Survey MHB. While the observed density was 15 territories per nominal 1 km2 plot of unknown effective sample area, the model produced a density estimate of 21∙12 territories per square km (95% posterior interval: 17–26). 4. Spatial capture–recapture models are relevant to virtually all animal population studies that seek to estimate population size or density, yet existing models have been proposed mainly for conventional sampling using arrays of traps. Our model for search-encounter data, where the spatial pattern of searching can be arbitrary and may change over occasions, greatly expands the scope and utility of spatial capture–recapture models.
2012-01-01
The use of Global Positioning Systems (GPS) and Geographical Information Systems (GIS) in disease surveys and reporting is becoming increasingly routine, enabling a better understanding of spatial epidemiology and the improvement of surveillance and control strategies. In turn, the greater availability of spatially referenced epidemiological data is driving the rapid expansion of disease mapping and spatial modeling methods, which are becoming increasingly detailed and sophisticated, with rigorous handling of uncertainties. This expansion has, however, not been matched by advancements in the development of spatial datasets of human population distribution that accompany disease maps or spatial models. Where risks are heterogeneous across population groups or space or dependent on transmission between individuals, spatial data on human population distributions and demographic structures are required to estimate infectious disease risks, burdens, and dynamics. The disease impact in terms of morbidity, mortality, and speed of spread varies substantially with demographic profiles, so that identifying the most exposed or affected populations becomes a key aspect of planning and targeting interventions. Subnational breakdowns of population counts by age and sex are routinely collected during national censuses and maintained in finer detail within microcensus data. Moreover, demographic and health surveys continue to collect representative and contemporary samples from clusters of communities in low-income countries where census data may be less detailed and not collected regularly. Together, these freely available datasets form a rich resource for quantifying and understanding the spatial variations in the sizes and distributions of those most at risk of disease in low income regions, yet at present, they remain unconnected data scattered across national statistical offices and websites. In this paper we discuss the deficiencies of existing spatial population datasets and their limitations on epidemiological analyses. We review sources of detailed, contemporary, freely available and relevant spatial demographic data focusing on low income regions where such data are often sparse and highlight the value of incorporating these through a set of examples of their application in disease studies. Moreover, the importance of acknowledging, measuring, and accounting for uncertainty in spatial demographic datasets is outlined. Finally, a strategy for building an open-access database of spatial demographic data that is tailored to epidemiological applications is put forward. PMID:22591595
Spatial Mismatch: A Third Generation Survey.
ERIC Educational Resources Information Center
Eagan, J. Vincent
1999-01-01
The spatial mismatch argument hypothesizes that racial discrimination in the housing market, together with the suburbanization of low skilled jobs, contributes significantly to the high unemployment and/or low wages of inner city minority workers. Surveys recent spatial mismatch literature and discusses policy alternatives, focusing on areas…
Meneghetti, Chiara; Labate, Enia; Pazzaglia, Francesca; Hamilton, Colin; Gyselinck, Valérie
2017-05-01
This study examines the involvement of spatial and visual working memory (WM) in the construction of flexible spatial models derived from survey and route descriptions. Sixty young adults listened to environment descriptions, 30 from a survey perspective and the other 30 from a route perspective, while they performed spatial (spatial tapping [ST]) and visual (dynamic visual noise [DVN]) secondary tasks - believed to overload the spatial and visual working memory (WM) components, respectively - or no secondary task (control, C). Their mental representations of the environment were tested by free recall and a verification test with both route and survey statements. Results showed that, for both recall tasks, accuracy was worse in the ST than in the C or DVN conditions. In the verification test, the effect of both ST and DVN was a decreasing accuracy for sentences testing spatial relations from the opposite perspective to the one learnt than if the perspective was the same; only ST had a stronger interference effect than the C condition for sentences from the opposite perspective from the one learnt. Overall, these findings indicate that both visual and spatial WM, and especially the latter, are involved in the construction of perspective-flexible spatial models. © 2016 The British Psychological Society.
Solution of the spatial neutral model yields new bounds on the Amazonian species richness
NASA Astrophysics Data System (ADS)
Shem-Tov, Yahav; Danino, Matan; Shnerb, Nadav M.
2017-02-01
Neutral models, in which individual agents with equal fitness undergo a birth-death-mutation process, are very popular in population genetics and community ecology. Usually these models are applied to populations and communities with spatial structure, but the analytic results presented so far are limited to well-mixed or mainland-island scenarios. Here we combine analytic results and numerics to obtain an approximate solution for the species abundance distribution and the species richness for the neutral model on continuous landscape. We show how the regional diversity increases when the recruitment length decreases and the spatial segregation of species grows. Our results are supported by extensive numerical simulations and allow one to probe the numerically inaccessible regime of large-scale systems with extremely small mutation/speciation rates. Model predictions are compared with the findings of recent large-scale surveys of tropical trees across the Amazon basin, yielding new bounds for the species richness (between 13100 and 15000) and the number of singleton species (between 455 and 690).
Spatial Variation of Selenium in Appalachian Coal Seams
NASA Astrophysics Data System (ADS)
Le, L.; Tyner, J. S.; Perfect, E.; Yoder, D. C.
2013-12-01
The potential environmental impacts from coal extraction have led to many investigations of the geochemistry of coal. Previous studies have shown that selenium (Se) is an environmental contaminant due to its mutagenic effects on sensitive macro-organisms as a result of bioaccumulation in affected waters. Some regulatory authorities have responded by requiring the sampling of coal seams and adjacent rock for Se prior to authorizing a given coal mining permit. In at least one case, a single continuous rock core was sampled for Se to determine the threshold of Se across a 2.2 square kilometer proposed surface coal mine. To examine the adequacy of such an approach, we investigated the spatial variability and correlation of a West Virginia Geological and Economic Survey (WVGES) dataset of Se concentrations from coal seams collected within Appalachia (1088 samples). We conducted semi-variogram and Kriging cross-validation analyses on six coal seams from the dataset. Our findings suggest no significant spatial correlation of Se within a given coal seam.
Imbach, P; Manrow, M; Barona, E; Barretto, A; Hyman, G; Ciais, P
2015-01-01
Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. Key Points Agricultural census database covers Amazon basin municipalities from 1950 to 2012Harmonized database groups crops and pastures by cropping system, C3/C4, and main cropsWe explored correlations between groups and the extent of agricultural lands PMID:26709335
Toward accurate and precise estimates of lion density.
Elliot, Nicholas B; Gopalaswamy, Arjun M
2017-08-01
Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide-ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3-month survey and adapted a Bayesian spatially explicit capture-recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture-recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km 2 , and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and policy decisions. © 2016 Society for Conservation Biology.
Bayesian spatial analysis of childhood diseases in Zimbabwe.
Tsiko, Rodney Godfrey
2015-09-02
Many sub-Saharan countries are confronted with persistently high levels of childhood morbidity and mortality because of the impact of a range of demographic, biological and social factors or situational events that directly precipitate ill health. In particular, under-five morbidity and mortality have increased in recent decades due to childhood diarrhoea, cough and fever. Understanding the geographic distribution of such diseases and their relationships to potential risk factors can be invaluable for cost effective intervention. Bayesian semi-parametric regression models were used to quantify the spatial risk of childhood diarrhoea, fever and cough, as well as associations between childhood diseases and a range of factors, after accounting for spatial correlation between neighbouring areas. Such semi-parametric regression models allow joint analysis of non-linear effects of continuous covariates, spatially structured variation, unstructured heterogeneity, and other fixed effects on childhood diseases. Modelling and inference made use of the fully Bayesian approach via Markov Chain Monte Carlo (MCMC) simulation techniques. The analysis was based on data derived from the 1999, 2005/6 and 2010/11 Zimbabwe Demographic and Health Surveys (ZDHS). The results suggest that until recently, sex of child had little or no significant association with childhood diseases. However, a higher proportion of male than female children within a given province had a significant association with childhood cough, fever and diarrhoea. Compared to their counterparts in rural areas, children raised in an urban setting had less exposure to cough, fever and diarrhoea across all the survey years with the exception of diarrhoea in 2010. In addition, the link between sanitation, parental education, antenatal care, vaccination and childhood diseases was found to be both intuitive and counterintuitive. Results also showed marked geographical differences in the prevalence of childhood diarrhoea, fever and cough. Across all the survey years Manicaland province reported the highest cases of childhood diseases. There is also clear evidence of significant high prevalence of childhood diseases in Mashonaland than in Matabeleland provinces.
Imbach, P; Manrow, M; Barona, E; Barretto, A; Hyman, G; Ciais, P
2015-06-01
Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. Agricultural census database covers Amazon basin municipalities from 1950 to 2012Harmonized database groups crops and pastures by cropping system, C3/C4, and main cropsWe explored correlations between groups and the extent of agricultural lands.
Assessing the spatial distribution of coral bleaching using small unmanned aerial systems
NASA Astrophysics Data System (ADS)
Levy, Joshua; Hunter, Cynthia; Lukacazyk, Trent; Franklin, Erik C.
2018-06-01
Small unmanned aerial systems (sUAS) are an affordable, effective complement to existing coral reef monitoring and assessment tools. sUAS provide repeatable low-altitude, high-resolution photogrammetry to address fundamental questions of spatial ecology and community dynamics for shallow coral reef ecosystems. Here, we qualitatively describe the use of sUAS to survey the spatial characteristics of coral cover and the distribution of coral bleaching across patch reefs in Kānéohe Bay, Hawaii, and address limitations and anticipated technology advancements within the field of UAS. Overlapping sub-decimeter low-altitude aerial reef imagery collected during the 2015 coral bleaching event was used to construct high-resolution reef image mosaics of coral bleaching responses on four Kānéohe Bay patch reefs, totaling 60,000 m2. Using sUAS imagery, we determined that paled, bleached and healthy corals on all four reefs were spatially clustered. Comparative analyses of data from sUAS imagery and in situ diver surveys found as much as 14% difference in coral cover values between survey methods, depending on the size of the reef and area surveyed. When comparing the abundance of unhealthy coral (paled and bleached) between sUAS and in situ diver surveys, we found differences in cover from 1 to 49%, depending on the depth of in situ surveys, the percent of reef area covered with sUAS surveys and patchiness of the bleaching response. This study demonstrates the effective use of sUAS surveys for assessing the spatial dynamics of coral bleaching at colony-scale resolutions across entire patch reefs and evaluates the complementarity of data from both sUAS and in situ diver surveys to more accurately characterize the spatial ecology of coral communities on reef flats and slopes.
EPA Tribal Areas (4 of 4): Alaska Native Allotments
This dataset is a spatial representation of the Public Land Survey System (PLSS) in Alaska, generated from land survey records. The data represents a seamless spatial portrayal of native allotment land parcels, their legal descriptions, corner positioning and markings, and survey measurements. This data is intended for mapping purposes only and is not a substitute or replacement for the legal land survey records or other legal documents.Measurement and attribute data are collected from survey records using data entry screens into a relational database. The database design is based upon the FGDC Cadastral Content Data Standard. Corner positions are derived by geodetic calculations using measurement records. Closure and edgematching are applied to produce a seamless dataset. The resultant features do not preserve the original geometry of survey measurements, but the record measurements are reported as attributes. Additional boundary data are derived by spatial capture, protraction and GIS processing. The spatial features are stored and managed within the relational database, with active links to the represented measurement and attribute data.
Localized extinction of an arboreal desert lizard caused by habitat fragmentation
Munguia-Vega, Adrian; Rodriguez-Estrella, Ricardo; Shaw, William W.; Culver, Melanie
2013-01-01
We adopted a species’ perspective for predicting extinction risk in a small, endemic, and strictly scansorial lizard (Urosaurus nigricaudus), in an old (∼60 year) and highly fragmented (8% habitat remaining) agricultural landscape from the Sonoran Desert, Mexico. We genotyped 10 microsatellite loci in 280 individuals from 11 populations in fragmented and continuous habitat. Individual dispersal was restricted to less than 400 m, according to analyses of spatial autocorrelation and spatially explicit Bayesian assignment methods. Within this scale, continuous areas and narrow washes with native vegetation allowed high levels of gene flow over tens of kilometers. In the absence of the native vegetation, cleared areas and highways were identified as partial barriers. In contrast, outside the scale of dispersal, cleared areas behaved as complete barriers, and surveys corroborated the species went extinct after a few decades in all small (less than 45 ha), isolated habitat fragments. No evidence for significant loss of genetic diversity was found, but results suggested fragmentation increased the spatial scale of movements, relatedness, genetic structure, and potentially affected sex-biased dispersal. A plausible threshold of individual dispersal predicted only 23% of all fragments in the landscape were linked with migration from continuous habitat, while complete barriers isolated the majority of fragments. Our study suggested limited dispersal, coupled with an inability to use a homogeneous and hostile matrix without vegetation and shade, could result in frequent time-delayed extinctions of small ectotherms in highly fragmented desert landscapes, particularly considering an increase in the risk of overheating and a decrease in dispersal potential induced by global warming.
Nearshore Bathymetric Change Resolved by Depth Inversions, Sonic Altimeters, and In-Situ Surveys
NASA Astrophysics Data System (ADS)
Brodie, K. L.; Palmsten, M. L.; Hesser, T.; Dickhudt, P.; Ladner, H.; Elgar, S.; Raubenheimer, B.; Penko, A.
2016-12-01
Video-based remote sensing of shoaling and breaking surface gravity waves combined with a depth-inversion algorithm, cBathy, may be able to provide bathymetry information with high spatial and temporal resolution in the nearshore (Holman et al., 2013, JGR, Vol 118). Although the accuracy of cBathy has been assessed in low-wave conditions when coincident in-situ surveys are available, it has not been tested for many conditions with significant wave height > 1.5 m. During high wave conditions, the use of linear wave theory in the depth-inversion algorithm may result in estimates of water depth that are too deep. Here, measurements from an in-situ array of sonic altimeters and from frequent watercraft surveys are used to assess the ability of cBathy to estimate the spatio-temporal evolution of the seafloor during a range of wave conditions at a micro-tidal sandy beach in Duck, NC. Observations were collected continuously from 14 October to 01 November 2015 with 8 altimeters in 1.5 to 4 m water depth on 2 cross-shore transects separated by 75 m in the alongshore during waves that ranged from 0.5 to 1.0 m. Nearshore bathymetry was alongshore variable, with a crescentic bar that attached to the shoreline along one transect and was 150 m offshore along the other transect. Sand levels changed by as much as 1 m in some locations. Additional measurements were collected with 3 altimeters on a single cross-shore transect for 6 months, with wave heights from 0.3 to 5.0 m and sand level fluctuations of up to 1 m in a single day. Initial comparisons with surveys show cBathy RMSE and bias are of similar magnitude to prior studies. Although cBathy resolves the large-scale spatial morphology of the sandbar, when Hs > 1.3 m cBathy estimates of the sandbar location are 10 to 50 m onshore of the surveyed location. cBathy uncertainty estimates were a poor representation of actual errors when compared with the surveys. Six-month-long time series of altimeter data will be used to assess cBathy's performance during large wave conditions, and altimeter and survey data will be used to assess the spatial and temporal scales of change that can be resolved with cBathy. Funded by USACE, ASAALT, NRL, and ASD(R&E).
Sherrouse, Benson C.; Riegle, Jodi L.; Semmens, Darius J.
2010-01-01
In response to the need for incorporating quantified and spatially explicit measures of social values into ecosystem services assessments, the Rocky Mountain Geographic Science Center, in collaboration with Colorado State University, has developed a geographic information system application, Social Values for Ecosystem Services (SolVES). SolVES can be used to assess, map, and quantify the perceived social values of ecosystem services. SolVES derives a quantitative social values metric, the Value Index, from a combination of spatial and nonspatial responses to public attitude and preference surveys. SolVES also generates landscape metrics, such as average elevation and distance to water, calculated from spatial data layers describing the underlying physical environment. Using kernel density calculations and zonal statistics, SolVES derives and maps the 10-point Value Index and reports landscape metrics associated with each index value for social value types such as aesthetics, biodiversity, and recreation. This can be repeated for various survey subgroups as distinguished by their attitudes and preferences regarding public uses of the forests such as motorized recreation and logging for fuels reduction. The Value Index provides a basis of comparison within and among survey subgroups to consider the effect of social contexts on the valuation of ecosystem services. SolVES includes regression coefficients linking the predicted value (the Value Index) to landscape metrics. These coefficients are used to generate predicted social value maps using value transfer techniques for areas where primary survey data are not available. SolVES was developed, and will continue to be enhanced through future versions, as a public domain tool to enable decision makers and researchers to map the social values of ecosystem services and to facilitate discussions among diverse stakeholders regarding tradeoffs between different ecosystem services in a variety of physical and social contexts.
Automated feature extraction and classification from image sources
,
1995-01-01
The U.S. Department of the Interior, U.S. Geological Survey (USGS), and Unisys Corporation have completed a cooperative research and development agreement (CRADA) to explore automated feature extraction and classification from image sources. The CRADA helped the USGS define the spectral and spatial resolution characteristics of airborne and satellite imaging sensors necessary to meet base cartographic and land use and land cover feature classification requirements and help develop future automated geographic and cartographic data production capabilities. The USGS is seeking a new commercial partner to continue automated feature extraction and classification research and development.
The Case for Space-Borne Far-Infrared Line Surveys
NASA Technical Reports Server (NTRS)
Bock, J. J.; Bradford, C. M.; Dragovan, M.; Earle, L.; Glenn, J.; Naylor, B.; Nguyen, H. T.; Zmuidzinas, J.
2004-01-01
The combination of sensitive direct detectors and a cooled aperture promises orders of magnitude improvement in the sensitivity and survey time for far-infrared and submillimeter spectroscopy compared to existing or planned capabilities. Continuing advances in direct detector technology enable spectroscopy that approaches the background limit available only from space at these wavelengths. Because the spectral confusion limit is significantly lower than the more familiar spatial confusion limit encountered in imaging applications, spectroscopy can be carried out to comparable depth with a significantly smaller aperture. We are developing a novel waveguide-coupled grating spectrometer that disperses radiation into a wide instantaneous bandwidth with moderate resolution (R 1000) in a compact 2-dimensional format. A line survey instrument coupled to a modest cooled single aperture provides an attractive scientific application for spectroscopy with direct detectors. Using a suite of waveguide spectrometers, we can obtain complete coverage over the entire far-infrared and sub-millimeter. This concept requires no moving parts to modulate the optical signal. Such an instrument would be able to conduct a far-infrared line survey 10 6 times faster than planned capabilities, assuming existing detector technology. However, if historical improvements in bolometer sensitivity continue, so that photon-limited sensitivity is obtained, the integration time can be further reduced by 2 to 4 orders of magnitude, depending on wavelength. The line flux sensitivity would be comparable to ALMA, but at shorter wavelengths and with the continuous coverage needed to extract line fluxes for sources at unknown redshifts. For example, this capability would break the current spectroscopic bottleneck in the study of far-infrared galaxies, the recently discovered, rapidly evolving objects abundant at cosmological distances.
78 FR 73880 - Proposal To Withdraw Spatial Data Transfer Standard, Parts 1-7
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-09
... DEPARTMENT OF THE INTERIOR Geological Survey [GX14EE000101800] Proposal To Withdraw Spatial Data Transfer Standard, Parts 1-7 AGENCY: U.S. Geological Survey, Department of the Interior. ACTION: Notice of..., 2014. FOR FURTHER INFORMATION CONTACT: Ms. Julie Binder Maitra, U.S. Geological Survey, Federal...
2014-01-01
Background Manson’s schistosomiasis continues to be a severe public health problem in Brazil, where thousands of people live under the risk of contracting this parasitosis. In the Northeast of Brazil, schistosomiasis has expanded from rural areas to the coast of Pernambuco State, where the intermediate host is Biomphalaria glabrata snails. This study aims at presenting situational analyses on schistosomiasis at the coastal locality of Porto de Galinhas, Pernambuco, Brazil, by determining the risk factors relating to its occurrence from the epidemiological and spatial perspectives. Methods In order to gather prevalence data, a parasitological census surveys were conducted in 2010 in the light of the Kato-Katz technique. Furthermore, malacological surveys were also conducted in the same years so as to define the density and infection rates of the intermediate host. Lastly, socioeconomic-behavioral survey was also conducted to determine the odds ratio for infection by Schistosoma mansoni. Based on these data, spatial analyses were done, resulting in maps of the risk of disease transmission. To predict the risk of schistosomiasis occurrence, a multivariate logistic regression was performed using R 2.13 software. Results Based on prevalence, malacological and socioeconomic-behavioural surveys, it was identified a prevalence of 15.7% in the investigated population (2,757 individuals). Due to the malacological survey, 36 breeding sites were identified, of which 11 were classified as foci of schistosomiasis transmission since they pointed out snails which were infected by Schistosoma mansoni. Overall, 11,012 snails (Biomphalaria glabrata) were collected. The multivariate regression model identified six explanatory variables of environmental, socioeconomic and demographic nature. Spatial sweep analysis by means of the Bernoulli method identified one statistically significant cluster in Salinas (RR = 2.2; p-value < 0.000), the district with the highest occurrence of cases. Conclusions Based on the resulting information from this study, the epidemiological dimensions of this disease are significant and severe, within the scenario of schistosomiasis in Pernambuco state. The risk factors which were identified in the predictive model made it clear that the environmental and social conditions influence on the schistosomiasis occurrences. PMID:24559264
Gardner, B.; Sullivan, P.J.; Morreale, S.J.; Epperly, S.P.
2008-01-01
Loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtle distributions and movements in offshore waters of the western North Atlantic are not well understood despite continued efforts to monitor, survey, and observe them. Loggerhead and leatherback sea turtles are listed as endangered by the World Conservation Union, and thus anthropogenic mortality of these species, including fishing, is of elevated interest. This study quantifies spatial and temporal patterns of sea turtle bycatch distributions to identify potential processes influencing their locations. A Ripley's K function analysis was employed on the NOAA Fisheries Atlantic Pelagic Longline Observer Program data to determine spatial, temporal, and spatio-temporal patterns of sea turtle bycatch distributions within the pattern of the pelagic fishery distribution. Results indicate that loggerhead and leatherback sea turtle catch distributions change seasonally, with patterns of spatial clustering appearing from July through October. The results from the space-time analysis indicate that sea turtle catch distributions are related on a relatively fine scale (30-200 km and 1-5 days). The use of spatial and temporal point pattern analysis, particularly K function analysis, is a novel way to examine bycatch data and can be used to inform fishing practices such that fishing could still occur while minimizing sea turtle bycatch. ?? 2008 NRC.
NASA Astrophysics Data System (ADS)
Kim-Hak, David; Huang, Kuan; Winkler, Renato
2016-04-01
The recent advancements of the laser-based technology -in particular Cavity Ring Down Spectroscopy, CRDS- gave birth to a new generation of water stable isotope analyzers that are user-friendly, compact and field deployable providing in-situ measurements. Furthermore, with last year's launch of the Continuous Water Sampler front-end, CWS, the analyzer system added two additional dimensions to liquid water measurements: real-time and continuous. These features enable the user to construct high resolution water isotope data sets through time and space. Campaigns on the Sacramento-San Joaquin River Delta with the US Geological Survey where the CWS-CRDS system was deployed onto a boat to spatially map sections of the delta, validated the CWS performance and demonstrated its durability on brackish water. The next step for the CWS is to explore oceanic applications with seawater. Early in-house laboratory experiments showed stable performance with brine waters (3% concentration). For the field experiment, we have collaborated with the China State Oceanic Administration to deploy the CWS-CRDS in oceanic environments on cruises along the costal China and Antarctic. Here, we present the results of the analysis collected onboard and compared them with discrete sampling measurements. The long-term test has also allowed us to assess the durability and expected lifetime of the CWS membrane and to recommend the proper maintenance procedure for optimum performance under oceanic conditions.
NASA Astrophysics Data System (ADS)
Kim-Hak, D.; Huang, K.
2016-02-01
The recent advancements of the laser-based technology -in particular Cavity Ring Down Spectroscopy, CRDS- gave birth to a new generation of water stable isotope analyzers that are user-friendly, compact and field deployable providing in-situ measurements. Furthermore, with last year's launch of the Continuous Water Sampler front-end, CWS, the analyzer system added two additional dimensions to liquid water measurements: real-time and continuous. These features enable the user to construct high resolution water isotope data sets through time and space. Campaigns on the Sacramento-San Joaquin River Delta with the US Geological Survey where the CWS-CRDS system was deployed onto a boat to spatially map sections of the delta, validated the CWS performance and demonstrated its durability on brackish water. The next step for the CWS is to explore oceanic applications with seawater. Early in-house laboratory experiments showed stable performance with brine waters (3% concentration). For the field experiment, we have collaborated with the China State Oceanic Administration to deploy the CWS-CRDS in oceanic environments on cruises along the costal China and Antarctic. Here, we present the results of the analysis collected onboard and compared them with discrete sampling measurements. The long-term test has also allowed us to assess the durability and expected lifetime of the CWS membrane and to recommend the proper maintenance procedure for optimum performance under oceanic conditions.
Research on the key technology of update of land survey spatial data based on embedded GIS and GPS
NASA Astrophysics Data System (ADS)
Chen, Dan; Liu, Yanfang; Yu, Hai; Xia, Yin
2009-10-01
According to the actual needs of the second land-use survey and the PDA's characteristics of small volume and small memory, it can be analyzed that the key technology of the data collection system of field survey based on GPS-PDA is the read speed of the data. In order to enhance the speed and efficiency of the analysis of the spatial data on mobile devices, we classify the layers of spatial data; get the Layer-Grid Index by getting the different levels and blocks of the layer of spatial data; then get the R-TREE index of the spatial data objects. Different scale levels of space are used in different levels management. The grid method is used to do the block management.
Cross, V.A.; Bratton, J.F.; Michael, H.A.; Kroeger, K.D.; Green, Adrian; Bergeron, Emile M.
2014-01-01
A geophysical survey to delineate the fresh-saline groundwater interface and associated sub-bottom sedimentary structures beneath Indian River Bay, Delaware, was carried out in April 2010. This included surveying at higher spatial resolution in the vicinity of a study site at Holts Landing, where intensive onshore and offshore studies were subsequently completed. The total length of continuous resistivity profiling (CRP) survey lines was 145 kilometers (km), with 36 km of chirp seismic lines surveyed around the perimeter of the bay. Medium-resolution CRP surveying was performed using a 50-meter streamer in a baywide grid. Results of the surveying and data inversion showed the presence of many buried paleochannels beneath Indian River Bay that generally extended perpendicular from the shoreline in areas of modern tributaries, tidal creeks, and marshes. An especially wide and deep paleochannel system was imaged in the southeastern part of the bay near White Creek. Many paleochannels also had high-resistivity anomalies corresponding to low-salinity groundwater plumes associated with them, likely due to the presence of fine-grained estuarine mud and peats in the channel fills that act as submarine confining units. Where present, these units allow plumes of low-salinity groundwater that was recharged onshore to move beyond the shoreline, creating a complex fresh-saline groundwater interface in the subsurface. The properties of this interface are important considerations in construction of accurate coastal groundwater flow models. These models are required to help predict how nutrient-rich groundwater, recharged in agricultural watersheds such as this one, makes its way into coastal bays and impacts surface-water quality and estuarine ecosystems.
The U.S. EPA’s National Aquatic Resource Surveys (NARS) require a consistent spatial representation of the resource target populations being monitored (i.e., rivers and streams, lakes, coastal waters, and wetlands). A sample frame is the GIS representation of this target popula...
Explaining sex differences in mental rotation: role of spatial activity experience.
Nazareth, Alina; Herrera, Asiel; Pruden, Shannon M
2013-05-01
Males consistently outperform females on mental rotation tasks, such as the Vandenberg and Kuse (1978) Perceptual and Motor Skills, 47(2), 599-604, mental rotation test (MRT; e.g. Voyer et al. 1995) in Psychological Bulletin, 117, 250-265. The present study investigates whether these sex differences in MRT scores can be explained in part by early spatial activity experience, particularly those spatial activities that have been sex-typed as masculine/male-oriented. Utilizing an online survey, 571 ethnically diverse adult university students completed a brief demographic survey, an 81-item spatial activity survey, and the MRT. Results suggest that the significant relation between sex of the participant and MRT score is partially mediated by the number of masculine spatial activities participants had engaged in as youth. Closing the gap between males and females in spatial ability, a skill linked to science, technology, engineering, and mathematics success, may be accomplished in part by encouraging female youth to engage in more particular kinds of spatial activities.
Hierarchical spatial models of abundance and occurrence from imperfect survey data
Royle, J. Andrew; Kery, M.; Gautier, R.; Schmid, Hans
2007-01-01
Many estimation and inference problems arising from large-scale animal surveys are focused on developing an understanding of patterns in abundance or occurrence of a species based on spatially referenced count data. One fundamental challenge, then, is that it is generally not feasible to completely enumerate ('census') all individuals present in each sample unit. This observation bias may consist of several components, including spatial coverage bias (not all individuals in the Population are exposed to sampling) and detection bias (exposed individuals may go undetected). Thus, observations are biased for the state variable (abundance, occupancy) that is the object of inference. Moreover, data are often sparse for most observation locations, requiring consideration of methods for spatially aggregating or otherwise combining sparse data among sample units. The development of methods that unify spatial statistical models with models accommodating non-detection is necessary to resolve important spatial inference problems based on animal survey data. In this paper, we develop a novel hierarchical spatial model for estimation of abundance and occurrence from survey data wherein detection is imperfect. Our application is focused on spatial inference problems in the Swiss Survey of Common Breeding Birds. The observation model for the survey data is specified conditional on the unknown quadrat population size, N(s). We augment the observation model with a spatial process model for N(s), describing the spatial variation in abundance of the species. The model includes explicit sources of variation in habitat structure (forest, elevation) and latent variation in the form of a correlated spatial process. This provides a model-based framework for combining the spatially referenced samples while at the same time yielding a unified treatment of estimation problems involving both abundance and occurrence. We provide a Bayesian framework for analysis and prediction based on the integrated likelihood, and we use the model to obtain estimates of abundance and occurrence maps for the European Jay (Garrulus glandarius), a widespread, elusive, forest bird. The naive national abundance estimate ignoring imperfect detection and incomplete quadrat coverage was 77 766 territories. Accounting for imperfect detection added approximately 18 000 territories, and adjusting for coverage bias added another 131 000 territories to yield a fully corrected estimate of the national total of about 227 000 territories. This is approximately three times as high as previous estimates that assume every territory is detected in each quadrat.
A Geospatial Database for Wind and Solar Energy Applications: The Kingdom of Bahrain Study Case
NASA Astrophysics Data System (ADS)
Al-Joburi, Khalil; Dahman, Nidal
2017-11-01
This research is aimed at designing, implementing, and testing a geospatial database for wind and solar energy applications in the Kingdom of Bahrain. All decision making needed to determine economic feasibility and establish site location for wind turbines or solar panels depends primarily on geospatial feature theme information and non-spatial (attribute) data for wind, solar, rainfall, temperature and weather characteristics of a particular region. Spatial data includes, but is not limited to, digital elevation, slopes, land use, zonings, parks, population density, road utility maps, and other related information. Digital elevations for over 450,000 spot at 50 m spatial horizontal resolution plus field surveying and GPS (at selected locations) was obtained from the Surveying and Land Registration Bureau (SLRB). Road, utilities, and population density are obtained from the Central Information Organization (CIO). Land use zoning, recreational parks, and other data are obtained from the Ministry of Municipalities and Agricultural Affairs. Wind, solar, humidity, rainfall, and temperature data are obtained from the Ministry of Transportation, Civil Aviation Section. LandSat Satellite and others images are obtained from NASA and online sources respectively. The collected geospatial data was geo-referenced to Ain el-Abd UTM Zone 39 North. 3D Digital Elevation Model (DEM)-50 m spatial resolutions was created using SLRB spot elevations. Slope and aspect maps were generate based on the DEM. Supervised image classification to identify open spaces was performed utilizing satellite images. Other geospatial data was converted to raster format with the same cell resolution. Non-spatial data are entered as an attribute to spatial features. To eliminate ambiguous solution, multi-criteria GIS model is developed based on, vector (discrete point, line, and polygon representations) as well as raster model (continuous representation). The model was tested at the Al-Areen proposed project, a relatively small area (15 km2). Optimum site spatial location for the location of wind turbines and solar panels was determined and initial results indicates that the combination of wind and solar energy would be sufficient for the project to meet the energy demand at the present per capita consummation rate..
Exploring Statistical Characterizations of Morphologic Change and Variability: Fire Island, New York
NASA Astrophysics Data System (ADS)
Lentz, E. E.; Hapke, C. J.
2012-12-01
A comprehensive understanding of coastal barrier behavior requires high-resolution observations that capture a wide range of morphological changes occurring over a range of spatial and temporal scales. Fire Island National Seashore, located along the coast of Long Island, New York, is a well studied barrier island coast where understanding how morphological changes contribute to barrier island vulnerability have important implications for coastal land management. Previous work has shown that morphologic differences in eastern and western reaches are attributable to the underlying geology and variations sediment transport in the system. In this study, we further explore western and eastern differences and variability with lidar-derived topographic surfaces to provide a unique and comprehensive investigation of dune-beach change at Fire Island, New York. Continuous topographic surfaces generated from 12 lidar surveys collected between 1998 and 2011 are used to examine the three-dimensional variability over a range of time periods over the 50 km long island. Because surveys were collected over a range of seasons and in response to a number of storm events, we explore morphologic configurations reflecting the seasonality, post-storm configuration, and replenishment response to the system through the generation of a representative or average surface. These averaged surfaces provide the context for what would be an expected or typical coastal configuration under certain conditions, and through comparison with an individual event, can be used to derive an event-specific spatial-change signature. To investigate anthropogenic influences, differences in morphology between a survey collected after a substantial beach replenishment project and a typical fair-weather configuration averaged from six surveys are determined. Storm response variations are also explored by assessing differences between Tropical Storm Irene (2011), Nor'Ida (2009), and a typical post-storm configuration averaged from five post-storm surveys. In addition to averaged surfaces, surveys are combined to generate a new raster surface reflecting cell by cell standard deviations over a defined period. Standard deviation surfaces are generated to highlight 1) where areas of highest and lowest morphologic variation are located over the entire period, and 2) whether spatial similarities exist in variability between storm and non-storm morphologies. Results show there are distinct and variable responses in eastern and western reaches attributable to wave climate, profile gradient, and offshore bathymetry, as well as to a general along-coast increase in sediment availability.
Arcury, Thomas A; Gesler, Wilbert M; Preisser, John S; Sherman, Jill; Spencer, John; Perin, Jamie
2005-01-01
Objective This analysis determines the importance of geography and spatial behavior as predisposing and enabling factors in rural health care utilization, controlling for demographic, social, cultural, and health status factors. Data Sources A survey of 1,059 adults in 12 rural Appalachian North Carolina counties. Study Design This cross-sectional study used a three-stage sampling design stratified by county and ethnicity. Preliminary analysis of health services utilization compared weighted proportions of number of health care visits in the previous 12 months for regular check-up care, chronic care, and acute care across geographic, sociodemographic, cultural, and health variables. Multivariable logistic models identified independent correlates of health services utilization. Data Collection Methods Respondents answered standard survey questions. They located places in which they engaged health related and normal day-to-day activities; these data were entered into a geographic information system for analysis. Principal Findings Several geographic and spatial behavior factors, including having a driver's license, use of provided rides, and distance for regular care, were significantly related to health care utilization for regular check-up and chronic care in the bivariate analysis. In the multivariate model, having a driver's license and distance for regular care remained significant, as did several predisposing (age, gender, ethnicity), enabling (household income), and need (physical and mental health measures, number of conditions). Geographic measures, as predisposing and enabling factors, were related to regular check-up and chronic care, but not to acute care visits. Conclusions These results show the importance of geographic and spatial behavior factors in rural health care utilization. They also indicate continuing inequity in rural health care utilization that must be addressed in public policy. PMID:15663706
Caldwell, James M.; Nixon, Matthew E.; Neckles, Hilary A.; Pooler, Penelope S.
2015-01-01
This report summarizes results of water-quality monitoring within estuaries of the National Park Service Northeast Coastal and Barrier Network (NCBN) from 2006 through 2011. Data collection formed part of the NCBN Vital Signs Monitoring Program implemented to detect threats of estuarine nutrient enrichment. Data included here were collected from six parks at predetermined intervals: Cape Cod National Seashore, Massachusetts (2007, 2008, 2009, 2010, 2011); Fire Island National Seashore, New York (2009, 2011); Gateway National Recreation Area, New York and New Jersey (2010); Assateague Island National Seashore, Maryland and Virginia (2006, 2008, 2010); George Washington Birthplace National Monument, Virginia (2009, 2011); and Colonial National Historic Park, Virginia (2008, 2010). Monitoring variables consisted of dissolved-oxygen concentration, chlorophyll a concentration, attenuation of downwelling photosynthetically available radiation (PAR), turbidity, water temperature, and salinity. All monitoring was conducted during four-week summer index periods. The monitoring design incorporated data collection at multiple, complementary spatial and temporal scales. Within each park, a spatial survey was conducted once during the index period following a probability design using a grid of tessellated hexagons as the basis for sample site selection. The spatial survey was supplemented with weekly measurements at a subset of sites and continuous monitoring at a single reference site. Within parks, data were reported as area-weighted water-quality conditions during each index period, the location and extent of estuarine area within condition categories, and spatial and temporal trends. In addition, we used a repeated measures analysis of variance to determine the extent to which variability in three water quality metrics (chlorophyll a in surface water, dissolved oxygen in bottom water, and water clarity expressed by PAR attenuation) was explained by year to year changes in each park's respective estuary.
Wainwright, Haruko M; Seki, Akiyuki; Mikami, Satoshi; Saito, Kimiaki
2018-09-01
In this study, we quantify the temporal changes of air dose rates in the regional scale around the Fukushima Dai-ichi Nuclear Power Plant in Japan, and predict the spatial distribution of air dose rates in the future. We first apply the Bayesian geostatistical method developed by Wainwright et al. (2017) to integrate multiscale datasets including ground-based walk and car surveys, and airborne surveys, all of which have different scales, resolutions, spatial coverage, and accuracy. This method is based on geostatistics to represent spatial heterogeneous structures, and also on Bayesian hierarchical models to integrate multiscale, multi-type datasets in a consistent manner. We apply this method to the datasets from three years: 2014 to 2016. The temporal changes among the three integrated maps enables us to characterize the spatiotemporal dynamics of radiation air dose rates. The data-driven ecological decay model is then coupled with the integrated map to predict future dose rates. Results show that the air dose rates are decreasing consistently across the region. While slower in the forested region, the decrease is particularly significant in the town area. The decontamination has contributed to significant reduction of air dose rates. By 2026, the air dose rates will continue to decrease, and the area above 3.8 μSv/h will be almost fully contained within the non-residential forested zone. Copyright © 2018 Elsevier Ltd. All rights reserved.
A spatial error model with continuous random effects and an application to growth convergence
NASA Astrophysics Data System (ADS)
Laurini, Márcio Poletti
2017-10-01
We propose a spatial error model with continuous random effects based on Matérn covariance functions and apply this model for the analysis of income convergence processes (β -convergence). The use of a model with continuous random effects permits a clearer visualization and interpretation of the spatial dependency patterns, avoids the problems of defining neighborhoods in spatial econometrics models, and allows projecting the spatial effects for every possible location in the continuous space, circumventing the existing aggregations in discrete lattice representations. We apply this model approach to analyze the economic growth of Brazilian municipalities between 1991 and 2010 using unconditional and conditional formulations and a spatiotemporal model of convergence. The results indicate that the estimated spatial random effects are consistent with the existence of income convergence clubs for Brazilian municipalities in this period.
Determining and representing width of soil boundaries using electrical conductivity and MultiGrid
NASA Astrophysics Data System (ADS)
Greve, Mogens Humlekrog; Greve, Mette Balslev
2004-07-01
In classical soil mapping, map unit boundaries are considered crisp even though all experienced survey personnel are aware of the fact, that soil boundaries really are transition zones of varying width. However, classification of transition zone width on site is difficult in a practical survey. The objective of this study is to present a method for determining soil boundary width and a way of representing continuous soil boundaries in GIS. A survey was performed using the non-contact conductivity meter EM38 from Geonics Inc., which measures the bulk Soil Electromagnetic Conductivity (SEC). The EM38 provides an opportunity to classify the width of transition zones in an unbiased manner. By calculating the spatial rate of change in the interpolated EM38 map across the crisp map unit delineations from a classical soil mapping, a measure of transition zone width can be extracted. The map unit delineations are represented as transition zones in a GIS through a concept of multiple grid layers, a MultiGrid. Each layer corresponds to a soil type and the values in a layer represent the percentage of that soil type in each cell. As a test, the subsoil texture was mapped at the Vindum field in Denmark using both the classical mapping method with crisp representation of the boundaries and the new map with MultiGrid and continuous boundaries. These maps were then compared to an independent reference map of subsoil texture. The improvement of the prediction of subsoil texture, using continuous boundaries instead of crisp, was in the case of the Vindum field, 15%.
Small Body Populations According to NEOWISE
NASA Astrophysics Data System (ADS)
Mainzer, A.
The Wide-field Infrared Survey Explorer (WISE) surveyed the entire sky in four infrared wavelengths (3.4, 4.6, 12 and 22 microns) over the course of one year. From its sun-synchronous orbit, WISE imaged the entire sky multiple times with significant improvements in spatial resolution and sensitivity over its predecessor, the Infrared Astronomical Satellite. Enhancements to the WISE science data processing pipeline to support solar system science, collectively known as NEOWISE, enabled the indi- vidual exposures to be archived and new moving objects to be discovered. When the solid hydrogen used to cool the 12 and 22 micron detectors and telescope was depleted, NASA supported the continuation of the survey in the 3.4 and 4.6 micron bands for an additional four months to search for near-Earth objects and to complete a survey of the inner solar system. In total, NEOWISE detected more than 158,000 minor planets, including >34,000 new discoveries. This mid-infrared synoptic survey has resulted in range of scientific investigations throughout our solar system and beyond. Following one year of survey operations, the WISE spacecraft was put into hibernation in early 2011. NASA has recently opted to resurrect the mission as NEOWISE for the purpose of discovering and characterizing near-Earth objects.
NASA Astrophysics Data System (ADS)
Yiorkas, Charalambos; Dimopoulos, Thomas
2017-09-01
When the European Commission, International Monetary Fund and European Central Bank arrived in Cyprus to assist for a sustainable solution on the crisis on the banking sector, one of the first things they ordered was a New General Valuation (a mass appraisal that would revalue all properties in Cyprus as on 1st of January 2013), that it would be used for taxation purposes. The above indicates the importance of property mass appraising tools. This task was successfully conducted by the Department of Lands and Surveys. Authors aim to move a step further and implement the use of GIS and GWR techniques to improve the results of the New General Valuation. On a sample of comparative evidences for flats in Nicosia District, GIS was used to measure the impact of spatial attributes on real estate prices and to construct a prediction model in terms of spatially estimating apartment values. In addition to the structural property characteristics, some spatial attributes (landmarks) were also analysed to assess their contribution on the prices of the apartments, including the Central Business District (CBD), schools and universities, as well as the major city roads and the restricted zone that divides the country into two parts; the occupied by Turkish area and the Greek area. The values of the spatial attributes, or locational characteristics, were determined by employing GIS, considering an established model of multicriteria analysis. The price prediction model was analysed using the OLS method and calibrated based on the GWR method. The results of the statistic process indicate an accuracy of 81.34%, showing better performance than the mass valuation system applied by the Department of Land and Surveys in Cyprus with accuracy of 66.76%. This approach suggests that GIS systems are fundamentally important in mass valuation procedures in order to identify the spatial pattern of the attributes, provided that the database is comprised by a sufficient number of comparable information and it is continuously updated.
NASA Astrophysics Data System (ADS)
Kunrat, S. L.; Schwandner, F. M.
2013-12-01
Gede Volcano (West Java) is part of an andesitic stratovolcano complex consisting of Pangrango in the north-west and Gede in the south-east. The last recorded eruptive activity was a phreatic subvolcanian ash eruption in 1957. Current activity is characterized by episodic swarms at 2-4 km depth, and low-temperature (~160°C) crater degassing in two distinct summit crater fumarolic areas. Hot springs occur in the saddle between the Gede and Pangrango edifice, as well as on the NE flank base. The most recent eruptive events produced pyroclastic material, their flow deposits concentrate toward the NE. A collaborative effort between the Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency and the Earth Observatory of Singapore (EOS) is since 2010 aimed at upgrading the geophysical and geochemical monitoring network at Gede Volcano. To support the monitoring instrumentation upgrades under way, surveys of soil CO2 degassing have been performed on the flanks of Gede, in circular and radial traverses.The goal was to establish a spatial distribution of flank CO2 fluxes, and to allow smart siting for continuous gas monitoring stations. Crater fluxes were not surveyed, as its low-temperature hydrothermal system is likely prone to large hydraulic changes in this tropical environment, resulting in variable permeability effects that might mask signals from deeper reservoir or conduit degassing. The high precipitation intensity in the mountains of tropical Java pose challenges to this method, since soil gas permeability is largely controlled by soil moisture content. Simultaneous soil moisture measurements were undertaken. The soil CO2 surveys were carried out using a LI-8100A campaign flux chamber instrument (LICOR Biosciences, Lincoln, Nebraska). This instrument has a very precise and highly stable sensor and an atmospheric pressure equilibrator, making it highly sensitive to low fluxes. It is the far superior choice for higher precision low-flux flank surveys in tropical environments. The mean flank fluxes measured were 19.8 g/m2/day in 2011, 11.7 g/m2/day in 2012 and 7.6 g/m2/day in early 2013. The mean flank flux for all the surveys is 17.9 g/m2/day. Statistical analysis of the data set reveals at least three distinct flux populations. Results from 2011, 2012 and 2013 indicate that flank fluxes were as high as 112.5g/m2/day, suggesting recent intrusive activity. The spatial distribution of fluxes indicates a strong focus on the NE sector. This finding appears concurrent with an area previously documented as continuously subsiding and filled with recent pyroclastic deposits (Philiboisan et al.2011, G3 Vol.12(11), Fig.15). The surveys also permit selection and validation of sites for continuous CO2 monitoring stations, representing medium and low flank flux populations.
Spatially balanced survey designs for natural resources
Ecological resource monitoring programs typically require the use of a probability survey design to select locations or entities to be physically sampled in the field. The ecological resource of interest, the target population, occurs over a spatial domain and the sample selecte...
Communicating spatial uncertainty to non-experts using R
NASA Astrophysics Data System (ADS)
Luzzi, Damiano; Sawicka, Kasia; Heuvelink, Gerard; de Bruin, Sytze
2016-04-01
Effective visualisation methods are important for the efficient use of uncertainty information for various groups of users. Uncertainty propagation analysis is often used with spatial environmental models to quantify the uncertainty within the information. A challenge arises when trying to effectively communicate the uncertainty information to non-experts (not statisticians) in a wide range of cases. Due to the growing popularity and applicability of the open source programming language R, we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. The package has implemented Monte Carlo algorithms for uncertainty propagation, the output of which is represented by an ensemble of model outputs (i.e. a sample from a probability distribution). Numerous visualisation methods exist that aim to present such spatial uncertainty information both statically, dynamically and interactively. To provide the most universal visualisation tools for non-experts, we conducted a survey on a group of 20 university students and assessed the effectiveness of selected static and interactive methods for visualising uncertainty in spatial variables such as DEM and land cover. The static methods included adjacent maps and glyphs for continuous variables. Both allow for displaying maps with information about the ensemble mean, variance/standard deviation and prediction intervals. Adjacent maps were also used for categorical data, displaying maps of the most probable class, as well as its associated probability. The interactive methods included a graphical user interface, which in addition to displaying the previously mentioned variables also allowed for comparison of joint uncertainties at multiple locations. The survey indicated that users could understand the basics of the uncertainty information displayed in the static maps, with the interactive interface allowing for more in-depth information. Subsequently, the R package included a collation of the plotting functions that were evaluated in the survey. The implementation of static visualisations was done via calls to the 'ggplot2' package. This allowed the user to provide control over the content, legend, colours, axes and titles. The interactive methods were implemented using the 'shiny' package allowing users to activate the visualisation of statistical descriptions of uncertainty through interaction with a plotted map of means. This research brings uncertainty visualisation to a broader audience through the development of tools for visualising uncertainty using open source software.
NASA IceBridge: Scientific Insights from Airborne Surveys of the Polar Sea Ice Covers
NASA Astrophysics Data System (ADS)
Richter-Menge, J.; Farrell, S. L.
2015-12-01
The NASA Operation IceBridge (OIB) airborne sea ice surveys are designed to continue a valuable series of sea ice thickness measurements by bridging the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat), which operated from 2003 to 2009, and ICESat-2, which is scheduled for launch in 2017. Initiated in 2009, OIB has conducted campaigns over the western Arctic Ocean (March/April) and Southern Oceans (October/November) on an annual basis when the thickness of sea ice cover is nearing its maximum. More recently, a series of Arctic surveys have also collected observations in the late summer, at the end of the melt season. The Airborne Topographic Mapper (ATM) laser altimeter is one of OIB's primary sensors, in combination with the Digital Mapping System digital camera, a Ku-band radar altimeter, a frequency-modulated continuous-wave (FMCW) snow radar, and a KT-19 infrared radiation pyrometer. Data from the campaigns are available to the research community at: http://nsidc.org/data/icebridge/. This presentation will summarize the spatial and temporal extent of the OIB campaigns and their complementary role in linking in situ and satellite measurements, advancing observations of sea ice processes across all length scales. Key scientific insights gained on the state of the sea ice cover will be highlighted, including snow depth, ice thickness, surface roughness and morphology, and melt pond evolution.
2013-01-01
Background Place and health researchers are increasingly interested in integrating individuals’ mobility and the experience they have with multiple settings in their studies. In practice, however, few tools exist which allow for rapid and accurate gathering of detailed information on the geographic location of places where people regularly undertake activities. We describe the development and validation of a new activity location questionnaire which can be useful in accounting for multiple environmental influences in large population health investigations. Methods To develop the questionnaire, we relied on a literature review of similar data collection tools and on results of a pilot study wherein we explored content validity, test-retest reliability, and face validity. To estimate convergent validity, we used data from a study of users of a public bicycle share program conducted in Montreal, Canada in 2011. We examined the spatial congruence between questionnaire data and data from three other sources: 1) one-week GPS tracks; 2) activity locations extracted from the GPS tracks; and 3) a prompted recall survey of locations visited during the day. Proximity and convex hull measures were used to compare questionnaire-derived data and GPS and prompted recall survey data. Results In the sample, 75% of questionnaire-reported activity locations were located within 400 meters of an activity location recorded on the GPS track or through the prompted recall survey. Results from convex hull analyses suggested questionnaire activity locations were more concentrated in space than GPS or prompted-recall locations. Conclusions The new questionnaire has high convergent validity and can be used to accurately collect data on regular activity spaces in terms of locations regularly visited. The methods, measures, and findings presented provide new material to further study mobility in place and health research. PMID:24025119
Horvitz-Thompson survey sample methods for estimating large-scale animal abundance
Samuel, M.D.; Garton, E.O.
1994-01-01
Large-scale surveys to estimate animal abundance can be useful for monitoring population status and trends, for measuring responses to management or environmental alterations, and for testing ecological hypotheses about abundance. However, large-scale surveys may be expensive and logistically complex. To ensure resources are not wasted on unattainable targets, the goals and uses of each survey should be specified carefully and alternative methods for addressing these objectives always should be considered. During survey design, the impoflance of each survey error component (spatial design, propofiion of detected animals, precision in detection) should be considered carefully to produce a complete statistically based survey. Failure to address these three survey components may produce population estimates that are inaccurate (biased low), have unrealistic precision (too precise) and do not satisfactorily meet the survey objectives. Optimum survey design requires trade-offs in these sources of error relative to the costs of sampling plots and detecting animals on plots, considerations that are specific to the spatial logistics and survey methods. The Horvitz-Thompson estimators provide a comprehensive framework for considering all three survey components during the design and analysis of large-scale wildlife surveys. Problems of spatial and temporal (especially survey to survey) heterogeneity in detection probabilities have received little consideration, but failure to account for heterogeneity produces biased population estimates. The goal of producing unbiased population estimates is in conflict with the increased variation from heterogeneous detection in the population estimate. One solution to this conflict is to use an MSE-based approach to achieve a balance between bias reduction and increased variation. Further research is needed to develop methods that address spatial heterogeneity in detection, evaluate the effects of temporal heterogeneity on survey objectives and optimize decisions related to survey bias and variance. Finally, managers and researchers involved in the survey design process must realize that obtaining the best survey results requires an interactive and recursive process of survey design, execution, analysis and redesign. Survey refinements will be possible as further knowledge is gained on the actual abundance and distribution of the population and on the most efficient techniques for detection animals.
Using GIS to generate spatially balanced random survey designs for natural resource applications.
Theobald, David M; Stevens, Don L; White, Denis; Urquhart, N Scott; Olsen, Anthony R; Norman, John B
2007-07-01
Sampling of a population is frequently required to understand trends and patterns in natural resource management because financial and time constraints preclude a complete census. A rigorous probability-based survey design specifies where to sample so that inferences from the sample apply to the entire population. Probability survey designs should be used in natural resource and environmental management situations because they provide the mathematical foundation for statistical inference. Development of long-term monitoring designs demand survey designs that achieve statistical rigor and are efficient but remain flexible to inevitable logistical or practical constraints during field data collection. Here we describe an approach to probability-based survey design, called the Reversed Randomized Quadrant-Recursive Raster, based on the concept of spatially balanced sampling and implemented in a geographic information system. This provides environmental managers a practical tool to generate flexible and efficient survey designs for natural resource applications. Factors commonly used to modify sampling intensity, such as categories, gradients, or accessibility, can be readily incorporated into the spatially balanced sample design.
Predicted Surface Displacements for Scenario Earthquakes in the San Francisco Bay Region
Murray-Moraleda, Jessica R.
2008-01-01
In the immediate aftermath of a major earthquake, the U.S. Geological Survey (USGS) will be called upon to provide information on the characteristics of the event to emergency responders and the media. One such piece of information is the expected surface displacement due to the earthquake. In conducting probabilistic hazard analyses for the San Francisco Bay Region, the Working Group on California Earthquake Probabilities (WGCEP) identified a series of scenario earthquakes involving the major faults of the region, and these were used in their 2003 report (hereafter referred to as WG03) and the recently released 2008 Uniform California Earthquake Rupture Forecast (UCERF). Here I present a collection of maps depicting the expected surface displacement resulting from those scenario earthquakes. The USGS has conducted frequent Global Positioning System (GPS) surveys throughout northern California for nearly two decades, generating a solid baseline of interseismic measurements. Following an earthquake, temporary GPS deployments at these sites will be important to augment the spatial coverage provided by continuous GPS sites for recording postseismic deformation, as will the acquisition of Interferometric Synthetic Aperture Radar (InSAR) scenes. The information provided in this report allows one to anticipate, for a given event, where the largest displacements are likely to occur. This information is valuable both for assessing the need for further spatial densification of GPS coverage before an event and prioritizing sites to resurvey and InSAR data to acquire in the immediate aftermath of the earthquake. In addition, these maps are envisioned to be a resource for scientists in communicating with emergency responders and members of the press, particularly during the time immediately after a major earthquake before displacements recorded by continuous GPS stations are available.
A new spatial multiple discrete-continuous modeling approach to land use change analysis.
DOT National Transportation Integrated Search
2013-09-01
This report formulates a multiple discrete-continuous probit (MDCP) land-use model within a : spatially explicit economic structural framework for land-use change decisions. The spatial : MDCP model is capable of predicting both the type and intensit...
Mashburn, Shana L.; Winton, Kimberly T.
2010-01-01
This CD-ROM contains spatial datasets that describe natural and anthropogenic features and county-level estimates of agricultural pesticide use and pesticide data for surface-water, groundwater, and biological specimens in the state of Oklahoma. County-level estimates of pesticide use were compiled from the Pesticide National Synthesis Project of the U.S. Geological Survey, National Water-Quality Assessment Program. Pesticide data for surface water, groundwater, and biological specimens were compiled from U.S. Geological Survey National Water Information System database. These spatial datasets that describe natural and manmade features were compiled from several agencies and contain information collected by the U.S. Geological Survey. The U.S. Geological Survey datasets were not collected specifically for this compilation, but were previously collected for projects with various objectives. The spatial datasets were created by different agencies from sources with varied quality. As a result, features common to multiple layers may not overlay exactly. Users should check the metadata to determine proper use of these spatial datasets. These data were not checked for accuracy or completeness. If a question of accuracy or completeness arise, the user should contact the originator cited in the metadata.
Show me the numbers: What data currently exist for non-native species in the USA?
Crall, Alycia W.; Meyerson, Laura A.; Stohlgren, Thomas J.; Jarnevich, Catherine S.; Newman, Gregory J.; Graham, James
2006-01-01
Non-native species continue to be introduced to the United States from other countries via trade and transportation, creating a growing need for early detection and rapid response to new invaders. It is therefore increasingly important to synthesize existing data on non-native species abundance and distributions. However, no comprehensive analysis of existing data has been undertaken for non-native species, and there have been few efforts to improve collaboration. We therefore conducted a survey to determine what datasets currently exist for non-native species in the US from county, state, multi-state region, national, and global scales. We identified 319 datasets and collected metadata for 79% of these. Through this study, we provide a better understanding of extant non-native species datasets and identify data gaps (ie taxonomic, spatial, and temporal) to help guide future survey, research, and predictive modeling efforts.
Virgo Intergalactic Globulars from the Sloan Survey
NASA Astrophysics Data System (ADS)
Gregg, Michael; West, Michael
2017-07-01
We have identified a new sample of Virgo intergalactic globular clusters (IGCs) and ultra compact dwarfs (UCDs) which have been serendipitously observed to date in Sloan Survey spectroscopy. There are 23 new objects with secure redshifts, all relatively red point sources with reliable velocities placing them at Virgo distances. They are spread widely across Virgo, significantly extending the spatial distribution of Virgo IGCs and UCDs to regions outside the well-studied M87 core region. The new sample are generally fainter, bluer, and probably more metal poor on average than the more centrally located, previously known objects. This systematic change carries information about the formation and continued evolution by accretion of the Virgo cluster, indicating a transition to less massive and less luminous objects being tidally disrupted in the outskirts now and in the recent past, compared to conditions in the inner cluster at early epochs.
New York harbor water-quality survey, 1988-1990. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brosnan, T.M.
1991-08-27
Fifty two stations were monitored over twelve weeks of each of the summers of 1988 through 1990 to provide the 79th, 80th, and 81st Annual Summer Water Quality Surveys of New York Harbor. Coliform bacteria continue to exhibit significant long-term improvements throughout the harbor due to water pollution control plant construction and upgrades. Only 4% of stations were out of compliance with coliform standards in 1990, with exceedances confined to waterways heavily impacted by combined sewer overflows (CSO's). In 1990, average summer dissolved oxygen (DO) met state standards at 94% of surface, and 85% of bottom sites; however many sitesmore » contravened DO standards at least once. While average DO compliance in 1990 was significantly better than any time since at least 1986, 1988 and 1989 were noticeably worse, particularly in waterways prone to phytoplankton blooms and density stratification. Nutrient and chlorophyll a concentrations displayed spatial trends.« less
Estimating regional plant biodiversity with GIS modelling
Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad
1998-01-01
We analyzed a statewide species database together with a county-level geographic information system to build a model based on well-surveyed areas to estimate species richness in less surveyed counties. The model involved GIS (Arc/Info) and statistics (S-PLUS), including spatial statistics (S+SpatialStats).
