Fourier Deconvolution Methods for Resolution Enhancement in Continuous-Wave EPR Spectroscopy.
Reed, George H; Poyner, Russell R
2015-01-01
An overview of resolution enhancement of conventional, field-swept, continuous-wave electron paramagnetic resonance spectra using Fourier transform-based deconvolution methods is presented. Basic steps that are involved in resolution enhancement of calculated spectra using an implementation based on complex discrete Fourier transform algorithms are illustrated. Advantages and limitations of the method are discussed. An application to an experimentally obtained spectrum is provided to illustrate the power of the method for resolving overlapped transitions. © 2015 Elsevier Inc. All rights reserved.
Application of laser-induced autofluorescence spectra detection in human colorectal cancer screening
NASA Astrophysics Data System (ADS)
Fu, Sheng; Chia, Teck-Chee; Kwek, Leong Chuan; Diong, Cheong Hoong; Tang, Choong Leong; Choen, Francis S.; Krishnan, S. M.
2003-10-01
We investigated 48 normal patients and 25 diseased patients using our laser-induced autofluorescence spectra detection system during their regular colonoscopy. The colon and rectum mucosa autofluorescence were excited by 405 nm continue wavelength laser. We observed that cancer or diseased colorectal mucosa, their autofluorescence spectra are significantly different from normal area. The autofluorescence spectra intensity at about 500 nm was been used for our intensity ratio characteristics intensity for our diagnostic algorithm. The intensity ratios of RI-680/I-500 and RI-630/I-500 were performed to identify the detection area. From experimental result we concluded that both intensity ratios of RI-680/I-500 and RI-630/I-500 as guidelines can detect cancerous and polyps disease completely. Our investigation provided some useful insight for laser induced autofluorescence spectra as a diagnosis technique for clinical application.
Computer simulation of magnetic resonance spectra employing homotopy.
Gates, K E; Griffin, M; Hanson, G R; Burrage, K
1998-11-01
Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence transitions in the presence of energy level anticrossings and looping transitions. Herein we describe the application and implementation of homotopy to the analysis of continuous wave electron paramagnetic resonance spectra. The method can also be applied to electron nuclear double resonance, electron spin echo envelope modulation, solid-state nuclear magnetic resonance, and nuclear quadrupole resonance spectra. Copyright 1998 Academic Press.
Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis
NASA Astrophysics Data System (ADS)
Czekala, Ian; Mandel, Kaisey S.; Andrews, Sean M.; Dittmann, Jason A.; Ghosh, Sujit K.; Montet, Benjamin T.; Newton, Elisabeth R.
2017-05-01
Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches for companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sudip; Swamy, Aravind Krishna; Daniel, Jo S.
2012-08-01
This paper presents a simple and practical approach to obtain the continuous relaxation and retardation spectra of asphalt concrete directly from the complex (dynamic) modulus test data. The spectra thus obtained are continuous functions of relaxation and retardation time. The major advantage of this method is that the continuous form is directly obtained from the master curves which are readily available from the standard characterization tests of linearly viscoelastic behavior of asphalt concrete. The continuous spectrum method offers efficient alternative to the numerical computation of discrete spectra and can be easily used for modeling viscoelastic behavior. In this research, asphalt concrete specimens have been tested for linearly viscoelastic characterization. The linearly viscoelastic test data have been used to develop storage modulus and storage compliance master curves. The continuous spectra are obtained from the fitted sigmoid function of the master curves via the inverse integral transform. The continuous spectra are shown to be the limiting case of the discrete distributions. The continuous spectra and the time-domain viscoelastic functions (relaxation modulus and creep compliance) computed from the spectra matched very well with the approximate solutions. It is observed that the shape of the spectra is dependent on the master curve parameters. The continuous spectra thus obtained can easily be implemented in material mix design process. Prony-series coefficients can be easily obtained from the continuous spectra and used in numerical analysis such as finite element analysis.
Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czekala, Ian; Mandel, Kaisey S.; Andrews, Sean M.
Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches formore » companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.« less
Excitation of Continuous and Discrete Modes in Incompressible Boundary Layers
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Reshotko, Eli
1998-01-01
This report documents the full details of the condensed journal article by Ashpis & Reshotko (JFM, 1990) entitled "The Vibrating Ribbon Problem Revisited." A revised formal solution of the vibrating ribbon problem of hydrodynamic stability is presented. The initial formulation of Gaster (JFM, 1965) is modified by application of the Briggs method and a careful treatment of the complex double Fourier transform inversions. Expressions are obtained in a natural way for the discrete spectrum as well as for the four branches of the continuous spectra. These correspond to discrete and branch-cut singularities in the complex wave-number plane. The solutions from the continuous spectra decay both upstream and downstream of the ribbon, with the decay in the upstream direction being much more rapid than that in the downstream direction. Comments and clarification of related prior work are made.
Vibrational Spectroscopy of Ionic Liquids.
Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C
2017-05-24
Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.
Baseline estimation in flame's spectra by using neural networks and robust statistics
NASA Astrophysics Data System (ADS)
Garces, Hugo; Arias, Luis; Rojas, Alejandro
2014-09-01
This work presents a baseline estimation method in flame spectra based on artificial intelligence structure as a neural network, combining robust statistics with multivariate analysis to automatically discriminate measured wavelengths belonging to continuous feature for model adaptation, surpassing restriction of measuring target baseline for training. The main contributions of this paper are: to analyze a flame spectra database computing Jolliffe statistics from Principal Components Analysis detecting wavelengths not correlated with most of the measured data corresponding to baseline; to systematically determine the optimal number of neurons in hidden layers based on Akaike's Final Prediction Error; to estimate baseline in full wavelength range sampling measured spectra; and to train an artificial intelligence structure as a Neural Network which allows to generalize the relation between measured and baseline spectra. The main application of our research is to compute total radiation with baseline information, allowing to diagnose combustion process state for optimization in early stages.
Raman Spectroscopy for Analysis of Thorium Compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yin-Fong; Johnson, Timothy J.; Olsen, Khris B.
2016-05-12
The thorium fuel cycle is an alternative to the uranium fuel cycle in that when 232Th is irradiated with neutrons it is converted to 233U, another fissile isotope. There are several chemical forms of thorium which are used in the Th fuel cycle. Recently, Raman spectroscopy has become a very portable and facile analytical technique useful for many applications, including e.g. determining the chemical composition of different materials such as for thorium compounds. The technique continues to improve with the development of ever-more sensitive instrumentation and better software. Using a laboratory Fourier-transform (FT)-Raman spectrometer with a 785 nm wavelength laser,more » we were able to obtain Raman spectra from a series of thorium-bearing compounds of unknown origin. These spectra were compared to the spectra of in-stock-laboratory thorium compounds including ThO2, ThF4, Th(CO3)2 and Th(C2O4)2. The unknown spectra showed very good agreement to the known standards, demonstrating the applicability of Raman spectroscopy for detection and identification of these nuclear materials.« less
NASA Technical Reports Server (NTRS)
Lincoln, K. A.
1980-01-01
Mass spectra are produced in most mass spectrometers by sweeping some parameter within the instrument as the sampled gases flow into the ion source. It is evident that any fluctuation in the gas during the sweep (mass scan) of the instrument causes the output spectrum to be skewed in its mass peak intensities. The time of flight mass spectrometer (TOFMS) with its fast, repetitive mode of operation produces spectra without skewing or varying instrument parameters and because all ion species are ejected from the ion source simultaneously, the spectra are inherently not skewed despite rapidly changing gas pressure or composition in the source. Methods of exploiting this feature by utilizing fast digital data acquisition systems, such as transient recorders and signal averagers which are commercially available are described. Applications of this technique are presented including TOFMS sampling of vapors produced by both pulsed and continuous laser heating of materials.
Effect of mechanical milling on barium titanate (BaTiO3) perovskite
NASA Astrophysics Data System (ADS)
Singh, Rajan Kumar; Sanodia, Sagar; Jain, Neha; Kumar, Ranveer
2018-05-01
Commercial Barium Titanate BaTiO3 (BT) is milled by planetary ball mill in acetone medium using stainless steel bowl & ball for different hours. BT is an important perovskite oxide with structure ABO3. BT has applications in electro-optic devices, energy storing devices such as photovoltaic cells, thermistors, multiceramic capacitors & DRAMs etc. BT is non-toxic & environment friendly ceramic with high dielectric and piezoelectric property so it can be used as the substitute of PZT & PbTiO3. Here, we have investigated the effect of milling time and temperature on particle size and phase transition of BT powder. We used use Raman spectroscopy for studying the spectra of BT; XRD is used for structural study. Intensity (height) of Raman spectra and XRD spectra continuously decrease with increasing the milling hours and width if these spectra increases which indicates, decrease in BT size.
The Spectral Game: leveraging Open Data and crowdsourcing for education
2009-01-01
We report on the implementation of the Spectral Game, a web-based game where players try to match molecules to various forms of interactive spectra including 1D/2D NMR, Mass Spectrometry and Infrared spectra. Each correct selection earns the player one point and play continues until the player supplies an incorrect answer. The game is usually played using a web browser interface, although a version has been developed in the virtual 3D environment of Second Life. Spectra uploaded as Open Data to ChemSpider in JCAMP-DX format are used for the problem sets together with structures extracted from the website. The spectra are displayed using JSpecView, an Open Source spectrum viewing applet which affords zooming and integration. The application of the game to the teaching of proton NMR spectroscopy in an undergraduate organic chemistry class and a 2D Spectrum Viewer are also presented. PMID:20298527
Harnessing molecular excited states with Lanczos chains.
Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O; Saad, Yousef; Umari, Paolo; Xian, Jiawei
2010-02-24
The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.
[Predicting Spectra of Accretion Disks Around Galactic Black Holes
NASA Technical Reports Server (NTRS)
Krolik, Julian H.
2004-01-01
The purpose of this grant was to construct detailed atmosphere solutions in order to predict the spectra of accretion disks around Galactic black holes. Our plan of action was to take an existing disk atmosphere code (TLUSTY, created by Ivan Hubeny) and introduce those additional physical processes necessary to make it applicable to disks of this variety. These modifications include: treating Comptonization; introducing continuous opacity due to heavy elements; incorporating line opacity due to heavy elements; adopting a disk structure that reflects readjustments due to radiation pressure effects; and injecting heat via a physically-plausible vertical distribution.
Harnessing molecular excited states with Lanczos chains
NASA Astrophysics Data System (ADS)
Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O.; Saad, Yousef; Umari, Paolo; Xian, Jiawei
2010-02-01
The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Manian, S. V. S.
1976-01-01
Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.
Continuous-wave EPR at 275 GHz: Application to high-spin Fe 3+ systems
NASA Astrophysics Data System (ADS)
Mathies, G.; Blok, H.; Disselhorst, J. A. J. M.; Gast, P.; van der Meer, H.; Miedema, D. M.; Almeida, R. M.; Moura, J. J. G.; Hagen, W. R.; Groenen, E. J. J.
2011-05-01
The 275 GHz electron-paramagnetic-resonance spectrometer we reported on in 2004 has been equipped with a new probe head, which contains a cavity especially designed for operation in continuous-wave mode. The sensitivity and signal stability that is achieved with this new probe head is illustrated with 275 GHz continuous-wave spectra of a 1 mM frozen solution of the complex Fe(III)-ethylenediamine tetra-acetic acid and of 10 mM frozen solutions of the protein rubredoxin, which contains Fe 3+ in its active site, from three different organisms. The high quality of the spectra of the rubredoxins allows the determination of the zero-field-splitting parameters with an accuracy of 0.5 GHz. The success of our approach results partially from the enhanced absolute sensitivity, which can be reached using a single-mode cavity. At least as important is the signal stability that we were able to achieve with the new probe head.
Advances in Neutron Spectroscopy with Deuterated Organic Scintillators
NASA Astrophysics Data System (ADS)
Febbraro, Michael; Pain, Steve; Becchetti, Frederick
2015-10-01
Deuterated organic scintillators have shown promise as neutron detectors for nuclear science as well as applications in nuclear non-proliferation and safeguards. In particular, they can extract neutron spectra without the use of neutron time-of-flight measurement (n-ToF) utilizing spectrum unfolding techniques. This permits the measure of cross sections of bound and unbound states with high efficiency and angular coverage. In the case of measurements with radioactive ion beams where low beam intensities limit long path n-ToF, short path n-ToF can be used to discriminate neutrons of interest from room return and background neutrons. This presentation will provide recent advances with these types of detectors. Digital pulse-shape discrimination using fast waveform digitizers, spectrum unfolding methods for extraction of neutron spectra, and a new safer deuterated-xylene formulation EJ-301D will be discussed. In addition, experimental results from measurements of discrete and continuous neutron spectra which illustrate the advantage of these detectors for certain applications in nuclear physics research and nuclear security will be shown. This work is supported by NSF and DOE.
High power Yb:CALGO ultrafast regenerative amplifier for industrial application
NASA Astrophysics Data System (ADS)
Caracciolo, E.; Guandalini, A.; Pirzio, F.; Kemnitzer, M.; Kienle, F.; Agnesi, A.; Aus der Au, J.
2017-02-01
We present a high-power, single-crystal based, Yb:CALGO regenerative amplifier. The system delivers more than 50 W output power in continuous-wave regime, with diffraction limited beam quality. In Q-switching regime the spectrum is centered at 1043 nm and is 11 nm wide. In regenerative amplification experiments we achieved 34 W at 500 kHz with 12.7 nm FWHM wide spectra centered at 1044 nm seeding with a broadly tunable, single-prism SESAM mode-locked Yb:CALGO laser providing 9 nm wide spectra at 1049 nm. Pulse duration after compression was 140 fs, with excellent beam quality (M2 < 1.25).
RT-CW: widely tunable semiconductor THz QCL sources
NASA Astrophysics Data System (ADS)
Razeghi, M.; Lu, Q. Y.
2016-09-01
Distinctive position of Terahertz (THz) frequencies (ν 0.3 -10 THz) in the electromagnetic spectrum with their lower quantum energy compared to IR and higher frequency compared to microwave range allows for many potential applications unique to them. Especially in the security side of the THz sensing applications, the distinct absorption spectra of explosives and related compounds in the range of 0.1-5 THz makes THz technology a competitive technique for detecting hidden explosives. A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range will greatly boost the THz applications for the diagnosis and detection of explosives. Here we present a new strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based intracavity DFG. Room temperature continuous wave operation with electrical frequency tuning range of 2.06-4.35 THz is demonstrated.
Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J
2007-10-01
Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. (c) 2007 John Wiley & Sons, Ltd.
Kittell, Aaron W.; Camenisch, Theodore G.; Ratke, Joseph J.; Sidabras, Jason W.; Hyde, James S.
2011-01-01
A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented. PMID:21741868
Abbasi Tarighat, Maryam; Nabavi, Masoume; Mohammadizadeh, Mohammad Reza
2015-06-15
A new multi-component analysis method based on zero-crossing point-continuous wavelet transformation (CWT) was developed for simultaneous spectrophotometric determination of Cu(2+) and Pb(2+) ions based on the complex formation with 2-benzyl espiro[isoindoline-1,5 oxasolidine]-2,3,4 trione (BSIIOT). The absorption spectra were evaluated with respect to synthetic ligand concentration, time of complexation and pH. Therefore according the absorbance values, 0.015 mmol L(-1) BSIIOT, 10 min after mixing and pH 8.0 were used as optimum values. The complex formation between BSIIOT ligand and the cations Cu(2+) and Pb(2+) by application of rank annihilation factor analysis (RAFA) were investigated. Daubechies-4 (db4), discrete Meyer (dmey), Morlet (morl) and Symlet-8 (sym8) continuous wavelet transforms for signal treatments were found to be suitable among the wavelet families. The applicability of new synthetic ligand and selected mother wavelets were used for the simultaneous determination of strongly overlapped spectra of species without using any pre-chemical treatment. Therefore, CWT signals together with zero crossing technique were directly applied to the overlapping absorption spectra of Cu(2+) and Pb(2+). The calibration graphs for estimation of Pb(2+) and Cu (2+)were obtained by measuring the CWT amplitudes at zero crossing points for Cu(2+) and Pb(2+) at the wavelet domain, respectively. The proposed method was validated by simultaneous determination of Cu(2+) and Pb(2+) ions in red beans, walnut, rice, tea and soil samples. The obtained results of samples with proposed method have been compared with those predicted by partial least squares (PLS) and flame atomic absorption spectrophotometry (FAAS). Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Darafsheh, Arash; Zhang, Rongxiao; Kassaee, Alireza; Finlay, Jarod C.
2018-03-01
Visible light generated as the result of interaction of ionizing radiation with matter can be used for radiation therapy quality assurance. In this work, we characterized the visible light observed during proton irradiation of poly(methyl methacrylate) (PMMA) and silica glass fiber materials by performing luminescence spectroscopy. The spectra of the luminescence signal from PMMA and silica glass fibers during proton irradiation showed continuous spectra whose shape were different from that expected from Čerenkov radiation, indicating that Čerenkov radiation cannot be the responsible radioluminescence signal. The luminescence signal from each material showed a Bragg peak pattern and their corresponding proton ranges are in agreement with measurements performed by a standard ion chamber. The spectrum of the silica showed two peaks at 460 and 650 nm stem from the point defects of the silica: oxygen deficiency centers (ODC) and non-bridging oxygen hole centers (NBOHC), respectively. The spectrum of the PMMA fiber showed a continuous spectrum with a peak at 410 nm whose origin is connected with the fluorescence of the PMMA material. Our results are of interest for various applications based on imaging radioluminescent signal in proton therapy and will inform on the design of high-resolution fiber probes for proton therapy dosimetry.
Carvajal, Roberto C; Arias, Luis E; Garces, Hugo O; Sbarbaro, Daniel G
2016-04-01
This work presents a non-parametric method based on a principal component analysis (PCA) and a parametric one based on artificial neural networks (ANN) to remove continuous baseline features from spectra. The non-parametric method estimates the baseline based on a set of sampled basis vectors obtained from PCA applied over a previously composed continuous spectra learning matrix. The parametric method, however, uses an ANN to filter out the baseline. Previous studies have demonstrated that this method is one of the most effective for baseline removal. The evaluation of both methods was carried out by using a synthetic database designed for benchmarking baseline removal algorithms, containing 100 synthetic composed spectra at different signal-to-baseline ratio (SBR), signal-to-noise ratio (SNR), and baseline slopes. In addition to deomonstrating the utility of the proposed methods and to compare them in a real application, a spectral data set measured from a flame radiation process was used. Several performance metrics such as correlation coefficient, chi-square value, and goodness-of-fit coefficient were calculated to quantify and compare both algorithms. Results demonstrate that the PCA-based method outperforms the one based on ANN both in terms of performance and simplicity. © The Author(s) 2016.
A portable spectrometer for use from 5 to 15 micrometers
NASA Technical Reports Server (NTRS)
Hoover, G.; Kahle, A. B.
1986-01-01
A field portable spectrometer suitable for collecting data relevant to remote sensing applications in the 8 to 12 micrometer atmospheric window has been built at the Jet Propulsion Laboratory. The instrument employs a single cooled HgCdTe detector and a continuously variable filter wheel analyzer. The spectral range covered is 5 to 14.5 micrometers and the resolution is approximately 1.5 percent of the wavelength. A description of the hardware is followed by a discussion of the analysis of the spectral data leading to finished emissivity and radiance spectra. A section is devoted to the evaluation of the instrument performance with respect to spectral resolution, radiometric precision, and accuracy. Several examples of spectra acquired in the field are included.
NASA Technical Reports Server (NTRS)
Biemann, K.
1973-01-01
Data processing techniques were developed to measure with high precision and sensitivity the line spectra produced by a high resolution mass spectrometer. The most important aspect of this phase was the interfacing of a modified precision microphotometer-comparator with a computer and the improvement of existing software to serve the special needs of the investigation of lunar samples. In addition, a gas-chromatograph mass spectrometer system was interfaced with the same computer to allow continuous recording of mass spectra on a gas chromatographic effluent and efficient evaluation of the resulting data. These techniques were then used to detect and identify organic compounds present in the samples returned by the Apollo 11 and 12 missions.
Applications of terahertz spectroscopy and imaging
NASA Astrophysics Data System (ADS)
Zhang, Cunlin; Mu, Kaijun
2009-07-01
We have examined application feasibility of THz time-domain spectroscopy (THz-TDS) to inspect 30 kinds of illicit drugs, 20 kinds of amino acid and 10 kinds of explosives and related compounds (ERCs). We also have got their fingerprints, established the corresponding database, and propose the reference-free methods to extract the absorption or reflection spectra, respectively. We also use optical pump THz probe to research the ultrafast dynamics of semiconductor. While, we also present some new THz imaging techniques, such as, focal-plane multiwavelength phase imaging, reference-free phase imaging, polarization imaging, and continuous-wave (CW) standoff distance imaging.
Kang, Joon Sang; Wu, Huan; Hu, Yongjie
2017-12-13
Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of boron phosphide. The present study paves the way toward the establishment of a new framework, based on the phonon spectra-material structure relationship, for the rational design of high thermal conductivity materials and nano- to multiscale devices.
Development of potent in vivo mutagenesis plasmids with broad mutational spectra
Badran, Ahmed H.; Liu, David R.
2015-01-01
Methods to enhance random mutagenesis in cells offer advantages over in vitro mutagenesis, but current in vivo methods suffer from a lack of control, genomic instability, low efficiency and narrow mutational spectra. Using a mechanism-driven approach, we created a potent, inducible, broad-spectrum and vector-based mutagenesis system in E. coli that enhances mutation 322,000-fold over basal levels, surpassing the mutational efficiency and spectra of widely used in vivo and in vitro methods. We demonstrate that this system can be used to evolve antibiotic resistance in wild-type E. coli in <24 h, outperforming chemical mutagens, ultraviolet light and the mutator strain XL1-Red under similar conditions. This system also enables the continuous evolution of T7 RNA polymerase variants capable of initiating transcription using the T3 promoter in <10 h. Our findings enable broad-spectrum mutagenesis of chromosomes, episomes and viruses in vivo, and are applicable to both bacterial and bacteriophage-mediated laboratory evolution platforms. PMID:26443021
Development of potent in vivo mutagenesis plasmids with broad mutational spectra.
Badran, Ahmed H; Liu, David R
2015-10-07
Methods to enhance random mutagenesis in cells offer advantages over in vitro mutagenesis, but current in vivo methods suffer from a lack of control, genomic instability, low efficiency and narrow mutational spectra. Using a mechanism-driven approach, we created a potent, inducible, broad-spectrum and vector-based mutagenesis system in E. coli that enhances mutation 322,000-fold over basal levels, surpassing the mutational efficiency and spectra of widely used in vivo and in vitro methods. We demonstrate that this system can be used to evolve antibiotic resistance in wild-type E. coli in <24 h, outperforming chemical mutagens, ultraviolet light and the mutator strain XL1-Red under similar conditions. This system also enables the continuous evolution of T7 RNA polymerase variants capable of initiating transcription using the T3 promoter in <10 h. Our findings enable broad-spectrum mutagenesis of chromosomes, episomes and viruses in vivo, and are applicable to both bacterial and bacteriophage-mediated laboratory evolution platforms.
Brauchle, Eva; Schenke-Layland, Katja
2013-01-01
Raman spectroscopy is an established laser-based technology for the quality assurance of pharmaceutical products. Over the past few years, Raman spectroscopy has become a powerful diagnostic tool in the life sciences. Raman spectra allow assessment of the overall molecular constitution of biological samples, based on specific signals from proteins, nucleic acids, lipids, carbohydrates, and inorganic crystals. Measurements are non-invasive and do not require sample processing, making Raman spectroscopy a reliable and robust method with numerous applications in biomedicine. Moreover, Raman spectroscopy allows the highly sensitive discrimination of bacteria. Rama spectra retain information on continuous metabolic processes and kinetics such as lipid storage and recombinant protein production. Raman spectra are specific for each cell type and provide additional information on cell viability, differentiation status, and tumorigenicity. In tissues, Raman spectroscopy can detect major extracellular matrix components and their secondary structures. Furthermore, the non-invasive characterization of healthy and pathological tissues as well as quality control and process monitoring of in vitro-engineered matrix is possible. This review provides comprehensive insight to the current progress in expanding the applicability of Raman spectroscopy for the characterization of living cells and tissues, and serves as a good reference point for those starting in the field. PMID:23161832
Frequency comb generation in a continuously pumped optical parametric oscillator
NASA Astrophysics Data System (ADS)
Mosca, S.; Parisi, M.; Ricciardi, I.; Leo, F.; Hansson, T.; Erkintalo, M.; Maddaloni, P.; De Natale, P.; Wabnitz, S.; De Rosa, M.
2018-02-01
We demonstrate optical frequency comb generation in a continuously pumped optical parametric oscillator, in the parametric region around half of the pump frequency. We also model the dynamics of such quadratic combs using a single time-domain mean-field equation, and obtain simulation results that are in good agreement with experimentally observed spectra. Moreover, we numerically investigate the coherence properties of simulated combs, showing the existence of correlated and phase-locked combs. Our work could pave the way for a new class of frequency comb sources, which may enable straightforward access to new spectral regions and stimulate novel applications of frequency combs.
The Rocks of Gusev Crater as Viewed by Mini-TES
NASA Technical Reports Server (NTRS)
Ruff, S. W.; Christensen, P. R.; Blaney, D. L.
2005-01-01
We are developing the means to separate atmospheric spectral features from rock spectra. Measurements made in the late afternoon when the temperature difference between the rocks and sky is the greatest provide spectra that are least impacted by downwelling radiance. Additionally, the long wavelength range of Mini-TES spectra contain spectral features that are least effected by contributions from the atmosphere due to its relative transparency in this range. Mini-TES spectra have thus been used to reveal the geological diversity in Gusev crater and will continue to be a rich source of mineralogical information as Spirit continues its traverse.
NASA Astrophysics Data System (ADS)
Maciel, R. S.; Frazão, O.; Morais, J. J. L.; Fernandes, J. R. A.
2013-11-01
In this work it is presented a study of the reflection spectra yielded by a Fiber Bragg Grating sensor embedded into an epoxy glue line between two wood arms, in a double cantilever beam (DCB) Mode I delamination test. The reflection spectra were obtained using a Spectral Analyzer Fibersensing Bragmeter FS2200SA in regular time intervals, as the stress applied to the laminates is continuously increased until fracture occurs. They initially show a typical Bragg grating reflection spectrum, which gradually changes into more complicated, multiple-peak spectra, resulting from a non-homogenous strain distribution along the board line. Based on these results, a model was derived for the variation of the grating effective index which fits the observed spectra when the irregular strain distribution is observed. This model consists of usual cosine description of Bragg grating effective index with linear phase variation, plus a logarithmic phase change along the fiber length, resulting in the increment of the grating wavelength with increasing distance from the load application point. Moreover, from this model the strain distribution along the grating is found, yielding the expected result.
NASA Astrophysics Data System (ADS)
Rey, Michaël; Nikitin, Andrei V.; Babikov, Yurii L.; Tyuterev, Vladimir G.
2016-09-01
Knowledge of intensities of rovibrational transitions of various molecules and theirs isotopic species in wide spectral and temperature ranges is essential for the modeling of optical properties of planetary atmospheres, brown dwarfs and for other astrophysical applications. TheoReTS ("Theoretical Reims-Tomsk Spectral data") is an Internet accessible information system devoted to ab initio based rotationally resolved spectra predictions for some relevant molecular species. All data were generated from potential energy and dipole moment surfaces computed via high-level electronic structure calculations using variational methods for vibration-rotation energy levels and transitions. When available, empirical corrections to band centers were applied, all line intensities remaining purely ab initio. The current TheoReTS implementation contains information on four-to-six atomic molecules, including phosphine, methane, ethylene, silane, methyl-fluoride, and their isotopic species 13CH4 , 12CH3D , 12CH2D2 , 12CD4 , 13C2H4, … . Predicted hot methane line lists up to T = 2000 K are included. The information system provides the associated software for spectra simulation including absorption coefficient, absorption and emission cross-sections, transmittance and radiance. The simulations allow Lorentz, Gauss and Voight line shapes. Rectangular, triangular, Lorentzian, Gaussian, sinc and sinc squared apparatus function can be used with user-defined specifications for broadening parameters and spectral resolution. All information is organized as a relational database with the user-friendly graphical interface according to Model-View-Controller architectural tools. The full-featured web application is written on PHP using Yii framework and C++ software modules. In case of very large high-temperature line lists, a data compression is implemented for fast interactive spectra simulations of a quasi-continual absorption due to big line density. Applications for the TheoReTS may include: education/training in molecular absorption/emission, radiative and non-LTE processes, spectroscopic applications, opacity calculations for planetary and astrophysical applications. The system is freely accessible via internet on the two mirror sites: in Reims, France
Heeter, R F; Anderson, S G; Booth, R; Brown, G V; Emig, J; Fulkerson, S; McCarville, T; Norman, D; Schneider, M B; Young, B K F
2008-10-01
A novel time, space, and energy-resolved x-ray spectrometer has been developed which produces, in a single snapshot, a broadband and relatively calibrated spectrum of the x-ray emission from a high-energy density laboratory plasma. The opacity zipper spectrometer (OZSPEC-1) records a nearly continuous spectrum for x-ray energies from 240 to 5800 eV in a single shot. The second-generation OZSPEC-2, detailed in this work, records fully continuous spectra on a single shot from any two of these three bands: 270-650, 660-1580, and 1960-4720 eV. These instruments thus record thermal and line radiation from a wide range of plasmas. These instruments' single-shot bandwidth is unmatched in a time-gated spectrometer; conversely, other broadband instruments are either time-integrated (using crystals or gratings), lack spectral resolution (diode arrays), or cover a lower energy band (gratings). The OZSPECs are based on the zipper detector, a large-format (100x35 mm) gated microchannel plate detector, with spectra dispersed along the 100 mm dimension. OZSPEC-1 and -2 both use elliptically bent crystals of OHM, RAP, and/or PET. Individual spectra are gated in 100 ps. OZSPEC-2 provides one-dimensional spatial imaging with 30-50 microm resolution over a 1500 microm field of view at the source. The elliptical crystal design yields broad spectral coverage with resolution E/DeltaE>500, strong rejection of hard x-ray backgrounds, and negligible source broadening for extended sources. Near-term applications include plasma opacity measurements, detailed spectra of inertial fusion Hohlraums, and laboratory astrophysics experiments.
Effects of configuration interaction on photoabsorption spectra in the continuum
NASA Astrophysics Data System (ADS)
Komninos, Yannis; Nicolaides, Cleanthes A.
2004-10-01
It is pointed out that the proper interpretation of a recently published experimental spectrum from the multilaser photoionization of Sr [Eichmann , Phys. Rev. Lett. 90, 233004 (2003)] must account for a radiative transition between two autoionizing states. The application of orthonormality selection rules and of configuration-interaction theory involving the continuous spectrum and the quasicontinuum of the upper part of Rydberg series explains quantitatively the appearance, the shape, and the variation of heights of the observed peaks of resonances.
Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy
NASA Astrophysics Data System (ADS)
Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong
2015-07-01
The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.
Cho, Yunju; Qi, Yulin; O'Connor, Peter B; Barrow, Mark P; Kim, Sunghwan
2014-01-01
In this study, a phase-correction technique was applied to the study of crude oil spectra obtained using a 7 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). 7 T FT-ICR MS had not been widely used for oil analysis due to the lower resolving power compared with high field FT-ICR MS. For low field instruments, usage of data that has not been phase-corrected results in an inability to resolve critical mass splits of C3 and SH4 (3.4 mDa), and (13)C and CH (4.5 mDa). This results in incorrect assignments of molecular formulae, and discontinuous double bond equivalents (DBE) and carbon number distributions of S1, S2, and hydrocarbon classes are obtained. Application of phase correction to the same data, however, improves the reliability of assignments and produces continuous DBE and carbon number distributions. Therefore, this study clearly demonstrates that phase correction improves data analysis and the reliability of assignments of molecular formulae in crude oil anlayses.
Collauto, Alberto; Zerbetto, Mirco; Brustolon, Marina; Polimeno, Antonino; Caneschi, Andrea; Gatteschi, Dante
2012-03-07
In this paper we report on the characterization by continuous wave electron spin resonance spectroscopy (cw-ESR) of a nitronyl nitroxide radical in a nematic phase. A detailed analysis is performed by exploiting an innovative modeling strategy alternative to the usual spectral simulation approach: most of the molecular parameters needed to calculate the spectrum are evaluated a priori and the ESR spectrum is obtained by direct application of the stochastic Liouville equation. Allowing a limited set of fitting parameters it is possible to reproduce satisfactorily ESR spectra in the temperature range 260 K-340 K including the nematic-to-isotropic phase transition (325.1 K). Our results open the way to a more quantitative understanding of the ordering and mobility of nitronyl nitroxide radicals in nanostructured environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Debika; Sriramkumar, L.; Sreenath, V., E-mail: debika@physics.iitm.ac.in, E-mail: sreenath@lsu.edu, E-mail: sriram@physics.iitm.ac.in
The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter tomore » rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.« less
Cohen, M M
1989-10-01
This paper attempts to balance our knowledge of holoprosencephalic spectra and continuities with important distinctions and discontinuities. Prevalence studies and syndrome delineation are briefly reviewed. The following topics receive detailed coverage: human teratogens, special aspects of forebrain and hindbrain malformations, aprosencephaly/atelencephaly, association with neural tube defects, current assessment of "facial principles," and endocrine abnormalities.