Survey of contemporary trends in color image segmentation
NASA Astrophysics Data System (ADS)
Vantaram, Sreenath Rao; Saber, Eli
2012-10-01
In recent years, the acquisition of image and video information for processing, analysis, understanding, and exploitation of the underlying content in various applications, ranging from remote sensing to biomedical imaging, has grown at an unprecedented rate. Analysis by human observers is quite laborious, tiresome, and time consuming, if not infeasible, given the large and continuously rising volume of data. Hence the need for systems capable of automatically and effectively analyzing the aforementioned imagery for a variety of uses that span the spectrum from homeland security to elderly care. In order to achieve the above, tools such as image segmentation provide the appropriate foundation for expediting and improving the effectiveness of subsequent high-level tasks by providing a condensed and pertinent representation of image information. We provide a comprehensive survey of color image segmentation strategies adopted over the last decade, though notable contributions in the gray scale domain will also be discussed. Our taxonomy of segmentation techniques is sampled from a wide spectrum of spatially blind (or feature-based) approaches such as clustering and histogram thresholding as well as spatially guided (or spatial domain-based) methods such as region growing/splitting/merging, energy-driven parametric/geometric active contours, supervised/unsupervised graph cuts, and watersheds, to name a few. In addition, qualitative and quantitative results of prominent algorithms on several images from the Berkeley segmentation dataset are shown in order to furnish a fair indication of the current quality of the state of the art. Finally, we provide a brief discussion on our current perspective of the field as well as its associated future trends.
Scent Lure Effect on Camera-Trap Based Leopard Density Estimates
Braczkowski, Alexander Richard; Balme, Guy Andrew; Dickman, Amy; Fattebert, Julien; Johnson, Paul; Dickerson, Tristan; Macdonald, David Whyte; Hunter, Luke
2016-01-01
Density estimates for large carnivores derived from camera surveys often have wide confidence intervals due to low detection rates. Such estimates are of limited value to authorities, which require precise population estimates to inform conservation strategies. Using lures can potentially increase detection, improving the precision of estimates. However, by altering the spatio-temporal patterning of individuals across the camera array, lures may violate closure, a fundamental assumption of capture-recapture. Here, we test the effect of scent lures on the precision and veracity of density estimates derived from camera-trap surveys of a protected African leopard population. We undertook two surveys (a ‘control’ and ‘treatment’ survey) on Phinda Game Reserve, South Africa. Survey design remained consistent except a scent lure was applied at camera-trap stations during the treatment survey. Lures did not affect the maximum movement distances (p = 0.96) or temporal activity of female (p = 0.12) or male leopards (p = 0.79), and the assumption of geographic closure was met for both surveys (p >0.05). The numbers of photographic captures were also similar for control and treatment surveys (p = 0.90). Accordingly, density estimates were comparable between surveys (although estimates derived using non-spatial methods (7.28–9.28 leopards/100km2) were considerably higher than estimates from spatially-explicit methods (3.40–3.65 leopards/100km2). The precision of estimates from the control and treatment surveys, were also comparable and this applied to both non-spatial and spatial methods of estimation. Our findings suggest that at least in the context of leopard research in productive habitats, the use of lures is not warranted. PMID:27050816
NASA Astrophysics Data System (ADS)
Le Pichon, C.; Belliard, J.; Talès, E.; Gorges, G.; Clément, F.
2009-12-01
Most of the rivers of the Ile de France region, intimately linked with the megalopolis of Paris, are severely altered and freshwater fishes are exposed to habitat alteration, reduced connectivity and pollution. Several species thus present fragmented distributions and decreasing densities. In this context, the European Water Framework Directive (2000) has goals of hydrosystems rehabilitation and no further damage. In particular, the preservation and restoration of ecological connectivity of river networks is a key element for fish populations. These goals require the identification of natural and anthropological factors which influence the spatial distribution of species. We have proposed a riverscape approach, based on landscape ecology concepts, combined with a set of spatial analysis methods to assess the multiscale relationships between the spatial pattern of fish habitats and processes depending on fish movements. In particular, we used this approach to test the relative roles of spatial arrangement of fish habitats and the presence of physical barriers in explaining fish spatial distributions in a small rural watershed (106 km2). We performed a spatially continuous analysis of fish-habitat relationships. Fish habitats and physical barriers were mapped along the river network (33 km) with a GPS and imported into a GIS. In parallel, a longitudinal electrofishing survey of the distribution and abundance of fishes was made using a point abundance sampling scheme. Longitudinal arrangement of fish habitats were evaluated using spatial analysis methods: patch/distance metrics and moving window analysis. Explanatory models were developed to test the relative contribution of local environmental variables and spatial context in explaining fish presence. We have recorded about 100 physical barriers, on average one every 330 meters; most artificial barriers were road pipe culverts, falls associated with ponds and sluice gates. Contrasted fish communities and densities were observed in the different areas of the watershed, related to various land use (riparian forest or agriculture). The first results of fish-habitat association analysis on a 5 km stream are that longitudinal distribution of fish species was mainly impacted by falls associated with ponds. The impact was both due to the barrier effect and to the modification of aquatic habitats. Abundance distribution of Salmo trutta and Cottus gobio was particularly affected. Spatially continuous analysis of fish-habitat relationships allowed us to identify the relative impacts of habitat alteration and presence of physical barriers to fish movements. These techniques could help prioritize preservation and restoration policies in human-impacted watersheds, in particular, identifying the key physical barriers to remove.
The value of DCIP geophysical surveys for contaminated site investigations
NASA Astrophysics Data System (ADS)
Balbarini, N.; Rønde, V.; Maurya, P. K.; Møller, I.; McKnight, U. S.; Christiansen, A. V.; Binning, P. J.; Bjerg, P. L.
2017-12-01
Geophysical methods are increasingly being used in contaminant hydrogeology to map lithology, hydraulic properties, and contaminant plumes with a high ionic strength. Advances in the Direct Current resistivity and Induced Polarization (DCIP) method allow the collection of high resolution three dimensional (3D) data sets. The DC resistivity can describe both soil properties and the water electrical conductivity, while the IP can describe the lithology and give information on hydrogeological properties. The aim of the study was to investigate a large contaminant plume discharging to a stream from an old factory site by combining traditional geological, hydrological, and contaminant concentration data with DCIP surveys. The plume consisted of xenobiotic organic compounds and inorganics. The study assesses benefits and limitations of DCIP geophysics for contaminated site investigations. A 3D geological model was developed from borehole logs and DCIP data as framework for the complex transport pathways near the meandering stream. IP data were useful in indicating the continuity and the changes in thickness of local clay layers between the borehole logs. The geological model was employed to develop a groundwater flow model describing groundwater flows to the stream. The hydraulic conductivity distribution was based on IP data, slug tests and grain size analysis. The distribution of contaminant concentrations revealed two chemically distinct plumes, separated by a clay layer, with different transport paths to the stream. The DC resistivity was useful in mapping ionic compounds, but also organic compounds whose spatial distribution coincided with the ionic compounds. A conceptual model describing the contaminant plume was developed, and it matched well with contaminant concentrations in stream water and below the streambed. Surface DCIP surveys supported the characterization of the spatial variability in geology, hydraulic conductivity and contaminant concentration. Though DCIP data interpretation required additional borehole data, the DCIP survey reduced the number of boreholes required and helped design field campaigns. The results suggest DCIP surveys are useful and inexpensive tools, which has potential as an integrated part of contaminated site investigations.
Potential for sea otter exposure to remnants of buried oil from the Exxon Valdez oil spill.
Boehm, Paul D; Page, David S; Neff, Jerry M; Johnson, Charles B
2007-10-01
A study was conducted in 2005 and 2006 to examine the hypothesis that sea otters (Enhydra lutris) continue to be exposed to residues of subsurface oil (SSO) while foraging on shorelines in the northern Knight Island (NKI) area of Prince William Sound, Alaska more than 17 years after the Exxon Valdez oil spill. Forty-three shoreline segments, whose oiling history has been documented by prior surveys, were surveyed. These included all shoreline segments reported by a 2003 NOAA random site survey to contain SSO residues in NKI. Sites were surveyed for the presence and location of otter foraging pits. Only one of 29 SSO sites surveyed was identified as an otter foraging site. Most buried SSO residues are confined to tide elevations above +0.8 m above mean lower low water (MLLW), above the range of intertidal clam habitat. More than 99% of documented intertidal otter pits at all sites surveyed are in the lower intertidal zone (-0.2 to +0.8 m above MLLW), the zone of highest clam abundance. The spatial separation of the otter pits from the locations of SSO residues, both with regard to tidal elevation and lateral separation on the study sites, coupled with the lack of evidence of intertidal otter foraging at SSO sites indicates a low likelihood of exposure of foraging otters to SSO on the shores of the NKI area.
ART AND SCIENCE OF IMAGE MAPS.
Kidwell, Richard D.; McSweeney, Joseph A.
1985-01-01
The visual image of reflected light is influenced by the complex interplay of human color discrimination, spatial relationships, surface texture, and the spectral purity of light, dyes, and pigments. Scientific theories of image processing may not always achieve acceptable results as the variety of factors, some psychological, are in part, unpredictable. Tonal relationships that affect digital image processing and the transfer functions used to transform from the continuous-tone source image to a lithographic image, may be interpreted for an insight of where art and science fuse in the production process. The application of art and science in image map production at the U. S. Geological Survey is illustrated and discussed.
NASA Astrophysics Data System (ADS)
Ginn, T. R.; Scheibe, T. D.
2006-12-01
Hydrogeology is among the most data-limited of the earth sciences, so that uncertainty arises in every aspect of subsurface flow and transport modeling, from conceptual model to spatial discretization to parameter values. Thus treatment of uncertainty is unavoidable, and the literature and conference proceedings are replete with approaches, templates, paradigms and such for doing so. However, such tools remain not well used, especially those of the stochastic analytic sort, leading recently to explicit inquiries about why this is the case, in response to which entire journal issues have been dedicated. In an effort to continue this discussion in a constructive way we report on an informal yet extensive survey of hydrogeology practitioners, as the "marketplace" for techniques to deal with uncertainty. We include scientists, engineers, regulators, and others in the survey, that reports on quantitative (or not) methods for uncertainty characterization and analysis, frequency and level of usage, and reasons behind the selection or avoidance of available methods. Results shed light on fruitful directions for future research in uncertainty quantification in hydrogeology.
Leistedt, B.; Peiris, H. V.; Elsner, F.; ...
2016-10-17
Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, in particular in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. Wemore » illustrate the complementarity of these two approaches by comparing the SV data with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES SV images. We then analyse the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially-varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and well-captured by the maps of observing conditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak lensing analyses. However, they will need to be carefully characterised in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented is relevant to all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null-tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leistedt, B.; Peiris, H. V.; Elsner, F.
Spatially varying depth and the characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, particularly in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES-SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. Wemore » illustrate the complementary nature of these two approaches by comparing the SV data with BCC-UFig, a synthetic sky catalog generated by forward-modeling of the DES-SV images. We analyze the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and are well-captured by the maps of observing conditions. The combined use of the maps, the SV data, and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak-lensing analyses. However, they will need to be carefully characterized in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented here is relevant to all multi-epoch surveys and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leistedt, B.; Peiris, H. V.; Elsner, F.
Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, in particular in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. Wemore » illustrate the complementarity of these two approaches by comparing the SV data with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES SV images. We then analyse the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially-varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and well-captured by the maps of observing conditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak lensing analyses. However, they will need to be carefully characterised in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented is relevant to all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null-tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky.« less
Liu, Kui; Guo, Jun; Cai, Chunxiao; Zhang, Junxiang; Gao, Jiangrui
2016-11-15
Multipartite entanglement is used for quantum information applications, such as building multipartite quantum communications. Generally, generation of multipartite entanglement is based on a complex beam-splitter network. Here, based on the spatial freedom of light, we experimentally demonstrated spatial quadripartite continuous variable entanglement among first-order Hermite-Gaussian modes using a single type II optical parametric oscillator operating below threshold with an HG0245° pump beam. The entanglement can be scalable for larger numbers of spatial modes by changing the spatial profile of the pump beam. In addition, spatial multipartite entanglement will be useful for future spatial multichannel quantum information applications.
NASA Astrophysics Data System (ADS)
Bertrand, Sophie; Díaz, Erich; Lengaigne, Matthieu
2008-10-01
Peruvian anchovy ( Engraulis ringens) stock abundance is tightly driven by the high and unpredictable variability of the Humboldt Current Ecosystem. Management of the fishery therefore cannot rely on mid- or long-term management policy alone but needs to be adaptive at relatively short time scales. Regular acoustic surveys are performed on the stock at intervals of 2 to 4 times a year, but there is a need for more time continuous monitoring indicators to ensure that management can respond at suitable time scales. Existing literature suggests that spatially explicit data on the location of fishing activities could be used as a proxy for target stock distribution. Spatially explicit commercial fishing data could therefore guide adaptive management decisions at shorter time scales than is possible through scientific stock surveys. In this study we therefore aim to (1) estimate the position of fishing operations for the entire fleet of Peruvian anchovy purse-seiners using the Peruvian satellite vessel monitoring system (VMS), and (2) quantify the extent to which the distribution of purse-seine sets describes anchovy distribution. To estimate fishing set positions from vessel tracks derived from VMS data we developed a methodology based on artificial neural networks (ANN) trained on a sample of fishing trips with known fishing set positions (exact fishing positions are known for approximately 1.5% of the fleet from an at-sea observer program). The ANN correctly identified 83% of the real fishing sets and largely outperformed comparative linear models. This network is then used to forecast fishing operations for those trips where no observers were onboard. To quantify the extent to which fishing set distribution was correlated to stock distribution we compared three metrics describing features of the distributions (the mean distance to the coast, the total area of distribution, and a clustering index) for concomitant acoustic survey observations and fishing set positions identified from VMS. For two of these metrics (mean distance to the coast and clustering index), fishing and survey data were significantly correlated. We conclude that the location of purse-seine fishing sets yields significant and valuable information on the distribution of the Peruvian anchovy stock and ultimately on its vulnerability to the fishery. For example, a high concentration of sets in the near coastal zone could potentially be used as a warning signal of high levels of stock vulnerability and trigger appropriate management measures aimed at reducing fishing effort.
Pattern detection in stream networks: Quantifying spatialvariability in fish distribution
Torgersen, Christian E.; Gresswell, Robert E.; Bateman, Douglas S.
2004-01-01
Biological and physical properties of rivers and streams are inherently difficult to sample and visualize at the resolution and extent necessary to detect fine-scale distributional patterns over large areas. Satellite imagery and broad-scale fish survey methods are effective for quantifying spatial variability in biological and physical variables over a range of scales in marine environments but are often too coarse in resolution to address conservation needs in inland fisheries management. We present methods for sampling and analyzing multiscale, spatially continuous patterns of stream fishes and physical habitat in small- to medium-size watersheds (500–1000 hectares). Geospatial tools, including geographic information system (GIS) software such as ArcInfo dynamic segmentation and ArcScene 3D analyst modules, were used to display complex biological and physical datasets. These tools also provided spatial referencing information (e.g. Cartesian and route-measure coordinates) necessary for conducting geostatistical analyses of spatial patterns (empirical semivariograms and wavelet analysis) in linear stream networks. Graphical depiction of fish distribution along a one-dimensional longitudinal profile and throughout the stream network (superimposed on a 10-metre digital elevation model) provided the spatial context necessary for describing and interpreting the relationship between landscape pattern and the distribution of coastal cutthroat trout (Oncorhynchus clarki clarki) in western Oregon, U.S.A. The distribution of coastal cutthroat trout was highly autocorrelated and exhibited a spherical semivariogram with a defined nugget, sill, and range. Wavelet analysis of the main-stem longitudinal profile revealed periodicity in trout distribution at three nested spatial scales corresponding ostensibly to landscape disturbances and the spacing of tributary junctions.
Teillard, Félix; Jiguet, Frédéric; Tichit, Muriel
2015-01-01
The shape of the relationship between biodiversity and agricultural intensity determines the range of intensities that should be targeted by conservation policies to obtain the greatest environmental benefits. Although preliminary evidence of this relationship exists, the influence of the spatial arrangement of intensity on biodiversity remains untested. We conducted a nationwide study linking agricultural intensity and its spatial arrangement to a farmland bird community of 22 species. Intensity was described with a continuous indicator based on Input Cost per hectare, which was relevant for both livestock and crop production. We used the French Breeding Bird Survey to compute several descriptors of the farmland bird community along the intensity gradient and tested for the significance of an interaction effect between intensity and its spatial aggregation on these descriptors. We found that the bird community was comprised of both winner and loser species with regard to intensity. The community composition descriptors (trophic level, specialisation, and specialisation for grassland indices) displayed non-linear relationships to intensity, with steeper slopes in the lower intensity range. We found a significant interaction effect between intensity and its spatial aggregation on the grassland specialisation index of the bird community; the effect of agricultural intensity was strengthened by its spatial aggregation. We suggest that an opportunity to improve the effectiveness of conservation policies exists by targeting measures in areas where intensity is moderate to low and aggregated. The effect of the aggregation of agricultural intensity on biodiversity should be considered in other scales and taxa when developing optimal policy targeting and intensity allocation strategies. PMID:25799552
Wardrop, N. A.; Jochem, W. C.; Bird, T. J.; Chamberlain, H. R.; Clarke, D.; Kerr, D.; Bengtsson, L.; Juran, S.; Seaman, V.; Tatem, A. J.
2018-01-01
Population numbers at local levels are fundamental data for many applications, including the delivery and planning of services, election preparation, and response to disasters. In resource-poor settings, recent and reliable demographic data at subnational scales can often be lacking. National population and housing census data can be outdated, inaccurate, or missing key groups or areas, while registry data are generally lacking or incomplete. Moreover, at local scales accurate boundary data are often limited, and high rates of migration and urban growth make existing data quickly outdated. Here we review past and ongoing work aimed at producing spatially disaggregated local-scale population estimates, and discuss how new technologies are now enabling robust and cost-effective solutions. Recent advances in the availability of detailed satellite imagery, geopositioning tools for field surveys, statistical methods, and computational power are enabling the development and application of approaches that can estimate population distributions at fine spatial scales across entire countries in the absence of census data. We outline the potential of such approaches as well as their limitations, emphasizing the political and operational hurdles for acceptance and sustainable implementation of new approaches, and the continued importance of traditional sources of national statistical data. PMID:29555739
Husak, G.J.; Marshall, M. T.; Michaelsen, J.; Pedreros, Diego; Funk, Christopher C.; Galu, G.
2008-01-01
Reliable estimates of cropped area (CA) in developing countries with chronic food shortages are essential for emergency relief and the design of appropriate market-based food security programs. Satellite interpretation of CA is an effective alternative to extensive and costly field surveys, which fail to represent the spatial heterogeneity at the country-level. Bias-corrected, texture based classifications show little deviation from actual crop inventories, when estimates derived from aerial photographs or field measurements are used to remove systematic errors in medium resolution estimates. In this paper, we demonstrate a hybrid high-medium resolution technique for Central Ethiopia that combines spatially limited unbiased estimates from IKONOS images, with spatially extensive Landsat ETM+ interpretations, land-cover, and SRTM-based topography. Logistic regression is used to derive the probability of a location being crop. These individual points are then aggregated to produce regional estimates of CA. District-level analysis of Landsat based estimates showed CA totals which supported the estimates of the Bureau of Agriculture and Rural Development. Continued work will evaluate the technique in other parts of Africa, while segmentation algorithms will be evaluated, in order to automate classification of medium resolution imagery for routine CA estimation in the future.
A morphometric analysis of vegetation patterns in dryland ecosystems
Dekker, Stefan C.; Li, Mao; Mio, Washington; Punyasena, Surangi W.; Lenton, Timothy M.
2017-01-01
Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems. PMID:28386414
A morphometric analysis of vegetation patterns in dryland ecosystems.
Mander, Luke; Dekker, Stefan C; Li, Mao; Mio, Washington; Punyasena, Surangi W; Lenton, Timothy M
2017-02-01
Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems.
NASA Astrophysics Data System (ADS)
Husak, G. J.; Marshall, M. T.; Michaelsen, J.; Pedreros, D.; Funk, C.; Galu, G.
2008-07-01
Reliable estimates of cropped area (CA) in developing countries with chronic food shortages are essential for emergency relief and the design of appropriate market-based food security programs. Satellite interpretation of CA is an effective alternative to extensive and costly field surveys, which fail to represent the spatial heterogeneity at the country-level. Bias-corrected, texture based classifications show little deviation from actual crop inventories, when estimates derived from aerial photographs or field measurements are used to remove systematic errors in medium resolution estimates. In this paper, we demonstrate a hybrid high-medium resolution technique for Central Ethiopia that combines spatially limited unbiased estimates from IKONOS images, with spatially extensive Landsat ETM+ interpretations, land-cover, and SRTM-based topography. Logistic regression is used to derive the probability of a location being crop. These individual points are then aggregated to produce regional estimates of CA. District-level analysis of Landsat based estimates showed CA totals which supported the estimates of the Bureau of Agriculture and Rural Development. Continued work will evaluate the technique in other parts of Africa, while segmentation algorithms will be evaluated, in order to automate classification of medium resolution imagery for routine CA estimation in the future.
NASA Astrophysics Data System (ADS)
Neigh, C. S.; Nelson, R. F.; Sun, G.; Ranson, J.; Montesano, P. M.; Margolis, H. A.
2011-12-01
The Eurasian boreal forest is the largest continuous forest in the world and contains a vast quantity of carbon stock that is currently vulnerable to loss from climate change. We develop and present an approach to map the spatial distribution of above ground biomass throughout this region. Our method combines satellite measurements from the Geoscience Laser Altimeter System (GLAS) that is carried on the Ice, Cloud and land Elevation Satellite ( ICESat), with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), and biomass field measurements collected from surveys from a number of different biomes throughout Boreal Eurasia. A slope model derived from the GDEM with quality control flags, and Moderate-resolution Imaging Spectroradiometer (MODIS) water mask was implemented to exclude poor quality GLAS shots and stratify measurements by MODIS International Geosphere Biosphere (IGBP) and World Wildlife Fund (WWF) ecozones. We derive equations from regional field measurements to estimate the spatial distribution of above ground biomass by land cover type within biome and present a map with uncertainties and limitations of this approach which can be used as a baseline for future studies.
A morphometric analysis of vegetation patterns in dryland ecosystems
NASA Astrophysics Data System (ADS)
Mander, Luke; Dekker, Stefan C.; Li, Mao; Mio, Washington; Punyasena, Surangi W.; Lenton, Timothy M.
2017-02-01
Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems.
Garcia, A G; Araujo, M R; Uramoto, K; Walder, J M M; Zucchi, R A
2017-12-08
Fruit flies are among the most damaging insect pests of commercial fruit in Brazil. It is important to understand the landscape elements that may favor these flies. In the present study, spatial data from surveys of species of Anastrepha Schiner (Diptera: Tephritidae) in an urban area with forest fragments were analyzed, using geostatistics and Geographic Information System (GIS) to map the diversity of insects and evaluate how the forest fragments drive the spatial patterns. The results indicated a high diversity of species associated with large fragments, and a trend toward lower diversity in the more urbanized area, as the fragment sizes decreased. We concluded that the diversity of Anastrepha species is directly and positively related to large and continuous forest fragments in urbanized areas, and that combining geostatistics and GIS is a promising method for use in insect-pest management and sampling involving fruit flies. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Spatial Experiences of High Academic Achievers: Insights from a Developmental Perspective
ERIC Educational Resources Information Center
Weckbacher, Lisa Marie; Okamoto, Yukari
2012-01-01
The study explored the relationship between types of spatial experiences and spatial abilities among 13- to 14-year-old high academic achievers. Each participant completed two spatial tasks and a survey assessing favored spatial activities across five categories (computers, toys, sports, music, and art) and three developmental periods (early…
Spatial point analysis based on dengue surveys at household level in central Brazil
Siqueira-Junior, João B; Maciel, Ivan J; Barcellos, Christovam; Souza, Wayner V; Carvalho, Marilia S; Nascimento, Nazareth E; Oliveira, Renato M; Morais-Neto, Otaliba; Martelli, Celina MT
2008-01-01
Background Dengue virus (DENV) affects nonimunne human populations in tropical and subtropical regions. In the Americas, dengue has drastically increased in the last two decades and Brazil is considered one of the most affected countries. The high frequency of asymptomatic infection makes difficult to estimate prevalence of infection using registered cases and to locate high risk intra-urban area at population level. The goal of this spatial point analysis was to identify potential high-risk intra-urban areas of dengue, using data collected at household level from surveys. Methods Two household surveys took place in the city of Goiania (~1.1 million population), Central Brazil in the year 2001 and 2002. First survey screened 1,586 asymptomatic individuals older than 5 years of age. Second survey 2,906 asymptomatic volunteers, same age-groups, were selected by multistage sampling (census tracts; blocks; households) using available digital maps. Sera from participants were tested by dengue virus-specific IgM/IgG by EIA. A Generalized Additive Model (GAM) was used to detect the spatial varying risk over the region. Initially without any fixed covariates, to depict the overall risk map, followed by a model including the main covariates and the year, where the resulting maps show the risk associated with living place, controlled for the individual risk factors. This method has the advantage to generate smoothed risk factors maps, adjusted by socio-demographic covariates. Results The prevalence of antibody against dengue infection was 37.3% (95%CI [35.5–39.1]) in the year 2002; 7.8% increase in one-year interval. The spatial variation in risk of dengue infection significantly changed when comparing 2001 with 2002, (ORadjusted = 1.35; p < 0.001), while controlling for potential confounders using GAM model. Also increasing age and low education levels were associated with dengue infection. Conclusion This study showed spatial heterogeneity in the risk areas of dengue when using a spatial multivariate approach in a short time interval. Data from household surveys pointed out that low prevalence areas in 2001 surveys shifted to high-risk area in consecutive year. This mapping of dengue risks should give insights for control interventions in urban areas. PMID:18937868
Characterizing spatial uncertainty when integrating social data in conservation planning.
Lechner, A M; Raymond, C M; Adams, V M; Polyakov, M; Gordon, A; Rhodes, J R; Mills, M; Stein, A; Ives, C D; Lefroy, E C
2014-12-01
Recent conservation planning studies have presented approaches for integrating spatially referenced social (SRS) data with a view to improving the feasibility of conservation action. We reviewed the growing conservation literature on SRS data, focusing on elicited or stated preferences derived through social survey methods such as choice experiments and public participation geographic information systems. Elicited SRS data includes the spatial distribution of willingness to sell, willingness to pay, willingness to act, and assessments of social and cultural values. We developed a typology for assessing elicited SRS data uncertainty which describes how social survey uncertainty propagates when projected spatially and the importance of accounting for spatial uncertainty such as scale effects and data quality. These uncertainties will propagate when elicited SRS data is integrated with biophysical data for conservation planning and may have important consequences for assessing the feasibility of conservation actions. To explore this issue further, we conducted a systematic review of the elicited SRS data literature. We found that social survey uncertainty was commonly tested for, but that these uncertainties were ignored when projected spatially. Based on these results we developed a framework which will help researchers and practitioners estimate social survey uncertainty and use these quantitative estimates to systematically address uncertainty within an analysis. This is important when using SRS data in conservation applications because decisions need to be made irrespective of data quality and well characterized uncertainty can be incorporated into decision theoretic approaches. © 2014 Society for Conservation Biology.
Jorgensen, Christopher F.; Powell, Larkin A.; Lusk, Jeffery J.; Bishop, Andrew A.; Fontaine, Joseph J.
2014-01-01
Landscapes in agricultural systems continue to undergo significant change, and the loss of biodiversity is an ever-increasing threat. Although habitat restoration is beneficial, management actions do not always result in the desired outcome. Managers must understand why management actions fail; yet, past studies have focused on assessing habitat attributes at a single spatial scale, and often fail to consider the importance of ecological mechanisms that act across spatial scales. We located survey sites across southern Nebraska, USA and conducted point counts to estimate Ring-necked Pheasant abundance, an economically important species to the region, while simultaneously quantifying landscape effects using a geographic information system. To identify suitable areas for allocating limited management resources, we assessed land cover relationships to our counts using a Bayesian binomial-Poisson hierarchical model to construct predictive Species Distribution Models of relative abundance. Our results indicated that landscape scale land cover variables severely constrained or, alternatively, facilitated the positive effects of local land management for Ring-necked Pheasants. PMID:24918779
Jorgensen, Christopher F.; Powell, Larkin A.; Lusk, Jeffrey J.; Bishop, Andrew A.; Fontaine, Joseph J.
2014-01-01
Landscapes in agricultural systems continue to undergo significant change, and the loss of biodiversity is an ever-increasing threat. Although habitat restoration is beneficial, management actions do not always result in the desired outcome. Managers must understand why management actions fail; yet, past studies have focused on assessing habitat attributes at a single spatial scale, and often fail to consider the importance of ecological mechanisms that act across spatial scales. We located survey sites across southern Nebraska, USA and conducted point counts to estimate Ring-necked Pheasant abundance, an economically important species to the region, while simultaneously quantifying landscape effects using a geographic information system. To identify suitable areas for allocating limited management resources, we assessed land cover relationships to our counts using a Bayesian binomial-Poisson hierarchical model to construct predictive Species Distribution Models of relative abundance. Our results indicated that landscape scale land cover variables severely constrained or, alternatively, facilitated the positive effects of local land management for Ring-necked Pheasants.
Gusmawati, Niken; Soulard, Benoît; Selmaoui-Folcher, Nazha; Proisy, Christophe; Mustafa, Akhmad; Le Gendre, Romain; Laugier, Thierry; Lemonnier, Hugues
2018-06-01
From the 1980's, Indonesian shrimp production has continuously increased through a large expansion of cultured areas and an intensification of the production. As consequences of diseases and environmental degradations linked to this development, there are currently 250,000ha of abandoned ponds in Indonesia. To implement effective procedure to undertake appropriate aquaculture ecosystem assessment and monitoring, an integrated indicator based on four criteria using very high spatial optical satellite images, has been developed to discriminate active from abandoned ponds. These criteria were: presence of water, aerator, feeding bridge and vegetation. This indicator has then been applied to the Perancak estuary, a production area in decline, to highlight the abandonment dynamic between 2001 and 2015. Two risk factors that could contribute to explain dynamics of abandonment were identified: climate conditions and pond locations within the estuary, suggesting that a spatial approach should be integrated in planning processes to operationalize pond rehabilitation. Copyright © 2017 Elsevier Ltd. All rights reserved.
A nonparametric spatial scan statistic for continuous data.
Jung, Inkyung; Cho, Ho Jin
2015-10-20
Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.
Sweetwater, Texas Large N Experiment
NASA Astrophysics Data System (ADS)
Sumy, D. F.; Woodward, R.; Barklage, M.; Hollis, D.; Spriggs, N.; Gridley, J. M.; Parker, T.
2015-12-01
From 7 March to 30 April 2014, NodalSeismic, Nanometrics, and IRIS PASSCAL conducted a collaborative, spatially-dense seismic survey with several thousand nodal short-period geophones complemented by a backbone array of broadband sensors near Sweetwater, Texas. This pilot project demonstrates the efficacy of industry and academic partnerships, and leveraged a larger, commercial 3D survey to collect passive source seismic recordings to image the subsurface. This innovative deployment of a large-N mixed-mode array allows industry to explore array geometries and investigate the value of broadband recordings, while affording academics a dense wavefield imaging capability and an operational model for high volume instrument deployment. The broadband array consists of 25 continuously-recording stations from IRIS PASSCAL and Nanometrics, with an array design that maximized recording of horizontal-traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. In addition, 2639 FairfieldNodal Zland nodes from NodalSeismic were deployed in three sub-arrays: the outlier, backbone, and active source arrays. The backbone array consisted of 292 nodes that covered the entire survey area, while the outlier array consisted of 25 continuously-recording nodes distributed at a ~3 km distance away from the survey perimeter. Both the backbone and outlier array provide valuable constraints for the passive source portion of the analysis. This project serves as a learning platform to develop best practices in the support of large-N arrays with joint industry and academic expertise. Here we investigate lessons learned from a facility perspective, and present examples of data from the various sensors and array geometries. We will explore first-order results from local and teleseismic earthquakes, and show visualizations of the data across the array. Data are archived at the IRIS DMC under stations codes XB and 1B.
NASA Astrophysics Data System (ADS)
Batten, S.; Richardson, A.; Melrose, C.; Muxagata, E.; Hosie, G.; Verheye, H.; Hall, J.; Edwards, M.; Koubbi, P.; Abu-Alhaija, R.; Chiba, S.; Wilson, W.; Nagappa, R.; Takahashi, K.
2016-02-01
The Continuous Plankton Recorder (CPR) was first used in 1931 to routinely sample plankton and its continued deployment now sustains the longest-running, and spatially most extensive marine biological sampling programme in the world. Towed behind, for the most part commercial, ships it collects plankton samples from the surface waters that are subsequently analysed to provide taxonomically-resolved abundance data on a broad range of planktonic organisms from the size of coccolithophores to euphausiids. Plankton appear to integrate changes in the physical environment and by underpinning most marine food-webs, pass on this variability to higher trophic levels which have societal value. CPRs are deployed increasingly around the globe in discrete regional surveys that until recently interacted in an informal way. In 2011 the Global Alliance of CPR Surveys (GACS) was launched to bring these surveys together to collaborate more productively and address issues such as: methodological standardization, data integration, capacity building, and data analysis. Early products include a combined global database and regularly-released global marine ecological status reports. There are, of course, limitations to the exploitation of CPR data as well as the current geographic coverage. A current focus of GACS is integration of the data with models to meaningfully extrapolate across time and space. In this way the output could be used to provide more robust synoptic representations of key plankton variables. Recent years have also seen the CPR used as a platform in itself with the inclusion of additional sensors and water samplers that can sample the microplankton. The archive of samples has already been used for some molecular investigations and curation of samples is maintained for future studies. Thus the CPR is a key element of any regional to global ocean observing system of biodiversity.
Yao, Rongjiang; Yang, Jingsong; Wu, Danhua; Xie, Wenping; Gao, Peng; Jin, Wenhui
2016-01-01
Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general increasing trend of ECe was observed and moderately saline and very saline soils were predominant during the survey period. The temporal dynamics of root zone ECe coincided with those of daily rainfall, water table and groundwater data. Long-range EMI surveys and data collection are needed to capture the spatial and temporal variability of soil and crop parameters. Such results allowed us to conclude that, cost-effective and efficient EMI surveys, as one part of multi-source data for DSM, could be successfully used to characterize the spatial variability of soil salinity, to monitor the spatial and temporal dynamics of soil salinity, and to spatially estimate potential crop yield. PMID:27203697
Yao, Rongjiang; Yang, Jingsong; Wu, Danhua; Xie, Wenping; Gao, Peng; Jin, Wenhui
2016-01-01
Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general increasing trend of ECe was observed and moderately saline and very saline soils were predominant during the survey period. The temporal dynamics of root zone ECe coincided with those of daily rainfall, water table and groundwater data. Long-range EMI surveys and data collection are needed to capture the spatial and temporal variability of soil and crop parameters. Such results allowed us to conclude that, cost-effective and efficient EMI surveys, as one part of multi-source data for DSM, could be successfully used to characterize the spatial variability of soil salinity, to monitor the spatial and temporal dynamics of soil salinity, and to spatially estimate potential crop yield.
Novel method to sample very high power CO2 lasers: II Continuing Studies
NASA Astrophysics Data System (ADS)
Eric, John; Seibert, Daniel B., II; Green, Lawrence I.
2005-04-01
For the past 28 years, the Laser Hardened Materials Evaluation Laboratory (LHMEL) at the Wright-Patterson Air Force Base, OH, has worked with CO2 lasers capable of producing continuous energy up to 150 kW. These lasers are used in a number of advanced materials processing applications that require accurate spatial energy measurements of the laser. Conventional non-electronic methods are not satisfactory for determining the spatial energy profile. This paper describes continuing efforts in qualifying the new method in which a continuous, real-time electronic spatial energy profile can be obtained for very high power, (VHP) CO2 lasers.
Arcuti, Simona; Pollice, Alessio; Ribecco, Nunziata; D'Onghia, Gianfranco
2016-03-01
We evaluate the spatiotemporal changes in the density of a particular species of crustacean known as deep-water rose shrimp, Parapenaeus longirostris, based on biological sample data collected during trawl surveys carried out from 1995 to 2006 as part of the international project MEDITS (MEDiterranean International Trawl Surveys). As is the case for many biological variables, density data are continuous and characterized by unusually large amounts of zeros, accompanied by a skewed distribution of the remaining values. Here we analyze the normalized density data by a Bayesian delta-normal semiparametric additive model including the effects of covariates, using penalized regression with low-rank thin-plate splines for nonlinear spatial and temporal effects. Modeling the zero and nonzero values by two joint processes, as we propose in this work, allows to obtain great flexibility and easily handling of complex likelihood functions, avoiding inaccurate statistical inferences due to misclassification of the high proportion of exact zeros in the model. Bayesian model estimation is obtained by Markov chain Monte Carlo simulations, suitably specifying the complex likelihood function of the zero-inflated density data. The study highlights relevant nonlinear spatial and temporal effects and the influence of the annual Mediterranean oscillations index and of the sea surface temperature on the distribution of the deep-water rose shrimp density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USGS Menlo Park GPS Data Processing Techniques and Derived North America Velocity Field (Invited)
NASA Astrophysics Data System (ADS)
Svarc, J. L.; Murray-Moraleda, J. R.; Langbein, J. O.
2010-12-01
The U.S. Geological Survey in Menlo Park routinely conducts repeated GPS surveys of geodetic markers throughout the western United States using dual-frequency geodetic GPS receivers. We combine campaign, continuous, and semi-permanent data to present a North America fixed velocity field for regions in the western United States. Mobile campaign-based surveys require less up-front investment than permanently monumented and telemetered GPS systems, and hence have achieved a broad and dense spatial coverage. The greater flexibility and mobility comes at the cost of greater uncertainties in individual daily position solutions. We also routinely process continuous GPS data collected at PBO stations operated by UNAVCO along with data from other continuous GPS networks such as BARD, PANGA, and CORS operated by other agencies. We have broken the Western US into several subnetworks containing approximately 150-250 stations each. The data are processed using JPL’s GIPSY-OASIS II release 5.0 software using a modified precise positioning strategy (Zumberge and others, 1997). We use the “ambizap” code provided by Geoff Blewitt (Blewitt, 2008) to fix phase ambiguities in continuous networks. To mitigate the effect of common mode noise we use the positions of stations in the network with very long, clean time series (i.e. those with no large outliers or offsets) to transform all position estimates into “regionally filtered” results following the approach of Hammond and Thatcher (2007). Velocity uncertainties from continuously operated GPS stations tend to be about 3 times smaller than those from campaign data. Langbein (2004) presents a maximum likelihood method for fitting a time series employing a variety of temporal noise models. We assume that GPS observations are contaminated by a combination of white, flicker, and random walk noise. For continuous and semi-permanent time series longer than 2 years we estimate these values, otherwise we fix the amplitudes of these processes to 0.85 mm, 1.7 mm/yr1/4, and 0.4 mm/yr1/2 respectively for the north components, 0.84 mm, 1.4 mm/yr1/4, and 0.6 mm/yr1/2 respectively for the east components and 3.2 mm, 6.4 mm/yr1/4, and 0.0 mm/yr1/2 respectively for the vertical. We have also deployed “semi-permanent” stations in selected regions of California. Semi-permanent stations have the advantage of increasing the density of coverage without the high cost of monumentation and telemetry associated with continuous GPS stations. Also, because of the increased temporal coverage of these stations, accurate estimates of station velocities can be achieved in a far shorter time period than from campaign mode surveys.
High-Resolution Spatial Distribution and Estimation of Access to Improved Sanitation in Kenya.
Jia, Peng; Anderson, John D; Leitner, Michael; Rheingans, Richard
2016-01-01
Access to sanitation facilities is imperative in reducing the risk of multiple adverse health outcomes. A distinct disparity in sanitation exists among different wealth levels in many low-income countries, which may hinder the progress across each of the Millennium Development Goals. The surveyed households in 397 clusters from 2008-2009 Kenya Demographic and Health Surveys were divided into five wealth quintiles based on their national asset scores. A series of spatial analysis methods including excess risk, local spatial autocorrelation, and spatial interpolation were applied to observe disparities in coverage of improved sanitation among different wealth categories. The total number of the population with improved sanitation was estimated by interpolating, time-adjusting, and multiplying the surveyed coverage rates by high-resolution population grids. A comparison was then made with the annual estimates from United Nations Population Division and World Health Organization /United Nations Children's Fund Joint Monitoring Program for Water Supply and Sanitation. The Empirical Bayesian Kriging interpolation produced minimal root mean squared error for all clusters and five quintiles while predicting the raw and spatial coverage rates of improved sanitation. The coverage in southern regions was generally higher than in the north and east, and the coverage in the south decreased from Nairobi in all directions, while Nyanza and North Eastern Province had relatively poor coverage. The general clustering trend of high and low sanitation improvement among surveyed clusters was confirmed after spatial smoothing. There exists an apparent disparity in sanitation among different wealth categories across Kenya and spatially smoothed coverage rates resulted in a closer estimation of the available statistics than raw coverage rates. Future intervention activities need to be tailored for both different wealth categories and nationally where there are areas of greater needs when resources are limited.
NASA Astrophysics Data System (ADS)
Schmidt, L.; Minton, B.; Soto-Kerans, N.; Rempe, D.; Heidari, Z.
2017-12-01
In many uplands landscapes, water is transiently stored in the weathered and fractured bedrock that underlies soils. The timing and spatial pattern of this "rock moisture" has strong implications for ecological and biogeochemical processes that influence global cycling of water and solutes. However, available technologies for direct monitoring of rock moisture are limited. Here, we quantify temporal and spatial changes in rock moisture at the field scale across thick (up to 20 m) fractured vadose zone profiles using a novel narrow diameter borehole nuclear magnetic resonance system (BNMR). Successive BNMR surveys were performed using the Vista Clara Inc. Dart system in a network of boreholes within two steep, intensively hydrologically monitored hillslopes associated with the Eel River Critical Zone Observatory (ERCZO) in Northern California. BNMR data showed agreement with estimates of the temporal and spatial pattern of rock moisture depletion over the dry season via downhole neutron and gamma density surveys, as well as permanently installed continuous time domain reflectometry. Observable shifts in the BNMR-derived T2 distribution over time provide a direct measure of changes in the amount of water held within different pore sizes (large vs. small) in fractured rock. Analysis of both BNMR and laboratory-scale NMR (using a 2MHz benchtop NMR spectrometer) measurements of ERCZO core samples at variable saturation suggest that rock moisture changes associated with summer depletion occur within both large (fracture) and small (matrix) pore sizes. Collectively, our multi-method field- and laboratory- scale measurements highlight the potential for BNMR to improve quantification of rock moisture storage for better understanding of the biogeochemical and ecohydrological implications of rock moisture circulation in the Critical Zone.
POLARIS: A 30-meter probabilistic soil series map of the contiguous United States
Chaney, Nathaniel W; Wood, Eric F; McBratney, Alexander B; Hempel, Jonathan W; Nauman, Travis; Brungard, Colby W.; Odgers, Nathan P
2016-01-01
A new complete map of soil series probabilities has been produced for the contiguous United States at a 30 m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high performance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative prediction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS over the contiguous United States (CONUS) are fine-scale (30 m) elevation data and coarse-scale (~ 2 km) estimates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS. In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to improve the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water security.
Estimates of reservoir methane emissions based on a spatially ...
Global estimates of methane (CH4) emissions from reservoirs are poorly constrained, partly due to the challenges of accounting for intra-reservoir spatial variability. Reservoir-scale emission rates are often estimated by extrapolating from measurement made at a few locations; however, error and bias associated with this approach can be large and difficult to quantify. Here we use a generalized random tessellation survey (GRTS) design to generate estimates of central tendency and variance at multiple spatial scales in a reservoir. GRTS survey designs are probabilistic and spatially balanced which eliminates bias associated with expert judgment in site selection. GRTS surveys also allow for variance estimates that account for spatial pattern in emission rates. Total CH4 emission rates (i.e. sum of ebullition and diffusive emissions) were 4.8 (±2.1), 33.0 (±10.7), and 8.3 (±2.2) mg CH4 m-2 h-1 in open-waters, tributary associated areas, and the entire reservoir for the period in August 2014 during which 115 sites were sampled across an 7.98 km2 reservoir in Southwestern, Ohio, USA. Tributary areas occupy 12% of the reservoir surface, but were the source of 41% of total CH4 emissions, highlighting the importance of riverine-lacustrine transition zones. Ebullition accounted for >90% of CH4 emission at all spatial scales. Confidence interval estimates that incorporated spatial pattern in CH4 emissions were up to 29% narrower than when spatial independence
Sutherland, Chris; Munoz, David; Miller, David A.W.; Grant, Evan H. Campbell
2016-01-01
Spatial capture–recapture (SCR) is a relatively recent development in ecological statistics that provides a spatial context for estimating abundance and space use patterns, and improves inference about absolute population density. SCR has been applied to individual encounter data collected noninvasively using methods such as camera traps, hair snares, and scat surveys. Despite the widespread use of capture-based surveys to monitor amphibians and reptiles, there are few applications of SCR in the herpetological literature. We demonstrate the utility of the application of SCR for studies of reptiles and amphibians by analyzing capture–recapture data from Red-Backed Salamanders, Plethodon cinereus, collected using artificial cover boards. Using SCR to analyze spatial encounter histories of marked individuals, we found evidence that density differed little among four sites within the same forest (on average, 1.59 salamanders/m2) and that salamander detection probability peaked in early October (Julian day 278) reflecting expected surface activity patterns of the species. The spatial scale of detectability, a measure of space use, indicates that the home range size for this population of Red-Backed Salamanders in autumn was 16.89 m2. Surveying reptiles and amphibians using artificial cover boards regularly generates spatial encounter history data of known individuals, which can readily be analyzed using SCR methods, providing estimates of absolute density and inference about the spatial scale of habitat use.
Xun-Ping, W; An, Z
2017-07-27
Objective To optimize and simplify the survey method of Oncomelania hupensis snails in marshland endemic regions of schistosomiasis, so as to improve the precision, efficiency and economy of the snail survey. Methods A snail sampling strategy (Spatial Sampling Scenario of Oncomelania based on Plant Abundance, SOPA) which took the plant abundance as auxiliary variable was explored and an experimental study in a 50 m×50 m plot in a marshland in the Poyang Lake region was performed. Firstly, the push broom surveyed data was stratified into 5 layers by the plant abundance data; then, the required numbers of optimal sampling points of each layer through Hammond McCullagh equation were calculated; thirdly, every sample point in the line with the Multiple Directional Interpolation (MDI) placement scheme was pinpointed; and finally, the comparison study among the outcomes of the spatial random sampling strategy, the traditional systematic sampling method, the spatial stratified sampling method, Sandwich spatial sampling and inference and SOPA was performed. Results The method (SOPA) proposed in this study had the minimal absolute error of 0.213 8; and the traditional systematic sampling method had the largest estimate, and the absolute error was 0.924 4. Conclusion The snail sampling strategy (SOPA) proposed in this study obtains the higher estimation accuracy than the other four methods.
Long-term changes in the planktonic cnidarian community in a mesoscale area of the NW Mediterranean
Gili, Josep-Maria; Grinyó, Jordi; Raya, Vanesa; Sabatés, Ana
2018-01-01
In the present work, possible long-term changes in the planktonic cnidarian community were investigated by analyzing (1) species and community spatial distribution patterns, (2) variations in abundance and (3) changes in species richness during three mesoscale surveys representative of the climatic and anthropogenic changes that have occurred during the last three decades (years: 1983, 2004 and 2011) in the NW Mediterranean. These surveys were conducted during the summer (June) along the Catalan coast. All surveys covered the same area, used the same sampling methodology, and taxonomic identification was conducted by the same team of experts. An increase in the abundance of total cnidaria was found from 1983 to 2011. The siphonophore Muggiaea atlantica and the hydromedusa Aglaura hemistoma were the most abundant species, while Muggiaea kochii presented the largest abundance increment over time. Temperature was the main environmental parameter driving significant differences in the cnidarian community composition, abundance and spatial distribution patterns among the surveys. Our results suggest that in the current climate change scenario, warm-water species abundances will be positively favored, and the community will suffer changes in their latitudinal distribution patterns. We consider it extremely important to study and monitor gelatinous zooplankton in mesoscale spatial areas to understand not only long-term changes in abundances but also changes in their spatial distributions since spatial changes are sensitive indicators of climate change. PMID:29715282
Aryal, Arjun; Brooks, Benjamin A.; Reid, Mark E.; Bawden, Gerald W.; Pawlak, Geno
2012-01-01
Acquiring spatially continuous ground-surface displacement fields from Terrestrial Laser Scanners (TLS) will allow better understanding of the physical processes governing landslide motion at detailed spatial and temporal scales. Problems arise, however, when estimating continuous displacement fields from TLS point-clouds because reflecting points from sequential scans of moving ground are not defined uniquely, thus repeat TLS surveys typically do not track individual reflectors. Here, we implemented the cross-correlation-based Particle Image Velocimetry (PIV) method to derive a surface deformation field using TLS point-cloud data. We estimated associated errors using the shape of the cross-correlation function and tested the method's performance with synthetic displacements applied to a TLS point cloud. We applied the method to the toe of the episodically active Cleveland Corral Landslide in northern California using TLS data acquired in June 2005–January 2007 and January–May 2010. Estimated displacements ranged from decimeters to several meters and they agreed well with independent measurements at better than 9% root mean squared (RMS) error. For each of the time periods, the method provided a smooth, nearly continuous displacement field that coincides with independently mapped boundaries of the slide and permits further kinematic and mechanical inference. For the 2010 data set, for instance, the PIV-derived displacement field identified a diffuse zone of displacement that preceded by over a month the development of a new lateral shear zone. Additionally, the upslope and downslope displacement gradients delineated by the dense PIV field elucidated the non-rigid behavior of the slide.
NASA Astrophysics Data System (ADS)
Giuseppina Persichillo, Maria; Taramelli, Andrea; Valentini, Emiliana; Filipponi, Federico; Meisina, Claudia; Zucca, Francesco
2014-05-01
Coastal wetlands represent complex ecosystems prone to continue fluctuation of their internal equilibrium. They are valuable natural resources characterized by the continue interactions between geomorphological and biological components. Their adaptation to changing conditions is highly dependent on the rate and extent of spatial and temporal processes and their responses are still poorly understood. According to this, the vulnerability assessment to natural and human made hazard have became fundamental to analyse the resilience of these areas, their ability to cope with the impacts from externally driven forces or the efforts needed to minimize the impacts (Gitay et al., 2011). The objective of this research is to develop a comprehensive and replicable method through the application of Multi-Source data analysis, based on the integration of Earth Observation data and field survey, to analyse a shallow tidal basin of salt marshes, located in the northern part of the Venice lagoon. The study site is characterised by relatively elevated areas colonized by halophytic vegetation, and tidal flats, with not vegetated areas, characterized by lower elevations. Sub-pixel processing techniques (Spectral Mixing Analysis - SMA) were used to analyse the spatial distribution of both vegetation and sediments typology. Furthermore the classifications were assayed in terms of spatial (Power law) and temporal (Empirical Orthogonal Functions) patterns, in order to find the main characteristics of the aforementioned spatial trends and their variation over time. The principal aim is to study the spatio-temporal evolution of this coastal wetland area, in order to indentify tipping points, namely thresholds, beyond which the system reaches critical state and the main climatic, hydrodynamic and morphological variables that may influence and increase this behaviour. This research represents a new approach to study the geomorphological processes and to improve the management and conservation planning for coastal areas. Reference: Gitay H., Finlayson C.M. and Davidson N.(2011) - A Framework for assessing the vulnerability of wetlands to climate change, Ramsar Technical Report No. 5, 1-18.
Enhancing Allocentric Spatial Recall in Pre-schoolers through Navigational Training Programme
Boccia, Maddalena; Rosella, Michela; Vecchione, Francesca; Tanzilli, Antonio; Palermo, Liana; D'Amico, Simonetta; Guariglia, Cecilia; Piccardi, Laura
2017-01-01
Unlike for other abilities, children do not receive systematic spatial orientation training at school, even though navigational training during adulthood improves spatial skills. We investigated whether navigational training programme (NTP) improved spatial orientation skills in pre-schoolers. We administered 12-week NTP to seventeen 4- to 5-year-old children (training group, TG). The TG children and 17 age-matched children (control group, CG) who underwent standard didactics were tested twice before (T0) and after (T1) the NTP using tasks that tap into landmark, route and survey representations. We determined that the TG participants significantly improved their performances in the most demanding navigational task, which is the task that taps into survey representation. This improvement was significantly higher than that observed in the CG, suggesting that NTP fostered the acquisition of survey representation. Such representation is typically achieved by age seven. This finding suggests that NTP improves performance on higher-level navigational tasks in pre-schoolers. PMID:29085278
Airborne Laser Altimetry Mapping of the Greenland Ice Sheet: Application to Mass Balance Assessment
NASA Technical Reports Server (NTRS)
Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Wright, W.; Yungel, J.
2000-01-01
In 1998 and '99, the Arctic Ice Mapping (AIM) program completed resurveys of lines occupied 5 years earlier revealing elevation changes of the Greenland ice sheet and identifying areas of significant thinning, thickening and balance. In planning these surveys, consideration had to be given to the spatial constraints associated with aircraft operation, the spatial nature of ice sheet behavior, and limited resources, as well as temporal issues, such as seasonal and interannual variability in the context of measurement accuracy. This paper examines the extent to which the sampling and survey strategy is valid for drawing conclusions on the current state of balance of the Greenland ice sheet. The surveys covered the entire ice sheet with an average distance of 21.4 km between each location on the ice sheet and the nearest flight line. For most of the ice sheet, the elevation changes show relatively little spatial variability, and their magnitudes are significantly smaller than the observed elevation change signal. As a result, we conclude that the density of the sampling and the accuracy of the measurements are sufficient to draw meaningful conclusions on the state of balance of the entire ice sheet over the five-year survey period. Outlet glaciers, however, show far more spatial and temporal variability, and each of the major ones is likely to require individual surveys in order to determine its balance.
Methods and spatial extent of geophysical Investigations, Mono Lake, California, 2009 to 2011
Jayko, A.S.; Hart, P.E.; Childs, J. R.; Cormier, M.-H.; Ponce, D.A.; Athens, N.D.; McClain, J.S.
2013-01-01
This report summarizes the methods and spatial extent of geophysical surveys conducted on Mono Lake and Paoha Island by U.S. Geological Survey during 2009 and 2011. The surveys include acquisition of new high resolution seismic reflection data, shipborne high resolution magnetic data, and ground magnetic and gravity data on Paoha Island. Several trials to acquire swath bathymetry and side scan sonar were conducted, but were largely unsuccessful likely due to physical properties of the water column and (or) physical properites of the highly organic bottom sediment.
Architectural Implications for Spatial Object Association Algorithms*
Kumar, Vijay S.; Kurc, Tahsin; Saltz, Joel; Abdulla, Ghaleb; Kohn, Scott R.; Matarazzo, Celeste
2013-01-01
Spatial object association, also referred to as crossmatch of spatial datasets, is the problem of identifying and comparing objects in two or more datasets based on their positions in a common spatial coordinate system. In this work, we evaluate two crossmatch algorithms that are used for astronomical sky surveys, on the following database system architecture configurations: (1) Netezza Performance Server®, a parallel database system with active disk style processing capabilities, (2) MySQL Cluster, a high-throughput network database system, and (3) a hybrid configuration consisting of a collection of independent database system instances with data replication support. Our evaluation provides insights about how architectural characteristics of these systems affect the performance of the spatial crossmatch algorithms. We conducted our study using real use-case scenarios borrowed from a large-scale astronomy application known as the Large Synoptic Survey Telescope (LSST). PMID:25692244
SPATIALLY-BALANCED SAMPLING OF NATURAL RESOURCES
The spatial distribution of a natural resource is an important consideration in designing an efficient survey or monitoring program for the resource. Generally, sample sites that are spatially-balanced, that is, more or less evenly dispersed over the extent of the resource, will ...
Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
Hodgson, Amanda; Peel, David; Kelly, Natalie
2017-06-01
Aerial surveys are conducted for various fauna to assess abundance, distribution, and habitat use over large spatial scales. They are traditionally conducted using light aircraft with observers recording sightings in real time. Unmanned Aerial Vehicles (UAVs) offer an alternative with many potential advantages, including eliminating human risk. To be effective, this emerging platform needs to provide detection rates of animals comparable to traditional methods. UAVs can also acquire new types of information, and this new data requires a reevaluation of traditional analyses used in aerial surveys; including estimating the probability of detecting animals. We conducted 17 replicate UAV surveys of humpback whales (Megaptera novaeangliae) while simultaneously obtaining a 'census' of the population from land-based observations, to assess UAV detection probability. The ScanEagle UAV, carrying a digital SLR camera, continuously captured images (with 75% overlap) along transects covering the visual range of land-based observers. We also used ScanEagle to conduct focal follows of whale pods (n = 12, mean duration = 40 min), to assess a new method of estimating availability. A comparison of the whale detections from the UAV to the land-based census provided an estimated UAV detection probability of 0.33 (CV = 0.25; incorporating both availability and perception biases), which was not affected by environmental covariates (Beaufort sea state, glare, and cloud cover). According to our focal follows, the mean availability was 0.63 (CV = 0.37), with pods including mother/calf pairs having a higher availability (0.86, CV = 0.20) than those without (0.59, CV = 0.38). The follows also revealed (and provided a potential correction for) a downward bias in group size estimates from the UAV surveys, which resulted from asynchronous diving within whale pods, and a relatively short observation window of 9 s. We have shown that UAVs are an effective alternative to traditional methods, providing a detection probability that is within the range of previous studies for our target species. We also describe a method of assessing availability bias that represents spatial and temporal characteristics of a survey, from the same perspective as the survey platform, is benign, and provides additional data on animal behavior. © 2017 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Alan, E-mail: alan.bond@uea.ac.uk; Cave, Ben, E-mail: ben.cave@bcahealth.co.uk; Ballantyne, Rob, E-mail: robdballantyne@gmail.com
This study examines whether there is active planning for health improvement in the English spatial planning system and how this varies across two regions using a combination of telephone surveys and focus group interviews in 2005 and 2010. The spatial planning profession was found to be ill-equipped to consider the health and well-being implications of its actions, whilst health professionals are rarely engaged and have limited understanding and aspirations when it comes to influencing spatial planning. Strategic Environmental Assessment was not considered to be successful in integrating health into spatial plans, given it was the responsibility of planners lacking themore » capacity to do so. For their part, health professionals have insufficient knowledge and understanding of planning and how to engage with it to be able to plan for health gains rather than simply respond to health impacts. HIA practice is patchy and generally undertaken by health professionals outside the statutory planning framework. Thus, whilst appropriate assessment tools exist, they currently lack a coherent context within which they can function effectively and the implementation of the Kiev protocol requiring the engagement of health professionals in SEA is not to likely improve the consideration of health in planning while there continues to be separation of functions between professions and lack of understanding of the other profession. -- Highlights: ► Health professionals have limited aspirations for health improvement through the planning system. ► Spatial planners are ill-equipped to understand the health and well-being implications of their activities. ► SEA and HIA currently do not embed health consideration in planning decisions. ► The separation of health and planning functions is problematic for the effective conduct of SEA and/or HIA.« less
NASA Astrophysics Data System (ADS)
Stern, Rowena F.; Picard, Kathryn T.; Hamilton, Kristina M.; Walne, Antony; Tarran, Glen A.; Mills, David; McQuatters-Gollop, Abigail; Edwards, Martin
2015-09-01
There is a paucity of data on long-term, spatially resolved changes in microbial diversity and biogeography in marine systems, and yet these organisms underpin fundamental ecological processes in the oceans affecting socio-economic values of the marine environment. We report results from a new autonomous Water and Microplankton Sampler (WaMS) that is carried within the Continuous Plankton Recorder (CPR). Whilst the CPR with its larger mesh size (270 μm), is designed to capture larger plankton, the WaMS was designed as an additional device to capture plankton below 50 μm and delicate larger species, often destroyed by net sampling methods. A 454 pyrosequencing and flow cytometric investigation of eukaryotic microbes using the partial 18S rDNA from thirteen WaMS samples collected over three months in the English Channel revealed a wide diversity of organisms. Alveolates, Fungi, and picoplanktonic Chlorophytes were the most common lineages captured despite the small sample volumes (200-250 ml). The survey also identified Cercozoa and MAST heterotrophic Stramenopiles, normally missed in microscopic-based plankton surveys. The most common was the likely parasitic LKM11 Rozellomycota lineage which comprised 43.2% of all reads and are rarely observed in marine pelagic surveys. An additional 9.5% of reads belonged to other parasitic lineages including marine Syndiniales and Ichthyosporea. Sample variation was considerable, indicating that microbial diversity is spatially or temporally patchy. Our study has shown that the WaMS sampling system is autonomous, versatile and robust, and due to its deployment on the established CPR network, is a cost-effective monitoring tool for microbial diversity for the detection of smaller and delicate taxa.