VizieR Online Data Catalog: Abundances in the local region. II. F, G, and K dwarfs (Luck+, 2017)
NASA Astrophysics Data System (ADS)
Luck, R. E.
2017-06-01
The McDonald Observatory 2.1m Telescope and Sandiford Cassegrain Echelle Spectrograph provided much of the observational data for this study. High-resolution spectra were obtained during numerous observing runs, from 1996 to 2010. The spectra cover a continuous wavelength range from about 484 to 700nm, with a resolving power of about 60000. The wavelength range used demands two separate observations--one centered at about 520nm, and the other at about 630nm. Typical S/N values per pixel for the spectra are more than 150. Spectra of 57 dwarfs were obtained using the Hobby-Eberly telescope and High-Resolution Spectrograph. The spectra have a resolution of 30000, spanning the wavelength range of 400 to 785nm. They also have very high signal-to-noise ratios, >300 per resolution element in numerous cases. The last set of spectra were obtained from the ELODIE Archive (Moultaka et al. 2004PASP..116..693M). These spectra are fully processed, including order co-addition, and have a continuous wavelength span of 400 to 680nm and a resolution of 42000. The ELODIE spectra utilized here all have S/N>75 per pixel. (6 data files).
Observations of normal main-sequence and giant B stars
NASA Astrophysics Data System (ADS)
When interpreting the continuous and line spectra of B stars, it is helpful to think in terms of a model consisting of a photosphere and a mantle which is the outer part of the atmosphere where the effects of nonradiative heating are seen. A survey of the spectra of these stars shows that conditions in the photosphere determine most of what is seen, and in the case of most B stars, the presence of the mantle can be detected only by a special effort. The shape of the visible continuum spectrum and the shape and absolute value of the UV continuous spectrum as determined from low resolution spectra are discussed. Effective temperature for B stars in the main sequence, including corrections for interstellar extinction and bolometric corrections are explored. The major constituents of B-type spectra, variation of the strength of line along the main sequence band, the UV spectra, UV line blocking, intrinsic colors, and variations in light and spectra are also examined.
Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R
2017-07-01
In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.
Advances in photo-thermal infrared imaging microspectroscopy
NASA Astrophysics Data System (ADS)
Furstenberg, Robert; Kendziora, Chris; Papantonakis, Michael; Nguyen, Viet; McGill, Andrew
2013-05-01
There is a growing need for chemical imaging techniques in many fields of science and technology: forensics, materials science, pharmaceutical and chemical industries, just to name a few. While FTIR micro-spectroscopy is commonly used, its practical resolution limit of about 20 microns or more is often insufficient. Raman micro-spectroscopy provides better spatial resolution (~1 micron), but is not always practical because of samples exhibiting fluorescence or low Raman scattering efficiency. We are developing a non-contact and non-destructive technique we call photo-thermal infrared imaging spectroscopy (PT-IRIS). It involves photo-thermal heating of the sample with a tunable quantum cascade laser and measuring the resulting increase in thermal emission with an infrared detector. Photo-thermal emission spectra resemble FTIR absorbance spectra and can be acquired in both stand-off and microscopy configurations. Furthermore, PT-IRIS allows the acquisition of absorbance-like photo-thermal spectra in a reflected geometry, suitable for field applications and for in-situ study of samples on optically IR-opaque substrates (metals, fabrics, paint, glass etc.). Conventional FTIR microscopes in reflection mode measure the reflectance spectra which are different from absorbance spectra and are usually not catalogued in FTIR spectral libraries. In this paper, we continue developing this new technique. We perform a series of numerical simulations of the laser heating of samples during photo-thermal microscopy. We develop parameterized formulas to help the user pick the appropriate laser illumination power. We also examine the influence of sample geometry on spectral signatures. Finally, we measure and compare photo-thermal and reflectance spectra for two test samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootan, David W.; Casella, Andrew M.; Asner, David M.
PNNL has developed and continues to develop innovative methods for characterizing irradiated materials from nuclear reactors and particle accelerators for various clients and collaborators around the world. The continued development of these methods, in addition to the ability to perform unique scientific investigations of the effects of radiation on materials could be greatly enhanced with easy access to irradiation facilities. A Tunable Irradiation Testbed with customized targets (a 30 MeV, 1mA cyclotron or similar coupled to a unique target system) is shown to provide a much more flexible and cost-effective source of irradiating particles than a test reactor or isotopicmore » source. The configuration investigated was a single shielded building with multiple beam lines from a small, flexible, high flux irradiation source. Potential applications investigated were the characterization of radiation damage to materials applicable to advanced reactors, fusion reactor, legacy waste, (via neutron spectra tailored to HTGR, molten salt, LWR, LMR, fusion environments); 252Cf replacement; characterization of radiation damage to materials of interest to High Energy Physics to enable the neutrino program; and research into production of short lived isotopes for potential medical and other applications.« less
Application of accelerator sources for pulsed neutron logging of oil and gas wells
NASA Astrophysics Data System (ADS)
Randall, R. R.
1985-05-01
Dresser Atlas introduced the first commercial pulsed neutron oil well log in the early 1960s. This log had the capability of differentiating oil from salt water in a completed well. In the late 1970s the first continuous carbon/oxygen (C/O) log capable of differentiating oil from fresh water was introduced. The sources used in these commercial logs are radial geometry deuterium-tritium reaction devices with Cockcroft-Walton voltage multipliers providing the accelerator voltage. The commercial logging tools using these accelerators are comprised of scintillators detectors, power supplies, line drivers and receivers, and various timing and communications electronics. They are used to measure either the time decay or energy spectra of neutron-induced gamma events. The time decay information is useful in determining the neutron capture cross section, and the energy spectra is used to characterize inelastic neutron events.
High-resolution 18 CM spectra of OH/IR stars
NASA Astrophysics Data System (ADS)
Fix, John D.
1987-02-01
High-velocity-resolution, high-signal-to-noise spectra have been obtained for the 18 cm maser emission lines from a number of optically visible OH/IR stars. The spectra have been interpreted in terms of a recent model by Alcock and Ross (1986), in which OH/IR stars lose mass in discrete elements rather than by a continuous wind. Comparison of the observed spectra with synthetic spectra shows that the lines are the composite emission from thousands or tens of thousands of individual elements.
Fluorescence dynamics of human epidermis (ex vivo) and skin (in vivo)
NASA Astrophysics Data System (ADS)
Salomatina, Elena V.; Pravdin, Alexander B.
2003-10-01
The temporal behavior of autofluorescence of human skin and epidermis under continuous UV-irradiation has been studied. Fluorescence spectra and kinetic curves of fluorescence intensity have been obtained. The fluorescence intensity recovery after dark period also has been examined. The vitiligo skin and epidermis were used for comparing their spectra with reflectance and fluorescence spectra of healthy skin. The epidermal samples were prepared using surface epidermis stripping technique. It has been concluded that fluorophores being undergone the UVA photobleaching are actually present in epidermal layer, and immediate pigment darkening does contribute, no less than a half of magnitude, to the autofluorescence decrease under continuous UVA irradiation.
Handheld confocal Raman microspectrometer for in-vivo skin cancer measurement
NASA Astrophysics Data System (ADS)
Lieber, Chad A.; Ellis, Darrel L.; Billheimer, D. D.; Mahadevan-Jansen, Anita
2004-07-01
Several studies have demonstrated Raman spectroscopy to be capable of tissue diagnosis with accuracy rivaling that of histopathologic analysis. This technique obtains biochemical-specific information noninvasively, and can eliminate the pain, time, and cost associated with biopsy and pathological analysis. Furthermore, when used in a confocal arrangement, Raman spectra can be obtained from localized regions of the tissue. Skin cancers are an ideal candidate for this emerging technology, due to their obvious accessibility and presentation at specific depths. However, most commercially available confocal Raman microspectrometers are large, rigid systems ill-suited for clinical application. We developed a bench-top confocal Raman microspectrometer using a portable external-cavity diode laser excitation source. This system was used to study several skin lesions in vitro. Results show the depth-resolved Raman spectra can diagnose in vitro skin lesions with 96% sensitivity, 88% specificity, and 86% pathological classification accuracy. Based on the success of this study, a portable Raman system with a handheld confocal microscope was developed for clinical application. Preliminary in vivo data show several distinct spectral differences between skin pathologies. Diagnostic algorithms are planned for this continuing study to assess the capability of Raman spectroscopy for clinical skin cancer diagnosis.
Mathematics of pulsed vocalizations with application to killer whale biphonation.
Brown, Judith C
2008-05-01
Formulas for the spectra of pulsed vocalizations for both the continuous and discrete cases are rigorously derived from basic formulas for Fourier analysis, a topic discussed qualitatively in Watkins' classic paper on "the harmonic interval" ["The harmonic interval: Fact or artifact in spectral analysis of pulse trains," in Marine Bioacoustics 2, edited by W. N. Tavogla (Pergamon, New York, 1967), pp. 15-43]. These formulas are summarized in a table for easy reference, along with most of the corresponding graphs. The case of a "pulse tone" is shown to involve multiplication of two temporal wave forms, corresponding to convolution in the frequency domain. This operation is discussed in detail and shown to be equivalent to a simpler approach using a trigonometric formula giving sum and difference frequencies. The presence of a dc component in the temporal wave form, which implies physically that there is a net positive pressure at the source, is discussed, and examples of the corresponding spectra are calculated and shown graphically. These have application to biphonation (two source signals) observed for some killer whale calls and implications for a source mechanism. A MATLAB program for synthesis of a similar signal is discussed and made available online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantinou, Maria A.; Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75, Mikras Asias str., 11527 Athens; Theocharis, Stamatios E.
2007-01-01
Metabonomics has already been used to discriminate different pathological states in biological fields. The metabolic profiles of chronic experimental fibrosis and cirrhosis induction in rats were investigated using {sup 1}H NMR spectroscopy of liver extracts and serum combined with pattern recognition techniques. Rats were continuously administered with thioacetamide (TAA) in the drinking water (300 mg TAA/L), and sacrificed on 1st, 2nd, and 3rd month of treatment. {sup 1}H NMR spectra of aqueous and lipid liver extracts, together with serum were subjected to Principal Component Analysis (PCA). Liver portions were also subjected to histopathological examination and biochemical determination of malondialdehyde (MDA).more » Liver fibrosis and cirrhosis were progressively induced in TAA-treated rats, verified by the histopathological examination and the alterations of MDA levels. TAA administration revealed a number of changes in the {sup 1}H NMR spectra compared to control samples. The performance of PCA in liver extracts and serum, discriminated the control samples from the fibrotic and cirrhotic ones. Metabolic alterations revealed in NMR spectra during experimental liver fibrosis and cirrhosis induction, characterize the stage of fibrosis and could be illustrated by subsequent PCA of the spectra. Additionally, the PCA plots of the serum samples presented marked clustering during fibrosis progression and could be extended in clinical diagnosis for the management of cirrhotic patients.« less
An MS-DOS-based program for analyzing plutonium gamma-ray spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhter, W.D.; Buckley, W.M.
1989-09-07
A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, J.; Max-Planck-Institut für Quantenoptik Garching, Hans-Kopfermann-Str. 1, 85748 Garching bei München; Bolton, P. R.
An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies andmore » typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.« less
NASA Astrophysics Data System (ADS)
Londero, E.; Bourgeois, E.; Nesladek, M.; Gali, A.
2018-06-01
There is a continuous search for solid state spin qubits operating at room temperature with excitation in the infrared communication bandwidth. Recently, we have introduced the photoelectric detection of magnetic resonance (PDMR) to read the electron spin state of nitrogen-vacancy (NV) centers in diamond, a technique which is promising for applications in quantum information technology. By measuring the photoionization spectra on a diamond crystal, we found two ionization thresholds of unknown origin. On the same sample we also observed absorption and photoluminescence signatures that were identified in the literature as Ni-associated defects. We performed ab initio calculations of the photoionization cross section of the nickel split-vacancy complex (NiV) and N-related defects in their relevant charge states and fitted the concentration of these defects to the measured photocurrent spectrum, which led to a surprising match between experimental and calculated spectra. This study enabled us to identify the two unknown ionization thresholds with the two acceptor levels of NiV. Because the excitation of NiV is in the infrared, the photocurrent detected from the paramagnetic NiV color centers is a promising way towards the design of electrically readout qubits.
The scalar-scalar-tensor inflationary three-point function in the axion monodromy model
NASA Astrophysics Data System (ADS)
Chowdhury, Debika; Sreenath, V.; Sriramkumar, L.
2016-11-01
The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.
NASA Astrophysics Data System (ADS)
Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.
2015-12-01
The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.
Isosbestics in Infrared Aerosol Spectra: Proposed Applications for Remote Sensing.
1989-04-01
droplet solutions and chemical reactions if the complex indices of refraction are known. The technique seems most applicable in the Rayleigh regime. Remote ... sensing , Isosbestics, Infrared, Infrared spectra, Atmosphere, Water, Aerosols, Rayleigh regime.
Etienne, E; Le Breton, N; Martinho, M; Mileo, E; Belle, V
2017-08-01
Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the residue level, structural transitions in proteins. SDSL-EPR is based on the selective grafting of a paramagnetic label on the protein under study, followed by cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give reliable interpretation on biological system dynamics, numerical simulations of the spectra are required. Such spectral simulations can be carried out by coding in MATLAB using functions from the EasySpin toolbox. For non-expert users of MATLAB, this could be a complex task or even impede the use of such simulation tool. We developed a graphical user interface called SimLabel dedicated to run cw EPR spectra simulations particularly coming from SDSL-EPR experiments. Simlabel provides an intuitive way to visualize, simulate, and fit such cw EPR spectra. An example of SDSL-EPR spectra simulation concerning the study of an intrinsically disordered region undergoing a local induced folding is described and discussed. We believe that this new tool will help the users to rapidly obtain reliable simulated spectra and hence facilitate the interpretation of their results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Cristoni, Simone; Dusi, Guglielmo; Brambilla, Paolo; Albini, Adriana; Conti, Matteo; Brambilla, Maura; Bruno, Antonino; Di Gaudio, Francesca; Ferlin, Luca; Tazzari, Valeria; Mengozzi, Silvia; Barera, Simone; Sialer, Carlos; Trenti, Tommaso; Cantu, Marco; Rossi Bernardi, Luigi; Noonan, Douglas M
2017-01-01
Electrospray Ionization and collision induced dissociation tandem mass spectrometry are usually employed to obtain compound identification through a mass spectra match. Different algorithms have been developed for this purpose (for example the nist match algorithm). These approaches compare the tandem mass spectra of the unknown analyte with the tandem mass spectra spectra of known compounds inserted in a database. The compounds are usually identified on the basis of spectral match value associated with a probability of recognition. However, this approach is not usually applied to multiple reaction monitoring transition spectra achieved by means of triple quadrupole apparatus, mainly due to the lack of a transition spectra database. The Surface Activated Chemical Ionization-Electrospray-NIST Bayesian model database search (SANIST) platform has been recently developed for new potential metabolite biomarker discovery, to confirm their identity and to use them for clinical and diagnostic applications. Here, we present an improved version of the SANIST platform that extends its application to forensic, pharmaceutical, and food analysis studies, where the compound identification rules are strict. The European Union (EU) has set directives for compound identification (EU directive 2002/657/EC). We have applied the SANIST method to identification of 11-nor-9-carboxytetrahydro-cannabinol in urine samples (an example of a forensic application), circulating levels of the immunosuppressive drug tacrolimus in blood (an example of a pharmaceutical application) and glyphosate in fruit juice (an example of a food analysis application) that meet the EU directive requirements. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Matsui, Hiroyuki; Mishchenko, Andrei S.; Hasegawa, Tatsuo
2010-02-01
We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.
Matsui, Hiroyuki; Mishchenko, Andrei S; Hasegawa, Tatsuo
2010-02-05
We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.
Kögler, Martin; Paul, Andrea; Anane, Emmanuel; Birkholz, Mario; Bunker, Alex; Viitala, Tapani; Maiwald, Michael; Junne, Stefan; Neubauer, Peter
2018-06-08
The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited by a large background signal originating from fluorescing compounds in the culture media. Here we compare time-gated Raman (TG-Raman)-, continuous wave NIR-process Raman (NIR-Raman) and continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. We investigated concentration transients of glucose, acetate, AMP and cAMP at alternating substrate availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite analysis of carbohydrates, carboxylic acids and nucleotides. Results demonstrate that SERS, in almost all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman provided a superior performance for the quantitative evaluation of analytes, both with and without SERS nanoparticles when using multivariate data analysis. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.
NASA Technical Reports Server (NTRS)
Byer, R. L.
1982-01-01
The measurement of high resolution pulsed and continuous wave (CW) coherent anti-Stokes Raman spectroscopy (CARS) measurements in pulsed and steady state supersonic expansions were demonstrated. Pulsed molecular beam sources were characterized, and saturation of a Raman transition and, for the first time, the Raman spectrum of a complex molecular cluster were observed. The observation of CW CARS spectra in a molecular expansion and the effects of transit time broadening is described. Supersonic expansion is established as a viable technique for high resolution Raman spectroscopy of cold molecules with resolutions of 100 MH2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.
We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrummore » is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.« less
Peters, Johanna; Teske, Andreas; Taute, Wolfgang; Döscher, Claas; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg
2018-02-15
The trend towards continuous manufacturing in the pharmaceutical industry is associated with an increasing demand for advanced control strategies. It is a mandatory requirement to obtain reliable real-time information on critical quality attributes (CQA) during every process step as the decision on diversion of material needs to be performed fast and automatically. Where possible, production equipment should provide redundant systems for in-process control (IPC) measurements to ensure continuous process monitoring even if one of the systems is not available. In this paper, two methods for real-time monitoring of granule moisture in a semi-continuous fluid-bed drying unit are compared. While near-infrared (NIR) spectroscopy has already proven to be a suitable process analytical technology (PAT) tool for moisture measurements in fluid-bed applications, microwave resonance technology (MRT) showed difficulties to monitor moistures above 8% until recently. The results indicate, that the newly developed MRT sensor operating at four resonances is capable to compete with NIR spectroscopy. While NIR spectra were preprocessed by mean centering and first derivative before application of partial least squares (PLS) regression to build predictive models (RMSEP = 0.20%), microwave moisture values of two resonances sufficed to build a statistically close multiple linear regression (MLR) model (RMSEP = 0.07%) for moisture prediction. Thereby, it could be verified that moisture monitoring by MRT sensor systems could be a valuable alternative to NIR spectroscopy or could be used as a redundant system providing great ease of application. Copyright © 2017 Elsevier B.V. All rights reserved.
Improved Scheme of Modified Gaussian Deconvolution for Reflectance Spectra of Lunar Soils
NASA Technical Reports Server (NTRS)
Hiroi, T.; Pieters, C. M.; Noble, S. K.
2000-01-01
In our continuing effort for deconvolving reflectance spectra of lunar soils using the modified Gaussian model, a new scheme has been developed, including a new form of continuum. All the parameters are optimized with certain constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, E.F.; Yule, T.J.
1984-01-01
Measurements of degraded fission-neutron spectra using recoil proportional counters are done routinely for studies involving fast reactor mockups. The same techniques are applicable to measurements of neutron spectra required for personnel dosimetry in fast neutron environments. A brief discussion of current applications of these methods together with the results of a measurement made on the LITTLE BOY assembly at Los Alamos are here described.
X-Band Rapid-Scan Electron Paramagnetic Resonance of Radiation-Induced Defects in Tooth Enamel
Yu, Zhelin; Romanyukha, Alexander; Eaton, Sandra S.; Eaton, Gareth R.
2015-01-01
X-band rapid-scan electron paramagnetic resonance (EPR) spectra from tooth enamel samples irradiated with doses of 0.5, 1 and 10 Gy had substantially improved signal-to-noise relative to conventional continuous wave EPR. The radiation-induced signal in 60 mg of a tooth enamel sample irradiated with a 0.5 Gy dose was readily characterized in spectra recorded with 34 min data acquisition times. The coefficient of variance of the calculated dose for a 1 Gy irradiated sample, based on simulation of the first-derivative spectra for three replicates as the sum of native and radiation-induced signals, was 3.9% for continuous wave and 0.4% for rapid scan. PMID:26207683
Cielecka-Piontek, J; Lewandowska, K; Barszcz, B; Paczkowska, M
2013-02-15
The application of ultraviolet, FT-IR and Raman spectra was proposed for identification studies of the newest penem analogs (doripenem, biapenem and faropenem). An identification of the newest penem analogs based on their separation from related substances was achieved after the application of first derivative of direct spectra in ultraviolet which permitted elimination of overlapping effects. A combination of experimental and theoretical studies was performed for analyzing the structure and vibrational spectra (FT-IR and Raman spectra) of doripenem, biapenem and faropenem. The calculations were conducted using the density functional theory with the B3LYP hybrid functional and 6-31G(d,p) basis set. The confirmation of the applicability of the DFT methodology for interpretation of vibrational IR and Raman spectra of the newest penem analogs contributed to determination of changes of vibrations in the area of the most labile bonds. By employing the theoretical approach it was possible to eliminate necessity of using reference standards which - considering the instability of penem analogs - require that correction coefficients are factored in. Copyright © 2012 Elsevier B.V. All rights reserved.
Spectra of random operators with absolutely continuous integrated density of states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rio, Rafael del, E-mail: delrio@iimas.unam.mx, E-mail: delriomagia@gmail.com
2014-04-15
The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic.
StarNet: An application of deep learning in the analysis of stellar spectra
NASA Astrophysics Data System (ADS)
Kielty, Collin; Bialek, Spencer; Fabbro, Sebastien; Venn, Kim; O'Briain, Teaghan; Jahandar, Farbod; Monty, Stephanie
2018-06-01
In an era when spectroscopic surveys are capable of collecting spectra for hundreds of thousands of stars, fast and efficient analysis methods are required to maximize scientific impact. These surveys provide a homogeneous database of stellar spectra that are ideal for machine learning applications. In this poster, we present StarNet: a convolutional neural network model applied to the analysis of both SDSS-III APOGEE DR13 and synthetic stellar spectra. When trained on synthetic spectra alone, the calculated stellar parameters (temperature, surface gravity, and metallicity) are of excellent precision and accuracy for both APOGEE data and synthetic data, over a wide range of signal-to-noise ratios. While StarNet was developed using the APOGEE observed spectra and corresponding ASSeT synthetic grid, we suggest that this technique is applicable to other spectral resolutions, spectral surveys, and wavelength regimes. As a demonstration of this, we present a StarNet model trained on lower resolution, R=6000, IR synthetic spectra, describing the spectra delivered by Gemini/NIFS and the forthcoming Gemini/GIRMOS instrument (PI Sivanandam, UToronto). Preliminary results suggest that the stellar parameters determined from this low resolution StarNet model are comparable in precision to the high-resolution APOGEE results. The success of StarNet at lower resolution can be attributed to (1) a large training set of synthetic spectra (N ~200,000) with a priori stellar labels, and (2) the use of the entire spectrum in the solution rather than a few weighted windows, which are common methods in other spectral analysis tools (e.g. FERRE or The Cannon). Remaining challenges in our StarNet applications include rectification, continuum normalization, and wavelength coverage. Solutions to these problems could be used to guide decisions made in the development of future spectrographs, spectroscopic surveys, and data reduction pipelines, such as for the future MSE.
Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications
NASA Astrophysics Data System (ADS)
Hansora, D. P.; Shimpi, N. G.; Mishra, S.
2015-12-01
This work represents a state-of-the-art technique developed for the preparation of graphene from graphite-metal electrodes by the arc-discharge method carried out in a continuous flow of water. Because of continuous arcing of graphite-metal electrodes, the graphene sheets were observed in water with uniformity and little damage. These nanosheets were subjected to various purification steps such as acid treatment, oxidation, water washing, centrifugation, and drying. The pure graphene sheets were analyzed using Raman spectrophotometry, x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and tunneling electron microscopy (TEM). Peaks of Raman spectra were recorded at (1300-1400 cm-1) and (1500-1600 cm-1) for weak D-band and strong G-band, respectively. The XRD pattern showed 85.6% crystallinity of pure graphite, whereas pure graphene was 66.4% crystalline. TEM and FE-SEM micrographs revealed that graphene sheets were overlapped to each other and layer-by-layer formation was also observed. Beside this research work, we also reviewed recent developments of graphene and related nanomaterials along with their preparations, properties, functionalizations, and potential applications.
Fourier transform spectroscopy of cotton and cotton trash
USDA-ARS?s Scientific Manuscript database
Fourier Transform techniques have been shown to have higher signal-to-noise capabilities, higher throughput, negligible stray light, continuous spectra, and higher resolution. In addition, FT spectroscopy affords for frequencies in spectra to be measured all at once and more precise wavelength calib...
GEANT4 Tuning For pCT Development
NASA Astrophysics Data System (ADS)
Yevseyeva, Olga; de Assis, Joaquim T.; Evseev, Ivan; Schelin, Hugo R.; Paschuk, Sergei A.; Milhoretto, Edney; Setti, João A. P.; Díaz, Katherin S.; Hormaza, Joel M.; Lopes, Ricardo T.
2011-08-01
Proton beams in medical applications deal with relatively thick targets like the human head or trunk. Thus, the fidelity of proton computed tomography (pCT) simulations as a tool for proton therapy planning depends in the general case on the accuracy of results obtained for the proton interaction with thick absorbers. GEANT4 simulations of proton energy spectra after passing thick absorbers do not agree well with existing experimental data, as showed previously. Moreover, the spectra simulated for the Bethe-Bloch domain showed an unexpected sensitivity to the choice of low-energy electromagnetic models during the code execution. These observations were done with the GEANT4 version 8.2 during our simulations for pCT. This work describes in more details the simulations of the proton passage through aluminum absorbers with varied thickness. The simulations were done by modifying only the geometry in the Hadrontherapy Example, and for all available choices of the Electromagnetic Physics Models. As the most probable reasons for these effects is some specific feature in the code, or some specific implicit parameters in the GEANT4 manual, we continued our study with version 9.2 of the code. Some improvements in comparison with our previous results were obtained. The simulations were performed considering further applications for pCT development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobranskis, R. R.; Zharkova, V. V., E-mail: valentina.zharkova@northumbria.ac.uk
2014-06-10
The original continuity equation (CE) used for the interpretation of the power law energy spectra of beam electrons in flares was written and solved for an electron beam flux while ignoring an additional free term with an electron density. In order to remedy this omission, the original CE for electron flux, considering beam's energy losses in Coulomb collisions, was first differentiated by the two independent variables: depth and energy leading to partial differential equation for an electron beam density instead of flux with the additional free term. The analytical solution of this partial differential continuity equation (PDCE) is obtained bymore » using the method of characteristics. This solution is further used to derive analytical expressions for mean electron spectra for Coulomb collisions and to carry out numeric calculations of hard X-ray (HXR) photon spectra for beams with different parameters. The solutions revealed a significant departure of electron densities at lower energies from the original results derived from the CE for the flux obtained for Coulomb collisions. This departure is caused by the additional exponential term that appeared in the updated solutions for electron differential density leading to its faster decrease at lower energies (below 100 keV) with every precipitation depth similar to the results obtained with numerical Fokker-Planck solutions. The effects of these updated solutions for electron densities on mean electron spectra and HXR photon spectra are also discussed.« less
EMPCA and Cluster Analysis of Quasar Spectra: Construction and Application to Simulated Spectra
NASA Astrophysics Data System (ADS)
Marrs, Adam; Leighly, Karen; Wagner, Cassidy; Macinnis, Francis
2017-01-01
Quasars have complex spectra with emission lines influenced by many factors. Therefore, to fully describe the spectrum requires specification of a large number of parameters, such as line equivalent width, blueshift, and ratios. Principal Component Analysis (PCA) aims to construct eigenvectors-or principal components-from the data with the goal of finding a few key parameters that can be used to predict the rest of the spectrum fairly well. Analysis of simulated quasar spectra was used to verify and justify our modified application of PCA.We used a variant of PCA called Weighted Expectation Maximization PCA (EMPCA; Bailey 2012) along with k-means cluster analysis to analyze simulated quasar spectra. Our approach combines both analytical methods to address two known problems with classical PCA. EMPCA uses weights to account for uncertainty and missing points in the spectra. K-means groups similar spectra together to address the nonlinearity of quasar spectra, specifically variance in blueshifts and widths of the emission lines.In producing and analyzing simulations, we first tested the effects of varying equivalent widths and blueshifts on the derived principal components, and explored the differences between standard PCA and EMPCA. We also tested the effects of varying signal-to-noise ratio. Next we used the results of fits to composite quasar spectra (see accompanying poster by Wagner et al.) to construct a set of realistic simulated spectra, and subjected those spectra to the EMPCA /k-means analysis. We concluded that our approach was validated when we found that the mean spectra from our k-means clusters derived from PCA projection coefficients reproduced the trends observed in the composite spectra.Furthermore, our method needed only two eigenvectors to identify both sets of correlations used to construct the simulations, as well as indicating the linear and nonlinear segments. Comparing this to regular PCA, which can require a dozen or more components, or to direct spectral analysis that may need measurement of 20 fit parameters, shows why the dual application of these two techniques is such a powerful tool.
Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals.
Liu, Qingkun; Campbell, Michael G; Evans, Julian S; Smalyukh, Ivan I
2014-11-12
Nematic-like and helicoidally orientational self-assemblies of gold nanorods co-dispersed with cellulose nanocrystals to form liquid crystalline phases are developed. Polarization-sensitive extinction spectra and two-photon luminescence imaging are used to characterize orientations and spatial distributions of gold nanorods. Cholesteric-isotropic phase coexistence and continuous domains of single-phase regions are observed and qualitatively discussed on the basis of entropic and electrostatic interactions in co-dispersions of rigid rods of different aspect ratios. Potential applications include biologically compatible plasmonic composite nanomaterials for solar biofuel production and polarization-sensitive plasmonic papers and fabrics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solutions of the Helmholtz equation with boundary conditions for force-free magnetic fields
NASA Technical Reports Server (NTRS)
Rasband, S. N.; Turner, L.
1981-01-01
It is shown that the solution, with one ignorable coordinate, for the Taylor minimum energy state (resulting in a force-free magnetic field) in either a straight cylindrical or a toroidal geometry with arbitrary cross section can be reduced to the solution of either an inhomogeneous Helmholtz equation or a Grad-Shafranov equation with simple boundary conditions. Standard Green's function theory is, therefore, applicable. Detailed solutions are presented for the Taylor state in toroidal and cylindrical domains having a rectangular cross section. The focus is on solutions corresponding to the continuous eigenvalue spectra. Singular behavior at 90 deg corners is explored in detail.
Remote sensing validation through SOOP technology: implementation of Spectra system
NASA Astrophysics Data System (ADS)
Piermattei, Viviana; Madonia, Alice; Bonamano, Simone; Consalvi, Natalizia; Caligiore, Aurelio; Falcone, Daniela; Puri, Pio; Sarti, Fabio; Spaccavento, Giovanni; Lucarini, Diego; Pacci, Giacomo; Amitrano, Luigi; Iacullo, Salvatore; D'Andrea, Salvatore; Marcelli, Marco
2017-04-01
The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of marine research. The availability of low-cost technologies allows the realization of extended observatory networks for the study of marine phenomena through an integrated approach merging observations, remote sensing and operational oceanography. Marine services and practical applications critically depends on the availability of large amount of data collected with sufficiently dense spatial and temporal sampling. This issue directly influences the robustness both of ocean forecasting models and remote sensing observations through data assimilation and validation processes, particularly in the biological domain. For this reason it is necessary the development of cheap, small and integrated smart sensors, which could be functional both for satellite data validation and forecasting models data assimilation as well as to support early warning systems for environmental pollution control and prevention. This is particularly true in coastal areas, which are subjected to multiple anthropic pressures. Moreover, coastal waters can be classified like case 2 waters, where the optical properties of inorganic suspended matter and chromophoric dissolved organic matter must be considered and separated by the chlorophyll a contribution. Due to the high costs of mooring systems, research vessels, measure platforms and instrumentation a big effort was dedicated to the design, development and realization of a new low cost mini-FerryBox system: Spectra. Thanks to the modularity and user-friendly employment of the system, Spectra allows to acquire continuous in situ measures of temperature, conductivity, turbidity, chlorophyll a and chromophoric dissolved organic matter (CDOM) fluorescences from voluntary vessels, even by non specialized operators (Marcelli et al., 2014; 2016). This work shows the preliminary application of this technology to remote sensing data validation.