Gay, Emilie; Senoussi, Rachid; Barnouin, Jacques
2007-01-01
Methods for spatial cluster detection dealing with diseases quantified by continuous variables are few, whereas several diseases are better approached by continuous indicators. For example, subclinical mastitis of the dairy cow is evaluated using a continuous marker of udder inflammation, the somatic cell score (SCS). Consequently, this study proposed to analyze spatialized risk and cluster components of herd SCS through a new method based on a spatial hazard model. The dataset included annual SCS for 34 142 French dairy herds for the year 2000, and important SCS risk factors: mean parity, percentage of winter and spring calvings, and herd size. The model allowed the simultaneous estimation of the effects of known risk factors and of potential spatial clusters on SCS, and the mapping of the estimated clusters and their range. Mean parity and winter and spring calvings were significantly associated with subclinical mastitis risk. The model with the presence of 3 clusters was highly significant, and the 3 clusters were attractive, i.e. closeness to cluster center increased the occurrence of high SCS. The three localizations were the following: close to the city of Troyes in the northeast of France; around the city of Limoges in the center-west; and in the southwest close to the city of Tarbes. The semi-parametric method based on spatial hazard modeling applies to continuous variables, and takes account of both risk factors and potential heterogeneity of the background population. This tool allows a quantitative detection but assumes a spatially specified form for clusters.
Continuous-variable quantum computation with spatial degrees of freedom of photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasca, D. S.; Gomes, R. M.; Toscano, F.
2011-05-15
We discuss the use of the transverse spatial degrees of freedom of photons propagating in the paraxial approximation for continuous-variable information processing. Given the wide variety of linear optical devices available, a diverse range of operations can be performed on the spatial degrees of freedom of single photons. Here we show how to implement a set of continuous quantum logic gates which allow for universal quantum computation. In contrast with the usual quadratures of the electromagnetic field, the entire set of single-photon gates for spatial degrees of freedom does not require optical nonlinearity and, in principle, can be performed withmore » a single device: the spatial light modulator. Nevertheless, nonlinear optical processes, such as four-wave mixing, are needed in the implementation of two-photon gates. The efficiency of these gates is at present very low; however, small-scale investigations of continuous-variable quantum computation are within the reach of current technology. In this regard, we show how novel cluster states for one-way quantum computing can be produced using spontaneous parametric down-conversion.« less
A probabilistic method for constructing wave time-series at inshore locations using model scenarios
Long, Joseph W.; Plant, Nathaniel G.; Dalyander, P. Soupy; Thompson, David M.
2014-01-01
Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally intensive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave conditions without performing additional, continuous numerical simulations. The archive of model output contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-series of wave height, period, direction, and associated uncertainties are constructed at locations included in the numerical model domain. The confidence limits are derived using statistical variability of oceanographic parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low computational expense. The constructed time-series can be developed to support a variety of applications including climate studies and other situations where a comprehensive survey of wave impacts on the coastal area is of interest.
Application of QuickBird imagery in fuel load estimation in the Daxinganling region, China.
Sen Jin; Shyh-Chin Chen
2012-01-01
A high spatial resolution QuickBird satellite image and a low spatial but high spectral resolution Landsat Thermatic Mapper image were used to linearly regress fuel loads of 70 plots with size 30X30m over the Daxinganling region of north-east China. The results were compared with loads from field surveys and from regression estimations by surveyed stand characteristics...
Survey of spatial data needs and land use forecasting methods in the electric utility industry
NASA Technical Reports Server (NTRS)
1981-01-01
A representative sample of the electric utility industry in the United States was surveyed to determine industry need for spatial data (specifically LANDSAT and other remotely sensed data) and the methods used by the industry to forecast land use changes and future energy demand. Information was acquired through interviews, written questionnaires, and reports (both published and internal).
ERIC Educational Resources Information Center
Noordzij, Matthijs L.; Zuidhoek, Sander; Postma, Albert
2006-01-01
The purpose of the present study is twofold: the first objective is to evaluate the importance of visual experience for the ability to form a spatial representation (spatial mental model) of fairly elaborate spatial descriptions. Secondly, we examine whether blind people exhibit the same preferences (i.e. level of performance on spatial tasks) as…
Preliminary Obtained Data from Borehole Geodetic Measurements in Marmara Region, Turkey
NASA Astrophysics Data System (ADS)
Ozener, H.; Aktug, B.; Karabulut, H.; Ergintav, S.; Dogru, A.; Yilmaz, O.; Turgut, B.; Ahiska, B.; Mencin, D.; Mattioli, G. S.
2014-12-01
Dense continuous GPS networks quantify the time-dependent deformation field of the earthquake cycle. However the strainmeters can capture signals with superior precision at local spatial scales, in particular in the short-period, from minutes to a month. Many relatively small-scale events (e.i. SSEs, creeps) have been successfully determined on the subduction zones. Istanbul located near the most active parts of the North Anatolian Fault (NAF) has been monitored by different observing techniques such as seismic networks and continuous/survey-mode GPS networks for decades. However, it is still essential to observe deformation in a broad range of temporal and spatial scales (from seismology to geodesy and to geology). Borehole strainmeters are very sensitive to deformation in the range of less than a month. In this study, we present a new project, financially and technically supported by Istanbul Development Agency (ISTKA) and UNAVCO, respectively, which includes the installation of two borehole strainmeters are being deployed in European side of Istanbul in Marmara Region. Since these instruments can also respond to non-tectonic processes, it is necessary to have more instruments to increase spatial coherence and to have additional sensors to detect and model noise (such as barometric pressure, tides, or precipitation). The introduced monitoring system will provide significant insight about the creeping phenomenon and the possible SSE to our understanding of seismic hazards in active zones and possible precursors. Our long term objective is to build a borehole monitoring system in the region. By integrating various data obtained from borehole observations, we expect to get a better understanding of dynamics in the western NAF. In this presentation, we introduce data and ongoing analysis obtained with strainmeters.
Liang, Ching-Ping; Chien, Yi-Chi; Jang, Cheng-Shin; Chen, Ching-Fang; Chen, Jui-Sheng
2017-01-14
Chronic arsenic (As) exposure continues to be a public health problem of major concern worldwide, affecting hundreds of millions of people. A long-term groundwater quality survey has revealed that 20% of the groundwater in southern Taiwan's Pingtung Plain is clearly contaminated with a measured As concentration in excess of the maximum level of 10 µg/L recommended by the World Health Organization. The situation is further complicated by the fact that more than half of the inhabitants in this area continue to use groundwater for drinking. Efforts to assess the health risk associated with the ingestion of As from the contaminated drinking water are required in order to determine the priorities for health risk management. The conventional approach to conducting a human health risk assessment may be insufficient for this purpose, so this study adopts a geostatistical Kriging method to perform a spatial analysis of the health risk associated with ingesting As through drinking groundwater in the Pingtung Plain. The health risk is assessed based on the hazard quotient (HQ) and target cancer risk (TR) established by the U.S. Environmental Protection Agency. The results show that most areas where the HQ exceeds 1 are in the southwestern part of the study area. In addition, the high-population density townships of Daliao, Linyuan, Donggang, Linbian, Jiadong, and Fangliao presently have exceedingly high TR values that are two orders of magnitude higher than the acceptable standard. Thus, the use of groundwater for drinking in these townships should be strictly avoided. A map that delineates areas with high TR values and high population densities is provided. The findings broaden the scope of the spatial analysis of human health risk and provide a basis for improving the decision-making process.
Liang, Ching-Ping; Chien, Yi-Chi; Jang, Cheng-Shin; Chen, Ching-Fang; Chen, Jui-Sheng
2017-01-01
Chronic arsenic (As) exposure continues to be a public health problem of major concern worldwide, affecting hundreds of millions of people. A long-term groundwater quality survey has revealed that 20% of the groundwater in southern Taiwan’s Pingtung Plain is clearly contaminated with a measured As concentration in excess of the maximum level of 10 µg/L recommended by the World Health Organization. The situation is further complicated by the fact that more than half of the inhabitants in this area continue to use groundwater for drinking. Efforts to assess the health risk associated with the ingestion of As from the contaminated drinking water are required in order to determine the priorities for health risk management. The conventional approach to conducting a human health risk assessment may be insufficient for this purpose, so this study adopts a geostatistical Kriging method to perform a spatial analysis of the health risk associated with ingesting As through drinking groundwater in the Pingtung Plain. The health risk is assessed based on the hazard quotient (HQ) and target cancer risk (TR) established by the U.S. Environmental Protection Agency. The results show that most areas where the HQ exceeds 1 are in the southwestern part of the study area. In addition, the high-population density townships of Daliao, Linyuan, Donggang, Linbian, Jiadong, and Fangliao presently have exceedingly high TR values that are two orders of magnitude higher than the acceptable standard. Thus, the use of groundwater for drinking in these townships should be strictly avoided. A map that delineates areas with high TR values and high population densities is provided. The findings broaden the scope of the spatial analysis of human health risk and provide a basis for improving the decision-making process. PMID:28098817
Baker, Jannah; White, Nicole; Mengersen, Kerrie
2014-11-20
Spatial analysis is increasingly important for identifying modifiable geographic risk factors for disease. However, spatial health data from surveys are often incomplete, ranging from missing data for only a few variables, to missing data for many variables. For spatial analyses of health outcomes, selection of an appropriate imputation method is critical in order to produce the most accurate inferences. We present a cross-validation approach to select between three imputation methods for health survey data with correlated lifestyle covariates, using as a case study, type II diabetes mellitus (DM II) risk across 71 Queensland Local Government Areas (LGAs). We compare the accuracy of mean imputation to imputation using multivariate normal and conditional autoregressive prior distributions. Choice of imputation method depends upon the application and is not necessarily the most complex method. Mean imputation was selected as the most accurate method in this application. Selecting an appropriate imputation method for health survey data, after accounting for spatial correlation and correlation between covariates, allows more complete analysis of geographic risk factors for disease with more confidence in the results to inform public policy decision-making.
The Spatial and the Visual in Mental Spatial Reasoning: An Ill-Posed Distinction
NASA Astrophysics Data System (ADS)
Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas; Seifert, Inessa
It is an ongoing and controversial debate in cognitive science which aspects of knowledge humans process visually and which ones they process spatially. Similarly, artificial intelligence (AI) and cognitive science research, in building computational cognitive systems, tended to use strictly spatial or strictly visual representations. The resulting systems, however, were suboptimal both with respect to computational efficiency and cognitive plau sibility. In this paper, we propose that the problems in both research strands stem from a mis conception of the visual and the spatial in mental spatial knowl edge pro cessing. Instead of viewing the visual and the spatial as two clearly separable categories, they should be conceptualized as the extremes of a con tinuous dimension of representation. Regarding psychology, a continuous di mension avoids the need to exclusively assign processes and representations to either one of the cate gories and, thus, facilitates a more unambiguous rating of processes and rep resentations. Regarding AI and cognitive science, the con cept of a continuous spatial / visual dimension provides the possibility of rep re sentation structures which can vary continuously along the spatial / visual di mension. As a first step in exploiting these potential advantages of the pro posed conception we (a) introduce criteria allowing for a non-dichotomic judgment of processes and representations and (b) present an approach towards rep re sentation structures that can flexibly vary along the spatial / visual dimension.
Integrating the statistical analysis of spatial data in ecology
A. M. Liebhold; J. Gurevitch
2002-01-01
In many areas of ecology there is an increasing emphasis on spatial relationships. Often ecologists are interested in new ways of analyzing data with the objective of quantifying spatial patterns, and in designing surveys and experiments in light of the recognition that there may be underlying spatial pattern in biotic responses. In doing so, ecologists have adopted a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Megeath, S. T.; Kryukova, E.; Gutermuth, R.
2016-01-15
We analyze the spatial distribution of dusty young stellar objects (YSOs) identified in the Spitzer Survey of the Orion Molecular clouds, augmenting these data with Chandra X-ray observations to correct for incompleteness in dense clustered regions. We also devise a scheme to correct for spatially varying incompleteness when X-ray data are not available. The local surface densities of the YSOs range from 1 pc{sup −2} to over 10,000 pc{sup −2}, with protostars tending to be in higher density regions. This range of densities is similar to other surveyed molecular clouds with clusters, but broader than clouds without clusters. By identifyingmore » clusters and groups as continuous regions with surface densities ≥10 pc{sup −2}, we find that 59% of the YSOs are in the largest cluster, the Orion Nebula Cluster (ONC), while 13% of the YSOs are found in a distributed population. A lower fraction of protostars in the distributed population is evidence that it is somewhat older than the groups and clusters. An examination of the structural properties of the clusters and groups shows that the peak surface densities of the clusters increase approximately linearly with the number of members. Furthermore, all clusters with more than 70 members exhibit asymmetric and/or highly elongated structures. The ONC becomes azimuthally symmetric in the inner 0.1 pc, suggesting that the cluster is only ∼2 Myr in age. We find that the star formation efficiency (SFE) of the Orion B cloud is unusually low, and that the SFEs of individual groups and clusters are an order of magnitude higher than those of the clouds. Finally, we discuss the relationship between the young low mass stars in the Orion clouds and the Orion OB 1 association, and we determine upper limits to the fraction of disks that may be affected by UV radiation from OB stars or dynamical interactions in dense, clustered regions.« less
NASA Astrophysics Data System (ADS)
Zhao, S.; Mashayekhi, R.; Saeednooran, S.; Hakami, A.; Ménard, R.; Moran, M. D.; Zhang, J.
2016-12-01
We have developed a formal framework for documentation, quantification, and propagation of uncertainties in upstream emissions inventory data at various stages leading to the generation of model-ready gridded emissions through emissions processing software such as the EPA's SMOKE (Sparse Matrix Operator Kernel Emissions) system. To illustrate this framework we present a proof-of-concept case study of a bottom-up quantitative assessment of uncertainties in emissions from residential wood combustion (RWC) in the U.S. and Canada. Uncertainties associated with key inventory parameters are characterized based on existing information sources, including the American Housing Survey (AHS) from the U.S. Census Bureau, Timber Products Output (TPO) surveys from the U.S. Forest Service, TNS Canadian Facts surveys, and the AP-42 emission factor document from the U.S. EPA. The propagation of uncertainties is based on Monte Carlo simulation code external to SMOKE. Latin Hypercube Sampling (LHS) is implemented to generate a set of random realizations of each RWC inventory parameter, for which the uncertainties are assumed to be normally distributed. Random realizations are also obtained for each RWC temporal and chemical speciation profile and spatial surrogate field external to SMOKE using the LHS approach. SMOKE outputs for primary emissions (e.g., CO, VOC) using both RWC emission inventory realizations and perturbed temporal and chemical profiles and spatial surrogates show relative uncertainties of about 30-50% across the U.S. and about 70-100% across Canada. Positive skewness values (up to 2.7) and variable kurtosis values (up to 4.8) were also found. Spatial allocation contributes significantly to the overall uncertainty, particularly in Canada. By applying this framework we are able to produce random realizations of model-ready gridded emissions that along with available meteorological ensembles can be used to propagate uncertainties through chemical transport models. The approach described here provides an effective means for formal quantification of uncertainties in estimated emissions from various source sectors and for continuous documentation, assessment, and reduction of emission uncertainties.
Spatio-Temporal Dimensions of Child Poverty in America, 1990-2010.
Call, Maia A; Voss, Paul R
2016-01-01
The persistence of childhood poverty in the United States, a wealthy and developed country, continues to pose both an analytical dilemma and public policy challenge, despite many decades of research and remedial policy implementation. In this paper, our goals are twofold, though our primary focus is methodological. We attempt both to examine the relationship between space, time, and previously established factors correlated with childhood poverty at the county level in the continental United States as well as to provide an empirical case study to demonstrate an underutilized methodological approach. We analyze a spatially consistent dataset built from the 1990 and 2000 U.S. Censuses, and the 2006-2010 American Community Survey. Our analytic approach includes cross-sectional spatial models to estimate the reproduction of poverty for each of the reference years as well as a fixed effects panel data model, to analyze change in child poverty over time. In addition, we estimate a full space-time interaction model, which adjusts for spatial and temporal variation in these data. These models reinforce our understanding of the strong regional persistence of childhood poverty in the U.S. over time and suggest that the factors impacting childhood poverty remain much the same today as they have in past decades.
Wardrop, N A; Jochem, W C; Bird, T J; Chamberlain, H R; Clarke, D; Kerr, D; Bengtsson, L; Juran, S; Seaman, V; Tatem, A J
2018-04-03
Population numbers at local levels are fundamental data for many applications, including the delivery and planning of services, election preparation, and response to disasters. In resource-poor settings, recent and reliable demographic data at subnational scales can often be lacking. National population and housing census data can be outdated, inaccurate, or missing key groups or areas, while registry data are generally lacking or incomplete. Moreover, at local scales accurate boundary data are often limited, and high rates of migration and urban growth make existing data quickly outdated. Here we review past and ongoing work aimed at producing spatially disaggregated local-scale population estimates, and discuss how new technologies are now enabling robust and cost-effective solutions. Recent advances in the availability of detailed satellite imagery, geopositioning tools for field surveys, statistical methods, and computational power are enabling the development and application of approaches that can estimate population distributions at fine spatial scales across entire countries in the absence of census data. We outline the potential of such approaches as well as their limitations, emphasizing the political and operational hurdles for acceptance and sustainable implementation of new approaches, and the continued importance of traditional sources of national statistical data. Copyright © 2018 the Author(s). Published by PNAS.
Data Representations for Geographic Information Systems.
ERIC Educational Resources Information Center
Shaffer, Clifford A.
1992-01-01
Surveys the field and literature of geographic information systems (GIS) and spatial data representation as it relates to GIS. Highlights include GIS terms, data types, and operations; vector representations and raster, or grid, representations; spatial indexing; elevation data representations; large spatial databases; and problem areas and future…
Curvature from Strong Gravitational Lensing: A Spatially Closed Universe or Systematics?
NASA Astrophysics Data System (ADS)
Li, Zhengxiang; Ding, Xuheng; Wang, Guo-Jian; Liao, Kai; Zhu, Zong-Hong
2018-02-01
Model-independent constraints on the spatial curvature are not only closely related to important problems, such as the evolution of the universe and properties of dark energy, but also provide a test of the validity of the fundamental Copernican principle. In this paper, with the distance sum rule in the Friedmann–Lemaître–Robertson–Walker metric, we achieve model-independent measurements of the spatial curvature from the latest type Ia supernovae and strong gravitational lensing (SGL) observations. We find that a spatially closed universe is preferred. Moreover, by considering different kinds of velocity dispersion and subsamples, we study possible factors that might affect model-independent estimations for the spatial curvature from SGL observations. It is suggested that the combination of observational data from different surveys might cause a systematic bias, and the tension between the spatially flat universe and SGL observations is alleviated when the subsample only from the Sloan Lens ACS Survey is used or a more complex treatment for the density profile of lenses is considered.
Architectural Implications for Spatial Object Association Algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, V S; Kurc, T; Saltz, J
2009-01-29
Spatial object association, also referred to as cross-match of spatial datasets, is the problem of identifying and comparing objects in two or more datasets based on their positions in a common spatial coordinate system. In this work, we evaluate two crossmatch algorithms that are used for astronomical sky surveys, on the following database system architecture configurations: (1) Netezza Performance Server R, a parallel database system with active disk style processing capabilities, (2) MySQL Cluster, a high-throughput network database system, and (3) a hybrid configuration consisting of a collection of independent database system instances with data replication support. Our evaluation providesmore » insights about how architectural characteristics of these systems affect the performance of the spatial crossmatch algorithms. We conducted our study using real use-case scenarios borrowed from a large-scale astronomy application known as the Large Synoptic Survey Telescope (LSST).« less
NASA Astrophysics Data System (ADS)
Knight, Matthew M.; Weaver, Harold A.; Vervack, Ronald J.; A'Hearn, Michael; Bertaux, Jean-Loup; Feaga, Lori M.; Feldman, Paul D.; Parker, Joel Wm.; Schindhelm, Eric; Steffl, Andrew J.; Stern, S. Alan; Bieler, Andre; Combi, Michael R.; Fougere, Nicolas; Keeney, Brian A.; Medina, Richard; Noonan, John; Pineau, Jon; Versteeg, Maarten H.
2017-10-01
The Alice far-ultraviolet (FUV) imaging spectrograph on the Rosetta orbiter obtained spatially resolved spectra of 67P/Churyumov-Gerasimenko (67P) from 700-2050 Å with a spectral resolution of 8-12 Å. Observations of 67P were obtained by Alice continually from arrival at the comet in August 2014 through the end of the mission in September 2016. “Great Circle” observations were performed every few weeks from January 2015 through May 2016 to survey the coma away from the nucleus. These sequences consisted of a series of slews along a celestial great circle passing through the nucleus, e.g., covering off-nadir angles from approximately 0-180°, with pauses for observations by Alice and other instruments. Alice’s line of sight during these scans included signal to the edge of the coma, thus sampling very different parts of the coma than most other instruments.We report here on observations acquired during these Great Circle scans that allow us to investigate the spatial distributions of various emissions, as well as seasonal variations in the coma composition. Bright lines consistently included H Ly-b, the OI triplet near 1304 Å, CI near 1657 Å, and the SI triplet near 1820 Å. Spatial distributions of the OI, CI, and SI brightnesses have been determined and are being fitted with Haser models. The process is more complicated than for traditional remote sensing FUV observations due to Rosetta’s location in the coma and because resonant scattering does not always dominate the excitation. Preliminary modeling yields H2O and CO2 production rates consistent with contemporaneous measurements obtained by other instruments on Rosetta and production rates that generally peak a few weeks after perihelion. A surprising phenomenon is a slight increase in OI brightness at large off-nadir angles for some Great Circles while the other measured emissions continue to decrease. We are investigating possible explanations.Rosetta is an ESA mission with contributions from its member states and NASA. The Alice team acknowledges continuing support from NASA’s Jet Propulsion Laboratory through contract 1336850 to the Southwest Research Institute.
Hierarchical clustering using correlation metric and spatial continuity constraint
Stork, Christopher L.; Brewer, Luke N.
2012-10-02
Large data sets are analyzed by hierarchical clustering using correlation as a similarity measure. This provides results that are superior to those obtained using a Euclidean distance similarity measure. A spatial continuity constraint may be applied in hierarchical clustering analysis of images.
Patrick C. Tobin; Laura M. Blackburn; Rebecca H. Gray; Christopher T. Lettau; Andrew M. Liebhold; Kenneth F. Raffa
2013-01-01
The ability to ascertain abundance and spatial extent of a nascent population of a non-native species can inform management decisions. Following initial detection, delimiting surveys, which involve the use of a finer network of samples around the focal point of a newly detected colony, are often used to quantify colony size, spatial extent, and the location of the...
Flea species infesting dogs in Spain: updated spatial and seasonal distribution patterns.
Gálvez, R; Montoya, A; Checa, R; Martín, O; Marino, V; Miró, G
2017-03-01
This entomological survey examines the spatial and seasonal distribution patterns of flea species infesting dogs in Spain. Bioclimatic zones covering broad climate and vegetation ranges were surveyed according to size. In a cross-sectional spatial survey carried out from late May 2013 to mid-July 2015, 1084 dogs from 42 different locations were examined. A total of 3032 fleas were collected and identified as belonging to the following species: Ctenocephalides felis (Siphonaptera: Pulicidae) (81.7%, 2476 fleas); Ctenocephalides canis (11.4%, 347 fleas); Pulex irritans (Siphonaptera: Pulicidae) (6.9%, 208 fleas), and Echidnophaga gallinacea (Siphonaptera: Pulicidae) (0.03%, one flea). Variables observed to have effects on flea abundance were animal weight, sex, length of hair and habitat. In the seasonal survey conducted from June 2014 to June 2015, 1014 fleas were collected from 239 dogs at 30 veterinary practices across Spain. Peaks in C. felis abundance were observed in early summer and late autumn, whereas high numbers of P. irritans and C. canis were recorded in autumn. Numbers of fleas detected in winter were low overall. Based on these findings, the present study updates the spatial and seasonal distributions of flea species in Spain and assesses the impacts of host and habitat variables on flea infestation. © 2016 The Royal Entomological Society.
NASA Astrophysics Data System (ADS)
Ahmed, S.; Chandra, S.; Auken, E.; Verma, S. K.
2015-12-01
Comprehensive knowledge of aquifer system is an important requisite for its effective management in India. Geological formations are complex and variable, punctual and scarce information are not adequate to understand, asses and manage them. Continuous data acquisition, their interpretation and integration with available geological/geophysical information is the solution. Heliborne dual moment transient electromagnetic (HeliTEM) and magnetic (HeliMAG) measurements have been carried out in divergent geological terrenes in India comprising Gangetic alluvium, Tertiary sediments underlying the Thar desert, Deccan basalts and Gondwana sediments, weathered and fractured granite gneisses and schists and the coastal alluvium with Tertiary sediments. The survey was carried out using state of the art equipment SkyTEM. The paper presents a synopsis of the results of the HeliTEM surveys that have helped in obtaining continuous information on the geoelectrical nature of sub-surface. HeliTEM data were supported by a number of ground geophysical surveys. The results provide the 3D subsurface structures controlling the groundwater conditions, the regional continuity of probable aquifers, the variations in lithological character and the quality of water in terms of salinity. Specialized features pertaining to hydrogeological characteristics obtained from this study are as follows: A clear delineation of clay beds and their spatial distribution providing the multi-layered aquifer setup in the Gangetic plains. Delineation of low resistivity zones in the quartzite below the over exploited aquifers indicating the possibility of new aquifers. Presence of freshwater zones underneath the saline water aquifers in the thick and dry sands in deserts. Clear demarcation of different lava flows, mapping the structural controls and highly porous zones in the contact of basalts and Gondwanas. A complete and continuous mapping of weathered zone in crystalline hard rock areas providing information on the recharge zones. The setting of multi-layered aquifer and different zones of salt water intrusion in the coastal sedimentary formations. The study has helped in establishing an appropriate cost-effective strategy for 3D mapping of aquifers on a regional scale providing valuable inputs to perform aquifer modeling.
Neutral Hydrogen in the Local Group and around the Milky Way
NASA Astrophysics Data System (ADS)
Wolfe, Spencer A.
Galaxies in our universe must acquire fresh gas to continue forming new stars. A likely source of this material may be the gas that resides between galaxies. We do not, however, have a clear understanding of the specifics, such as its distribution. The first claimed detection of this "cosmic web" of material directly in emission was published a decade ago using the Westerbork Synthesis Radio Telescope in the Netherlands while surveying neutral hydrogen in the Local Group of galaxies. Later evidence, in the form of stellar surveys and test particle simulations, showed that a tidal origin of the gas was another possibility. More recent survey work of the Local Group, specifically between the galaxies M31 and M33, motivated us to map a section of the Westerbork emission using the Robert C . Byrd Green Bank Telescope (GBT). Our survey covers a 12 square degree area between M31 and M33, in which we reach 21 cm column density sensitivities of 1017.2 cm-2 after 400 hours of observations. These observations provide more than a factor of five better spatial resolution, and better than a factor of three in velocity resolution. Not only do we confirm the emission seen in the Westerbork data, we find that the hydrogen gas is composed of clouds a few kiloparsecs across, with properties suggesting they are a unique population to the Local Group. We conclude that the clouds are likely transient condensations from an intergalactic filament of gas, although a tidal feature cannot currently be ruled out. We also conducted GBT pointings to the northwest of M31 to search for the extended emission seen in the Westerbork data as well. What detections we find appear to be more related to the high velocity cloud population of M31. We are continuing to map other regions around M31 to search for more diffuse emission. We also present southern sky maps of the high velocity and intermediate velocity clouds around our own Milky Way, using 21 cm survey data from the Parkes telescope in Australia. The existence of these objects have been known for over 50 years, yet there is no general consensus as to their origins. The maps we have produced are the most detailed to date, with high spatial and velocity resolution and good sensitivity. By using a model of Milky Way rotation, we more effectively filter out foreground emission from our own Galaxy to produce these maps. We also discuss the basic global properties of this gas and the features that are seen. Apart from the Magellanic system and Galactic warp, most of the emission is in the form of small clouds. Some of the emission seen in these data may be representative of the eventual fate of the M31-M33 clouds. Work with this survey is ongoing.
DOT National Transportation Integrated Search
2014-10-01
We propose an innovative survey with rolling samples to address a major fiscal challenge faced by many MPOs. Faced with a small, but : continuous budget, MPOs are increasingly unable to continue the current survey practice: conducting a large survey ...
Michael Floyd,; Richard Walters,; John Elliot,; Funning, Gareth J.; Svarc, Jerry L.; Murray, Jessica R.; Andy Hooper,; Yngvar Larsen,; Petar Marinkovic,; Bürgmann, Roland; Johanson, Ingrid; Tim Wright,
2016-01-01
Following earthquakes, faults are often observed to continue slipping aseismically. It has been proposed that this afterslip occurs on parts of the fault with rate-strengthening friction that are stressed by the mainshock, but our understanding has been limited by a lack of immediate, high-resolution observations. Here we show that the behavior of afterslip following the 2014 South Napa earthquake varied over distances of only a few kilometers. This variability cannot be explained by coseismic stress changes alone. We present daily positions from continuous and survey GPS sites that we re-measured within 12 hours of the mainshock, and surface displacements from the new Sentinel-1 radar mission. This unique geodetic data set constrains the distribution and evolution of coseismic and postseismic fault slip with exceptional resolution in space and time. We suggest that the observed heterogeneity in behavior is caused by lithological controls on the frictional properties of the fault plane.
The National Aquatic Resource Surveys (NARS) are four surveys conducted by the U.S. Environmental Protection Agency working in collaboration with states, tribal nations and other federal agencies. The surveys are conducted for lakes and reservoirs, streams, estuaries and intracoa...
Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela
Here, we describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (medianmore » $$z\\sim 0.03$$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $$z\\sim 0.6$$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.« less
Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant universe
Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela; ...
2017-06-29
Here, we describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (medianmore » $$z\\sim 0.03$$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $$z\\sim 0.6$$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.« less
GLASS: The Grism Lens-Amplified Survey From Space. HST Grism Spectroscopy of the Frontier Fields
NASA Astrophysics Data System (ADS)
Schmidt, Kasper B.; Schmidt
The Grism Lens-Amplified Survey From Space (GLASS) is a 140 orbit spectroscopic survey of 10 massive galaxy clusters, including the six Hubble Frontier Fields. GLASS has observed the cluster cores with the HST-WFC3 G102 and G141 grisms providing a wide wavelength coverage in the near-infrared from roughly 0.8-1.7μm. The parallel fields were observed through the optical ACS G800L grism. Taking advantage of the lensing magnification of the clusters, GLASS reaches intrinsic spectroscopic 1σ flux limits of roughly 10-18erg/s/cm2 and improved spatial resolution for lensed sources behind the clusters. These features are particularly useful for the three main science drivers of GLASS which are, I) exploring the universe at the epoch of reionization, II) describe how metals cycle in and out of galaxies, and III) asses the environmental dependence of galaxy evolution. The former two benefit highly from the improved depth and increased resolution provided by the cluster lensing. Apart from the main science drivers, a slew of ancillary science has been enabled by the survey, including improving cluster lens modeling and searches for supernovae. Here we present the survey and the GLASS data releases, which are continuously being made available to the community through https://archive.stsci.edu/prepds/glass/. For further information we refer to Schmidt et al. (2014), Treu et al. (2015), and http://glass.physics.ucsb.edu.
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
NASA Astrophysics Data System (ADS)
Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela; Albareti, Franco D.; Allende Prieto, Carlos; Almeida, Andres; Alonso-García, Javier; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett; Aquino-Ortíz, Erik; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Barger, Kathleen A.; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Bates, Dominic; Baumgarten, Falk; Bautista, Julian; Beaton, Rachael; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Berlind, Andreas A.; Bernardi, Mariangela; Beutler, Florian; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blomqvist, Michael; Bolton, Adam S.; Boquien, Médéric; Borissova, Jura; van den Bosch, Remco; Bovy, Jo; Brandt, William N.; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burgasser, Adam J.; Burtin, Etienne; Busca, Nicolás G.; Cappellari, Michele; Delgado Carigi, Maria Leticia; Carlberg, Joleen K.; Carnero Rosell, Aurelio; Carrera, Ricardo; Chanover, Nancy J.; Cherinka, Brian; Cheung, Edmond; Gómez Maqueo Chew, Yilen; Chiappini, Cristina; Doohyun Choi, Peter; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Cirolini, Rafael Fernando; Clerc, Nicolas; Cohen, Roger E.; Comparat, Johan; da Costa, Luiz; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Croft, Rupert A. C.; Cruz-Gonzalez, Irene; Garrido Cuadra, Daniel; Cunha, Katia; Damke, Guillermo J.; Darling, Jeremy; Davies, Roger; Dawson, Kyle; de la Macorra, Axel; Dell'Agli, Flavia; De Lee, Nathan; Delubac, Timothée; Di Mille, Francesco; Diamond-Stanic, Aleks; Cano-Díaz, Mariana; Donor, John; Downes, Juan José; Drory, Niv; du Mas des Bourboux, Hélion; Duckworth, Christopher J.; Dwelly, Tom; Dyer, Jamie; Ebelke, Garrett; Eigenbrot, Arthur D.; Eisenstein, Daniel J.; Emsellem, Eric; Eracleous, Mike; Escoffier, Stephanie; Evans, Michael L.; Fan, Xiaohui; Fernández-Alvar, Emma; Fernandez-Trincado, J. G.; Feuillet, Diane K.; Finoguenov, Alexis; Fleming, Scott W.; Font-Ribera, Andreu; Fredrickson, Alexander; Freischlad, Gordon; Frinchaboy, Peter M.; Fuentes, Carla E.; Galbany, Lluís; Garcia-Dias, R.; García-Hernández, D. A.; Gaulme, Patrick; Geisler, Doug; Gelfand, Joseph D.; Gil-Marín, Héctor; Gillespie, Bruce A.; Goddard, Daniel; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul J.; Grier, Catherine J.; Gunn, James E.; Guo, Hong; Guy, Julien; Hagen, Alex; Hahn, ChangHoon; Hall, Matthew; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne L.; Hearty, Fred; Gonzalez Hernández, Jonay I.; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Holzer, Parker H.; Huehnerhoff, Joseph; Hutchinson, Timothy A.; Hwang, Ho Seong; Ibarra-Medel, Héctor J.; da Silva Ilha, Gabriele; Ivans, Inese I.; Ivory, KeShawn; Jackson, Kelly; Jensen, Trey W.; Johnson, Jennifer A.; Jones, Amy; Jönsson, Henrik; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark; Knapp, Gillian R.; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Law, David R.; Lazarz, Daniel; Lee, Youngbae; Le Goff, Jean-Marc; Liang, Fu-Heng; Li, Cheng; Li, Hongyu; Lian, Jianhui; Lima, Marcos; Lin, Lihwai; Lin, Yen-Ting; Bertran de Lis, Sara; Liu, Chao; de Icaza Lizaola, Miguel Angel C.; Long, Dan; Lucatello, Sara; Lundgren, Britt; MacDonald, Nicholas K.; Deconto Machado, Alice; MacLeod, Chelsea L.; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Maiolino, Roberto; Majewski, Steven R.; Malanushenko, Elena; Malanushenko, Viktor; Manchado, Arturo; Mao, Shude; Maraston, Claudia; Marques-Chaves, Rui; Masseron, Thomas; Masters, Karen L.; McBride, Cameron K.; McDermid, Richard M.; McGrath, Brianne; McGreer, Ian D.; Medina Peña, Nicolás; Melendez, Matthew; Merloni, Andrea; Merrifield, Michael R.; Meszaros, Szabolcs; Meza, Andres; Minchev, Ivan; Minniti, Dante; Miyaji, Takamitsu; More, Surhud; Mulchaey, John; Müller-Sánchez, Francisco; Muna, Demitri; Munoz, Ricardo R.; Myers, Adam D.; Nair, Preethi; Nandra, Kirpal; Correa do Nascimento, Janaina; Negrete, Alenka; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; Ntelis, Pierros; O'Connell, Julia E.; Oelkers, Ryan J.; Oravetz, Audrey; Oravetz, Daniel; Pace, Zach; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Alonso Palicio, Pedro; Pan, Kaike; Parejko, John K.; Parikh, Taniya; Pâris, Isabelle; Park, Changbom; Patten, Alim Y.; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc; Pisani, Alice; Poleski, Radosław; Prada, Francisco; Prakash, Abhishek; Queiroz, Anna Bárbara de Andrade; Raddick, M. Jordan; Raichoor, Anand; Barboza Rembold, Sandro; Richstein, Hannah; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodríguez-Torres, Sergio; Roman-Lopes, A.; Román-Zúñiga, Carlos; Rosado, Margarita; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Rykoff, Eli S.; Salazar-Albornoz, Salvador; Salvato, Mara; Sánchez, Ariel G.; Aguado, D. S.; Sánchez-Gallego, José R.; Santana, Felipe A.; Santiago, Basílio Xavier; Sayres, Conor; Schiavon, Ricardo P.; da Silva Schimoia, Jaderson; Schlafly, Edward F.; Schlegel, David J.; Schneider, Donald P.; Schultheis, Mathias; Schuster, William J.; Schwope, Axel; Seo, Hee-Jong; Shao, Zhengyi; Shen, Shiyin; Shetrone, Matthew; Shull, Michael; Simon, Joshua D.; Skinner, Danielle; Skrutskie, M. F.; Slosar, Anže; Smith, Verne V.; Sobeck, Jennifer S.; Sobreira, Flavia; Somers, Garrett; Souto, Diogo; Stark, David V.; Stassun, Keivan; Stauffer, Fritz; Steinmetz, Matthias; Storchi-Bergmann, Thaisa; Streblyanska, Alina; Stringfellow, Guy S.; Suárez, Genaro; Sun, Jing; Suzuki, Nao; Szigeti, Laszlo; Taghizadeh-Popp, Manuchehr; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Teske, Johanna; Thakar, Aniruddha R.; Thomas, Daniel; Thompson, Benjamin A.; Tinker, Jeremy L.; Tissera, Patricia; Tojeiro, Rita; Hernandez Toledo, Hector; de la Torre, Sylvain; Tremonti, Christy; Troup, Nicholas W.; Valenzuela, Octavio; Martinez Valpuesta, Inma; Vargas-González, Jaime; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vivek, M.; Vogt, Nicole; Wake, David; Walterbos, Rene; Wang, Yuting; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wild, Vivienne; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yèche, Christophe; Zakamska, Nadia; Zamora, Olga; Zarrouk, Pauline; Zasowski, Gail; Zhang, Kai; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Xu; Zhou, Zhi-Min; Zhu, Guangtun B.; Zoccali, Manuela; Zou, Hu
2017-07-01
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z˜ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z˜ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.
NASA Astrophysics Data System (ADS)
Cooper, C.; Nayegandhi, A.; Faux, R.
2013-12-01
Small-footprint, green wavelength airborne LiDAR systems can provide seamless topography across the land-water interface at very high spatial resolution. These data have the potential to improve floodplain modeling, fisheries habitat assessments, stream restoration efforts, and other applications by continuously mapping shallow water depths that are difficult or impossible to measure using traditional ground-based or water-borne survey techniques. WSI (Corvallis, Oregon) in collaboration with Dewberry, (Tampa, Florida) and Riegl (Orlando, Florida), deployed the Riegl VQ-820-G hydrographic airborne laser scanner to map riverine and lacustrine environments from Oregon to Minnesota. Discussion will focus on the ability to accurately map depth and underwater structure, as well as riparian vegetation and terrain under different conditions. Results indicate that depth penetration varies with both water (i.e. clarity and surface conditions) and bottom conditions (i.e. substrate, depth, and landform). Depth penetration was typically limited to 1 Secchi depth or less across selected project areas. As an example, the green LiDAR system effectively mapped 83% of a shallow water river system, the Sandy River, with typical depths ranging from 0-2.5 meters. WSI will show quantitative comparisons of Green LiDAR surveys against more traditional methods such as rod or sonar surveys. WSI will also discuss advantages and limitations of Green LiDAR surveys for bathymetric modeling including survey accuracy, density, and efficiency along with data processing challenges not inherent with traditional NIR LiDAR processing.
Estimating the spatial scales of landscape effects on abundance
Richard Chandler; Jeffrey Hepinstall-Cymerman
2016-01-01
Spatial variation in abundance is influenced by local- and landscape-level environmental variables, but modeling landscape effects is challenging because the spatial scales of the relationships are unknown. Current approaches involve buffering survey locations with polygons of various sizes and using model selection to identify the best scale. The buffering...
USDA-ARS?s Scientific Manuscript database
Soil water content (theta) is one of the most important drivers for many biogeochemical fluxes at different temporal and spatial scales. Hydrogeophysical non-invasive sensors that measure the soil apparent electrical conductivity (ECa) have been widely used to infer spatial and temporal patterns of...
Characterizing and Improving Spatial Visualization Skills
ERIC Educational Resources Information Center
Titus, Sarah; Horsman, Eric
2009-01-01
Three-dimensional spatial visualization is an essential skill for geoscientists. We conducted two evaluations of students' spatial skills to examine whether their skills improve after enrollment in a geology course or courses. First, we present results of pre- and post-course survey of abstract visualization skills used to characterize the range…
NASA Technical Reports Server (NTRS)
Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.
2011-01-01
We describe a mathematical formalism for determining the mirror shell nodal positions and detector tilts that optimize the spatial resolution averaged over a field-of-view for a nested x-ray telescope, assuming known mirror segment surface prescriptions and known detector focal surface. The results are expressed in terms of ensemble averages over variable combinations of the ray positions and wave vectors in the flat focal plane intersecting the optical axis at the nominal on-axis focus, which can be determined by Monte-Carlo ray traces of the individual mirror shells. This work is part of our continuing efforts to provide analytical tools to aid in the design process for wide-field survey x-ray astronomy missions.
NASA Technical Reports Server (NTRS)
Elsner, Ronald; O'Dell, Stephen; Ramsey, Brian; Weisskopf, Martin
2011-01-01
We describe a mathematical formalism for determining the mirror shell nodal positions and detector tilts that optimize the spatial resolution averaged over a field-of-view for a nested x-ray telescope, assuming known mirror segment surface prescriptions and known detector focal surface. The results are expressed in terms of ensemble averages over variable combinations of the ray positions and wavevectors in the flat focal plane intersecting the optical axis at the nominal on-axis focus, which can be determined by Monte-Carlo ray traces of the individual mirror shells. This work is part of our continuing efforts to provide analytical tools to aid in the design process for wide-field survey x-ray astronomy missions.
Estimating 1970-99 average annual groundwater recharge in Wisconsin using streamflow data
Gebert, Warren A.; Walker, John F.; Kennedy, James L.
2011-01-01
Average annual recharge in Wisconsin for the period 1970-99 was estimated using streamflow data from U.S. Geological Survey continuous-record streamflow-gaging stations and partial-record sites. Partial-record sites have discharge measurements collected during low-flow conditions. The average annual base flow of a stream divided by the drainage area is a good approximation of the recharge rate; therefore, once average annual base flow is determined recharge can be calculated. Estimates of recharge for nearly 72 percent of the surface area of the State are provided. The results illustrate substantial spatial variability of recharge across the State, ranging from less than 1 inch to more than 12 inches per year. The average basin size for partial-record sites (50 square miles) was less than the average basin size for the gaging stations (305 square miles). Including results for smaller basins reveals a spatial variability that otherwise would be smoothed out using only estimates for larger basins. An error analysis indicates that the techniques used provide base flow estimates with standard errors ranging from 5.4 to 14 percent.
NASA Astrophysics Data System (ADS)
Aglitskiy, Yefim; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.
2014-10-01
The spectra of multi-charged ions of Hf, Ta, W, Pt, Au and Bi have been studied on Nike krypton-fluoride laser facility with the help of two kinds of X-ray spectrometers. First, survey instrument covering a spectral range from 0.5 to 19.5 angstroms which allows simultaneous observation of both M- and N- spectra of above mentioned elements with high spectral resolution. Second, an imaging spectrometer with interchangeable spherically bent Quartz crystals that added higher efficiency, higher spectral resolution and high spatial resolution to the qualities of the former one. Multiple spectral lines with X-ray energies as high as 4 keV that belong to the isoelectronic sequences of Fe, Co, Ni, Cu and Zn were identified with the help of NOMAD package developed by Dr. Yu. Ralchenko and colleagues. In our continuous effort to support DOE-NNSA's inertial fusion program, this campaign covered a wide range of plasma conditions that result in production of relatively energetic X-rays. Work supported by the US DOE/NNSA.
Basin centered gas systems of the U.S.
Popov, Marin A.; Nuccio, Vito F.; Dyman, Thaddeus S.; Gognat, Timothy A.; Johnson, Ronald C.; Schmoker, James W.; Wilson, Michael S.; Bartberger, Charles E.
2001-01-01
Basin-center accumulations, a type of continuous accumulation, have spatial dimensions equal to or exceeding those of conventional oil and gas accumulations, but unlike conventional fields, cannot be represented in terms of discrete, countable units delineated by downdip hydrocarbon-water contacts. Common geologic and production characteristics of continuous accumulations include their occurrence downdip from water-saturated rocks, lack of traditional trap or seal, relatively low matrix permeability, abnormal pressures (high or low), local interbedded source rocks, large in-place hydrocarbon volumes, and low recovery factors. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, West Virginia, is currently re-evaluating the resource potential of basin-center gas accumulations in the U.S. in light of changing geologic perceptions about these accumulations (such as the role of subtle structures to produce sweet spots), and the availability of new data. Better geologic understanding of basin-center gas accumulations could result in new plays or revised plays relative to those of the U.S. Geological Survey 1995 National Assessment (Gautier and others, 1995). For this study, 33 potential basin-center gas accumulations throughout the U.S. were identified and characterized based on data from the published literature and from well and reservoir databases (Figure 1). However, well-known or established basin-center accumulations such as the Green River Basin, the Uinta Basin, and the Piceance Basin are not addressed in this study.
42 CFR 423.156 - Consumer satisfaction surveys.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (CONTINUED) MEDICARE PROGRAM (CONTINUED) VOLUNTARY MEDICARE PRESCRIPTION DRUG BENEFIT Cost Control and... Healthcare Providers and Systems (CAHPS) survey vendors to conduct the Medicare CAHPS satisfaction survey of...
Beyer, Kirsten M M; Zhou, Yuhong; Matthews, Kevin; Bemanian, Amin; Laud, Purushottam W; Nattinger, Ann B
2016-07-01
Racial health disparities continue to be a serious problem in the United States and have been linked to contextual factors, including racial segregation. In some cases, including breast cancer survival, racial disparities appear to be worsening. Using the Home Mortgage Disclosure Act (HMDA) database, we extend current spatial analysis methodology to derive new, spatially continuous indices of (1) racial bias in mortgage lending and (2) redlining. We then examine spatial patterns of these indices and the association between these new measures and breast cancer survival among Black/African American women in the Milwaukee, Wisconsin metropolitan area. These new measures can be used to examine relationships between mortgage discrimination and patterns of disease throughout the United States. Copyright © 2016 Elsevier Ltd. All rights reserved.
Malvisi, Lucio; Troisi, Catherine L; Selwyn, Beatrice J
2018-06-23
The risk of malaria infection displays spatial and temporal variability that is likely due to interaction between the physical environment and the human population. In this study, we performed a spatial analysis at three different time points, corresponding to three cross-sectional surveys conducted as part of an insecticide-treated bed nets efficacy study, to reveal patterns of malaria incidence distribution in an area of Northern Guatemala characterized by low malaria endemicity. A thorough understanding of the spatial and temporal patterns of malaria distribution is essential for targeted malaria control programs. Two methods, the local Moran's I and the Getis-Ord G * (d), were used for the analysis, providing two different statistical approaches and allowing for a comparison of results. A distance band of 3.5 km was considered to be the most appropriate distance for the analysis of data based on epidemiological and entomological factors. Incidence rates were higher at the first cross-sectional survey conducted prior to the intervention compared to the following two surveys. Clusters or hot spots of malaria incidence exhibited high spatial and temporal variations. Findings from the two statistics were similar, though the G * (d) detected cold spots using a higher distance band (5.5 km). The high spatial and temporal variability in the distribution of clusters of high malaria incidence seems to be consistent with an area of unstable malaria transmission. In such a context, a strong surveillance system and the use of spatial analysis may be crucial for targeted malaria control activities.
2015-2016 Palila abundance estimates
Camp, Richard J.; Brinck, Kevin W.; Banko, Paul C.
2016-01-01
The palila (Loxioides bailleui) population was surveyed annually during 1998−2016 on Mauna Kea Volcano to determine abundance, population trend, and spatial distribution. In the latest surveys, the 2015 population was estimated at 852−1,406 birds (point estimate: 1,116) and the 2016 population was estimated at 1,494−2,385 (point estimate: 1,934). Similar numbers of palila were detected during the first and subsequent counts within each year during 2012−2016; the proportion of the total annual detections in each count ranged from 46% to 56%; and there was no difference in the detection probability due to count sequence. Furthermore, conducting repeat counts improved the abundance estimates by reducing the width of the confidence intervals between 9% and 32% annually. This suggests that multiple counts do not affect bird or observer behavior and can be continued in the future to improve the precision of abundance estimates. Five palila were detected on supplemental survey stations in the Ka‘ohe restoration area, outside the core survey area but still within Palila Critical Habitat (one in 2015 and four in 2016), suggesting that palila are present in habitat that is recovering from cattle grazing on the southwest slope. The average rate of decline during 1998−2016 was 150 birds per year. Over the 18-year monitoring period, the estimated rate of change equated to a 58% decline in the population.
Multiplicity among Solar-type Stars
NASA Astrophysics Data System (ADS)
Fuhrmann, K.; Chini, R.; Kaderhandt, L.; Chen, Z.
2017-02-01
We present a multiplicity census for a volume-complete all-sky survey of 422 stars with distances less than 25 pc and primary main-sequence effective temperatures T eff ≥ 5300 K. Very similar to previous results that have been presented for various subsets of this survey, we confirm the positive correlation of the stellar multiplicities with primary mass. We find for the F- and G-type Population I stars that 58% are non-single and 21% are in triple or higher level systems. For the old intermediate-disk and Population II stars—virtually all of G type and less massive—even two out of three sources prove to be non-single. These numbers being lower limits because of the continuous flow of new discoveries, the unbiased survey clearly demonstrates that the standard case for solar-type field stars is a hydrogen-burning source with at least one ordinary or degenerate stellar companion, and a surprisingly large number of stars are organized in multiple systems. A principal consequence is that orbital evolution, including the formation of blue straggler stars, is a potentially important issue on all spatial scales and timescales for a significant percentage of the stellar systems, in particular among Population II stars. We discuss a number of recent observations of known or suspected companions in the local survey, including a new detection of a double-lined Ba-Bb subsystem to the visual binary HR 8635.
Landsat Data Continuity Mission
,
2012-01-01
The Landsat Data Continuity Mission (LDCM) is a partnership formed between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit in January 2013. The Landsat era that began in 1972 will become a nearly 41-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archiving, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (30-meter spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of landcover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis at no cost to the user.
The road to NHDPlus — Advancements in digital stream networks and associated catchments
Moore, Richard B.; Dewald, Thomas A.
2016-01-01
A progression of advancements in Geographic Information Systems techniques for hydrologic network and associated catchment delineation has led to the production of the National Hydrography Dataset Plus (NHDPlus). NHDPlus is a digital stream network for hydrologic modeling with catchments and a suite of related geospatial data. Digital stream networks with associated catchments provide a geospatial framework for linking and integrating water-related data. Advancements in the development of NHDPlus are expected to continue to improve the capabilities of this national geospatial hydrologic framework. NHDPlus is built upon the medium-resolution NHD and, like NHD, was developed by the U.S. Environmental Protection Agency and U.S. Geological Survey to support the estimation of streamflow and stream velocity used in fate-and-transport modeling. Catchments included with NHDPlus were created by integrating vector information from the NHD and from the Watershed Boundary Dataset with the gridded land surface elevation as represented by the National Elevation Dataset. NHDPlus is an actively used and continually improved dataset. Users recognize the importance of a reliable stream network and associated catchments. The NHDPlus spatial features and associated data tables will continue to be improved to support regional water quality and streamflow models and other user-defined applications.
The Continuing Survey of Food Intakes by Individuals (CSFII), conducted as three separate 1-year surveys in 1989, 1990, and 1991, was designed to measure what Americans eat and drink. Information from the surveys is used to develop nutrition education programs, to assess dietary ...
Ego-Motion and Tracking for Continuous Object Learning: A Brief Survey
2017-09-01
ARL-TR-8167• SEP 2017 US Army Research Laboratory Ego-motion and Tracking for ContinuousObject Learning: A Brief Survey by Jason Owens and Philip...SEP 2017 US Army Research Laboratory Ego-motion and Tracking for ContinuousObject Learning: A Brief Survey by Jason Owens and Philip OsteenVehicle...
Spatial and Climate Literacy: Connecting Urban and Rural Students
NASA Astrophysics Data System (ADS)
Boger, R. A.; Low, R.; Mandryk, C.; Gorokhovich, Y.
2013-12-01
Through a collaboration between the University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, four independent but linked modules were developed and piloted in courses offered at Brooklyn College and UNL simultaneously. Module content includes climate change science and literacy principles, using geospatial technologies (GIS, GPS and remote sensing) as a vehicle to explore issues associated with global, regional, and local climate change in a concrete, quantitative and visual way using Internet resources available through NASA, NOAA, USGS, and a variety of universities and organizations. The materials take an Earth system approach and incorporate sustainability, resilience, water and watersheds, weather and climate, and food security topics throughout the semester. The research component of the project focuses on understanding the role of spatial literacy and authentic inquiry based experiences in climate change understanding and improving confidence in teaching science. In particular, engaging learners in both climate change science and GIS simultaneously provides opportunities to examine questions about the role that data manipulation, mental representation, and spatial literacy plays in students' abilities to understand the consequences and impacts of climate change. Pre and post surveys were designed to discern relationships between spatial cognitive processes and effective acquisition of climate change science concepts in virtual learning environments as well as alignment of teacher's mental models of nature of science and climate system dynamics to scientific models. The courses will again be offered simultaneously in Spring 2014 at Brooklyn College and UNL. Evaluation research will continue to examine the connections between spatial and climate literacy and teacher's mental models (via qualitative textual analysis using MAXQDA text analysis, and UCINET social network analysis programs) as well as how urban-rural learning interactions may influence climate literacy.
Benitez, Aline do Nascimento; Martins, Felippe Danyel Cardoso; Mareze, Marcelle; Nino, Beatriz de Souza Lima; Caldart, Eloiza Teles; Ferreira, Fernanda Pinto; Mitsuka-Breganó, Regina; Freire, Roberta Lemos; Galhardo, Juliana Arena; Martins, Camila Marinelli; Biondo, Alexander Welker; Navarro, Italmar Teodorico
2018-06-01
Although leishmaniasis has been described as a classic example of a zoonosis requiring a comprehensive approach for control, to date, no study has been conducted on the spatial distribution of simultaneous Leishmania spp. seroprevalence in dog owners and dogs from randomly selected households in urban settings. Accordingly, the present study aimed to simultaneously identify the seroprevalence, spatial distribution and associated factors of infection with Leishmania spp. in dog owners and their dogs in the city of Londrina, a county seat in southern Brazil with a population of half a million people and ranked 18th in population and 145th in the human development index (HDI) out of 5570 Brazilian cities. Overall, 564 households were surveyed and included 597 homeowners and their 729 dogs. Anti-Leishmania spp. antibodies were detected by ELISA in 9/597 (1.50%) dog owners and in 32/729 (4.38%) dogs, with significantly higher prevalence (p = 0.0042) in dogs. Spatial analysis revealed associations between seropositive dogs and households located up to 500 m from the local railway. No clusters were found for either owner or dog case distributions. In summary, the seroepidemiological and spatial results collectively show a lack of association of the factors for infection, and the results demonstrated higher exposure for dogs than their owners. However, railway areas may provide favorable conditions for the maintenance of infected phlebotomines, thereby causing infection in nearby domiciled dogs. In such an urban scenario, local sanitary barriers should be focused on the terrestrial routes of people and surrounding areas, particularly railways, via continuous vector surveillance and identification of phlebotomines infected by Leishmania spp. Copyright © 2018. Published by Elsevier B.V.
Accounting for imperfect detection and survey bias in statistical analysis of presence-only data
Dorazio, Robert M.
2014-01-01
Using mathematical proof and simulation-based comparisons, I demonstrate that biases induced by errors in detection or biased selection of survey locations can be reduced or eliminated by using the hierarchical model to analyse presence-only data in conjunction with counts observed in planned surveys. I show that a relatively small number of high-quality data (from planned surveys) can be used to leverage the information in presence-only observations, which usually have broad spatial coverage but may not be informative of both occurrence and detectability of individuals. Because a variety of sampling protocols can be used in planned surveys, this approach to the analysis of presence-only data is widely applicable. In addition, since the point-process model is formulated at the level of an individual, it can be extended to account for biological interactions between individuals and temporal changes in their spatial distributions.
Active and Passive Spatial Learning in Human Navigation: Acquisition of Survey Knowledge
ERIC Educational Resources Information Center
Chrastil, Elizabeth R.; Warren, William H.
2013-01-01
It seems intuitively obvious that active exploration of a new environment would lead to better spatial learning than would passive visual exposure. It is unclear, however, which components of active learning contribute to spatial knowledge, and previous literature is decidedly mixed. This experiment tests the contributions of 4 components to…
Spatial and temporal patterns in zooplankton community composition and abundance in near-coastal areas of the Gulf of Mexico are not well understood. This survey provides information on spatial and temporal differences in zoolplankton community composition and abundance for a coa...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Song, Xuehang; Ye, Ming
A new approach is developed to delineate the spatial distribution of discrete facies (geological units that have unique distributions of hydraulic, physical, and/or chemical properties) conditioned not only on direct data (measurements directly related to facies properties, e.g., grain size distribution obtained from borehole samples) but also on indirect data (observations indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our method integrates for the first time ensemble data assimilation with traditional transition probability-based geostatistics. The concept of level set is introduced to build shape parameterization that allows transformation between discrete facies indicators and continuous random variables. Themore » spatial structure of different facies is simulated by indicator models using conditioning points selected adaptively during the iterative process of data assimilation. To evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the spatial distribution and permeability of two distinct facies from transient head data induced by pumping tests. The example demonstrates that our new method adequately captures the spatial pattern of facies distribution by imposing spatial continuity through conditioning points. The new method also reproduces the overall response in hydraulic head field with better accuracy compared to data assimilation with no constraints on spatial continuity on facies.« less
Vascular Plant and Vertebrate Inventory of Saguaro National Park, Tucson Mountain District
Powell, Brian F.; Halvorson, William L.; Schmidt, Cecilia A.
2007-01-01
This report summarizes the results of the first comprehensive inventory of plants and vertebrates at the Tucson Mountain District (TMD) of Saguaro National Park, Arizona. From 2001 to 2003 we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at the district to document the presence of species within its boundaries. Park staff also carried out extensive infrared-triggered camera work for medium and large mammals from 2002-2005 and results from that effort are reported here. Our spatial sampling design for all taxa employed a combination of random and nonrandom survey sites. Survey effort was greatest for medium and large mammals and herpetofauna. Because we used repeatable study designs and standardized field methods, these inventories can serve as the first step in a biological monitoring program for the district. We also provide an overview of previous survey efforts in the district. We use data from our inventory and other surveys to compile species lists and to assess inventory completeness. The survey effort for herpetofauna, birds, and medium and large mammals was the most comprehensive ever undertaken in the district. We recorded a total of 320 plant and vertebrate species, including 21 species not previously found in the district (Table 1). Based on a review of our inventory and past research at the district, there have been a total of 723 species of plants and vertebrates found there. We believe inventories for most taxonomic groups are nearly complete. Based on our surveys, we believe the native plant and vertebrate community compositions of the district are relatively intact, though some species loss has occurred and threats are increasing, particularly to herpetofauna and larger mammals. Of particular note is the relatively small number of non-native species and their low abundance in the district, which is in contrast to many nearby natural areas. Rapidly expanding development on the west, north, and east sides of the district is cause for concern that the park continue its commitment to environmental restoration, which is largely responsible for reducing the threats posed by non-native plants. With continued maintenance of natural processes and the ecological structure of the park's biodiversity, the park will become an increasingly important place to both the general public and the scientific community. This report supersedes results reported in Powell et al. (2002, 2003).
Liu, Jin-xinp; Lu, Heng; Zeng, Yan; Yue, Jian-wei; Meng, Fan-yun; Zhang, Yi-guang
2012-09-01
Resources survey of traditional Chinese medicine and reserves estimation are found to be the most important issues for the protection and utilization of traditional Chinese medicine resources, this paper used multi-spatial resolution remote sensing images (RS) , geographic information systems (GIS) and global positioning system (GPS) , to establish Scutellaria resources survey of 3S data platform. Combined with the traditional field survey methods, small-scale habitat types were established based on different skullcap reserve estimation model, which can estimate reserves of the wild Scutellaria in Beijing-Tianjin-Hebei region and improve the estimation accuracy. It can provide an important parameter for the fourth national survey of traditional Chinese medicine resources and traditional Chinese medicine reserves estimates based on 3S technology by multiple spatial scales model.
Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan.
Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie
2014-01-01
Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5-1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost.
Unmanned Aerial Survey of Fallen Trees in a Deciduous Broadleaved Forest in Eastern Japan
Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie
2014-01-01
Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5–1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost. PMID:25279817
Shoberg, Thomas G.; Stoddard, Paul R.
2013-01-01
The ability to augment local gravity surveys with additional gravity stations from easily accessible national databases can greatly increase the areal coverage and spatial resolution of a survey. It is, however, necessary to integrate such data seamlessly with the local survey. One challenge to overcome in integrating data from national databases is that these data are typically of unknown quality. This study presents a procedure for the evaluation and seamless integration of gravity data of unknown quality from a national database with data from a local Global Positioning System (GPS)-based survey. The starting components include the latitude, longitude, elevation and observed gravity at each station location. Interpolated surfaces of the complete Bouguer anomaly are used as a means of quality control and comparison. The result is an integrated dataset of varying quality with many stations having GPS accuracy and other reliable stations of unknown origin, yielding a wider coverage and greater spatial resolution than either survey alone.
Modeling spatial accessibility of immigrants to culturally diverse family physicians.
Wanga, Lu; Roisman, Deborah
2011-01-01
This article uses accessibility as an analytical tool to examine health care access among immigrants in a multicultural urban setting. It applies and improves on two widely used accessibility models—the gravity model and the two-step floating catchment area model—in measuring spatial accessibility by Mainland Chinese immigrants in the Toronto Census Metropolitan Area. Empirical data on physician-seeking behaviors are collected through two rounds of questionnaire surveys. Attention is focused on journey to physician location and utilization of linguistically matched family physicians. Based on the survey data, a two-zone accessibility model is developed by relaxing the travel threshold and distance impedance parameters that are traditionally treated as a constant in the accessibility models. General linear models are used to identify relationships among spatial accessibility, geography, and socioeconomic characteristics of Mainland Chinese immigrants. The results suggest a spatial mismatch in the supply of and demand for culturally sensitive care, and residential location is the primary factor that determines spatial accessibility to family physicians. The article yields important policy implications.
Estimates of grassland biomass and turnover time on the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Xia, Jiangzhou; Ma, Minna; Liang, Tiangang; Wu, Chaoyang; Yang, Yuanhe; Zhang, Li; Zhang, Yangjian; Yuan, Wenping
2018-01-01
The grassland of the Tibetan Plateau forms a globally significant biome, which represents 6% of the world’s grasslands and 44% of China’s grasslands. However, large uncertainties remain concerning the vegetation carbon storage and turnover time in this biome. In this study, we quantified the pool size of both the aboveground and belowground biomass and turnover time of belowground biomass across the Tibetan Plateau by combining systematic measurements taken from a substantial number of surveys (i.e. 1689 sites for aboveground biomass, 174 sites for belowground biomass) with a machine learning technique (i.e. random forest, RF). Our study demonstrated that the RF model is effective tool for upscaling local biomass observations to the regional scale, and for producing continuous biomass estimates of the Tibetan Plateau. On average, the models estimated 46.57 Tg (1 Tg = 1012g) C of aboveground biomass and 363.71 Tg C of belowground biomass in the Tibetan grasslands covering an area of 1.32 × 106 km2. The turnover time of belowground biomass demonstrated large spatial heterogeneity, with a median turnover time of 4.25 years. Our results also demonstrated large differences in the biomass simulations among the major ecosystem models used for the Tibetan Plateau, largely because of inadequate model parameterization and validation. This study provides a spatially continuous measure of vegetation carbon storage and turnover time, and provides useful information for advancing ecosystem models and improving their performance.
Strategic planning of INA-CORS development for public service and tectonic deformation study
NASA Astrophysics Data System (ADS)
Syetiawan, Agung; Gaol, Yustisi Ardhitasari Lumban; Safi'i, Ayu Nur
2017-07-01
GPS technology can be applied for surveying, mapping and research purposes. The simplicity of GPS technology for positioning make it become the first choice for survey compared with another positioning method. GPS can measure a position with various accuracy level based on the measurement method. In order to facilitate the GPS positioning, many organizations are establishing permanent GPS station. National Geodetic Survey (NGS) called it as Continuously Operating Reference Stations (CORS). Those devices continuously collect and record GPS data to be used by users. CORS has been built by several government agencies for particular purposes and scattered throughout Indonesia. Geospatial Information Agency (BIG) as a geospatial information providers begin to compile a grand design of Indonesia CORS (INA-CORS) that can be used for public service such as Real Time Kinematic (RTK), RINEX data request, or post-processing service and for tectonic deformation study to determine the deformation models of Indonesia and to evaluate the national geospatial reference system. This study aims to review the ideal location to develop CORS network distribution. The method was used is to perform spatial analysis on the data distribution of BIG and BPN CORS overlayed with Seismotectonic Map of Indonesia and land cover. The ideal condition to be achieved is that CORS will be available on each radius of 50 km. The result showed that CORS distribution in Java and Nusa Tenggara are already tight while on Sumatra, Celebes and Moluccas are still need to be more tighten. Meanwhile, the development of CORS in Papua will encounter obstacles toward road access and networking. This analysis result can be used as consideration for determining the priorities of CORS development in Indonesia.
The Continuing Survey Of Food Intakes By Individuals (CSFII) And The Diet And Health Knowledge Survey (DHKS), popularly known as the What We Eat in America Survey, were conducted by the Agricultural Research Service (ARS) of the U.S. Department of Agriculture (USDA). The CSFII 19...
Continuing Vocational Training in Belgian Companies: An Upward Tendency
ERIC Educational Resources Information Center
Buyens, Dirk; Wouters, Karen
2005-01-01
Purpose: As part of the European continuing vocational training survey, this paper aims to give an overview of the evolutions in continuing vocational training (CVT) in Belgian companies, by comparing both the results of the survey of 1994 and those of 2000/2001. Design/methodology/approach: In Belgium 1,129 companies took part in the survey of…
Spatial patterns of native freshwater mussels in the Upper Mississippi River
Ries, Patricia R.; DeJager, Nathan R.; Zigler, Steven J.; Newton, Teresa
2016-01-01
Multiple physical and biological factors structure freshwater mussel communities in large rivers, and their distributions have been described as clumped or patchy. However, few surveys of mussel populations have been conducted over areas large enough and at resolutions fine enough to quantify spatial patterns in their distribution. We used global and local indicators of spatial autocorrelation (i.e., Moran’s I) to quantify spatial patterns of adult and juvenile (≤5 y of age) freshwater mussels across multiple scales based on survey data from 4 reaches (navigation pools 3, 5, 6, and 18) of the Upper Mississippi River, USA. Native mussel densities were sampled at a resolution of ∼300 m and across distances ranging from 21 to 37 km, making these some of the most spatially extensive surveys conducted in a large river. Patch density and the degree and scale of patchiness varied by river reach, age group, and the scale of analysis. In all 4 pools, some patches of adults overlapped patches of juveniles, suggesting spatial and temporal persistence of adequate habitat. In pools 3 and 5, patches of juveniles were found where there were few adults, suggesting recent emergence of positive structuring mechanisms. Last, in pools 3, 5, and 6, some patches of adults were found where there were few juveniles, suggesting that negative structuring mechanisms may have replaced positive ones, leading to a lack of localized recruitment. Our results suggest that: 1) the detection of patches of freshwater mussels requires a multiscaled approach, 2) insights into the spatial and temporal dynamics of structuring mechanisms can be gained by conducting independent analyses of adults and juveniles, and 3) maps of patch distributions can be used to guide restoration and management actions and identify areas where mussels are most likely to influence ecosystem function.
Designing efficient surveys: spatial arrangement of sample points for detection of invasive species
Ludek Berec; John M. Kean; Rebecca Epanchin-Niell; Andrew M. Liebhold; Robert G. Haight
2015-01-01
Effective surveillance is critical to managing biological invasions via early detection and eradication. The efficiency of surveillance systems may be affected by the spatial arrangement of sample locations. We investigate how the spatial arrangement of sample points, ranging from random to fixed grid arrangements, affects the probability of detecting a target...
Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region
Michael C. Stambaugh; Daniel C. Dey; Richard P. Guyette; Hong S. He; Joseph M. Marschall
2011-01-01
Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey...
NASA Astrophysics Data System (ADS)
Lopatin, Javier; Fassnacht, Fabian E.; Kattenborn, Teja; Schmidtlein, Sebastian
2017-04-01
Grasslands are one of the ecosystems that have been strongly intervened during the past decades due to anthropogenic impacts, affecting their structural and functional composition. To monitor the spatial and/or temporal changes of these environments, a reliable field survey is first needed. As quality relevés are usually expensive and time consuming, the amount of information available is usually poor or not well spatially distributed at the regional scale. In the present study, we investigate the possibility of a semi-automated method used for repeated surveys of monitoring sites. We analyze the applicability of very high spatial resolution hyperspectral data to classify grassland species at the level of individuals. The AISA+ imaging spectrometer mounted on a scaffold was applied to scan 1 m2 grassland plots and assess the impact of four sources of variation on the predicted species cover: (1) the spatial resolution of the scans, (2) the species number and structural diversity, (3) the species cover, and (4) the species functional types (bryophytes, forbs and graminoids). We found that the spatial resolution and the diversity level (mainly structural diversity) were the most important source of variation for the proposed approach. A spatial resolution below 1 cm produced relatively high model performances, while predictions with pixel sizes over that threshold produced non adequate results. Areas with low interspecies overlap reached classification median values of 0.8 (kappa). On the contrary, results were not satisfactory in plots with frequent interspecies overlap in multiple layers. By means of a bootstrapping procedure, we found that areas with shadows and mixed pixels introduce uncertainties into the classification. We conclude that the application of very high resolution hyperspectral remote sensing as a robust alternative or supplement to field surveys is possible for environments with low structural heterogeneity. This study presents the first try of a full classification of grassland species at the individuum level using spectral data.
NASA Astrophysics Data System (ADS)
Gardner, W. P.
2017-12-01
A model which simulates tracer concentration in surface water as a function the age distribution of groundwater discharge is used to characterize groundwater flow systems at a variety of spatial scales. We develop the theory behind the model and demonstrate its application in several groundwater systems of local to regional scale. A 1-D stream transport model, which includes: advection, dispersion, gas exchange, first-order decay and groundwater inflow is coupled a lumped parameter model that calculates the concentration of environmental tracers in discharging groundwater as a function of the groundwater residence time distribution. The lumped parameters, which describe the residence time distribution, are allowed to vary spatially, and multiple environmental tracers can be simulated. This model allows us to calculate the longitudinal profile of tracer concentration in streams as a function of the spatially variable groundwater age distribution. By fitting model results to observations of stream chemistry and discharge, we can then estimate the spatial distribution of groundwater age. The volume of groundwater discharge to streams can be estimated using a subset of environmental tracers, applied tracers, synoptic stream gauging or other methods, and the age of groundwater then estimated using the previously calculated groundwater discharge and observed environmental tracer concentrations. Synoptic surveys of SF6, CFC's, 3H and 222Rn, along with measured stream discharge are used to estimate the groundwater inflow distribution and mean age for regional scale surveys of the Berland River in west-central Alberta. We find that groundwater entering the Berland has observable age, and that the age estimated using our stream survey is of similar order to limited samples from groundwater wells in the region. Our results show that the stream can be used as an easily accessible location to constrain the regional scale spatial distribution of groundwater age.
NASA Astrophysics Data System (ADS)
Ryan, Jonathan C.; Hubbard, Alun; Box, Jason E.; Brough, Stephen; Cameron, Karen; Cook, Joseph M.; Cooper, Matthew; Doyle, Samuel H.; Edwards, Arwyn; Holt, Tom; Irvine-Fynn, Tristram; Jones, Christine; Pitcher, Lincoln H.; Rennermalm, Asa K.; Smith, Laurence C.; Stibal, Marek; Snooke, Neal
2017-05-01
Measurements of albedo are a prerequisite for modelling surface melt across the Earth's cryosphere, yet available satellite products are limited in spatial and/or temporal resolution. Here, we present a practical methodology to obtain centimetre resolution albedo products with accuracies of 5% using consumer-grade digital camera and unmanned aerial vehicle (UAV) technologies. Our method comprises a workflow for processing, correcting and calibrating raw digital images using a white reference target, and upward and downward shortwave radiation measurements from broadband silicon pyranometers. We demonstrate the method with a set of UAV sorties over the western, K-sector of the Greenland Ice Sheet. The resulting albedo product, UAV10A1, covers 280 km2, at a resolution of 20 cm per pixel and has a root-mean-square difference of 3.7% compared to MOD10A1 and 4.9% compared to ground-based broadband pyranometer measurements. By continuously measuring downward solar irradiance, the technique overcomes previous limitations due to variable illumination conditions during and between surveys over glaciated terrain. The current miniaturization of multispectral sensors and incorporation of upward facing radiation sensors on UAV packages means that this technique will likely become increasingly attractive in field studies and used in a wide range of applications for high temporal and spatial resolution surface mapping of debris, dust, cryoconite and bioalbedo and for directly constraining surface energy balance models.
Spatial Databases for CalVO Volcanoes: Current Status and Future Directions
NASA Astrophysics Data System (ADS)
Ramsey, D. W.
2013-12-01
The U.S. Geological Survey (USGS) California Volcano Observatory (CalVO) aims to advance scientific understanding of volcanic processes and to lessen harmful impacts of volcanic activity in California and Nevada. Within CalVO's area of responsibility, ten volcanoes or volcanic centers have been identified by a national volcanic threat assessment in support of developing the U.S. National Volcano Early Warning System (NVEWS) as posing moderate, high, or very high threats to surrounding communities based on their recent eruptive histories and their proximity to vulnerable people, property, and infrastructure. To better understand the extent of potential hazards at these and other volcanoes and volcanic centers, the USGS Volcano Science Center (VSC) is continually compiling spatial databases of volcano information, including: geologic mapping, hazards assessment maps, locations of geochemical and geochronological samples, and the distribution of volcanic vents. This digital mapping effort has been ongoing for over 15 years and early databases are being converted to match recent datasets compiled with new data models designed for use in: 1) generating hazard zones, 2) evaluating risk to population and infrastructure, 3) numerical hazard modeling, and 4) display and query on the CalVO as well as other VSC and USGS websites. In these capacities, spatial databases of CalVO volcanoes and their derivative map products provide an integrated and readily accessible framework of VSC hazards science to colleagues, emergency managers, and the general public.
Pathway to 2022: The Ongoing Modernization of the United States National Spatial Reference System
NASA Astrophysics Data System (ADS)
Stone, W. A.; Caccamise, D.
2017-12-01
The National Oceanic and Atmospheric Administration's National Geodetic Survey (NGS) mission is "to define, maintain and provide access to the National Spatial Reference System (NSRS) to meet our nation's economic, social, and environmental needs." The NSRS is an assemblage of geophysical and geodetic models, tools, and data, with the most-visible components being the North American Datum of 1983 (NAD83) and the North American Vertical Datum of 1988 (NAVD88), which together provide a consistent spatial reference framework for myriad geospatial applications and positioning requirements throughout the United States. The NGS is engaged in an ongoing and comprehensive multi-year project of modernizing the NSRS, a makeover necessitated by technological developments and user accuracy requirements, all with a goal of providing a modern, accurate, accessible, and globally aligned national positioning framework exploiting the substantial power and utility of the Global Navigation Satellite System - of both today and tomorrow. The modernized NSRS will include four new-generation geometric terrestrial reference frames (replacing NAD83) and a technically unprecedented geopotential datum (replacing NAVD88), all to be released in 2022 (anticipated). This poster/presentation will describe the justification for this modernization effort and will update the status and planned evolution of the NSRS as 2022 draws ever closer. Also discussed will be recent developments, including the publication of "blueprint" documents addressing technical details of various facets of the modernized NSRS and a continued series of public Geospatial Summits. Supporting/ancillary projects such as Gravity for the Redefinition of the American Vertical Datum (GRAV-D), which will result in the generation of a highly accurate gravimetric geoid - or definitional reference surface (zero elevation) - for the future geopotential datum, and Geoid Slope Validation Surveys (GSVS), which are exploring the achievable accuracy of the new geopotential datum, will be summarized. Also included will be suggestions of user preparation for transition to the NSRS of tomorrow.
Hu, Zhiyong; Hu, Hongda; Huang, Yuxia
2018-08-01
Artificial lighting at night has becoming a new type of pollution posing an important anthropogenic environmental pressure on organisms. The objective of this research was to examine the potential association between nighttime artificial light pollution and nest densities of the three main sea turtle species along Florida beaches, including green turtles, loggerheads, and leatherbacks. Sea turtle survey data was obtained from the "Florida Statewide Nesting Beach Survey program". We used the new generation of satellite sensor "Visible Infrared Imaging Radiometer Suite (VIIRS)" (version 1 D/N Band) nighttime annual average radiance composite image data. We defined light pollution as artificial light brightness greater than 10% of the natural sky brightness above 45° of elevation (>1.14 × 10 -11 Wm -2 sr -1 ). We fitted a generalized linear model (GLM), a GLM with eigenvectors spatial filtering (GLM-ESF), and a generalized estimating equations (GEE) approach for each species to examine the potential correlation of nest density with light pollution. Our models are robust and reliable in terms of the ability to deal with data distribution and spatial autocorrelation (SA) issues violating model assumptions. All three models found that nest density is significantly negatively correlated with light pollution for each sea turtle species: the higher light pollution, the lower nest density. The two spatially extended models (GLM-ESF and GEE) show that light pollution influences nest density in a descending order from green turtles, to loggerheads, and then to leatherbacks. The research findings have an implication for sea turtle conservation policy and ordinance making. Near-coastal lights-out ordinances and other approaches to shield lights can protect sea turtles and their nests. The VIIRS DNB light data, having significant improvements over comparable data by its predecessor, the DMSP-OLS, shows promise for continued and improved research about ecological effects of artificial light pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Crooks, Jeffrey A.; Reyns, Nathalie B.
2016-01-01
A combination of historical bivalve surveys spanning 30–50 years and contemporary sampling were used to document the changes in bivalve community structure over time at four southern California and one northern Baja California estuaries. While there are limitations to the interpretation of historic data, we observed generally similar trends of reduced total bivalve species richness, losses of relatively large and/or deeper-dwelling natives, and gains of relatively small, surface dwelling introduced species across the southern California estuaries, despite fairly distinct bivalve communities. A nearly 50-year absence of bivalves from two wetlands surveyed in a Baja California estuary continued. A combination of site history and current characteristics (e.g., location, depth) likely contributes to maintenance of distinct communities, and both episodic and gradual environmental changes likely contribute to within-estuary temporal shifts (or absences). We highlight future research needed to determine mechanisms underlying patterns so that we can better predict responses of bivalve communities to future scenarios, including climate change and restoration. PMID:26840744
NASA Astrophysics Data System (ADS)
Smale, Dan A.; Barnes, David K. A.; Barnes, Richard S. K.; Smith, David J.; Suggett, David J.
2012-04-01
Tropical nearshore ecosystems represent global hotspots of marine biodiversity and endemism but are often poorly understood and impacted by human activities. The Seychelles Archipelago (Western Indian Ocean) sustains a wealth of marine life, much of which is threatened by rapid development associated with tourism and climate change. Six marine parks exist within the Archipelago, but their biodiversity value and ecological health are poorly known, especially with regards to non-fish and coral species. Here we investigate spatial patterns of littoral biodiversity on 6 islands, 5 of which were granitic and within marine parks, including the first surveys of Curieuse and Ile Cocos. Our surveys formed a nested sampling design, to facilitate an examination of variability in species richness, faunal abundance, taxonomic distinctness and assemblage composition at multiple spatial scales, from islands (> 100 s km) to quadrats (metres). We identified (mostly to species) and enumerated two target taxa, brachyuran decapod crustaceans and gastropod molluscs, and recorded over 8300 individuals belonging to over 150 species. Crabs and gastropods exhibited different patterns of spatial variability, as crab assemblages were generally more distinct between islands, while gastropod assemblages were markedly variable at the smallest spatial scales of 'patch' and 'quadrat'. Intertidal biodiversity was greatest on Curieuse Island and least at Desroches, the latter was being the only coral atoll we surveyed and thereby differing in its geological and ecological context. We discuss likely drivers of these biodiversity patterns and highlight urgently-needed research directions. Our assessment of the status of poorly-known invertebrate assemblages across the Seychelles will complement more extensive surveys of coral and fish assemblages and, in doing so, provide a useful baseline for monitoring the effects of key stressors in the region, such as coastal development and climate change.
Kerry, Ruth; Goovaerts, Pierre; Smit, Izak P.J.; Ingram, Ben R.
2015-01-01
Kruger National Park (KNP), South Africa, provides protected habitats for the unique animals of the African savannah. For the past 40 years, annual aerial surveys of herbivores have been conducted to aid management decisions based on (1) the spatial distribution of species throughout the park and (2) total species populations in a year. The surveys are extremely time consuming and costly. For many years, the whole park was surveyed, but in 1998 a transect survey approach was adopted. This is cheaper and less time consuming but leaves gaps in the data spatially. Also the distance method currently employed by the park only gives estimates of total species populations but not their spatial distribution. We compare the ability of multiple indicator kriging and area-to-point Poisson kriging to accurately map species distribution in the park. A leave-one-out cross-validation approach indicates that multiple indicator kriging makes poor estimates of the number of animals, particularly the few large counts, as the indicator variograms for such high thresholds are pure nugget. Poisson kriging was applied to the prediction of two types of abundance data: spatial density and proportion of a given species. Both Poisson approaches had standardized mean absolute errors (St. MAEs) of animal counts at least an order of magnitude lower than multiple indicator kriging. The spatial density, Poisson approach (1), gave the lowest St. MAEs for the most abundant species and the proportion, Poisson approach (2), did for the least abundant species. Incorporating environmental data into Poisson approach (2) further reduced St. MAEs. PMID:25729318
Kerry, Ruth; Goovaerts, Pierre; Smit, Izak P J; Ingram, Ben R
Kruger National Park (KNP), South Africa, provides protected habitats for the unique animals of the African savannah. For the past 40 years, annual aerial surveys of herbivores have been conducted to aid management decisions based on (1) the spatial distribution of species throughout the park and (2) total species populations in a year. The surveys are extremely time consuming and costly. For many years, the whole park was surveyed, but in 1998 a transect survey approach was adopted. This is cheaper and less time consuming but leaves gaps in the data spatially. Also the distance method currently employed by the park only gives estimates of total species populations but not their spatial distribution. We compare the ability of multiple indicator kriging and area-to-point Poisson kriging to accurately map species distribution in the park. A leave-one-out cross-validation approach indicates that multiple indicator kriging makes poor estimates of the number of animals, particularly the few large counts, as the indicator variograms for such high thresholds are pure nugget. Poisson kriging was applied to the prediction of two types of abundance data: spatial density and proportion of a given species. Both Poisson approaches had standardized mean absolute errors (St. MAEs) of animal counts at least an order of magnitude lower than multiple indicator kriging. The spatial density, Poisson approach (1), gave the lowest St. MAEs for the most abundant species and the proportion, Poisson approach (2), did for the least abundant species. Incorporating environmental data into Poisson approach (2) further reduced St. MAEs.
Exploration of walking behavior in Vermont using spatial regression.
DOT National Transportation Integrated Search
2015-06-01
This report focuses on the relationship between walking and its contributing factors by : applying spatial regression methods. Using the Vermont data from the New England : Transportation Survey (NETS), walking variables as well as 170 independent va...
Statistical and Spatial Analysis of Bathymetric Data for the St. Clair River, 1971-2007
Bennion, David
2009-01-01
To address questions concerning ongoing geomorphic processes in the St. Clair River, selected bathymetric datasets spanning 36 years were analyzed. Comparisons of recent high-resolution datasets covering the upper river indicate a highly variable, active environment. Although statistical and spatial comparisons of the datasets show that some changes to the channel size and shape have taken place during the study period, uncertainty associated with various survey methods and interpolation processes limit the statistically certain results. The methods used to spatially compare the datasets are sensitive to small variations in position and depth that are within the range of uncertainty associated with the datasets. Characteristics of the data, such as the density of measured points and the range of values surveyed, can also influence the results of spatial comparison. With due consideration of these limitations, apparently active and ongoing areas of elevation change in the river are mapped and discussed.
The alpine Swiss-French airborne gravity survey
NASA Astrophysics Data System (ADS)
Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert
2003-01-01
In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the ground topographic corrections over the highest mountains, results in significantly reducing the differences between airborne and ground upward-continued Bouguer anomalies, which shows that some of the misfit stems from errors in the ground data.
Spatial variability of Chinook salmon spawning distribution and habitat preferences
Cram, Jeremy M.; Torgersen, Christian E.; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.
2017-01-01
We investigated physical habitat conditions associated with the spawning sites of Chinook Salmon Oncorhynchus tshawytscha and the interannual consistency of spawning distribution across multiple spatial scales using a combination of spatially continuous and discrete sampling methods. We conducted a census of aquatic habitat in 76 km of the upper main-stem Yakima River in Washington and evaluated spawning site distribution using redd survey data from 2004 to 2008. Interannual reoccupation of spawning areas was high, ranging from an average Pearson’s correlation of 0.62 to 0.98 in channel subunits and 10-km reaches, respectively. Annual variance in the interannual correlation of spawning distribution was highest in channel units and subunits, but it was low at reach scales. In 13 of 15 models developed for individual years (2004–2008) and reach lengths (800 m, 3 km, 6 km), stream power and depth were the primary predictors of redd abundance. Multiple channels and overhead cover were patchy but were important secondary and tertiary predictors of reach-scale spawning site selection. Within channel units and subunits, pool tails and thermal variability, which may be associated with hyporheic exchange, were important predictors of spawning. We identified spawning habitat preferences within reaches and channel units that are relevant for salmonid habitat restoration planning. We also identified a threshold (i.e., 2-km reaches) beyond which interannual spawning distribution was markedly consistent, which may be informative for prioritizing habitat restoration or conservation. Management actions may be improved through enhanced understanding of spawning habitat preferences and the consistency with which Chinook Salmon reoccupy spawning areas at different spatial scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagne, J. P.; Crenshaw, D. M.; Fischer, T. C.
The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing extended emission-line regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup active galactic nucleus (AGN). Nicknamed for its EELR, which has a 'handle'-like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze the physical conditions of this galaxy with long-slit, ground-based spectroscopy from the Lowell, Lick, and KPNO observatories. With the Lowell 1.8 m Perkin's telescope we took multiple observations at different offset positions, allowing us tomore » recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] λ6716/λ6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 yr, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long timescale variability.« less
Timing of spring surveys for midcontinent sandhill cranes
Pearse, Aaron T.; Krapu, Gary L.; Brandt, David A.; Sargeant, Glen A.
2015-01-01
The U.S. Fish and Wildlife Service has used spring aerial surveys to estimate numbers of migrating sandhill cranes (Grus canadensis) staging in the Platte River Valley of Nebraska, USA. Resulting estimates index the abundance of the midcontinent sandhill crane population and inform harvest management decisions. However, annual changes in the index have exceeded biologically plausible changes in population size (>50% of surveys between 1982 and 2013 indicate >±20% change), raising questions about nuisance variation due to factors such as migration chronology. We used locations of cranes marked with very-high-frequency transmitters to estimate migration chronology (i.e., proportions of cranes present within the Platte River Valley). We also used roadside surveys to determine the percentage of cranes staging at the Platte River Valley but outside of the survey area when surveys occur. During March 2001–2007, an average of 86% (71–94%; SD = 7%) of marked cranes were present along the Platte River during scheduled survey dates, and 0–11% of cranes that were present along the Platte River were not within the survey boundaries. Timing of the annual survey generally corresponded with presence of the greatest proportion of marked cranes and with least inter-annual variation; consequently, accuracy of estimates could not have been improved by surveying on different dates. Conducting the survey earlier would miss birds not yet arriving at the staging site; whereas, a later date would occur at a time when a larger portion of birds may have already departed the staging site and when a greater proportion of birds occurred outside of the surveyed area. Index values used to monitor midcontinent sandhill crane abundance vary annually, in part, due to annual variation in migration chronology and to spatial distribution of cranes in the Platte River Valley; therefore, managers should interpret survey results cautiously, with awareness of a continuing need to identify and understand components of variation. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Luben D. Dimov; Jim L. Chambers; Brian Roy Lockhart
2005-01-01
Sustainable forest management and conservation require understanding of underlying basic structural and competitive relationships. To gain insight into these relationships, we analyzed spatial continuity of tree basal area (BA) and crown projection area (CPA) on twelve 0.64-ha plots in four mixed bottomland hardwood stands in Louisiana, Arkansas, and Mississippi....
Landsat continuity: issues and opportunities for land cover monitoring
Michael A. Wulder; Joanne C. White; Samuel N. Goward; Jeffrey G. Masek; James R. Irons; Martin Herold; Warren B. Cohen; Thomas R. Loveland; Curtis E. Woodcock
2008-01-01
Initiated in 1972, the Landsat program has provided a continuous record of Earth observation for 35 years. The assemblage of Landsat spatial, spectral, and temporal resolutions, over a reasonably sized image extent, results in imagery that can be processed to represent land cover over large areas with an amount of spatial detail that is absolutely unique and...
Huang, Jie; Lan, Xinwei; Luo, Ming; Xiao, Hai
2014-07-28
This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities.
Habyarimana, Faustin; Zewotir, Temesgen; Ramroop, Shaun
2017-06-17
Childhood anemia is among the most significant health problems faced by public health departments in developing countries. This study aims at assessing the determinants and possible spatial effects associated with childhood anemia in Rwanda. The 2014/2015 Rwanda Demographic and Health Survey (RDHS) data was used. The analysis was done using the structured spatial additive quantile regression model. The findings of this study revealed that the child's age; the duration of breastfeeding; gender of the child; the nutritional status of the child (whether underweight and/or wasting); whether the child had a fever; had a cough in the two weeks prior to the survey or not; whether the child received vitamin A supplementation in the six weeks before the survey or not; the household wealth index; literacy of the mother; mother's anemia status; mother's age at the birth are all significant factors associated with childhood anemia in Rwanda. Furthermore, significant structured spatial location effects on childhood anemia was found.
Constructing a WISE High Resolution Galaxy Atlas
NASA Technical Reports Server (NTRS)
Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.;
2012-01-01
After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.
NASA Astrophysics Data System (ADS)
Fan, L. F.; Lien, K. L.; Hsieh, I. C.; Lin, S.
2017-12-01
Methane seep in deep sea environment could lead to build up of chemosynthesis communities, and a number of geological and biological anomalies as compare to the surrounding area. In order to examine the linkage between seep anomalies and those at the vicinity background area, and to detail mapping those spatial variations, we used a deep towed camera system (TowCam) to survey seafloor on the Tainan Ridge, Northeastern South China Sea (SCS). The underwater sea floor pictures could provide better spatial variations to demonstrate impact of methane seep on the sea floor. Water column variations of salinity, temperature, dissolved oxygen were applied to delineate fine scale variations at the study area. In addition, sediment cores were collected for chemical analyses to confirm the existence of local spatial variations. Our results show large spatial variations existed as a result of differences in methane flux. In fact, methane is the driving force for the observed biogeochemical variations in the water column, on the sea floor, and in the sediment. Of the area we have surveyed, there are approximately 7% of total towcam survey data showing abnormal water properties. Corresponding to the water column anomalies, underwater sea floor pictures taken from those places showed that chemosynthetic clams and muscles could be identified, together with authigenic carbonate buildups, and bacterial mats. Moreover, sediment cores with chemical anomalies also matched those in the water column and on the sea floor. These anomalies, however, represent only a small portion of the area surveyed and could not be identified with typical (random) coring method. Methane seep, therefore, require tedious and multiple types of surveys to better understand the scale and magnitude of seep and biogeochemical anomalies those were driven by gas migrations.
NASA Astrophysics Data System (ADS)
Childers, V. A.; Diehl, T. M.; Roman, D. R.; Smith, D. A.
2009-05-01
The mission of NOAA's National Geodetic Survey (NGS) is to "define, maintain and provide access to the National Spatial Reference System" (NSRS). NAVD 88 (North American Vertical Datum of 1988) provides the vertical reference for the NSRS. However, comparisons of NAVD 88 with the Gravity Recovery and Climate Experiment (GRACE) satellite gravity data have demonstrated significant problems with the vertical reference, with an average difference between the two of 0.98 m and std dev of 0.37m. As repairing NAVD 88 through a massive leveling effort is impractical, our approach will be to establish a gravimetric geoid as the vertical reference. The linchpin in NGS's effort is the Gravity for the Redefinition of the American Vertical Datum (GRAV- D) program, which will ultimately incorporate satellite, airborne and terrestrial gravity data to build the 1-2 cm geoid that the U.S. surveying public is demanding. The program involves both an airborne component, for measuring a "baseline" gravity field, and a relative and absolute terrestrial program, for monitoring time variations of the gravity field. The GRAV-D aerogravity program commenced with a survey based from Anchorage, AK in the summer of 2008, additionally in support of NOAA's Hydropalooza program. Starting in October, the GRAV-D team has undertaken a concerted effort to survey Puerto Rico/US Virgin Islands, and then the Gulf Coast for the US Army Corps of Engineers. Gulf operations were from New Orleans, Lake Charles, and Austin, TX. This survey provides a continuous airborne field measurement at 10 km line spacing from the GA/AL state line to the Mexican border. We will present the results of these data collection efforts and outline the plans for the GRAV- D program during the remainder of 2009.
Dicken, Connie L.; Dunlap, Pamela; Parks, Heather L.; Hammarstrom, Jane M.; Zientek, Michael L.; Zientek, Michael L.; Hammarstrom, Jane M.; Johnson, Kathleen M.
2016-07-13
As part of the first-ever U.S. Geological Survey global assessment of undiscovered copper resources, data common to several regional spatial databases published by the U.S. Geological Survey, including one report from Finland and one from Greenland, were standardized, updated, and compiled into a global copper resource database. This integrated collection of spatial databases provides location, geologic and mineral resource data, and source references for deposits, significant prospects, and areas permissive for undiscovered deposits of both porphyry copper and sediment-hosted copper. The copper resource database allows for efficient modeling on a global scale in a geographic information system (GIS) and is provided in an Esri ArcGIS file geodatabase format.
NASA Astrophysics Data System (ADS)
Yoo, C. M.; Joo, J.; Hyeong, K.; Chi, S. B.
2016-12-01
Manganese nodule, also known as polymetallic nodule, contains precious elements in high contents and is regarded as one of the most important future mineral resources. It occurs throughout the world oceans, but economically feasible deposits show limited distribution only in several deepsea basins including Clarion-Clipperton Fracture Zone (CCFZ) in northeast equatorial Pacific. Estimation of resources potential is one of the key factors prerequisite for economic feasibility study. Nodule abundance is commonly estimated from direct nodule sampling, however it is difficult to obtain statistically robust data because of highly variable spatial distribution and high cost of direct sampling. Variogram analysis indicates 3.5×3.5km sampling resolution to obtain indicated category of resources data, which requires over 1,000 sampling operations to cover the potential exploitation area with mining life of 20-30 years. High-resolution acoustic survey, bathymetry and back-scattered intensity, can provide high-resolution resources data with the definition of obstacles, such as faults and scarps, for operation of nodule collecting robots. We operated 120 kHz deep-tow side scan sonar (DTSSS) with spatial resolution of 1×1m in a representative area. Sea floor images were also taken continuously by deep-tow camera from selected tracks, converted to nodule abundance using image analysis program and conversion equation, and compared with acoustic data. Back-scattering intensity values could be divided into several group and translated into nodule abundance with high confidence level. Our result indicates that high resolution acoustic survey is appropriate tool for reliable assessment of manganese nodule abundance and definition of minable area.
Mapping and Monitoring Stream Aquatic Habitat With a Narrow-Beam Green Lidar
NASA Astrophysics Data System (ADS)
McKean, J.; Wright, W.; Kinzel, P.; Isaak, D.
2006-12-01
Stream environments are structured by complex biophysical processes that operate across multiple spatial and temporal scales. Disentangling these multiscalar and multicausal relationships is difficult, but fundamental to understanding, managing, and monitoring channel aquatic ecosystems. Standard field wading surveys of stream physical habitat are limited by cost and logistics to relatively small, isolated samples. Traditional remotely sensed surveys, including methods such as photogrammetry and near-infrared lidar, suffer from attenuation by water and do not directly map submerged channel topography. The Experimental Advanced Airborne Research Lidar (EAARL) is a full-waveform lidar with a unique ability to simultaneously map, with relatively high resolution, subaqueous and subaerial topography and the vegetation canopy. We have used the EAARL instrument to investigate two dissimilar stream ecosystems. We mapped 40km of low gradient, meandering, gravel-bed streams in central Idaho that are spawning habitat for threatened Chinook salmon. We are using the continuous three-dimensional channel maps to quantitatively explore how channel features affect the distribution of salmon spawning at multiple spatial scales and how modern stream and floodplain topography is related to post-glacial valley evolution. In contrast, the Platte River in central Nebraska is a wide and shallow, sand-bedded river that provides habitat for migratory water birds, including endangered species such as the whooping crane and least tern. Multi-temporal EAARL data are being used to map and monitor the physical response of the Platte River to habitat improvement projects that include in-channel and riparian vegetation removal and river flow augmentation to limit vegetation encroachment.
Comprehensive geo-spatial data creation for Qassim region in the KSA
NASA Astrophysics Data System (ADS)
Alrajhi, M.; Hawarey, M.
2009-04-01
The General Directorate for Surveying and Mapping (GDSM) of the Deputy Ministry for Land and Surveying (DMLS) of the Ministry of Municipal and Rural Affairs (MOMRA) in the Kingdom of Saudi Arabia (KSA) has the exclusive mandate to carry out aerial photography and produce large-scale detailed maps for about 220 cities and villages in the KSA. This presentation is about the comprehensive geo-spatial data creation for the Qassim region, North KSA, that was founded on country-wide horizontal geodetic ground control using Global Navigation Satellite Systems (GNSS) within the MOMRA's Terrestrial Reference Frame 2000 (MTRF2000) that is tied to International Terrestrial Reference Frame 2000 (ITRF2000) Epoch 2004.0, and vertical geodetic ground control using precise digital leveling in reference to Jeddah 1969 mean sea level, and included aerial photography of 1,505 km2 at 1:5,500 scale, 4,081 km2 at scale 22,500 and 22,224 km2 at 1:45,000 scale, full aerial triangulation, production of orthophoto maps at scale of 1:10,000 (463 sheets) for 22,224 km2, and production of GIS-oriented highly-detailed digital line maps in various formats at scales of 1:1,000 (1,534 sheets) and 1:2,500 (383 sheets) for 1,150 km2, 1:10,000 (161 sheets) for 7,700 km2, and 1:20,000 (130 sheets) for 22,000 km2. While aerial photography lasted from Feb 2003 thru May 2003, the line mapping continued May 2005 until December 2008.
Berry, Kristin H.; Yee, Julie L.; Coble, Ashley A.; Perry, William M.; Shields, Timothy A.
2013-01-01
Numerous factors have contributed to declines in populations of the federally threatened Agassiz's Desert Tortoise (Gopherus agassizii) and continue to limit recovery. In 2010, we surveyed a low-density population on a military test facility in the northwestern Mojave Desert of California, USA, to evaluate population status and identify potential factors contributing to distribution and low densities. Estimated densities of live tortoises ranged spatially from 1.2/km2 to 15.1/km2. Although only one death of a breeding-age tortoise was recorded for the 4-yr period prior to the survey, remains of 16 juvenile and immature tortoises were found, and most showed signs of predation by Common Ravens (Corvus corax) and mammals. Predation may have limited recruitment of young tortoises into the adult size classes. To evaluate the relative importance of different types of impacts to tortoises, we developed predictive models for spatially explicit densities of tortoise sign and live tortoises using topography (i.e., slope), predators (Common Raven, signs of mammalian predators), and anthropogenic impacts (distances from paved road and denuded areas, density of ordnance fragments) as covariates. Models suggest that densities of tortoise sign increased with slope and signs of mammalian predators and decreased with Common Ravens, while also varying based on interaction effects involving these predictors as well as distances from paved roads, denuded areas, and ordnance. Similarly, densities of live tortoises varied by interaction effects among distances to denuded areas and paved roads, density of ordnance fragments, and slope. Thus multiple factors predict the densities and distribution of this population.
Ignizio, Drew A.; O'Donnell, Michael S.; Talbert, Colin B.
2014-01-01
Creating compliant metadata for scientific data products is mandated for all federal Geographic Information Systems professionals and is a best practice for members of the geospatial data community. However, the complexity of the The Federal Geographic Data Committee’s Content Standards for Digital Geospatial Metadata, the limited availability of easy-to-use tools, and recent changes in the ESRI software environment continue to make metadata creation a challenge. Staff at the U.S. Geological Survey Fort Collins Science Center have developed a Python toolbox for ESRI ArcDesktop to facilitate a semi-automated workflow to create and update metadata records in ESRI’s 10.x software. The U.S. Geological Survey Metadata Wizard tool automatically populates several metadata elements: the spatial reference, spatial extent, geospatial presentation format, vector feature count or raster column/row count, native system/processing environment, and the metadata creation date. Once the software auto-populates these elements, users can easily add attribute definitions and other relevant information in a simple Graphical User Interface. The tool, which offers a simple design free of esoteric metadata language, has the potential to save many government and non-government organizations a significant amount of time and costs by facilitating the development of The Federal Geographic Data Committee’s Content Standards for Digital Geospatial Metadata compliant metadata for ESRI software users. A working version of the tool is now available for ESRI ArcDesktop, version 10.0, 10.1, and 10.2 (downloadable at http:/www.sciencebase.gov/metadatawizard).
Neal D. Niemuth; Michael E. Estey; Charles R. Loesch
2005-01-01
Conservation planning for birds is increasingly focused on landscapes. However, little spatially explicit information is available to guide landscape-level conservation planning for many species of birds. We used georeferenced 1995 Breeding Bird Survey (BBS) data in conjunction with land-cover information to develop a spatially explicit habitat model predicting the...
Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015
NASA Astrophysics Data System (ADS)
Thompson, David R.; Kahn, Brian H.; Green, Robert O.; Chien, Steve A.; Middleton, Elizabeth M.; Tran, Daniel Q.
2018-02-01
The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.
NASA Astrophysics Data System (ADS)
Paudyal, D. R.; McDougall, K.; Apan, A.
2012-07-01
The participation and engagement of grass-root level community groups and citizens for natural resource management has a long history. With recent developments in ICT tools and spatial technology, these groups are seeking a new opportunity to manage natural resource data. There are lot of spatial information collected/generated by landcare groups, land holders and other community groups at the grass-root level through their volunteer initiatives. State government organisations are also interested in gaining access to this spatial data/information and engaging these groups to collect spatial information under their mapping programs. The aim of this paper is to explore the possible utilisation of volunteered geographic information (VGI) for catchment management activities. This research paper discusses the importance of spatial information and spatial data infrastructure (SDI) for catchment management and the emergence of VGI. A conceptual framework has been developed to illustrate how these emerging spatial information applications and various community volunteer activities can contribute to a more inclusive spatial data infrastructure (SDI) development at local level. A survey of 56 regional NRM bodies in Australia was utilised to explore the current community-driven volunteer initiatives for NRM activities and the potential of utilisation of VGI initiatives for NRM decision making process. This research paper concludes that VGI activities have great potential to contribute to SDI development at the community level to achieve better natural resource management (NRM) outcomes.
2017-04-01
ER D C/ CH L TR -1 7- 5 Coastal Field Data Collection Program Collection, Processing, and Accuracy of Mobile Terrestrial Lidar Survey ... Survey Data in the Coastal Environment Nicholas J. Spore and Katherine L. Brodie Field Research Facility U.S. Army Engineer Research and Development...value to a mobile lidar survey may misrepresent some of the spatially variable error throughout the survey , and further work should incorporate full
2017-04-01
ER D C/ CH L TR -1 7- 5 Coastal Field Data Collection Program Collection, Processing, and Accuracy of Mobile Terrestrial Lidar Survey ... Survey Data in the Coastal Environment Nicholas J. Spore and Katherine L. Brodie Field Research Facility U.S. Army Engineer Research and Development...value to a mobile lidar survey may misrepresent some of the spatially variable error throughout the survey , and further work should incorporate full
NASA Astrophysics Data System (ADS)
Watlet, A.; Triantafyllou, A.; Kaufmann, O.; Le Mouelic, S.
2016-12-01
Amongst today's techniques that are able to produce 3D point clouds, LIDAR and UAV (Unmanned Aerial Vehicle) photogrammetry are probably the most commonly used. Both methods have their own advantages and limitations. LIDAR scans create high resolution and high precision 3D point clouds, but such methods are generally costly, especially for sporadic surveys. Compared to LIDAR, UAV (e.g. drones) are cheap and flexible to use in different types of environments. Moreover, the photogrammetric processing workflow of digital images taken with UAV becomes easier with the rise of many affordable software packages (e.g., Agisoft PhotoScan, MicMac, VisualSFM). In this canvas, we present a challenging study made at the Rochefort Cave Laboratory (South Belgium) comprising surface and underground surveys. The main chamber of the cave ( 10000 m³) was the principal target of the study. A LIDAR scan and an UAV photoscan were acquired underground, producing respective 3D models. An additional 3D photoscan was performed at the surface, in the sinkhole in direct connection with the main chamber. The main goal of the project is to combine this different datasets for quantifying the orientation of inaccessible geological structures (e.g. faults, tectonic and gravitational joints, and sediments bedding), and for comparing them to structural data surveyed on the field. To go through structural interpretations, we used a subsampling method merging neighboured model polygons that have similar orientations, allowing statistical analyses of polygons spatial distribution. The benefit of this method is to verify the spatial continuity of in-situ structural measurements to larger scale. Roughness and colorimetric/spectral analyses may also be of great interest for several geosciences purposes by discriminating different facies among the geological beddings. Amongst others, this study was helpful to precise the local petrophysical properties associated with particular geological layers, what improved interpreting results from an ERT monitoring of the karst hydrological processes in terms of groundwater content.
NASA Astrophysics Data System (ADS)
Pikelnaya, O.; Polidori, A.; Wimmer, R.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Andersson, P.; Brohede, S.; Izos, O.
2017-12-01
Industrial facilities such as refineries and oil processing facilities can be sources of chemicals adversely affecting human health, for example aromatic hydrocarbons and formaldehyde. In an urban setting, such as the South Coast Air Basin (SCAB), exposure to harmful air pollutants (HAP's) for residents of communities neighboring such facilities is of serious concern. Traditionally, exposure assessments are performed by modeling a community exposure using emission inventories and data collected at fixed air monitoring sites. However, recent field measurements found that emission inventories may underestimate HAP emissions from refineries; and HAP measurements data from fixed sites is lacking spatial resolution; as a result, the impact of HAP emissions on communities is highly uncertain. The next generation air monitoring technologies can help address these challenges. For example, dense "low-cost" sensors allow continuous monitoring of concentrations of pollutants within communities with high temporal- and spatial- resolution, and optical remote sensing (ORS) technologies offer measurements of emission fluxes and real-time ground-concentration mapping of HAPs. South Coast Air Quality Management District (SCAQMD) is currently conducting a multi-year study using ORS methods and "low-cost" Volatile Organic Compounds (VOCs) sensors to monitor HAP emissions from selected industrial facilities in the SCAB and their ambient concentrations in neighboring communities. For this purpose, quarterly mobile ORS surveys are conducted to quantify facility-wide emissions for VOCs, aromatic hydrocarbons and HCHO, and to collect ground-concentration profiles of these pollutants inside neighboring communities. Additionally, "low-cost" sensor nodes for deployment in neighborhood(s) downwind of the facilities have been developed in order to obtain long-term, granular data on neighborhood VOC concentrations, During this presentation we will discuss initial results of quarterly ORS surveys and pilot "low-cost" sensor deployments. We will also outline benefits of using a combination of mobile ORS surveys and "low-cost" sensor networks for community exposure monitoring.
NASA Astrophysics Data System (ADS)
Huang, B. S.; Rau, R. J.; Lin, C. J.; Kuo, L. C.
2017-12-01
Seismic waves generated by the 2011 Mw 9.0 Tohoku, Japan earthquake were well recorded by continuous GPS in Taiwan. Those GPS were operated in one hertz sampling rate and densely distributed in Taiwan Island. Those continuous GPS observations and the precise point positioning technique provide an opportunity to estimate spatial derivatives from absolute ground motions of this giant teleseismic event. In this study, we process and investigate more than one and half hundred high-rate GPS displacements and its spatial derivatives, thus strain and rotations, to compare to broadband seismic and rotational sensor observations. It is shown that continuous GPS observations are highly consistent with broadband seismic observations during its surface waves across Taiwan Island. Several standard Geodesy and seismic array analysis techniques for spatial gradients have been applied to those continuous GPS time series to determine its dynamic strain and rotation time histories. Results show that those derivate GPS vertical axis ground rotations are consistent to seismic array determined rotations. However, vertical rotation-rate observations from the R1 rotational sensors have low resolutions and could not compared with GPS observations for this special event. For its dese spatial distribution of GPS stations in Taiwan Island, not only wavefield gradient time histories at individual site was obtained but also 2-D spatial ground motion fields were determined in this study also. In this study, we will report the analyzed results of those spatial gradient wavefields of the 2011 Tohoku earthquake across Taiwan Island and discuss its geological implications.
Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China
NASA Astrophysics Data System (ADS)
Bo, Y.; Cai, H.; Xie, S. D.
2008-12-01
Multiyear emission inventories of anthropogenic NMVOCs in China for 1980-2005 were established based on time-varying statistical data, literature surveyed and model calculated emission factors, which were further gridded at a high spatial resolution of 40 km×40 km using the GIS methodology. Results show a continuous growth trend of China's historical NMVOCs emissions during the period of 1980-2005, with the emission increasing by 4.2 times at an annual average rate of 10.6% from 3.91 Tg in 1980 to 16.49 Tg in 2005. Vehicles, biomass burning, industrial processes, fossil fuel combustion, solvent utilization, and storage and transport generated 5.50 Tg, 3.84 Tg, 2.76 Tg, 1.98 Tg, 1.87 Tg, and 0.55 Tg of NMVOCs, respectively, in 2005. Motorcycles, biofuel burning, heavy duty vans, synthetic fibre production, biomass open burning, and industrial and commercial consumption were primary emission sources. Besides, source contributions of NMVOCs emissions showed remarkable annual variation. However, emissions of these sources had been continuously increasing, which coincided well with China's economic growth. Spatial distribution of NMVOCs emissions illustrates that high emissions mainly concentrates in developed regions of northern, eastern and southern coastal areas, which produced more emissions than the relatively underdeveloped western and inland regions. Particularly, southeastern, northern, and central China covering 35.2% of China's territory, generated 59.4% of the total emissions, while the populous capital cities covering merely 4.5% of China's territory, accounted for 24.9% of the national emissions. Annual variation of regional emission intensity shows that emissions concentrating in urban areas tended to transfer to rural areas year by year. Moreover, eastern, southern, central, and northeastern China were typical areas of high emission intensity and had a tendency of expanding to the northwestern China, which revealed the transfer of emission-intensive plants to these areas, together with the increase of biomass open burning.
NASA Astrophysics Data System (ADS)
Hurdebise, Quentin; Rixen, Toma; De Ligne, Anne; Vincke, Caroline; Heinesch, Bernard; Aubinet, Marc
2016-04-01
With the development of eddy covariance networks like Fluxnet, ICOS or NEON, long-term data series of carbon dioxide, water vapor and other gas exchanges between terrestrial ecosystems and atmosphere will become more and more numerous. However, long-term analyses of such exchanges require a good understanding of measurement conditions during the investigated period. Independently of climate drivers, measurements may indeed be influenced by measurement conditions themselves subjected to long-term variability due to vegetation growth or set-up changes. The present research refers to the Vielsalm Terrestrial Observatory (VTO) where fluxes of momentum, carbon dioxide, latent and sensible heat have been continuously measured by eddy covariance during twenty years. VTO is an ICOS site installed in a mixed forest (beech, silver fir, Douglas fir, Norway spruce) in the Belgian Ardennes. A multidisciplinary approach was developed in order to investigate the spatial and temporal evolution of several site characteristics: -displacement height (d) and relative measurement height (z-d) were determined using a spectral approach that compared observed and theoretical cospectra; -turbulence statistics were analyzed in the context of Monin-Obukhov similarity theory; -tree height during the measurement period was obtained by combining tree height inventories, a LIDAR survey and tree growth models; -measurement footprint was determined by using a footprint model. A good agreement was found between the three first approaches. Results show notably that z-d was subjected to both temporal and spatial evolution. Temporal evolution resulted from continuous tree growth as well as from a tower raise, achieved in 2009. Spatial evolution, due to canopy heterogeneity, was also observed. The impacts of these changes on measurements are investigated. In particular, it was shown that they affect measurement footprint, flux spectral corrections and flux quality. All these effects must be taken into consideration in order to disentangle long-term flux evolutions due to climate or phenology from changes resulting from measurement set-up changes.
SPECT detectors: the Anger Camera and beyond
Peterson, Todd E.; Furenlid, Lars R.
2011-01-01
The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904
Modeling abundance using hierarchical distance sampling
Royle, Andy; Kery, Marc
2016-01-01
In this chapter, we provide an introduction to classical distance sampling ideas for point and line transect data, and for continuous and binned distance data. We introduce the conditional and the full likelihood, and we discuss Bayesian analysis of these models in BUGS using the idea of data augmentation, which we discussed in Chapter 7. We then extend the basic ideas to the problem of hierarchical distance sampling (HDS), where we have multiple point or transect sample units in space (or possibly in time). The benefit of HDS in practice is that it allows us to directly model spatial variation in population size among these sample units. This is a preeminent concern of most field studies that use distance sampling methods, but it is not a problem that has received much attention in the literature. We show how to analyze HDS models in both the unmarked package and in the BUGS language for point and line transects, and for continuous and binned distance data. We provide a case study of HDS applied to a survey of the island scrub-jay on Santa Cruz Island, California.
The North American Breeding Bird Survey 1966–2011: Summary analysis and species accounts
Sauer, John R.; Link, William A.; Fallon, Jane E.; Pardieck, Keith L.; Ziolkowski, David J.
2013-01-01
The North American Breeding Bird Survey is a roadside, count-based survey conducted by volunteer observers. Begun in 1966, it now is a primary source of information on spatial and temporal patterns of population change for North American birds. We analyze population change for states, provinces, Bird Conservation Regions, and the entire survey within the contiguous United States and southern Canada for 426 species using a hierarchical log-linear model that controls for observer effects in counting. We also map relative abundance and population change for each species using a spatial smoothing of data at the scale of survey routes. We present results in accounts that describe major breeding habitats, migratory status, conservation status, and population trends for each species at several geographic scales. We also present composite results for groups of species categorized by habitats and migratory status. The survey varies greatly among species in percentage of species' range covered and precision of results, but consistent patterns of decline occur among eastern forest, grassland, and aridland obligate birds while generalist bird species are increasing.
Carlson, Mary H.; Zientek, Michael L.; Causey, J. Douglas; Kayser, Helen Z.; Spanski, Gregory T.; Wilson, Anna B.; Van Gosen, Bradley S.; Trautwein, Charles M.
2007-01-01
This report compiles selected results from 13 U.S. Geological Survey (USGS) mineral resource assessment studies conducted in Idaho and Montana into consistent spatial databases that can be used in a geographic information system. The 183 spatial databases represent areas of mineral potential delineated in these studies and include attributes on mineral deposit type, level of mineral potential, certainty, and a reference. The assessments were conducted for five 1? x 2? quadrangles (Butte, Challis, Choteau, Dillon, and Wallace), several U.S. Forest Service (USFS) National Forests (including Challis, Custer, Gallatin, Helena, and Payette), and one Bureau of Land Management (BLM) Resource Area (Dillon). The data contained in the spatial databases are based on published information: no new interpretations are made. This digital compilation is part of an ongoing effort to provide mineral resource information formatted for use in spatial analysis. In particular, this is one of several reports prepared to address USFS needs for science information as forest management plans are revised in the Northern Rocky Mountains.