Mielczarek, P; Silberring, J; Smoluch, M
In the present study we tested the application of compressed air instead of pure nitrogen as the nebulizing and drying gas, and its influence on the quality of electrospray ionization (ESI) mass spectra. The intensities of the signals corresponding to protonated molecules were significantly (twice) higher when air was used. Inspection of signal-to-noise (S/N) ratios revealed that, in both cases, sensitivity was comparable. A higher ion abundance after the application of compressed air was followed by a higher background. Another potential risk of using air in the ESI source is the possibility for sample oxidation due to the presence of oxygen. To test this, we selected five easily oxidizing compounds to verify their susceptibility to oxidation. In particular, the presence of methionine was of interest. For all the compounds studied, no oxidation was observed. Amodiaquine oxidizes spontaneously in water solutions and its oxidized form can be detected a few hours after preparation. Direct comparison of the spectra where nitrogen was used with the corresponding spectra obtained when air was applied did not show significant differences. The only distinction was slightly different patterns of adducts when air was used. The difference concerns acetonitrile, which forms higher signals when air is the nebulizing gas. It is also important that the replacement of nitrogen with air does not affect quantitative data. The prepared calibration curves also visualize an intensity twice as high (independent of concentration within tested range) of the signal where air was applied. We have used our system continuously for three months with air as the nebulizing and drying gas and have not noticed any unexpected signal deterioration caused by additional source contamination from the air. Moreover, compressed air is much cheaper and easily available using oil-free compressors or pumps.
NASA Astrophysics Data System (ADS)
King, Bruce H.; Ellis, Thomas; Old, Tom E.
2009-05-01
A fast-scanning, high-resolution FTIR spectroradiometer has been designed and built for use in remote sensing, stand-off detection, and spectral-temporal characterization of fast, energetic infrared events. The instrument design uses a Michelson-type interferometer with a rotary modulator which is capable of continuous measurement of infrared spectra at a rate of 1000 scans per second with 4 cm-1 resolution in the 2 - 25 micron spectral range. Sensitivity, spectral accuracy, and radiometric precision are discussed along with specific design parameters. This instrument can be used for passive sensing as a stand-alone sensor, or for active sensing as a receiver when used in conjunction with a highenergy excitation source such as a laser. Applications include muzzle flash signature measurement, ordnance detonation characterization, missile plume identification, and rocket motor combustion diagnostics.
Spectral and multi-wavelength continuous-wave laser properties of Yb3+:BaLaGa3O7
NASA Astrophysics Data System (ADS)
Gao, Shufang; Xu, Shan
2018-05-01
Yb3+ doped BaLaGa3O7 crystal has been successfully grown by Czochralski method. The polarized absorption spectra, the fluorescence spectra and the fluorescence decay lifetime of Yb3+:BaLaGa3O7 crystal were measured at room temperature. The spectroscopic parameters of Yb3+:BaLaGa3O7 crystal are calculated. A continuous wave output power of 1.32W was obtained with four-wavelength emission corresponding to an optical-optical slope efficiency of 55%.
NASA Astrophysics Data System (ADS)
Gu, Junhua; Xu, Haiguang; Wang, Jingying; An, Tao; Chen, Wen
2013-08-01
We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.
Continuous-wave Submillimeter-wave Gyrotrons
Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.
2007-01-01
Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605
Observations of the Ultraviolet Spectra of Carbon White Dwarfs
NASA Technical Reports Server (NTRS)
Wagner, G. A.
1982-01-01
Strong ultraviolet carbon lines were detected in additional white DC (continuous visual spectra) dwarfs using the IUE. These lines are not seen in the ultraviolet spectrum of the cool DC star Stein 2051 B. The bright DA white dwarf LB 3303 has a strong unidentified absorption near lambda 1400.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagus, Paul S.
The theoretical research in this project has been directed toward the interpretation of core-level spectroscopies for systems relevant to the project. For the initial efforts, the focus of our theoretical simulations has been the interpretation of laboratory and synchrotron X-Ray Photoemission Spectra, XPS. In more recent efforts, an increasing emphasis has been placed on developing transparent understandings of X-Ray Adsorption Spectra, XAS . For the XAS, the principal concern is for the near-edge features, either just below or just above, an ionization limit or edge, which are described as Near-Edge X-Ray Adsorption Fine Structure, NEXAFS. In particular, a priority hasmore » involved the analysis and interpretation of XPS and NEXAFS spectra, especially of Fe and U systems, as measured by our PNNL collaborators. The overall objective of our theoretical studies is to establish connections between features of the spectra and their origin in the electronic structure of the materials. The efforts for the analysis of XPS have been reviewed in a paper by the PI, C. J. Nelin, and E. S. Ilton from PNNL on “The interpretation of XPS spectra: Insights into materials properties”, Surf. Sci. Reports, 68, 273 (2013). Two materials properties of special interest have been the degree of ionicity and the character of the covalent bonding in a range of oxides formed with transition metal, lanthanide, and actinide cations. Since the systems treated have electrons in open shells, it has been necessary to determine the energetics and the character of the angular momentum coupling of the open shell electrons. In particular, we have established methods for the treatment of the “intermediate coupling” which arises when the system is between the limit of Russell-Saunders multiplets, and the limit of j-j coupling where the spin-orbit splittings of single electrons dominate. A recent paper by the PI, and M. J. Sassi, and K. M. Rosso, (both at PNNL) “Intermediate Coupling For Core-Level Excited States: Consequences For X-Ray Absorption Spectroscopy”, J. Elec. Spectros. and Related Phenom., 200, 174 (2015) describes our first application of these methods. As well as applications to problems and materials of direct interest for our PNNL colleagues, we have pursued applications of fundamental theoretical significance for the analysis and interpretation of XPS and XAS spectra. These studies are important for the development of the fields of core-level spectroscopies as well as to advance our capabilities for applications of interest to our PNNL colleagues. An excellent example is our study of the surface core-level shifts, SCLS, for the surface and bulk atoms of an oxide that provides a new approach to understanding how the surface electronic of oxides differs from that in the bulk of the material. This work has the potential to lead to a new key to understanding the reactivity of oxide surfaces. Our theoretical studies use cluster models with finite numbers of atoms to describe the properties of condensed phases and crystals. This approach has allowed us to focus on the local atomistic, chemical interactions. For these clusters, we obtain orbitals and spinors through the solution of the Hartree-Fock, HF, and the fully relativistic Dirac HF equations. These orbitals are used to form configuration mixing wavefunctions which treat the many-body effects responsible for the open shell angular momentum coupling and for the satellites of the core-level spectra. Our efforts have been in two complementary directions. As well as the applications described above, we have placed major emphasis on the enhancement and extension of our theoretical and computational capabilities so that we can treat complex systems with a greater range of many-body effects. Noteworthy accomplishments in terms of method development and enhancement have included: (1) An improvement in our treatment of the large matrices that must be handled when many-body effects are treated. (2) Improvements and extensions of our capabilities for the calculation of the intensities of XPS and XAS transitions. And (3) ongoing development of flexible programs for the visualization of the theoretical spectra so that they can be compared with experiment. Our efforts on applications and methodology for these and related topics will continue under a sub-contract to PNNL.« less
Diffuse Reflectance Spectroscopy for Total Carbon Analysis of Hawaiian Soils
NASA Astrophysics Data System (ADS)
McDowell, M. L.; Bruland, G. L.; Deenik, J. L.; Grunwald, S.; Uchida, R.
2010-12-01
Accurate assessment of total carbon (Ct) content is important for fertility and nutrient management of soils, as well as for carbon sequestration studies. The non-destructive analysis of soils by diffuse reflectance spectroscopy (DRS) is a potential supplement or alternative to the traditional time-consuming and costly combustion method of Ct analysis, especially in spatial or temporal studies where sample numbers are large. We investigate the use of the visible to near-infrared (VNIR) and mid-infrared (MIR) spectra of soils coupled with chemometric analysis to determine their Ct content. Our specific focus is on Hawaiian soils of agricultural importance. Though this technique has been introduced to the soil community, it has yet to be fully tested and used in practical applications for all soil types, and this is especially true for Hawaii. In short, DRS characterizes and differentiates materials based on the variation of the light reflected by a material at certain wavelengths. This spectrum is dependent on the material’s composition, structure, and physical state. Multivariate chemometric analysis unravels the information in a set of spectra that can help predict a property such as Ct. This study benefits from the remarkably diverse soils of Hawaii. Our sample set includes 216 soil samples from 145 pedons from the main Hawaiian Islands archived at the National Soil Survey Center in Lincoln, NE, along with more than 50 newly-collected samples from Kauai, Oahu, Molokai, and Maui. In total, over 90 series from 10 of the 12 soil orders are represented. The Ct values of these samples range from < 1% - 55%. We anticipate that the diverse nature of our sample set will ensure a model with applicability to a wide variety of soils, both in Hawaii and globally. We have measured the VNIR and MIR spectra of these samples and obtained their Ct values by dry combustion. Our initial analyses are conducted using only samples obtained from the Lincoln archive. In this preliminary case, we use Partial Least Squares (PLS) regression with cross validation to develop a prediction model for soils of unknown carbon content given only their spectral signature. We find R2 values of greater than 0.93 for the MIR spectra and 0.87 for the VNIR spectra, indicating a strong ability to correlate a soil’s spectrum with its Ct content. We build on these encouraging results by continuing chemometric analyses using the full data set, different data subsets, separate model calibration and validation groups, combined VNIR and MIR spectra, and exploring different data pretreatment options and variations to the PLS parameters.
NASA Technical Reports Server (NTRS)
Cohen, Martin; Witteborn, Fred C.; Walker, Russell, G.; Bregman, Jesse D.; Wooden, Diane H.
1995-01-01
Five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns are presented. The spectra were constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars (beta Peg, alpha Boo, beta And, beta Gem, and alpha Hya) augment the author's already created complete absolutely calibrated spectrum for alpha Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, Steve M.; Thoreson, Greg G.; Theisen, Lisa A.
2016-05-01
The Gamma Detector Response and Analysis Software–Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray and neutron detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, analyzing spectra to identify isotopes, and estimating source energy distributions from measured spectra. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).
NASA Astrophysics Data System (ADS)
Vermande, P.; Gilard, O.; Rosak, A.
2017-11-01
The Fourier transform spectrometry is useful to obtain optical spectra with high resolution. But in case of narrow band spectra, the number of sample become very important, related to the useful information (the sampling is proportional to the higher wavelength). By changing the sampling, it is possible to obtain narrow band spectra with far less samples. With fewer samples, static interferometers become possible to use. So with these two ideas (a better sampling and static interferometer) we can build a very simple, compact, and static instrument. We will show several possible application of this instrument.
High output power of differently cut Nd:MgO:LiTaO3 CW lasers
NASA Astrophysics Data System (ADS)
Sun, D. H.; Liu, S. D.; Wang, D. Z.; Sang, Y. H.; Kang, X. L.; Liu, H.; Bi, Y.; Yan, B. X.; He, J. L.; Wang, J. Y.
2013-04-01
A high-quality Nd3+ and Mg2+ co-doped LiTaO3 (Nd:MgO:LT) crystal was grown by the Czochralski method. The polarized absorption spectra and fluorescence spectra were studied, and the absorption cross section was calculated by Judd-Ofelt (J-O) theory. The laser performance with different sample cuts of the crystal was investigated for the first time, and it was found that Nd:MgO:LT crystal with different cutting directions (a and c) exhibits different laser properties. By optimizing a partial reflectivity mirror in the laser experimental setting, a high continuous wave output power of 3.58 W was obtained at 1092 and 1076 nm with an optical-to-optical conversion efficiency of 22.78% and slope efficiency of 26.06%. The results indicate that Nd:MgO:LT crystal is a promising candidate for the manufacture of Nd3+ doped periodically poled MgO:LiTaO3 crystal (Nd:PPMgOLT), which should have considerable applications in self-frequency doubling and optical parametric oscillation laser devices.
NASA Astrophysics Data System (ADS)
Ogorzalek Loo, Rachel R.; Mitchell, Charles; Stevenson, Tracy I.; Loo, Joseph A.; Andrews, Philip C.
1997-12-01
Diffusive transfer was examined as a blotting method to transfer proteins from polyacrylamide gels to membranes for ultraviolet matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The method is well-suited for transfers from isoelectric focusing (IEF) gels. Spectra have been obtained for 11 pmol of 66 kDa albumin loaded onto an IEF gel and subsequently blotted to polyethylene. Similarly, masses of intact carbonic anhydrase and hemoglobin were obtained from 14 and 20 pmol loadings. This methodology is also compatible with blotting high molecular weight proteins, as seen for 6 pmol of the 150 kDa monoclonal antibody anti-[beta]-galactosidase transferred to Goretex. Polypropylene, Teflon, Nafion and polyvinylidene difluoride (PVDF) also produced good spectra following diffusive transfer. Only analysis from PVDF required that the membrane be kept wet prior to application of matrix. Considerations in mass accuracy for analysis from large-area membranes with continuous extraction and delayed extraction were explored, as were remedies for surface charging. Vapor phase CNBr cleavage was applied to membrane-bound samples for peptide mapping.
NASA Astrophysics Data System (ADS)
Ntarlagiannis, D.; Ustra, A.; Slater, L. D.; Zhang, C.; Mendonça, C. A.
2015-12-01
In this work we present an alternative formulation of the Debye Decomposition (DD) of complex conductivity spectra, with a new set of parameters that are directly related to the continuous Debye relaxation model. The procedure determines the relaxation time distribution (RTD) and two frequency-independent parameters that modulate the induced polarization spectra. The distribution of relaxation times quantifies the contribution of each distinct relaxation process, which can in turn be associated with specific polarization processes and characterized in terms of electrochemical and interfacial parameters as derived from mechanistic models. Synthetic tests show that the procedure can successfully fit spectral induced polarization (SIP) data and accurately recover the RTD. The procedure was applied to different data sets, focusing on environmental applications. We focus on data of sand-clay mixtures artificially contaminated with toluene, and crude oil-contaminated sands experiencing biodegradation. The results identify characteristic relaxation times that can be associated with distinct polarization processes resulting from either the contaminant itself or transformations associated with biodegradation. The inversion results provide information regarding the relative strength and dominant relaxation time of these polarization processes.
NASA Astrophysics Data System (ADS)
Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.
2015-11-01
In this study, we report on the development of a lamp-based vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) in our laboratory; it is composed of a radio-frequency-powered VUV lamp, a VUV photoionizer, an ion-migration lens assembly, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, the baselines of the mass spectra decreased from 263.6 ± 15.7 counts to 4.1 ± 1.8 counts. A detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for real-time monitoring applications of samples, the developed VUV-PIMS was employed for the continuous measurement of urban air for 6 days in Beijing, China. Strong signals of trace-level volatile organic compounds, such as benzene and its alkylated derivatives, were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.
NASA Astrophysics Data System (ADS)
Razuc, Mariela; Garrido, Mariano; Caro, Yamile S.; Teglia, Carla M.; Goicoechea, Héctor C.; Fernández Band, Beatriz S.
2013-04-01
A simple and fast on line spectrophotometric method combined with a hybrid hard-soft modeling multivariate curve resolution (HS-MCR) was proposed for the monitoring of photodegradation reaction of ciprofloxacin under UV radiation. The studied conditions attempt to emulate the effect of sunlight on these antibiotics that could be eventually present in the environment. The continuous flow system made it possible to study the ciprofloxacin degradation at different pH values almost at real time, avoiding errors that could arise from typical batch monitoring of the reaction. On the base of a concentration profiles obtained by previous pure soft-modeling approach, reaction pathways have been proposed for the parent compound and its photoproducts at different pH values. These kinetic models were used as a constraint in the HS-MCR analysis. The kinetic profiles and the corresponding pure response profile (UV-Vis spectra) of ciprofloxacin and its main degradation products were recovered after the application of HS-MCR analysis to the spectra recorded throughout the reaction. The observed behavior showed a good agreement with the photodegradation studies reported in the bibliography. Accordingly, the photodegradation reaction was studied by high performance liquid chromatography coupled with UV-Vis diode array detector (HPLC-DAD). The spectra recorded during the chromatographic analysis present a good correlation with the ones recovered by UV-Vis/HS-MCR method.
MetaUniDec: High-Throughput Deconvolution of Native Mass Spectra
NASA Astrophysics Data System (ADS)
Reid, Deseree J.; Diesing, Jessica M.; Miller, Matthew A.; Perry, Scott M.; Wales, Jessica A.; Montfort, William R.; Marty, Michael T.
2018-04-01
The expansion of native mass spectrometry (MS) methods for both academic and industrial applications has created a substantial need for analysis of large native MS datasets. Existing software tools are poorly suited for high-throughput deconvolution of native electrospray mass spectra from intact proteins and protein complexes. The UniDec Bayesian deconvolution algorithm is uniquely well suited for high-throughput analysis due to its speed and robustness but was previously tailored towards individual spectra. Here, we optimized UniDec for deconvolution, analysis, and visualization of large data sets. This new module, MetaUniDec, centers around a hierarchical data format 5 (HDF5) format for storing datasets that significantly improves speed, portability, and file size. It also includes code optimizations to improve speed and a new graphical user interface for visualization, interaction, and analysis of data. To demonstrate the utility of MetaUniDec, we applied the software to analyze automated collision voltage ramps with a small bacterial heme protein and large lipoprotein nanodiscs. Upon increasing collisional activation, bacterial heme-nitric oxide/oxygen binding (H-NOX) protein shows a discrete loss of bound heme, and nanodiscs show a continuous loss of lipids and charge. By using MetaUniDec to track changes in peak area or mass as a function of collision voltage, we explore the energetic profile of collisional activation in an ultra-high mass range Orbitrap mass spectrometer. [Figure not available: see fulltext.
Energy spectra of X-ray clusters of galaxies
NASA Technical Reports Server (NTRS)
Avni, Y.
1976-01-01
A procedure for estimating the ranges of parameters that describe the spectra of X-rays from clusters of galaxies is presented. The applicability of the method is proved by statistical simulations of cluster spectra; such a proof is necessary because of the nonlinearity of the spectral functions. Implications for the spectra of the Perseus, Coma, and Virgo clusters are discussed. The procedure can be applied in more general problems of parameter estimation.
NASA Astrophysics Data System (ADS)
Shikama, T.; Fujii, K.; Mizushiri, K.; Hasuo, M.; Kado, S.; Zushi, H.
2009-12-01
A scheme for computation of emission spectra of light diatomic molecules under external magnetic and electric fields is presented. As model species in fusion edge plasmas, the scheme is applied to polarization-resolved emission spectra of H2, CH, C2, BH and BeH molecules. The possibility of performing spatially resolved measurements of these spectra is examined.
Cao, Xiaolin; Shah, Rekha D; Dukor, Rina K; Guo, Changning; Freedman, Teresa B; Nafie, Laurence A
2004-09-01
We report the first vibrational circular dichroism (VCD) spectra with continuous coverage from 800 cm(-1) in the mid-infrared (MIR) region to 10 000 cm(-1) in the near-infrared (NIR) region. This coverage is illustrated with MIR and NIR absorbance and VCD spectra of 2,2-dimethyl-dioxolane-4-methanol (DDM), alpha-pinene, and camphor that serve as calibration samples over this entire region. Commercially available, dual-source Fourier transform (FT) MIR and NIR VCD spectrometers were equipped with appropriate light sources, optics, and detectors, and were modified for dual-polarization-modulation (DPM) operation. The combination of liquid-nitrogen- and thermoelectric-cooled HgCdTe (MCT) detectors, as well as InGaAs and Germanium (Ge) detectors operating at room temperature, permitted collection of the desired absorbance and VCD spectra across the range of vibrational fundamental, combination band, and overtone frequencies. The spectra of DDM and alpha-pinene were measured as neat liquids and recorded for both enantiomers in the various spectral regions. Spectra for camphor were all measured in CCl(4) solution at a concentration of 0.6 M, except for the carbonyl-stretching region, where a more dilute concentration was used. The typical anisotropy ratios (g) of the three molecules were estimated with respect to their strongest VCD bands in each spectral region. It was found that for all three molecules in the spectral regions above 2000 cm(-1), anisotropy ratios are approximately the same order (10(-5)) of magnitude. However, in the MIR region, the typical anisotropy ratios are significantly different for the three molecules. This study demonstrates that with modern FT-VCD spectrometers modified for DPM operation, VCD spectra can be measured continuously across a wide spectral range from the MIR to nearly the visible region with an unsurpassed combination of signal-to-noise ratio and spectral resolution.
Field-Induced and Thermal Electron Currents from Earthed Spherical Emitters
NASA Astrophysics Data System (ADS)
Holgate, J. T.; Coppins, M.
2017-04-01
The theories of electron emission from planar surfaces are well understood, but they are not suitable for describing emission from spherical surfaces; their incorrect application to highly curved, nanometer-scale surfaces can overestimate the emitted current by several orders of magnitude. This inaccuracy is of particular concern for describing modern nanoscale electron sources, which continue to be modeled using the planar equations. In this paper, the field-induced and thermal currents are treated in a unified way to produce Fowler-Nordheim-type and Richardson-Schottky-type equations for the emitted current density from earthed nanoscale spherical surfaces. The limits of applicability of these derived expressions are considered along with the energy spectra of the emitted electrons. Within the relevant limits of validity, these equations are shown to reproduce the results of precise numerical calculations of the emitted current densities. The methods used here are adaptable to other one-dimensional emission problems.
High resolution para-hydrogen induced polarization in inhomogeneous magnetic fields.
Buljubasich, L; Prina, I; Franzoni, M B; Münnemann, K; Spiess, H W; Acosta, R H
2013-05-01
The application of parahydrogen for the generation of hyperpolarization has increased continuously during the last years. When the chemical reaction is carried out at the same field as the NMR experiment (PASADENA protocol) an antiphase signal is obtained, with a separation of the resonance lines of a few Hz. This imposes a stringent limit to the homogeneity of the magnetic field in order to avoid signal cancellation. In this work we detect the signal arising from hyperpolarized Hexene by means of a CPMG pulse train. After Fourier transformation the obtained J-spectra not only presents an enhanced spectral resolution but also avoids partial peak cancellation. Copyright © 2013 Elsevier Inc. All rights reserved.
NIR Raman spectroscopy in medicine and biology: results and aspects
NASA Astrophysics Data System (ADS)
Schrader, B.; Dippel, B.; Erb, I.; Keller, S.; Löchte, T.; Schulz, H.; Tatsch, E.; Wessel, S.
1999-05-01
Analyses of biomaterial by 'classical' Raman spectroscopy with excitation in the visible range has not been possible since the fluorescence of many essential constituents of all animal and plant cells and tissues overlays the Raman spectra completely. Fluorescence, however, is virtually avoided, when Raman spectra are excited with the Nd : YAG laser line at 1064 nm. Within seven dissertations we explored different fields of potential applications to medical diagnostics. Identification and qualification of tissues and cells is possible. Tumors show small but significant differences to normal tissues; in order to develop a reliable tool for tumor diagnostics more research is necessary, especially a collection of reference spectra in a data bank is needed. Raman spectra of biomineralization structures in teeth and bones show pathological tissues as well as the development of new mineralized structures. NIR Raman spectra of flowers, leaves, and fruit show, without special preparation, their constituents: alkaloids, the essential oils, natural dyes, flavors, spices and drugs. They allow application to taxonomy, optimizing plant breeding and control of food.
SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases
NASA Astrophysics Data System (ADS)
Goldenstein, Christopher S.; Miller, Victor A.; Mitchell Spearrin, R.; Strand, Christopher L.
2017-10-01
SpectraPlot is a web-based application for simulating spectra of atomic and molecular gases. At the time this manuscript was written, SpectraPlot consisted of four primary tools for calculating: (1) atomic and molecular absorption spectra, (2) atomic and molecular emission spectra, (3) transition linestrengths, and (4) blackbody emission spectra. These tools currently employ the NIST ASD, HITRAN2012, and HITEMP2010 databases to perform line-by-line simulations of spectra. SpectraPlot employs a modular, integrated architecture, enabling multiple simulations across multiple databases and/or thermodynamic conditions to be visualized in an interactive plot window. The primary objective of this paper is to describe the architecture and spectroscopic models employed by SpectraPlot in order to provide its users with the knowledge required to understand the capabilities and limitations of simulations performed using SpectraPlot. Further, this manuscript discusses the accuracy of several underlying approximations used to decrease computational time, in particular, the use of far-wing cutoff criteria.
Sohrabi, Mahmoud Reza; Tayefeh Zarkesh, Mahshid
2014-05-01
In the present paper, two spectrophotometric methods based on signal processing are proposed for the simultaneous determination of two components of an anti-HIV drug called lamivudine (LMV) and zidovudine (ZDV). The proposed methods are applied to synthetic binary mixtures and commercial pharmaceutical tablets without the need for any chemical separation procedures. The developed methods are based on the application of Continuous Wavelet Transform (CWT) and Derivative Spectrophotometry (DS) combined with the zero cross point technique. The Daubechies (db5) wavelet family (242 nm) and Dmey wavelet family (236 nm) were found to give the best results under optimum conditions for simultaneous analysis of lamivudine and zidovudine, respectively. In addition, the first derivative absorption spectra were selected for the determination of lamivudine and zidovudine at 266 nm and 248 nm, respectively. Assaying various synthetic mixtures of the components validated the presented methods. Mean recovery values were found to be between 100.31% and 100.2% for CWT and 99.42% and 97.37% for DS, respectively for determination of LMV and ZDV. The results obtained from analyzing the real samples by the proposed methods were compared to the HPLC reference method. One-way ANOVA test at 95% confidence level was applied to the results. The statistical data from comparing the proposed methods with the reference method showed no significant differences. Copyright © 2014 Elsevier B.V. All rights reserved.
VizieR Online Data Catalog: Abundances in the local region. I. G and K giants (Luck, 2015)
NASA Astrophysics Data System (ADS)
Luck, R. E.
2015-10-01
At the start of this program, the observation list for giants was set to sample the G/K giants of the local region out to about 100pc from the Sun in all directions. The region was subdivided into cubes that were 25pc on a side; from each sub-volume, appropriate stars were selected north of declination -30°. This sample yielded the 286 G/K giants found in Luck et al. 2007 (cat. J/AJ/133/2464). This data set was also augmented by the addition of numerous G/K giants, increasing the number in the 100pc volume to 594 stars. Because the volume selection criteria used in Luck et al. 2007 (cat. J/AJ/133/2464) formally extended out to 115pc, a more precise comparison is that the current sample has 740 stars out to the older limit. Additional stars from the Bright Star Catalog (Hoffleit & Jaschek, 1991bsc..book.....H) were added, driving the sample out to about 200pc. The spectral database was supplemented using the ELODIE and ESO Archives. The ESO addition adds the southern sky. The bulk of the northern stars were observed using the McDonald Observatory Struve Telescope and Sandiford Cassegrain Echelle Spectrograph. For the ELODIE and ESO data archives, a list of all stars available was obtained and spectral type for each from SIMBAD was retrieved. Stars having a spectral type of F, G, or K III were then processed. The ESO data derives from the HARPS and UVES spectrographs. Basic observational data for the program stars can be found in Table1, along with some derived quantities, such as distance. The primary source of observational data for this study is a set of high signal-to-noise ratio (S/N) spectra obtained during numerous observing runs between 1997 and 2010 at McDonald Observatory using the 2.1m Struve Telescope and the Sandiford Cassegrain Echelle Spectrograph. The spectra continuously cover a wavelength range from about 484 to 700nm, with a resolving power of about 60000. Typical S/N values for the spectra are in excess of 150. To enable cancellation of telluric lines, broad-lined B stars were regularly observed with S/N exceeding that of the program stars. The 726 stars observed with the Sandiford spectrograph are marked with an "S" in column "Sce" of Table1. A further 120 spectra were obtained from the ELODIE Archive. These echelle spectra are fully processed through order co-addition with a continuous wavelength span from about 400 to 680 nm and a resolution of 42000. Only spectra with S/N>50 were utilized in this analysis. An "E" in Table1, column "Sce", marks these stars. The ESO Archive was used to obtain spectra from the ESO 3.6m telescope and HARPS spectrograph. The HARPS spectra cover a continuous wavelength range from about 400 to 680nm with a native resolving power of 120000. To match the resolution of the Sandiford data and to increase the S/N of the data, these spectra were co-added to a resolution of 60000. Typical maximum S/N values (per pixel) for the spectra are in excess of 150. In Table1, column "Sce", these stars are marked with an "H." Spectra from the UVES spectrograph and VLT/UT2 were also utilized. These spectra are rather heterogeneous, having resolutions of 40000-80000 and non-continuous spectral coverages in the range 400-700nm. A number of the spectra from UVES stop at about 625nm, meaning that [O I] 630nm and Li I 670nm were not observed. In Table 1, "U" denotes the stars observed with UVES spectrograph. (5 data files).
NASA Astrophysics Data System (ADS)
Li, Bao Qiong; Wang, Xue; Li Xu, Min; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin
2018-01-01
Fluorescence spectroscopy with an excitation-emission matrix (EEM) is a fast and inexpensive technique and has been applied to the detection of a very wide range of analytes. However, serious scattering and overlapping signals hinder the applications of EEM spectra. In this contribution, the multi-resolution capability of Tchebichef moments was investigated in depth and applied to the analysis of two EEM data sets (data set 1 consisted of valine-tyrosine-valine, tryptophan-glycine and phenylalanine, and data set 2 included vitamin B1, vitamin B2 and vitamin B6) for the first time. By means of the Tchebichef moments with different orders, the different information in the EEM spectra can be represented. It is owing to this multi-resolution capability that the overlapping problem was solved, and the information of chemicals and scatterings were separated. The obtained results demonstrated that the Tchebichef moment method is very effective, which provides a promising tool for the analysis of EEM spectra. It is expected that the applications of Tchebichef moment method could be developed and extended in complex systems such as biological fluids, food, environment and others to deal with the practical problems (overlapped peaks, unknown interferences, baseline drifts, and so on) with other spectra.
A new detection scheme for ultrafast 2D J-resolved spectroscopy
NASA Astrophysics Data System (ADS)
Giraudeau, Patrick; Akoka, Serge
2007-06-01
Recent ultrafast techniques enable 2D NMR spectra to be obtained in a single scan. A modification of the detection scheme involved in this technique is proposed, permitting the achievement of 2D 1H J-resolved spectra in 500 ms. The detection gradient echoes are substituted by spin echoes to obtain spectra where the coupling constants are encoded along the direct ν2 domain. The use of this new J-resolved detection block after continuous phase-encoding excitation schemes is discussed in terms of resolution and sensitivity. J-resolved spectra obtained on cinnamic acid and 3-ethyl bromopropionate are presented, revealing the expected 2D J-patterns with coupling constants as small as 2 Hz.
NASA Astrophysics Data System (ADS)
Harrison, D.; Rivard, B.; Sánchez-Azofeifa, A.
2018-04-01
Remote sensing of the environment has utilized the visible, near and short-wave infrared (IR) regions of the electromagnetic (EM) spectrum to characterize vegetation health, vigor and distribution. However, relatively little research has focused on the use of the longwave infrared (LWIR, 8.0-12.5 μm) region for studies of vegetation. In this study LWIR leaf reflectance spectra were collected in the wet seasons (May through December) of 2013 and 2014 from twenty-six tree species located in a high species diversity environment, a tropical dry forest in Costa Rica. A continuous wavelet transformation (CWT) was applied to all spectra to minimize noise and broad amplitude variations attributable to non-compositional effects. Species discrimination was then explored with Random Forest classification and accuracy improved was observed with preprocessing of reflectance spectra with continuous wavelet transformation. Species were found to share common spectral features that formed the basis for five spectral types that were corroborated with linear discriminate analysis. The source of most of the observed spectral features is attributed to cell wall or cuticle compounds (cellulose, cutin, matrix glycan, silica and oleanolic acid). Spectral types could be advantageous for the analysis of airborne hyperspectral data because cavity effects will lower the spectral contrast thus increasing the reliance of classification efforts on dominant spectral features. Spectral types specifically derived from leaf level data are expected to support the labeling of spectral classes derived from imagery. The results of this study and that of Ribeiro Da Luz (2006), Ribeiro Da Luz and Crowley (2007, 2010), Ullah et al. (2012) and Rock et al. (2016) have now illustrated success in tree species discrimination across a range of ecosystems using leaf-level spectral observations. With advances in LWIR sensors and concurrent improvements in their signal to noise, applications to large-scale species detection from airborne imagery appear feasible.
NASA Technical Reports Server (NTRS)
Mehdipour, M.; Kaastra, J. S.; Kallman, T.
2016-01-01
Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionization codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionization equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionization codes, and compare their derived thermal and ionization states for various ionizing spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionized outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionization parameter, we find that on average there is about 30 deviation between the codes in where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in is smaller at about 10 on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30 deviation between the codes in the optical depth of the lines produced at log 1 to 2, reducing to about 20 deviation at log 3. We also simulate spectra of the ionized outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionization codes, which is about 10 to40. We compare the modeling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionization codes for the upcoming era of X-ray astronomy with Athena.
Fluorescence and Nonlinear Optical Properties of Alizarin Red S in Solvents and Droplet.