Assessment of frequency and duration of point counts when surveying for golden eagle presence
Skipper, Ben R.; Boal, Clint W.; Tsai, Jo-Szu; Fuller, Mark R.
2017-01-01
We assessed the utility of the recommended golden eagle (Aquila chrysaetos) survey methodology in the U.S. Fish and Wildlife Service 2013 Eagle Conservation Plan Guidance. We conducted 800-m radius, 1-hr point-count surveys broken into 20-min segments, during 2 sampling periods in 3 areas within the Intermountain West of the United States over 2 consecutive breeding seasons during 2012 and 2013. Our goal was to measure the influence of different survey time intervals and sampling periods on detectability and use estimates of golden eagles among different locations. Our results suggest that a less intensive effort (i.e., survey duration shorter than 1 hr and point-count survey radii smaller than 800 m) would likely be inadequate for rigorous documentation of golden eagle occurrence pre- or postconstruction of wind energy facilities. Results from a simulation analysis of detection probabilities and survey effort suggest that greater temporal and spatial effort could make point-count surveys more applicable for evaluating golden eagle occurrence in survey areas; however, increased effort would increase financial costs associated with additional person-hours and logistics (e.g., fuel, lodging). Future surveys can benefit from a pilot study and careful consideration of prior information about counts or densities of golden eagles in the survey area before developing a survey design. If information is lacking, survey planning may be best served by assuming low detection rates and increasing the temporal and spatial effort.
The pattern of spatial flood disaster region in DKI Jakarta
NASA Astrophysics Data System (ADS)
Tambunan, M. P.
2017-02-01
The study of disaster flood area was conducted in DKI Jakarta Province, Indonesia. The aim of this research is: to study the spatial distribution of potential and actual of flood area The flood was studied from the geographic point of view using spatial approach, while the study of the location, the distribution, the depth and the duration of flooding was conducted using geomorphologic approach and emphasize on the detailed landform unit as analysis unit. In this study the landforms in DKI Jakarta have been a diversity, as well as spatial and temporal pattern of the actual and potential flood area. Landform at DKI Jakarta has been largely used as built up area for settlement and it facilities, thus affecting the distribution pattern of flooding area. The collection of the physical condition of landform in DKI Jakarta data prone were conducted through interpretation of the topographic map / RBI map and geological map. The flood data were obtained by survey and secondary data from Kimpraswil (Public Work) of DKI Jakarta Province for 3 years (1996, 2002, and 2007). Data of rainfall were obtained from BMKG and land use data were obtained from BPN DKI Jakarta. The analysis of the causal factors and distribution of flooding was made spatially and temporally using geographic information system. This study used survey method with a pragmatic approach. In this study landform as result from the analytical survey was settlement land use as result the synthetic survey. The primary data consist of landform, and the flood characteristic obtained by survey. The samples were using purposive sampling. Landform map was composed by relief, structure and material stone, and process data Landform map was overlay with flood map the flood prone area in DKI Jakarta Province in scale 1:50,000 to show. Descriptive analysis was used the spatial distribute of the flood prone area. The result of the study show that actual of flood prone area in the north, west and east of Jakarta lowland both in beach ridge, coastal alluvial plain, and alluvial plain; while the flood potential area on the slope is found flat and steep at alluvial fan, alluvial plain, beach ridge, and coastal alluvial plain in DKI Jakarta. Based on the result can be concluded that actual flood prone is not distributed on potential flood prone
Peter R. Robichaud
1997-01-01
Geostatistics provides a method to describe the spatial continuity of many natural phenomena. Spatial models are based upon the concept of scaling, kriging and conditional simulation. These techniques were used to describe the spatially-varied surface conditions on timber harvest and burned hillslopes. Geostatistical techniques provided estimates of the ground cover (...
Surveys of Forest Birds on Puerto Rico, 2015.
Lloyd, John D; Rimmer, Christopher C
2017-01-01
The island of Puerto Rico supports a diverse assemblage of breeding birds, including 16 endemic species (Raffaele et al. 1998), and provides critical wintering habitat for many North American migratory birds (Wunderle and Waide 1994). Despite being a hotspot of avian biodiversity, spatially extensive data on the distribution and abundance of birds on the island are scarce. Breeding-bird assemblages were sampled by the North American Breeding Bird Survey from 1997-2007 (Sauer et al. 2013), but comparable primary data are not available for bird assemblages present during the boreal winter. We provide data from one of the few spatially extensive surveys of forest birds on Puerto Rico. We sampled 211 locations in forests across the island during January-March 2015 using repeated point-count surveys. These data are suitable for use in estimating abundance, occupancy, and distribution of forest birds on Puerto Rico during the winter.
A Geospatial Information Grid Framework for Geological Survey.
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.
A Geospatial Information Grid Framework for Geological Survey
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255
Estimating occupancy probability of moose using hunter survey data
Crum, Nathan J.; Fuller, Angela K.; Sutherland, Christopher S.; Cooch, Evan G.; Hurst, Jeremy E.
2017-01-01
Monitoring rare species can be difficult, especially across large spatial extents, making conventional methods of population monitoring costly and logistically challenging. Citizen science has the potential to produce observational data across large areas that can be used to monitor wildlife distributions using occupancy models. We used citizen science (i.e., hunter surveys) to facilitate monitoring of moose (Alces alces) populations, an especially important endeavor because of their recent apparent declines in the northeastern and upper midwestern regions of the United States. To better understand patterns of occurrence of moose in New York, we used data collected through an annual survey of approximately 11,000 hunters between 2012 and 2014 that recorded detection–non-detection data of moose and other species. We estimated patterns of occurrence of moose in relation to land cover characteristics, climate effects, and interspecific interactions using occupancy models to analyze spatially referenced moose observations. Coniferous and deciduous forest with low prevalence of white-tailed deer (Odocoileus virginianus) had the highest probability of moose occurrence. This study highlights the potential of data collected using citizen science for understanding the spatial distribution of low-density species across large spatial extents and providing key information regarding where and when future research and management activities should be focused.
Falomir, Zoe; Kluth, Thomas
2017-06-24
The challenge of describing 3D real scenes is tackled in this paper using qualitative spatial descriptors. A key point to study is which qualitative descriptors to use and how these qualitative descriptors must be organized to produce a suitable cognitive explanation. In order to find answers, a survey test was carried out with human participants which openly described a scene containing some pieces of furniture. The data obtained in this survey are analysed, and taking this into account, the QSn3D computational approach was developed which uses a XBox 360 Kinect to obtain 3D data from a real indoor scene. Object features are computed on these 3D data to identify objects in indoor scenes. The object orientation is computed, and qualitative spatial relations between the objects are extracted. These qualitative spatial relations are the input to a grammar which applies saliency rules obtained from the survey study and generates cognitive natural language descriptions of scenes. Moreover, these qualitative descriptors can be expressed as first-order logical facts in Prolog for further reasoning. Finally, a validation study is carried out to test whether the descriptions provided by QSn3D approach are human readable. The obtained results show that their acceptability is higher than 82%.
Spatial occupancy models for large data sets
Johnson, Devin S.; Conn, Paul B.; Hooten, Mevin B.; Ray, Justina C.; Pond, Bruce A.
2013-01-01
Since its development, occupancy modeling has become a popular and useful tool for ecologists wishing to learn about the dynamics of species occurrence over time and space. Such models require presence–absence data to be collected at spatially indexed survey units. However, only recently have researchers recognized the need to correct for spatially induced overdisperison by explicitly accounting for spatial autocorrelation in occupancy probability. Previous efforts to incorporate such autocorrelation have largely focused on logit-normal formulations for occupancy, with spatial autocorrelation induced by a random effect within a hierarchical modeling framework. Although useful, computational time generally limits such an approach to relatively small data sets, and there are often problems with algorithm instability, yielding unsatisfactory results. Further, recent research has revealed a hidden form of multicollinearity in such applications, which may lead to parameter bias if not explicitly addressed. Combining several techniques, we present a unifying hierarchical spatial occupancy model specification that is particularly effective over large spatial extents. This approach employs a probit mixture framework for occupancy and can easily accommodate a reduced-dimensional spatial process to resolve issues with multicollinearity and spatial confounding while improving algorithm convergence. Using open-source software, we demonstrate this new model specification using a case study involving occupancy of caribou (Rangifer tarandus) over a set of 1080 survey units spanning a large contiguous region (108 000 km2) in northern Ontario, Canada. Overall, the combination of a more efficient specification and open-source software allows for a facile and stable implementation of spatial occupancy models for large data sets.
NASA Astrophysics Data System (ADS)
Hooke, Janet
2017-04-01
Flow and sediment processes in ephemeral channels are highly dynamic and spatially variable. The connectivity characteristics in a range of events are examined for several semi-arid catchments in Southeast Spain. Rainfall thresholds for runoff generation on slopes and for flow generation in channels have been identified at various scales. In many events, flow is not continuous down the channel system due partly to localised rainfall and to transmission losses but also to structural and morphological conditions. One extreme flow event with high sediment supply produced very high flow and sediment connectivity throughout the system. Results of spatial analysis of variation in hydraulics and sediment processes are presented and the effects are analysed. Amounts and locations of sediment storage were identified from repeat surveys. The overall contribution of such an event to morphological and sedimentological changes in the channel and longer-term landscape evolution is assessed. Land use and management are demonstrated to have a profound influence on the sediment delivery and connectivity functioning. The implications for land, channel and flood management in such an environment, together with the impacts of longer-term variations in flow regime due to land use and climate change, are considered.
ERIC Educational Resources Information Center
Swarlis, Linda L.
2008-01-01
The test scores of spatial ability for women lag behind those of men in many spatial tests. On the Mental Rotations Test (MRT), a significant gender gap has existed for over 20 years and continues to exist. High spatial ability has been linked to efficiencies in typical computing tasks including Web and database searching, text editing, and…
Rapid calculation of acoustic fields from arbitrary continuous-wave sources.
Treeby, Bradley E; Budisky, Jakub; Wise, Elliott S; Jaros, Jiri; Cox, B T
2018-01-01
A Green's function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Green's function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions to be calculated in a single step using two fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically focused bowl transducers, and multi-element linear and hemispherical arrays.
Surface Wave Tomography with Spatially Varying Smoothing Based on Continuous Model Regionalization
NASA Astrophysics Data System (ADS)
Liu, Chuanming; Yao, Huajian
2017-03-01
Surface wave tomography based on continuous regionalization of model parameters is widely used to invert for 2-D phase or group velocity maps. An inevitable problem is that the distribution of ray paths is far from homogeneous due to the spatially uneven distribution of stations and seismic events, which often affects the spatial resolution of the tomographic model. We present an improved tomographic method with a spatially varying smoothing scheme that is based on the continuous regionalization approach. The smoothness of the inverted model is constrained by the Gaussian a priori model covariance function with spatially varying correlation lengths based on ray path density. In addition, a two-step inversion procedure is used to suppress the effects of data outliers on tomographic models. Both synthetic and real data are used to evaluate this newly developed tomographic algorithm. In the synthetic tests, when the contrived model has different scales of anomalies but with uneven ray path distribution, we compare the performance of our spatially varying smoothing method with the traditional inversion method, and show that the new method is capable of improving the recovery in regions of dense ray sampling. For real data applications, the resulting phase velocity maps of Rayleigh waves in SE Tibet produced using the spatially varying smoothing method show similar features to the results with the traditional method. However, the new results contain more detailed structures and appears to better resolve the amplitude of anomalies. From both synthetic and real data tests we demonstrate that our new approach is useful to achieve spatially varying resolution when used in regions with heterogeneous ray path distribution.
SPATIAL SCALE OF AUTOCORRELATION IN WISCONSIN FROG AND TOAD SURVEY DATA
The degree to which local population dynamics are correlated with nearby sites has important implications for metapopulation dynamics and landscape management. Spatially extensive monitoring data can be used to evaluate large-scale population dynamic processes. Our goals in this ...
VARIANCE ESTIMATION FOR SPATIALLY BALANCED SAMPLES OF ENVIRONMENTAL RESOURCES
The spatial distribution of a natural resource is an important consideration in designing an efficient survey or monitoring program for the resource. We review a unified strategy for designing probability samples of discrete, finite resource populations, such as lakes within som...
Landsat Data Continuity Mission
,
2007-01-01
The Landsat Data Continuity Mission (LDCM) is a partnership between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit by late 2012. The Landsat era that began in 1972 will become a nearly 45-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archival, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (circa 30-m spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions, in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of land-cover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis and at a price no greater than the incremental cost of fulfilling a user request. Distribution of LDCM data over the Internet at no cost to the user is currently planned.
Pellerin, Brian A.; Bergamaschi, Brian A.; Murdoch, Peter S.; Downing, Bryan D.; Saraceno, John Franco; Aiken, George R.; Striegl, Robert G.
2011-01-01
Floods, hurricanes, and longer-term changes in climate and land use can have profound effects on water quality due to shifts in hydrologic flow paths, water residence time, precipitation patterns, connectivity between rivers and uplands, and many other factors. In order to understand and respond to changes in hydrology and water quality, resource managers and policy makers have a need for accurate and early indicators, as well as the ability to assess possible mechanisms and likely outcomes. In-situ optical sensors-those making continuous measurements of constituents by absorbance or fluorescence properties in the environment at timescales of minutes to years-have a long history in oceanography for developing highly resolved concentrations and fluxes, but are not commonly used in freshwater systems. The United States Geological Survey (USGS) has developed the Aquatic Real-Time Monitoring Network, with high-resolution optical data collection for organic carbon, nutrients, and sediment in large coastal rivers, along with continuous measurements of discharge, water temperature, and dissolved inorganic carbon. The collecting of continuous water-quality data in the Nation?s waterways has revealed temporal trends and spatial patterns in constituents that traditional sampling approaches fail to capture, and will serve a critical role in monitoring, assessment and decision-making in a rapidly changing landscape.
Hybrid modeling of spatial continuity for application to numerical inverse problems
Friedel, Michael J.; Iwashita, Fabio
2013-01-01
A novel two-step modeling approach is presented to obtain optimal starting values and geostatistical constraints for numerical inverse problems otherwise characterized by spatially-limited field data. First, a type of unsupervised neural network, called the self-organizing map (SOM), is trained to recognize nonlinear relations among environmental variables (covariates) occurring at various scales. The values of these variables are then estimated at random locations across the model domain by iterative minimization of SOM topographic error vectors. Cross-validation is used to ensure unbiasedness and compute prediction uncertainty for select subsets of the data. Second, analytical functions are fit to experimental variograms derived from original plus resampled SOM estimates producing model variograms. Sequential Gaussian simulation is used to evaluate spatial uncertainty associated with the analytical functions and probable range for constraining variables. The hybrid modeling of spatial continuity is demonstrated using spatially-limited hydrologic measurements at different scales in Brazil: (1) physical soil properties (sand, silt, clay, hydraulic conductivity) in the 42 km2 Vargem de Caldas basin; (2) well yield and electrical conductivity of groundwater in the 132 km2 fractured crystalline aquifer; and (3) specific capacity, hydraulic head, and major ions in a 100,000 km2 transboundary fractured-basalt aquifer. These results illustrate the benefits of exploiting nonlinear relations among sparse and disparate data sets for modeling spatial continuity, but the actual application of these spatial data to improve numerical inverse modeling requires testing.
Wainwright, Haruko M; Seki, Akiyuki; Chen, Jinsong; Saito, Kimiaki
2017-02-01
This paper presents a multiscale data integration method to estimate the spatial distribution of air dose rates in the regional scale around the Fukushima Daiichi Nuclear Power Plant. We integrate various types of datasets, such as ground-based walk and car surveys, and airborne surveys, all of which have different scales, resolutions, spatial coverage, and accuracy. This method is based on geostatistics to represent spatial heterogeneous structures, and also on Bayesian hierarchical models to integrate multiscale, multi-type datasets in a consistent manner. The Bayesian method allows us to quantify the uncertainty in the estimates, and to provide the confidence intervals that are critical for robust decision-making. Although this approach is primarily data-driven, it has great flexibility to include mechanistic models for representing radiation transport or other complex correlations. We demonstrate our approach using three types of datasets collected at the same time over Fukushima City in Japan: (1) coarse-resolution airborne surveys covering the entire area, (2) car surveys along major roads, and (3) walk surveys in multiple neighborhoods. Results show that the method can successfully integrate three types of datasets and create an integrated map (including the confidence intervals) of air dose rates over the domain in high resolution. Moreover, this study provides us with various insights into the characteristics of each dataset, as well as radiocaesium distribution. In particular, the urban areas show high heterogeneity in the contaminant distribution due to human activities as well as large discrepancy among different surveys due to such heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spatial variations in mortality in pelagic early life stages of a marine fish (Gadus morhua)
NASA Astrophysics Data System (ADS)
Langangen, Øystein; Stige, Leif C.; Yaragina, Natalia A.; Ottersen, Geir; Vikebø, Frode B.; Stenseth, Nils Chr.
2014-09-01
Mortality of pelagic eggs and larvae of marine fish is often assumed to be constant both in space and time due to lacking information. This may, however, be a gross oversimplification, as early life stages are likely to experience large variations in mortality both in time and space. In this paper we develop a method for estimating the spatial variability in mortality of eggs and larvae. The method relies on survey data and physical-biological particle-drift models to predict the drift of ichthyoplankton. Furthermore, the method was used to estimate the spatially resolved mortality field in the egg and larval stages of Barents Sea cod (Gadus morhua). We analyzed data from the Barents Sea for the period between 1959 and 1993 when there are two surveys available: a spring and a summer survey. An individual-based physical-biological particle-drift model, tailored to the egg and larval stages of Barents Sea cod, was used to predict the drift trajectories from the observed stage-specific distributions in spring to the time of observation in the summer, a drift time of approximately 45 days. We interpreted the spatial patterns in the differences between the predicted and observed abundance distributions in summer as reflecting the spatial patterns in mortality over the drift period. Using the estimated mortality fields, we show that the spatial variations in mortality might have a significant impact on survival to later life stages and we suggest that there may be trade-offs between increased early survival in off shore regions and reduced probability of ending up in the favorable nursing grounds in the Barents Sea. In addition, we show that accounting for the estimated mortality field, improves the correlation between a simulated recruitment index and observation-based indices of juvenile abundance.
Modeling trends from North American Breeding Bird Survey data: a spatially explicit approach
Bled, Florent; Sauer, John R.; Pardieck, Keith L.; Doherty, Paul; Royle, J. Andy
2013-01-01
Population trends, defined as interval-specific proportional changes in population size, are often used to help identify species of conservation interest. Efficient modeling of such trends depends on the consideration of the correlation of population changes with key spatial and environmental covariates. This can provide insights into causal mechanisms and allow spatially explicit summaries at scales that are of interest to management agencies. We expand the hierarchical modeling framework used in the North American Breeding Bird Survey (BBS) by developing a spatially explicit model of temporal trend using a conditional autoregressive (CAR) model. By adopting a formal spatial model for abundance, we produce spatially explicit abundance and trend estimates. Analyses based on large-scale geographic strata such as Bird Conservation Regions (BCR) can suffer from basic imbalances in spatial sampling. Our approach addresses this issue by providing an explicit weighting based on the fundamental sample allocation unit of the BBS. We applied the spatial model to three species from the BBS. Species have been chosen based upon their well-known population change patterns, which allows us to evaluate the quality of our model and the biological meaning of our estimates. We also compare our results with the ones obtained for BCRs using a nonspatial hierarchical model (Sauer and Link 2011). Globally, estimates for mean trends are consistent between the two approaches but spatial estimates provide much more precise trend estimates in regions on the edges of species ranges that were poorly estimated in non-spatial analyses. Incorporating a spatial component in the analysis not only allows us to obtain relevant and biologically meaningful estimates for population trends, but also enables us to provide a flexible framework in order to obtain trend estimates for any area.
Ortiz-Pelaez, Angel; Pfeiffer, Dirk U; Tempia, Stefano; Otieno, F Tom; Aden, Hussein H; Costagli, Riccardo
2010-04-28
In contrast to most pastoral systems, the Somali livestock production system is oriented towards domestic trade and export with seasonal movement patterns of herds/flocks in search of water and pasture and towards export points. Data from a rinderpest survey and other data sources have been integrated to explore the topology of a contact network of cattle herds based on a spatial proximity criterion and other attributes related to cattle herd dynamics. The objective of the study is to integrate spatial mobility and other attributes with GIS and network approaches in order to develop a predictive spatial model of presence of rinderpest. A spatial logistic regression model was fitted using data for 562 point locations. It includes three statistically significant continuous-scale variables that increase the risk of rinderpest: home range radius, herd density and clustering coefficient of the node of the network whose link was established if the sum of the home ranges of every pair of nodes was equal or greater than the shortest distance between the points. The sensitivity of the model is 85.1% and the specificity 84.6%, correctly classifying 84.7% of the observations. The spatial autocorrelation not accounted for by the model is negligible and visual assessment of a semivariogram of the residuals indicated that there was no undue amount of spatial autocorrelation. The predictive model was applied to a set of 6176 point locations covering the study area. Areas at high risk of having serological evidence of rinderpest are located mainly in the coastal districts of Lower and Middle Juba, the coastal area of Lower Shabele and in the regions of Middle Shabele and Bay. There are also isolated spots of high risk along the border with Kenya and the southern area of the border with Ethiopia. The identification of point locations and areas with high risk of presence of rinderpest and their spatial visualization as a risk map will be useful for informing the prioritization of disease surveillance and control activities for rinderpest in Somalia. The methodology applied here, involving spatial and network parameters, could also be applied to other diseases and/or species as part of a standardized approach for the design of risk-based surveillance activities in nomadic pastoral settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Ostrouchov; W.E.Doll; D.A.Wolf
2003-07-01
Unexploded ordnance(UXO)surveys encompass large areas, and the cost of surveying these areas can be high. Enactment of earlier protocols for sampling UXO sites have shown the shortcomings of these procedures and led to a call for development of scientifically defensible statistical procedures for survey design and analysis. This project is one of three funded by SERDP to address this need.
Galaiduk, Ronen; Radford, Ben T; Wilson, Shaun K; Harvey, Euan S
2017-12-15
Information on habitat associations from survey data, combined with spatial modelling, allow the development of more refined species distribution modelling which may identify areas of high conservation/fisheries value and consequentially improve conservation efforts. Generalised additive models were used to model the probability of occurrence of six focal species after surveys that utilised two remote underwater video sampling methods (i.e. baited and towed video). Models developed for the towed video method had consistently better predictive performance for all but one study species although only three models had a good to fair fit, and the rest were poor fits, highlighting the challenges associated with modelling habitat associations of marine species in highly homogenous, low relief environments. Models based on baited video dataset regularly included large-scale measures of structural complexity, suggesting fish attraction to a single focus point by bait. Conversely, models based on the towed video data often incorporated small-scale measures of habitat complexity and were more likely to reflect true species-habitat relationships. The cost associated with use of the towed video systems for surveying low-relief seascapes was also relatively low providing additional support for considering this method for marine spatial ecological modelling.
Spatial pattern corrections and sample sizes for forest density estimates of historical tree surveys
Brice B. Hanberry; Shawn Fraver; Hong S. He; Jian Yang; Dan C. Dey; Brian J. Palik
2011-01-01
The U.S. General Land Office land surveys document trees present during European settlement. However, use of these surveys for calculating historical forest density and other derived metrics is limited by uncertainty about the performance of plotless density estimators under a range of conditions. Therefore, we tested two plotless density estimators, developed by...
County-level, Order 2 soil surveys have been used for decades to illustrate the spatial distribution of soils and communicate the utility and limitations of soil series. For the vast majority of these soil surveys, however, there is a distinct lack of resolution of soil series an...
Estimates of reservoir methane emissions based on a spatially balanced probabilistic-survey
Global estimates of methane (CH4) emissions from reservoirs are poorly constrained, partly due to the challenges of accounting for intra-reservoir spatial variability. Reservoir-scale emission rates are often estimated by extrapolating from measurement made at a few locations; h...
Spatial distribution of Echinococcus multilocularis, Svalbard, Norway.
Fuglei, Eva; Stien, Audun; Yoccoz, Nigel G; Ims, Rolf A; Eide, Nina E; Prestrud, Pål; Deplazes, Peter; Oksanen, Antti
2008-01-01
In Svalbard, Norway, the only intermediate host for Echinococcus multilocularis, the sibling vole, has restricted spatial distribution. A survey of feces from the main host, the arctic fox, showed that only the area occupied by the intermediate host is associated with increased risk for human infection.
Spatial Learning and Wayfinding in an Immersive Environment: The Digital Fulldome.
Hedge, Craig; Weaver, Ruth; Schnall, Simone
2017-05-01
Previous work has examined whether immersive technologies can benefit learning in virtual environments, but the potential benefits of technology in this context are confounded by individual differences such as spatial ability. We assessed spatial knowledge acquisition in male and female participants using a technology not previously examined empirically: the digital fulldome. Our primary aim was to examine whether performance on a test of survey knowledge was better in a fulldome (N = 28, 12 males) relative to a large, flat screen display (N = 27, 13 males). Regression analysis showed that, compared to a flat screen display, males showed higher levels of performance on a test of survey knowledge after learning in the fulldome, but no benefit occurred for females. Furthermore, performance correlated with spatial visualization ability in male participants, but not in female participants. Thus, the digital fulldome is a potentially useful learning aid, capable of accommodating multiple users, but individual differences and use of strategy need to be considered.
32 CFR 643.29 - Policy-Archeological surveys.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 4 2013-07-01 2013-07-01 false Policy-Archeological surveys. 643.29 Section 643.29 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE Policy § 643.29 Policy—Archeological surveys. The SA under the authority of 16, 432...
32 CFR 643.29 - Policy-Archeological surveys.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Policy-Archeological surveys. 643.29 Section 643.29 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE Policy § 643.29 Policy—Archeological surveys. The SA under the authority of 16, 432...
32 CFR 643.29 - Policy-Archeological surveys.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 4 2011-07-01 2011-07-01 false Policy-Archeological surveys. 643.29 Section 643.29 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE Policy § 643.29 Policy—Archeological surveys. The SA under the authority of 16, 432...
32 CFR 643.29 - Policy-Archeological surveys.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 4 2012-07-01 2011-07-01 true Policy-Archeological surveys. 643.29 Section 643.29 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE Policy § 643.29 Policy—Archeological surveys. The SA under the authority of 16, 432...
German Ambulatory Care Physicians' Perspectives on Continuing Medical Education--A National Survey
ERIC Educational Resources Information Center
Kempkens, Daniela; Dieterle, Wilfried E.; Butzlaff, Martin; Wilson, Andrew; Bocken, Jan; Rieger, Monika A.; Wilm, Stefan; Vollmar, Horst C.
2009-01-01
Introduction: This survey aimed to investigate German ambulatory physicians' opinions about mandatory continuing medical education (CME) and CME resources shortly before the introduction of mandatory CME in 2004. Methods: A structured national telephone survey of general practitioners and specialists was conducted. Main outcome measures were…
Baig, Kamran; Shaw-Ridley, Mary; Munoz, Oscar J
2016-10-01
Colonias are sub standardized and unincorporated areas located along the US-Mexico border, with severely lacking infrastructure. Residents have poor health and limited availability, accessibility and/or utilization of healthcare services in the region. Using 2006-2007 community needs assessment (CNA) surveys collected by the Center for Housing and Urban Development of Texas A&M University, 410 randomly selected surveys from Hidalgo County, Texas were analyzed. Descriptive and spatial analyses were performed and Odds ratio (OR) was calculated. Out of 410 surveys, 333 were geo-coded to identify areas most in need of dental and vision care. Two hospitals existed within 5 miles radius of the mean centers for the two areas. Distance to health care facility was not statistically predictive of the need of dental care OR=0.96 (95% CI=0.855-1.078, p value=0.492) and vision care OR=1.083 (95% CI=0.968-1.212, p value=0.164). Integrating spatial analysis and CNA enhances planning to improve service accessibility and utilization in underserved areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ward, Darren F.; Anderson, Dean P.; Barron, Mandy C.
2016-01-01
Effective detection plays an important role in the surveillance and management of invasive species. Invasive ants are very difficult to eradicate and are prone to imperfect detection because of their small size and cryptic nature. Here we demonstrate the use of spatially explicit surveillance models to estimate the probability that Argentine ants (Linepithema humile) have been eradicated from an offshore island site, given their absence across four surveys and three surveillance methods, conducted since ant control was applied. The probability of eradication increased sharply as each survey was conducted. Using all surveys and surveillance methods combined, the overall median probability of eradication of Argentine ants was 0.96. There was a high level of confidence in this result, with a high Credible Interval Value of 0.87. Our results demonstrate the value of spatially explicit surveillance models for the likelihood of eradication of Argentine ants. We argue that such models are vital to give confidence in eradication programs, especially from highly valued conservation areas such as offshore islands. PMID:27721491
Bakó, Gábor; Tolnai, Márton; Takács, Ádám
2014-01-01
Remote sensing is a method that collects data of the Earth's surface without causing disturbances. Thus, it is worthwhile to use remote sensing methods to survey endangered ecosystems, as the studied species will behave naturally while undisturbed. The latest passive optical remote sensing solutions permit surveys from long distances. State-of-the-art highly sensitive sensor systems allow high spatial resolution image acquisition at high altitudes and at high flying speeds, even in low-visibility conditions. As the aerial imagery captured by an airplane covers the entire study area, all the animals present in that area can be recorded. A population assessment is conducted by visual interpretations of an ortho image map. The basic objective of this study is to determine whether small- and medium-sized bird species are recognizable in the ortho images by using high spatial resolution aerial cameras. The spatial resolution needed for identifying the bird species in the ortho image map was studied. The survey was adjusted to determine the number of birds in a colony at a given time. PMID:25046012
The relationship between observational scale and explained variance in benthic communities
Flood, Roger D.; Frisk, Michael G.; Garza, Corey D.; Lopez, Glenn R.; Maher, Nicole P.
2018-01-01
This study addresses the impact of spatial scale on explaining variance in benthic communities. In particular, the analysis estimated the fraction of community variation that occurred at a spatial scale smaller than the sampling interval (i.e., the geographic distance between samples). This estimate is important because it sets a limit on the amount of community variation that can be explained based on the spatial configuration of a study area and sampling design. Six benthic data sets were examined that consisted of faunal abundances, common environmental variables (water depth, grain size, and surficial percent cover), and sonar backscatter treated as a habitat proxy (categorical acoustic provinces). Redundancy analysis was coupled with spatial variograms generated by multiscale ordination to quantify the explained and residual variance at different spatial scales and within and between acoustic provinces. The amount of community variation below the sampling interval of the surveys (< 100 m) was estimated to be 36–59% of the total. Once adjusted for this small-scale variation, > 71% of the remaining variance was explained by the environmental and province variables. Furthermore, these variables effectively explained the spatial structure present in the infaunal community. Overall, no scale problems remained to compromise inferences, and unexplained infaunal community variation had no apparent spatial structure within the observational scale of the surveys (> 100 m), although small-scale gradients (< 100 m) below the observational scale may be present. PMID:29324746
Developing the design of a continuous national health survey for New Zealand
2013-01-01
Background A continuously operating survey can yield advantages in survey management, field operations, and the provision of timely information for policymakers and researchers. We describe the key features of the sample design of the New Zealand (NZ) Health Survey, which has been conducted on a continuous basis since mid-2011, and compare to a number of other national population health surveys. Methods A number of strategies to improve the NZ Health Survey are described: implementation of a targeted dual-frame sample design for better Māori, Pacific, and Asian statistics; movement from periodic to continuous operation; use of core questions with rotating topic modules to improve flexibility in survey content; and opportunities for ongoing improvements and efficiencies, including linkage to administrative datasets. Results and discussion The use of disproportionate area sampling and a dual frame design resulted in reductions of approximately 19%, 26%, and 4% to variances of Māori, Pacific and Asian statistics respectively, but at the cost of a 17% increase to all-ethnicity variances. These were broadly in line with the survey’s priorities. Respondents provided a high degree of cooperation in the first year, with an adult response rate of 79% and consent rates for data linkage above 90%. Conclusions A combination of strategies tailored to local conditions gives the best results for national health surveys. In the NZ context, data from the NZ Census of Population and Dwellings and the Electoral Roll can be used to improve the sample design. A continuously operating survey provides both administrative and statistical advantages. PMID:24364838
Wallrichs, Megan A.; Ober, Holly K.; McCleery, Robert A.
2017-01-01
Due to increasing threats facing bats, long-term monitoring protocols are needed to inform conservation strategies. Effective monitoring should be easily repeatable while capturing spatio-temporal variation. Mobile acoustic driving transect surveys (‘mobile transects’) have been touted as a robust, cost-effective method to monitor bats; however, it is not clear how well mobile transects represent dynamic bat communities, especially when used as the sole survey approach. To assist biologists who must select a single survey method due to resource limitations, we assessed the effectiveness of three acoustic survey methods at detecting species richness in a vast protected area (Everglades National Park): (1) mobile transects, (2) stationary surveys that were strategically located by sources of open water and (3) stationary surveys that were replicated spatially across the landscape. We found that mobile transects underrepresented bat species richness compared to stationary surveys across all major vegetation communities and in two distinct seasons (dry/cool and wet/warm). Most critically, mobile transects failed to detect three rare bat species, one of which is federally endangered. Spatially replicated stationary surveys did not estimate higher species richness than strategically located stationary surveys, but increased the rate at which species were detected in one vegetation community. The survey strategy that detected maximum species richness and the highest mean nightly species richness with minimal effort was a strategically located stationary detector in each of two major vegetation communities during the wet/warm season. PMID:29134138
Braun de Torrez, Elizabeth C; Wallrichs, Megan A; Ober, Holly K; McCleery, Robert A
2017-01-01
Due to increasing threats facing bats, long-term monitoring protocols are needed to inform conservation strategies. Effective monitoring should be easily repeatable while capturing spatio-temporal variation. Mobile acoustic driving transect surveys ('mobile transects') have been touted as a robust, cost-effective method to monitor bats; however, it is not clear how well mobile transects represent dynamic bat communities, especially when used as the sole survey approach. To assist biologists who must select a single survey method due to resource limitations, we assessed the effectiveness of three acoustic survey methods at detecting species richness in a vast protected area (Everglades National Park): (1) mobile transects, (2) stationary surveys that were strategically located by sources of open water and (3) stationary surveys that were replicated spatially across the landscape. We found that mobile transects underrepresented bat species richness compared to stationary surveys across all major vegetation communities and in two distinct seasons (dry/cool and wet/warm). Most critically, mobile transects failed to detect three rare bat species, one of which is federally endangered. Spatially replicated stationary surveys did not estimate higher species richness than strategically located stationary surveys, but increased the rate at which species were detected in one vegetation community. The survey strategy that detected maximum species richness and the highest mean nightly species richness with minimal effort was a strategically located stationary detector in each of two major vegetation communities during the wet/warm season.
National spatial data infrastructure - coming together of GIS and EO in India
NASA Astrophysics Data System (ADS)
Rao, Mukund; Pandey, Amitabha; Ahuja, A. K.; Ramamurthy, V. S.; Kasturirangan, K.
2002-07-01
A new wave of technological innovation is allowing us to capture, store, process and display an unprecedented amount of geographical and spatial information about Society and a wide variety of environmental and cultural phenomena. Much of this information is "spatial" - that is, it refers to a coordinate system and is representable in map form. Current and accurate spatial data must be readily available to contribute to local, state and national development and contribute to economic growth, environmental quality and stability, and social progress. India has, over the past years, produced a rich "base" of map information through systematic topographic surveys, geological surveys, soil surveys, cadastral surveys, various natural resources inventory programmes and the use of the remote sensing images. Further, with the availability of precision, high-resolution satellite images, data enabling the organisation of GIS, combined with the Global Positioning System (GPS), the accuracy and information content of these spatial datasets or maps is extremely high. Encapsulating these maps and images into a National Spatial Data Infrastructure (NSDI) is the need of the hour and the emphasis has to be on information transparency and sharing, with the recognition that spatial information is a national resource and citizens, society, private enterprise and government have a right to access it, appropriately. Only through common conventions and technical agreements, standards, metadata definitions, network and access protocols will it be easily possible for the NSDI to come into existence. India has now a NSDI strategy and the "NSDI Strategy and Action Plan" report has been prepared and is being opened up to a national debate. The first steps have been taken but the end-goal is farther away but in sight now. While Government must provide the lead, private enterprise, NGOs and academia have a major role to play in making the NSDI a reality. NSDI will require for coming together of various "groups" and harmonizing their efforts in making this national endeavor a success. The paper discusses how the convergence of technologies is being strategised in NSDI - specifically of EO images and GIS technologies and how the nation would benefit from access to these datasets. The paper also discusses and illustrates with specific examples the techniques being developed and how the NSDI would support development efforts on the country.
NASA Astrophysics Data System (ADS)
Cahya, D. L.; Martini, E.; Kasikoen, K. M.
2018-02-01
Urbanization is shown by the increasing percentage of the population in urban areas. In Indonesia, the percentage of urban population increased dramatically form 17.42% (1971) to 42.15% (2010). This resulted in increased demand for housing. Limited land in the city area push residents looking for an alternative location of his residence to the peri-urban areas. It is accompanied by a process of land conversion from green area into built-up area. Continuous land conversion in peri-urban area is becoming increasingly widespread. Bogor Regency as part of the Jakarta Metropolitan Area is experiencing rapid development. This regency has been experienced land-use change very rapidly from agricultural areas into urban built up areas. Aim of this research is to analyze the effect of urbanization on land use changes in peri-urban areas using spatial analysis methods. This research used case study of Ciawi Urban Area that experiencing rapid development. Method of this research is using descriptive quantitative approach. Data used in this research is primary data (field survey) and secondary data (maps). To analyze land use change is using Geographic Information System (GIS) as spatial analysis methods. The effect of urbanization on land use changes in Ciawi Urban Area from year 2013 to 2015 is significant. The reduction of farm land is around -4.00% and wetland is around - 2.51%. The increasing area for hotel/villa/resort is around 3.10%. Based on this research, local government (Bogor Regency) should be alert to the land use changes that does not comply with the land use plan and also consistently apply the spatial planning.
Active and passive spatial learning in human navigation: acquisition of survey knowledge.
Chrastil, Elizabeth R; Warren, William H
2013-09-01
It seems intuitively obvious that active exploration of a new environment would lead to better spatial learning than would passive visual exposure. It is unclear, however, which components of active learning contribute to spatial knowledge, and previous literature is decidedly mixed. This experiment tests the contributions of 4 components to metric survey knowledge: visual, vestibular, and podokinetic information and cognitive decision making. In the learning phase, 6 groups of participants learned the locations of 8 objects in a virtual hedge maze by (a) walking, (b) being pushed in a wheelchair, or (c) watching a video, crossed with (1) making decisions about their path or (2) being guided through the maze. In the test phase, survey knowledge was assessed by having participants walk a novel shortcut from a starting object to the remembered location of a test object, with the maze removed. Performance was slightly better than chance in the passive video condition. The addition of vestibular information did not improve performance in the wheelchair condition, but the addition of podokinetic information significantly improved angular accuracy in the walking condition. In contrast, there was no effect of decision making in any condition. The results indicate that visual and podokinetic information significantly contribute to survey knowledge, whereas vestibular information and decision making do not. We conclude that podokinetic information is the primary component of active learning for the acquisition of metric survey knowledge. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Andrew T. Hudak; Jeffrey S. Evans; Nicholas L. Crookston; Michael J. Falkowski; Brant K. Steigers; Rob Taylor; Halli Hemingway
2008-01-01
Stand exams are the principal means by which timber companies monitor and manage their forested lands. Airborne LiDAR surveys sample forest stands at much finer spatial resolution and broader spatial extent than is practical on the ground. In this paper, we developed models that leverage spatially intensive and extensive LiDAR data and a stratified random sample of...
NASA Astrophysics Data System (ADS)
Hamalainen, Sampsa; Geng, Xiaoyuan; He, Juanxia
2017-04-01
Latin Hypercube Sampling (LHS) at variable resolutions for enhanced watershed scale Soil Sampling and Digital Soil Mapping. Sampsa Hamalainen, Xiaoyuan Geng, and Juanxia, He. AAFC - Agriculture and Agr-Food Canada, Ottawa, Canada. The Latin Hypercube Sampling (LHS) approach to assist with Digital Soil Mapping has been developed for some time now, however the purpose of this work was to complement LHS with use of multiple spatial resolutions of covariate datasets and variability in the range of sampling points produced. This allowed for specific sets of LHS points to be produced to fulfil the needs of various partners from multiple projects working in the Ontario and Prince Edward Island provinces of Canada. Secondary soil and environmental attributes are critical inputs that are required in the development of sampling points by LHS. These include a required Digital Elevation Model (DEM) and subsequent covariate datasets produced as a result of a Digital Terrain Analysis performed on the DEM. These additional covariates often include but are not limited to Topographic Wetness Index (TWI), Length-Slope (LS) Factor, and Slope which are continuous data. The range of specific points created in LHS included 50 - 200 depending on the size of the watershed and more importantly the number of soil types found within. The spatial resolution of covariates included within the work ranged from 5 - 30 m. The iterations within the LHS sampling were run at an optimal level so the LHS model provided a good spatial representation of the environmental attributes within the watershed. Also, additional covariates were included in the Latin Hypercube Sampling approach which is categorical in nature such as external Surficial Geology data. Some initial results of the work include using a 1000 iteration variable within the LHS model. 1000 iterations was consistently a reasonable value used to produce sampling points that provided a good spatial representation of the environmental attributes. When working within the same spatial resolution for covariates, however only modifying the desired number of sampling points produced, the change of point location portrayed a strong geospatial relationship when using continuous data. Access to agricultural fields and adjacent land uses is often "pinned" as the greatest deterrent to performing soil sampling for both soil survey and soil attribute validation work. The lack of access can be a result of poor road access and/or difficult geographical conditions to navigate for field work individuals. This seems a simple yet continuous issue to overcome for the scientific community and in particular, soils professionals. The ability to assist with the ease of access to sampling points will be in the future a contribution to the Latin Hypercube Sampling (LHS) approach. By removing all locations in the initial instance from the DEM, the LHS model can be restricted to locations only with access from the adjacent road or trail. To further the approach, a road network geospatial dataset can be included within spatial Geographic Information Systems (GIS) applications to access already produced points using a shortest-distance network method.
NASA Astrophysics Data System (ADS)
Kaplinski, M. A.; Buscmobe, D.; Ashley, T.; Tusso, R.; Grams, P. E.; McElroy, B. J.; Mueller, E. R.; Hamill, D.
2015-12-01
Repeat, high-resolution multibeam bathymetric surveys were conducted in March and July 2015 along a reach of the Colorado River in Grand Canyon near the Diamond Creek gage (362 km downstream of Lees Ferry, AZ) to characterize the migration of sand dunes. The surveys were collected as part of a study designed to quantify the relative importance of bedload and suspended sediment transport and develop a predictive relationship for bedload transport. Concurrent measurements of suspended-sediment concentrations, bed-sediment grain size, and water velocity were also collected. The study site is approximately 350 m long and 50 m wide; water depths are 7 to 10 m during normal flows; and a field of sand dunes form along its entire length with negligible coarse material at the bed surface. Full swath coverage of the site required about 6 to 10 minutes to complete with two passes of the survey vessel. Mapping occurred continuously during several survey periods. For each survey period, time-series of bathymetric maps were constructed from each pair of survey lines. In March, surveys were collected over durations of 2, 3, 9, and 11 hours, at discharges of 339 to 382 m3/s. In July, surveys were collected over durations of 4, 4, and 13 hours, at discharges ranging from 481 to 595 ft3/s. These surveys capture the migration of sand dunes over a wide range of discharge with an unprecedented temporal resolution. The dunes in March were between 30 and 50 cm in height, 5 m in length, and migrating downstream at about 1 m per hour. In July, dunes were between 75 and 130 cm in height and 10-15 m in length, and were migrating downstream at rates of 5 to 2 m per hour. The surveys also reveal that the dune migration is spatially and temporally variable, with fast-migrating small dunes variably superimposed on slower-moving larger dunes. The dunes also refract around shoreline talus piles and other flow constrictions collectively causing a large degree of dune deformation as they migrate.
NASA Astrophysics Data System (ADS)
McClellan, M. D.; Cornett, C.; Schaffer, L.; Comas, X.
2017-12-01
Wetlands play a critical role in the carbon (C) cycle by producing and releasing significant amounts of greenhouse biogenic gasses (CO2, CH4) into the atmosphere. Wetlands in tropical and subtropical climates (such as the Florida Everglades) have become of great interest in the past two decades as they account for more than 20% of the global peatland C stock and are located in climates that favor year-round C emissions. Despite the increase in research involving C emission from these types of wetlands, the spatial and temporal variability involving C production, accumulation and release is still highly uncertain, and is the focus of this research at multiple scales of measurement (i.e. lab, field and landscape). Spatial variability in biogenic gas content, build up and release, at both the lab and field scales, was estimated using a series of ground penetrating radar (GPR) surveys constrained with gas traps fitted with time-lapse cameras. Variability in gas content was estimated at the sub-meter scale (lab scale) within two extracted monoliths from different wetland ecosystems at the Disney wilderness Preserve (DWP) and the Blue Cypress Preserve (BCP) using high frequency GPR (1.2 GHz) transects across the monoliths. At the field scale (> 10m) changes in biogenic gas content were estimated using 160 MHz GPR surveys collected within 4 different emergent wetlands at the DWP. Additionally, biogenic gas content from the extracted monoliths was used to developed a landscape comparison of C accumulation and emissions for each different wetland ecosystem. Changes in gas content over time were estimated at the lab scale at high temporal resolution (i.e. sub-hourly) in monoliths from the BCP and Water Conservation Area 1-A. An autonomous rail system was constructed to estimate biogenic gas content variability within the wetland soil matrix using a series of continuous, uninterrupted 1.2 GHz GPR transects along the samples. Measurements were again constrained with an array of gas traps fitted with time-lapse cameras. This research seeks to better understand the spatial and temporal variability of biogenic gas content within wetlands from the Greater Everglades Watershed. Such understanding may help to identify potential hotspots (both in space and time) and their implication for the flux estimates used as input in climate models.
Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models.
Rogers, Lauren A; Storvik, Geir O; Knutsen, Halvor; Olsen, Esben M; Stenseth, Nils C
2017-07-01
Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypotheses regarding the spatial structure of a population complex of coastal Atlantic cod (Gadus morhua). Data were from a 93-year survey of juvenile (age 0 and 1) cod sampled along >200 km of the Norwegian Skagerrak coast. We compared two models: one which assumes all sampled cod belong to one larger population, and a second which assumes that each fjord contains a unique population with locally determined dynamics. Using the best supported model, we then reconstructed the historical spatial and temporal dynamics of Skagerrak coastal cod. Cross-validation showed that the spatially structured model with local dynamics had better predictive ability. Furthermore, posterior predictive checks showed that a model which assumes one homogeneous population failed to capture the spatial correlation pattern present in the survey data. The spatially structured model indicated that population trends differed markedly among fjords, as did estimates of population parameters including density-dependent survival. Recent biomass was estimated to be at a near-record low all along the coast, but the finer scale model indicated that the decline occurred at different times in different regions. Warm temperatures were associated with poor recruitment, but local changes in habitat and fishing pressure may have played a role in driving local dynamics. More generally, we demonstrated how state-space models can be used to test evidence for population spatial structure based on survey time-series data. Our study shows the importance of considering spatially structured dynamics, as the inferences from such an approach can lead to a different ecological understanding of the drivers of population declines, and fundamentally different management actions to restore populations. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
NASA Astrophysics Data System (ADS)
Desir, G.; Gutiérrez, F.; Merino, J.; Carbonel, D.; Benito-Calvo, A.; Guerrero, J.; Fabregat, I.
2018-02-01
Investigations dealing with subsidence monitoring in active sinkholes are very scarce, especially when compared with other ground instability phenomena like landslides. This is largely related to the catastrophic behaviour that typifies most sinkholes in carbonate karst areas. Active subsidence in five sinkholes up to ca. 500 m across has been quantitatively characterised by means of high-precision differential leveling. The sinkholes occur on poorly indurated alluvium underlain by salt-bearing evaporites and cause severe damage on various human structures. The leveling data have provided accurate information on multiple features of the subsidence phenomena with practical implications: (1) precise location of the vaguely-defined edges of the subsidence zones and their spatial relationships with surveyed surface deformation features; (2) spatial deformation patterns and relative contribution of subsidence mechanisms (sagging versus collapse); (3) accurate subsidence rates and their spatial variability with maximum and mean vertical displacement rates ranging from 1.0 to 11.8 cm/yr and 1.9 to 26.1 cm/yr, respectively; (4) identification of sinkholes that experience continuous subsidence at constant rates or with significant temporal changes; and (5) rates of volumetric surface changes as an approximation to rates of dissolution-induced volumetric depletion in the subsurface, reaching as much as 10,900 m3/yr in the largest sinkhole. The high subsidence rates as well as the annual volumetric changes are attributed to rapid dissolution of high-solubility salts.
Spatial analysis of rural land development
Seong-Hoon Cho; David H. Newman
2005-01-01
This article examines patterns of rural land development and density using spatial econometric models with the application of Geographical Information System (GIS). The cluster patterns of both development and high-density development indicate that the spatially continuous expansions of development and high-density development exist in relatively remote rural areas....
Giant sand waves at the mouth of San Francisco Bay
Barnard, P.L.; Hanes, D.M.; Rubin, D.M.; Kvitek, R.G.
2006-01-01
A field of giant sand waves, among the largest in the world, recently was mapped in high resolution for the first time during a multibeam survey in 2004 and 2005 through the strait of the Golden Gate at the mouth of San Francisco Bay in California (Figure la). This massive bed form field covers an area of approximately four square kilometers in water depths ranging from 30 to 106 meters, featuring more than 40 distinct sand waves with crests aligned approximately perpendicular to the dominant tidally generated cross-shore currents, with wavelengths and heights that measure up to 220 meters and 10 meters, respectively. Sand wave crests can be traced continuously for up to two kilometers across the mouth of this energetic tidal inlet, where depth-averaged tidal currents through the strait below the Golden Gate Bridge exceed 2.5 meters per second during peak ebb flows. Repeated surveys demonstrated that the sand waves are active and dynamic features that move in response to tidally generated currents. The complex temporal and spatial variations in wave and tidal current interactions in this region result in an astoundingly diverse array of bed form morphologies, scales, and orientations. Bed forms of approximately half the scale of those reported in this article previously were mapped inside San Francisco Bay during a multibeam survey in 1997 [Chin et al., 1997].
NASA Astrophysics Data System (ADS)
Stucker, V. K.; Tivey, M.; Lupton, J. E.; Walker, S. L.; Fornari, D. J.; de Ronde, C. E. J.
2014-12-01
Lake Rotomahana (North Island, New Zealand) is a crater lake with prominent hydrothermal venting. Water column studies were conducted in 2011 and 2014 to complement magnetic, seismic, bathymetric and heat flux surveys, respectively. Results from the heat flow survey indicate that Lake Rotomahana is getting warmer relative to historic measurements, with individual stations within the lake releasing heat in excess of 60 Watts/m2. Helium sources are found at the lake floor at depths of ~50 meters and ~100m. Helium concentrations below 50 m depth have increased with high statistical significance over the three years between surveys and represent some of the highest concentrations ever measured at 6x107 ccSTP/g with an end-member 3He/4He value of 7.1 Ra. Hydrothermal activity comprises a significant portion of the inputs to Lake Rotomahana, as evidenced by δD and δ18O values, as well as ratios of conservative elements such as boron and chloride. Waters collected from lakeshore hot springs show geographic differences in geothermal source temperature using a Na-K geothermometer, with inferred reservoir temperatures ranging from 200 to 230°C. Lake Rotomahana was in part the focus of the 1886 Tarawera eruption; our results show both pre-eruption hydrothermal sites and newly created post-eruption sites are active and should be monitored for continued changes.
Risley, John C.; Doyle, Micelis C.
1997-01-01
Water-temperature, air-temperature, specific- conductance, wind-speed, and solar-radiation data are presented from a study conducted in the Tualatin River Basin in northwestern Oregon during 7-month periods from May 1 through November 30, 1994 and May 1 through November 30, 1995. The study was done to assist local and State agencies in understanding temporal and spatial patterns of water temperatures in the river, determining the relation between water temperature and human activities, and developing urban and agricultural management strategies for controlling impacts on stream temperatures. Data were collected at 14 fixed-station continuous monitoring sites located on or near the main stem and major tributaries. Data fromtemperature and specific-conductance sites were collected instantaneously every 30 minutes on the hour and half hour. Wind-speed and solar-radiation data at two sites were averaged every 60 minutes. Wind-speed and solar-radiation data at a third site were averaged every 30 minutes. Water temperature data were also collected during seven synoptic surveys near the two main wastewater-treatment plants. The surveys were conducted during the low-flow period from August to October of 1994 and August to September 1995. During each survey, up to six recording temperature probes were positioned at locations upstream and downstream of plant effluent outlets. The probes collected data every 16 minutes over 48-hour periods.
NASA Astrophysics Data System (ADS)
Green, S. J.; Tamburello, N.; Miller, S. E.; Akins, J. L.; Côté, I. M.
2013-06-01
A standard approach to improving the accuracy of reef fish population estimates derived from underwater visual censuses (UVCs) is the application of species-specific correction factors, which assumes that a species' detectability is constant under all conditions. To test this assumption, we quantified detection rates for invasive Indo-Pacific lionfish ( Pterois volitans and P. miles), which are now a primary threat to coral reef conservation throughout the Caribbean. Estimates of lionfish population density and distribution, which are essential for managing the invasion, are currently obtained through standard UVCs. Using two conventional UVC methods, the belt transect and stationary visual census (SVC), we assessed how lionfish detection rates vary with lionfish body size and habitat complexity (measured as rugosity) on invaded continuous and patch reefs off Cape Eleuthera, the Bahamas. Belt transect and SVC surveys performed equally poorly, with both methods failing to detect the presence of lionfish in >50 % of surveys where thorough, lionfish-focussed searches yielded one or more individuals. Conventional methods underestimated lionfish biomass by ~200 %. Crucially, detection rate varied significantly with both lionfish size and reef rugosity, indicating that the application of a single correction factor across habitats and stages of invasion is unlikely to accurately characterize local populations. Applying variable correction factors that account for site-specific lionfish size and rugosity to conventional survey data increased estimates of lionfish biomass, but these remained significantly lower than actual biomass. To increase the accuracy and reliability of estimates of lionfish density and distribution, monitoring programs should use detailed area searches rather than standard visual survey methods. Our study highlights the importance of accounting for sources of spatial and temporal variation in detection to increase the accuracy of survey data from coral reef systems.
NASA Astrophysics Data System (ADS)
Lague, D.; Launeau, P.; Gouraud, E.
2017-12-01
Topo-bathymetric airborne lidar sensors using a green laser penetrating water and suitable for hydrography are now sold by major manufacturers. In the context of channel morphodynamics, repeat surveys could offer synoptic high resolution measurement of topo-bathymetric change, a key data that is currently missing. Yet, beyond the technological promise, what can we really achieve with these sensors in terms of depth penetration and bathymetric accuracy ? Can all rivers be surveyed ? How easy it is to process this new type of data to get the data needed by geomorphologists ? Here we report on the use of the Optech Titan dual wavelength (1064 nm & 532 nm) operated by the universities of Rennes and Nantes (France) and deployed over several rivers and lakes in France, including repeat surveys. We will illustrate cases where the topo-bathymetric survey is complete, reaching up to 6 m in rivers and offers unprecedented data for channel morphology analysis over tens of kilometres. We will also present challenging cases for which the technology will never work, or for which new algorithms to process full waveform are required. We will illustrate new developments for automated processing of large datasets, including the critical step of water surface detection and refraction correction. In suitable rivers, airborne topo-bathymetric surveys offer unprecedented synoptic 3D data at very high resolution (> 15 pts/m² in bathy) and precision (better than 10 cm for the bathy) down to 5-6 meters depth, with a perfectly continuous topography to bathymetry transition. This presentation will illustrate how this new type of data, when combined with 2D hydraulics modelling offers news insights into the spatial variations of friction in relation to channel bedforms, and the connectivity between rivers and floodplains.
Early Results from the Wisconsin H-Alpha Mapper Southern Sky Survey
NASA Astrophysics Data System (ADS)
Haffner, L. Matthew; Reynolds, R. J.; Madsen, G. J.; Hill, A. S.; Barger, K. A.; Jaehnig, K. P.; Mierkiewicz, E. J.; Percival, J. W.
2010-01-01
After a successful eleven-year campaign at Kitt Peak, we moved the Wisconsin H-Alpha Mapper (WHAM) to Cerro Tololo in early 2009. Here we present some of the early data after the first nine months under southern skies. These maps begin to complete the first all-sky, kinematic survey of the diffuse Hα emission from the Milky Way. Much of this emission arises from the Warm Ionized Medium (WIM), a significant component of the ISM that extends a few kiloparsecs above the Galactic disk. The WHAM instrument consists of a 0.6 m primary lens housed in a steerable siderostat coupled to a 15 cm dual-etalon Fabry-Perot spectrometer. The optical configuration delivers a spatially integrated spectrum from a one-degree beam on the sky covering 200 km/s with 12 km/s spectral resolution. Short, 30-second exposures allow us to cover the observable sky in about two years at sensitivity levels of about 0.1 R (EM 0.2 pc cm-6). While this first look at the data focuses on the Hα survey, WHAM is also capable of observing many other optical emission lines, revealing fascinating trends in the temperature and ionization state of the WIM. Our ongoing studies of the physical conditions of diffuse ionized gas will continue in the south following the Hα survey. In addition, future observations using our survey mode will cover the full velocity range of the Magellanic Stream, Bridge, and Clouds to trace the ionized gas associated with these neighboring systems. WHAM is supported by NSF award AST-0607512 and has made this smooth relocation south due to the excellent staff at KPNO and CTIO.
Trelle, Sven
2002-01-01
Background Postal surveys are a popular instrument for studies about continuing medical education habits. But little is known about the accuracy of responses in such surveys. The objective of this study was to quantify the magnitude of inaccurate responses in a postal survey among physicians. Methods A sub-analysis of a questionnaire about continuing medical education habits and information management was performed. The five variables used for the quantitative analysis are based on a question about the knowledge of a fictitious technical term and on inconsistencies in contingency tables of answers to logically connected questions. Results Response rate was 52%. Non-response bias is possible but seems not very likely since an association between demographic variables and inconsistent responses could not be found. About 10% of responses were inaccurate according to the definition. Conclusion It was shown that a sub-analysis of a questionnaire makes a quantification of inaccurate responses in postal surveys possible. This sub-analysis revealed that a notable portion of responses in a postal survey about continuing medical education habits and information management was inaccurate. PMID:12153701
Liu, Jiankang; Zhang, Kebin
2018-05-09
Enclosure is an effective practice for restoring and rehabilitating the degraded grassland ecosystem caused by overgrazing. Shrub species, which are dominant in most desert grasslands in arid and semiarid regions, have some beneficial ecological functions for grassland restoration. However, how the population structure and spatial pattern of the Artemisia ordosica shrub changes in a grassland ecosystem under enclosed practice is not well understood. This study, conducted in the Mu Us desert in northwest China, was designed to measure the A. ordosica population according to the chronosequence of enclosure (enclosure periods ranged from 5 years, 10 years, 15 years, and 25 years), contrasting this with an adjacent continuously grazed grassland. The results showed that the enclosed grasslands had a higher number of individuals of different age classes (seedling, adult, aging, and dead group) and greater population coverage, but shrubs had significant lower ( p < 0.05) crown diameter and height in comparison with those in continuously grazed grassland. Further, enclosed grasslands had a significantly higher ( p < 0.05) Shannon-Wiener index (H) and Evenness index (E), but a significantly lower ( p < 0.05) Richness index (R) than continuously grazed grassland. The crown of A. ordosica showed a significant linear positive correlation with height in all plots across succession, indicating that it was feasible to analyze the age structure by crown. The crown-class distribution structure of the A. ordosica population approximated a Gaussian distribution model in all survey plots. Within the population, seedling and adult groups exhibited aggregated spatial distribution at small scales, while aging and dead A. ordosica groups showed random distribution at almost all scales in different plots. The seedling A. ordosica group showed a positive correlation with adults at small scales in all plots except in 10 years of enclosure. However, it showed independent correlation with aging and dead groups at almost all scales. In long-term enclosed plots, the mortality rate of the A. ordosica population increased, therefore assistance management practices, such as fertilization, mowing, interval grazing, and seasonal grazing, must be employed to maintain population stability after long-term enclosure. This study can improve understanding and clarify the effects of enclosures in the desert grasslands of northwest China.
Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward
NASA Astrophysics Data System (ADS)
Daley, T. M.
2012-12-01
The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still obtaining high resolution. Typically the high-resolution (spatial and temporal) tools are deployed in permanent or semi-permanent borehole installations, where special well design may be necessary, such as non-conductive casing for electrical surveys. Effective utilization of monitoring wells requires an approach of modular borehole monitoring (MBM) were multiple measurements can be made. An example is recent work at the Citronelle pilot injection site where an MBM package with seismic, fluid sampling and distributed fiber sensing was deployed. For future large scale sequestration monitoring, an adaptive borehole-monitoring program is proposed.
40 CFR 141.401 - Sanitary surveys for ground water systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Sanitary surveys for ground water systems. 141.401 Section 141.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.401 Sanitary surveys for ground water systems. (a)...
The largest spatial survey of cylindrospermosins, microcystins, and saxitoxins in the United States was conducted as part of the 2007 U.S. Survey of the Nation’s Lakes. Integrated photic zone samples were collected from 1,161 lakes during May-September 2007. Cyanotoxin, cya...
Mapping forest canopy gaps using air-photo interpretation and ground surveys
Fox, T.J.; Knutson, M.G.; Hines, R.K.
2000-01-01
Canopy gaps are important structural components of forested habitats for many wildlife species. Recent improvements in the spatial accuracy of geographic information system tools facilitate accurate mapping of small canopy features such as gaps. We compared canopy-gap maps generated using ground survey methods with those derived from air-photo interpretation. We found that maps created from high-resolution air photos were more accurate than those created from ground surveys. Errors of omission were 25.6% for the ground-survey method and 4.7% for the air-photo method. One variable of inter est in songbird research is the distance from nests to gap edges. Distances from real and simulated nests to gap edges were longer using the ground-survey maps versus the air-photo maps, indicating that gap omission could potentially bias the assessment of spatial relationships. If research or management goals require location and size of canopy gaps and specific information about vegetation structure, we recommend a 2-fold approach. First, canopy gaps can be located and the perimeters defined using 1:15,000-scale or larger aerial photographs and the methods we describe. Mapped gaps can then be field-surveyed to obtain detailed vegetation data.
Dorazio, R.M.; Jelks, H.L.; Jordan, F.
2005-01-01
A statistical modeling framework is described for estimating the abundances of spatially distinct subpopulations of animals surveyed using removal sampling. To illustrate this framework, hierarchical models are developed using the Poisson and negative-binomial distributions to model variation in abundance among subpopulations and using the beta distribution to model variation in capture probabilities. These models are fitted to the removal counts observed in a survey of a federally endangered fish species. The resulting estimates of abundance have similar or better precision than those computed using the conventional approach of analyzing the removal counts of each subpopulation separately. Extension of the hierarchical models to include spatial covariates of abundance is straightforward and may be used to identify important features of an animal's habitat or to predict the abundance of animals at unsampled locations.
Fronts in extended systems of bistable maps coupled via convolutions
NASA Astrophysics Data System (ADS)
Coutinho, Ricardo; Fernandez, Bastien
2004-01-01
An analysis of front dynamics in discrete time and spatially extended systems with general bistable nonlinearity is presented. The spatial coupling is given by the convolution with distribution functions. It allows us to treat in a unified way discrete, continuous or partly discrete and partly continuous diffusive interactions. We prove the existence of fronts and the uniqueness of their velocity. We also prove that the front velocity depends continuously on the parameters of the system. Finally, we show that every initial configuration that is an interface between the stable phases propagates asymptotically with the front velocity.
Integration of real time kinematic satellite navigation with ground-penetrating radar surveys
USDA-ARS?s Scientific Manuscript database
Precision agriculture, environmental mapping, and construction benefit from subsurface imaging by revealing the spatial variability of underground features. Features surveyed of agricultural interest are bedrock depth, soil horizon thicknesses, and buried–object features such as drainage pipe. For t...
X-ray and IR Surveys of the Orion Molecular Clouds and the Cepheus OB3b Cluster
NASA Astrophysics Data System (ADS)
Megeath, S. Thomas; Wolk, Scott J.; Pillitteri, Ignazio; Allen, Tom
2014-08-01
X-ray and IR surveys of molecular clouds between 400 and 700 pc provide complementary means to map the spatial distribution of young low mass stars associated with the clouds. We overview an XMM survey of the Orion Molecular Clouds, at a distance of 400 pc. By using the fraction of X-ray sources with disks as a proxy for age, this survey has revealed three older clusters rich in diskless X-ray sources. Two are smaller clusters found at the northern and southern edges of the Orion A molecular cloud. The third cluster surrounds the O-star Iota Ori (the point of Orion's sword) and is in the foreground to the Orion molecular cloud. In addition, we present a Chandra and Spitzer survey of the Cep OB3b cluster at 700 pc. These data show a spatially variable disk fraction indicative of age variations within the cluster. We discuss the implication of these results for understanding the spread of ages in young clusters and the star formation histories of molecular clouds.
Hunting Faint Dwarf Galaxies in the Field Using Integrated Light Surveys
NASA Astrophysics Data System (ADS)
Danieli, Shany; van Dokkum, Pieter; Conroy, Charlie
2018-03-01
We discuss the approach of searching the lowest mass dwarf galaxies, ≲ {10}6 {M}ȯ , in the general field, using integrated light surveys. By exploring the limiting surface brightness-spatial resolution (μ eff,lim‑θ) parameter space, we suggest that faint field dwarfs in the Local Volume, between 3 and 10 Mpc, are expected to be detected very effectively and in large numbers using integrated light photometric surveys, complementary to the classical star counts method. We use a sample of dwarf galaxies in the Local Group to construct relations between their photometric and structural parameters, M *–μ eff,V and M *–R eff. We use these relations, along with assumed functional forms for the halo mass function and the stellar mass–halo mass (SMHM) relation, to calculate the lowest detectable stellar masses in the Local Volume and the expected number of galaxies as a function of the limiting surface brightness and spatial resolution. The number of detected galaxies depends mostly on the limiting surface brightness for distances >3 Mpc, while spatial resolution starts to play a role for galaxies at distances >8 Mpc. Surveys with μ eff,lim ∼ 30 mag arcsec‑2 should be able to detect galaxies with stellar masses down to ∼104 M ⊙ in the Local Volume. Depending on the form of the SMHM relation, the expected number of dwarf galaxies with distances between 3 and 10 Mpc is 0.04–0.35 per square degree, assuming a limiting surface brightness of ∼29–30 mag arcsec‑2 and a spatial resolution <4″. We plan to search for a population of low-mass dwarf galaxies in the field by performing a blank wide field photometric survey with the Dragonfly Telephoto Array, an imaging system optimized for the detection of extended ultra low surface brightness structures.
NASA Astrophysics Data System (ADS)
Beaumont, B. C.; Raineault, N.
2016-02-01
Scientists have recognized that natural seeps account for a large amount of methane emissions. Despite their widespread occurrence in areas like the Gulf of Mexico, little is known about the temporal variability and site-scale spatial variability of venting over time. We used repeat acoustic surveys to compare multiple days of seep activity and determine the changes in the locus of methane emission and plume height. The Sleeping Dragon site was surveyed with an EM302 multibeam sonar on three consecutive days in 2014 and 4 days within one week in 2015. The data revealed three distinctive plume regions. The locus of venting varied by 10-60 meters at each site. The plume that exhibited the least spatial variability in venting, was also the most temporally variable. This seep was present in one-third of survey dates in 2014 and three quarters of survey dates in 2015, showing high day-to-day variability. The plume height was very consistent for this plume, whereas the other plumes were more consistent temporally, but varied in maximum plume height detection by 25-85 m. The single locus of emission at the site that had high day-to-day variability may be due to a single conduit for methane release, which is sometimes closed off by carbonate or clathrate hydrate formation. In addition to day-to-day temporal variability, the locus of emission at one site was observed to shift from a point-source in 2014 to a diffuse source in 2015 at a nearby location. ROV observations showed that one of the seep sites that closed off temporarily, experienced an explosive breakthrough of gas, releasing confined methane and blowing out rock. The mechanism that causes on/off behavior of certain plumes, combined with the spatial variability of the locus of methane release shown in this study may point to carbonate or hydrate formation in the seep plumbing system and should be further investigated.
NASA Astrophysics Data System (ADS)
Li, Weiyao; Huang, Guanhua; Xiong, Yunwu
2016-04-01
The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and solute transport complexity weakened, and the corresponding information entropy also decreased. Longitudinal macro dispersivity declined slightly at early time then rose. Solute spatial and temporal distribution had significant impacts on the information entropy. Information entropy could reflect the change of solute distribution. Information entropy appears a tool to characterize the spatial and temporal complexity of solute migration and provides a reference for future research.
SPATIALLY-BALANCED SAMPLING OF NATURAL RESOURCES IN THE PRESENCE OF FRAME IMPERFECTIONS
The spatial distribution of a natural resource is an important consideration in designing an efficient survey or monitoring program for the resource. Generally, samples that are more or less evenly dispersed over the extent of the resource will be more efficient than simple rando...
Visual and Spatial Modes in Science Learning
ERIC Educational Resources Information Center
Ramadas, Jayashree
2009-01-01
This paper surveys some major trends from research on visual and spatial thinking coming from cognitive science, developmental psychology, science literacy, and science studies. It explores the role of visualisation in creativity, in building mental models, and in the communication of scientific ideas, in order to place these findings in the…
Horvath , E.A.; Fosnight, E.A.; Klingebiel, A.A.; Moore, D.G.; Stone, J.E.; Reybold, W.U.; Petersen, G.W.
1987-01-01
A methodology has been developed to create a spatial database by referencing digital elevation, Landsat multispectral scanner data, and digitized soil premap delineations of a number of adjacent 7.5-min quadrangle areas to a 30-m Universal Transverse Mercator projection. Slope and aspect transformations are calculated from elevation data and grouped according to field office specifications. An unsupervised classification is performed on a brightness and greenness transformation of the spectral data. The resulting spectral, slope, and aspect maps of each of the 7.5-min quadrangle areas are then plotted and submitted to the field office to be incorporated into the soil premapping stages of a soil survey. A tabular database is created from spatial data by generating descriptive statistics for each data layer within each soil premap delineation. The tabular data base is then entered into a data base management system to be accessed by the field office personnel during the soil survey and to be used for subsequent resource management decisions.Large amounts of data are collected and archived during resource inventories for public land management. Often these data are stored as stacks of maps or folders in a file system in someone's office, with the maps in a variety of formats, scales, and with various standards of accuracy depending on their purpose. This system of information storage and retrieval is cumbersome at best when several categories of information are needed simultaneously for analysis or as input to resource management models. Computers now provide the resource scientist with the opportunity to design increasingly complex models that require even more categories of resource-related information, thus compounding the problem.Recently there has been much emphasis on the use of geographic information systems (GIS) as an alternative method for map data archives and as a resource management tool. Considerable effort has been devoted to the generation of tabular databases, such as the U.S. Department of Agriculture's SCS/S015 (Soil Survey Staff, 1983), to archive the large amounts of information that are collected in conjunction with mapping of natural resources in an easily retrievable manner.During the past 4 years the U.S. Geological Survey's EROS Data Center, in a cooperative effort with the Bureau of Land Management (BLM) and the Soil Conservation Service (SCS), developed a procedure that uses spatial and tabular databases to generate elevation, slope, aspect, and spectral map products that can be used during soil premapping. The procedure results in tabular data, residing in a database management system, that are indexed to the final soil delineations and help quantify soil map unit composition.The procedure was developed and tested on soil surveys on over 600 000 ha in Wyoming, Nevada, and Idaho. A transfer of technology from the EROS Data Center to the BLM will enable the Denver BLM Service Center to use this procedure in soil survey operations on BLM lands. Also underway is a cooperative effort between the EROS Data Center and SCS to define and evaluate maps that can be produced as derivatives of digital elevation data for 7.5-min quadrangle areas, such as those used during the premapping stage of the soil surveys mentioned above, the idea being to make such products routinely available.The procedure emphasizes the applications of digital elevation and spectral data to order-three soil surveys on rangelands, and will:Incorporate digital terrain and spectral data into a spatial database for soil surveys.Provide hardcopy products (that can be generated from digital elevation model and spectral data) that are useful during the soil pre-mapping process.Incorporate soil premaps into a spatial database that can be accessed during the soil survey process along with terrain and spectral data.Summarize useful quantitative information for soil mapping and for making interpretations for resource management.
Bennett, Trudy J.; Graham, Jennifer L.; Foster, Guy M.; Stone, Mandy L.; Juracek, Kyle E.; Rasmussen, Teresa J.; Putnam, James E.
2014-01-01
A quality-assurance plan for use in conducting continuous water-quality monitoring activities has been developed for the Kansas Water Science Center in accordance with guidelines set forth by the U.S. Geological Survey. This quality-assurance plan documents the standards, policies, and procedures used by the U.S. Geological Survey in Kansas for activities related to the collection, processing, storage, analysis, and release of continuous water-quality monitoring data. The policies and procedures that are documented in this quality-assurance plan for continuous water-quality monitoring activities complement quality-assurance plans for surface-water and groundwater activities in Kansas.
Hg concentrations in fish from coastal waters of California and Western North America
Davis, Jay; Ross, John; Bezalel, Shira; Sim, Lawrence; Bonnema, Autumn; Ichikawa, Gary; Heim, Wes; Schiff, Kenneth C; Eagles-Smith, Collin A.; Ackerman, Joshua T.
2016-01-01
The State of California conducted an extensive and systematic survey of mercury (Hg) in fish from the California coast in 2009 and 2010. The California survey sampled 3483 fish representing 46 species at 68 locations, and demonstrated that methylHg in fish presents a widespread exposure risk to fish consumers. Most of the locations sampled (37 of 68) had a species with an average concentration above 0.3 μg/g wet weight (ww), and 10 locations an average above 1.0 μg/g ww. The recent and robust dataset from California provided a basis for a broader examination of spatial and temporal patterns in fish Hg in coastal waters of Western North America. There is a striking lack of data in publicly accessible databases on Hg and other contaminants in coastal fish. An assessment of the raw data from these databases suggested the presence of relatively high concentrations along the California coast and in Puget Sound, and relatively low concentrations along the coasts of Alaska and Oregon, and the outer coast of Washington. The dataset suggests that Hg concentrations of public health concern can be observed at any location on the coast of Western North America where long-lived predator species are sampled. Output from a linear mixed-effects model resembled the spatial pattern observed for the raw data and suggested, based on the limited dataset, a lack of trend in fish Hg over the nearly 30-year period covered by the dataset. Expanded and continued monitoring, accompanied by rigorous data management procedures, would be of great value in characterizing methylHg exposure, and tracking changes in contamination of coastal fish in response to possible increases in atmospheric Hg emissions in Asia, climate change, and terrestrial Hg control efforts in coastal watersheds.
NASA Astrophysics Data System (ADS)
Sacchi, E.; Cignoni, M.; Aloisi, A.; Tosi, M.; Calzetti, D.; Lee, J. C.; Adamo, A.; Annibali, F.; Dale, D. A.; Elmegreen, B. G.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Sabbi, E.; Smith, L. J.; Thilker, D. A.; Ubeda, L.; Whitmore, B. C.
2018-04-01
We present a detailed study of the Magellanic irregular galaxy NGC 4449 based on both archival and new photometric data from the Legacy Extragalactic UV Survey, obtained with the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3. Thanks to its proximity (D = 3.82 ± 0.27 Mpc), we reach stars 3 mag fainter than the tip of the red giant branch in the F814W filter. The recovered star formation history (SFH) spans the whole Hubble time, but due to the age–metallicity degeneracy of the red giant branch stars, it is robust only over the lookback time reached by our photometry, i.e., ∼3 Gyr. The most recent peak of star formation (SF) is around 10 Myr ago. The average surface density SF rate over the whole galaxy lifetime is 0.01 M ⊙ yr‑1 kpc‑2. From our study, it emerges that NGC 4449 has experienced a fairly continuous SF regime in the last 1 Gyr, with peaks and dips whose SF rates differ only by a factor of a few. The very complex and disturbed morphology of NGC 4449 makes it an interesting galaxy for studies of the relationship between interactions and starbursts, and our detailed and spatially resolved analysis of its SFH does indeed provide some hints on the connection between these two phenomena in this peculiar dwarf galaxy. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS 5-26555.
Patterns of Snow Leopard Site Use in an Increasingly Human-Dominated Landscape
2016-01-01
Human population growth and concomitant increases in demand for natural resources pose threats to many wildlife populations. The landscapes used by the endangered snow leopard (Panthera uncia) and their prey is increasingly subject to major changes in land use. We aimed to assess the influence of 1) key human activities, as indicated by the presence of mining and livestock herding, and 2) the presence of a key prey species, the blue sheep (Pseudois nayaur), on probability of snow leopard site use across the landscape. In Gansu Province, China, we conducted sign surveys in 49 grid cells, each of 16 km2 in size, within a larger area of 3392 km2. We analysed the data using likelihood-based habitat occupancy models that explicitly account for imperfect detection and spatial auto-correlation between survey transect segments. The model-averaged estimate of snow leopard occupancy was high [0.75 (SE 0.10)], but only marginally higher than the naïve estimate (0.67). Snow leopard segment-level probability of detection, given occupancy on a 500 m spatial replicate, was also high [0.68 (SE 0.08)]. Prey presence was the main determinant of snow leopard site use, while human disturbances, in the form of mining and herding, had low predictive power. These findings suggest that snow leopards continue to use areas very close to such disturbances, as long as there is sufficient prey. Improved knowledge about the effect of human activity on large carnivores, which require large areas and intact prey populations, is urgently needed for conservation planning at the local and global levels. We highlight a number of methodological considerations that should guide the design of such research. PMID:27171203
Patterns of Snow Leopard Site Use in an Increasingly Human-Dominated Landscape.
Alexander, Justine Shanti; Gopalaswamy, Arjun M; Shi, Kun; Hughes, Joelene; Riordan, Philip
2016-01-01
Human population growth and concomitant increases in demand for natural resources pose threats to many wildlife populations. The landscapes used by the endangered snow leopard (Panthera uncia) and their prey is increasingly subject to major changes in land use. We aimed to assess the influence of 1) key human activities, as indicated by the presence of mining and livestock herding, and 2) the presence of a key prey species, the blue sheep (Pseudois nayaur), on probability of snow leopard site use across the landscape. In Gansu Province, China, we conducted sign surveys in 49 grid cells, each of 16 km2 in size, within a larger area of 3392 km2. We analysed the data using likelihood-based habitat occupancy models that explicitly account for imperfect detection and spatial auto-correlation between survey transect segments. The model-averaged estimate of snow leopard occupancy was high [0.75 (SE 0.10)], but only marginally higher than the naïve estimate (0.67). Snow leopard segment-level probability of detection, given occupancy on a 500 m spatial replicate, was also high [0.68 (SE 0.08)]. Prey presence was the main determinant of snow leopard site use, while human disturbances, in the form of mining and herding, had low predictive power. These findings suggest that snow leopards continue to use areas very close to such disturbances, as long as there is sufficient prey. Improved knowledge about the effect of human activity on large carnivores, which require large areas and intact prey populations, is urgently needed for conservation planning at the local and global levels. We highlight a number of methodological considerations that should guide the design of such research.
Smith, David R.; Robinson, Timothy J.
2015-01-01
A Delaware Bay, USA, standardized survey of spawning horseshoe crabs, Limulus polyphemus, was carried out in 1999 − 2013 through a citizen science network. Previous trend analyses of the data were at the state (DE or NJ) or bay-wide levels. Here, an alternative mixed-model regression analysis was used to estimate trends in female and male spawning densities at the beach level (n = 26) with the objective of inferring their causes. For females, there was no overall trend and no single explanation applies to the temporal and spatial patterns in their densities. Individual beaches that initially had higher densities tended to experience a decrease, while beaches that initially had lower densities tended to experience an increase. As a result, densities of spawning females at the end of the study period were relatively similar among beaches, suggesting a redistribution of females among the beaches over the study period. For males, there was a positive overall trend in spawning abundance from 1999 to 2013, and this increase occurred broadly among beaches. Moreover, the beaches with below-average initial male density tended to have the greatest increases. Possible explanations for these patterns include harvest reduction, sampling artifact, habitat change, density-dependent habitat selection, or mate selection. The broad and significant increase in male spawning density, which occurred after enactment of harvest controls, is consistent with the harvest reduction explanation, but there is no single explanation for the temporal or spatial pattern in female densities. These results highlight the continued value of a citizen-science-based spawning survey in understanding horseshoe crab ecology and conservation.
Estimation of Arable Land Loss in Shandong Province, China based on BFAST Model
NASA Astrophysics Data System (ADS)
Liu, Y.
2016-12-01
With the rapid development of national economy and rise of industrialization, China has been one of the countries which has the fastest urbanization process. From 2001 to 2005, China lost over 2000 km2 fertile arable land every year because of urban expansion. Arable land area declining continuously poses a threat to China's food security. Land survey is the direct way to statistic the arable land status, which lasts long time and needs mounts of financial support. Remote sensing is a perfect way to survey land use and its dynamics at large scale. This paper aims to evaluate the detailed status of agricultural land loss of Shandong Province, China by using BFAST (Breaks for Additive Seasonal and Trend) model. First, the 30m spatial resolution global land cover products GlobeLand30 in 2000 and 2010 are used to locate pixels transforming from agricultural land to artificial cover during this period. Within a MODIS pixel (250m) area, if over half of GlobeLand30 pixels have changed from arable land to artificial cover, then the responding MODIS pixel is classified as changed area, whose phenology reflected by NDVI time series curve will also change. Then, BFAST is used to detect the break point which represents the time of change occurred using MODIS NDVI time series data. From 2002 to 2010, Shandong Province lost its 1063.03 km2 arable land in total. Arable land loss has a declining trend in each year and most loss occurred in 2002 and 2003. Spatially, cities which has higher level of economic development in central and eastern regions lost more arable land. Finally, compare this result with statistical data from China's national Bureau of Statistics, there is a strong positive relationship.
NASA Astrophysics Data System (ADS)
Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.
2014-06-01
Repeated Light Detection and Ranging (LiDAR) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 LiDAR-derived dataset of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically-based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the coterminous United States. Independent validation data is scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation dataset with substantial geographic coverage. Within twelve distinctive 500 m × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 LiDAR acquisitions. This supplied a dataset for constraining the uncertainty of upscaled LiDAR estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled LiDAR snow depths were then compared to the SNODAS-estimates over the entire study area for the dates of the LiDAR flights. The remotely-sensed snow depths provided a more spatially continuous comparison dataset and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between LiDAR observations and SNODAS estimates were most drastic, suggesting natural processes specific to these regions as causal influences on model uncertainty.
NASA Astrophysics Data System (ADS)
Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.
2015-01-01
Repeated light detection and ranging (lidar) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 lidar-derived data set of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the conterminous United States. Independent validation data are scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation data set with substantial geographic coverage. Within 12 distinctive 500 × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 lidar acquisitions. This supplied a data set for constraining the uncertainty of upscaled lidar estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled lidar snow depths were then compared to the SNODAS estimates over the entire study area for the dates of the lidar flights. The remotely sensed snow depths provided a more spatially continuous comparison data set and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between lidar observations and SNODAS estimates were most drastic, providing insight into the causal influences of natural processes on model uncertainty.
Seasonal electrical resistivity surveys of a coastal bluff, Barter Island, North Slope Alaska
Swarzenski, Peter W.; Johnson, Cordell; Lorenson, Thomas; Conaway, Christopher H.; Gibbs, Ann E.; Erikson, Li; Richmond, Bruce M.; Waldrop, Mark P.
2016-01-01
Select coastal regions of the North Slope of Alaska are experiencing high erosion rates that can be attributed in part to recent warming trends and associated increased storm intensity and frequency. The upper sediment column of the coastal North Slope of Alaska can be described as continuous permafrost underlying a thin (typically less than 1–2 m) active layer that responds variably to seasonal thaw cycles. Assessing the temporal and spatial variability of the active layer and underlying permafrost is essential to better constrain how heightened erosion may impact material fluxes to the atmosphere and the coastal ocean, and how enhanced thaw cycles may impact the stability of the coastal bluffs. In this study, multi-channel electrical resistivity tomography (ERT) was used to image shallow subsurface features of a coastal bluff west of Kaktovik, on Barter Island, northeast Alaska. A comparison of a suite of paired resistivity surveys conducted in early and late summer 2014 provided detailed information on how the active layer and permafrost are impacted during the short Arctic summer. Such results are useful in the development of coastal resilience models that tie together fluvial, terrestrial, climatic, geologic, and oceanographic forcings on shoreline stability.
A generic method for improving the spatial interoperability of medical and ecological databases.
Ghenassia, A; Beuscart, J B; Ficheur, G; Occelli, F; Babykina, E; Chazard, E; Genin, M
2017-10-03
The availability of big data in healthcare and the intensive development of data reuse and georeferencing have opened up perspectives for health spatial analysis. However, fine-scale spatial studies of ecological and medical databases are limited by the change of support problem and thus a lack of spatial unit interoperability. The use of spatial disaggregation methods to solve this problem introduces errors into the spatial estimations. Here, we present a generic, two-step method for merging medical and ecological databases that avoids the use of spatial disaggregation methods, while maximizing the spatial resolution. Firstly, a mapping table is created after one or more transition matrices have been defined. The latter link the spatial units of the original databases to the spatial units of the final database. Secondly, the mapping table is validated by (1) comparing the covariates contained in the two original databases, and (2) checking the spatial validity with a spatial continuity criterion and a spatial resolution index. We used our novel method to merge a medical database (the French national diagnosis-related group database, containing 5644 spatial units) with an ecological database (produced by the French National Institute of Statistics and Economic Studies, and containing with 36,594 spatial units). The mapping table yielded 5632 final spatial units. The mapping table's validity was evaluated by comparing the number of births in the medical database and the ecological databases in each final spatial unit. The median [interquartile range] relative difference was 2.3% [0; 5.7]. The spatial continuity criterion was low (2.4%), and the spatial resolution index was greater than for most French administrative areas. Our innovative approach improves interoperability between medical and ecological databases and facilitates fine-scale spatial analyses. We have shown that disaggregation models and large aggregation techniques are not necessarily the best ways to tackle the change of support problem.
APPLICATION OF SPATIAL INFORMATION TECHNOLOGY TO PETROLEUM RESOURCE ASSESSMENT ANALYSIS.
Miller, Betty M.; Domaratz, Michael A.
1984-01-01
Petroleum resource assessment procedures require the analysis of a large volume of spatial data. The US Geological Survey (USGS) has developed and applied spatial information handling procedures and digital cartographic techniques to a recent study involving the assessment of oil and gas resource potential for 74 million acres of designated and proposed wilderness lands in the western United States. The part of the study which dealt with the application of spatial information technology to petroleum resource assessment procedures is reviewed. A method was designed to expedite the gathering, integrating, managing, manipulating and plotting of spatial data from multiple data sources that are essential in modern resource assessment procedures.
Developing a geoscience knowledge framework for a national geological survey organisation
NASA Astrophysics Data System (ADS)
Howard, Andrew S.; Hatton, Bill; Reitsma, Femke; Lawrie, Ken I. G.
2009-04-01
Geological survey organisations (GSOs) are established by most nations to provide a geoscience knowledge base for effective decision-making on mitigating the impacts of natural hazards and global change, and on sustainable management of natural resources. The value of the knowledge base as a national asset is continually enhanced by the exchange of knowledge between GSOs as data and information providers and the stakeholder community as knowledge 'users and exploiters'. Geological maps and associated narrative texts typically form the core of national geoscience knowledge bases, but have some inherent limitations as methods of capturing and articulating knowledge. Much knowledge about the three-dimensional (3D) spatial interpretation and its derivation and uncertainty, and the wider contextual value of the knowledge, remains intangible in the minds of the mapping geologist in implicit and tacit form. To realise the value of these knowledge assets, the British Geological Survey (BGS) has established a workflow-based cyber-infrastructure to enhance its knowledge management and exchange capability. Future geoscience surveys in the BGS will contribute to a national, 3D digital knowledge base on UK geology, with the associated implicit and tacit information captured as metadata, qualitative assessments of uncertainty, and documented workflows and best practice. Knowledge-based decision-making at all levels of society requires both the accessibility and reliability of knowledge to be enhanced in the grid-based world. Establishment of collaborative cyber-infrastructures and ontologies for geoscience knowledge management and exchange will ensure that GSOs, as knowledge-based organisations, can make their contribution to this wider goal.
A GIS application for assessing, mapping, and quantifying the social values of ecosystem services
Sherrouse, Benson C.; Clement, Jessica M.; Semmens, Darius J.
2011-01-01
As human pressures on ecosystems continue to increase, research involving the effective incorporation of social values information into the context of comprehensive ecosystem services assessments is becoming more important. Including quantified, spatially explicit social value metrics in such assessments will improve the analysis of relative tradeoffs among ecosystem services. This paper describes a GIS application, Social Values for Ecosystem Services (SolVES), developed to assess, map, and quantify the perceived social values of ecosystem services by deriving a non-monetary Value Index from responses to a public attitude and preference survey. SolVES calculates and maps the Value Index for social values held by various survey subgroups, as distinguished by their attitudes regarding ecosystem use. Index values can be compared within and among survey subgroups to explore the effect of social contexts on the valuation of ecosystem services. Index values can also be correlated and regressed against landscape metrics SolVES calculates from various environmental data layers. Coefficients derived through these analyses were applied to their corresponding data layers to generate a predicted social value map. This map compared favorably with other SolVES output and led to the addition of a predictive mapping function to SolVES for value transfer to areas where survey data are unavailable. A more robust application is being developed as a public domain tool for decision makers and researchers to map social values of ecosystem services and to facilitate discussions among diverse stakeholders involving relative tradeoffs among different ecosystem services in a variety of physical and social contexts.
Schloderer, Glen; Bingham, Matthew; Awange, Joseph L; Fleming, Kevin M
2011-09-01
In environmental monitoring, environmental impact assessments and environmental audits, topographical maps play an essential role in providing a means by which the locations of sampling sites may be selected, in assisting with the interpretation of physical features, and in indicating the impact or potential impact on an area due to changes in the system being monitored (e.g., spatially changing features such as wetlands). Global Navigation Satellite Systems (GNSS) are hereby presented as a rapid method for monitoring spatial changes to support environmental monitoring decisions and policies. To validate the GNSS-based method, a comparison is made of results from a small-scale topographic survey using radio-based real-time kinematic GNSS (GNSS-RTK) and total station survey methods at Jack Finnery Lake, Perth, Australia. The accuracies achieved by the total station in this study were 2 cm horizontally and 6 cm vertically, while the GNSS-RTK also achieved an accuracy of 2 cm horizontally, but only 28 cm vertically. While the GNSS-RTK measurements were less accurate in the height component compared to those from the total station method, it is still capable of achieving accuracies sufficient for a topographic map at a scale of 1:1,750 that could support environmental monitoring tasks such as identifying spatial changes in small water bodies or wetlands. The time taken to perform the survey using GNSS-RTK, however, was much shorter compared to the total station method, thereby making it quite suitable for monitoring spatial changes within an environmental context, e.g., dynamic mining activities that require rapid surveys and the updating of the monitored data at regular intervals.
WEAKLY SYNCHRYRONIZED SUBPOPULATION DYNAMICS IN WISCONSIN FROGS AND TOADS
Spatial synchrony in population dynamics is a topic of increasing interest in basic and applied ecology. We used data from 18 years of frog and toad calling surveys conducted throughout Wisconsin to determine the level of intraspecific synchrony among survey sites, and the relat...
A Survey of Adult and Continuing Music Education in Illinois.
ERIC Educational Resources Information Center
Halfvarson, Lucille R.; O'Connor, John A.
Surveys of adult and continuing education programs in music were undertaken in the various states, including Illinois. The purposes of the surveys were to identify existing music programs, assess their overall effectiveness, and stimulate interest in them. A letter-questionnaire was mailed to the mayors of over 850 cities and towns in Illinois;…
ERIC Educational Resources Information Center
Memorial Univ., St. John's (Newfoundland).
The use of information and communication technologies (ICT) in continuing health professional education (CHPE) was examined in a national survey of Canadian CHPE providers. Of the 3,044 surveys distributed to schools of medicine, nursing, and pharmacy, national/provincial health professional associations, nonprofit health advocacy organizations,…
Robinson, Stacie J.; Samuel, Michael D.; Lopez, Davin L.; Shelton, Paul
2012-01-01
One of the pervasive challenges in landscape genetics is detecting gene flow patterns within continuous populations of highly mobile wildlife. Understanding population genetic structure within a continuous population can give insights into social structure, movement across the landscape and contact between populations, which influence ecological interactions, reproductive dynamics or pathogen transmission. We investigated the genetic structure of a large population of deer spanning the area of Wisconsin and Illinois, USA, affected by chronic wasting disease. We combined multiscale investigation, landscape genetic techniques and spatial statistical modelling to address the complex questions of landscape factors influencing population structure. We sampled over 2000 deer and used spatial autocorrelation and a spatial principal components analysis to describe the population genetic structure. We evaluated landscape effects on this pattern using a spatial autoregressive model within a model selection framework to test alternative hypotheses about gene flow. We found high levels of genetic connectivity, with gradients of variation across the large continuous population of white-tailed deer. At the fine scale, spatial clustering of related animals was correlated with the amount and arrangement of forested habitat. At the broader scale, impediments to dispersal were important to shaping genetic connectivity within the population. We found significant barrier effects of individual state and interstate highways and rivers. Our results offer an important understanding of deer biology and movement that will help inform the management of this species in an area where overabundance and disease spread are primary concerns.
Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.
2005-01-01
A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.
NASA Astrophysics Data System (ADS)
Gomez, F. G.; Yassminh, R.; Cochran, W. J.; Reilinger, R. E.; Barazangi, M.
2015-12-01
An updated GPS velocity field along the Dead Sea Fault (DSF) provides a basis for assessing off-transform strain within the Sinai and Arabian plates along entire length of this left-lateral, continental transform. As one of the main tectonic elements in the eastern Mediterranean region, an improved kinematic view of the DSF elucidates the broader understanding of the regional tectonic framework, as well as contributes to refining the earthquake hazard assessment. Reconciling short-term (geodetic) measurements of crustal strain with neotectonic data on fault movements can yield insight into the mechanical and rheological properties of crustal deformation associated with transform tectonics. In addition to regional continuous GPS stations, this study assembles results from campaign GPS networks in Syria, Lebanon, and Jordan spanning more than a decade. 1-sigma uncertainties on velocities range from less than 0.4 mm/yr (continuous stations and older GPS survey sites) to about 1.0 mm/yr (newer survey sites). Analyses using elastic block models suggest slip rates of 4.0 - 5.0 mm/yr along the southern and central DSF and slip rates of 2.0 - 3.0 mm/yr along the northern DSF, and fault locking depths also vary along strike of the transform. Furthermore, the spatial distribution of GPS observations permits analyzing residual strains within the adjacent plates, after plate boundary strain is removed. A key observation is horizontal stretching within the Sinai plate, which may be related to pull by the subducted slab of the Sinai plate. Within the Arabian plate, areas of horizontal stretching generally correlate with locations of Quaternary volcanism.
A map of abstract relational knowledge in the human hippocampal-entorhinal cortex.
Garvert, Mona M; Dolan, Raymond J; Behrens, Timothy Ej
2017-04-27
The hippocampal-entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal-entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal-entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns.
NASA Astrophysics Data System (ADS)
Spiess, V.; Zuehlsdorff, L.; von Lom-Keil, H.; Schwenk, T.
2001-12-01
Sites of venting fluids both with continuous and episodic supply often reveal complex surface and internal structures, which are difficult to image and cause problems to transfer results from local sampling towards a structural reconstruction and a quantification of (average) flux rates. Detailed acoustic and seismic surveys would be required to retrieve this information, but also an appropriate environment, where fluid migration can be properly imaged from contrasts to unaffected areas. Hemipelagic sediments are most suitable, since typically reflectors are coherent and of low lateral amplitude variation and structures are continuous over distances much longer than the scale of fluid migration features. During RV Meteor Cruise M473 and RV Sonne Cruise SO 149 detailed studies were carried out in the vicinity of potential fluid upflow zones in the Lower Congo Basin at 5oS in 3000 m water depth and at the Northern Cascadia Margin in 1000 m water depth. Unexpected sampling of massive gas hydrates from the sea floor as well as of carbonate concretions, shell fragments and different liveforms indicated active fluid venting in a typically hemipelagic realm. The acoustic signature of such zones includes columnar blanking, pockmark depressions at the sea floor, association with small offset faults (< 1m). A dedicated survey with closely spaced grid lines was carried out with the Parasound sediment echosounder (4 kHz), which data were digitally acquired with the ParaDigMA System for further processing and display, to image the spatial structure of the upflow zones. Due to the high data density amplitudes and other acoustic properties could be investigated in a 3D volume and time slices as well as reflector surfaces were analyzed. Pronounced lateral variations of reflection amplitudes within a complex pattern indicate potential pathways for fluid/gas migration and occurrences of near-surface gas hydrate deposits, which may be used to trace detailed surface evidence from side scan sonar imaging down to depth and support dedicated sampling.
Daniel, Colin J.; Sleeter, Benjamin M.; Frid, Leonardo; Fortin, Marie-Josée
2018-01-01
State-and-transition simulation models (STSMs) provide a general framework for forecasting landscape dynamics, including projections of both vegetation and land-use/land-cover (LULC) change. The STSM method divides a landscape into spatially-referenced cells and then simulates the state of each cell forward in time, as a discrete-time stochastic process using a Monte Carlo approach, in response to any number of possible transitions. A current limitation of the STSM method, however, is that all of the state variables must be discrete.Here we present a new approach for extending a STSM, in order to account for continuous state variables, called a state-and-transition simulation model with stocks and flows (STSM-SF). The STSM-SF method allows for any number of continuous stocks to be defined for every spatial cell in the STSM, along with a suite of continuous flows specifying the rates at which stock levels change over time. The change in the level of each stock is then simulated forward in time, for each spatial cell, as a discrete-time stochastic process. The method differs from the traditional systems dynamics approach to stock-flow modelling in that the stocks and flows can be spatially-explicit, and the flows can be expressed as a function of the STSM states and transitions.We demonstrate the STSM-SF method by integrating a spatially-explicit carbon (C) budget model with a STSM of LULC change for the state of Hawai'i, USA. In this example, continuous stocks are pools of terrestrial C, while the flows are the possible fluxes of C between these pools. Importantly, several of these C fluxes are triggered by corresponding LULC transitions in the STSM. Model outputs include changes in the spatial and temporal distribution of C pools and fluxes across the landscape in response to projected future changes in LULC over the next 50 years.The new STSM-SF method allows both discrete and continuous state variables to be integrated into a STSM, including interactions between them. With the addition of stocks and flows, STSMs provide a conceptually simple yet powerful approach for characterizing uncertainties in projections of a wide range of questions regarding landscape change.
New aerial survey and hierarchical model to estimate manatee abundance
Langimm, Cahterine A.; Dorazio, Robert M.; Stith, Bradley M.; Doyle, Terry J.
2011-01-01
Monitoring the response of endangered and protected species to hydrological restoration is a major component of the adaptive management framework of the Comprehensive Everglades Restoration Plan. The endangered Florida manatee (Trichechus manatus latirostris) lives at the marine-freshwater interface in southwest Florida and is likely to be affected by hydrologic restoration. To provide managers with prerestoration information on distribution and abundance for postrestoration comparison, we developed and implemented a new aerial survey design and hierarchical statistical model to estimate and map abundance of manatees as a function of patch-specific habitat characteristics, indicative of manatee requirements for offshore forage (seagrass), inland fresh drinking water, and warm-water winter refuge. We estimated the number of groups of manatees from dual-observer counts and estimated the number of individuals within groups by removal sampling. Our model is unique in that we jointly analyzed group and individual counts using assumptions that allow probabilities of group detection to depend on group size. Ours is the first analysis of manatee aerial surveys to model spatial and temporal abundance of manatees in association with habitat type while accounting for imperfect detection. We conducted the study in the Ten Thousand Islands area of southwestern Florida, USA, which was expected to be affected by the Picayune Strand Restoration Project to restore hydrology altered for a failed real-estate development. We conducted 11 surveys in 2006, spanning the cold, dry season and warm, wet season. To examine short-term and seasonal changes in distribution we flew paired surveys 1–2 days apart within a given month during the year. Manatees were sparsely distributed across the landscape in small groups. Probability of detection of a group increased with group size; the magnitude of the relationship between group size and detection probability varied among surveys. Probability of detection of individual manatees within a group also differed among surveys, ranging from a low of 0.27 on 11 January to a high of 0.73 on 8 August. During winter surveys, abundance was always higher inland at Port of the Islands (POI), a manatee warm-water aggregation site, than in the other habitat types. During warm-season surveys, highest abundances were estimated in offshore habitat where manatees forage on seagrass. Manatees continued to use POI in summer, but in lower numbers than in winter, possibly to drink freshwater. Abundance in other inland systems and inshore bays was low compared to POI in winter and summer, possibly because of low availability of freshwater. During cold weather, maps of patch abundance of paired surveys showed daily changes in manatee distribution associated with rapid changes in air and water temperature as manatees sought warm water with falling temperatures and seagrass areas with increasing temperatures. Within a habitat type, some patches had higher manatee abundance suggesting differences in quality, possibly due to freshwater flow. If hydrological restoration alters the location of quality habitat, postrestoration comparisons using our methods will document how manatees adjust to new resources, providing managers with information on spatial needs for further monitoring or management. Total abundance for the entire area was similar among survey dates. Credible intervals however were large on a few surveys, and may limit our ability to statistically detect trends in total abundance. Additional modeling of abundance with time- and patch-specific covariates of salinity, water temperature, and seagrass abundance will directly link manatee abundance with physical and biological changes due to restoration and should decrease uncertainty of estimates.
ESTIMATING REGIONAL SPECIES RICHNESS USING A LIMITED NUMBER OF SURVEY UNITS
The accurate and precise estimation of species richness at large spatial scales using a limited number of survey units is of great significance for ecology and biodiversity conservation. We used the distribution data of native fish and resident breeding bird species compiled for ...
USING GIS TO GENERATE SPATIALLY-BALANCED RANDOM SURVEY DESIGNS FOR NATURAL RESOURCE APPLICATIONS
Sampling of a population is frequently required to understand trends and patterns in natural resource management because financial and time constraints preclude a complete census. A rigorous probability-based survey design specifies where to sample so that inferences from the sam...
NASA Astrophysics Data System (ADS)
Zhu, Qing; Liao, Kaihua; Doolittle, James; Lin, Henry
2014-05-01
Hydropedological dynamics including soil moisture variation, subsurface flow, and spatial distributions of different soil properties are important parameters in ecological, environmental, hydrological, and agricultural modeling and applications. However, technical gap exists in mapping these dynamics at intermediate spatial scale (e.g., farm and catchment scales). At intermediate scales, in-situ monitoring provides detailed data, but is restricted in number and spatial coverage; while remote sensing provides more acceptable spatial coverage, but has comparatively low spatial resolution, limited observation depths, and is greatly influenced by the surface condition and climate. As a non-invasive, fast, and convenient geophysical tool, electromagnetic induction (EMI) measures soil apparent electrical conductivity (ECa) and has great potential to bridge this technical gap. In this presentation, principles of different EMI meters are briefly introduced. Then, case studies of using repeated EMI to detect spatial distributions of subsurface convergent flow, soil moisture dynamics, soil types and their transition zones, and different soil properties are presented. The suitability, effectiveness, and accuracy of EMI are evaluated for mapping different hydropedological dynamics. Lastly, contributions of different hydropedological and terrain properties on soil ECa are quantified under different wetness conditions, seasons, and land use types using Classification and Regression Tree model. Trend removal and residual analysis are then used for further mining of EMI survey data. Based on these analyses, proper EMI survey designs and data processing are proposed.
Jacobson, Michael G
2002-10-01
Many factors influence forest landowner management decisions. This study examines landowner decisions regarding participation in ecosystem management activities, such as a landscape corridor cutting across their private lands. Landscape corridors are recognized worldwide as an important tool in biodiversity conservation. For ecosystem management activities to occur in areas dominated by a multitude of small private forest landholdings, landowner participation and cooperation is necessary. Data from a survey of landowners combined with an analysis of their land's spatial attributes is used to assess their interest in ecosystem management. Results suggest that spatial attributes are not good predictors of an owner's interest in ecosystem management. Other factors such as attitudes and opinions about the environment are more effective in explaining landowner interest. The results have implications for any land manager using GIS data and implementing ecosystem management activities on private forestland.
Insights into a spatially embedded social network from a large-scale snowball sample
NASA Astrophysics Data System (ADS)
Illenberger, J.; Kowald, M.; Axhausen, K. W.; Nagel, K.
2011-12-01
Much research has been conducted to obtain insights into the basic laws governing human travel behaviour. While the traditional travel survey has been for a long time the main source of travel data, recent approaches to use GPS data, mobile phone data, or the circulation of bank notes as a proxy for human travel behaviour are promising. The present study proposes a further source of such proxy-data: the social network. We collect data using an innovative snowball sampling technique to obtain details on the structure of a leisure-contacts network. We analyse the network with respect to its topology, the individuals' characteristics, and its spatial structure. We further show that a multiplication of the functions describing the spatial distribution of leisure contacts and the frequency of physical contacts results in a trip distribution that is consistent with data from the Swiss travel survey.
Soil loss is commonly estimated using the Revised Universal Soil Loss Equation (RUSLE). Since RUSLE is an empirically based soil loss model derived from surveys on plots, the high spatial and temporal variability of erosion in Mediterranean environments and scale effects provoke...
Spatially explicit shallow landslide susceptibility mapping over large areas
Dino Bellugi; William E. Dietrich; Jonathan Stock; Jim McKean; Brian Kazian; Paul Hargrove
2011-01-01
Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so...
Soil loss is commonly estimated using the Revised Universal Soil Loss Equation (RUSLE). Since RUSLE is an empirically based soil loss model derived from surveys on plots, the high spatial and temporal variability of erosion in Mediterranean environments and scale effects provo...
David K. Weaver; Christian Nansen; Justin B. Runyon; Sharlene E. Sing; Wendell L. Morrill
2005-01-01
Bracon cephi and Bracon lissogaster are native parasitoids of the wheat stem sawfly, Cephus cinctus, an important pest of dryland wheat production. This spatial distribution study, using survey data from seven dryland wheat fields at four locations in north-central Montana over two years, examined: (1) the...
Regulations in the field of Geo-Information
NASA Astrophysics Data System (ADS)
Felus, Y.; Keinan, E.; Regev, R.
2013-10-01
The geomatics profession has gone through a major revolution during the last two decades with the emergence of advanced GNSS, GIS and Remote Sensing technologies. These technologies have changed the core principles and working procedures of geomatics professionals. For this reason, surveying and mapping regulations, standards and specifications should be updated to reflect these changes. In Israel, the "Survey Regulations" is the principal document that regulates the professional activities in four key areas geodetic control, mapping, cadastre and Georaphic information systems. Licensed Surveyors and mapping professionals in Israel are required to work according to those regulations. This year a new set of regulations have been published and include a few major amendments as follows: In the Geodesy chapter, horizontal control is officially based on the Israeli network of Continuously Operating GNSS Reference Stations (CORS). The regulations were phrased in a manner that will allow minor datum changes to the CORS stations due to Earth Crustal Movements. Moreover, the regulations permit the use of GNSS for low accuracy height measurements. In the Cadastre chapter, the most critical change is the move to Coordinate Based Cadastre (CBC). Each parcel corner point is ranked according to its quality (accuracy and clarity of definition). The highest ranking for a parcel corner is 1. A point with a rank of 1 is defined by its coordinates alone. Any other contradicting evidence is inferior to the coordinates values. Cadastral Information is stored and managed via the National Cadastral Databases. In the Mapping and GIS chapter; the traditional paper maps (ranked by scale) are replaced by digital maps or spatial databases. These spatial databases are ranked by their quality level. Quality level is determined (similar to the ISO19157 Standard) by logical consistency, completeness, positional accuracy, attribute accuracy, temporal accuracy and usability. Metadata is another critical component of any spatial database. Every component in a map should have a metadata identification, even if the map was compiled from multiple resources. The regulations permit the use of advanced sensors and mapping techniques including LIDAR and digita l cameras that have been certified and meet the defined criteria. The article reviews these new regulations and the decision that led to them.
Adams, Helen; Adger, W Neil; Ahmad, Sate; Ahmed, Ali; Begum, Dilruba; Lázár, Attila N; Matthews, Zoe; Rahman, Mohammed Mofizur; Streatfield, Peter Kim
2016-11-08
Populations in resource dependent economies gain well-being from the natural environment, in highly spatially and temporally variable patterns. To collect information on this, we designed and implemented a 1586-household quantitative survey in the southwest coastal zone of Bangladesh. Data were collected on material, subjective and health dimensions of well-being in the context of natural resource use, particularly agriculture, aquaculture, mangroves and fisheries. The questionnaire included questions on factors that mediate poverty outcomes: mobility and remittances; loans and micro-credit; environmental perceptions; shocks; and women's empowerment. The data are stratified by social-ecological system to take into account spatial dynamics and the survey was repeated with the same respondents three times within a year to incorporate seasonal dynamics. The dataset includes blood pressure measurements and height and weight of men, women and children. In addition, the household listing includes basic data on livelihoods and income for approximately 10,000 households. The dataset facilitates interdisciplinary research on spatial and temporal dynamics of well-being in the context of natural resource dependence in low income countries.
Adams, Helen; Adger, W. Neil; Ahmad, Sate; Ahmed, Ali; Begum, Dilruba; Lázár, Attila N.; Matthews, Zoe; Rahman, Mohammed Mofizur; Streatfield, Peter Kim
2016-01-01
Populations in resource dependent economies gain well-being from the natural environment, in highly spatially and temporally variable patterns. To collect information on this, we designed and implemented a 1586-household quantitative survey in the southwest coastal zone of Bangladesh. Data were collected on material, subjective and health dimensions of well-being in the context of natural resource use, particularly agriculture, aquaculture, mangroves and fisheries. The questionnaire included questions on factors that mediate poverty outcomes: mobility and remittances; loans and micro-credit; environmental perceptions; shocks; and women’s empowerment. The data are stratified by social-ecological system to take into account spatial dynamics and the survey was repeated with the same respondents three times within a year to incorporate seasonal dynamics. The dataset includes blood pressure measurements and height and weight of men, women and children. In addition, the household listing includes basic data on livelihoods and income for approximately 10,000 households. The dataset facilitates interdisciplinary research on spatial and temporal dynamics of well-being in the context of natural resource dependence in low income countries. PMID:27824340
ERIC Educational Resources Information Center
Tchangalova, Nedelina; Lam, Margaret N.
2013-01-01
This article reports and analyzes the survey results on the continuing education needs of librarians with current job responsibilities in the science, technology, and engineering subject fields. The intended purpose of the survey results is to assist conference coordinators in the development of a continuing education program at future Special…
ERIC Educational Resources Information Center
Wisconsin Univ. - Stout, Menomonie.
A survey was conducted during January and February of 1984 to ascertain the continuing education/training needs of personnel working in water utility and wastewater systems in Wisconsin. From the estimated 4,000 certified operators in water utilities, waste water treatment plants, and plant superintendents surveyed, 723 (18 percent) completed…
Van Riper, Carena J; Kyle, Gerard T
2014-12-01
Two related approaches to valuing nature have been advanced in past research including the study of ecosystem services and psychological investigations of the factors that shape behavior. Stronger integration of the insights that emerge from these two lines of enquiry can more effectively sustain ecosystems, economies, and human well-being. Drawing on survey data collected from outdoor recreationists on Santa Cruz Island within Channel Islands National Park, U.S., our study blends these two research approaches to examine a range of tangible and intangible values of ecosystem services provided to stakeholders with differing biocentric and anthropocentric worldviews. We used Public Participation Geographic Information System methods to collect survey data and a Social Values for Ecosystem Services mapping application to spatially analyze a range of values assigned to terrestrial and aquatic ecosystems in the park. Our results showed that preferences for the provision of biological diversity, recreation, and scientific-based values of ecosystem services varied across a spatial gradient. We also observed differences that emerged from a comparison between survey subgroups defined by their worldviews. The implications emanating from this investigation aim to support environmental management decision-making in the context of protected areas. Copyright © 2014 Elsevier Ltd. All rights reserved.
Karanth, Kota Ullas; Gopalaswamy, Arjun M.; Kumar, Narayanarao Samba; Vaidyanathan, Srinivas; Nichols, James D.; MacKenzie, Darryl I.
2011-01-01
1. Assessing spatial distributions of threatened large carnivores at landscape scales poses formidable challenges because of their rarity and elusiveness. As a consequence of logistical constraints, investigators typically rely on sign surveys. Most survey methods, however, do not explicitly address the central problem of imperfect detections of animal signs in the field, leading to underestimates of true habitat occupancy and distribution. 2. We assessed habitat occupancy for a tiger Panthera tigris metapopulation across a c. 38 000-km2 landscape in India, employing a spatially replicated survey to explicitly address imperfect detections. Ecological predictions about tiger presence were confronted with sign detection data generated from occupancy sampling of 205 sites, each of 188 km2. 3. A recent occupancy model that considers Markovian dependency among sign detections on spatial replicates performed better than the standard occupancy model (ΔAIC = 184·9). A formulation of this model that fitted the data best showed that density of ungulate prey and levels of human disturbance were key determinants of local tiger presence. Model averaging resulted in a replicate-level detection probability [inline image] = 0·17 (0·17) for signs and a tiger habitat occupancy estimate of [inline image] = 0·665 (0·0857) or 14 076 (1814) km2 of potential habitat of 21 167 km2. In contrast, a traditional presence-versus-absence approach underestimated occupancy by 47%. Maps of probabilities of local site occupancy clearly identified tiger source populations at higher densities and matched observed tiger density variations, suggesting their potential utility for population assessments at landscape scales. 4. Synthesis and applications. Landscape-scale sign surveys can efficiently assess large carnivore spatial distributions and elucidate the factors governing their local presence, provided ecological and observation processes are both explicitly modelled. Occupancy sampling using spatial replicates can be used to reliably and efficiently identify tiger population sources and help monitor metapopulations. Our results reinforce earlier findings that prey depletion and human disturbance are key drivers of local tiger extinctions and tigers can persist even in human-dominated landscapes through effective protection of source populations. Our approach facilitates efficient targeting of tiger conservation interventions and, more generally, provides a basis for the reliable integration of large carnivore monitoring data between local and landscape scales.
ERIC Educational Resources Information Center
Smith, Glenn Gordon; Gerretson, Helen; Olkun, Sinan; Yuan, Yuan; Dogbey, James; Erdem, Aliye
2009-01-01
This study investigated how female elementary education pre-service teachers in the United States, Turkey and Taiwan learned spatial skills from structured activities involving discrete, as opposed to continuous, transformations in interactive computer programs, and how these activities transferred to non-related standardized tests of spatial…
A color video display technique for flow field surveys
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.; Tsao, C. P.
1982-01-01
A computer driven color video display technique has been developed for the presentation of wind tunnel flow field survey data. The results of both qualitative and quantitative flow field surveys can be presented in high spatial resolutions color coded displays. The technique has been used for data obtained with a hot-wire probe, a split-film probe, a Conrad (pitch) probe and a 5-tube pressure probe in surveys above and behind a wing with partially stalled and fully stalled flow.
PAndAS' PROGENY: EXTENDING THE M31 DWARF GALAXY CABAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Jenny C.; Irwin, Mike J.; Chapman, Scott C.
2011-05-10
We present the discovery of five new dwarf galaxies, Andromeda XXIII-XXVII, located in the outer halo of M31. These galaxies were discovered during the second year of data from the Pan-Andromeda Archaeological Survey (PAndAS), a photometric survey of the M31/M33 subgroup conducted with the MegaPrime/MegaCam wide-field camera on the Canada-France-Hawaii Telescope. The current PAndAS survey now provides an almost complete panoramic view of the M31 halo out to an average projected radius of {approx}150 kpc. Here we present for the first time the metal-poor stellar density map for this whole region, not only as an illustration of the discovery spacemore » for satellite galaxies, but also as a birds-eye view of the ongoing assembly process of an L{sub *} disk galaxy. Four of the newly discovered satellites appear as well-defined spatial overdensities of stars lying on the expected locus of metal-poor (-2.5 < [Fe/H] < -1.3) red giant branch stars at the distance of M31. The fifth overdensity, And XXVII, is embedded in an extensive stream of such stars and is possibly the remnant of a strong tidal disruption event. Based on distance estimates from horizontal branch magnitudes, all five have metallicities typical of dwarf spheroidal galaxies ranging from [Fe/H] =-1.7 {+-} 0.2 to [Fe/H] =-1.9 {+-} 0.2 and absolute magnitudes ranging from M{sub V} = -7.1 {+-} 0.5 to M{sub V} = -10.2 {+-} 0.5. These five additional satellites bring the number of dwarf spheroidal galaxies in this region to 25 and continue the trend whereby the brighter dwarf spheroidal satellites of M31 generally have much larger half-light radii than their Milky Way counterparts. With an extended sample of M31 satellite galaxies, we also revisit the spatial distribution of this population and in particular we find that, within the current projected limits of the PAndAS survey, the surface density of satellites is essentially constant out to 150 kpc. This corresponds to a radial density distribution of satellites varying as r{sup -1}, a result seemingly in conflict with the predictions of cosmological simulations.« less
QKD Via a Quantum Wavelength Router Using Spatial Soliton
NASA Astrophysics Data System (ADS)
Kouhnavard, M.; Amiri, I. S.; Afroozeh, A.; Jalil, M. A.; Ali, J.; Yupapin, P. P.
2011-05-01
A system for continuous variable quantum key distribution via a wavelength router is proposed. The Kerr type of light in the nonlinear microring resonator (NMRR) induces the chaotic behavior. In this proposed system chaotic signals are generated by an optical soliton or Gaussian pulse within a NMRR system. The parameters, such as input power, MRRs radii and coupling coefficients can change and plays important role in determining the results in which the continuous signals are generated spreading over the spectrum. Large bandwidth signals of optical soliton are generated by the input pulse propagating within the MRRs, which is allowed to form the continuous wavelength or frequency with large tunable channel capacity. The continuous variable QKD is formed by using the localized spatial soliton pulses via a quantum router and networks. The selected optical spatial pulse can be used to perform the secure communication network. Here the entangled photon generated by chaotic signals has been analyzed. The continuous entangled photon is generated by using the polarization control unit incorporating into the MRRs, required to provide the continuous variable QKD. Results obtained have shown that the application of such a system for the simultaneous continuous variable quantum cryptography can be used in the mobile telephone hand set and networks. In this study frequency band of 500 MHz and 2.0 GHz and wavelengths of 775 nm, 2,325 nm and 1.55 μm can be obtained for QKD use with input optical soliton and Gaussian beam respectively.