Sangsefedi, Seyed Ahmad; Sharifi, Soheil; Rezaion, Hadi Rastegar Moghaddam; Azarpour, Afshin
2018-05-28
The enhancement of the nonlinear properties of materials is an interesting topic since it has many applications in optical devices and medicines. The Z-scan technique was used to study the values of the two-photon absorption (β), second-order molecular hyperpolarizability (γ R ), third-order susceptibility (χ R ), and nonlinear refractive index (n 2 ) of Alizarin Red S in different media using a continuous-wave diode-pump laser radiation at 532 nm. For Alizarin Red S in a droplet, the β, n 2 , χ R, and γ R were estimated at the order of 10 -7 cm 2 /W and 10 -12 cm/W, 10 -3 m 3 W -1 s -1 and 10 -24 m 6 W -1 s -1 , respectively. The results indicated that the values of β and n 2 reduced, whereas the values of χ R and γ R were enhanced when the solvent was changed from droplet to water, DMF, and dimethyl sulfoxide due to the change in the solvent's dielectric constant (ε). Moreover, the values of β were enhanced by an increase in the concentration of the surfactant in the aqueous solution. The absorption spectra of Alizarin Red S in the aqueous solution was observed at 428 nm, and a few red shifts in the absorption spectra were observed with a reduction in the dielectric constant of the medium. The same effect was observed in the absorption spectra of Alizarin Red S in the droplet when the bulk dielectric constant reduced. The dielectric constant can affect the fluorescence spectra of Alizarin Red S when the solution is changed from water to dimethyl sulfoxide. The dipole moments of Alizarin Red S in the different media were studied using the quantum perturbation theory.
Ramos, Paweł; Pieprzyca, Małgorzata; Pilawa, Barbara
2016-01-01
Complex free radical system in thermally sterilized acidum boricum (AB) was studied. Acidum boricum was sterilized at temperatures and times given by pharmaceutical norms: 160 degrees C and 120 min, 170 degrees C and 60 min and 180 degrees C and 30 min. The advanced spectroscopic tests were performed. The EPR spectra of free radicals were measured as the first derivatives with microwaves of 9.3 GHz frequency and magnetic modulation of 100 kHz. The Polish X-band electron paramagnetic resonance spectrometer of Radiopan (Poznań) was used. EPR lines were not observed for the nonheated AB. The broad EPR asymmetric lines were obtained for all the heated AB samples. The influence of microwave power in the range of 2.2-70 mW on the shape of EPR spectra of the heated drug samples was tested. The following asymmetry parameters: A1/A2, A1-A2, B1/B2, and B1-B2, were analyzed. The changes of these parameters with microwave power were observed. The strong dependence of shape and its parameters on microwave power proved the complex character of free radical system in thermally sterilized AB. Changes of microwave power during the detection of EPR spectra indicated complex character of free radicals in AB sterilized in hot air under all the tested conditions. Thermolysis, interactions between free radicals and interactions of free radicals with oxygen may be responsible for the complex free radicals system in thermally treated AB. Usefulness of continuous microwave saturation of EPR lines and shape analysis to examine free radicals in thermally sterilized drugs was confirmed.
Berlin Reflectance Spectral Library (BRSL)
NASA Astrophysics Data System (ADS)
Henckel, D.; Arnold, G.; Kappel, D.; Moroz, L. V.; Markus, K.
2017-09-01
The Berlin Reflectance Spectral Library (BRSL) provides a collection of reflectance spectra between 0.3 and 17 µm. It was originally dedicated to support space missions to small solar system bodies. Meanwhile the library includes selections of biconical reflectance spectra for spectral data analysis of other planetary bodies as well. The library provides reference spectra of well-characterized terrestrial analogue materials and meteorites for interpretation of remote sensing reflectance spectra of planetary surfaces. We introduce the BRSL, summarize the data available, and access to use them for further relevant applications.
Muñoz Morales, Aarón A; Vázquez Y Montiel, Sergio
2012-10-01
The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakhin, V. P.; Ilgisonis, V. I.; Peoples' Friendship University, 3 Ordzhonikidze St., Moscow 117198
2012-06-15
The equations for the continuous spectra derived in our paper [V. P. Lakhin and V. I. Ilgisonis, Phys. Plasmas 18, 092103 (2011)] can be reduced to the matrix form used by Goedbloed et al.[Phys. Plasmas 11, 28 (2004)]. It is shown that the assumptions made in our paper provide the elliptic flow regime and guarantee the existence of plasma equilibrium with nested magnetic surfaces of circular cross-section. The new results on magnetohydrodynamic instabilities of such tokamak equilibria obtained in our paper but absent in the paper by Goedbloed et al. are emphasized.
Growth, spectroscopy and continuous-wave laser performance of Nd3+:LiLu0.65Y0.35F4 crystal
NASA Astrophysics Data System (ADS)
Demesh, M. P.; Kurilchik, S. V.; Gusakova, N. V.; Yasukevich, A. S.; Kisel, V. E.; Nizamutdinov, A. S.; Marisov, M. M.; Aglyamov, R. D.; Korableva, S. L.; Naumov, A. K.; Semashko, V. V.; Kuleshov, N. V.
2018-04-01
A mixed fluoride crystal of LiLu0.65Y0.35F4 doped with Nd3+ ions was grown by the Bridgman-Stockbarger method. Polarized absorption and luminescence spectra as well as luminescence lifetime were measured at room temperature. Emission probabilities, branching ratios and radiative lifetime were studied within the Judd-Ofelt theory and the emission cross section spectra were calculated. Efficient continuous wave laser operation was demonstrated with the crystal. A maximum output power of 7.7 W and slope efficiency of 60% were achieved at 1047 nm for the TEM00 mode.
Geiman, Irina; Leona, Marco; Lombardi, John R
2009-07-01
The applicability of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to the analysis of synthetic dyes commonly found in ballpoint inks was investigated in a comparative study. Spectra of 10 dyes were obtained using a dispersive system (633 nm, 785 nm lasers) and a Fourier transform system (1064 nm laser) under different analytical conditions (e.g., powdered pigments, solutions, thin layer chromatography [TLC] spots). While high fluorescence background and poor spectral quality often characterized the normal Raman spectra of the dyes studied, SERS was found to be generally helpful. Additionally, dye standards and a single ballpoint ink were developed on a TLC plate following a typical ink analysis procedure. SERS spectra were successfully collected directly from the TLC plate, thus demonstrating a possible forensic application for the technique.
Hoffmann, Uwe; Pfeifer, Frank; Hsuing, Chang; Siesler, Heinz W
2016-05-01
The aim of this contribution is to demonstrate the transfer of spectra that have been measured on two different laboratory Fourier transform near-infrared (FT-NIR) spectrometers to the format of a handheld instrument by measuring only a few samples with both spectrometer types. Thus, despite the extreme differences in spectral range and resolution, spectral data sets that have been collected and quantitative as well as qualitative calibrations that have been developed thereof, respectively, over a long period on a laboratory instrument can be conveniently transferred to the handheld system. Thus, the necessity to prepare completely new calibration samples and the effort required to develop calibration models when changing hardware platforms is minimized. The enabling procedure is based on piecewise direct standardization (PDS) and will be described for the data sets of a quantitative and a qualitative application case study. For this purpose the spectra measured on the FT-NIR laboratory spectrometers were used as "master" data and transferred to the "target" format of the handheld instrument. The quantitative test study refers to transmission spectra of three-component liquid solvent mixtures whereas the qualitative application example encompasses diffuse reflection spectra of six different current polymers. To prove the performance of the transfer procedure for quantitative applications, partial least squares (PLS-1) calibrations were developed for the individual components of the solvent mixtures with spectra transferred from the master to the target instrument and the cross-validation parameters were compared with the corresponding parameters obtained for spectra measured on the master and target instruments, respectively. To test the retention of the discrimination ability of the transferred polymer spectra sets principal component analyses (PCAs) were applied exemplarily for three of the six investigated polymers and their identification was demonstrated by Mahalanobis distance plots for all polymers. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Sapozhnikov, Michael
2018-03-01
A history of the development of selective laser spectroscopy is presented, beginning with a pioneering work by Yu. V. Denisov and V. A. Kizel in 1967, who were the first to demonstrate the possibility of removing the inhomogeneous broadening of luminescence spectra of impurity ions in glasses upon monochromatic resonance excitation. Selective excitation of optical centers can be achieved due to existence of zero-phonon transitions corresponding to narrow homogeneous zero-phonon lines in the spectra of impurity centers in solids, which are hidden in broad inhomogeneous optical bands upon usual nonselective excitation. The fundamentals of zero-phonon transition spectroscopy are considered and the mechanism of removing the inhomogeneous broadening of optical spectra of ions and molecules in crystals and amorphous solids under selective laser excitation of luminescence and persistent hole burning in absorption spectra is presented in detail. Various applications of selective laser spectroscopy for fundamental and applied studies are discussed.
NASA Astrophysics Data System (ADS)
Joseph, P. Arun Jeganatha; Vinothini, J. Jemma; Maheshvaran, K.; Rayappan, I. Arul
2018-04-01
A new series 34B2O3+20NH4H2PO4+10Al2O3+10PbO+25MCO3+1Dy2O3, where (M= K2 and Mg) of Dy3+ doped lead-alumino-boro-phosphate glasses have been prepared by conventional melt quenching technique. The prepared glass samples were characterized through Optical absorption and photoluminescence spectra. The bonding parameter, Oscillator strength and Judd-Oflet (JO) parameter have been calculated and investigated through optical absorption spectra. The excitation and emission wavelength have been obtained through the photoluminescence spectra. The emission spectra exhibit two visible bands as 4F9/2→6H15/2 (Blue) and 4F9/2→6H13/2 (Yellow). Yellow to blue (Y/B) intensity ratio and chromaticity coordinates have been estimated for the stimulation of WLED applications.
Efficient Computation of Difference Vibrational Spectra in Isothermal-Isobaric Ensemble.
Joutsuka, Tatsuya; Morita, Akihiro
2016-11-03
Difference spectroscopy between two close systems is widely used to augment its selectivity to the different parts of the observed system, though the molecular dynamics calculation of tiny difference spectra would be computationally extraordinary demanding by subtraction of two spectra. Therefore, we have proposed an efficient computational algorithm of difference spectra without resorting to the subtraction. The present paper reports our extension of the theoretical method in the isothermal-isobaric (NPT) ensemble. The present theory expands our applications of analysis including pressure dependence of the spectra. We verified that the present theory yields accurate difference spectra in the NPT condition as well, with remarkable computational efficiency over the straightforward subtraction by several orders of magnitude. This method is further applied to vibrational spectra of liquid water with varying pressure and succeeded in reproducing tiny difference spectra by pressure change. The anomalous pressure dependence is elucidated in relation to other properties of liquid water.
NASA Astrophysics Data System (ADS)
Mackie, Cameron J.; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L.; Buma, Wybren Jan; Lee, Timothy J.; Tielens, Alexander G. G. M.
2016-08-01
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2016-08-28
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
Photoinduced Effects in the ZnO Luminescence Spectra
NASA Astrophysics Data System (ADS)
Akopyan, I. Kh.; Labzovskaya, M. E.; Novikov, B. V.; Lisachenko, A. A.; Serov, A. Yu.; Filosofov, N. G.
2018-02-01
The effect of intense UV irradiation on the photoluminescence (PL) spectra of ZnO powders and nanocrystalline films obtained by atomic layer deposition (ALD) was investigated. At room temperature, the behavior of the spectra under continuous UV irradiation in multiple vacuum-atmosphere cycles was studied. The changes in the intensities of exciton radiation and radiation in the "green" band region, associated with the phenomena of oxygen photodesorption and photoadsorption, are discussed. In the temperature range of 5-300 K, the effect of strong UV irradiation on the near-edge luminescence spectrum of ZnO films was studied. The nature of a new line arising in the photoluminescence spectra of an irradiated film in the region of emission of bound excitons is discussed.
Zheng, Ruilin; Zhang, Qi; Yu, Kehan; Liu, Chunxiao; Ding, Jianyong; Lv, Peng; Wei, Wei
2017-10-15
A kind of Sn 2+ /Mn 2+ co-doped fluorphosphate (FP) glasses that served as single-component continuous tunable broadband emitting multi-chromatic phosphors are developed for the first time. Importantly, these FP glasses have high thermal conductivity (3.25-3.70 W/m·K) and good chemical stability in water (80°C). By combining with commercially available UV-LEDs directly, the emission colors can be tuned from blue/cold-white to warm-white/red through the energy transfer from Sn 2+ to Mn 2+ , and the broadband spectra covering the whole visible region from 380 nm to 760 nm. Notably, the FP glass can also serve as a white light phosphor by controlling the content of SnO/MnO, which has excellent optical properties. The CIE chromaticity coordinate, color rendering index, and quantum efficiency are (0.33, 0.29), 84, and 0.952, respectively. These new phosphors, possessing good optical and chemical properties, are promising for applications in solid-state lighting devices.
Ke, Yaling; Zhao, Yi
2017-05-07
A theoretically solid and numerically exact method is presented for the calculation of absorption and circular dichroism (CD) spectra of molecular aggregates immersed in a harmonic bath constituted as the combination of some prominent quantized vibrational modes and continuous overdamped Brownian oscillators. The feasibility and the validity of newly proposed method are affirmed in the analytical monomer spectra. To go beyond the independent local bath approximation, all the correlations of site energy fluctuations and excitonic coupling fluctuations are included in our strategy, and their influence on the absorption and CD spectra is investigated based on the Frenkel exciton model of homodimer. In the end, a good fit of the absorption and part of CD spectra for the entire B800-B850 ring in the light-harvesting complexes 2 of purple bacteria to the experimental data is given, and the simulation results suggest that the asymmetry in the 800 nm region of CD spectra is actually an indication of B800-B850 inter-ring coupling.
NASA Astrophysics Data System (ADS)
Ke, Yaling; Zhao, Yi
2017-05-01
A theoretically solid and numerically exact method is presented for the calculation of absorption and circular dichroism (CD) spectra of molecular aggregates immersed in a harmonic bath constituted as the combination of some prominent quantized vibrational modes and continuous overdamped Brownian oscillators. The feasibility and the validity of newly proposed method are affirmed in the analytical monomer spectra. To go beyond the independent local bath approximation, all the correlations of site energy fluctuations and excitonic coupling fluctuations are included in our strategy, and their influence on the absorption and CD spectra is investigated based on the Frenkel exciton model of homodimer. In the end, a good fit of the absorption and part of CD spectra for the entire B800-B850 ring in the light-harvesting complexes 2 of purple bacteria to the experimental data is given, and the simulation results suggest that the asymmetry in the 800 nm region of CD spectra is actually an indication of B800-B850 inter-ring coupling.
Dinç, Erdal; Özdemir, Nurten; Üstündağ, Özgür; Tilkan, Müşerref Günseli
2013-01-01
Dissolution testing has a very vital importance for a quality control test and prediction of the in vivo behavior of the oral dosage formulation. This requires the use of a powerful analytical method to get reliable, accurate and precise results for the dissolution experiments. In this context, new signal processing approaches, continuous wavelet transforms (CWTs) were improved for the simultaneous quantitative estimation and dissolution testing of lamivudine (LAM) and zidovudine (ZID) in a tablet dosage form. The CWT approaches are based on the application of the continuous wavelet functions to the absorption spectra-data vectors of LAM and ZID in the wavelet domain. After applying many wavelet functions, the families consisting of Mexican hat wavelet with the scaling factor a=256, Symlets wavelet with the scaling factor a=512 and the order of 5 and Daubechies wavelet at the scale factor a=450 and the order of 10 were found to be suitable for the quantitative determination of the mentioned drugs. These wavelet applications were named as mexh-CWT, sym5-CWT and db10-CWT methods. Calibration graphs for LAM and ZID in the working range of 2.0-50.0 µg/mL and 2.0-60.0 µg/mL were obtained measuring the mexh-CWT, sym5-CWT and db10-CWT amplitudes at the wavelength points corresponding to zero crossing points. The validity and applicability of the improved mexh-CWT, sym5-CWT and db10-CWT approaches was carried out by the analysis of the synthetic mixtures containing the analyzed drugs. Simultaneous determination of LAM and ZID in tablets was accomplished by the proposed CWT methods and their dissolution profiles were graphically explored.
NASA Astrophysics Data System (ADS)
Li, Dong; Cheng, Tao; Zhou, Kai; Zheng, Hengbiao; Yao, Xia; Tian, Yongchao; Zhu, Yan; Cao, Weixing
2017-07-01
Red edge position (REP), defined as the wavelength of the inflexion point in the red edge region (680-760 nm) of the reflectance spectrum, has been widely used to estimate foliar chlorophyll content from reflectance spectra. A number of techniques have been developed for REP extraction in the past three decades, but most of them require data-specific parameterization and the consistence of their performance from leaf to canopy levels remains poorly understood. In this study, we propose a new technique (WREP) to extract REPs based on the application of continuous wavelet transform to reflectance spectra. The REP is determined by the zero-crossing wavelength in the red edge region of a wavelet transformed spectrum for a number of scales of wavelet decomposition. The new technique is simple to implement and requires no parameterization from the user as long as continuous wavelet transforms are applied to reflectance spectra. Its performance was evaluated for estimating leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) of cereal crops (i.e. rice and wheat) and compared with traditional techniques including linear interpolation, linear extrapolation, polynomial fitting and inverted Gaussian. Our results demonstrated that WREP obtained the best estimation accuracy for both LCC and CCC as compared to traditional techniques. High scales of wavelet decomposition were favorable for the estimation of CCC and low scales for the estimation of LCC. The difference in optimal scale reveals the underlying mechanism of signature transfer from leaf to canopy levels. In addition, crop-specific models were required for the estimation of CCC over the full range. However, a common model could be built with the REPs extracted with Scale 5 of the WREP technique for wheat and rice crops when CCC was less than 2 g/m2 (R2 = 0.73, RMSE = 0.26 g/m2). This insensitivity of WREP to crop type indicates the potential for aerial mapping of chlorophyll content between growth seasons of cereal crops. The new REP extraction technique provides us a new insight for understanding the spectral changes in the red edge region in response to chlorophyll variation from leaf to canopy levels.
Computational models of human vision with applications
NASA Technical Reports Server (NTRS)
Wandell, B. A.
1985-01-01
Perceptual problems in aeronautics were studied. The mechanism by which color constancy is achieved in human vision was examined. A computable algorithm was developed to model the arrangement of retinal cones in spatial vision. The spatial frequency spectra are similar to the spectra of actual cone mosaics. The Hartley transform as a tool of image processing was evaluated and it is suggested that it could be used in signal processing applications, GR image processing.
Computational study of the absorption spectrum of defected ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Michos, F. I.; Sigalas, M. M.
2018-04-01
Energy levels and absorption spectra of defected ZnS nanoparticles (NPs) were calculated with Density Functional Theory (DFT) and Time Dependent DFT. Several types of defects were examined such as vacancies and substitutions. NPs with S vacancies were found to have their absorption spectra moved to lower energies well inside the visible spectrum with significantly high oscillator strength. Also, NPs with substitution of S atoms with Cl, Br, or I showed significant absorption. In general, this type of defect moves the absorption spectra in lower energies, thus bringing the absorption edge into the visible spectrum, while the unperturbed NPs have absorption edges in the UV region. In addition, ZnS NPs are made from more abundant and less toxic elements than the more commonly used CdSe NPs. For that reason, they may find significant applications in solar cells and other photonic applications, as well as in biosensing applications as biomarkers.
Correlations between spectra with different symmetries: any chance to be observed?
NASA Astrophysics Data System (ADS)
Braun, P.; Leyvraz, F.; Seligman, T. H.
2011-06-01
A standard assumption in quantum chaology is the absence of correlation between spectra pertaining to different symmetries. Doubts were raised about this statement for several reasons, in particular because in semiclassics the spectra of different symmetries are expressed in terms of the same set of periodic orbits. We re-examine this question and notice the absence of correlations in the universal regime. In the case of continuous symmetry, the problem is reduced to parametric correlation, and we expect correlations to be present up to a certain time which is essentially classical but larger than the ballistic time.
Spectral Irradiance Calibration in the Infrared. 4; 1.2-35um Spectra of Six Standard Stars
NASA Technical Reports Server (NTRS)
Cohen, Martin; Witteborn, Fred C.; Walker, Russell G.; Bregman, Jesse D.; Wooden, Diane H.
1995-01-01
We present five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars, Beta Peg, Delta Boo, Beta And, Beta Gem, and Delta Hya, augment our already created complete absolutely calibrated spectrum for a Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.
NASA Technical Reports Server (NTRS)
Cohen, Martin; Witteborn, Fred C.; Walker, Russell G.; Bregman, Jesse D.; Wooden, Diane H.
1995-01-01
We present five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars- beta Peg, alpha Boo, beta And, beta Gem, and alpha Hya-augment our already created complete absolutely calibrated spectrum for alpha Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.
A sensitive continuum analysis method for gamma ray spectra
NASA Technical Reports Server (NTRS)
Thakur, Alakh N.; Arnold, James R.
1993-01-01
In this work we examine ways to improve the sensitivity of the analysis procedure for gamma ray spectra with respect to small differences in the continuum (Compton) spectra. The method developed is applied to analyze gamma ray spectra obtained from planetary mapping by the Mars Observer spacecraft launched in September 1992. Calculated Mars simulation spectra and actual thick target bombardment spectra have been taken as test cases. The principle of the method rests on the extraction of continuum information from Fourier transforms of the spectra. We study how a better estimate of the spectrum from larger regions of the Mars surface will improve the analysis for smaller regions with poorer statistics. Estimation of signal within the continuum is done in the frequency domain which enables efficient and sensitive discrimination of subtle differences between two spectra. The process is compared to other methods for the extraction of information from the continuum. Finally we explore briefly the possible uses of this technique in other applications of continuum spectra.
2015-01-01
Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments’ efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid. PMID:25116792
Continuous spectra of atomic hydrogen in a strong magnetic field
NASA Astrophysics Data System (ADS)
Zhao, L. B.; Zatsarinny, O.; Bartschat, K.
2016-09-01
We describe a theoretical method, developed in the coupled-channel formalism, to study photoionization of H atoms in a strong magnetic field of a size that is typical for magnetic white dwarfs. The coupled Schrödinger equations are solved numerically using the renormalized Numerov method proposed by Johnson [B. R. Johnson, J. Chem. Phys. 67, 4086 (1977), 10.1063/1.435384; B. R. Johnson, J. Chem. Phys. 69, 4678 (1978), 10.1063/1.436421]. The distinct advantage of this method is the fact that no overflow problems are encountered in the classically forbidden region, and hence the method exhibits excellent numerical stability. Photoionization cross sections are presented for magnetized H atoms in the ground and 2 p excited states. The calculated results are compared with those obtained by other theories. The present method is particularly useful for explaining the complex features of continuous spectra in a strong magnetic field and hence provides an efficient tool for modeling photoionization spectra observed in the atmosphere of magnetic white dwarfs.
NASA Astrophysics Data System (ADS)
Bennati, Marina; Prisner, Thomas F.
2005-02-01
Recent developments in microwave technologies have led to a renaissance of electron paramagnetic resonance (EPR) due to the implementation of new spectrometers operating at frequencies >=90 GHz. EPR at high fields and high frequencies (HF-EPR) has been established up to THz (very high frequency (VHF) EPR) in continuous wave (cw) operation and up to about 300 GHz in pulsed operation. To date, its most prominent application field is structural biology. This review article first gives an overview of the theoretical basics and the technical aspects of HF-EPR methodologies, such as cw and pulsed HF-EPR, as well as electron nuclear double resonance at high fields (HF-ENDOR). In the second part, the article illustrates different application areas of HF-EPR in studies of protein structure and function. In particular, HF-EPR has delivered essential contributions to disentangling complex spectra of radical cofactors or reaction intermediates in photosynthetic reaction centres, radical enzymes (such as ribonucleotide reductase) and in metalloproteins. Furthermore, HF-EPR combined with site-directed spin labelling in membranes and soluble proteins provides new methods of investigating complex molecular dynamics and intermolecular distances.
New method of control of tooth whitening
NASA Astrophysics Data System (ADS)
Angelov, I.; Mantareva, V.; Gisbrecht, A.; Valkanov, S.; Uzunov, Tz.
2010-10-01
New methods of control of tooth bleaching stages through simultaneous measurements of a reflected light and a fluorescence signal are proposed. It is shown that the bleaching process leads to significant changes in the intensity of a scattered signal and also in the shape and intensity of the fluorescence spectra. Experimental data illustrate that the bleaching process causes essential changes in the teeth discoloration in short time as 8-10 min from the beginning of the application procedure. The continuation of the treatment is not necessary moreover the probability of the enamel destroy increases considerably. The proposed optical back control of tooth surface is a base for development of a practical set up to control the duration of the bleaching procedure.
NASA Astrophysics Data System (ADS)
Langhoff, P. W.; Winstead, C. L.
Early studies of the electronically excited states of molecules by John A. Pople and coworkers employing ab initio single-excitation configuration interaction (SECI) calculations helped to simulate related applications of these methods to the partial-channel photoionization cross sections of polyatomic molecules. The Gaussian representations of molecular orbitals adopted by Pople and coworkers can describe SECI continuum states when sufficiently large basis sets are employed. Minimal-basis virtual Fock orbitals stabilized in the continuous portions of such SECI spectra are generally associated with strong photoionization resonances. The spectral attributes of these resonance orbitals are illustrated here by revisiting previously reported experimental and theoretical studies of molecular formaldehyde (H2CO) in combination with recently calculated continuum orbital amplitudes.
Zhang, Chu; Liu, Fei; He, Yong
2018-02-01
Hyperspectral imaging was used to identify and to visualize the coffee bean varieties. Spectral preprocessing of pixel-wise spectra was conducted by different methods, including moving average smoothing (MA), wavelet transform (WT) and empirical mode decomposition (EMD). Meanwhile, spatial preprocessing of the gray-scale image at each wavelength was conducted by median filter (MF). Support vector machine (SVM) models using full sample average spectra and pixel-wise spectra, and the selected optimal wavelengths by second derivative spectra all achieved classification accuracy over 80%. Primarily, the SVM models using pixel-wise spectra were used to predict the sample average spectra, and these models obtained over 80% of the classification accuracy. Secondly, the SVM models using sample average spectra were used to predict pixel-wise spectra, but achieved with lower than 50% of classification accuracy. The results indicated that WT and EMD were suitable for pixel-wise spectra preprocessing. The use of pixel-wise spectra could extend the calibration set, and resulted in the good prediction results for pixel-wise spectra and sample average spectra. The overall results indicated the effectiveness of using spectral preprocessing and the adoption of pixel-wise spectra. The results provided an alternative way of data processing for applications of hyperspectral imaging in food industry.
Analytic continuation of quantum Monte Carlo data by stochastic analytical inference.
Fuchs, Sebastian; Pruschke, Thomas; Jarrell, Mark
2010-05-01
We present an algorithm for the analytic continuation of imaginary-time quantum Monte Carlo data which is strictly based on principles of Bayesian statistical inference. Within this framework we are able to obtain an explicit expression for the calculation of a weighted average over possible energy spectra, which can be evaluated by standard Monte Carlo simulations, yielding as by-product also the distribution function as function of the regularization parameter. Our algorithm thus avoids the usual ad hoc assumptions introduced in similar algorithms to fix the regularization parameter. We apply the algorithm to imaginary-time quantum Monte Carlo data and compare the resulting energy spectra with those from a standard maximum-entropy calculation.
Two examples of industrial applications of shock physics research
NASA Astrophysics Data System (ADS)
Sanai, Mohsen
1996-05-01
An in-depth understanding of shock physics phenomena has led to many industrial applications. Two recent applications discussed in this paper are a method for assessing explosion safety in industrial plants and a bomb-resistant luggage container for widebody aircraft. Our explosion safety assessment is based on frequent use of computer simulation of postulated accidents to model in detail the detonation of energetic materials, the formation and propagation of the resulting airblast, and the projection of fragments of known material and mass. Using a general load-damage analysis technique referred to as the pressure-impulse (PI) method, we have developed a PC-based computer algorithm that includes a continually expanding library of PI load and damage curves, which can predict and graphically display common structural damage modes and the response of humans to postulated explosion accidents. A second commercial application of shock physics discussed here is a bomb-resistant luggage container for widebody aircraft that can protect the aircraft from a terrorist bomb hidden inside the luggage. This hardened luggage container (HLC) relies on blast management and debris containment provided by a flexible flow-through blanket woven from threads made with a strong lightweight material, such as Spectra or Kevlar. This mitigation blanket forms a continuous and seamless shell around the sides of the luggage container that are parallel to the aircraft axis, leaving the two ends of the container unprotected. When an explosion occurs, the mitigation blanket expands into a nearly circular shell that contains the flying debris while directing the flow into the adjacent containers. The HLC concept has been demonstrated through full-scale experiments conducted at SRI. We believe that these two examples represent a broad class of potential industrial hazard applications of the experimental, analytical, and computational tools possessed by the shock physics community.
DOT National Transportation Integrated Search
1963-03-01
A simple technique is presented for calibrating an electronic system used in the plotting of erythrocyte volume spectra. The calibration factors, once obtained, apparently remain applicable for some time. Precise estimates of calibration factors appe...
Principal component analysis of phenolic acid spectra
USDA-ARS?s Scientific Manuscript database
Phenolic acids are common plant metabolites that exhibit bioactive properties and have applications in functional food and animal feed formulations. The ultraviolet (UV) and infrared (IR) spectra of four closely related phenolic acid structures were evaluated by principal component analysis (PCA) to...
Cloud parallel processing of tandem mass spectrometry based proteomics data.
Mohammed, Yassene; Mostovenko, Ekaterina; Henneman, Alex A; Marissen, Rob J; Deelder, André M; Palmblad, Magnus
2012-10-05
Data analysis in mass spectrometry based proteomics struggles to keep pace with the advances in instrumentation and the increasing rate of data acquisition. Analyzing this data involves multiple steps requiring diverse software, using different algorithms and data formats. Speed and performance of the mass spectral search engines are continuously improving, although not necessarily as needed to face the challenges of acquired big data. Improving and parallelizing the search algorithms is one possibility; data decomposition presents another, simpler strategy for introducing parallelism. We describe a general method for parallelizing identification of tandem mass spectra using data decomposition that keeps the search engine intact and wraps the parallelization around it. We introduce two algorithms for decomposing mzXML files and recomposing resulting pepXML files. This makes the approach applicable to different search engines, including those relying on sequence databases and those searching spectral libraries. We use cloud computing to deliver the computational power and scientific workflow engines to interface and automate the different processing steps. We show how to leverage these technologies to achieve faster data analysis in proteomics and present three scientific workflows for parallel database as well as spectral library search using our data decomposition programs, X!Tandem and SpectraST.
NASA Astrophysics Data System (ADS)
Wang, Yang; Wang, Ping; Xu, Changhua; Sun, Suqin; Zhou, Qun; Shi, Zhe; Li, Jin; Chen, Tao; Li, Zheng; Cui, Weili
2015-11-01
Paeonia lactiflora, a commonly used herbal medicine (HM) in Traditional Chinese Medicine (TCM), mainly has two species, Radix Paeoniae Alba (RPA) and Radix Paeoniae Rubra (RPR), for different clinical applications in TCM. For expounding the chemical profile of RPA and RPR and ensuring the clinical efficacy and safety, an infrared macro-fingerprint analysis-through-separation method integrated with statistical pattern recognition was developed to analyze and discriminate the two Paeonia lactifloras. In IR spectra, the major difference between the two was in the range of 1200-900 cm-1: the strongest peak of RPA was at 1024 cm-1, while that of RPR was 1049 cm-1. The difference was magnified in second derivative spectra. The findings were further verified by investigating the separation process of total glucosides, stepwisely monitored by both of IR and UPLC-MS/MS. Simultaneously, the aqueous extracts of RPA and RPR had been separated continuously to acquire the comprehensively hierarchical chemical characteristics for undoubtedly identification and subsequently discrimination of the two herbs. Moreover, 60 batches of the two HMs (30 for each) were objectively classified by principal component regression (PCR) model based on IR macro-fingerprints.
Low-temperature graphene synthesis using microwave plasma CVD
NASA Astrophysics Data System (ADS)
Yamada, Takatoshi; Kim, Jaeho; Ishihara, Masatou; Hasegawa, Masataka
2013-02-01
The graphene chemical vapour deposition (CVD) technique at substrate temperatures around 300 °C by a microwave plasma sustained by surface waves (surface wave plasma chemical vapour deposition, SWP-CVD) is discussed. A low-temperature, large-area and high-deposition-rate CVD process for graphene films was developed. It was found from Raman spectra that the deposited films on copper (Cu) substrates consisted of high-quality graphene flakes. The fabricated graphene transparent conductive electrode showed uniform optical transmittance and sheet resistance, which suggests the possibility of graphene for practical electrical and optoelectronic applications. It is intriguing that graphene was successfully deposited on aluminium (Al) substrates, for which we did not expect the catalytic effect to decompose hydrocarbon and hydrogen molecules. We developed a roll-to-roll SWP-CVD system for continuous graphene film deposition towards industrial mass production. A pair of winder and unwinder systems of Cu film was installed in the plasma CVD apparatus. Uniform Raman spectra were confirmed over the whole width of 297 mm of Cu films. We successfully transferred the deposited graphene onto PET films, and confirmed a transmittance of about 95% and a sheet resistance of less than 7 × 105 Ω/sq.