NASA Astrophysics Data System (ADS)
Jia, S.; Gillespie, T. W.
2016-12-01
Stable nighttime light, an indicator of persisting human activity and light pollution is a well-recognized disturbance to the wilderness of protected areas (PAs). Mostly supported by in situ observations, very limited studies of light pollution for PAs focused at a regional level and on a continuous time span to support policy making effectively. DMSP-OLS stable nighttime series provide continuous observation of nightlight and have been widely applied in studies focusing on human activities. In this study, we employed inter-calibrated DMSP-OLS nightlight series from 1992 to 2012 to evaluate the change of intensity and extension of stable nighttime light inside California PAs. We observed a decrease of stable nighttime light and a shrinkage in spatial extent in PAs located in all ecoregions from 1992 to 2012, especially before 2004. Such decrease and shrinkage occurred mostly in southern California and the Bay Area where mega metropolitan clusters locate. The successful application of protecting strategies in PAs and the improved technologies of lighting may contribute to the relieving of light pollution in PAs. However, the stable nighttime light slightly increased since 2004, when there was limited room for stricter protective regulations and the pressure from population growth persisted. Population density explained most spatial distribution of nightlight in years with census tract level demographic data available, except PAs with the highest wilderness such as Sierra Nevada Mts. We anticipate to improve the models with the newest remote sensing nighttime product from NASA Suomi-NPP and annually updated demographic data from American Community Survey at census tract level in the future to provide a cost-effective evaluation on protecting strategies. Such evaluation will support land managers of PAs and local policy-makers for modification and proposal of policies.
Biogeography and Change among Regional Coral Communities across the Western Indian Ocean
McClanahan, Timothy R.; Ateweberhan, Mebrahtu; Darling, Emily S.; Graham, Nicholas A. J.; Muthiga, Nyawira A.
2014-01-01
Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional conservation and management actions. PMID:24718371
Biogeography and change among regional coral communities across the Western Indian Ocean.
McClanahan, Timothy R; Ateweberhan, Mebrahtu; Darling, Emily S; Graham, Nicholas A J; Muthiga, Nyawira A
2014-01-01
Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional conservation and management actions.
McCarthy, Maureen S; Lester, Jack D; Howe, Eric J; Arandjelovic, Mimi; Stanford, Craig B; Vigilant, Linda
2015-08-25
As habitat degradation and fragmentation continue to impact wildlife populations around the world, it is critical to understand the behavioral flexibility of species in these environments. In Uganda, the mostly unprotected forest fragment landscape between the Budongo and Bugoma Forests is a potential corridor for chimpanzees, yet little is known about the status of chimpanzee populations in these fragments. From 2011 through 2013, we noninvasively collected 865 chimpanzee fecal samples across 633 km(2) and successfully genotyped 662 (77%) at up to 14 microsatellite loci. These genotypes corresponded to 182 chimpanzees, with a mean of 3.5 captures per individual. We obtained population size estimates of 256 (95% confidence interval 246-321) and 319 (288-357) chimpanzees using capture-with-replacement and spatially explicit capture-recapture models, respectively. The spatial clustering of associated genotypes suggests the presence of at least nine communities containing a minimum of 8-33 individuals each. Putative community distributions defined by the locations of associated genotypes correspond well with the distribution of 14 Y-chromosome haplotypes. These census figures are more than three times greater than a previous estimate based on an extrapolation from small-scale nest count surveys that tend to underestimate population size. The distribution of genotype clusters and Y-chromosome haplotypes together indicate the presence of numerous male philopatric chimpanzee communities throughout the corridor habitat. Our findings demonstrate that, despite extensive habitat loss and fragmentation, chimpanzees remain widely distributed and exhibit distinct community home ranges. Our results further imply that elusive and rare species may adapt to degraded habitats more successfully than previously believed. Their long-term persistence is unlikely, however, if protection is not afforded to them and habitat loss continues unabated.
NASA Astrophysics Data System (ADS)
Vázquez-Tarrío, Daniel; Borgniet, Laurent; Liébault, Frédéric; Recking, Alain
2017-05-01
This paper explores the potential of unmanned aerial system (UAS) optical aerial imagery to characterize grain roughness and size distribution in a braided, gravel-bed river (Vénéon River, French Alps). With this aim in view, a Wolman field campaign (19 samples) and five UAS surveys were conducted over the Vénéon braided channel during summer 2015. The UAS consisted of a small quadcopter carrying a GoPro camera. Structure-from-Motion (SfM) photogrammetry was used to extract dense and accurate three-dimensional point clouds. Roughness descriptors (roughness heights, standard deviation of elevation) were computed from the SfM point clouds and were correlated with the median grain size of the Wolman samples. A strong relationship was found between UAS-SfM-derived grain roughness and Wolman grain size. The procedure employed has potential for the rapid and continuous characterization of grain size distribution in exposed bars of gravel-bed rivers. The workflow described in this paper has been successfully used to produce spatially continuous grain size information on exposed gravel bars and to explore textural changes following flow events.
Groundwater recharge in Wisconsin--Annual estimates for 1970-99 using streamflow data
Gebert, Warren A.; Walker, John F.; Hunt, Randall J.
2011-01-01
The groundwater component of streamflow is important because it is indicative of the sustained flow of a stream during dry periods, is often of better quality, and has a smaller range of temperatures, than surface contributions to streamflow. All three of these characteristics are important to the health of aquatic life in a stream. If recharge to the aquifers is to be preserved or enhanced, it is important to understand the present partitioning of total streamflow into base flow and stormflow. Additionally, an estimate of groundwater recharge is important for understanding the flows within a groundwater system-information important for water availability/sustainability or other assessments. The U.S. Geological Survey operates numerous continuous-record streamflow-gaging stations (Hirsch and Norris, 2001), which can be used to provide estimates of average annual base flow. In addition to these continuous record sites, Gebert and others (2007) showed that having a few streamflow measurements in a basin can appreciably reduce the error in a base-flow estimate for that basin. Therefore, in addition to the continuous-record gaging stations, a substantial number of low-flow partial-record sites (6 to 15 discharge measurements) and miscellaneous-measurement sites (1 to 3 discharge measurements) that were operated during 1964-90 throughout the State were included in this work to provide additional insight into spatial distribution of annual base flow and, in turn, groundwater recharge.
The Impacts of Pine Tree Die-Off on Snow Accumulation and Distribution at Plot to Catchment Scales
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Harpold, A. A.; Gutmann, E. D.; Reed, D. E.; Gochis, D. J.; Brooks, P. D.
2011-12-01
Seasonal snow cover is a primary water source throughout much of Western North America, where insect-induced tree die-off is changing the montane landscape. Widespread mortality from insects or drought differs from well-studied cases of fire and logging in that tree mortality is not accompanied by other immediate biophysical changes. Much of the impacted landscape is a mosaic of stands of varying species, structure, management history and health overlain on complex terrain. To address the challenge of predicting the effects of forest die-off on snow water input, we quantified snow accumulation and ablation at scales ranging from individual trees, through forest stands, to nested small catchments. Our study sites in Northern Colorado and Southern Wyoming are dominated by lodgepole pine, but they include forest stands that are naturally developed, managed and clear-cut with varying mortality from Mountain Pine Beetle (MPB). Our record for winters 2010 and 2011 includes continuous meteorological data and snow depth in plots with varying MPB impact as well as stand- to catchment-scale snow surveys mid-winter and near maximal accumulation. At the plot scale, snow depth sensors in healthy stands recorded greater inputs during storms (21-42% of depth) and greater seasonal accumulation (15-40%) in canopy gaps than under trees, whereas no spatial effects of canopy geometry were observed in stands with heavy mortality. Similar patterns were observed in snow surveys near peak accumulation. At both impacted and thinned sites, spatial variability in snow depth was more closely associated with larger scale topography and changes in stand structure than with canopy cover. The role of aspect in ablation was observed to increase in impacted stands as both shading and wind attenuation decreased. Evidence of wind-controlled snow distribution was found 80-100 meters from exposed stand edges in impacted forest as compared to 10-15 meters in healthy forest. Integrating from the scale of stands to small catchments, maximal snow water equivalent (SWE) as a fraction of winter precipitation (P) ranged from 62 to 74%. Despite an expectation of decreased interception and increased snow accumulation with advanced mortality, surveys at stand and catchment scales found no significant increases in net snow water input between healthy and impacted forests. These observations suggest that the spatial scale of processes affecting net snow accumulation and ablation increase following die-off. Using data from our sites and other studies, this presentation will develop a predictive model of how interception, shading, and wind redistribution interact to control net snow water input following large-scale forest mortality.
Large-Strain Monitoring Above a Longwall Coal Mine With GPS and Seismic Measurements
NASA Astrophysics Data System (ADS)
Swanson, P. L.; Andreatta, V.; Meertens, C. M.; Krahenbuhl, T.; Kenner, B.
2001-12-01
As part of an effort to evaluate continuous GPS measurements for use in mine safety studies, a joint GPS-seismic experiment was conducted at an underground longwall coal mine near Paonia, Colorado in June, 2001. Seismic and deformation signals were measured using prototype low-cost monitoring systems as a longwall panel was excavated 150 m beneath the site. Data from both seismic and GPS instruments were logged onto low-power PC-104 Linux computers which were networked using a wireless LAN. The seismic system under development at NIOSH/SRL is based on multiple distributed 8-channel 24-bit A/D converters. The GPS system uses a serial single-frequency (L1) receiver and UNAVCO's "Jstream" Java data logging software. For this experiment, a continuously operating dual-frequency GPS receiver was installed 2.4 km away to serve as a reference site. In addition to the continuously operating sites, 10 benchmarks were surveyed daily with short "rapid-static" occupations in order to provide greater spatial sampling. Two single-frequency sites were located 35 meters apart on a relatively steep north-facing slope. As mining progressed from the east, net displacements of 1.2 meters to the north and 1.65 meters of subsidence were observed over a period of 6 days. The east component exhibited up to 0.45 meters of eastward displacement (toward the excavation) followed by reverse movement to the west. This cycle, observed approximately two days earlier at the eastern L1 site, is consistent with a change in surface strain from tension to compression as the excavation front passed underneath. As this strain "wave" propagated across the field site, surface deformation underwent a cycle of tension crack nucleation, crack opening (up to 15 cm normal displacements), subsequent crack closure, and production of low-angle-thrust compressional deformation features. Analysis of seismic results, surface deformation, and additional survey results are presented.
NASA Astrophysics Data System (ADS)
Chilton, K.; Spotila, J. A.
2017-12-01
Bedrock erodibility exerts a primary control on landscape evolution and fluvial morphodynamics, but the relationships between erodibility and the many factors that influence it (rock strength, spacing and orientation of discontinuities, weathering susceptibility, erosive process, etc.) remain poorly defined. This results in oversimplification of erodibility in landscape evolution models, the primary example being the stream power incision model, which groups together factors which may influence erodibility into a single coefficient. There is therefore need to better define how bedrock properties influence erodibility and, in turn, channel form and evolution. This study seeks to deconvolve the relationships between bedrock material properties and erodibility by quantifying empirical relationships between substrate characteristics and bedrock channel morphology (slope, steepness index, width, form) at a high spatial resolution (5-10 m scale) in continuous and mixed alluvial-bedrock channels. We specifically focus on slowly eroding channels with minimal evidence for landscape transience, such that variations in channel morphology are mainly due to bedrock properties. We also use channels cut into sedimentary rock, which exhibit extreme variation (yet predictability and continuity) in discontinuity spacing. Here we present preliminary data comparing the morphology and bedrock properties of 1st through 4th order channels in the tectonically inactive Valley and Ridge province of the Appalachian Mountains, SW Virginia. Field surveys of channel slope, width, substrate, and form consist of 0.5 km long, continuous stream reaches through different intervals of tilted Paleozoic siliciclastic stratigraphy. Some surveys exhibit nearly complete bedrock exposure, whereas others are predominantly mixed, with localized bedrock reaches in high-slope knickzones. We statistically analyze relationships between fluvial morphology and lithology, strength (based on field and laboratory measurements), and discontinuity spacing and orientation. Results are informative for models of landscape evolution, and specifically provide insight into the controls on erosive process dominance (i.e., plucking vs. abrasion) and on the development and evolution of knickpoints in non-transient settings.
NASA Astrophysics Data System (ADS)
Wisnioski, E.; Förster Schreiber, N. M.; Wuyts, S.; Wuyts, E.; Bandara, K.; Wilman, D.; Genzel, R.; Bender, R.; Davies, R.; Fossati, M.; Lang, P.; Mendel, J. T.; Beifiori, A.; Brammer, G.; Chan, J.; Fabricius, M.; Fudamoto, Y.; Kulkarni, S.; Kurk, J.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Seitz, S.; Tacconi, L. J.; van Dokkum, P. G.
2015-02-01
We present the KMOS3D survey, a new integral field survey of over 600 galaxies at 0.7 < z < 2.7 using KMOS at the Very Large Telescope. The KMOS3D survey utilizes synergies with multi-wavelength ground- and space-based surveys to trace the evolution of spatially resolved kinematics and star formation from a homogeneous sample over 5 Gyr of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (M *) and rest-frame (U - V) - M * planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first-year of data we detect Hα emission in 191 M * = 3 × 109-7 × 1011 M ⊙ galaxies at z = 0.7-1.1 and z = 1.9-2.7. In the current sample 83% of the resolved galaxies are rotation dominated, determined from a continuous velocity gradient and v rot/σ0 > 1, implying that the star-forming "main sequence" is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Hα kinematic maps indicate that at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous integral field spectroscopy studies at z >~ 0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km s-1at z ~ 2.3 to 25 km s-1at z ~ 0.9. Combined with existing results spanning z ~ 0-3, we show that disk velocity dispersions follow an evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally stable disk theory. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDS 092A-0091, 093.A-0079).
Dwarf Hosts of Low-z Supernovae
NASA Astrophysics Data System (ADS)
Pyotr Kolobow, Craig; Perlman, Eric S.; Strolger, Louis
2018-01-01
Hostless supernovae (SNe), or SNe in dwarf galaxies, may serve as excellent beacons for probing the spatial density of dwarf galaxies (M < 10^8M⊙), which themselves are scarcely detected beyond only a few Mpc. Depending on the assumed model for the stellar-mass to halo mass relation for these galaxies, LSST might see 1000s of SNe (of all types) from dwarf galaxies alone. Conversely, one can take the measured rates of these SNe and test the model predictions for the density of dwarf galaxies in the local universe. Current “all-sky” surveys, like PanSTARRS and ASAS-SN, are now finding hostless SNe at a number sufficient to measure their rate. What missing is the appropriate weighting of their host luminosities. Here we seek to continue a successful program to recover the luminosities of these hostless SNe, to z = 0.15, to use their rate to constrain the faint-end slope of the low-z galaxy luminosity function.
Design of virus-based nanomaterials for medicine, biotechnology, and energy.
Wen, Amy M; Steinmetz, Nicole F
2016-07-25
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Real-time control of the robotic lunar observatory telescope
Anderson, J.M.; Becker, K.J.; Kieffer, H.H.; Dodd, D.N.
1999-01-01
The US Geological Survey operates an automated observatory dedicated to the radiometry of the Moon with the objective of developing a multispectral, spatially resolved photometric model of the Moon to be used in the calibration of Earth-orbiting spacecraft. Interference filters are used with two imaging instruments to observe the Moon in 32 passbands from 350-2500 nm. Three computers control the telescope mount and instruments with a fourth computer acting as a master system to control all observation activities. Real-time control software has been written to operate the instrumentation and to automate the observing process. The observing software algorithms use information including the positions of objects in the sky, the phase of the Moon, and the times of evening and morning twilight to decide how to observe program objects. The observatory has been operating in a routine mode since late 1995 and is expected to continue through at least 2002 without significant modifications.
Mamiya, Hiroshi; Moodie, Erica E M; Buckeridge, David L
2017-01-01
Unhealthy eating is the most important preventable cause of global death and disability. Effective development and evaluation of preventive initiatives and the identification of disparities in dietary patterns require surveillance of nutrition at a community level. However, nutrition monitoring currently relies on dietary surveys, which cannot efficiently assess food selection at high spatial resolution. However, marketing companies continuously collect and centralize digital grocery transaction data from a geographically representative sample of chain retail food outlets through scanner technologies. We used these data to develop a model to predict store-level sales of carbonated soft drinks, which was applied to all chain food outlets in Montreal, Canada. The resulting map of purchase patterns provides a foundation for developing novel, high-resolution nutrition indicators that reflect dietary preferences at a community level. These detailed nutrition portraits will allow health agencies to tailor healthy eating interventions and promotion programs precisely to meet specific community needs.
The Environmental Protection Agency (USEPA) in collaboration with the States is assessing and reporting on the condition of surface waters in the United States using synoptic surveys and consistent field collections of water quality indicators (WQI). The survey is a probability-b...
A WHOLE-LAKE WATER QUALITY SURVEY OF LAKE OAHE BASED ON A SPATIALLY-BALANCED PROBABILISTIC DESIGN
Assessing conditions on large bodies of water presets multiple statistical and logistical challenges. As part of the Upper Missouri River Program of the Environmental Monitoring and Assessment Project (EMAP) we surveyed water quality of Lake Oahe in July-August, 2002 using a spat...
Detecting Land-based Signals in the Near-shore Zone of Lake Erie During Summer 2009
We conducted two styles of nearshore surveys in Lake Erie during August to mid-September 2009. The first used a spatially-balanced probability survey (SBS) design to establish discrete stations within a GIS-defined target populationthe nearshore zone extending approximately 5 km...
Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Dawson, Cian B.; Nelms, David L.; Miller, Cheryl; Wheeler, Jerrod D.; Harvey, Charles F.; Karam, Hanan N.
2008-01-01
Fiber‐optic distributed temperature sensing (FO DTS) is an emerging technology for characterizing and monitoring a wide range of important earth processes. FO DTS utilizes laser light to measure temperature along the entire length of standard telecommunications optical fibers. The technology can measure temperature every meter over FO cables up to 30 kilometers (km) long. Commercially available systems can measure fiber temperature as often as 4 times per minute, with thermal precision ranging from 0.1 to 0.01 °C depending on measurement integration time. In 2006, the U.S. Geological Survey initiated a project to demonstrate and evaluate DTS as a technology to support hydrologic studies. This paper demonstrates the potential of the technology to assess and monitor hydrologic processes through case‐study examples of FO DTS monitoring of stream‐aquifer interaction on the Shenandoah River near Locke's Mill, Virginia, and on Fish Creek, near Jackson Hole, Wyoming, and estuary‐aquifer interaction on Waquoit Bay, Falmouth, Massachusetts. The ability to continuously observe temperature over large spatial scales with high spatial and temporal resolution provides a new opportunity to observe and monitor a wide range of hydrologic processes with application to other disciplines including hazards, climate‐change, and ecosystem monitoring.
Effects of Landscape Conditions and Management Practices ...
Lakes continue to face escalating pressures associated with land cover change and growing human populations. The U.S. EPA National Lakes Assessment, which sampled 1,028 lakes during the summer of 2007 using a probabilistic survey, was the first large scale effort to determine the condition of lakes across the country. In addition to broad trends, these data offer an abundance of new opportunities to examine biodiversity patterns, drivers of ecosystem change, and effectiveness of management practices that aim to reduce adverse effects of land cover change. Here, we use 2006 National Land Cover Data and sediment diatom samples collected from the tops of cores to examine how land cover at different spatial extents affects the habitat and diatom communities of lakes. We are examining the effects of land cover in basins, buffers in upstream networks, and buffers adjacent to 188 lakes in regions extending from the Mid-Atlantic to New England. Identifying relationships of diatom communities with land cover and physico-chemical parameters, along with generating stressor-response curves, will help with (1) developing diatom indicators responsive to anthropogenic impacts, (2) identifying how spatial locations of land cover affect lake conditions and diatoms, (3) informing future assessments and management efforts, and (4) characterizing potentially different patterns across regions and the effects of natural variation. Comparisons of study lakes to reference lake conditio
NASA Astrophysics Data System (ADS)
Bonomi, Tullia; Cavallin, Angelo
1999-10-01
Within the framework of Geographic Information System (GIS), the distributed three-dimensional groundwater model MODFLOW has been applied to evaluate the groundwater processes of the hydrogeological system in the Alverà mudslide (Cortina d'Ampezzo, Italy; test site in the TESLEC Project of the European Union). The application of this model has permitted an analysis of the spatial distribution of the structure (DTM and landslide bottom) and the mass transfer elements of the hydrogeological system. The field survey suggested zoning the area on the basis of the recharge, groundwater fluctuation and drainage system. For each zone, a hydraulic conductivity value to simulate the different recharge and the drainage responses has been assigned. The effect of rainfall infiltration into the ground and its effect on the groundwater table, with different intensity related to different time periods, have been simulated to reproduce the real condition of the area. The applied model can simulate the positive fluctuations of the water table on the whole landslide, with a different response of the hydrogeological system in each zone. The spatial simulated water level distribution is in accordance with the real one, with very small difference between them. The application of distributed three-dimensional models, within the framework of GIS, is an approach which permits data to be continually updated, standardised and integrated.
Shen, Feng; Liao, Renmei; Ali, Amjad; Mahar, Amanullah; Guo, Di; Li, Ronghua; Xining, Sun; Awasthi, Mukesh Kumar; Wang, Quan; Zhang, Zengqiang
2017-05-01
A large scale survey and a small scale continuous monitoring was conducted to evaluate the impact of Pb/Zn smelting on soil heavy metals (HMs) accumulation and potential ecological risk in Feng County, Shaanxi province of China. Soil parameters including pH, texture, CEC, spatial and temporal distribution of HMs (Cd, Cu, Ni, Pb and Zn), and BCR fractionation were monitored accordingly. The results showed the topsoil in the proximity of smelter, especially the smelter area and county seat, were highly polluted by HMs in contrast to the river basins. Fractionation of Cd and Zn in soil samples revealed higher proportion of mobile fractions than other HMs. The soil Cd and Zn contents decreased vertically, but still exceeded the second level limits of Environmental Quality Standard for Soils of China (EQSS) within 80cm. The dominated soil pollutant (Cd) had higher ecological risk than Cu, Ni, Zn and Pb. The potential ecological risk (PER) factor of Cd were 65.7% and 100% in surrounding county and smelter area, respectively. The long-term smelter dust emission mainly contributed to the HMs pollution and posed serious environment risk to living beings. Copyright © 2017 Elsevier Inc. All rights reserved.
Footprint Characteristics of Cosmic-Ray Neutron Sensors for Soil Moisture Monitoring
NASA Astrophysics Data System (ADS)
Schrön, Martin; Köhli, Markus; Zreda, Marek; Dietrich, Peter; Zacharias, Steffen
2015-04-01
Cosmic-ray neutron sensing is a unique and an increasingly accepted method to monitor the effective soil water content at the field scale. The technology is famous for its low maintenance, non-invasiveness, continuous measurement, and most importantly, for its large footprint. Being more representative than point data and finer resolved than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for mesoscale hydrologic and land surface models. The method takes advantage of neutrons induced by cosmic radiation which are extraordinarily sensitive to hydrogen and behave like a hot gas. Information about nearby water sources are quickly mixed in a domain of tens of hectares in air. Since experimental determination of the actual spatial extent is hardly possible, scientists have applied numerical models to address the footprint characteristics. We have revisited previous neutron transport simulations and present a modified conceptual design and refined physical assumptions. Our revised study reveals new insights into probing distance and water sensitivity of detected neutrons under various environmental conditions. These results sharpen the range of interpretation concerning the spatial extent of integral soil moisture products derived from cosmic-ray neutron counts. Our findings will have important impact on calibration strategies, on scales for data assimilation and on the interpolation of soil moisture data derived from mobile cosmic-ray neutron surveys.
Identifying Extraplanar Diffuse Ionized Gas in a Sample of MaNGA Galaxies
NASA Astrophysics Data System (ADS)
Hubbard, Ryan J.; Diamond-Stanic, Aleksandar M.; MaNGA Team
2016-01-01
The efficiency with which galaxies convert gas into stars is driven by the continuous cycle of accretion and feedback processes within the circumgalactic medium. Extraplanar diffuse ionized gas (eDIG) can provide insights into the tumultuous processes that govern the evolution of galactic disks because eDIG emission traces both inflowing and outflowing gas. With the help of state-of-the-art, spatially-resolved spectroscopy from MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), we developed a computational method to identify eDIG based on the strength of and spatial extent of optical emission lines for a diverse sample of 550 nearby galaxies. This sample includes roughly half of the MaNGA galaxies that will become publicly available in summer 2016 as part of the Thirteenth Data Release of the Sloan Digital Sky Survey. We identified signatures of eDIG in 8% of the galaxies in this sample, and we found that these signatures are particularly common among galaxies with active star formation and inclination angles >45 degrees. Our analysis of the morphology, incidence, and kinematics of eDIG has important implications for current models of accretion and feedback processes that regulate star formation in galaxies. We acknowledge support from the Astrophysics REU program at the University of Wisconsin-Madison, the National Astronomy Consortium, and The Grainger Foundation.
Continuous attractor network models of grid cell firing based on excitatory–inhibitory interactions
Shipston‐Sharman, Oliver; Solanka, Lukas
2016-01-01
Abstract Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid‐like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid‐like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta‐nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid‐like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing. PMID:27870120
Space-ecology set covering problem for modeling Daiyun Mountain Reserve, China
NASA Astrophysics Data System (ADS)
Lin, Chih-Wei; Liu, Jinfu; Huang, Jiahang; Zhang, Huiguang; Lan, Siren; Hong, Wei; Li, Wenzhou
2018-02-01
Site selection is an important issue in designing the nature reserve that has been studied over the years. However, a well-balanced relationship between preservation of biodiversity and site selection is still challenging. Unlike the existing methods, we consider three critical components, the spatial continuity, spatial compactness and ecological information to address the problem of designing the reserve. In this paper, we propose a new mathematical model of set covering problem called Space-ecology Set Covering Problem (SeSCP) for designing a reserve network. First, we generate the ecological information by forest resource investigation. Then, we split the landscape into elementary cells and calculate the ecological score of each cell. Next, we associate the ecological information with the spatial properties to select a set of cells to form a nature reserve for improving the ability of protecting the biodiversity. Two spatial constraints, continuity and compactability, are given in SeSCP. The continuity is to ensure that any selected site has to be connected with adjacent sites and the compactability is to minimize the perimeter of the selected sites. In computational experiments, we take Daiyun Mountain as a study area to demonstrate the feasibility and effectiveness of the proposed model.
ERIC Educational Resources Information Center
Cobb, Susan C.; Baird, Susan B.
1999-01-01
A survey to determine whether oncology nurses (n=670) use the Internet and for what purpose revealed that they use it for drug information, literature searches, academic information, patient education, and continuing education. Results suggest that continuing-education providers should pursue the Internet as a means of meeting the need for quick,…
Survey of Students and Non-Students about Continuing Education Market Place. Volume XXIV, Number 16.
ERIC Educational Resources Information Center
Lucas, John A.; And Others
To evaluate the outreach and marketing efforts for its non-credit offerings, William Rainey Harper College in Illinois conducted a study of recent continuing education students in spring 1996. First, a random sample of 200 former students who had enrolled in continuing education courses in the past 5 years was surveyed, receiving 57 completed…
A comprehensive approach to assess conditions in the Great Lakes nearshore zone has been lacking for decades. We had the opportunity to conduct a pilot survey in Lake Erie (45 sites) in summer 2009 and to develop a full survey across the 5 lakes (~400 sites) as part of the US N...
Planning paths through a spatial hierarchy - Eliminating stair-stepping effects
NASA Technical Reports Server (NTRS)
Slack, Marc G.
1989-01-01
Stair-stepping effects are a result of the loss of spatial continuity resulting from the decomposition of space into a grid. This paper presents a path planning algorithm which eliminates stair-stepping effects induced by the grid-based spatial representation. The algorithm exploits a hierarchical spatial model to efficiently plan paths for a mobile robot operating in dynamic domains. The spatial model and path planning algorithm map to a parallel machine, allowing the system to operate incrementally, thereby accounting for unexpected events in the operating space.
NASA Astrophysics Data System (ADS)
Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.
2016-09-01
A Seaglider autonomous underwater vehicle augmented the Ocean Station Papa (OSP; 50°N, 145°W) surface mooring, measuring spatial structure on scales relevant to the monthly evolution of the moored time series. During each of three missions from June 2008 to January 2010, a Seaglider made biweekly 50 km × 50 km surveys in a bowtie-shaped survey track. Horizontal temperature and salinity gradients measured by these surveys were an order of magnitude stronger than climatological values and sometimes of opposite sign. Geostrophically inferred circulation was corroborated by moored acoustic Doppler current profiler measurements and AVISO satellite altimetry estimates of surface currents, confirming that glider surveys accurately resolved monthly scale mesoscale spatial structure. In contrast to climatological North Pacific Current circulation, upper-ocean flow was modestly northward during the first half of the 18 month survey period, and weakly westward during its latter half, with Rossby number O>(0.01>). This change in circulation coincided with a shift from cool and fresh to warm, saline, oxygen-rich water in the upper-ocean halocline, and an increase in vertical fine structure there and in the lower pycnocline. The anomalous flow and abrupt water mass transition were due to the slow growth of an anticyclonic meander within the North Pacific Current with radius comparable to the scale of the survey pattern, originating to the southeast of OSP.
Klett, Katherine J.C.; Torgersen, Christian E.; Henning, Julie A.; Murray, Christopher J.
2013-01-01
We investigated the spawning patterns of Chinook Salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington, using a unique set of fine- and coarse-scale temporal and spatial data collected during biweekly aerial surveys conducted in 1991–2009 (500 m to 28 km resolution) and 2008–2009 (100–500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held GPS synchronized with in-flight audio recordings. We examined spatial patterns of Chinook Salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook Salmon spawned in the same sections each year with little variation among years. On a coarse scale, 5 years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years. Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations. On a finer temporal scale, we observed that Chinook Salmon spawned in the same sections during the first and last week. Redds were clustered in both 2008 and 2009. Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook Salmon spawning surveys.
Spatial Analysis of Rice Blast in China at Three Different Scales.
Guo, Fangfang; Chen, Xinglong; Lu, Minghong; Yang, Li; Wang, Shi Wei; Wu, Bo Ming
2018-05-22
In this study, spatial analyses were conducted at three different scales to better understand the epidemiology of rice blast, a major rice disease caused by Magnaporthe oryzae. At regional scale, across the major rice production regions in China, rice blast incidence was monitored on 101 dates at 193 stations from June 10 th to Sep. 10 th during 2009-2014, and surveyed in 143 fields in September, 2016; at county scale, 3 surveys were done covering 1-5 counties in 2015-2016; and at field scale, blast was evaluated in 6 fields in 2015-2016. Spatial cluster and hot spot analyses were conducted in GIS on the geographical pattern of the disease at regional scale, and geostatistical analysis performed at all the three scales. Cluster and hot spot analyses revealed that high-disease areas were clustered in mountainous areas in China. Geostatistical analyses detected spatial dependence of blast incidence with influence ranges of 399 to 1080 km at regional scale, and 5 to 10 m at field scale, but not at county scale. The spatial patterns at different scales might be determined by inherent properties of rice blast and environmental driving forces, and findings from this study provide helpful information to sampling and management of rice blast.
Spatial analysis of lettuce downy mildew using geostatistics and geographic information systems.
Wu, B M; van Bruggen, A H; Subbarao, K V; Pennings, G G
2001-02-01
ABSTRACT The epidemiology of lettuce downy mildew has been investigated extensively in coastal California. However, the spatial patterns of the disease and the distance that Bremia lactucae spores can be transported have not been determined. During 1995 to 1998, we conducted several field- and valley-scale surveys to determine spatial patterns of this disease in the Salinas valley. Geostatistical analyses of the survey data at both scales showed that the influence range of downy mildew incidence at one location on incidence at other locations was between 80 and 3,000 m. A linear relationship was detected between semivariance and lag distance at the field scale, although no single statistical model could fit the semi-variograms at the valley scale. Spatial interpolation by the inverse distance weighting method with a power of 2 resulted in plausible estimates of incidence throughout the valley. Cluster analysis in geographic information systems on the interpolated disease incidence from different dates demonstrated that the Salinas valley could be divided into two areas, north and south of Salinas City, with high and low disease pressure, respectively. Seasonal and spatial trends along the valley suggested that the distinction between the downy mildew conducive and nonconducive areas might be determined by environmental factors.
A hierarchical spatial model of avian abundance with application to Cerulean Warblers
Thogmartin, Wayne E.; Sauer, John R.; Knutson, Melinda G.
2004-01-01
Surveys collecting count data are the primary means by which abundance is indexed for birds. These counts are confounded, however, by nuisance effects including observer effects and spatial correlation between counts. Current methods poorly accommodate both observer and spatial effects because modeling these spatially autocorrelated counts within a hierarchical framework is not practical using standard statistical approaches. We propose a Bayesian approach to this problem and provide as an example of its implementation a spatial model of predicted abundance for the Cerulean Warbler (Dendroica cerulea) in the Prairie-Hardwood Transition of the upper midwestern United States. We used an overdispersed Poisson regression with fixed and random effects, fitted by Markov chain Monte Carlo methods. We used 21 years of North American Breeding Bird Survey counts as the response in a loglinear function of explanatory variables describing habitat, spatial relatedness, year effects, and observer effects. The model included a conditional autoregressive term representing potential correlation between adjacent route counts. Categories of explanatory habitat variables in the model included land cover composition and configuration, climate, terrain heterogeneity, and human influence. The inherent hierarchy in the model was from counts occurring, in part, as a function of observers within survey routes within years. We found that the percentage of forested wetlands, an index of wetness potential, and an interaction between mean annual precipitation and deciduous forest patch size best described Cerulean Warbler abundance. Based on a map of relative abundance derived from the posterior parameter estimates, we estimated that only 15% of the species' population occurred on federal land, necessitating active engagement of public landowners and state agencies in the conservation of the breeding habitat for this species. Models of this type can be applied to any data in which the response is counts, such as animal counts, activity (e.g.,nest) counts, or species richness. The most noteworthy practical application of this spatial modeling approach is the ability to map relative species abundance. The functional relationships that we elucidated for the Cerulean Warbler provide a basis for the development of management programs and may serve to focus management and monitoring on areas and habitat variables important to Cerulean Warblers.
Non Lyapunov stability of a constant spatially developing 2-D gas flow
NASA Astrophysics Data System (ADS)
Balint, Agneta M.; Balint, Stefan; Tanasie, Loredana
2017-01-01
Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 2-D gas flow are analyzed in a particular phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the plane. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].
MMT HYPERVELOCITY STAR SURVEY. II. FIVE NEW UNBOUND STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu
2012-05-20
We present the discovery of five new unbound hypervelocity stars (HVSs) in the outer Milky Way halo. Using a conservative estimate of Galactic escape velocity, our targeted spectroscopic survey has now identified 16 unbound HVSs as well as a comparable number of HVSs ejected on bound trajectories. A Galactic center origin for the HVSs is supported by their unbound velocities, the observed number of unbound stars, their stellar nature, their ejection time distribution, and their Galactic latitude and longitude distribution. Other proposed origins for the unbound HVSs, such as runaway ejections from the disk or dwarf galaxy tidal debris, cannotmore » be reconciled with the observations. An intriguing result is the spatial anisotropy of HVSs on the sky, which possibly reflects an anisotropic potential in the central 10-100 pc region of the Galaxy. Further progress requires measurement of the spatial distribution of HVSs over the southern sky. Our survey also identifies seven B supergiants associated with known star-forming galaxies; the absence of B supergiants elsewhere in the survey implies there are no new star-forming galaxies in our survey footprint to a depth of 1-2 Mpc.« less
The effect of short ground vegetation on terrestrial laser scans at a local scale
NASA Astrophysics Data System (ADS)
Fan, Lei; Powrie, William; Smethurst, Joel; Atkinson, Peter M.; Einstein, Herbert
2014-09-01
Terrestrial laser scanning (TLS) can record a large amount of accurate topographical information with a high spatial accuracy over a relatively short period of time. These features suggest it is a useful tool for topographical survey and surface deformation detection. However, the use of TLS to survey a terrain surface is still challenging in the presence of dense ground vegetation. The bare ground surface may not be illuminated due to signal occlusion caused by vegetation. This paper investigates vegetation-induced elevation error in TLS surveys at a local scale and its spatial pattern. An open, relatively flat area vegetated with dense grass was surveyed repeatedly under several scan conditions. A total station was used to establish an accurate representation of the bare ground surface. Local-highest-point and local-lowest-point filters were applied to the point clouds acquired for deriving vegetation height and vegetation-induced elevation error, respectively. The effects of various factors (for example, vegetation height, edge effects, incidence angle, scan resolution and location) on the error caused by vegetation are discussed. The results are of use in the planning and interpretation of TLS surveys of vegetated areas.
Future Perspective and Long-Term Strategy of the Indian EO Programme
NASA Astrophysics Data System (ADS)
Rao, Mukund; Jayaraman, V.; Sridhara Murthi, K. R.; Kasturirangan, K.
EO technology development will continue to have profound effects on spatial information activities, as we are seeing it today - the changing demand of GIS technology to understanding processes around us and its representation as maps. In the longer term, information needs will drive further RS and GIS technological developments - creating stringent demands for technology solutions for spatial data capture, integration and representation. The emergence of Spatial Business from the highly volatile and dynamic synergy of information, technology and access will see a truly Spatial Society. EO will have a major impact on day-to-day life of nations, communities and even an individual. It will become the One-stop source for information - spatial information at that - thus enabling not only development oriented activities but also Business GIS, quality research and Info-savvy communities. Internationally, there will be a mix of Government and Commercial satellites vying to provide information services to a wide variety of users. EO satellites are also becoming smaller, efficient and less costlier. Almost 5-6 commercial systems will orbit around the Earth in the foreseeable future to generate massive, seamless archives of high-resolution panchromatic and multispectral images - almost reducing the need for aerial surveys for photography and mapping. Reaching resolution of cm level and covering narrower and more spectral bands, the trend is to IMAGE the Earth in its entirety and organize Image Infrastructures. The race will be to imaginatively capture the market with the fullest archive of the globe and cater to any imaging demand of users. One will also see efficient satellite operations that will enable imaging any part of the globe with minimum turn-around time - reaching concepts of IMAGING ON DEMAND. The need of the hour is looking forward now towards how the EO technology can adapt itself to the changing scenario and the steps to be taken to sustain use of EO data it in the future. The continuity of the EO services in India is the fundamental requirement for sustenance and further development of the technology and its utilisation, the stage is now set for transitioning the EO technology by initiating policy adjustments for the commercial use of space-based EO. Orientation needs to change from a "facility concept", which was the adage for the "promotional" era, to "Services concept" for the RS technology. The orientation also needs to change from RS data to Spatial Information and GIS databases. Demand for information would increase with a larger involvement of players in the developmental activities and catering to the information needs is what would be the driver for the commercial development. To that extent, the commercial development of Spatial Information needs to be thrusted forward and RS technology will be the back-bone for this information services initiative, because EO has the capability to provide accurate and timely information at large-scales in a repeated manner which is directly amenable to GIS manipulation. The thrust has to be towards developing an independent sector for Spatial Information with the active involvement of users, private entrepreneurs and other agencies to develop space-based RS market segments. This paper discusses the policy adjustments that will be required to be done for developing a viable and effective commercial EO programme in the country with a major thrust of initial government and industry partnership ultimately leading to a true industry sector for Spatial Information services.
Influence of survey strategy and interpolation model on DEM quality
NASA Astrophysics Data System (ADS)
Heritage, George L.; Milan, David J.; Large, Andrew R. G.; Fuller, Ian C.
2009-11-01
Accurate characterisation of morphology is critical to many studies in the field of geomorphology, particularly those dealing with changes over time. Digital elevation models (DEMs) are commonly used to represent morphology in three dimensions. The quality of the DEM is largely a function of the accuracy of individual survey points, field survey strategy, and the method of interpolation. Recommendations concerning field survey strategy and appropriate methods of interpolation are currently lacking. Furthermore, the majority of studies to date consider error to be uniform across a surface. This study quantifies survey strategy and interpolation error for a gravel bar on the River Nent, Blagill, Cumbria, UK. Five sampling strategies were compared: (i) cross section; (ii) bar outline only; (iii) bar and chute outline; (iv) bar and chute outline with spot heights; and (v) aerial LiDAR equivalent, derived from degraded terrestrial laser scan (TLS) data. Digital Elevation Models were then produced using five different common interpolation algorithms. Each resultant DEM was differentiated from a terrestrial laser scan of the gravel bar surface in order to define the spatial distribution of vertical and volumetric error. Overall triangulation with linear interpolation (TIN) or point kriging appeared to provide the best interpolators for the bar surface. Lowest error on average was found for the simulated aerial LiDAR survey strategy, regardless of interpolation technique. However, comparably low errors were also found for the bar-chute-spot sampling strategy when TINs or point kriging was used as the interpolator. The magnitude of the errors between survey strategy exceeded those found between interpolation technique for a specific survey strategy. Strong relationships between local surface topographic variation (as defined by the standard deviation of vertical elevations in a 0.2-m diameter moving window), and DEM errors were also found, with much greater errors found at slope breaks such as bank edges. A series of curves are presented that demonstrate these relationships for each interpolation and survey strategy. The simulated aerial LiDAR data set displayed the lowest errors across the flatter surfaces; however, sharp slope breaks are better modelled by the morphologically based survey strategy. The curves presented have general application to spatially distributed data of river beds and may be applied to standard deviation grids to predict spatial error within a surface, depending upon sampling strategy and interpolation algorithm.
NASA Astrophysics Data System (ADS)
Tanajewski, Dariusz; Bakuła, Mieczysław
2016-08-01
This paper analyses the possibility of using integrated GPS (Global Positioning System) surveys and ground penetrating radar surveys to precisely locate damages to levees, particularly due to the activity of small fossorial mammals. The technology of intercommunication between ground penetrating radar (GPR) and an RTK (Real-Time Kinematic) survey unit, and the method of data combination, are presented. The errors which may appear during the survey work are also characterized. The procedure for processing the data so that the final results have a spatial character and are ready to be implemented in digital maps and geographic information systems (GIS) is also described.
Satellite image analysis for surveillance, vegetation and climate change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, D Michael
2011-01-18
Recently, many studies have provided abundant evidence to show the trend of tree mortality is increasing in many regions, and the cause of tree mortality is associated with drought, insect outbreak, or fire. Unfortunately, there is no current capability available to monitor vegetation changes, and correlate and predict tree mortality with CO{sub 2} change, and climate change on the global scale. Different survey platforms (methods) have been used for forest management. Typical ground-based forest surveys measure tree stem diameter, species, and alive or dead. The measurements are low-tech and time consuming, but the sample sizes are large, running into millionsmore » of trees, covering large areas, and spanning many years. These field surveys provide powerful ground validation for other survey methods such as photo survey, helicopter GPS survey, and aerial overview survey. The satellite imagery has much larger coverage. It is easier to tile the different images together, and more important, the spatial resolution has been improved such that close to or even higher than aerial survey platforms. Today, the remote sensing satellite data have reached sub-meter spatial resolution for panchromatic channels (IKONOS 2: 1 m; Quickbird-2: 0.61 m; Worldview-2: 0.5 m) and meter spatial resolution for multi-spectral channels (IKONOS 2: 4 meter; Quickbird-2: 2.44 m; Worldview-2: 2 m). Therefore, high resolution satellite imagery can allow foresters to discern individual trees. This vital information should allow us to quantify physiological states of trees, e.g. healthy or dead, shape and size of tree crowns, as well as species and functional compositions of trees. This is a powerful data resource, however, due to the vast amount of the data collected daily, it is impossible for human analysts to review the imagery in detail to identify the vital biodiversity information. Thus, in this talk, we will discuss the opportunities and challenges to use high resolution satellite imagery and machine learning theory to monitor tree mortality at the level of individual trees.« less
Kennedy, Christina G.; Mather, Martha E.; Smith, Joseph M.; Finn, John T.; Deegan, Linda A.
2016-01-01
Understanding environmental drivers of spatial patterns is an enduring ecological problem that is critical for effective biological conservation. Discontinuities (ecologically meaningful habitat breaks), both naturally occurring (e.g., river confluence, forest edge, drop-off) and anthropogenic (e.g., dams, roads), can influence the distribution of highly mobile organisms that have land- or seascape scale ranges. A geomorphic discontinuity framework, expanded to include ecological patterns, provides a way to incorporate important but irregularly distributed physical features into organism–environment relationships. Here, we test if migratory striped bass (Morone saxatilis) are consistently concentrated by spatial discontinuities and why. We quantified the distribution of 50 acoustically tagged striped bass at 40 sites within Plum Island Estuary, Massachusetts during four-monthly surveys relative to four physical discontinuities (sandbar, confluence, channel network, drop-off), one continuous physical feature (depth variation), and a geographic location variable (region). Despite moving throughout the estuary, striped bass were consistently clustered in the middle geographic region at sites with high sandbar area, close to channel networks, adjacent to complex confluences, with intermediate levels of bottom unevenness, and medium sized drop-offs. In addition, the highest striped bass concentrations occurred at sites with the greatest additive physical heterogeneity (i.e., where multiple discontinuities co-occurred). The need to incorporate irregularly distributed features in organism–environment relationships will increase as high-quality telemetry and GIS data accumulate for mobile organisms. The spatially explicit approach we used to address this challenge can aid both researchers who seek to understand the impact of predators on ecosystems and resource managers who require new approaches for biological conservation.
Hobbs, Trevor J; Neumann, Craig R; Meyer, Wayne S; Moon, Travis; Bryan, Brett A
2016-10-01
Environmental management and regional land use planning has become more complex in recent years as growing world population, climate change, carbon markets and government policies for sustainability have emerged. Reforestation and agroforestry options for environmental benefits, carbon sequestration, economic development and biodiversity conservation are now important considerations of land use planners. New information has been collected and regionally-calibrated models have been developed to facilitate better regional land use planning decisions and counter the limitations of currently available models of reforestation productivity and carbon sequestration. Surveys of above-ground biomass of 264 reforestation sites (132 woodlots, 132 environmental plantings) within the agricultural regions of South Australia were conducted, and combined with spatial information on climate and soils, to develop new spatial and temporal models of plant density and above-ground biomass productivity from reforestation. The models can be used to estimate productivity and total carbon sequestration (i.e. above-ground + below-ground biomass) under a continuous range of planting designs (e.g. variable proportions of trees and shrubs or plant densities), timeframes and future climate scenarios. Representative spatial models (1 ha resolution) for 3 reforestation designs (i.e. woodlots, typical environmental planting, biodiverse environmental plantings) × 3 timeframes (i.e. 25, 45, 65 years) × 4 possible climates (i.e. no change, mild, moderate, severe warming and drying) were generated (i.e. 36 scenarios) for use within land use planning tools. Copyright © 2016 Elsevier Ltd. All rights reserved.
Extensive data on biota and the physical/chemical environment were collected across the lower St. Louis River in 2004-2007 as part of multiple studies undertaken by EPA. The 2005-2007 work provides a spatially highly-resolved assessment of conditions across the system, while the ...
J. Michael Bowker; D. Murphy; H. Ken Cordell; Donald B.K. English; J.C. Bergstrom; C.M. Starbuck; C.J. Betz; G.T. Green
2006-01-01
This paper explores the influence of demographic and spatial variables on individual participation and consumption of wildland area recreation. Data from the National Survey on Recreation and the Environment are combined with geographical information systembased distance measures to develop nonlinear regression models used to predict both participation and the number...
The significance of spatial resolution: Identifying forest cover from satellite data
Dumitru Salajanu; Charles E. Olson
2001-01-01
Twenty-five years ago, a National Academy of Sciences report identified species identification as a requirement if satellite data are to reach their full potential in forest inventory and monitoring; the report suggested that improving spatial resolution to 10 meters would probably be required (Committee on Remote Sensing Programs for Earth Resource Surveys [CORSPERS]...
Reservoirs are a globally important source of methane (CH4) to the atmosphere, but measuring CH4 emission rates from reservoirs is difficult due to the spatial and temporal variability of the various emission pathways, including ebullition and diffusion. We used the eddy covarian...
Spatial distribution of earthworms in an east Texas forest ecosystem
Melissa A. Bozarth; Kenneth W. Farrish; George A. Damoff; James VanKley; J. Leon Young
2016-01-01
Earthworms were collected and identified in different ecological habitats of the Stephen F. Austin Experimental Forest (SFAEF) in the Piney Woods Ecoregion (PWE) of Texas. Earthworm spatial distribution data were collected over four distinct ecological habitats with a range of soil conditions and vegetative cover. A total of 128 sampling plots were surveyed in two...
Poverty and Algebra Performance: A Comparative Spatial Analysis of a Border South State
ERIC Educational Resources Information Center
Tate, William F.; Hogrebe, Mark C.
2015-01-01
This research uses two measures of poverty, as well as mobility and selected education variables to study how their relationships vary across 543 Missouri high school districts. Using Missouri and U.S. Census American Community Survey (ACS) data, local R[superscript 2]'s from geographically weighted regressions are spatially mapped to demonstrate…
Timber Harvesting Effects on Spatial Variability of Southeastern U.S. Piedmont Soil Properties
J.N. Shaw; Emily A. Carter
2002-01-01
Site-specific forestry requires detailed characterization of the spatial distribution of forest soil properties and the magnitude of harvesting impacts in order to prescribe appropriate management schemes. Furthermore, evaluation of the effects of timber harvesting on soil properties conducted on a landscape scale improves the interpretive value of soil survey data....
GIS soil conservation planning: A case study of a pristine Central America watershed
Steven Shultz
2000-01-01
In the Pacuare River Watershed in Costa Rica, farm size, ownership, and production data were collected and spatially referenced through global positioning surveys and farmer assessments of property boundaries in relation to cadastral maps and air photographs. Using GIs based spatial overlays, this data were integrated with previously collected land use and land...
Johnson, Carole D.; Dawson, C.B.; Belaval, Marcel; Lane, John W.
2002-01-01
A surface-geophysical investigation to characterize the hydrogeology and contaminant distribution of the former landfill area at the University of Connecticut in Storrs, Connecticut, was conducted in 2000 to supplement the preliminary hydrogeologic assessment of the contamination of soil, surface water, and ground water at the site. A geophysical-toolbox approach was used to characterize the hydrogeology and contaminant distribution of the former landfill. Two-dimensional direct-current resistivity, inductive terrain-conductivity, and seismic-refraction surface-geophysical data were collected and interpreted in an iterative manner with exploratory drilling, borehole geophysics, and hydraulic testing. In this investigation, a geophysical-toolbox approach was used to 1) further define previously identified conductive anomalies and leachate plumes; 2) identify additional leachate plumes, possible fracture zones, and (or) conductive lithologic layers in the bedrock; and 3) delineate bedrock-surface topography in the drainage valleys north and south of the landfill. Resistivity and terrain-conductivity surveys were used to further delineate previously identified geophysical anomalies to the north and southwest of the landfill. A conductive anomaly identified in the terrain-conductivity survey to the north of the landfill in 2000 had a similar location and magnitude as an anomaly identified in terrain-conductivity surveys conducted in 1998 and 1999. Collectively, these surveys indicated that the magnitude of the conductive anomaly decreased with depth and with distance from the landfill. These anomalies indicated landfill leachate in the overburden and shallow bedrock. Results of previous surface-geophysical investigations southwest of the landfill indicated a shallow conductive anomaly in the overburden that extended into the fractured-bedrock aquifer. This conductive anomaly had a sheet-like geometry that had a north-south strike, dipped to the west, and terminated abruptly about 450 feet southwest of the landfill. The sheet-like conductive anomaly was interpreted as a fractured, conductive lithologic feature filled with conductive fluids. To further delineate this anomaly, two two-dimensional resistivity profiles were collected west of the sheet-like conductive anomaly to assess the possibility that the sheet-like conductive anomaly continued to the west in its down-dip direction. Each of the north-south oriented resistivity profiles showed bullet-shaped rather than linear-shaped anomalies, with a relatively smaller magnitude of conductivity than the sheet-like conductive anomaly to the east. If these bullet-like features are spatially connected, they may represent a linear, or pipe-like, conductive anomaly in the bedrock with a trend of N290?E and a plunge of 12?. Additional surveys were conducted to assess the apparent southern termination of the sheet-like conductive feature. Terrain-conductivity surveys indicated the sheet-like feature was not continuous to the south. A two-dimensional resistivity line and a coincident terrain-conductivity profile indicated the presence of a steep, eastward dipping, low magnitude, electrically conductive anomaly on the eastern end of the profile. Although the sheet-like conductive anomaly apparently did not continue to the south, the survey conducted in 2000 identified an isolated, weak conductive anomaly south of the previously identified anomaly. Inductive terrain-conductivity surveys performed north of the sheet-like conductive anomaly and west of the landfill indicated the anomaly did not extend to the north into the area of the former chemical-waste disposal pits. No conductive plumes or conductive features were observed in the subsurface bedrock west of the landfill. A conductive anomaly was identified in the southern section of the new terrain-conductivity grid. The magnitude and distribution of the apparent conductivity of this anomaly was identified as a nearly vertica
Spatial strategies for managing visitor impacts in National Parks
Leung, Y.-F.; Marion, J.L.
1999-01-01
Resource and social impacts caused by recreationists and tourists have become a management concern in national parks and equivalent protected areas. The need to contain visitor impacts within acceptable limits has prompted park and protected area managers to implement a wide variety of strategies and actions, many of which are spatial in nature. This paper classifies and illustrates the basic spatial strategies for managing visitor impacts in parks and protected areas. A typology of four spatial strategies was proposed based on the recreation and park management literature. Spatial segregation is a common strategy for shielding sensitive resources from visitor impacts or for separating potentially conflicting types of use. Two forms of spatial segregation are zoning and closure. A spatial containment strategy is intended to minimize the aggregate extent of visitor impacts by confining use to limited designated or established Iocations. In contrast, a spatial dispersal strategy seeks to spread visitor use, reducing the frequency of use to levels that avoid or minimize permanent resource impacts or visitor crowding and conflict. Finally, a spatial configuration strategy minimizes impacting visitor behavior though the judicious spatial arrangement of facilities. These four spatial strategics can be implemented separately or in combination at varying spatial scales within a single park. A survey of national park managers provides an empirical example of the diversity of implemented spatial strategies in managing visitor impacts. Spatial segregation is frequently applied in the form of camping restrictions or closures to protect sensitive natural or cultural resources and to separate incompatible visitor activities. Spatial containment is the most widely applied strategy for minimizing the areal extent of resource impacts. Spatial dispersal is commonly applied to reduce visitor crowding or conflicts in popular destination areas but is less frequently applied or effective in minimizing resource impacts. Spatial configuration was only minimally evaluated, as it was not included in the survey. The proposed typology of spatial strategies offers a useful means of organizing and understanding the wide variety of management strategies and actions applied in managing visitor impacts in parks and protected areas. Examples from U.S. national parks demonstrate the diversity of these basic strategies and their flexibility in implementation at various spatial scales. Documentation of these examples helps illustrate their application and inform managers of the multitude of options. Further analysis from the spatial perspective is needed Io extend the applicability of this typology to other recreational activities and management issues.
Drones at the Beach - Surf Zone Monitoring Using Rotary Wing Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Rynne, P.; Brouwer, R.; de Schipper, M. A.; Graham, F.; Reniers, A.; MacMahan, J. H.
2014-12-01
We investigate the potential of rotary wing Unmanned Aerial Vehicles (UAVs) to monitor the surf zone. In recent years, the arrival of lightweight, high-capacity batteries, low-power electronics and compact high-definition cameras has driven the development of commercially available UAVs for hobbyists. Moreover, the low operation costs have increased their potential for scientific research as these UAVs are extremely flexible surveying platforms. The UAVs can fly for ~12 min with a mean loiter radius of 1 - 3.5 m and a mean loiter error of 0.75 - 4.5 m, depending on the environmental conditions, flying style, battery type and vehicle type. Our experiments using multiple, alternating UAVs show that it is possible to have near continuous imagery data with similar Fields Of View. The images obtained from the UAVs (Fig. 1a), and in combination with surveyed Ground Control Points (GCPs) (Fig. 1b, red squares and white circles), can be geo-rectified (Fig. 1c) to pixel resolution between 0.01 - 1 m and a reprojection error, i.e. the difference between the surveyed GPS location of a GCP and the location of the GCP obtained from the geo-rectified image, of O(1 m). These geo-rectified images provide data on a variety of coastal aspects, such as beach width (Wb(x,t)), surf zone width (Wsf(x,t)), wave breaking location (rectangle B), beach usage (circle C) and location of dune vegegation (rectangle D), amongst others. Additionally, the possibility to have consecutive, high frequency (up to 2 Hz) rectified images makes the UAVs a great data instrument for spatially and temporally variable systems, such as the surf zone. Our first observations with the UAVs reveal the potential to quickly obtain surf zone and beach characteristics in response to storms or for day to day beach information, as well as the scientific pursuits of surf zone kinematics on different spatial and temporal scales, and dispersion and advection estimates of pollutants/dye. A selection of findings from several field experiments and using multiple optical instruments will be showed at the meeting, discussing the new possibilities rotary wing UAVs can offer for surf zone research.
Identifying ecological and fishing drivers of bycatch in a U.S. groundfish fishery.
Jannot, Jason E; Holland, Daniel S
2013-10-01
Fisheries bycatch is driven by both ecological (e.g., area, season) and social (e.g., fisher behavior) factors that are often difficult to disentangle. We demonstrate a method for comparing fishery-dependent bycatch to fishery-independent catch to delineate the influence of ecological and social factors on bycatch and provide insights for bycatch management. We used data from commercial fishing vessels in the U.S. west coast trawl groundfish fishery (fishery-dependent data collected by fisheries observers) and scientific data from the U.S. west coast bottom trawl groundfish survey (fishery-independent data) to compare the relative effects of season, time of day, target group, depth, and latitude on the expected catch of 12 bycatch species of management interest. This comparison highlights two important relationships that help identify drivers of bycatch. First, when the effect of season, time of day, depth, or latitude on bycatch in both the commercial and scientific data is positive, ecological processes are likely strong drivers of bycatch, suggesting technical approaches (e.g., temporal or spatial closures, gear modifications) might effectively control bycatch. Alternatively, when the effects of season, time of day, depth, latitude, or target group appear only in the commercial data (but not in survey data), fisher behavior is likely the stronger driver of bycatch, suggesting a need to strengthen incentives for fishers to change behavior to avoid bycatch (e.g., regulatory quotas). Two other patterns emerge that suggest that fishery bycatch is not associated with temporal, target, or spatial variables, implying that either current incentives to avoid bycatch are working (i.e., when survey expected catch is positively correlated with variables, but fishery catch is not) or bycatch is a product of unstudied or stochastic processes (i.e., variables are not correlated with expected catch in either data set) and continued monitoring is recommended. Our analysis provides managers and fishers with a basic analytical framework to assess bycatch reduction alternatives and methods useful for researchers interested in comparing bycatch before and after a management shift.