Performance of a neutron spectrometer based on a PIN diode.
Agosteo, S; D'Angelo, G; Fazzi, A; Para, A Foglio; Pola, A; Ventura, L; Zotto, P
2005-01-01
The neutron spectrometer discussed in this work consists of a PIN diode coupled with a polyethylene converter. Neutrons are detected through the energy deposited by recoil-protons in silicon. The maximum detectable energy is -6 MeV and is imposed by the thickness of the fully depleted layer (300 microm for the present device). The minimum detectable energy which can be assessed with pulse-shape discrimination (PSD) is -0.9 MeV. PSD is performed with a crossover method and setting the diode in the 'reverse-injection' configuration (i.e. with the N+ layer adjacent to the converter). This configuration provides longer collection times for the electron-hole pairs generated by the recoil-protons. The limited interval of detectable energies restricts the application of this spectrometer to low-energy neutron fields, such as the ones which can be produced at facilities hosting low-energy ion accelerators. The capacity to reproduce continuous neutron spectra was investigated by optimising the electronic chain for pulse-shape discrimination. In particular, the spectrometer was irradiated with neutrons that were generated by striking a thick beryllium target with protons of several energies and the measured spectra were compared with data taken from the literature.
Timonen, Hilkka; Cubison, Mike; Aurela, Minna; ...
2016-07-25
The applicability, methods and limitations of constrained peak fitting on mass spectra of low mass resolving power ( m/Δ m 50~500) recorded with a time-of-flight aerosol chemical speciation monitor (ToF-ACSM) are explored. Calibration measurements as well as ambient data are used to exemplify the methods that should be applied to maximise data quality and assess confidence in peak-fitting results. Sensitivity analyses and basic peak fit metrics such as normalised ion separation are employed to demonstrate which peak-fitting analyses commonly performed in high-resolution aerosol mass spectrometry are appropriate to perform on spectra of this resolving power. Information on aerosol sulfate, nitrate,more » sodium chloride, methanesulfonic acid as well as semi-volatile metal species retrieved from these methods is evaluated. The constants in a commonly used formula for the estimation of the mass concentration of hydrocarbon-like organic aerosol may be refined based on peak-fitting results. Lastly, application of a recently published parameterisation for the estimation of carbon oxidation state to ToF-ACSM spectra is validated for a range of organic standards and its use demonstrated for ambient urban data.« less
Triggered lightning spectroscopy: Part 1. A qualitative analysis
NASA Astrophysics Data System (ADS)
Walker, T. Daniel; Christian, Hugh J.
2017-08-01
The first high-speed spectra of triggered lightning have been obtained. During the summers of 2012 and 2013, spectra were recorded at the International Center for Lightning Research and Testing, Camp Blanding, FL. The spectra were recorded with a high-speed camera with a grism mounted in front of it. The triggered lightning channels observed were generally at low altitude in a region that included the copper wire. Spectral emissions were recorded at each phase: the initial stage, dart leader, return stroke, and continuing current. These spectra are separated into two major regions: soft ultraviolet to visible (3800-6200 Å) and visible to near infrared (6200-8700 Å). The emissions during the initial stage reflect those of a copper wire burn in air. The majority of the emissions are neutral copper. After the initial stage comes the first return stroke which contains no detected molecular emissions; however, it does contain neutral, singly, and doubly ionized nitrogen and oxygen, neutral argon, and neutral hydrogen. Occasionally, before a return stroke, the dart leader coming down the channel will be stepped. During these occasions the leader spectra resemble that of the return stroke but are dimmer and shorter lived. After the initial portion of the return stroke, there are often changes in the luminosity of the spectrum which corresponds with fluctuations in the continuing current. During these "reillumination phases" no singly or doubly ionized lines have been observed to reemerge over the detection threshold, only neutral emission features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Hamid; Murugkar, Sangeeta; Ahmad, Abrar
Purpose: To improve classification by reducing batch effect in samples from the ovarian carcinoma cell lines A2780s (parental wild type) and A2780cp (cisplatin cross-radio-resistant), before, right after, and 24 hours after irradiation to 10Gy. Methods: Spectra were acquired with a home built confocal Raman microscope in 3 distinct runs of six samples: unirradiated s&cp (control pair), then 0h and 24h after irradiation. The Raman spectra were noise reduced, then background subtracted with SMIRF algorithm. ∼35 cell spectra were collected from each sample in 1024 channels from 700cm-1 to 1618cm-1. The spectra were analyzed by regularized multiclass LDA. For feature reductionmore » the spectra were grouped into 3 overlapping group pairs: s-cp, 0Gy–10Gy0h and 0Gy10–Gy24h. The three features, the three differences of the mean spectra were mapped to the analysis sub-space by the inverse regularized covariance matrix. The batch effect noticeably confounded the dose and time effect. Results: To remove the batch effect, the 2+2=4D subspace extended by the covariance matrix of the means of the 0Gy control groups was subtracted from the spectra of each sample. Repeating the analysis on the spectra with the control group variability removed, the batch effect was dramatically reduced in the dose and time directions enabling sharp linear discrimination. The cell type classification also improved. Conclusions: We identified a efficient batch effect removal technique crucial to the applicability of Raman microscopy to radiosensitivity studies both on cell cultures and potential clinical diagnostic applications.« less
Spoerl, Silvia; Wäscher, Dagmar; Nagel, Stefanie; Peschel, Christian; Verbeek, Mareike; Götze, Katharina; Krackhardt, Angela M
2018-05-06
Cell separators are routinely used to collect CD34 + blood stem cells in the context of customized stem cell transplantation procedures. The Spectra Optia (Terumo BCT) is a novel development of the precursor instrument, the Cobe Spectra (Terumo BCT). In this report, 146 autologous and 42 allogeneic donors undergoing apheresis on the Cobe Spectra using the mononuclear cell (MNC) program 4.7 or on the Spectra Optia using the new continuous mononuclear cell (cMNC) program 11.2 are compared. Viability of cells and collection efficacy within the apheresis products was comparable for autologous and allogeneic products collected with the MNC or cMNC method. However, we found a reduced duration of the apheresis procedure and lower hematocrit within the apheresis products when using the cMNC in autologous and allogeneic donors. Moreover, allogeneic donors collected substantially more CD34 + cells per kilogram of body weight when using the cMNC method. Differences in platelets before and after apheresis were substantially smaller in this cohort when compared to the cohort collected with the MNC method. Neutrophil and platelet engraftment after autologous or allogeneic transplantation with a product collected with the MNC procedure was comparable to a transplantation with a product processed according to the cMNC method. Comparison of the MNC (Cobe Spectra) and the cMNC (Spectra Optia) methods demonstrated an equal performance and outcome. However, advantages were present using the cMNC method with respect to apheresis duration and hematocrit within the apheresis product (autologous/allogeneic donors) and numbers of CD34 + cells collected, especially in allogeneic donors. © 2018 AABB.
Cancer diagnosis by infrared spectroscopy: methodological aspects
NASA Astrophysics Data System (ADS)
Jackson, Michael; Kim, Keith; Tetteh, John; Mansfield, James R.; Dolenko, Brion; Somorjai, Raymond L.; Orr, F. W.; Watson, Peter H.; Mantsch, Henry H.
1998-04-01
IR spectroscopy is proving to be a powerful tool for the study and diagnosis of cancer. The application of IR spectroscopy to the analysis of cultured tumor cells and grading of breast cancer sections is outlined. Potential sources of error in spectral interpretation due to variations in sample histology and artifacts associated with sample storage and preparation are discussed. The application of statistical techniques to assess differences between spectra and to non-subjectively classify spectra is demonstrated.
NASA Technical Reports Server (NTRS)
Zwick, H.; Ward, V.; Beaudette, L.
1973-01-01
A critical evaluation of existing optical remote sensors for HCl vapor detection in solid propellant rocket plumes is presented. The P branch of the fundamental vibration-rotation band was selected as the most promising spectral feature to sense. A computation of transmittance for HCl vapor, an estimation of interferent spectra, the application of these spectra to computer modelled remote sensors, and a trade-off study for instrument recommendation are also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, D. R.; Emery, K. E.; Gueymard, C.
2002-05-01
This conference paper describes the American Society for Testing and Materials (ASTM), the International Electrotechnical Commission (IEC), and the International Standards Organization (ISO) standard solar terrestrial spectra (ASTM G-159, IEC-904-3, ISO 9845-1) provide standard spectra for photovoltaic performance applications. Modern terrestrial spectral radiation models and knowledge of atmospheric physics are applied to develop suggested revisions to update the reference spectra. We use a moderately complex radiative transfer model (SMARTS2) to produce the revised spectra. SMARTS2 has been validated against the complex MODTRAN radiative transfer code and spectral measurements. The model is proposed as an adjunct standard to reproduce the referencemore » spectra. The proposed spectra represent typical clear sky spectral conditions associated with sites representing reasonable photovoltaic energy production and weathering and durability climates. The proposed spectra are under consideration by ASTM.« less
Polavarapu, Prasad L; Covington, Cody L
2014-09-01
For three different chiroptical spectroscopic methods, namely, vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and Raman optical activity (ROA), the measures of similarity of the experimental spectra to the corresponding spectra predicted using quantum chemical theories are summarized. In determining the absolute configuration and/or predominant conformations of chiral molecules, these similarity measures provide numerical estimates of agreement between experimental observations and theoretical predictions. Selected applications illustrating the similarity measures for absorption, circular dichroism, and corresponding dissymmetry factor (DF) spectra, in the case of VCD and ECD, and for Raman, ROA, and circular intensity differential (CID) spectra in the case of ROA, are presented. The analysis of similarity in DF or CID spectra is considered to be much more discerning and accurate than that in absorption (or Raman) and circular dichroism (or ROA) spectra, undertaken individually. © 2014 Wiley Periodicals, Inc.
Hoang, Vu Dang; Ly, Dong Thi Ha; Tho, Nguyen Huu; Minh Thi Nguyen, Hue
2014-01-01
The application of first-order derivative and wavelet transforms to UV spectra and ratio spectra was proposed for the simultaneous determination of ibuprofen and paracetamol in their combined tablets. A new hybrid approach on the combined use of first-order derivative and wavelet transforms to spectra was also discussed. In this application, DWT (sym6 and haar), CWT (mexh), and FWT were optimized to give the highest spectral recoveries. Calibration graphs in the linear concentration ranges of ibuprofen (12–32 mg/L) and paracetamol (20–40 mg/L) were obtained by measuring the amplitudes of the transformed signals. Our proposed spectrophotometric methods were statistically compared to HPLC in terms of precision and accuracy. PMID:24949492
Hoang, Vu Dang; Ly, Dong Thi Ha; Tho, Nguyen Huu; Nguyen, Hue Minh Thi
2014-01-01
The application of first-order derivative and wavelet transforms to UV spectra and ratio spectra was proposed for the simultaneous determination of ibuprofen and paracetamol in their combined tablets. A new hybrid approach on the combined use of first-order derivative and wavelet transforms to spectra was also discussed. In this application, DWT (sym6 and haar), CWT (mexh), and FWT were optimized to give the highest spectral recoveries. Calibration graphs in the linear concentration ranges of ibuprofen (12-32 mg/L) and paracetamol (20-40 mg/L) were obtained by measuring the amplitudes of the transformed signals. Our proposed spectrophotometric methods were statistically compared to HPLC in terms of precision and accuracy.
TANDEM: matching proteins with tandem mass spectra.
Craig, Robertson; Beavis, Ronald C
2004-06-12
Tandem mass spectra obtained from fragmenting peptide ions contain some peptide sequence specific information, but often there is not enough information to sequence the original peptide completely. Several proprietary software applications have been developed to attempt to match the spectra with a list of protein sequences that may contain the sequence of the peptide. The application TANDEM was written to provide the proteomics research community with a set of components that can be used to test new methods and algorithms for performing this type of sequence-to-data matching. The source code and binaries for this software are available at http://www.proteome.ca/opensource.html, for Windows, Linux and Macintosh OSX. The source code is made available under the Artistic License, from the authors.
HMDB 4.0: the human metabolome database for 2018
Feunang, Yannick Djoumbou; Marcu, Ana; Guo, An Chi; Liang, Kevin; Vázquez-Fresno, Rosa; Sajed, Tanvir; Johnson, Daniel; Li, Carin; Karu, Naama; Sayeeda, Zinat; Lo, Elvis; Assempour, Nazanin; Berjanskii, Mark; Singhal, Sandeep; Arndt, David; Liang, Yonjie; Badran, Hasan; Grant, Jason; Serra-Cayuela, Arnau; Liu, Yifeng; Mandal, Rupa; Neveu, Vanessa; Pon, Allison; Knox, Craig; Wilson, Michael; Manach, Claudine; Scalbert, Augustin
2018-01-01
Abstract The Human Metabolome Database or HMDB (www.hmdb.ca) is a web-enabled metabolomic database containing comprehensive information about human metabolites along with their biological roles, physiological concentrations, disease associations, chemical reactions, metabolic pathways, and reference spectra. First described in 2007, the HMDB is now considered the standard metabolomic resource for human metabolic studies. Over the past decade the HMDB has continued to grow and evolve in response to emerging needs for metabolomics researchers and continuing changes in web standards. This year's update, HMDB 4.0, represents the most significant upgrade to the database in its history. For instance, the number of fully annotated metabolites has increased by nearly threefold, the number of experimental spectra has grown by almost fourfold and the number of illustrated metabolic pathways has grown by a factor of almost 60. Significant improvements have also been made to the HMDB’s chemical taxonomy, chemical ontology, spectral viewing, and spectral/text searching tools. A great deal of brand new data has also been added to HMDB 4.0. This includes large quantities of predicted MS/MS and GC–MS reference spectral data as well as predicted (physiologically feasible) metabolite structures to facilitate novel metabolite identification. Additional information on metabolite-SNP interactions and the influence of drugs on metabolite levels (pharmacometabolomics) has also been added. Many other important improvements in the content, the interface, and the performance of the HMDB website have been made and these should greatly enhance its ease of use and its potential applications in nutrition, biochemistry, clinical chemistry, clinical genetics, medicine, and metabolomics science. PMID:29140435
Merunka, Dalibor; Peric, Miroslav
2017-05-25
Electron paramagnetic resonance (EPR) spectra of radicals in solution depend on their relative motion, which modulates the Heisenberg spin exchange and dipole-dipole interactions between them. To gain information on radical diffusion from EPR spectra demands both reliable spectral fitting to find the concentration coefficients of EPR parameters and valid expressions between the concentration and diffusion coefficients. Here, we measured EPR spectra of the 14 N- and 15 N-labeled perdeuterated TEMPONE radicals in normal and supercooled water at various concentrations. By fitting the EPR spectra to the functions based on the modified Bloch equations, we obtained the concentration coefficients for the spin dephasing, coherence transfer, and hyperfine splitting parameters. Assuming the continuous diffusion model for radical motion, the diffusion coefficients of radicals were calculated from the concentration coefficients using the standard relations and the relations derived from the kinetic equations for the spin evolution of a radical pair. The latter relations give better agreement between the diffusion coefficients calculated from different concentration coefficients. The diffusion coefficients are similar for both radicals, which supports the presented method. They decrease with lowering temperature slower than is predicted by the Stokes-Einstein relation and slower than the rotational diffusion coefficients, which is similar to the diffusion of water molecules in supercooled water.
Fast and Efficient Stochastic Optimization for Analytic Continuation
Bao, Feng; Zhang, Guannan; Webster, Clayton G; ...
2016-09-28
In this analytic continuation of imaginary-time quantum Monte Carlo data to extract real-frequency spectra remains a key problem in connecting theory with experiment. Here we present a fast and efficient stochastic optimization method (FESOM) as a more accessible variant of the stochastic optimization method introduced by Mishchenko et al. [Phys. Rev. B 62, 6317 (2000)], and we benchmark the resulting spectra with those obtained by the standard maximum entropy method for three representative test cases, including data taken from studies of the two-dimensional Hubbard model. Genearally, we find that our FESOM approach yields spectra similar to the maximum entropy results.more » In particular, while the maximum entropy method yields superior results when the quality of the data is strong, we find that FESOM is able to resolve fine structure with more detail when the quality of the data is poor. In addition, because of its stochastic nature, the method provides detailed information on the frequency-dependent uncertainty of the resulting spectra, while the maximum entropy method does so only for the spectral weight integrated over a finite frequency region. Therefore, we believe that this variant of the stochastic optimization approach provides a viable alternative to the routinely used maximum entropy method, especially for data of poor quality.« less
Hemoglobin spectra affect measurement of tissue oxygen saturation
NASA Astrophysics Data System (ADS)
Ostojic, Daniel; Kleiser, Stefan; Nasseri, Nassim; Isler, Helene; Scholkmann, Felix; Karen, Tanja; Wolf, Martin
2018-02-01
Tissue oxygen saturation (StO2) is a valuable clinical parameter e.g. for intensive care applications or monitoring during surgery. Studies showed that near-infrared spectroscopy (NIRS) based tissue oximeters of different brands give systematically different readings of StO2. Usually these readings are linearly correlated and therefore StO2 readings from one instrument can easily be converted to those of another instrument. However, it is interesting to understand why there is this difference. One reason may be that different brands employ different spectra of hemoglobin. The aim here was to investigate how these different absorption spectra of hemoglobin affect the StO2 readings. Therefore, we performed changes in StO2 in a phantom experiment with real human hemoglobin at three different concentrations (26.5, 45 and 70 μM): desaturation by yeast consuming the oxygen and re-saturation by bubbling oxygen gas. The partial pressure of O2 in the liquid changed from at least 10 kPa to 0 kPa and ISS OxiplexTS, a frequency-domain NIRS instrument, was used to monitor changes of StO2. When we employed two different absorption spectra for hemoglobin, StO2 values were comparable in the normal physiological range. However, particularly at high and low StO2 values, a difference of >6% between these two spectra were noticed. Such a difference of >6% is substantial and relevant for medical applications. This may partly explain why different brands of NIRS instruments provide different StO2 readings. The hemoglobin spectra are therefore a factor to be considered for future developments and applications of NIRS oximeters.
Tunable far infrared laser spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, G.A.; Laughlin, K.B.; Cohen, R.C.
The state of the art in far infrared (FIR) spectroscopy is reviewed. The development of tunable, coherent FIR radiation sources is discussed. Applications of tunable FIR laser spectrometers for measurement of rotational spectra and dipole moments of molecular ions and free radicals, vibration-rotation-tunneling (VRT) spectra of weakly bound complexes, and vibration-rotation spectra of linear carbon clusters are presented. A detailed description of the Berkeley tunable FIR laser spectrometers is presented in the following article.
Availability of a library of infrared (2.1-25.0 microns) mineral spectra
NASA Technical Reports Server (NTRS)
Salisbury, John W.; Vergo, Norma; Walter, Louis S.
1989-01-01
All previously published libraries of infrared mineral spectra are in the form of transmitance. Reflectance spectra are, however, more useful for remote sensing and some potential laboratory applications, such as the use of an infrared microscope for mineral identification on polished sections. This note points out that construction of a new library of infrared (2.1-25.0 microns) mineral spectra is in progress. Both transmittance and reflectance measurements of a selection of 63 different, well-characterized minerals have been published to date. These data are available in both hard copy and digital form.
Surface enhanced Raman scattering substrates prepared by thermal evaporation on liquid surfaces.
Ye, Ziran; Sun, Guofang; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Xu, Fengyun; Wang, Ke; Ye, Gaoxiang; Yang, Shikuan
2018-06-25
We present an effective surface-enhancement Raman scattering(SERS) substrate enabled by depositing metallic film on a liquid surface at room temperature. Thermal evaporation is used to deposit Au atoms on silicone oil surface and then form quasi-continuous films. Due to the isotropic characteristics of the liquid surface, this film consists of substantial nanoparticles with uniform diameter, which is different from films fabricated on solid substrates and can be served as an applicable substrate for SERS detection. With the assistance of this substrate, SERS signals of Rhodamine 6G(R6G) were significantly enhanced, the dependence between SERS spectra and film thickness was investigated. Analytical simulation results confirm the experimental observations and the superiorities of our proposed method for preparation of SERS substrate. This work provides a potential application of metallic film deposition on free-sustained surface and holds promise as an efficient sensor in rapid trace detection of small molecule analytes. © 2018 IOP Publishing Ltd.
Application of FTIR spectroscopy to study the thermal stability of magnesium aspartate-arginine
NASA Astrophysics Data System (ADS)
Hacura, Andrzej; Marcoin, Wacława; Pasterny, Karol
2012-03-01
FTIR spectroscopy has been applied to study the thermal stability of magnesium aspartatearginine. An attempt has been made, using theoretically predicted IR spectra, to relate the changes in the experimental spectra with the decomposition process of the studied magnesium complex.
1985-07-08
comparison to a library of known spectra. A preliminary study (Warner et al., 1984) of the application of this method to the pattern recognition of...case, the spectra from two blue-green algae are shown. Figure 3A indicates phycocyanin as the major fluorophore and 3B indicates phycoerythrin. Except...445. Ho, C.H., G.D. Christian, and E.R. Davidson, 1978. Application of the method of rank annihilation to quantitative analyses of multicomponent
MARZ: Manual and automatic redshifting software
NASA Astrophysics Data System (ADS)
Hinton, S. R.; Davis, Tamara M.; Lidman, C.; Glazebrook, K.; Lewis, G. F.
2016-04-01
The Australian Dark Energy Survey (OzDES) is a 100-night spectroscopic survey underway on the Anglo-Australian Telescope using the fibre-fed 2-degree-field (2dF) spectrograph. We have developed a new redshifting application MARZ with greater usability, flexibility, and the capacity to analyse a wider range of object types than the RUNZ software package previously used for redshifting spectra from 2dF. MARZ is an open-source, client-based, Javascript web-application which provides an intuitive interface and powerful automatic matching capabilities on spectra generated from the AAOmega spectrograph to produce high quality spectroscopic redshift measurements. The software can be run interactively or via the command line, and is easily adaptable to other instruments and pipelines if conforming to the current FITS file standard is not possible. Behind the scenes, a modified version of the AUTOZ cross-correlation algorithm is used to match input spectra against a variety of stellar and galaxy templates, and automatic matching performance for OzDES spectra has increased from 54% (RUNZ) to 91% (MARZ). Spectra not matched correctly by the automatic algorithm can be easily redshifted manually by cycling automatic results, manual template comparison, or marking spectral features.
Signal Partitioning Algorithm for Highly Efficient Gaussian Mixture Modeling in Mass Spectrometry
Polanski, Andrzej; Marczyk, Michal; Pietrowska, Monika; Widlak, Piotr; Polanska, Joanna
2015-01-01
Mixture - modeling of mass spectra is an approach with many potential applications including peak detection and quantification, smoothing, de-noising, feature extraction and spectral signal compression. However, existing algorithms do not allow for automated analyses of whole spectra. Therefore, despite highlighting potential advantages of mixture modeling of mass spectra of peptide/protein mixtures and some preliminary results presented in several papers, the mixture modeling approach was so far not developed to the stage enabling systematic comparisons with existing software packages for proteomic mass spectra analyses. In this paper we present an efficient algorithm for Gaussian mixture modeling of proteomic mass spectra of different types (e.g., MALDI-ToF profiling, MALDI-IMS). The main idea is automated partitioning of protein mass spectral signal into fragments. The obtained fragments are separately decomposed into Gaussian mixture models. The parameters of the mixture models of fragments are then aggregated to form the mixture model of the whole spectrum. We compare the elaborated algorithm to existing algorithms for peak detection and we demonstrate improvements of peak detection efficiency obtained by using Gaussian mixture modeling. We also show applications of the elaborated algorithm to real proteomic datasets of low and high resolution. PMID:26230717
NASA Astrophysics Data System (ADS)
Salem, Hesham; Lotfy, Hayam M.; Hassan, Nagiba Y.; El-Zeiny, Mohamed B.; Saleh, Sarah S.
2015-01-01
This work represents a comparative study of different aspects of manipulating ratio spectra, which are: double divisor ratio spectra derivative (DR-DD), area under curve of derivative ratio (DR-AUC) and its novel approach, namely area under the curve correction method (AUCCM) applied for overlapped spectra; successive derivative of ratio spectra (SDR) and continuous wavelet transform (CWT) methods. The proposed methods represent different aspects of manipulating ratio spectra of the ternary mixture of Ofloxacin (OFX), Prednisolone acetate (PA) and Tetryzoline HCl (TZH) combined in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision.
VizieR Online Data Catalog: IRS spectra with features of crystalline silicates (Chen+, 2016)
NASA Astrophysics Data System (ADS)
Chen, R.; Luo, A.; Liu, J.; Jiang, B.
2018-04-01
Spectra taken by the IRS (Houck et al. 2004ApJS..154...18H) on the Spitzer space telescope (Werner et al. 2004ApJS..154....1W) are now publicly available. These spectra are produced using the bksub.tbl products from SL and LL modules of final SSC pipeline, version 18.18. From the IRS data archive, we found a collection of 16986 low-resolution spectra. The spectra are merged by four slits: SL2 (5.21-7.56 μm), SL1 (7.57-14.28 μm), LL2 (14.29-20.66 μm), and LL1 (20.67-38.00 μm). As crystalline silicates have no features in the SL2 band, we choose the spectra that include all the other three bands: SL1, LL2, and LL1 so that the object has a continuous spectrum from about 7.5-38 μm. In this way, five of the seven infrared complexes of crystalline silicates are covered, i.e., the 10, 18, 23, 28, and 33 μm complexes. (5 data files).
Salem, Hesham; Lotfy, Hayam M; Hassan, Nagiba Y; El-Zeiny, Mohamed B; Saleh, Sarah S
2015-01-25
This work represents a comparative study of different aspects of manipulating ratio spectra, which are: double divisor ratio spectra derivative (DR-DD), area under curve of derivative ratio (DR-AUC) and its novel approach, namely area under the curve correction method (AUCCM) applied for overlapped spectra; successive derivative of ratio spectra (SDR) and continuous wavelet transform (CWT) methods. The proposed methods represent different aspects of manipulating ratio spectra of the ternary mixture of Ofloxacin (OFX), Prednisolone acetate (PA) and Tetryzoline HCl (TZH) combined in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.
Locally linear embedding: dimension reduction of massive protostellar spectra
NASA Astrophysics Data System (ADS)
Ward, J. L.; Lumsden, S. L.
2016-09-01
We present the results of the application of locally linear embedding (LLE) to reduce the dimensionality of dereddened and continuum subtracted near-infrared spectra using a combination of models and real spectra of massive protostars selected from the Red MSX Source survey data base. A brief comparison is also made with two other dimension reduction techniques; principal component analysis (PCA) and Isomap using the same set of spectra as well as a more advanced form of LLE, Hessian locally linear embedding. We find that whilst LLE certainly has its limitations, it significantly outperforms both PCA and Isomap in classification of spectra based on the presence/absence of emission lines and provides a valuable tool for classification and analysis of large spectral data sets.
X-ray astronomical spectroscopy
NASA Technical Reports Server (NTRS)
Holt, Stephen S.
1987-01-01
The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.
International AGN Watch: Continuous Monitoring of NGC 4151
NASA Technical Reports Server (NTRS)
Crenshaw, D. M.
1995-01-01
The nucleus of NGC 4151 was observed continuously with the International Ultraviolet Explorer (IUE) for 9.3 days, yielding a pair of LWP and SWP spectra every 70 minutes, and during four-hour periods for 4 days prior to and 5 days after the continuous monitoring period. The sampling frequency of the observations is an order of magnitude higher than that of any previous UV monitoring campaign on a Seyfert galaxy.
Dess, Brian W; Cardarelli, John; Thomas, Mark J; Stapleton, Jeff; Kroutil, Robert T; Miller, David; Curry, Timothy; Small, Gary W
2018-03-08
A generalized methodology was developed for automating the detection of radioisotopes from gamma-ray spectra collected from an aircraft platform using sodium-iodide detectors. Employing data provided by the U.S Environmental Protection Agency Airborne Spectral Photometric Environmental Collection Technology (ASPECT) program, multivariate classification models based on nonparametric linear discriminant analysis were developed for application to spectra that were preprocessed through a combination of altitude-based scaling and digital filtering. Training sets of spectra for use in building classification models were assembled from a combination of background spectra collected in the field and synthesized spectra obtained by superimposing laboratory-collected spectra of target radioisotopes onto field backgrounds. This approach eliminated the need for field experimentation with radioactive sources for use in building classification models. Through a bi-Gaussian modeling procedure, the discriminant scores that served as the outputs from the classification models were related to associated confidence levels. This provided an easily interpreted result regarding the presence or absence of the signature of a specific radioisotope in each collected spectrum. Through the use of this approach, classifiers were built for cesium-137 ( 137 Cs) and cobalt-60 ( 60 Co), two radioisotopes that are of interest in airborne radiological monitoring applications. The optimized classifiers were tested with field data collected from a set of six geographically diverse sites, three of which contained either 137 Cs, 60 Co, or both. When the optimized classification models were applied, the overall percentages of correct classifications for spectra collected at these sites were 99.9 and 97.9% for the 60 Co and 137 Cs classifiers, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Surface studies of novel oxide-free biocompatible coatings on metals
NASA Astrophysics Data System (ADS)
GAO, FENG
The valence band and core-level X-ray Photoelectron Spectroscopy (XPS) was used to probe biocompatible films formed on the surface of metals. The key to the successful adhesion of these biocompatible films is shown to be the initial formation of a thin, oxide free, etidronate film on the metal. It was not found possible to prepare the biocompatible films directly on the metal surfaces. These films formed on metals may find application in medical implants. The biocompatible films were exposed to air, water and sodium chloride for corrosion studies. The thin hydroxyapatite and etidronate film on the metal show differential charging effects that caused a doubling of the peaks in some core level spectra. This shows the coating has some electric properties such as dielectric or piezoelectric characters. This coating may have application in the insulating materials of electronic circuits or dielectric/ piezoelectric layer in bio-sensors. Experiment and calculation method of X-ray Photoelectron Spectroscopy is one powerful technology in surface and interface analysis. The valence band spectra proved especially valuable in the identification of the surface chemistry of the films, and these spectra were interpreted by comparing the experimental spectra with spectra calculated using band structure calculations which showed good agreement with experiment. The calculated spectrum could also be used to compare with the difference of experiment spectra for the investigation of the interface layers.
An application of deep learning in the analysis of stellar spectra
NASA Astrophysics Data System (ADS)
Fabbro, S.; Venn, K. A.; O'Briain, T.; Bialek, S.; Kielty, C. L.; Jahandar, F.; Monty, S.
2018-04-01
Spectroscopic surveys require fast and efficient analysis methods to maximize their scientific impact. Here, we apply a deep neural network architecture to analyse both SDSS-III APOGEE DR13 and synthetic stellar spectra. When our convolutional neural network model (StarNet) is trained on APOGEE spectra, we show that the stellar parameters (temperature, gravity, and metallicity) are determined with similar precision and accuracy as the APOGEE pipeline. StarNet can also predict stellar parameters when trained on synthetic data, with excellent precision and accuracy for both APOGEE data and synthetic data, over a wide range of signal-to-noise ratios. In addition, the statistical uncertainties in the stellar parameter determinations are comparable to the differences between the APOGEE pipeline results and those determined independently from optical spectra. We compare StarNet to other data-driven methods; for example, StarNet and the Cannon 2 show similar behaviour when trained with the same data sets; however, StarNet performs poorly on small training sets like those used by the original Cannon. The influence of the spectral features on the stellar parameters is examined via partial derivatives of the StarNet model results with respect to the input spectra. While StarNet was developed using the APOGEE observed spectra and corresponding ASSET synthetic data, we suggest that this technique is applicable to other wavelength ranges and other spectral surveys.
TRAP/SEE Code Users Manual for Predicting Trapped Radiation Environments
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
2000-01-01
TRAP/SEE is a PC-based computer code with a user-friendly interface which predicts the ionizing radiation exposure of spacecraft having orbits in the Earth's trapped radiation belts. The code incorporates the standard AP8 and AE8 trapped proton and electron models but also allows application of an improved database interpolation method. The code treats low-Earth as well as highly-elliptical Earth orbits, taking into account trajectory perturbations due to gravitational forces from the Moon and Sun, atmospheric drag, and solar radiation pressure. Orbit-average spectra, peak spectra per orbit, and instantaneous spectra at points along the orbit trajectory are calculated. Described in this report are the features, models, model limitations and uncertainties, input and output descriptions, and example calculations and applications for the TRAP/SEE code.
Fabrication of Extremely Short Length Fiber Bragg Gratings for Sensor Applications
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Rogowski, Robert S.; Tedjojuwono, Ken K.
2002-01-01
A new technique and a physical model for writing extremely short length Bragg gratings in optical fibers have been developed. The model describes the effects of diffraction on the spatial spectra and therefore, the wavelength spectra of the Bragg gratings. Using an interferometric technique and a variable aperture, short gratings of various lengths and center wavelengths were written in optical fibers. By selecting the related parameters, the Bragg gratings with typical length of several hundred microns and bandwidth of several nanometers can be obtained. These short gratings can be apodized with selected diffraction patterns and hence their broadband spectra have a well-defined bell shape. They are suitable for use as miniaturized distributed strain sensors, which have broad applications to aerospace research and industry as well.
NASA Technical Reports Server (NTRS)
Lamers, Henry J. G. L. M.; Snow, Theodore P.; De Jager, Cornelis; Langerwerf, A.
1988-01-01
The 72 IUE spectra of Alpha Cam and 19 IUE spectra of Kappa Cas, obtained during 72 hours of continuous IUE time in September 1978 were searched for variations in the profiles of the resonance lines of Si IV, C IV, and N V, and the results are discussed. The UV resonance lines in the spectra of Alpha Cam showed variations at the 2 percent level near -1800, -700, and +700 km/s. The first two variations can be explained by absorption components of outward-accelerated blobs or shells with an average acceleration of 1.5 cm/sq s. The characteristics of the blobs and shells are discussed, including the column densities and masses. No variations were found in the spectra of Kappa Cas.
Nuclear Neutrino Spectra in Late Stellar Evolution
NASA Astrophysics Data System (ADS)
Misch, G. Wendell; Sun, Yang; Fuller, George
2018-05-01
Neutrinos are the principle carriers of energy in massive stars, beginning from core carbon burning and continuing through core collapse and after the core bounce. In fact, it may be possible to detect neutrinos from nearby pre-supernova stars. Therefore, it is of great interest to understand the neutrino energy spectra from these stars. Leading up to core collapse, beginning around core silicon burning, nuclei become dominant producers of neutrinos, particularly at high neutrino energy, so a systematic study of nuclear neutrino spectra is desirable. We have done such a study, and we present our sd-shell model calculations of nuclear neutrino energy spectra for nuclei in the mass number range A = 21 - 35. Our study includes neutrinos produced by charged lepton capture, charged lepton emission, and neutral current nuclear deexcitation. Previous authors have tabulated the rates of charged current nuclear weak interactions in astrophysical conditions, but the present work expands on this not only by providing neutrino energy spectra, but also by including the heretofore untabulated neutral current de-excitation neutrino pairs.
Tunable white light source for medical applications
NASA Astrophysics Data System (ADS)
Blaszczak, Urszula J.; Gryko, Lukasz; Zajac, Andrzej
2017-08-01
Development of light-emitting diodes has brought new possibilities in many applications, especially in terms of flexible adjustment of light spectra. This feature is very useful in construction of many devices, for example for medical diagnosis and treatment. It was proved, that in some cases LEDs can easily replace lasers during therapy of cancer without reduction of efficiency of this process. On the other hand during diagnosis process LED-based constructions can provide unique ability to adjust the color temperature of the output light while maintaining high color rendering. It allows for optimum surface contrast and enhanced tissue differentiation at the operator site. In the paper we describe the construction of the tunable LED-based source designed for application in endoscopy. It was optimized from the point of view of the color rendition for 5 different correlated color temperatures (illuminant A, D55, D65, 3500K and 4500K) with the restriction of very high (>90) values of general and specific color rendering indexes (according to Ra method). The source is composed of 13 light-emitting diodes from visible region mounted on the common radiator and controlled by dedicated system. Spectra of the components are mixed and the spectra of output light is analyzed. On the basis of obtained spectra colorimetric parameters are calculated and compared with the results of theoretical analysis.
Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets
NASA Astrophysics Data System (ADS)
Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana E.; Freedman, Richard; Visscher, Channon
2017-06-01
Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure.In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations.We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 ≤ Teff ≤ 2400 K and 2.5 ≤ log g ≤ 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.
Broadband turbulent spectra in gamma-ray burst light curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Putten, Maurice H. P. M.; Guidorzi, Cristiano; Frontera, Filippo, E-mail: mvp@sejong.ac.kr
2014-05-10
Broadband power density spectra offer a window to understanding turbulent behavior in the emission mechanism and, at the highest frequencies, in the putative inner engines powering long gamma-ray bursts (GRBs). We describe a chirp search method alongside Fourier analysis for signal detection in the Poisson noise-dominated, 2 kHz sampled, BeppoSAX light curves. An efficient numerical implementation is described in O(Nnlog n) operations, where N is the number of chirp templates and n is the length of the light-curve time series, suited for embarrassingly parallel processing. For the detection of individual chirps over a 1 s duration, the method is onemore » order of magnitude more sensitive in signal-to-noise ratio than Fourier analysis. The Fourier-chirp spectra of GRB 010408 and GRB 970816 show a continuation of the spectral slope with up to 1 kHz of turbulence identified in low-frequency Fourier analysis. The same continuation is observed in an average spectrum of 42 bright, long GRBs. An outlook on a similar analysis of upcoming gravitational wave data is included.« less
Mass Spectrometry of Large, Fragile, and Involatile Molecules.
ERIC Educational Resources Information Center
Busch, Kenneth L.; Cooks, R. Graham
1982-01-01
Desorption ionization (DI) is used to obtain mass spectra of molecules whose vaporization by heating may lead to thermal degradation. Discusses DI techniques, characteristics of DI mass spectra, ion production, current applications of DI in mass spectroscopy, developments in DI, and prospects for future evolution of new DI techniques. (Author/JN)
Semi-classical analysis and pseudo-spectra
NASA Astrophysics Data System (ADS)
Davies, E. B.
We prove an approximate spectral theorem for non-self-adjoint operators and investigate its applications to second-order differential operators in the semi-classical limit. This leads to the construction of a twisted FBI transform. We also investigate the connections between pseudo-spectra and boundary conditions in the semi-classical limit.
Availability of a library of infrared (2.1-25.0 μm) mineral spectra
Salisbury, John W.; Walter, Louis S.; Vergo, Norma
1989-01-01
All previously published libraries of infrared mineral spectra are in the form of transmittance. Reflectance spectra are, however, more useful for remote sensing and some potential laboratory applications, such as the use of an infrared microscope for mineral identification on polished sections. This note points out that construction of a new library of infrared (2.1-25.0 μm) mineral spectra is in progress. Both transmittance and reflectance measurements of a selection of 63 different, well-characteized minerals have been published to date. These data are available in both hard copy and digital form.
Mitev, Krasimir K
2016-04-01
This work demonstrates that common plastic scintillators like BC-400, EJ-200 and SCSF-81 absorb radon and their scintillation pulse decay times are different for alpha- and beta-particles. This allows the application of pulse shape analysis for separation of the pulses of alpha- and beta-particles emitted by the absorbed radon and its progeny. It is shown that after pulse shape discrimination of beta-particles' pulses, the energy resolution of BC-400 and EJ-200 alpha spectra is sufficient to separate the peaks of (222)Rn, (218)Po and (214)Po and allows (222)Rn measurements that are unaffected by the presence of thoron ((220)Rn) in the environment. The alpha energy resolution of SCSF-81 in the experiments degrades due to imperfect collection of the light emitted inside the scintillating fibers. The experiments with plastic scintillation microspheres (PSM) confirm previous findings of other researchers that PSM have alpha-/beta-discrimination properties and show suitability for radon measurements. The diffusion length of radon in BC-400 and EJ-200 is determined. The pilot experiments show that the plastic scintillators are suitable for radon-in-soil-gas measurements. Overall, the results of this work suggest that it is possible to develop a new type of radon measurement instruments which employ absorption in plastic scintillators, pulse-shape discrimination and analysis of the alpha spectra. Such instruments can be very compact and can perform continuous, real-time radon measurements and thoron detection. They can find applications in various fields from radiation protection to earth sciences. Copyright © 2016 Elsevier Ltd. All rights reserved.
Numerical Study of the Generation of Linear Energy Transfer Spectra for Space Radiation Applications
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; Wilson, John W.; Hunter, Abigail
2005-01-01
In analyzing charged particle spectra in space due to galactic cosmic rays (GCR) and solar particle events (SPE), the conversion of particle energy spectra into linear energy transfer (LET) distributions is a convenient guide in assessing biologically significant components of these spectra. The mapping of LET to energy is triple valued and can be defined only on open energy subintervals where the derivative of LET with respect to energy is not zero. Presented here is a well-defined numerical procedure which allows for the generation of LET spectra on the open energy subintervals that are integrable in spite of their singular nature. The efficiency and accuracy of the numerical procedures is demonstrated by providing examples of computed differential and integral LET spectra and their equilibrium components for historically large SPEs and 1977 solar minimum GCR environments. Due to the biological significance of tissue, all simulations are done with tissue as the target material.
NASA Technical Reports Server (NTRS)
Sunshine, Jessica M.; Pieters, Carle M.
1993-01-01
The modified Gaussian model (MGM) is used to explore spectra of samples containing multiple pyroxene components as a function of modal abundance. The MGM allows spectra to be analyzed directly, without the use of actual or assumed end-member spectra and therefore holds great promise for remote applications. A series of mass fraction mixtures created from several different particle size fractions are analyzed with the MGM to quantify the properties of pyroxene mixtures as a function of both modal abundance and grain size. Band centers, band widths, and relative band strengths of absorptions from individual pyroxenes in mixture spectra are found to be largely independent of particle size. Spectral properties of both zoned and exsolved pyroxene components are resolved in exsolved samples using the MGM, and modal abundances are accurately estimated to within 5-10 percent without predetermined knowledge of the end-member spectra.
NASA Astrophysics Data System (ADS)
Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.
2017-12-01
Microalgae can be used for many potential applications for human's benefits. These potential applications included biofuel production from microalgae, biofiltering to cleaning water, chemical extraction as nutrients, etc. However, exploration for such applications is still in the early stages. For instance, many species and strains of microalgae have been investigated for their lipid content and growing conditions for efficient productions of lipids, but no specific species have yet been chosen as a fuel source for commercial production because of the huge biodiversity and subsequently a wide range of species that can potentially be exploited for biodiesel production, the great variability between species in their fuel precursor producing capabilities. Numerous coal-bed methane water ponds were established in the world as a consequence of coal-bed methane production from deep coal seams. Microalgae were isolated from such ponds and potentially these ponds can be used as venues for algal production. In this study, we characterized chemical composition and structure of the Cyanobacteria Anabaena cylindrica (UTEX # 1611) and isolates from coal-bed methane ponds Nannochloropsis gaditana and PW95 using Laser Raman Spectroscopy (LRS), hyperspectral spectra, and Scanning Electron Microscope (SEM). The objective is to seek bio-indicators for potential applications of these microalgae species. For instance, indicator of rich content lips shows the great potential for biofuel production. Fig.1 shows an example of the Raman spectra of the three species in desiccated form. The spectral peaks were isolated and the corresponding composition was identified. The insert at the right hand of the Raman spectrum of each species is the micrograph of the cell morphology under a microscope. The Raman spectra of cells in aquatic solutions were also obtained and compared with the desiccated form. The hyperspectral reflectances of the three species show quite different characteristics and the main absorption bands and scattering bands were located and their association with composition and structure were analyzed and discussed. SEM micrographs will be collected and the composition and structure derived from the SEM micrographs will be discussed and compared with those derived from the Raman spectra and hyperspectral spectra.
Parametric models of reflectance spectra for dyed fabrics
NASA Astrophysics Data System (ADS)
Aiken, Daniel C.; Ramsey, Scott; Mayo, Troy; Lambrakos, Samuel G.; Peak, Joseph
2016-05-01
This study examines parametric modeling of NIR reflectivity spectra for dyed fabrics, which provides for both their inverse and direct modeling. The dye considered for prototype analysis is triarylamine dye. The fabrics considered are camouflage textiles characterized by color variations. The results of this study provide validation of the constructed parametric models, within reasonable error tolerances for practical applications, including NIR spectral characteristics in camouflage textiles, for purposes of simulating NIR spectra corresponding to various dye concentrations in host fabrics, and potentially to mixtures of dyes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camden, Jon P.
2013-07-12
A major component of this proposal is to elucidate the connection between optical and electron excitation of plasmon modes in metallic nanostructures. These accomplishments are reported: developed a routine protocol for obtaining spatially resolved, low energy EELS spectra, and resonance Rayleigh scattering spectra from the same nanostructures; correlated optical scattering spectra and plasmon maps obtained using STEM/EELS; and imaged electromagnetic hot spots responsible for single-molecule surface-enhanced Raman scattering (SMSERS).
Model for Cumulative Solar Heavy Ion Energy and LET Spectra
NASA Technical Reports Server (NTRS)
Xapsos, Mike; Barth, Janet; Stauffer, Craig; Jordan, Tom; Mewaldt, Richard
2007-01-01
A probabilistic model of cumulative solar heavy ion energy and lineary energy transfer (LET) spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions.
Polarization spectroscopy of atomic erbium in a hollow cathode lamp
NASA Astrophysics Data System (ADS)
Ang'ong'a, Jackson; Gadway, Bryce
2018-02-01
In this work we perform polarization spectroscopy of erbium atoms in a hollow cathode lamp (HCL). We review the theory behind Doppler-free polarization spectroscopy, theoretically model the expected erbium polarization spectra, and compare the numerically calculated spectra to our experimental data. We further analyze the dependence of the measured spectra on the HCL current and the peak intensities of our pump and probe lasers to determine conditions. Applications include wavelength stabilization of diode laser radiation to the 400.91 nm erbium transition.
Proposal and Evaluation of Subordinate Standard Solar Irradiance Spectra: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Wilbert, Stefan; Jessen, Wilko
This paper introduces a concept for global tilted irradiance (GTI) subordinate standard spectra to supplement the current standard spectra used in solar photovoltaic applications as defined in ASTM G173 and IEC60904. The proposed subordinate standard spectra correspond to atmospheric conditions and tilt angles that depart significantly from the main standard spectrum, and they can be used to more accurately represent various local conditions. For the definition of subordinate standard spectra cases with an elevation 1.5 km above sea level, the question arises whether the air mass should be calculated including a pressure correction or not. This study focuses on themore » impact of air mass used in standard spectra, and it uses data from 29 locations to examine which air mass is most appropriate for GTI and direct normal irradiance (DNI) spectra. Overall, it is found that the pressure-corrected air mass of 1.5 is most appropriate for DNI spectra. For GTI, a non-pressure-corrected air mass of 1.5 was found to be more appropriate.« less
Near-infrared reflectance spectra of mixtures of kaolin-group minerals: Use in clay mineral studies
Crowley, James K.; Vergo, Norma
1988-01-01
Near-infrared (NIR) reflectance spectra for mixtures of ordered kaolinite and ordered dickite have been found to simulate the spectral response of disordered kaolinite. The amount of octahedral vacancy disorder in nine disordered kaolinite samples was estimated by comparing the sample spectra to the spectra of reference mixtures. The resulting estimates are consistent with previously published estimates of vacancy disorder for similar kaolin minerals that were modeled from calculated X-ray diffraction patterns. The ordered kaolinite and dickite samples used in the reference mixtures were carefully selected to avoid undesirable particle size effects that could bias the spectral results.NIR spectra were also recorded for laboratory mixtures of ordered kaolinite and halloysite to assess whether the spectra could be potentially useful for determining mineral proportions in natural physical mixtures of these two clays. Although the kaolinite-halloysite proportions could only be roughly estimated from the mixture spectra, the halloysite component was evident even when halloysite was present in only minor amounts. A similar approach using NIR spectra for laboratory mixtures may have applications in other studies of natural clay mixtures.
Multi- and hyperspectral geologic remote sensing: A review
NASA Astrophysics Data System (ADS)
van der Meer, Freek D.; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Hecker, Chris A.; Bakker, Wim H.; Noomen, Marleen F.; van der Meijde, Mark; Carranza, E. John M.; Smeth, J. Boudewijn de; Woldai, Tsehaie
2012-02-01
Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly workflows should be multidisciplinary and remote sensing data should be integrated with field observations and subsurface geophysical data to monitor and understand geologic processes.
NASA Technical Reports Server (NTRS)
Berman, A. L.
1977-01-01
An algorithm was developed for the continuous and automatic computation of Doppler noise concurrently at four sample rate intervals, evenly spanning three orders of magnitude. Average temporal Doppler phase fluctuation spectra will be routinely available in the DSN tracking system Mark III-77 and require little additional processing. The basic (noise) data will be extracted from the archival tracking data file (ATDF) of the tracking data management system.
2011-07-01
Conditions of Release and Disposal This document is the property of the Australian Government; the information it contains is released for defence...of high strength aluminium alloys and stress spectra associated with fatigue sensitive locations on typical RAAF aircraft. This report continues...growth, infrared NDT technologies and fibre optic corrosion detection devices. He joined DSTO in 2007 in the Air Vehicles Division and is currently
Broad-gain (Δλ/λ0~0.4), temperature-insensitive (T<0~510K) quantum cascade lasers.
Fujita, Kazuue; Furuta, Shinichi; Dougakiuchi, Tatsuo; Sugiyama, Atsushi; Edamura, Tadataka; Yamanishi, Masamichi
2011-01-31
Broad-gain operation of λ~8.7 μm quantum cascade lasers based on dual-upper-state to multiple-lower-state transition design is reported. The devices exhibit surprisingly wide (~500 cm(-1)) electroluminescence spectra which are very insensitive to voltage and temperature changes above room temperature. With recourse to the temperature-insensitivity of electroluminescence spectra, the lasers demonstrate an extremely-weak temperature-dependence of laser performances: T0-value of 510 K, associated with a room temperature threshold current density of 2.6 kA/cm2. In addition, despite such wide gain spectra, room temperature, continuous wave operation of the laser with buried hetero structure is achieved.
Incorporation of Dynamic SSI Effects in the Design Response Spectra
NASA Astrophysics Data System (ADS)
Manjula, N. K.; Pillai, T. M. Madhavan; Nagarajan, Praveen; Reshma, K. K.
2018-05-01
Many studies in the past on dynamic soil-structure interactions have revealed the detrimental and advantageous effects of soil flexibility. Based on such studies, the design response spectra of international seismic codes are being improved worldwide. The improvements required for the short period range of the design response spectra in the Indian seismic code (IS 1893:2002) are presented in this paper. As the recent code revisions has not incorporated the short period amplifications, proposals given in this paper are equally applicable for the latest code also (IS 1893:2016). Analyses of single degree of freedom systems are performed to predict the required improvements. The proposed modifications to the constant acceleration portion of the spectra are evaluated with respect to the current design spectra in Eurocode 8.
Systematization method for distinguishing plastic groups by using NIR spectroscopy.
Kaihara, Mikio; Satoh, Minami; Satoh, Minoru
2007-07-01
A systematic classification method for polymers is not yet available in case of using near infrared spectra (NIR). That is why we have been searching for a systematic method. Because raw NIR spectra usually have few obvious peaks, NIR spectra have been pretreated by 2nd derivation for taking well modulated spectra. After the pretreatment, we applied classification and regression trees (CART) to the discrimination between the spectra and the species of polymers. As a result, we obtained a relatively simple classification tree. Judging from the obtained splitting conditions and the classified polymers, we concluded that obtained knowledge on the chemical function groups estimated by the important wavelength regions is not always applicable to this classification tree. However, we clarified the splitting rules for polymer species from the NIR spectral point of view.
Sader, John E; Yousefi, Morteza; Friend, James R
2014-02-01
Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noise spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sader, John E., E-mail: jsader@unimelb.edu.au; Yousefi, Morteza; Friend, James R.
2014-02-15
Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noisemore » spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.« less
NASA Astrophysics Data System (ADS)
Szostak, M. M.; Le Calvé, N.; Romain, F.; Pasquier, B.
1994-10-01
The polarized IR reflection spectra of the meta-nitroaniline ( m-NA) single crystal along the a, b and c crystallographic axes as well as the b and c polarized transmission spectra have been measured in the 100-400 cm -1 region. The LO-TO splitting values have been calculated from the reflection spectra by fitting them with the four parameter dielectric function. The dipole moment derivatives, relevant to dynamic effective charges, of the vibrations have also been calculated and used to check the applicability of the oriented gas model (OGM) to reflection spectra. The discrepancies from the OGM have been discussed in terms of vibronic couplings, weak hydrogen bondings (HB) and intramolecular charge transfer.
Description and availability of the SMARTS spectral model for photovoltaic applications
NASA Astrophysics Data System (ADS)
Myers, Daryl R.; Gueymard, Christian A.
2004-11-01
Limited spectral response range of photocoltaic (PV) devices requires device performance be characterized with respect to widely varying terrestrial solar spectra. The FORTRAN code "Simple Model for Atmospheric Transmission of Sunshine" (SMARTS) was developed for various clear-sky solar renewable energy applications. The model is partly based on parameterizations of transmittance functions in the MODTRAN/LOWTRAN band model family of radiative transfer codes. SMARTS computes spectra with a resolution of 0.5 nanometers (nm) below 400 nm, 1.0 nm from 400 nm to 1700 nm, and 5 nm from 1700 nm to 4000 nm. Fewer than 20 input parameters are required to compute spectral irradiance distributions including spectral direct beam, total, and diffuse hemispherical radiation, and up to 30 other spectral parameters. A spreadsheet-based graphical user interface can be used to simplify the construction of input files for the model. The model is the basis for new terrestrial reference spectra developed by the American Society for Testing and Materials (ASTM) for photovoltaic and materials degradation applications. We describe the model accuracy, functionality, and the availability of source and executable code. Applications to PV rating and efficiency and the combined effects of spectral selectivity and varying atmospheric conditions are briefly discussed.
Research on Spectroscopy, Opacity, and Atmospheres
NASA Technical Reports Server (NTRS)
Oliversen, Ronald (Technical Monitor); Kurucz, Robert L.
2004-01-01
I propose to continue providing observers with basic data for interpreting spectra from stars, novas, supernovas, clusters, and galaxies. These data will include allowed forbidden line lists both laboratory and computed, for the first five to ten ions of all atoms and for all relevant diatomic molecules. I will eventually expend to all ions of the first thirty elements to treat far UV end X-ray spectra, and for envelope opacities. I also include triatomic molecules providing by other researchers. I have made CDs with Partridge and Schwanke's water data for work on M stars.The luna data also serve as input to my model atmosphere and synthesis programs that generated energy distributions, photometry, limb darkening, and spectra that can be used for planning observations and for fitting observed spectra. The spectrum synthesis programs produce detailed plots with the line identified. Grids of stellar spectra can be used for radial velocity-, rotation-, or abundance templates and for population synthesis. I am fitting spectra of bright stars to test the data and to produce atlases to guide observer. For each star the whole spectrum is computed from the UV to the far IR. The line data, opacities, models, spectra, and programs are freely distributed on CDs and on my web site and represent a unique resource for many NASA programs.
Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum
NASA Technical Reports Server (NTRS)
Lee, Seungwon
2012-01-01
This software processes the flyby spectra of the Chirp Transform Spectrometer (CTS) of the Microwave Instrument for Rosetta Orbiter (MIRO). The tool corrects the effect of Doppler shift and local-oscillator (LO) frequency shift during the flyby mode of MIRO operations. The frequency correction for CTS flyby spectra is performed and is integrated with multiple spectra into a high signal-to-noise averaged spectrum at the rest-frame RF frequency. This innovation also generates the 8 molecular line spectra by dividing continuous 4,096-channel CTS spectra. The 8 line spectra can then be readily used for scientific investigations. A spectral line that is at its rest frequency in the frame of the Earth or an asteroid will be observed with a time-varying Doppler shift as seen by MIRO. The frequency shift is toward the higher RF frequencies on approach, and toward lower RF frequencies on departure. The magnitude of the shift depends on the flyby velocity. The result of time-varying Doppler shift is that of an observed spectral line will be seen to move from channel to channel in the CTS spectrometer. The direction (higher or lower frequency) in the spectrometer depends on the spectral line frequency under consideration. In order to analyze the flyby spectra, two steps are required. First, individual spectra must be corrected for the Doppler shift so that individual spectra can be superimposed at the same rest frequency for integration purposes. Second, a correction needs to be applied to the CTS spectra to account for the LO frequency shifts that are applied to asteroid mode.
Solution of the Fokker-Planck equation with a logarithmic potential and mixed eigenvalue spectrum
NASA Astrophysics Data System (ADS)
Guarnieri, F.; Moon, W.; Wettlaufer, J. S.
2017-09-01
Motivated by a problem in climate dynamics, we investigate the solution of a Bessel-like process with a negative constant drift, described by a Fokker-Planck equation with a potential V (x ) =-[b ln(x ) +a x ] , for b >0 and a <0 . The problem belongs to a family of Fokker-Planck equations with logarithmic potentials closely related to the Bessel process that has been extensively studied for its applications in physics, biology, and finance. The Bessel-like process we consider can be solved by seeking solutions through an expansion into a complete set of eigenfunctions. The associated imaginary-time Schrödinger equation exhibits a mix of discrete and continuous eigenvalue spectra, corresponding to the quantum Coulomb potential describing the bound states of the hydrogen atom. We present a technique to evaluate the normalization factor of the continuous spectrum of eigenfunctions that relies solely upon their asymptotic behavior. We demonstrate the technique by solving the Brownian motion problem and the Bessel process both with a constant negative drift. We conclude with a comparison to other analytical methods and with numerical solutions.
Emission characteristics of holmium ions in fluoro-phosphate glasses for photonic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babu, S.; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com
2016-05-23
Optical properties of Ho{sup 3+} doped different fluorophosphate (FP) glasses have been synthesized and discussed. Thermal properties have been studied through differential scanning calorimetry (DSC).The Judd-Ofelt (J-O) intensity parameters Ω{sub λ} (λ= 2, 4, 6) from absorption spectra have been evaluated. Various radiative parameters have been obtained for the different excited states using J-O theory. From the emission spectra, different laser properties have been studied and discussed. The nature of decay curve analysis was performed for the {sup 5}F{sub 4}({sup 5}S{sub 2}) level. These glasses are expected to give interesting application in the field of photonic applications.
Matrix decompositions of two-dimensional nuclear magnetic resonance spectra.
Havel, T F; Najfeld, I; Yang, J X
1994-08-16
Two-dimensional NMR spectra are rectangular arrays of real numbers, which are commonly regarded as digitized images to be analyzed visually. If one treats them instead as mathematical matrices, linear algebra techniques can also be used to extract valuable information from them. This matrix approach is greatly facilitated by means of a physically significant decomposition of these spectra into a product of matrices--namely, S = PAPT. Here, P denotes a matrix whose columns contain the digitized contours of each individual peak or multiple in the one-dimensional spectrum, PT is its transpose, and A is an interaction matrix specific to the experiment in question. The practical applications of this decomposition are considered in detail for two important types of two-dimensional NMR spectra, double quantum-filtered correlated spectroscopy and nuclear Overhauser effect spectroscopy, both in the weak-coupling approximation. The elements of A are the signed intensities of the cross-peaks in a double quantum-filtered correlated spectrum, or the integrated cross-peak intensities in the case of a nuclear Overhauser effect spectrum. This decomposition not only permits these spectra to be efficiently simulated but also permits the corresponding inverse problems to be given an elegant mathematical formulation to which standard numerical methods are applicable. Finally, the extension of this decomposition to the case of strong coupling is given.
NASA Astrophysics Data System (ADS)
Yuan, Xiang-Ai; Wen, Jin; Zheng, Dong; Ma, Jing
2018-04-01
This Review highlights the structure/property relationship underlying the morphology modulation through various factors towards the exploration of light-absorbing materials for efficient utilisation of solar power. Theoretical study using a combination of molecular dynamics imulations and the time-dependent density functional theory demonstrated that the planarity plays an important role in tuning spectral properties of oligomer aggregates. The aggregation-induced blue-shift in absorption spectra of oligothiophenes and the red-shift for oligofluorenols were rationalised in a unified way from the reduced (and increased) content of planar conformations in molecular aggregates. The planarity versus non-planarity of oligomers can be modulated by introduction of alkyl side chain or steric bulky substituents. The substitution with various groups in the ortho-position of azobenzene leads to the distorted backbone, breaking symmetry, and hence the red-shift in spectra, expanding the application in biological systems with visible light absorption. The donor-acceptor substituent groups in conjugated oligomers can increase the degree of planarity, electron delocalisation and polarisation, and charge separation, giving rise to the red-shift in spectra and enhancement in polarisability and charge mobility for device applications. The solvent dependent and pH-sensitive properties and intramolecular hydrogen bonds also caused the shift of absorption spectra with the appearance of planar conformers.
Matrix decompositions of two-dimensional nuclear magnetic resonance spectra.
Havel, T F; Najfeld, I; Yang, J X
1994-01-01
Two-dimensional NMR spectra are rectangular arrays of real numbers, which are commonly regarded as digitized images to be analyzed visually. If one treats them instead as mathematical matrices, linear algebra techniques can also be used to extract valuable information from them. This matrix approach is greatly facilitated by means of a physically significant decomposition of these spectra into a product of matrices--namely, S = PAPT. Here, P denotes a matrix whose columns contain the digitized contours of each individual peak or multiple in the one-dimensional spectrum, PT is its transpose, and A is an interaction matrix specific to the experiment in question. The practical applications of this decomposition are considered in detail for two important types of two-dimensional NMR spectra, double quantum-filtered correlated spectroscopy and nuclear Overhauser effect spectroscopy, both in the weak-coupling approximation. The elements of A are the signed intensities of the cross-peaks in a double quantum-filtered correlated spectrum, or the integrated cross-peak intensities in the case of a nuclear Overhauser effect spectrum. This decomposition not only permits these spectra to be efficiently simulated but also permits the corresponding inverse problems to be given an elegant mathematical formulation to which standard numerical methods are applicable. Finally, the extension of this decomposition to the case of strong coupling is given. PMID:8058742
NASA Astrophysics Data System (ADS)
Hartmann, Jean-Michel; Tran, Ha; Armante, Raymond; Boulet, Christian; Campargue, Alain; Forget, François; Gianfrani, Livio; Gordon, Iouli; Guerlet, Sandrine; Gustafsson, Magnus; Hodges, Joseph T.; Kassi, Samir; Lisak, Daniel; Thibault, Franck; Toon, Geoffrey C.
2018-07-01
We review progress, since publication of the book ``Collisional effects on molecular spectra: Laboratory experiments and models, consequences for applications" (Elsevier, Amsterdam, 2008), on measuring, modeling and predicting the influence of pressure (ie of intermolecular collisions) on the spectra of gas molecules. We first introduce recently developed experimental techniques of high accuracy and sensitivity. We then complement the aforementioned book by presenting the theoretical approaches, results and data proposed (mostly) in the last decade on the topics of isolated line shapes, line-broadening and -shifting, line-mixing, the far wings and associated continua, and collision-induced absorption. Examples of recently demonstrated consequences of the progress in the description of spectral shapes for some practical applications (metrology, probing of gas media, climate predictions) are then given. Remaining issues and directions for future research are finally discussed.
Jessen, Wilko; Wilbert, Stefan; Gueymard, Christian A.; ...
2018-04-10
Reference solar irradiance spectra are needed to specify key parameters of solar technologies such as photovoltaic cell efficiency, in a comparable way. The IEC 60904-3 and ASTM G173 standards present such spectra for Direct Normal Irradiance (DNI) and Global Tilted Irradiance (GTI) on a 37 degrees tilted sun-facing surface for one set of clear-sky conditions with an air mass of 1.5 and low aerosol content. The IEC/G173 standard spectra are the widely accepted references for these purposes. Hence, the authors support the future replacement of the outdated ISO 9845 spectra with the IEC spectra within the ongoing update of thismore » ISO standard. The use of a single reference spectrum per component of irradiance is important for clarity when comparing and rating solar devices such as PV cells. However, at some locations the average spectra can differ strongly from those defined in the IEC/G173 standards due to widely different atmospheric conditions and collector tilt angles. Therefore, additional subordinate standard spectra for other atmospheric conditions and tilt angles are of interest for a rough comparison of product performance under representative field conditions, in addition to using the main standard spectrum for product certification under standard test conditions. This simplifies the product selection for solar power systems when a fully-detailed performance analysis is not feasible (e.g. small installations). Also, the effort for a detailed yield analyses can be reduced by decreasing the number of initial product options. After appropriate testing, this contribution suggests a number of additional spectra related to eight sets of atmospheric conditions and tilt angles that are currently considered within ASTM and ISO working groups. The additional spectra, called subordinate standard spectra, are motivated by significant spectral mismatches compared to the IEC/G173 spectra (up to 6.5%, for PV at 37 degrees tilt and 10-15% for CPV). These mismatches correspond to potential accuracy improvements for a quick estimation of the average efficiency by applying the appropriate subordinate standard spectrum instead of the IEC/G173 spectra. The applicability of these spectra for PV performance analyses is confirmed at five test sites, for which subordinate spectra could be intuitively selected based on the average atmospheric aerosol optical depth (AOD) and precipitable water vapor at those locations. The development of subordinate standard spectra for DNI and concentrating solar power (CSP) and concentrating PV (CPV) is also considered. However, it is found that many more sets of atmospheric conditions would be required to allow the intuitive selection of DNI spectra for the five test sites, due in particular to the stronger effect of AOD on DNI compared to GTI. The matrix of subordinate GTI spectra described in this paper are recommended to appear as an option in the annex of future standards, in addition to the obligatory use of the main spectrum from the ASTM G173 and IEC 60904 standards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessen, Wilko; Wilbert, Stefan; Gueymard, Christian A.