NASA Astrophysics Data System (ADS)
Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris
2018-04-01
As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater growing season temporal variability, and reduced levels of soil moisture, whilst projected decreasing summer precipitation may alter the feedbacks between soil moisture and vegetation water use and increase growing season soil moisture deficits.
NASA Astrophysics Data System (ADS)
Levy, J.; Franklin, E. C.; Hunter, C. L.
2016-12-01
Coral reefs are biodiversity hotspots that are vital to the function of global economic and biological processes. Coral bleaching is a significant contributor to the global decline of reefs and can impact an expansive reef area over short timescales. In order to understand the dynamics of coral bleaching and how these stress events impact reef ecosystems, it is important to conduct rapid bleaching surveys at functionally important spatial scales. Due to the inherent heterogeneity, size, and in some cases, remoteness of coral reefs, it is difficult to routinely monitor coral bleaching dynamics before, during, and after bleaching. Additionally, current in situ survey methods only collect snippets of discrete reef data over small reef areas, which are unable to accurately represent the reef as a whole. We present a new technique using small unmanned aerial systems (sUAS) as cost effective, efficient monitoring tools that target small to intermediate-scale reef dynamics to understand the spatial distribution of bleached coral colonies during the 2015 bleaching event on patch reefs in Kaneohe Bay, Oahu. Overlapping low altitude aerial images were collected at four reefs during the bleaching period and processed using Structure-from-Motion techniques to produce georeferenced and spatially accurate orthomosaics of complete reef areas. Mosaics were analyzed using manual and heuristic neural network classification schemes to identify comprehensive populations of bleached and live coral on each patch reef. We found that bleached colonies had random and clumped distributions on patch reefs in Kaneohe Bay depending on local environmental conditions. Our work demonstrates that sUAS provide a low cost, efficient platform that can rapidly and repeatedly collect high-resolution imagery (1 cm/pixel) and map large areas of shallow reef ecosystems (5 hectares). This study proves the feasibility of utilizing sUAS as a tool to collect spatially rich reef data that will provide reef scientists a new perspective on meso-scale coral reef dynamics. We envision that similar low altitude aerial surveys will be incorporated as a standard component of shallow-water reef studies, especially on reefs too dangerous or remote for in situ surveys.
Freehafer, Douglas A.; Pierson, Oliver
2004-01-01
In the fall of 2002, the Onondaga Lake Partnership (OLP) formed a Geographic Information System (GIS) Planning Committee to begin the process of developing a comprehensive watershed geographic information system for Onondaga Lake. The goal of the Onondaga Lake Partnership geographic information system is to integrate the various types of spatial data used for scientific investigations, resource management, and planning and design of improvement projects in the Onondaga Lake Watershed. A needs-assessment survey was conducted and a spatial data framework developed to support the Onondaga Lake Partnership use of geographic information system technology. The design focused on the collection, management, and distribution of spatial data, maps, and internet mapping applications. A geographic information system library of over 100 spatial datasets and metadata links was assembled on the basis of the results of the needs assessment survey. Implementation options were presented, and the Geographic Information System Planning Committee offered recommendations for the management and distribution of spatial data belonging to Onondaga Lake Partnership members. The Onondaga Lake Partnership now has a strong foundation for building a comprehensive geographic information system for the Onondaga Lake watershed. The successful implementation of a geographic information system depends on the Onondaga Lake Partnership’s determination of: (1) the design and plan for a geographic information system, including the applications and spatial data that will be provided and to whom, (2) the level of geographic information system technology to be utilized and funded, and (3) the institutional issues of operation and maintenance of the system.
The geomorphology of the Chandeleur Island Wetlands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debusschere, K.; Penland, S.; Westphal, K.
1990-09-01
The Chandeleur Islands represent the largest and oldest transgressive barrier island arc in the northern Gulf of Mexico. Generated by the transgressive submergence of the St. Bernard delta complex, the Chandeleur Islands form the protective geologic framework for one of the richest areas of salt marsh and seagrass flats in Louisiana. The Chandeleur barrier island arc is 60 km long and consists of five individual islands backed by a linear, multiple bar system enclosing a shallow basin floored by extensive seagrass flats. The northern part of the Chandeleur chain is the highest in relief, elevation, width, and habitat diversity. Nonstormmore » morphology is predominantly a combination of continuous dunes and dune terraces. Numerous washover channels and large washover fans extend into the backbarrier environment. Further south, the island width decreases and washover flats and terraces dominate the shoreline morphology In the southernmost section, the island arc is fragmented into a series of small islands and shoals separated by tidal inlets. Between 1984 and 1989, aerial videotape, aerial photographic, and bathymetric surveys were used to map and monitor the geomorphic changes occurring along the shoreline and in backbarrier areas. The aerial videotape mapping surveys focused on the impacts of hurricanes Danny, Elena, and Juan on the geomorphology of the islands. Videotape imagery was acquired in July 1984 and in July (prestorm), August (post-Danny), September (post-Elena), and November (post-Juan) 1985. A coastal geomorphic classification was developed to map the spatial and temporal landscape changes between surveys.« less
NASA Astrophysics Data System (ADS)
Dotta, Giulia; Gigli, Giovanni; Ferrigno, Federica; Gabbani, Giuliano; Nocentini, Massimiliano; Lombardi, Luca; Agostini, Andrea; Nolesini, Teresa; Casagli, Nicola
2017-09-01
The shipwreck of the Costa Concordia cruise ship, which ran aground on 13 January 2012 on the northwestern coast of Giglio Island (Italy), required continuous monitoring of the position and movement of the vessel to guarantee the security of workers and rescuers operating around and within the wreck and to support shipwreck removal operations. Furthermore, understanding the geomechanical properties and stability behaviour of the coastal rock mass and rocky seabed underlying the ship was of similar importance. To assess the stability conditions of the ship, a ground-based monitoring system was installed in front of the wreck. The network included a terrestrial laser scanner (TLS) device, which was used to perform remote semiautomatic geomechanical characterization of the observed rock mass. Using TLS survey techniques, three main discontinuity sets were identified in the granitic rock mass of Giglio Island. Furthermore, a multibeam bathymetric survey was used to qualitatively characterize the seabed. To integrate the processed TLS data and quantitatively describe the rock mass quality, a subsequent field survey was carried out to provide a rock mass geomechanical evaluation (from very good to moderate quality). Based on the acquired information, kinematic and stability analyses were performed to create a spatial prediction of rock failure mechanisms in the study area. The obtained kinematic hazard index values were generally low; only the plane failure index reached slightly higher values. The general stability of the rock mass was confirmed by the stability analysis, which yielded a high safety factor value (approximately 12).
ERIC Educational Resources Information Center
Wisner, Patricia; And Others
In 1988, a study was conducted at William Rainey Harper College (WRHC) to assess the needs of registered nurses in the college's service district for continuing education courses, seminars, and workshops. A survey was mailed to 6,228 registered nurses to determine their awareness of and/or past participation in WRHC's continuing education program,…
A survey of interprofessional education in chiropractic continuing education in the United States.
Bednarz, Edward M; Lisi, Anthony J
2014-10-01
Objective : The purpose of this study is to describe the state of chiropractic continuing education vis-à-vis interprofessional education (IPE) with medical doctors (MD) in a survey of a sample of US doctors of chiropractic (DC) and through a review of policies. Methods : Forty-five chiropractors with experience in interprofessional settings completed an electronic survey of their experiences and perceptions regarding DC-MD IPE in chiropractic continuing education (CE). The licensing bodies of the 50 US states and the District of Columbia were queried to assess the applicability of continuing medical education (CME) to chiropractic relicensure. Results : The majority (89.1%) of survey respondents who attend CE-only events reported that they rarely to never experienced MD-IPE at these activities. Survey respondents commonly attended CME-only events, and 84.5% stated that they commonly to very commonly experienced MD-IPE at these activities. More than half (26 of 51) of the licensing bodies did not provide sufficient information to determine if CME was applicable to DC relicensure. Thirteen jurisdictions (25.5%) do not, and 12 jurisdictions (23.5%) do accept CME credits for chiropractic relicensure. Conclusion : The majority of integrated practice DCs we surveyed reported little to no IPE occurring at CE-only events, yet significant IPE occurring at CME events. However, we found only 23.5% of chiropractic licensing bodies allow CME credit to apply to chiropractic relicensure. These factors may hinder DC-MD IPE in continuing education.
42 CFR 488.318 - Inadequate survey performance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false Inadequate survey performance. 488.318 Section 488... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Long-Term Care Facilities § 488.318 Inadequate survey performance. (a) CMS considers survey...
42 CFR 488.318 - Inadequate survey performance.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 5 2012-10-01 2012-10-01 false Inadequate survey performance. 488.318 Section 488... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Long-Term Care Facilities § 488.318 Inadequate survey performance. (a) CMS considers survey...
42 CFR 488.318 - Inadequate survey performance.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 5 2013-10-01 2013-10-01 false Inadequate survey performance. 488.318 Section 488... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Long-Term Care Facilities § 488.318 Inadequate survey performance. (a) CMS considers survey...
42 CFR 488.318 - Inadequate survey performance.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 5 2014-10-01 2014-10-01 false Inadequate survey performance. 488.318 Section 488... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Long-Term Care Facilities § 488.318 Inadequate survey performance. (a) CMS considers survey...
NASA Technical Reports Server (NTRS)
Hasegawa, H.; Kitamura, N.; Saito, Y.; Nagai, T.; Shinohara, I.; Yokota, S.; Pollock, C. J.; Giles, B. L.; Dorelli, J. C.; Gershman, D. J.;
2016-01-01
We present observations on 2 October 201Swhen the Geotail spacecraft, near the Earth's equatorial plane, and the Magnetospheric Multiscale (MMS) spacecraft, at mid-southem latitudes, simultaneously encountered southward jets from dayside magnetopause reconnection under southward interplanetary magnetic field conditions. The observations show that the equatorial reconnection site under modest solar wind Alfven Mach number conditions remained active almost continuously for hours and, at the same time, extended over a wide range of local times (4h). The reconnection jets expanded toward the magnetosphere with distance from the reconnection site. Geotall, closer to the reconnection site, occasionally encountered large-amplitude mesoscale flux transfer events (FTEs) with durations about or less than 1 min. However, MMS subsequently detected no or only smaller-amplitude corresponding FTE signatures. It is suggested that during quasi-continuous spatially extended reconnection, mesoscale FTEs decay as the jet spatially evolves over distances between the two spacecraft of 350 ion inertial lengths.
Nepal and Papua Airborne Gravity Surveys
NASA Astrophysics Data System (ADS)
Olesen, A. V.; Forsberg, R.; Kasenda, F.; Einarsson, I.; Manandhar, N.
2011-12-01
Airborne gravimetry offers a fast and economic way to cover vast areas and it allows access to otherwise difficult accessible areas like mountains, jungles and the near coastal zone. It has the potential to deliver high resolution and bias free data that may bridge the spectral gap between global satellite gravity models and the high resolution gravity information embedded in digital terrain models. DTU Space has for more than a decade done airborne gravity surveys in many parts of the world. Most surveys were done with a LaCoste & Romberg S-meter updated for airborne use. This instrument has proven to deliver near bias free data when properly processed. A Chekan AM gravimeter was recently added to the airborne gravity mapping system and will potentially enhance the spatial resolution and the robustness of the system. This paper will focus on results from two recent surveys over Nepal, flown in December 2010, and over Papua (eastern Indonesia), flown in May and June 2011. Both surveys were flown with the new double gravimeter setup and initial assessment of system performance indicates improved spatial resolution compared to the single gravimeter system. Comparison to EGM08 and to the most recent GOCE models highlights the impact of the new airborne gravity data in both cases. A newly computed geoid model for Nepal based on the airborne data allows for a more precise definition of the height of Mt. Everest in a global height system. This geoid model suggests that the height of Mt. Everest should be increased by approximately 1 meter. The paper will also briefly discuss system setup and will highlight a few essential processing steps that ensure that bias problems are minimized and spatial resolution enhanced.
Shaver, Erika R; Sadler, Richard C; Hill, Alex B; Bell, Kendall; Ray, Myah; Choy-Shin, Jennifer; Lerner, Joy; Soldner, Teresa; Jones, Andrew D
2018-06-01
The goal of the present study was to use a methodology that accurately and reliably describes the availability, price and quality of healthy foods at both the store and community levels using the Nutrition Environment Measures Survey in Stores (NEMS-S), to propose a spatial methodology for integrating these store and community data into measures for defining objective food access. Two hundred and sixty-five retail food stores in and within 2 miles (3·2 km) of Flint, Michigan, USA, were mapped using ArcGIS mapping software. A survey based on the validated NEMS-S was conducted at each retail food store. Scores were assigned to each store based on a modified version of the NEMS-S scoring system and linked to the mapped locations of stores. Neighbourhood characteristics (race and socio-economic distress) were appended to each store. Finally, spatial and kernel density analyses were run on the mapped store scores to obtain healthy food density metrics. Regression analyses revealed that neighbourhoods with higher socio-economic distress had significantly lower dairy sub-scores compared with their lower-distress counterparts (β coefficient=-1·3; P=0·04). Additionally, supermarkets were present only in neighbourhoods with <60 % African-American population and low socio-economic distress. Two areas in Flint had an overall NEMS-S score of 0. By identifying areas with poor access to healthy foods via a validated metric, this research can be used help local government and organizations target interventions to high-need areas. Furthermore, the methodology used for the survey and the mapping exercise can be replicated in other cities to provide comparable results.
Setegn, Tesfaye; Lakew, Yihunie; Deribe, Kebede
2016-01-01
Background Female genital mutilation (FGM) is a common traditional practice in developing nations including Ethiopia. It poses complex and serious long-term health risks for women and girls and can lead to death. In Ethiopia, the geographic distribution and factors associated with FGM practices are poorly understood. Therefore, we assessed the spatial distribution and factors associated with FGM among reproductive age women in the country. Method We used population based national representative surveys. Data from two (2000 and 2005) Ethiopian demographic and health surveys (EDHS) were used in this analysis. Briefly, EDHS used a stratified, two-stage cluster sampling design. A total of 15,367 (from EDHS 2000) and 14,070 (from EDHS 2005) women of reproductive age (15–49 years) were included in the analysis. Three outcome variables were used (prevalence of FGM among women, prevalence of FGM among daughters and support for the continuation of FGM). The data were weighted and descriptive statistics (percentage change), bivariate and multivariable logistic regression analyses were carried out. Multicollinearity of variables was assessed using variance inflation factors (VIF) with a reference value of 10 before interpreting the final output. The geographic variation and clustering of weighted FGM prevalence were analyzed and visualized on maps using ArcGIS. Z-scores were used to assess the statistical difference of geographic clustering of FGM prevalence spots. Result The trend of FGM weighted prevalence has been decreasing. Being wealthy, Muslim and in higher age categories are associated with increased odds of FGM among women. Similarly, daughters from Muslim women have increased odds of experiencing FGM. Women in the higher age categories have increased odds of having daughters who experience FGM. The odds of FGM among daughters decrease with increased maternal education. Mass media exposure, being wealthy and higher paternal and maternal education are associated with decreased odds of women’s support of FGM continuation. FGM prevalence and geographic clustering showed variation across regions in Ethiopia. Conclusion Individual, economic, socio-demographic, religious and cultural factors played major roles in the existing practice and continuation of FGM. The significant geographic clustering of FGM was observed across regions in Ethiopia. Therefore, targeted and integrated interventions involving religious leaders in high FGM prevalence spot clusters and addressing the socio-economic and geographic inequalities are recommended to eliminate FGM. PMID:26741488
Setegn, Tesfaye; Lakew, Yihunie; Deribe, Kebede
2016-01-01
Female genital mutilation (FGM) is a common traditional practice in developing nations including Ethiopia. It poses complex and serious long-term health risks for women and girls and can lead to death. In Ethiopia, the geographic distribution and factors associated with FGM practices are poorly understood. Therefore, we assessed the spatial distribution and factors associated with FGM among reproductive age women in the country. We used population based national representative surveys. Data from two (2000 and 2005) Ethiopian demographic and health surveys (EDHS) were used in this analysis. Briefly, EDHS used a stratified, two-stage cluster sampling design. A total of 15,367 (from EDHS 2000) and 14,070 (from EDHS 2005) women of reproductive age (15-49 years) were included in the analysis. Three outcome variables were used (prevalence of FGM among women, prevalence of FGM among daughters and support for the continuation of FGM). The data were weighted and descriptive statistics (percentage change), bivariate and multivariable logistic regression analyses were carried out. Multicollinearity of variables was assessed using variance inflation factors (VIF) with a reference value of 10 before interpreting the final output. The geographic variation and clustering of weighted FGM prevalence were analyzed and visualized on maps using ArcGIS. Z-scores were used to assess the statistical difference of geographic clustering of FGM prevalence spots. The trend of FGM weighted prevalence has been decreasing. Being wealthy, Muslim and in higher age categories are associated with increased odds of FGM among women. Similarly, daughters from Muslim women have increased odds of experiencing FGM. Women in the higher age categories have increased odds of having daughters who experience FGM. The odds of FGM among daughters decrease with increased maternal education. Mass media exposure, being wealthy and higher paternal and maternal education are associated with decreased odds of women's support of FGM continuation. FGM prevalence and geographic clustering showed variation across regions in Ethiopia. Individual, economic, socio-demographic, religious and cultural factors played major roles in the existing practice and continuation of FGM. The significant geographic clustering of FGM was observed across regions in Ethiopia. Therefore, targeted and integrated interventions involving religious leaders in high FGM prevalence spot clusters and addressing the socio-economic and geographic inequalities are recommended to eliminate FGM.
Integrated analysis of remote sensing products from basic geological surveys. [Brazil
NASA Technical Reports Server (NTRS)
Dasilvafagundesfilho, E. (Principal Investigator)
1984-01-01
Recent advances in remote sensing led to the development of several techniques to obtain image information. These techniques as effective tools in geological maping are analyzed. A strategy for optimizing the images in basic geological surveying is presented. It embraces as integrated analysis of spatial, spectral, and temporal data through photoptic (color additive viewer) and computer processing at different scales, allowing large areas survey in a fast, precise, and low cost manner.
Raivio, Risto; Holmberg-Marttila, Doris; Mattila, Kari J
2014-10-01
Continuity of care is an essential aspect of quality in general practice. This study is the first systematic follow-up of Finnish primary care patients' assessments with regard to personal continuity of care. To ascertain whether patient-reported longitudinal personal continuity of care is related to patient characteristics and their consultation experiences, and how this had changed over the study period. A 15-year follow-up questionnaire survey that took place at Tampere University Hospital catchment area, Finland. The survey was conducted among patients attending health centres in the Tampere University Hospital catchment area from 1998 until 2013. From a sample of 363 464 patients, a total of 157 549 responded. The responses of patients who had visited a doctor during the survey weeks (n = 97 468) were analysed. Continuity of care was assessed by asking the question: 'When visiting the health centre, do you usually see the same doctor?'; patients could answer 'yes' or 'no'. Approximately half of the responders had met the same doctor when visiting the healthcare centre. Personal continuity of care decreased by 15 percentage points (from 66% to 51%) during the study years. The sense of continuity was linked to several patients' experiences of the consultation. The most prominent factor contributing to the sense of continuity of care was having a doctor who was specifically appointed (odds ratio 7.28, 95% confidence interval = 6.65 to 7.96). Continuity of care was proven to enhance the experienced quality of primary care. Patients felt that continuity of care was best realised when they could consult a doctor who had been specifically appointed to them. Despite efforts of the authorities, over the past 15 years patient-reported continuity of care has declined in Finland. © British Journal of General Practice 2014.
Decreasing annual nest counts in a globally important loggerhead sea turtle population.
Witherington, Blair; Kubilis, Paul; Brost, Beth; Meylan, Anne
2009-01-01
The loggerhead sea turtle (Caretta caretta) nests on sand beaches, has both oceanic and neritic life stages, and migrates internationally. We analyzed an 18-year time series of Index Nesting Beach Survey (Index) nest-count data to describe spatial and temporal trends in loggerhead nesting on Florida (USA) beaches. The Index data were highly resolved: 368 fixed zones (mean length 0.88 km) were surveyed daily during annual 109-day survey seasons. Spatial and seasonal coverage averaged 69% of estimated total nesting by loggerheads in the state. We carried out trend analyses on both annual survey-region nest-count totals (N = 18) and annual zone-level nest densities (N = 18 x 368 = 6624). In both analyses, negative binomial regression models were used to fit restricted cubic spline curves to aggregated nest counts. Between 1989 and 2006, loggerhead nest counts on Florida Index beaches increased and then declined, with a net decrease over the 18-year period. This pattern was evident in both a trend model of annual survey-region nest-count totals and a mixed-effect, "single-region" trend model of annual zone-level nest densities that took into account both spatial and temporal correlation between counts. We also saw this pattern in a zone-level model that allowed trend line shapes to vary between six coastal subregions. Annual mean zone-level nest density declined significantly (-28%; 95% CI: -34% to -21%) between 1989 and 2006 and declined steeply (-43%; 95% CI: -48% to -39%) during 1998-2006. Rates of change in annual mean nest density varied more between coastal subregions during the "mostly increasing" period prior to 1998 than during the "steeply declining" period after 1998. The excellent fits (observed vs. expected count R2 > 0.91) of the mixed-effect zone-level models confirmed the presence of strong, positive, within-zone autocorrelation (R > 0.93) between annual counts, indicating a remarkable year-to-year consistency in the longshore spatial distribution of nests over the survey region. We argue that the decline in annual loggerhead nest counts in peninsular Florida can best be explained by a decline in the number of adult female loggerheads in the population. Causes of this decline are explored.
Joel Ralston; David I. King; William V. DeLuca; Gerald J. Niemi; Michale J. Glennon; Judith C. Scarl; J. Daniel Lambert
2015-01-01
Continental-scale monitoring programs with standardized survey protocols play an important role in conservation science by identifying species in decline and prioritizing conservation action. However, rare, inaccessible, or spatially fragmented communities may be underrepresented in continental-scale surveys. Data on these communities often come from decentralized,...
A map of abstract relational knowledge in the human hippocampal–entorhinal cortex
Garvert, Mona M; Dolan, Raymond J; Behrens, Timothy EJ
2017-01-01
The hippocampal–entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal–entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal–entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns. DOI: http://dx.doi.org/10.7554/eLife.17086.001 PMID:28448253
Implications of the spatial dynamics of fire spread for the bistability of savanna and forest.
Schertzer, E; Staver, A C; Levin, S A
2015-01-01
The role of fire in expanding the global distribution of savanna is well recognized. Empirical observations and modeling suggest that fire spread has a threshold response to fuel-layer continuity, which sets up a positive feedback that maintains savanna-forest bistability. However, modeling has so far failed to examine fire spread as a spatial process that interacts with vegetation. Here, we use simple, well-supported assumptions about fire spread as an infection process and its effects on trees to ask whether spatial dynamics qualitatively change the potential for savanna-forest bistability. We show that the spatial effects of fire spread are the fundamental reason that bistability is possible: because fire spread is an infection process, it exhibits a threshold response to fuel continuity followed by a rapid increase in fire size. Other ecological processes affecting fire spread may also contribute including temporal variability in demography or fire spread. Finally, including the potential for spatial aggregation increases the potential both for savanna-forest bistability and for savanna and forest to coexist in a landscape mosaic.
Kriging in the Shadows: Geostatistical Interpolation for Remote Sensing
NASA Technical Reports Server (NTRS)
Rossi, Richard E.; Dungan, Jennifer L.; Beck, Louisa R.
1994-01-01
It is often useful to estimate obscured or missing remotely sensed data. Traditional interpolation methods, such as nearest-neighbor or bilinear resampling, do not take full advantage of the spatial information in the image. An alternative method, a geostatistical technique known as indicator kriging, is described and demonstrated using a Landsat Thematic Mapper image in southern Chiapas, Mexico. The image was first classified into pasture and nonpasture land cover. For each pixel that was obscured by cloud or cloud shadow, the probability that it was pasture was assigned by the algorithm. An exponential omnidirectional variogram model was used to characterize the spatial continuity of the image for use in the kriging algorithm. Assuming a cutoff probability level of 50%, the error was shown to be 17% with no obvious spatial bias but with some tendency to categorize nonpasture as pasture (overestimation). While this is a promising result, the method's practical application in other missing data problems for remotely sensed images will depend on the amount and spatial pattern of the unobscured pixels and missing pixels and the success of the spatial continuity model used.
A Survey of Spatial and Seasonal Water Isotope Variability on the Juneau Icefield, Alaksa
NASA Astrophysics Data System (ADS)
Dennis, D.; Carter, A.; Clinger, A. E.; Eads, O. L.; Gotwals, S.; Gunderson, J.; Hollyday, A. E.; Klein, E. S.; Markle, B. R.; Timms, J. R.
2015-12-01
The depletion of stable oxygen-hydrogen isotopes (δ18O and δH) is well correlated with temperature change, which is driven by variation in topography, climate, and atmospheric circulation. This study presents a survey of the spatial and seasonal variability of isotopic signatures on the Juneau Icefield (JI), Alaska, USA which spans over 3,000 square-kilometers. To examine small scale variability in the previous year's accumulation, samples were taken at regular intervals from snow pits and a one square-kilometer surficial grid. Surface snow samples were collected across the icefield to evaluate large scale variability, ranging approximately 1,000 meters in elevation and 100 kilometers in distance. Individual precipitation events were also sampled to track percolation throughout the snowpack and temperature correlations. A survey of this extent has never been undertaken on the JI. Samples were analyzed in the field using a Los Gatos laser isotope analyzer. This survey helps us better understand isotope fractionation on temperate glaciers in coastal environments and provides preliminary information on the suitability of the JI for a future ice core drilling project.
Physics Learning Styles in Higher Education
NASA Astrophysics Data System (ADS)
Loos, Rebecca; Ward, James
2012-03-01
Students in Physics learn in a variety ways depending on backgrounds and interests. This study proposes to evaluate how students in Physics learn using Howard Gardner's Theory of Multiple Intelligences. Physics utilizes numbers, conceptualization of models, observations and visualization skills, and the ability to understand and reflect on specific information. The main objective is to evaluate how Physics students learn specifically using spatial, visual and sequential approaches. This will be assessed by conducting a learning style survey provided by North Carolina State University (NCSU). The survey is completed online by the student after which the results are sent to NCSU. Students will print out the completed survey analysis for further evaluation. The NCSU results categorize students within five of ten learning styles. After the evaluation of Howard Gardner's Theory of Multiple Intelligences and the NCSU definitions of the ten learning styles, the NCSU sensing and visual learning styles will be defined as the Gardener's spatial, visual learning styles. NCSU's sequential learning style will be looked at separately. With the survey results, it can be determined if Physics students fall within the hypothesized learning styles.
2011-01-01
Background In Ethiopia, malaria transmission is seasonal and unstable, with both Plasmodium falciparum and Plasmodium vivax endemic. Such spatial and temporal clustering of malaria only serves to underscore the importance of regularly collecting up-to-date malaria surveillance data to inform decision-making in malaria control. Cross-sectional school-based malaria surveys were conducted across Oromia Regional State to generate up-to-date data for planning malaria control interventions, as well as monitoring and evaluation of operational programme implementation. Methods Two hundred primary schools were randomly selected using a stratified and weighted sampling frame; 100 children aged five to 18 years were then randomly chosen within each school. Surveys were carried out in May 2009 and from October to December 2009, to coincide with the peak of malaria transmission in different parts of Oromia. Each child was tested for malaria by expert microscopy, their haemoglobin measured and a simple questionnaire completed. Satellite-derived environmental data were used to assess ecological correlates of Plasmodium infection; Bayesian geostatistical methods and Kulldorff's spatial scan statistic were employed to investigate spatial heterogeneity. Results A total 20,899 children from 197 schools provided blood samples, two selected schools were inaccessible and one school refused to participate. The overall prevalence of Plasmodium infection was found to be 0.56% (95% CI: 0.46-0.67%), with 53% of infections due to P. falciparum and 47% due to P. vivax. Of children surveyed, 17.6% (95% CI: 17.0-18.1%) were anaemic, while 46% reported sleeping under a mosquito net the previous night. Malaria was found at 30 (15%) schools to a maximum elevation of 2,187 metres, with school-level Plasmodium prevalence ranging between 0% and 14.5%. Although environmental variables were only weakly associated with P. falciparum and P. vivax infection, clusters of infection were identified within Oromia. Conclusion These findings demonstrate the marked spatial heterogeneity of malaria in Oromia and, in general, Ethiopia, and provide a strong epidemiological basis for planning as well as monitoring and evaluating malaria control in a setting with seasonal and unstable malaria transmission. PMID:21288368
42 CFR 488.715 - Partial extended surveys.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 5 2013-10-01 2013-10-01 false Partial extended surveys. 488.715 Section 488.715... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Home Health Agencies § 488.715 Partial extended surveys. A partial extended survey is conducted...
42 CFR 488.715 - Partial extended surveys.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 5 2014-10-01 2014-10-01 false Partial extended surveys. 488.715 Section 488.715... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Home Health Agencies § 488.715 Partial extended surveys. A partial extended survey is conducted...
Detect, map, and preserve Bronze & Iron Age monuments along the pre-historic Silk Road
NASA Astrophysics Data System (ADS)
Balz, Timo; Caspari, Gino; Fu, Bihong
2017-02-01
Central Asia is rich in cultural heritage generated by thousands of years of human occupation. Aiming for a better understanding of Central Asia’s archaeology and how this unique heritage can be protected, the region should be studied as a whole with regard to its cultural ties with China and combined efforts should be undertaken in shielding the archaeological monuments from destruction. So far, international research campaigns have focused predominantly on single-sites or small-scale surveys, mainly due to the bureaucratic and security related issues involved in cross-border research. This is why we created the Dzungaria Landscape Project. Since 2013, we have worked on collecting remote sensing data of Xinjiang including IKONOS, WorldView-2, and TerraSAR-X data. We have developed a method for the automatic detection of larger grave mound structures in optical and SAR data. Gravemounds are typically spatially clustered and the detection of larger mound structures is a sufficient hint towards areas of high archaeological interest in a region. A meticulous remote sensing survey is the best planning tool for subsequent ground surveys and excavation. In summer 2015, we undertook a survey in the Chinese Altai in order to establish ground-truth in the Hailiutan valley. We categorized over 1000 monuments in just three weeks thanks to the previous detection and classification work using remote sensing data. Creating accurate maps of the cemeteries in northern Xinjiang is a crucial step to preserving the cultural heritage of the region since graves in remote areas are especially prone to looting. We will continue our efforts with the ultimate aim to map and monitor all large gravemounds in Dzungaria and potentially neighbouring eastern Kazakhstan.
A MODERN SEARCH FOR WOLF–RAYET STARS IN THE MAGELLANIC CLOUDS. II. A SECOND YEAR OF DISCOVERIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massey, Philip; Neugent, Kathryn F.; Morrell, Nidia, E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: nmorrell@lco.cl
The numbers and types of evolved massive stars found in nearby galaxies provide an exacting test of stellar evolution models. Because of their proximity and rich massive star populations, the Magellanic Clouds have long served as the linchpins for such studies. Yet the continued accidental discoveries of Wolf–Rayet (WR) stars in these systems demonstrate that our knowledge is not as complete as usually assumed. Therefore, we undertook a multi-year survey for WRs in the Magellanic Clouds. Our results from our first year (reported previously) confirmed nine new LMC WRs. Of these, six were of a type never before recognized, withmore » WN3-type emission combined with O3-type absorption features. Yet these stars are 2–3 mag too faint to be WN3+O3 V binaries. Here we report on the second year of our survey, including the discovery of four more WRs, two of which are also WN3/O3s, plus two “slash” WRs. This brings the total of known LMC WRs to 152, 13 (8.2%) of which were found by our survey, which is now ∼60% complete. We find that the spatial distribution of the WN3/O3s is similar to that of other WRs in the LMC, suggesting that they are descended from the same progenitors. We call attention to the fact that 5 of the 12 known SMC WRs may in fact be similar WN3/O3s rather than the binaries they have often assumed to be. We also discuss our other discoveries: a newly discovered Onfp-type star, and a peculiar emission-line object. Finally, we consider the completeness limits of our survey.« less
Erin L. Landguth; Bradley C. Fedy; Sara J. Oyler-McCance; Andrew L. Garey; Sarah L. Emel; Matthew Mumma; Helene H. Wagner; Marie-Josee Fortin; Samuel A. Cushman
2012-01-01
The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population...
Vallée, Julie; Souris, Marc; Fournet, Florence; Bochaton, Audrey; Mobillion, Virginie; Peyronnie, Karine; Salem, Gérard
2007-01-01
Background Geographical objectives and probabilistic methods are difficult to reconcile in a unique health survey. Probabilistic methods focus on individuals to provide estimates of a variable's prevalence with a certain precision, while geographical approaches emphasise the selection of specific areas to study interactions between spatial characteristics and health outcomes. A sample selected from a small number of specific areas creates statistical challenges: the observations are not independent at the local level, and this results in poor statistical validity at the global level. Therefore, it is difficult to construct a sample that is appropriate for both geographical and probability methods. Methods We used a two-stage selection procedure with a first non-random stage of selection of clusters. Instead of randomly selecting clusters, we deliberately chose a group of clusters, which as a whole would contain all the variation in health measures in the population. As there was no health information available before the survey, we selected a priori determinants that can influence the spatial homogeneity of the health characteristics. This method yields a distribution of variables in the sample that closely resembles that in the overall population, something that cannot be guaranteed with randomly-selected clusters, especially if the number of selected clusters is small. In this way, we were able to survey specific areas while minimising design effects and maximising statistical precision. Application We applied this strategy in a health survey carried out in Vientiane, Lao People's Democratic Republic. We selected well-known health determinants with unequal spatial distribution within the city: nationality and literacy. We deliberately selected a combination of clusters whose distribution of nationality and literacy is similar to the distribution in the general population. Conclusion This paper describes the conceptual reasoning behind the construction of the survey sample and shows that it can be advantageous to choose clusters using reasoned hypotheses, based on both probability and geographical approaches, in contrast to a conventional, random cluster selection strategy. PMID:17543100
Vallée, Julie; Souris, Marc; Fournet, Florence; Bochaton, Audrey; Mobillion, Virginie; Peyronnie, Karine; Salem, Gérard
2007-06-01
Geographical objectives and probabilistic methods are difficult to reconcile in a unique health survey. Probabilistic methods focus on individuals to provide estimates of a variable's prevalence with a certain precision, while geographical approaches emphasise the selection of specific areas to study interactions between spatial characteristics and health outcomes. A sample selected from a small number of specific areas creates statistical challenges: the observations are not independent at the local level, and this results in poor statistical validity at the global level. Therefore, it is difficult to construct a sample that is appropriate for both geographical and probability methods. We used a two-stage selection procedure with a first non-random stage of selection of clusters. Instead of randomly selecting clusters, we deliberately chose a group of clusters, which as a whole would contain all the variation in health measures in the population. As there was no health information available before the survey, we selected a priori determinants that can influence the spatial homogeneity of the health characteristics. This method yields a distribution of variables in the sample that closely resembles that in the overall population, something that cannot be guaranteed with randomly-selected clusters, especially if the number of selected clusters is small. In this way, we were able to survey specific areas while minimising design effects and maximising statistical precision. We applied this strategy in a health survey carried out in Vientiane, Lao People's Democratic Republic. We selected well-known health determinants with unequal spatial distribution within the city: nationality and literacy. We deliberately selected a combination of clusters whose distribution of nationality and literacy is similar to the distribution in the general population. This paper describes the conceptual reasoning behind the construction of the survey sample and shows that it can be advantageous to choose clusters using reasoned hypotheses, based on both probability and geographical approaches, in contrast to a conventional, random cluster selection strategy.
NASA Astrophysics Data System (ADS)
Drap, P.; Papini, O.; Pruno, E.; Nucciotti, M.; Vannini, G.
2017-02-01
The paper presents some reflexions concerning an interdisciplinary project between Medieval Archaeologists from the University of Florence (Italy) and ICT researchers from CNRS LSIS of Marseille (France), aiming towards a connection between 3D spatial representation and archaeological knowledge. It is well known that Laser Scanner, Photogrammetry and Computer Vision are very attractive tools for archaeologists, although the integration of representation of space and representation of archaeological time has not yet found a methodological standard of reference. We try to develop an integrated system for archaeological 3D survey and all other types of archaeological data and knowledge through integrating observable (material) and non-graphic (interpretive) data. Survey plays a central role, since it is both a metric representation of the archaeological site and, to a wider extent, an interpretation of it (being also a common basis for communication between the 2 teams). More specifically 3D survey is crucial, allowing archaeologists to connect actual spatial assets to the stratigraphic formation processes (i.e. to the archaeological time) and to translate spatial observations into historical interpretation of the site. We propose a common formalism for describing photogrammetrical survey and archaeological knowledge stemming from ontologies: Indeed, ontologies are fully used to model and store 3D data and archaeological knowledge. Xe equip this formalism with a qualitative representation of time. Stratigraphic analyses (both of excavated deposits and of upstanding structures) are closely related to E. C. Harris theory of "Stratigraphic Unit" ("US" from now on). Every US is connected to the others by geometric, topological and, eventually, temporal links, and are recorded by the 3D photogrammetric survey. However, the limitations of the Harris Matrix approach lead to use another representation formalism for stratigraphic relationships, namely Qualitative Constraints Networks (QCN) successfully used in the domain of knowledge representation and reasoning in artificial intelligence for representing temporal relations.
NASA Astrophysics Data System (ADS)
Hillen, M.; Van Winckel, H.; Menu, J.; Manick, R.; Debosscher, J.; Min, M.; de Wit, W.-J.; Verhoelst, T.; Kamath, D.; Waters, L. B. F. M.
2017-03-01
Aims: We present a mid-IR interferometric survey of the circumstellar environment of a specific class of post-asymptotic giant branch (post-AGB) binaries. For this class the presence of a compact dusty disk has been postulated on the basis of various spatially unresolved measurements. The aim is to determine the angular extent of the N-band emission directly and to resolve the compact circumstellar structures. Methods: Our interferometric survey was performed with the MIDI instrument on the VLTI. In total 19 different systems were observed using variable baseline configurations. Combining all the visibilities at a single wavelength at 10.7 μm, we fitted two parametric models to the data: a uniform disk and a ring model mimicking a temperature gradient. We compared our observables of the whole sample, with synthetic data computed from a grid of radiative transfer models of passively irradiated disks in hydrostatic equilibrium. These models are computed with a Monte Carlo code that has been widely applied to describe the structure of protoplanetary disks around young stellar objects (YSO). Results: The spatially resolved observations show that the majority of our targets cluster closely together in the distance-independent size-colour diagram, and have extremely compact N-band emission regions. The typical uniform disk diameter of the N-band emission region is 40 mas, which corresponds to a typical brightness temperature of 400-600 K. The resolved objects display very similar characteristics in the interferometric observables and in the spectral energy distributions. Therefore, the physical properties of the disks around our targets must be similar. Our results are discussed in the light of recently published sample studies of YSOs to compare quantitatively the secondary discs around post-AGB stars to the ones around YSOs. Conclusions: Our high-angular-resolution survey further confirms the disk nature of the circumstellar structures present around wide post-AGB binaries. The grid of protoplanetary disk models covers very well the observed objects. Much like for young stars, the spatially resolved N-band emission region is determined by the hot inner rim of the disk. Continued comparisons between post-AGB and protoplanetary disks will help to understand grain growth and disk evolution processes, and to constrain planet formation theories. These second-generation disks are an important missing ingredient in binary evolution theory of intermediate-mass stars. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programmes ID 073.A-9002, 073.A-9014, 073.D-0610, 075.D-0605, 077.D-0071, 078.D-0113, 079.D-0013, 080.D-0059, 081.D-0089, 082.D-0066, 083.D-0011, 083.D-0013, 084.D-0009, 093.D-0914, and 094.D-0778. Some observations were obtained in the framework of the Belgian Guaranteed Time allocation on VISA.
42 CFR 488.312 - Consistency of survey results.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 5 2013-10-01 2013-10-01 false Consistency of survey results. 488.312 Section 488... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Long-Term Care Facilities § 488.312 Consistency of survey results. CMS does and the survey...
42 CFR 488.312 - Consistency of survey results.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 5 2014-10-01 2014-10-01 false Consistency of survey results. 488.312 Section 488... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Long-Term Care Facilities § 488.312 Consistency of survey results. CMS does and the survey...
42 CFR 488.312 - Consistency of survey results.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false Consistency of survey results. 488.312 Section 488... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Long-Term Care Facilities § 488.312 Consistency of survey results. CMS does and the survey...
42 CFR 488.312 - Consistency of survey results.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 5 2012-10-01 2012-10-01 false Consistency of survey results. 488.312 Section 488... (CONTINUED) STANDARDS AND CERTIFICATION SURVEY, CERTIFICATION, AND ENFORCEMENT PROCEDURES Survey and Certification of Long-Term Care Facilities § 488.312 Consistency of survey results. CMS does and the survey...
The Tactile Continuity Illusion
ERIC Educational Resources Information Center
Kitagawa, Norimichi; Igarashi, Yuka; Kashino, Makio
2009-01-01
We can perceive the continuity of an object or event by integrating spatially/temporally discrete sensory inputs. The mechanism underlying this perception of continuity has intrigued many researchers and has been well documented in both the visual and auditory modalities. The present study shows for the first time to our knowledge that an illusion…
Jay M. Ver Hoef; Hailemariam Temesgen; Sergio Gómez
2013-01-01
Forest surveys provide critical information for many diverse interests. Data are often collected from samples, and from these samples, maps of resources and estimates of aerial totals or averages are required. In this paper, two approaches for mapping and estimating totals; the spatial linear model (SLM) and k-NN (k-Nearest Neighbor) are compared, theoretically,...
NATIONAL NURSING HOME SURVEY (NNHS)
The National Nursing Home Survey (NNHS) is a continuing series of national sample surveys of nursing homes, their residents, and their staff.The survey was conducted in 1973-74, 1977, 1985, 1995, 1997, and 1999. Although each of these surveys emphasized different topics, they all...
Spatial distribution and seasonality of Biomphalaria spp. in São Luís (Maranhão, Brazil).
David, Nathalia Ferreira; Cantanhede, Selma Patrícia Diniz; Monroe, Natanael Bezerra; Pereira, Luciana Patrícia Lima Alves; Silva-Souza, Nêuton; Abreu-Silva, Ana Lúcia; de Oliveira, Verônica Maria; Tchaicka, Ligia
2018-05-01
Two of the three vector species of Schistosoma mansoni Sambon, 1907 in Brazil occur in the state of Maranhão: Biomphalaria glabrata (Say, 1818) and Biomphalaria straminea (Dunker, 1848). For the implementation of effective measures to combat schistosomiasis, it is necessary to identify the spatial and seasonal dynamics of these snails. Therefore, this work brought together information from malacological survey carried out in São Luís (Maranhão, Brazil) to identify the spatial and seasonal distribution patterns of Biomphalaria spp. snails. We used data from malacological surveys of the Municipal Health Secretary of São Luís, conducted between 2006 and 2013 in 23 neighborhoods. We also used data from the mollusk surveys that we conducted for 2 years (2012-2014) in four of these neighborhoods. During the 8-year period (2006-2013), 15,990 specimens of Biomphalaria spp. were collected. There was a positive association between precipitation and the abundance of mollusks of the genus Biomphalaria. During 2012-2014, a total of 2487 snail specimens were obtained (B. glabrata: 1046 specimens; B. straminea: 1426 specimens). There was a positive correlation between precipitation and B. straminea abundance. High density of human occupation and high precipitation are two factors that affect the distribution and density of Biomphalaria spp.
Pushing the limits of spatial resolution with the Kuiper Airborne observatory
NASA Technical Reports Server (NTRS)
Lester, Daniel
1994-01-01
The study of astronomical objects at high spatial resolution in the far-IR is one of the most serious limitations to our work at these wavelengths, which carry information about the luminosity of dusty and obscured sources. At IR wavelengths shorter than 30 microns, ground based telescopes with large apertures at superb sites achieve diffraction-limited performance close to the seeing limit in the optical. At millimeter wavelengths, ground based interferometers achieve resolution that is close to this. The inaccessibility of the far-IR from the ground makes it difficult, however, to achieve complementary resolution in the far-IR. The 1983 IRAS survey, while extraordinarily sensitive, provides us with a sky map at a spatial resolution that is limited by detector size on a spatial scale that is far larger than that available in other wavelengths on the ground. The survey resolution is of order 4 min in the 100 micron bandpass, and 2 min at 60 microns (IRAS Explanatory Supplement, 1988). Information on a scale of 1' is available on some sources from the CPC. Deconvolution and image resolution using this database is one of the subjects of this workshop.
Moriguchi, Sachiko; Tominaga, Atsushi; Irwin, Kelly J; Freake, Michael J; Suzuki, Kazutaka; Goka, Koichi
2015-04-08
Batrachochytrium dendrobatidis (Bd) is the pathogen responsible for chytridiomycosis, a disease that is associated with a worldwide amphibian population decline. In this study, we predicted the potential distribution of Bd in East and Southeast Asia based on limited occurrence data. Our goal was to design an effective survey area where efforts to detect the pathogen can be focused. We generated ecological niche models using the maximum-entropy approach, with alleviation of multicollinearity and spatial autocorrelation. We applied eigenvector-based spatial filters as independent variables, in addition to environmental variables, to resolve spatial autocorrelation, and compared the model's accuracy and the degree of spatial autocorrelation with those of a model estimated using only environmental variables. We were able to identify areas of high suitability for Bd with accuracy. Among the environmental variables, factors related to temperature and precipitation were more effective in predicting the potential distribution of Bd than factors related to land use and cover type. Our study successfully predicted the potential distribution of Bd in East and Southeast Asia. This information should now be used to prioritize survey areas and generate a surveillance program to detect the pathogen.
A framework for the assessment of the spatial and temporal patterns of threatened coastal delphinids
NASA Astrophysics Data System (ADS)
Wang, Jingzhen; Yang, Yingting; Yang, Feng; Li, Yuelin; Li, Lianjie; Lin, Derun; He, Tangtian; Liang, Bo; Zhang, Tao; Lin, Yao; Li, Ping; Liu, Wenhua
2016-01-01
The massively accelerated biodiversity loss rate in the Anthropocene calls for an efficient and effective way to identify the spatial and temporal dynamics of endangered species. To this end, we developed a useful identification framework based on a case study of locally endangered Sousa chinensis by combining both LEK (local ecological knowledge) evaluation and regional boat-based survey methods. Our study investigated the basic ecological information of Sousa chinensis in the estuaries of eastern Guangdong that had previously been neglected, which could guide the future study and conservation. Based on the statistical testing of reported spatial and temporal dolphins sighting data from fishermen and the ecological monitoring analyses, including sighting rate, site fidelity and residence time estimations, some of the current Sousa chinensis units are likely to be geographically isolated and critically endangered, which calls for much greater conservation efforts. Given the accelerated population extinction rate and increasing budgetary constraints, our survey pattern can be applied in a timely and economically acceptable manner to the spatial and temporal assessment of other threatened coastal delphinids, particularly when population distributions are on a large scale and traditional sampling methods are difficult to implement.
Wang, Jingzhen; Yang, Yingting; Yang, Feng; Li, Yuelin; Li, Lianjie; Lin, Derun; He, Tangtian; Liang, Bo; Zhang, Tao; Lin, Yao; Li, Ping; Liu, Wenhua
2016-01-25
The massively accelerated biodiversity loss rate in the Anthropocene calls for an efficient and effective way to identify the spatial and temporal dynamics of endangered species. To this end, we developed a useful identification framework based on a case study of locally endangered Sousa chinensis by combining both LEK (local ecological knowledge) evaluation and regional boat-based survey methods. Our study investigated the basic ecological information of Sousa chinensis in the estuaries of eastern Guangdong that had previously been neglected, which could guide the future study and conservation. Based on the statistical testing of reported spatial and temporal dolphins sighting data from fishermen and the ecological monitoring analyses, including sighting rate, site fidelity and residence time estimations, some of the current Sousa chinensis units are likely to be geographically isolated and critically endangered, which calls for much greater conservation efforts. Given the accelerated population extinction rate and increasing budgetary constraints, our survey pattern can be applied in a timely and economically acceptable manner to the spatial and temporal assessment of other threatened coastal delphinids, particularly when population distributions are on a large scale and traditional sampling methods are difficult to implement.
Dinehart, R.L.; Burau, J.R.
2005-01-01
A strategy of repeated surveys by acoustic Doppler current profiler (ADCP) was applied in a tidal river to map velocity vectors and suspended-sediment indicators. The Sacramento River at the junction with the Delta Cross Channel at Walnut Grove, California, was surveyed over several tidal cycles in the Fall of 2000 and 2001 with a vessel-mounted ADCP. Velocity profiles were recorded along flow-defining survey paths, with surveys repeated every 27 min through a diurnal tidal cycle. Velocity vectors along each survey path were interpolated to a three-dimensional Cartesian grid that conformed to local bathymetry. A separate array of vectors was interpolated onto a grid from each survey. By displaying interpolated vector grids sequentially with computer animation, flow dynamics of the reach could be studied in three-dimensions as flow responded to the tidal cycle. Velocity streamtraces in the grid showed the upwelling of flow from the bottom of the Sacramento River channel into the Delta Cross Channel. The sequential display of vector grids showed that water in the canal briefly returned into the Sacramento River after peak flood tides, which had not been known previously. In addition to velocity vectors, ADCP data were processed to derive channel bathymetry and a spatial indicator for suspended-sediment concentration. Individual beam distances to bed, recorded by the ADCP, were transformed to yield bathymetry accurate enough to resolve small bedforms within the study reach. While recording velocity, ADCPs also record the intensity of acoustic backscatter from particles suspended in the flow. Sequential surveys of backscatter intensity were interpolated to grids and animated to indicate the spatial movement of suspended sediment through the study reach. Calculation of backscatter flux through cross-sectional grids provided a first step for computation of suspended-sediment discharge, the second step being a calibrated relation between backscatter intensity and sediment concentration. Spatial analyses of ADCP data showed that a strategy of repeated surveys and flow-field interpolation has the potential to simplify computation of flow and sediment discharge through complex waterways. The use of trade, product, industry, or firm names in this report is for descriptive purposes only and does not constitute endorsement of products by the US Government. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Caress, D. W.; Clague, D. A.; Paduan, J. B.; Thomas, H. J.; Chadwick, W. W., Jr.; Nooner, S. L.; Yoerger, D.
2016-12-01
Axial Seamount is an intensely studied submarine hotspot volcano on the Juan de Fuca Ridge that erupted in 1998, 2011, and 2015. MBARI Mapping AUV surveys during 2006-2009 obtained nearly complete 1 m resolution topographic coverage of the Axial Seamount summit, including the caldera, the caldera rim, and the south rift zone. Surveys following both recent eruptions mapped new lava flows and extended coverage of the caldera rim and the north and south rifts. These include 2011 (post-eruption), 2014, and 2016 MBARI Mapping AUV surveys and 2015 (post-eruption) WHOI AUV Sentry surveys. These AUVs use 200 kHz or 400 kHz multibeam sonars operated from 50 m to 75 m altitudes to achieve 1 m lateral resolution and 0.1 m vertical precision. Differencing repeat surveys allows detection of topographic change > 0.2 m, a capability used to map the extent, morphology and volume of lava flows emplaced by the 2011 and 2015 eruptions. In situ pressure observations show the uplift and subsidence of the caldera center associated with pre-eruption inflation and co-eruption deflation of the sub-caldera magma chamber has a 2.5-3.5 m magnitude, and thus can be observed by repeat AUV surveys. A survey pattern crossing the caldera interior both E-W and N-S and extending 8 km down the south rift was established in 2011 that has been repeated in 2014, 2015, and 2016. The 2015 surveys established a larger, asterisk-shaped survey pattern extending about 4 km outside the caldera walls along seven lines that has now been repeated in 2016. Repeat survey comparison reveals the vertical deformation pattern of the eruption cycle. Between 2011 and 2014 the uplift has a maximum of 1.8 m near the caldera center, and diminishes steadily away from this site. Between 2014 and 2015 there is a 1.0 m subsidence of the caldera center associated with the April 2015 eruption. The comparison of the 2011 and 2015 surveys shows that the caldera floor is slightly uplifted four months after the 2015 eruption relative to four months after the 2011 eruption. Results incorporating the new 2016 surveys will be presented. These results are consistent with 1 cm precision pressure benchmark observations on the caldera and south rift by Chadwick and Nooner. Our AUV mapping method is less precise than pressure benchmark data but measures the deformation pattern over a larger, spatially continuous area.
Airborne electromagnetic and magnetic survey data of the Paradox and San Luis Valleys, Colorado
Ball, Lyndsay B.; Bloss, Benjamin R.; Bedrosian, Paul A.; Grauch, V.J.S.; Smith, Bruce D.
2015-01-01
In October 2011, the U.S. Geological Survey (USGS) contracted airborne magnetic and electromagnetic surveys of the Paradox and San Luis Valleys in southern Colorado, United States. These airborne geophysical surveys provide high-resolution and spatially comprehensive datasets characterizing the resistivity structure of the shallow subsurface of each survey region, accompanied by magnetic-field information over matching areas. These data were collected to provide insight into the distribution of groundwater brine in the Paradox Valley, the extent of clay aquitards in the San Luis Valley, and to improve our understanding of the geologic framework for both regions. This report describes these contracted surveys and releases digital data supplied under contract to the USGS.
NASA Astrophysics Data System (ADS)
Yu, Hai; Ratra, Bharat; Wang, Fa-Yin
2018-03-01
We compile a complete collection of reliable Hubble parameter H(z) data to redshift z ≤ 2.36 and use them with the Gaussian Process method to determine continuous H(z) functions for various data subsets. From these continuous H(z)'s, summarizing across the data subsets considered, we find H 0 ∼ 67 ± 4 km s‑1 Mpc‑1, more consistent with the recent lower values determined using a variety of techniques. In most data subsets, we see a cosmological deceleration–acceleration transition at 2σ significance, with the data subsets transition redshifts varying over 0.33< {z}da}< 1.0 at 1σ significance. We find that the flat-ΛCDM model is consistent with the H(z) data to a z of 1.5 to 2.0, depending on data subset considered, with 2σ deviations from flat-ΛCDM above this redshift range. Using the continuous H(z) with baryon acoustic oscillation distance-redshift observations, we constrain the current spatial curvature density parameter to be {{{Ω }}}K0=-0.03+/- 0.21, consistent with a flat universe, but the large error bar does not rule out small values of spatial curvature that are now under debate.
Continuous monitoring of a mountain snowpack in the Austrian Alps by above-ground neutron sensing
NASA Astrophysics Data System (ADS)
Schattan, Paul; Baroni, Gabriele; Oswald, Sascha E.; Schöber, Johannes; Fey, Christine; Francke, Till; Huttenlau, Matthias; Achleitner, Stefan
2017-04-01
In alpine catchments the knowledge of the spatially and temporally heterogeneous dynamics of snow accumulation and depletion is crucial for modelling and managing water resources. While snow covered area can be retrieved operationally from remote sensing data, continuous measurements of other snow state variables like snow depth (SD) or snow water equivalent (SWE) remain challenging. Existing methods of retrieving both variables in alpine terrain face severe issues like a lack of spatial representativeness, labour-intensity or discontinuity in time. Recently, promising new measurement techniques combining a larger support with low maintenance cost like above-ground gamma-ray scintillators, GPS interferometric reflectometry or above-ground cosmic-ray neutron sensors (CRNS) have been suggested. While CRNS has proven its potential for monitoring soil moisture in a wide range of environments and applications, the empirical knowledge of using CRNS for snowpack monitoring is still very limited and restricted to shallow snowpacks with rather uniform evolution. The characteristics of an above-ground cosmic-ray neutron sensor (CRNS) were therefore evaluated for monitoring a mountain snowpack in the Austrian Alps (Kaunertal, Tyrol) during three winter seasons. The measurement campaign included a number of measurements during the period from 03/2014 to 06/2016: (i) neutron count measurements by CRNS, (ii) continuous point-scale SD and SWE measurements from an automatic weather station and (iii) 17 Terrestrial Laser Scanning (TLS) with simultaneous SD and SWE surveys. The highest accumulation in terms of SWE was found in 04/2014 with 600 mm. Neutron counts were compared to all available snow data. While previous studies suggested a signal saturation at around 100 mm of SWE, no complete signal saturation was found. A strong non-linear relation was found for both SD and SWE with best fits for spatially distributed TLS based snow data. Initially slightly different shapes were found for accumulation and melting season conditions but this could be resolved by accounting for the limited measurement depth. This depth limit is in the range of 200 mm of SWE for dense snowpacks with high liquid water contents and associated snow density values around 450 kg m-3 and above. Furthermore, the results prove that for medium to high snowpack the inter-annual transferability of the results is very high regardless of pre-snowfall soil moisture conditions. These results underline the high potential of CRNS for closing the gap between point-scale measurements, hydrological models and remote sensing in snow hydrology and alpine terrain.
Route Network Construction with Location-Direction-Enabled Photographs
NASA Astrophysics Data System (ADS)
Fujita, Hideyuki; Sagara, Shota; Ohmori, Tadashi; Shintani, Takahiko
2018-05-01
We propose a method for constructing a geometric graph for generating routes that summarize a geographical area and also have visual continuity by using a set of location-direction-enabled photographs. A location- direction-enabled photograph is a photograph that has information about the location (position of the camera at the time of shooting) and the direction (direction of the camera at the time of shooting). Each nodes of the graph corresponds to a location-direction-enabled photograph. The location of each node is the location of the corresponding photograph, and a route on the graph corresponds to a route in the geographic area and a sequence of photographs. The proposed graph is constructed to represent characteristic spots and paths linking the spots, and it is assumed to be a kind of a spatial summarization of the area with the photographs. Therefore, we call the routes on the graph as spatial summary route. Each route on the proposed graph also has a visual continuity, which means that we can understand the spatial relationship among the continuous photographs on the route such as moving forward, backward, turning right, etc. In this study, when the changes in the shooting position and shooting direction satisfied a given threshold, the route was defined to have visual continuity. By presenting the photographs in order along the generated route, information can be presented sequentially, while maintaining visual continuity to a great extent.
NASA Astrophysics Data System (ADS)
Melián, Gladys; Hernández, Pedro A.; Padrón, Eleazar; Pérez, Nemesio M.; Barrancos, José; Padilla, Germán.; Dionis, Samara; Rodríguez, Fátima; Calvo, David; Nolasco, Dacil
2014-09-01
We report herein the results of extensive diffuse CO2 emission surveys performed on El Hierro Island in the period 1998-2012. More than 17,000 measurements of the diffuse CO2 efflux were carried out, most of them during the volcanic unrest period that started in July 2011. Two significant precursory signals based on geochemical and geodetical studies suggest that a magma intrusion processes might have started before 2011 in El Hierro Island. During the preeruptive and eruptive periods, the time series of the diffuse CO2 emission released by the whole island experienced two significant increases. The first started almost 2 weeks before the onset of the submarine eruption, reflecting a clear geochemical anomaly in CO2 emission, most likely due to increasing release of deep-seated magmatic gases to the surface. The second one, between 24 October and 27 November 2011, started before the most energetic seismic events of the volcanic-seismic unrest. The data presented here demonstrate that combined continuous monitoring studies and discrete surveys of diffuse CO2 emission provide important information to optimize the early warning system in volcano monitoring programs and to monitor the evolution of an ongoing volcanic eruption, even though it is a submarine eruption.
NASA Astrophysics Data System (ADS)
Balint, Stefan; Balint, Agneta M.
2017-01-01
Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 1-D gas flow are analyzed in the phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the real axis. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].