Reference solar irradiance spectra are needed to specify key parameters of solar technologies such as photovoltaic cell efficiency, in a comparable way. The IEC 60904-3 and ASTM G173 standards present such spectra for Direct Normal Irradiance (DNI) and Global Tilted Irradiance (GTI) on a 37 degrees tilted sun-facing surface for one set of clear-sky conditions with an air mass of 1.5 and low aerosol content. The IEC/G173 standard spectra are the widely accepted references for these purposes. Hence, the authors support the future replacement of the outdated ISO 9845 spectra with the IEC spectra within the ongoing update of thismore » ISO standard. The use of a single reference spectrum per component of irradiance is important for clarity when comparing and rating solar devices such as PV cells. However, at some locations the average spectra can differ strongly from those defined in the IEC/G173 standards due to widely different atmospheric conditions and collector tilt angles. Therefore, additional subordinate standard spectra for other atmospheric conditions and tilt angles are of interest for a rough comparison of product performance under representative field conditions, in addition to using the main standard spectrum for product certification under standard test conditions. This simplifies the product selection for solar power systems when a fully-detailed performance analysis is not feasible (e.g. small installations). Also, the effort for a detailed yield analyses can be reduced by decreasing the number of initial product options. After appropriate testing, this contribution suggests a number of additional spectra related to eight sets of atmospheric conditions and tilt angles that are currently considered within ASTM and ISO working groups. The additional spectra, called subordinate standard spectra, are motivated by significant spectral mismatches compared to the IEC/G173 spectra (up to 6.5%, for PV at 37 degrees tilt and 10-15% for CPV). These mismatches correspond to potential accuracy improvements for a quick estimation of the average efficiency by applying the appropriate subordinate standard spectrum instead of the IEC/G173 spectra. The applicability of these spectra for PV performance analyses is confirmed at five test sites, for which subordinate spectra could be intuitively selected based on the average atmospheric aerosol optical depth (AOD) and precipitable water vapor at those locations. The development of subordinate standard spectra for DNI and concentrating solar power (CSP) and concentrating PV (CPV) is also considered. However, it is found that many more sets of atmospheric conditions would be required to allow the intuitive selection of DNI spectra for the five test sites, due in particular to the stronger effect of AOD on DNI compared to GTI. The matrix of subordinate GTI spectra described in this paper are recommended to appear as an option in the annex of future standards, in addition to the obligatory use of the main spectrum from the ASTM G173 and IEC 60904 standards.« less
Observations of neutral iron emission in twilight spectra
NASA Technical Reports Server (NTRS)
Tepley, C. A.; Meriwether, J. W., Jr.; Walker, J. C. G.; Mathews, J. D.
1981-01-01
A method is presented for the analysis of twilight airglow spectra that may be contaminated by atmospheric continuum emission of unknown brightness. The necessity of correcting for this continuum emission when measuring weak airglow features in twilight is illustrated by application of the method to the neutral iron line at 3860 A.
Predicting charmonium and bottomonium spectra with a quark harmonic oscillator.
Norbury, J W; Badavi, F F; Townsend, L W
1986-11-01
We present a simple application of the three-dimensional harmonic oscillator which should provide a very nice particle physics example to be presented in introductory undergraduate quantum mechanics course. The idea is to use the nonrelativistic quark model to calculate the spin-averaged mass levels of the charmonium and bottomonium spectra.
Human comfort response to random motions with a dominant transverse motion
NASA Technical Reports Server (NTRS)
Stone, R. W., Jr.
1975-01-01
Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with transverse acceleration inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling.
Human comfort response to random motions with a dominant longitudinal motion
NASA Technical Reports Server (NTRS)
Stone, R. W., Jr.
1975-01-01
Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with longitudinal acceleration inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling.
78 FR 35658 - Spectra Energy Corp., Application for a New or Amended Presidential Permit
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-13
... transactions. Spectra Energy owns and operates a large diversified portfolio of natural gas-related energy assets in the areas of gathering and processing, transmission, and distribution. Its natural gas pipeline..., to Caster, Wyoming and includes five pump stations. The Express Pipeline has been in operation since...
Raman spectra of lignin model compounds
Umesh P. Agarwal; Richard S. Reiner; Ashok K. Pandey; Sally A. Ralph; Kolby C. Hirth; Rajai H. Atalla
2005-01-01
To fully exploit the value of Raman spectroscopy for analyzing lignins and lignin containing materials, a detailed understanding of ligninsâ Raman spectra needs to be achieved. Although advances made thus far have led to significant growth in application of Raman techniques, further developments are needed to improve upon the existing knowledge. Considering that lignin...
Human confort response to random motions with a dominant rolling motion
NASA Technical Reports Server (NTRS)
Stone, R. W., Jr.
1975-01-01
Subjective ride comfort response ratings were measured on a visual motion simulator with rolling velocity inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling.
NASA Astrophysics Data System (ADS)
Wang, Ke; Guo, Ping; Luo, A.-Li
2017-03-01
Spectral feature extraction is a crucial procedure in automated spectral analysis. This procedure starts from the spectral data and produces informative and non-redundant features, facilitating the subsequent automated processing and analysis with machine-learning and data-mining techniques. In this paper, we present a new automated feature extraction method for astronomical spectra, with application in spectral classification and defective spectra recovery. The basic idea of our approach is to train a deep neural network to extract features of spectra with different levels of abstraction in different layers. The deep neural network is trained with a fast layer-wise learning algorithm in an analytical way without any iterative optimization procedure. We evaluate the performance of the proposed scheme on real-world spectral data. The results demonstrate that our method is superior regarding its comprehensive performance, and the computational cost is significantly lower than that for other methods. The proposed method can be regarded as a new valid alternative general-purpose feature extraction method for various tasks in spectral data analysis.
HMDB 4.0: the human metabolome database for 2018.
Wishart, David S; Feunang, Yannick Djoumbou; Marcu, Ana; Guo, An Chi; Liang, Kevin; Vázquez-Fresno, Rosa; Sajed, Tanvir; Johnson, Daniel; Li, Carin; Karu, Naama; Sayeeda, Zinat; Lo, Elvis; Assempour, Nazanin; Berjanskii, Mark; Singhal, Sandeep; Arndt, David; Liang, Yonjie; Badran, Hasan; Grant, Jason; Serra-Cayuela, Arnau; Liu, Yifeng; Mandal, Rupa; Neveu, Vanessa; Pon, Allison; Knox, Craig; Wilson, Michael; Manach, Claudine; Scalbert, Augustin
2018-01-04
The Human Metabolome Database or HMDB (www.hmdb.ca) is a web-enabled metabolomic database containing comprehensive information about human metabolites along with their biological roles, physiological concentrations, disease associations, chemical reactions, metabolic pathways, and reference spectra. First described in 2007, the HMDB is now considered the standard metabolomic resource for human metabolic studies. Over the past decade the HMDB has continued to grow and evolve in response to emerging needs for metabolomics researchers and continuing changes in web standards. This year's update, HMDB 4.0, represents the most significant upgrade to the database in its history. For instance, the number of fully annotated metabolites has increased by nearly threefold, the number of experimental spectra has grown by almost fourfold and the number of illustrated metabolic pathways has grown by a factor of almost 60. Significant improvements have also been made to the HMDB's chemical taxonomy, chemical ontology, spectral viewing, and spectral/text searching tools. A great deal of brand new data has also been added to HMDB 4.0. This includes large quantities of predicted MS/MS and GC-MS reference spectral data as well as predicted (physiologically feasible) metabolite structures to facilitate novel metabolite identification. Additional information on metabolite-SNP interactions and the influence of drugs on metabolite levels (pharmacometabolomics) has also been added. Many other important improvements in the content, the interface, and the performance of the HMDB website have been made and these should greatly enhance its ease of use and its potential applications in nutrition, biochemistry, clinical chemistry, clinical genetics, medicine, and metabolomics science. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Edwards, J. D.; Dreike, P.; Smith, M. W.; Clemenson, M. D.; Zollweg, J. D.
2015-12-01
We describe developments to a 1-D cylindrical, radiation-hydrodynamics model of a lightning return stroke that simulates lighting spectra with 1 Angstrom resolution in photon wavelength. In previous calculations we assumed standard density air in the return stroke channel and the resulting optical spectrum was that of an optically thick emitter, unlike measured spectra that are optically thin. In this work, we improve our model by initializing our simulation assuming that the leader-heated channel is pre-expanded to a density of 0.01-0.05 ambient and near pressure equilibrium with the surrounding ambient air and by implementing a time-dependent, external heat source to incorporate the effects of continuing current. By doing so, our simulated spectra, illustrated in the attached figure, show strong spectral emission characteristics at wavelengths similar to spectra measured by Orville (1968). In this poster, we describe our model and compare our simulated results with spectra measured by Orville (1968) and Smith (2015). We also use spectroscopic methods to compute physical properties of the plasma channel, e.g. temperature, from Smith's measurements and compare these with our simulated results.
NASA Technical Reports Server (NTRS)
Cohen, Martin; Witteborn, Fred C.; Bregman, Jesse D.; Wooden, Diane H.; Salama, Alberto; Metcalfe, Leo
1996-01-01
We present three new absolutely calibrated continuous stellar spectra from 3 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars- alpha(sup 1) Cen, alpha TrA, and epsilon Car-augment our previous archive of complete absolutely calibrated spectra for northern K and M giants. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors. KAO and IRAS data in the 15-30 micron range suggest that the spectra of cool giants are close to Rayleigh-Jeans slopes. Our observations of alpha(sup 1) Cen, absolutely calibrated via our adopted Sirius model, indicate an angular diameter in very good agreement with values in the literature, demonstrating 'closure' of the set of spectra within our absolute framework. We compare our observed alpha(sup 1) Cen spectrum with a published grid of theoretical models from Kurucz, and adopt a plausible theoretical shape, that fits our spectrum, as a secondary reference spectrum in the southern sky.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar
In this article, we provide both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explainmore » from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (re fined) modular S-matrix. This leads to the identi fication of modular transformations in Chern-Simons theory and 3d N = 2 theory via the 3d/3d correspondence. In conclusion, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.« less
Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation.
Kakuta, Masaya; Jayawickrama, Dimuthu A; Wolters, Andrew M; Manz, Andreas; Sweedler, Jonathan V
2003-02-15
Time-resolved NMR spectroscopy is used to studychanges in protein conformation based on the elapsed time after a change in the solvent composition of a protein solution. The use of a micromixer and a continuous-flow method is described where the contents of two capillary flows are mixed rapidly, and then the NMR spectra of the combined flow are recorded at precise time points. The distance after mixing the two fluids and flow rates define the solvent-protein interaction time; this method allows the measurement of NMR spectra at precise mixing time points independent of spectral acquisition time. Integration of a micromixer and a microcoil NMR probe enables low-microliter volumes to be used without losing significant sensitivity in the NMR measurement. Ubiquitin, the model compound, changes its conformation from native to A-state at low pH and in 40% or higher methanol/water solvents. Proton NMR resonances of the His-68 and the Tyr-59 of ubiquitin are used to probe the conformational changes. Mixing ubiquitin and methanol solutions under low pH at microliter per minute flow rates yields both native and A-states. As the flow rate decreases, yielding longer reaction times, the population of the A-state increases. The micromixer-NMR system can probe reaction kinetics on a time scale of seconds.
Monitoring of interstitial buffer systems using micro-dialysis and infrared spectrometry
NASA Astrophysics Data System (ADS)
Heise, H. M.; Cocchieri, L.; Vahlsing, T.; Ihrig, D.; Elm, J.
2017-02-01
Nowadays, continuous sensing systems are important point-of-care devices for the hospital and personalized patient technology. FTIR-spectrometers have been successfully employed for the development of bed-side systems. In-vivo applications for critically ill patients can be envisaged for analytes and parameters, which are of interest for intensive care such as lactate, urea, pCO2 and pH. The human body maintains the blood pH around 7.4, but for severe pH level changes acidosis or alkalosis can lead to serious health problems. Three different buffer systems exist based on bicarbonate, phosphate and proteins; for the most important bicarbonate and phosphate systems infrared transmission spectra were recorded. By using the CO2 and HCO3 - bands of the bicarbonate spectra, the pH of the harvested biofluid can be predicted using the Henderson-Hasselbalch equation. Furthermore, we studied the solubility of CO2 in aqueous solutions using gas mixtures of N2 and CO2 with known composition within partial pressures of CO2 as relevant for invivo conditions. Thus, values of pCO2 up to 150 mm Hg (200 hPa) with distilled water and a Ringer solution, which is an isotonic electrolyte solution used for medical infusion, were measured at 25 °C and 37 °C (normal body temperature).
Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; ...
2016-03-02
In this article, we provide both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explainmore » from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (re fined) modular S-matrix. This leads to the identi fication of modular transformations in Chern-Simons theory and 3d N = 2 theory via the 3d/3d correspondence. In conclusion, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.« less
NASA Astrophysics Data System (ADS)
Basile, A. F.; Cramer, T.; Kyndiah, A.; Biscarini, F.; Fraboni, B.
2014-06-01
Metal-oxide-semiconductor (MOS) transistors fabricated with pentacene thin films were characterized by temperature-dependent current-voltage (I-V) characteristics, time-dependent current measurements, and admittance spectroscopy. The channel mobility shows almost linear variation with temperature, suggesting that only shallow traps are present in the semiconductor and at the oxide/semiconductor interface. The admittance spectra feature a broad peak, which can be modeled as the sum of a continuous distribution of relaxation times. The activation energy of this peak is comparable to the polaron binding energy in pentacene. The absence of trap signals in the admittance spectra confirmed that both the semiconductor and the oxide/semiconductor interface have negligible density of deep traps, likely owing to the passivation of SiO2 before pentacene growth. Nevertheless, current instabilities were observed in time-dependent current measurements following the application of gate-voltage pulses. The corresponding activation energy matches the energy of a hole trap in SiO2. We show that hole trapping in the oxide can explain both the temperature and the time dependences of the current instabilities observed in pentacene MOS transistors. The combination of these experimental techniques allows us to derive a comprehensive model for charge transport in hybrid architectures where trapping processes occur at various time and length scales.
NASA Astrophysics Data System (ADS)
Iomdina, Elena N.; Goltsman, Gregory N.; Seliverstov, Sergey V.; Sianosyan, Alisa A.; Teplyakova, Kseniya O.; Rusova, Anastasia A.
2016-09-01
An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells: the cornea and the sclera. Adequate control of corneal and scleral hydration is very important for early diagnosis of a variety of eye diseases, stating indications for and contraindications against keratorefractive surgeries and the choice of contact lens correction solutions. THz systems of creating images in reflected beams are likely to become ideal instruments of noninvasive control of corneal and scleral hydration degrees. This paper reports on the results of a study involving transmittance and reflectance spectra for the cornea and the sclera of rabbit and human eyes, as well as those of the rabbit eye, in the frequency range of 0.13 to 0.32 THz. The dependence of the reflectance coefficient of these tissues on water mass percentage content was determined. The experiments were performed on three corneas, three rabbit scleras, two rabbit eyes, and three human scleras. The preliminary results demonstrate that the proposed technique, based on the use of a continuous THz radiation, may be utilized to create a device for noninvasive control of corneal and scleral hydration, which has clear potential of broad practical application.
ASERA: A Spectrum Eye Recognition Assistant
NASA Astrophysics Data System (ADS)
Yuan, Hailong; Zhang, Haotong; Zhang, Yanxia; Lei, Yajuan; Dong, Yiqiao; Zhao, Yongheng
2018-04-01
ASERA, ASpectrum Eye Recognition Assistant, aids in quasar spectral recognition and redshift measurement and can also be used to recognize various types of spectra of stars, galaxies and AGNs (Active Galactic Nucleus). This interactive software allows users to visualize observed spectra, superimpose template spectra from the Sloan Digital Sky Survey (SDSS), and interactively access related spectral line information. ASERA is an efficient and user-friendly semi-automated toolkit for the accurate classification of spectra observed by LAMOST (the Large Sky Area Multi-object Fiber Spectroscopic Telescope) and is available as a standalone Java application and as a Java applet. The software offers several functions, including wavelength and flux scale settings, zoom in and out, redshift estimation, and spectral line identification.
NASA Technical Reports Server (NTRS)
Edwards, D. L.
1993-01-01
This report focuses on the development of an operational Rutherford backscattering spectrometry (RBS) system and shows the application of such a system on a space environmental test. Thin films of aluminum and tantalum were deposited on diamond substrates. These films were anodized and preexposure characterization spectra obtained using RBS and total hemispherical reflectance. The samples were exposed to energetic protons then postexposure characterization spectra was obtained using the same techniques. Conclusions based on the comparison of preexposure and postexposure spectra are presented. RBS comparison spectra show no change in the metal/metal oxide interface, while the comparison reflectance data indicate change. Explanations for this reflectance change are presented in this report.
Comparing Ultraviolet Spectra against Calculations: Year 2 Results
NASA Technical Reports Server (NTRS)
Peterson, Ruth C.
2004-01-01
The five-year goal of this effort is to calculate high fidelity mid-W spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this second year, the comparison of our calculations against observed high-resolution mid- W spectra was extended to stars as metal-rich as the Sun, and to hotter and cooler stars, further improving the list of atomic line parameters used in the calculations. We also published the application of our calculations based on the earlier list of line parameters to the observed mid-UV and optical spectra of a mildly metal-poor globular cluster in the nearby Andromeda galaxy, Messier 3 1.
Nilsson, Björn; Håkansson, Petra; Johansson, Mikael; Nelander, Sven; Fioretos, Thoas
2007-01-01
Ontological analysis facilitates the interpretation of microarray data. Here we describe new ontological analysis methods which, unlike existing approaches, are threshold-free and statistically powerful. We perform extensive evaluations and introduce a new concept, detection spectra, to characterize methods. We show that different ontological analysis methods exhibit distinct detection spectra, and that it is critical to account for this diversity. Our results argue strongly against the continued use of existing methods, and provide directions towards an enhanced approach. PMID:17488501
Loren, Bradley P.; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang
2017-01-01
A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis. PMID:28979759
Busuladžić, M; Hasović, E; Becker, W; Milošević, D B
2012-10-07
We theoretically investigate high-order above-threshold ionization (HATI) of heteronuclear diatomic molecules applying the molecular strong-field approximation which includes dressing of the molecular bound state. We consider HATI of nitrogen monoxide molecules, which are characterized by the π symmetry of their highest occupied molecular orbital. We show that the HATI spectra of NO exhibit characteristic interference structures. We analyze the differences and similarities of the HATI spectra of NO molecules and the spectra of CO (σ symmetry) and O(2) (π(g) symmetry) molecules. The symmetry properties of the molecular HATI spectra governed by linearly and elliptically polarized fields are considered in detail. The yields of high-energy electrons, contributing to the plateau region of the photoelectron spectra, strongly depend on the employed ellipticity.
Remote sensing of forest canopy and leaf biochemical contents
NASA Technical Reports Server (NTRS)
Peterson, David L.; Matson, Pamela A.; Card, Don H.; Aber, John D.; Wessman, Carol; Swanberg, Nancy; Spanner, Michael
1988-01-01
Recent research on the remote sensing of forest leaf and canopy biochemical contents suggests that the shortwave IR region contains this information; laboratory analyses of dry ground leaves have yielded reliable predictive relationships between both leaf nitrogen and lignin with near-IR spectra. Attention is given to the application of these laboratory techniques to a limited set of spectra from fresh, whole leaves of conifer species. The analysis of Airborne Imaging Spectrometer data reveals that total water content variations in deciduous forest canopies appear as overall shifts in the brightness of raw spectra.
NASA Astrophysics Data System (ADS)
Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Nikiforova, Olga Yu.; Ponomarev, Yurii N.; Tuzikov, Sergei A.; Yumov, Evgeny L.
2014-11-01
The results of application of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with chronic respiratory diseases (chronic obstructive pulmonary disease and lung cancer) are presented. The absorption spectra of exhaled breath of representatives of the target groups and healthy volunteers were measured; the selection by chemometrics methods of the most informative absorption coefficients in scan spectra in terms of the separation investigated nosology was implemented.
Process analytical technology in continuous manufacturing of a commercial pharmaceutical product.
Vargas, Jenny M; Nielsen, Sarah; Cárdenas, Vanessa; Gonzalez, Anthony; Aymat, Efrain Y; Almodovar, Elvin; Classe, Gustavo; Colón, Yleana; Sanchez, Eric; Romañach, Rodolfo J
2018-03-01
The implementation of process analytical technology and continuous manufacturing at an FDA approved commercial manufacturing site is described. In this direct compaction process the blends produced were monitored with a Near Infrared (NIR) spectroscopic calibration model developed with partial least squares (PLS) regression. The authors understand that this is the first study where the continuous manufacturing (CM) equipment was used as a gravimetric reference method for the calibration model. A principal component analysis (PCA) model was also developed to identify the powder blend, and determine whether it was similar to the calibration blends. An air diagnostic test was developed to assure that powder was present within the interface when the NIR spectra were obtained. The air diagnostic test as well the PCA and PLS calibration model were integrated into an industrial software platform that collects the real time NIR spectra and applies the calibration models. The PCA test successfully detected an equipment malfunction. Variographic analysis was also performed to estimate the sampling analytical errors that affect the results from the NIR spectroscopic method during commercial production. The system was used to monitor and control a 28 h continuous manufacturing run, where the average drug concentration determined by the NIR method was 101.17% of label claim with a standard deviation of 2.17%, based on 12,633 spectra collected. The average drug concentration for the tablets produced from these blends was 100.86% of label claim with a standard deviation of 0.4%, for 500 tablets analyzed by Fourier Transform Near Infrared (FT-NIR) transmission spectroscopy. The excellent agreement between the mean drug concentration values in the blends and tablets produced provides further evidence of the suitability of the validation strategy that was followed. Copyright © 2018 Elsevier B.V. All rights reserved.
Spectra of Baroclinic Inertia-Gravity Wave Turbulence
NASA Technical Reports Server (NTRS)
Glazman, Roman E.
1996-01-01
Baroclinic inertia-gravity (IG) waves form a persistent background of thermocline depth and sea surface height oscillations. They also contribute to the kinetic energy of horizontal motions in the subsurface layer. Measured by the ratio of water particle velocity to wave phase speed, the wave nonlinearity may be rather high. Given a continuous supply of energy from external sources, nonlinear wave-wave interactions among IG waves would result in inertial cascades of energy, momentum, and wave action. Based on a recently developed theory of wave turbulence in scale-dependent systems, these cascades are investigated and IG wave spectra are derived for an arbitrary degree of wave nonlinearity. Comparisons with satellite-altimetry-based spectra of surface height variations and with energy spectra of horizontal velocity fluctuations show good agreement. The well-known spectral peak at the inertial frequency is thus explained as a result of the inverse cascade. Finally, we discuss a possibility of inferring the internal Rossby radius of deformation and other dynamical properties of the upper thermocline from the spectra of SSH (sea surface height) variations based on altimeter measurements.
Prior, C; Danilāne, L; Oganesyan, V S
2018-05-16
We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of electron paramagnetic resonance (EPR) spectra of spin labelled DNA. Models for two structurally different DNA spin probes with either the rigid or flexible position of the nitroxide group in the base pair, employed in experimental studies previously, have been developed. By the application of the combined MD-EPR simulation methodology we aimed at the following. Firstly, to provide a test bed against a sensitive spectroscopic technique for the recently developed improved version of the parmbsc1 force field for MD modelling of DNA. The predicted EPR spectra show good agreement with the experimental ones available from the literature, thus confirming the accuracy of the currently employed DNA force fields. Secondly, to provide a quantitative interpretation of the motional contributions into the dynamics of spin probes in both duplex and single-strand DNA fragments and to analyse their perturbing effects on the local DNA structure. Finally, a combination of MD and EPR allowed us to test the validity of the application of the Model-Free (M-F) approach coupled with the partial averaging of magnetic tensors to the simulation of EPR spectra of DNA systems by comparing the resultant EPR spectra with those simulated directly from MD trajectories. The advantage of the M-F based EPR simulation approach over the direct propagation techniques is that it requires motional and order parameters that can be calculated from shorter MD trajectories. The reported MD-EPR methodology is transferable to the prediction and interpretation of EPR spectra of higher order DNA structures with novel types of spin labels.
Prediction of ethanol in bottled Chinese rice wine by NIR spectroscopy
NASA Astrophysics Data System (ADS)
Ying, Yibin; Yu, Haiyan; Pan, Xingxiang; Lin, Tao
2006-10-01
To evaluate the applicability of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining ethanol concentration of Chinese rice wine in square brown glass bottle, transmission spectra of 100 bottled Chinese rice wine samples were collected in the spectral range of 350-1200 nm. Statistical equations were established between the reference data and VIS-NIR spectra by partial least squares (PLS) regression method. Performance of three kinds of mathematical treatment of spectra (original spectra, first derivative spectra and second derivative spectra) were also discussed. The PLS models of original spectra turned out better results, with higher correlation coefficient in calibration (R cal) of 0.89, lower root mean standard error of calibration (RMSEC) of 0.165, and lower root mean standard error of cross validation (RMSECV) of 0.179. Using original spectra, PLS models for ethanol concentration prediction were developed. The R cal and the correlation coefficient in validation (R val) were 0.928 and 0.875, respectively; and the RMSEC and the root mean standard error of validation (RMSEP) were 0.135 (%, v v -1) and 0.177 (%, v v -1), respectively. The results demonstrated that VIS-NIR spectroscopy could be used to predict ethanol concentration in bottled Chinese rice wine.
NASA Technical Reports Server (NTRS)
Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.
1983-01-01
A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliyahu, Danny; Yariv, Amnon
1997-05-01
Using the time domain master equation for a complex electric-field pulse envelope, we find analytical results for the optical spectra of passively mode-locked semiconductor lasers. The analysis includes the effect of optical nonlinearity of semiconductor lasers, which is characterized by a slow saturable amplifier and absorber. Group velocity dispersion, bandwidth limiting, and self-phase modulation were considered as well. The FWHM of the spectrum profile was found to have a strong dependence on group velocity dispersion and self-phase modulation. For large absolute values of the chirp parameter, the optical spectra result in equispaced continuous wave frequencies, a large fraction of whichmore » have equal power. {copyright} 1997 Optical Society of America« less
Spectroscopy for Industrial Applications: High-Temperature Processes
NASA Astrophysics Data System (ADS)
Fateev, Alexander; Grosch, Helge; Clausen, Sonnik; Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan
2014-06-01
The continuous development of the spectroscopic databases brings new perspectives in the environmental and industrial on-line process control, monitoring and stimulates further optical sensor developments. This is because no calibration gases are needed and, in general, temperature-dependent spectral absorption features gases of interest for a specific instrument can in principle be calculated by knowing only the gas temperature and pressure in the process under investigation/monitoring. The latest HITRAN-2012 database contains IR/UV spectral data for 47 molecules and it is still growing. However use of HITRAN is limited to low-temperature processes (< 400 K) and therefor can be used for absorption spectra calculations at limited temperature/pressure ranges. For higher temperatures, the HITEMP-2010 database is available. Only a few molecules CO2, H2O, CO and NO are those of interest for e.g. various combustion and astronomical applications are included. In the recent few years, several efforts towards a development of hot line lists have been made; those have been implemented in the latest HITRAN2012 database1. High-resolution absorption measurements of NH3 (IR, 0.1 cm-1) and phenol (UV, 0.019 nm) on a flow gas cell2 up to 800 K are presented. Molecules are of great interest in various high-temperature environments including exoplanets, combustion and gasification. Measured NH3 hot lines have been assigned and spectra have been compared with that obtained by calculations based on the BYTe hot line list1. High-temperature NH3 absorption spectra have been used in the analysis of in situ high-resolution IR absorption measurements on the producer gas in low-temperature gasification process on a large scale. High-resolution UV temperature-dependent absorption cross-sections of phenol are reported for the first time. All UV data have been calibrated by relevant GC/MS measurements. Use of the data is demonstrated by the analysis of in situ UV absorption measurements on a small-scale low-temperature gasifier. A comparison between in situ, gas extraction and conventional gas sampling measurements is presented. Overall the presentation shows an example of successful industrial and academic partnerships within the framework of national and international ongoing projects.
Spectral calibration in the mid-infrared: Challenges and solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloan, G. C.; Herter, T. L.; Houck, J. R.
2015-01-01
We present spectra obtained with the Infrared Spectrograph on the Spitzer Space Telescope of 33 K giants and 20 A dwarfs to assess their suitability as spectrophotometric standard stars. The K giants confirm previous findings that the strength of the SiO absorption band at 8 μm increases for both later optical spectral classes and redder (B–V){sub 0} colors, but with considerable scatter. For K giants, the synthetic spectra underpredict the strengths of the molecular bands from SiO and OH. For these reasons, the assumed true spectra for K giants should be based on the assumption that molecular band strengths inmore » the infrared can be predicted accurately from neither optical spectral class or color nor synthetric spectra. The OH bands in K giants grow stronger with cooler stellar temperatures, and they are stronger than predicted by synthetic spectra. As a group, A dwarfs are better behaved and more predictable than the K giants, but they are more likely to show red excesses from debris disks. No suitable A dwarfs were located in parts of the sky continuously observable from Spitzer, and with previous means of estimating the true spectra of K giants ruled out, it was necessary to use models of A dwarfs to calibrate spectra of K giants from observed spectral ratios of the two groups and then use the calibrated K giants as standards for the full database of infrared spectra from Spitzer. We also describe a lingering artifact that affects the spectra of faint blue sources at 24 μm.« less
An inexpensive autosampler for a DART/TOFMS provides mass spectra from analytes absorbed on 76 cotton swab, wipe samples in 7.5 min. A field sample carrier simplifies sample collection and provides swabs nearly ready for analysis to the lab. Applications of the high throughput pr...
Some Applications of Fast Atom Bombardment Mass Spectrometry.
1985-08-01
heated probe - E1 mass spectra of certain metal carboxylates 3 , where M4 (OCOR)60 is often the parent vapour-phase species. In fact, Zn3 (OCOCH 3)30+ is...using FABMS(1 7J. A Rhodium based catalyst complex also gave good spectra(1)- Metal carboxylates are common corrosion products(1 3 ). Figure 10 shows the
Cozzolino, Daniel
2015-03-30
Vibrational spectroscopy encompasses a number of techniques and methods including ultra-violet, visible, Fourier transform infrared or mid infrared, near infrared and Raman spectroscopy. The use and application of spectroscopy generates spectra containing hundreds of variables (absorbances at each wavenumbers or wavelengths), resulting in the production of large data sets representing the chemical and biochemical wine fingerprint. Multivariate data analysis techniques are then required to handle the large amount of data generated in order to interpret the spectra in a meaningful way in order to develop a specific application. This paper focuses on the developments of sample presentation and main sources of error when vibrational spectroscopy methods are applied in wine analysis. Recent and novel applications will be discussed as examples of these developments. © 2014 Society of Chemical Industry.
Standardization of milk infrared spectra for the retroactive application of calibration models.
Bonfatti, V; Fleming, A; Koeck, A; Miglior, F
2017-03-01
The objective of this study was to standardize the infrared spectra obtained over time and across 2 milk laboratories of Canada to create a uniform historical database and allow (1) the retroactive application of calibration models for prediction of fine milk composition; and (2) the direct use of spectral information for the development of indicators of animal health and efficiency. Spectral variation across laboratories and over time was inspected by principal components analysis (PCA). Shifts in the PCA scores were detected over time, leading to the definition of different subsets of spectra having homogeneous infrared signal. To evaluate the possibility of using common equations on spectra collected by the 2 instruments and over time, we developed a standardization (STD) method. For each subset of data having homogeneous infrared signal, a total of 99 spectra corresponding to the percentiles of the distribution of the absorbance at each wavenumber were created and used to build the STD matrices. Equations predicting contents of saturated fatty acids, short-chain fatty acids, and C18:0 were created and applied on different subsets of spectra, before and after STD. After STD, bias and root mean squared error of prediction decreased by 66% and 32%, respectively. When calibration equations were applied to the historical nonstandardized database of spectra, shifts in the predictions could be observed over time for all investigated traits. Shifts in the distribution of the predictions over time corresponded to the shifts identified by the inspection of the PCA scores. After STD, shifts in the predicted fatty acid contents were greatly reduced. Standardization reduced spectral variability between instruments and over time, allowing the merging of milk spectra data from different instruments into a common database, the retroactive use of calibrations equations, or the direct use of the spectral data without restrictions. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai
2014-10-15
In this study, a bipolar nanosecond pulse with 20ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.
Two-dimensional infrared spectroscopy of vibrational polaritons.
Xiang, Bo; Ribeiro, Raphael F; Dunkelberger, Adam D; Wang, Jiaxi; Li, Yingmin; Simpkins, Blake S; Owrutsky, Jeffrey C; Yuen-Zhou, Joel; Xiong, Wei
2018-05-08
We report experimental 2D infrared (2D IR) spectra of coherent light-matter excitations--molecular vibrational polaritons. The application of advanced 2D IR spectroscopy to vibrational polaritons challenges and advances our understanding in both fields. First, the 2D IR spectra of polaritons differ drastically from free uncoupled excitations and a new interpretation is needed. Second, 2D IR uniquely resolves excitation of hybrid light-matter polaritons and unexpected dark states in a state-selective manner, revealing otherwise hidden interactions between them. Moreover, 2D IR signals highlight the impact of molecular anharmonicities which are applicable to virtually all molecular systems. A quantum-mechanical model is developed which incorporates both nuclear and electrical anharmonicities and provides the basis for interpreting this class of 2D IR spectra. This work lays the foundation for investigating phenomena of nonlinear photonics and chemistry of molecular vibrational polaritons which cannot be probed with traditional linear spectroscopy.
NASA Astrophysics Data System (ADS)
Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; Wcisło, P.; Hill, C.; Wilzewski, J. S.
2016-07-01
The HITRAN Application Programming Interface (HAPI) is presented. HAPI is a free Python library, which extends the capabilities of the HITRANonline interface (www.hitran.org) and can be used to filter and process the structured spectroscopic data. HAPI incorporates a set of tools for spectra simulation accounting for the temperature, pressure, optical path length, and instrument properties. HAPI is aimed to facilitate the spectroscopic data analysis and the spectra simulation based on the line-by-line data, such as from the HITRAN database [JQSRT (2013) 130, 4-50], allowing the usage of the non-Voigt line profile parameters, custom temperature and pressure dependences, and partition sums. The HAPI functions allow the user to control the spectra simulation and data filtering process via a set of the function parameters. HAPI can be obtained at its homepage www.hitran.org/hapi.
Li, Zhigang; Wang, Qiaoyun; Lv, Jiangtao; Ma, Zhenhe; Yang, Linjuan
2015-06-01
Spectroscopy is often applied when a rapid quantitative analysis is required, but one challenge is the translation of raw spectra into a final analysis. Derivative spectra are often used as a preliminary preprocessing step to resolve overlapping signals, enhance signal properties, and suppress unwanted spectral features that arise due to non-ideal instrument and sample properties. In this study, to improve quantitative analysis of near-infrared spectra, derivatives of noisy raw spectral data need to be estimated with high accuracy. A new spectral estimator based on singular perturbation technique, called the singular perturbation spectra estimator (SPSE), is presented, and the stability analysis of the estimator is given. Theoretical analysis and simulation experimental results confirm that the derivatives can be estimated with high accuracy using this estimator. Furthermore, the effectiveness of the estimator for processing noisy infrared spectra is evaluated using the analysis of beer spectra. The derivative spectra of the beer and the marzipan are used to build the calibration model using partial least squares (PLS) modeling. The results show that the PLS based on the new estimator can achieve better performance compared with the Savitzky-Golay algorithm and can serve as an alternative choice for quantitative analytical applications.
Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.
Rieder, Vera; Schork, Karin U; Kerschke, Laura; Blank-Landeshammer, Bernhard; Sickmann, Albert; Rahnenführer, Jörg
2017-11-03
In proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established for identifying peptides and proteins. Duplicated spectra, that is, multiple spectra of the same peptide, occur both in single MS/MS runs and in large spectral libraries. Clustering tandem mass spectra is used to find consensus spectra, with manifold applications. First, it speeds up database searches, as performed for instance by Mascot. Second, it helps to identify novel peptides across species. Third, it is used for quality control to detect wrongly annotated spectra. We compare different clustering algorithms based on the cosine distance between spectra. CAST, MS-Cluster, and PRIDE Cluster are popular algorithms to cluster tandem mass spectra. We add well-known algorithms for large data sets, hierarchical clustering, DBSCAN, and connected components of a graph, as well as the new method N-Cluster. All algorithms are evaluated on real data with varied parameter settings. Cluster results are compared with each other and with peptide annotations based on validation measures such as purity. Quality control, regarding the detection of wrongly (un)annotated spectra, is discussed for exemplary resulting clusters. N-Cluster proves to be highly competitive. All clustering results benefit from the so-called DISMS2 filter that integrates additional information, for example, on precursor mass.
NASA Astrophysics Data System (ADS)
Furukawa, Hideaki; Makino, Takeshi; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Wang, Xiaomin; Kobayashi, Tetsuya; Man, Wai S.; Tsang, Kwong Shing; Wada, Naoya
2017-02-01
Single-shot and long record length spectrum measurements of high-repetition-rate optical pulses are essential for research on nonlinear dynamics as well as for applications in sensing and communication. To achieve a continuous measurements we employ the Time Stretch Dispersive Fourier Transform. We show single-shot measurements of millions of sequential pulses at high repetition rate of 1 Giga spectra per second. Results were obtained using -100 ps/nm dispersive Fourier transform module and a 50 Gsample/s real-time digitizer of 16 GHz bandwidth. Single-shot spectroscopy of 1 GHz optical pulse train was achieved with the wavelength resolution of approximately 150 pm. This instrument is ideal for observation of complex nonlinear dynamics such as switching, mode locking and soliton dynamics in high repetition rate lasers.
Petasis, Doros T; Hendrich, Michael P
2015-01-01
Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.
Spectra of turbulent static pressure fluctuations in jet mixing layers
NASA Technical Reports Server (NTRS)
Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.
1977-01-01
Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.
NASA Astrophysics Data System (ADS)
Gardini, A.; Maíz Apellániz, J.; Pérez, E.; Quesada, J. A.; Funke, B.
2013-05-01
The Radiative Transfer Model (RTM) and the retrieval algorithm, incorporated in the SCIATRAN 2.2 software package developed at the Institute of Remote Sensing/Institute of Enviromental Physics of Bremen University (Germany), allows to simulate, among other things, radiance/irradiance spectra in the 2400--24 000 Å range. In this work we present applications of RTM to two case studies. In the first case the RTM was used to simulate direct solar irradiance spectra, with different water vapor amounts, for the study of the water vapor content in the atmosphere above Sierra Nevada Observatory. Simulated spectra were compared with those measured with a spectrometer operating in the 8000--10 000 Å range. In the second case the RTM was used to generate telluric model spectra to subtract the atmospheric contribution and correct high-resolution stellar spectra from atmospheric water vapor and oxygen lines. The results of both studies are discussed.
Heterodyne-detected dispersed vibrational echo spectroscopy.
Jones, Kevin C; Ganim, Ziad; Tokmakoff, Andrei
2009-12-24
We develop heterodyned dispersed vibrational echo spectroscopy (HDVE) and demonstrate the new capabilities in biophysical applications. HDVE is a robust ultrafast technique that provides a characterization of the real and imaginary components of third-order nonlinear signals with high sensitivity and single-laser-shot capability and can be used to extract dispersed pump-probe and dispersed vibrational echo spectra. Four methods for acquiring HDVE phase and amplitude spectra were compared: Fourier transform spectral interferometry, a new phase modulation spectral interferometry technique, and combination schemes. These extraction techniques were demonstrated in the context of protein amide I spectroscopy. Experimental HDVE and heterodyned free induction decay amide I spectra were explicitly compared to conventional dispersed pump-probe, dispersed vibrational echo, and absorption spectra. The new capabilities of HDVE were demonstrated by acquiring single-shot spectra and melting curves of ubiquitin and concentration-dependent spectra of insulin suitable for extracting the binding constant for dimerization. The introduced techniques will prove particularly useful in transient experiments, studying irreversible reactions, and micromolar concentration studies of small proteins.
Classification of ion mobility spectra by functional groups using neural networks
NASA Technical Reports Server (NTRS)
Bell, S.; Nazarov, E.; Wang, Y. F.; Eiceman, G. A.
1999-01-01
Neural networks were trained using whole ion mobility spectra from a standardized database of 3137 spectra for 204 chemicals at various concentrations. Performance of the network was measured by the success of classification into ten chemical classes. Eleven stages for evaluation of spectra and of spectral pre-processing were employed and minimums established for response thresholds and spectral purity. After optimization of the database, network, and pre-processing routines, the fraction of successful classifications by functional group was 0.91 throughout a range of concentrations. Network classification relied on a combination of features, including drift times, number of peaks, relative intensities, and other factors apparently including peak shape. The network was opportunistic, exploiting different features within different chemical classes. Application of neural networks in a two-tier design where chemicals were first identified by class and then individually eliminated all but one false positive out of 161 test spectra. These findings establish that ion mobility spectra, even with low resolution instrumentation, contain sufficient detail to permit the development of automated identification systems.
Multispectra CWT-based algorithm (MCWT) in mass spectra for peak extraction.
Hsueh, Huey-Miin; Kuo, Hsun-Chih; Tsai, Chen-An
2008-01-01
An important objective in mass spectrometry (MS) is to identify a set of biomarkers that can be used to potentially distinguish patients between distinct treatments (or conditions) from tens or hundreds of spectra. A common two-step approach involving peak extraction and quantification is employed to identify the features of scientific interest. The selected features are then used for further investigation to understand underlying biological mechanism of individual protein or for development of genomic biomarkers to early diagnosis. However, the use of inadequate or ineffective peak detection and peak alignment algorithms in peak extraction step may lead to a high rate of false positives. Also, it is crucial to reduce the false positive rate in detecting biomarkers from ten or hundreds of spectra. Here a new procedure is introduced for feature extraction in mass spectrometry data that extends the continuous wavelet transform-based (CWT-based) algorithm to multiple spectra. The proposed multispectra CWT-based algorithm (MCWT) not only can perform peak detection for multiple spectra but also carry out peak alignment at the same time. The author' MCWT algorithm constructs a reference, which integrates information of multiple raw spectra, for feature extraction. The algorithm is applied to a SELDI-TOF mass spectra data set provided by CAMDA 2006 with known polypeptide m/z positions. This new approach is easy to implement and it outperforms the existing peak extraction method from the Bioconductor PROcess package.
EXPLORING THE TIME DISPERSION OF THE IBEX-HI ENERGETIC NEUTRAL ATOM SPECTRA AT THE ECLIPTIC POLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allegrini, F.; Dayeh, M. A.; Desai, M. I.
2012-04-20
The Interstellar Boundary Explorer (IBEX) has observed energetic neutral atom (ENA) hydrogen emissions from the edge of the solar system for more than three years. The observations span energies from 0.01 to 6 keV FWHM. At energies greater than 0.5-6 keV, and for a travel distance of {approx}100 AU, the travel time difference between the slowest and the fastest ENA is more than a year. Therefore, we construct spectra including the effect that slower ENAs left the source at an earlier time than faster ones. If the source produces a steady rate of ENAs and the extinction does not vary,more » then we expect that the spectral shape would be time independent. However, while the extinction of ENAs has been fairly constant during the first two and a half years, the source appears to have changed, and thus the spectra at a single time may not represent the conditions at the source. IBEX's viewing allows continuous sampling of the ecliptic poles where fluxes can be continuously monitored. For a given source distance we construct spectra assuming that the measured ENAs left the source at roughly the same time. To accomplish this construction, we apply time lag corrections to the signal at different ENA energies that take into account the travel time difference. We show that the spectral shape at the poles exhibits a statistically significant change with time.« less
NASA Astrophysics Data System (ADS)
Maidur, Shivaraj R.; Jahagirdar, Jitendra R.; Patil, Parutagouda Shankaragouda; Chia, Tze Shyang; Quah, Ching Kheng
2018-01-01
We report synthesis, characterizations, structure-property relationships, and third-order nonlinear optical studies for two new chalcone derivatives, (2E)-1-(anthracen-9-yl)-3-(4-bromophenyl)prop-2-en-1-one (Br-ANC) and (2E)-1-(anthracen-9-yl)-3-(4-chlorophenyl)prop-2-en-1-one (Cl-ANC). These derivatives were crystallized in the centrosymmetric monoclinic P21/c crystal structure. The intermolecular interactions of both the crystals were visualized by Hirshfeld surface analyses (HSA). The crystals are thermally stable up to their melting points (180.82 and 191.16 °C for Cl-ANC and Br-ANC, respectively). The geometry optimizations, FT-IR spectra, 1H and 13C NMR spectra, electronic absorption spectra, electronic transitions, and HOMO-LUMO energy gaps were studied by Density Functional Theory (DFT) at B3LYP/6-311+G(d, p) level. The theoretical results provide excellent agreement with experimental findings. The electric dipole moments, static polarizabilities, molecular electrostatic potentials (MEP) and global chemical reactivity descriptors (GCRD) were also theoretically computed. The materials exhibited good nonlinear absorption (NLA), nonlinear refraction (NLR) and optical limiting (OL) behavior under diode-pumped solid-state (DPSS) continuous wave (CW) laser excitation (532 nm and 200 mW). The NLO parameters such as NLA coefficient (β∼10-5 cmW-1), NLR index (n2∼10-10 cm2 W-1) and third-order NLO susceptibilities (χ(3) ∼10-7 esu) were measured. Further, we estimated one-photon and two-photon figures of merit, which satisfy the demands (W > 1 and T < 1) for all-optical switching. Thus, the present chalcone derivatives with anthracene moiety are potential materials for OL and optical switching applications.
Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets
NASA Technical Reports Server (NTRS)
Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana Elena; Freedman, Richard; Visscher, Channon
2017-01-01
Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure. In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations. We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 less than or equal to T(sub eff) less than or equal to 2400 K and 2.5 less than or equal to log g less than or equal to 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.
Standardized cell samples for midIR technology development
NASA Astrophysics Data System (ADS)
Kastl, Lena; Rommel, Christina E.; Kemper, Björn; Schnekenburger, Jürgen
2015-03-01
The application of midIR spectroscopy towards human cell and tissue samples is impaired by the need for technical solutions and lacking sample standards for technology development. We here present the standardization of stable test samples for the continuous development and testing of novel optical system components. We have selected cell lines representing the major cellular skin constituents keratinocytes and fibroblasts (NIH-3T3, HaCaT). In addition, two skin cancer cell types (A-375 and SK-MEL-28 cells) were analyzed. Cells were seeded on CaF2 substrates and measured dried and under aqueous medium as well as fixated and unfixated. Several independent cell preparations were analyzed with an FTIR spectrometer in the wave number range from 1000 - 4000 cm-1. The obtained data demonstrate that fixed and dehydrated cells on CaF2 can be stored in pure ethanol for several weeks without significant losses in quality of the spectral properties. The established protocol of cell seeding on CaF2 substrates, chemical fixation, dehydration, storage under ethanol and air-drying is suitable for the production of reliable midIR standards. The retrieved spectra demonstrate that fixed cells on CaF2 can be prepared reproducibly; with stable midIR spectral properties over several weeks and properties mimicking reliable unfixed cells. Moreover, the fixated samples on CaF2 show clear differences in the cell type specific spectra that can be identified by principle component analysis. In summary, the standardized cell culture samples on CaF2 substrates are suitable for the development of a midIR device and the optimization of the specific midIR spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmittroth, F.
1978-01-01
Applications of a new data-adjustment code are given. The method is based on a maximum-likelihood extension of generalized least-squares methods that allow complete covariance descriptions for the input data and the final adjusted data evaluations. The maximum-likelihood approach is used with a generalized log-normal distribution that provides a way to treat problems with large uncertainties and that circumvents the problem of negative values that can occur for physically positive quantities. The computer code, FERRET, is written to enable the user to apply it to a large variety of problems by modifying only the input subroutine. The following applications are discussed:more » A 75-group a priori damage function is adjusted by as much as a factor of two by use of 14 integral measurements in different reactor spectra. Reactor spectra and dosimeter cross sections are simultaneously adjusted on the basis of both integral measurements and experimental proton-recoil spectra. The simultaneous use of measured reaction rates, measured worths, microscopic measurements, and theoretical models are used to evaluate dosimeter and fission-product cross sections. Applications in the data reduction of neutron cross section measurements and in the evaluation of reactor after-heat are also considered. 6 figures.« less
Mohamed, Ekram H; Lotfy, Hayam M; Hegazy, Maha A; Mowaka, Shereen
2017-05-25
Analysis of complex mixture containing three or more components represented a challenge for analysts. New smart spectrophotometric methods have been recently evolved with no limitation. A study of different novel and smart spectrophotometric techniques for resolution of severely overlapping spectra were presented in this work utilizing isosbestic points present in different absorption spectra, normalized spectra as a divisor and dual wavelengths. A quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PCT) and para-aminophenol (PAP) was taken as an example for application of the proposed techniques without any separation steps. The adopted techniques adopted of successive and progressive steps manipulating zero /or ratio /or derivative spectra. The proposed techniques includes eight novel and simple methods namely direct spectrophotometry after applying derivative transformation (DT) via multiplying by a decoding spectrum, spectrum subtraction (SS), advanced absorbance subtraction (AAS), advanced amplitude modulation (AAM), simultaneous derivative ratio (S 1 DD), advanced ratio difference (ARD), induced ratio difference (IRD) and finally double divisor-ratio difference-dual wavelength (DD-RD-DW) methods. The proposed methods were assessed by analyzing synthetic mixtures of the studied drugs. They were also successfully applied to commercial pharmaceutical formulations without interference from other dosage form additives. The methods were validated according to the ICH guidelines, accuracy, precision, repeatability, were found to be within the acceptable limits. The proposed procedures are accurate, simple and reproducible and yet economic. They are also sensitive and selective and could be used for routine analysis of complex most of the binary, ternary and quaternary mixtures and even more complex mixtures.
Application of Computer-Assisted Learning Methods in the Teaching of Chemical Spectroscopy.
ERIC Educational Resources Information Center
Ayscough, P. B.; And Others
1979-01-01
Discusses the application of computer-assisted learning methods to the interpretation of infrared, nuclear magnetic resonance, and mass spectra; and outlines extensions into the area of integrated spectroscopy. (Author/CMV)
Zhang, Fang; Wang, Haoyang; Zhang, Li; Zhang, Jing; Fan, Ruojing; Yu, Chongtian; Wang, Wenwen; Guo, Yinlong
2014-10-01
A strategy for suspected-target screening of pesticide residues in complicated matrices was exploited using gas chromatography in combination with hybrid quadrupole time-of-flight mass spectrometry (GC-QTOF MS). The screening workflow followed three key steps of, initial detection, preliminary identification, and final confirmation. The initial detection of components in a matrix was done by a high resolution mass spectrum deconvolution; the preliminary identification of suspected pesticides was based on a special retention index/mass spectrum (RI/MS) library that contained both the first-stage mass spectra (MS(1) spectra) and retention indices; and the final confirmation was accomplished by accurate mass measurements of representative ions with their response ratios from the MS(1) spectra or representative product ions from the second-stage mass spectra (MS(2) spectra). To evaluate the applicability of the workflow in real samples, three matrices of apple, spinach, and scallion, each spiked with 165 test pesticides in a set of concentrations, were selected as the models. The results showed that the use of high-resolution TOF enabled effective extractions of spectra from noisy chromatograms, which was based on a narrow mass window (5 mDa) and suspected-target compounds identified by the similarity match of deconvoluted full mass spectra and filtering of linear RIs. On average, over 74% of pesticides at 50 ng/mL could be identified using deconvolution and the RI/MS library. Over 80% of pesticides at 5 ng/mL or lower concentrations could be confirmed in each matrix using at least two representative ions with their response ratios from the MS(1) spectra. In addition, the application of product ion spectra was capable of confirming suspected pesticides with specificity for some pesticides in complicated matrices. In conclusion, GC-QTOF MS combined with the RI/MS library seems to be one of the most efficient tools for the analysis of suspected-target pesticide residues in complicated matrices. Copyright © 2014 Elsevier B.V. All rights reserved.
Theoretical Models of Low-Resolution Microwave Rotational Spectra of Ethane- and Propanethiol
NASA Astrophysics Data System (ADS)
Kadjar, Ch. O.; Kazimova, S. B.; Hasanova, A. S.; Ismailzadeh, G. I.; Menzeleyev, M. R.
2018-05-01
Additive modeling of low-resolution microwave spectra of heteroisomeric substituted hydrocarbons produced theoretical spectra of ethanethiol and propanethiol in the range 0-2 THz with maxima at 465 ± 20 and 240 ± 20 GHz. More precise calculations in a narrow frequency band of these ranges used spectral line half-widths of 1.5, 0.8, and 0.5 MHz that modeled conditions in different layers of Earth's troposphere. The strongest extrema of the low-resolution spectra of the studied molecules were found at 486 ± 5, 446 ± 5, and 436 ± 5 (ethanethiol) and at 257 ± 5, 239 ± 5, and 234 ± 5 GHz (propanethiol). Various aspects of the application of the results were discussed.
Chen, Aixi
2014-11-03
In triple coupled semiconductor quantum well structures (SQWs) interacting with a coherent driving filed, a coherent coupling field and a weak probe field, spontaneous emission spectra are investigated. Our studies show emission spectra can easily be manipulated through changing the intensity of the driving and coupling field, detuning of the driving field. Some interesting physical phenomena such as spectral-line enhancement/suppression, spectral-line narrowing and spontaneous emission quenching may be obtained in our system. The theoretical studies of spontaneous emission spectra in SQWS have potential application in high-precision spectroscopy. Our studies are based on the real physical system [Appl. Phys. Lett.86(20), 201112 (2005)], and this scheme might be realizable with presently available techniques.
Modification and benchmarking of MCNP for low-energy tungsten spectra.
Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M
2000-12-01
The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.
Partovi-Azar, Pouya; Kühne, Thomas D
2015-11-05
We present a novel computational method to accurately calculate Raman spectra from first principles. Together with an extension of the second-generation Car-Parrinello method of Kühne et al. (Phys. Rev. Lett. 2007, 98, 066401) to propagate maximally localized Wannier functions together with the nuclei, a speed-up of one order of magnitude can be observed. This scheme thus allows to routinely calculate finite-temperature Raman spectra "on-the-fly" by means of ab-initio molecular dynamics simulations. To demonstrate the predictive power of this approach we investigate the effect of hydrophobic and hydrophilic solutes in water solution on the infrared and Raman spectra. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Maolin; Qin, Guangjiong; Liu, Jialei; Zhen, Zhen; Fedorchuk, A. A.; Lakshminarayana, G.; Albassam, A. A.; El-Naggar, A. M.; Ozga, Katarzyna; Kityk, I. V.
2017-08-01
Novel nonlinear optical (NLO) chromophore based on 6-(pyrrolidin-1-yl)-1H-indole as the electron donor group was designed and synthesized. The molecular structure of this chromophore was characterized by 1H NMR spectra, 13C NMR spectra, and MS spectra. The delocalized energy level was estimated by UV-Vis. spectra. The thermal property was studied by thermogravimetric analysis (TGA). The poled films containing chromophores ZML-1 with a loading density of 10 wt% in amorphous polycarbonate (APC) afford an average electro-optic (EO) coefficient (r33) of 19 pm/V at 1310 nm. Compared to the reported aniline-based chromophore (r33 = 12 pm/V) analogues, chromophore ZML-1 exhibits enhanced electro-optical activity.
Robust red-emission spectra and yields in firefly bioluminescence against temperature changes
NASA Astrophysics Data System (ADS)
Mochizuki, Toshimitsu; Wang, Yu; Hiyama, Miyabi; Akiyama, Hidefumi
2014-05-01
We measured the quantitative spectra of firefly (Photinus pyralis) bioluminescence at various temperatures to investigate the temperature dependence of the luciferin-luciferase reaction at 15-34 °C. The quantitative spectra were decomposed very well into red (1.9 eV), orange (2.0 eV), and green (2.2 eV) Gaussian components. The intensity of the green component was the only temperature sensitive quantity that linearly decreased as the temperature increased at pH 7 and 8. We found the quantitative bioluminescence spectra to be robust below 2.0 eV against temperature and other experimental conditions. The revealed robustness of the red emissions should be useful for quantitative applications such as adenosine-5'-triphosphate detection.
Santos, Josilene C; Tomal, Alessandra; Mariano, Leandro; Costa, Paulo R
2015-06-01
The aim of this study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. A semi-empirical model was used for the evaluation of transmission properties of this material. Since ambient dose equivalent, H(⁎)(10), is the radiation quantity adopted by IAEA for dose assessment, the variation of the H(⁎)(10) as a function of barite mortar thickness was calculated using primary experimental spectra. A CdTe detector was used for the measurement of these spectra. The resulting spectra were adopted for estimating the optimized thickness of protective barrier needed for shielding an area in an X-ray imaging facility. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Azhniuk, Yu. M.; Hutych, Yu. I.; Lopushansky, V. V.; Prymak, M. V.; Gomonnai, A. V.; Zahn, D. R. T.
2016-12-01
A one- and multiphonon Raman scattering study is performed for an extensive set of CdS1-xSex, Cd1-yZnyS, Cd1-yZnySe, and CdSe1-xTex nanocrystals to investigate the applicability of first- and second-order Raman spectra for the determination of the matrix-embedded ternary nanocrystal composition. For one-mode ternary systems both the LO and 2LO phonon frequencies in the Raman spectra are shown to be a good measure of the nanocrystal composition. For two-mode systems, the approaches based on the difference of the LO phonon frequencies (first-order Raman spectra) or double LO overtone and combination tone frequencies (second-order Raman spectra) as well as on the LO phonon band intensity ratios are analysed. The weak electron-phonon coupling in the II-VI nanocrystals and the polaron constant values for the nanocrystal sublattices are discussed.
A Study on Spectral Signature Analysis of Wetland Vegetation Based on Ground Imaging Spectrum Data
NASA Astrophysics Data System (ADS)
Ling, Chengxing; Liu, Hua; Ju, Hongbo; Zhang, Huaiqing; You, Jia; Li, Weina
2017-10-01
The objective of this study was to verify the application of imaging spectrometer in wetland vegetation remote sensing monitoring, based on analysis of wetland vegetation spectral features. Spectral information of Carex vegetation spectral data under different water environment was collected bySOC710VP and ASD FieldSpec 3; Meanwhile, the chlorophyll contents of wheat leaves were tested in the lab. A total 9 typical vegetation indices were calculated by using two instruments’ data which were spectral values from 400nm to 1000 nm. Then features between the same vegetation indices and soil water contents for two applications were analyzed and compared. The results showed that there were same spectrum curve trends of Carex vegetation (soil moisture content of 51%, 32%, 14% and three regional comparative analysis)reflectance between SOC710VP and ASD FieldSpec 3, including the two reflectance peak of 550nm and 730 nm, two reflectance valley of 690 nm and 970nm, and continuous near infrared reflectance platform. However, The two also have a very clear distinction: (1) The reflection spectra of SOC710VP leaves of Carex Carex leaf spectra in the three soil moisture environment values are greater than ASD FieldSpec 3 collected value; (2) The SOC710VP reflectivity curve does not have the smooth curve of the original spectrum measured by the ASD FieldSpec 3, the amplitude of fluctuation is bigger, and it is more obvious in the near infrared band. It is concluded that SOC710VP spectral data are reliable, with the image features, spectral curve features reliable. It has great potential in the research of hyperspectral remote sensing technology in the development of wetland near earth, remote sensing monitoring of wetland resources.
Cai, Tian; Guo, Ze-Qin; Xu, Xiao-Ying; Wu, Zhi-Jun
2018-03-01
Liquid chromatography-Mass Spectrometry (LC-MS) has been widely used in natural product analysis. Global detection and identification of nontargeted components are desirable in natural product research, for example, in quality control of Chinese herbal medicine. Nontargeted components analysis continues to expand to exciting life science application domains such as metabonomics. With this background, the present review summarizes recent developments in the analysis of minor unknown natural products using LC-MS and mainly focuses on the determination of the molecular formulae, selection of precursor ions, and characteristic fragmentation patterns of the known compounds. This review consists of three parts. Firstly, the methods used to determine unique molecular formula of unknown compounds such as accurate mass measurements, MS n spectra, or relative isotopic abundance information, are introduced. Secondly, the methods improving signal-to-noise ratio of MS/MS spectra by manual-MS/MS or workflow targeting-only signals were elucidated; pure precursor ions can be selected by changing the precursor ion isolated window. Lastly, characteristic fragmentation patterns such as Retro-Diels-Alder (RDA), McLafferty rearrangements, "internal residue loss," and so on, occurring in the molecular ions of natural products are summarized. Classical application of characteristic fragmentation patterns in identifying unknown compounds in extracts and relevant fragmentation mechanisms are presented (RDA reactions occurring readily in the molecular ions of flavanones or isoflavanones, McLafferty-type fragmentation reactions of some natural products such as epipolythiodioxopiperazines; fragmentation by "internal residue loss" possibly involving ion-neutral complex intermediates). © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:202-216, 2018. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkett, Max; Savory, Christopher N.; Fioretti, Angela N.
The temperature-dependence of the direct band gap and thermal expansion in the metastable anti-ReO 3 semiconductor Cu 3N are investigated between 4.2 and 300 K by Fourier-transform infrared spectroscopy and x-ray diffraction. Complementary refractive index spectra are determined by spectroscopic ellipsometry at 300K. A direct gap of 1.68eV is associated with the absorption onset at 300K, which strengthens continuously and reaches a magnitude of 3.5 x 10 5cm -1 at 2.7eV, suggesting potential for photovoltaic applications. Notably, the direct gap redshifts by just 24meV between 4.2 and 300K, giving an atypically small band-gap temperature coefficient dE g/dT of -0.082meV/K. Additionally,more » the band structure, dielectric function, phonon dispersion, linear expansion, and heat capacity are calculated using density functional theory; remarkable similarities between the experimental and calculated refractive index spectra support the accuracy of these calculations, which indicate beneficially low hole effective masses and potential negative thermal expansion below 50K. To assess the lattice expansion contribution to the band-gap temperature-dependence, a quasiharmonic model fit to the observed lattice contraction finds a monotonically decreasing linear expansion (descending past 10 -6K -1 below 80K), while estimating the Debye temperature, lattice heat capacity, and Gruneisen parameter. Accounting for lattice and electron-phonon contributions to the observed band-gap evolution suggests average phonon energies that are qualitatively consistent with predicted maxima in the phonon density of states. Furthermore, as band-edge temperature-dependence has significant consequences for device performance, copper nitride should be well suited for applications that require a largely temperature-invariant band gap.« less
Birkett, Max; Savory, Christopher N.; Fioretti, Angela N.; ...
2017-03-06
The temperature-dependence of the direct band gap and thermal expansion in the metastable anti-ReO 3 semiconductor Cu 3N are investigated between 4.2 and 300 K by Fourier-transform infrared spectroscopy and x-ray diffraction. Complementary refractive index spectra are determined by spectroscopic ellipsometry at 300K. A direct gap of 1.68eV is associated with the absorption onset at 300K, which strengthens continuously and reaches a magnitude of 3.5 x 10 5cm -1 at 2.7eV, suggesting potential for photovoltaic applications. Notably, the direct gap redshifts by just 24meV between 4.2 and 300K, giving an atypically small band-gap temperature coefficient dE g/dT of -0.082meV/K. Additionally,more » the band structure, dielectric function, phonon dispersion, linear expansion, and heat capacity are calculated using density functional theory; remarkable similarities between the experimental and calculated refractive index spectra support the accuracy of these calculations, which indicate beneficially low hole effective masses and potential negative thermal expansion below 50K. To assess the lattice expansion contribution to the band-gap temperature-dependence, a quasiharmonic model fit to the observed lattice contraction finds a monotonically decreasing linear expansion (descending past 10 -6K -1 below 80K), while estimating the Debye temperature, lattice heat capacity, and Gruneisen parameter. Accounting for lattice and electron-phonon contributions to the observed band-gap evolution suggests average phonon energies that are qualitatively consistent with predicted maxima in the phonon density of states. Furthermore, as band-edge temperature-dependence has significant consequences for device performance, copper nitride should be well suited for applications that require a largely temperature-invariant band gap.« less
Hiruma-Shimizu, Kazumi; Shimizu, Hiroki; Thompson, Gary S; Kalverda, Arnout P; Patching, Simon G
2015-01-01
Detergents are amphiphilic compounds that have crucial roles in the extraction, purification and stabilization of integral membrane proteins and in experimental studies of their structure and function. One technique that is highly dependent on detergents for solubilization of membrane proteins is solution-state NMR spectroscopy, where detergent micelles often serve as the best membrane mimetic for achieving particle sizes that tumble fast enough to produce high-resolution and high-sensitivity spectra, although not necessarily the best mimetic for a biomembrane. For achieving the best quality NMR spectra, detergents with partial or complete deuteration can be used, which eliminate interfering proton signals coming from the detergent itself and also eliminate potential proton relaxation pathways and strong dipole-dipole interactions that contribute line broadening effects. Deuterated detergents have also been used to solubilize membrane proteins for other experimental techniques including small angle neutron scattering and single-crystal neutron diffraction and for studying membrane proteins immobilized on gold electrodes. This is a review of the properties, chemical synthesis and applications of detergents that are currently commercially available and/or that have been synthesized with partial or complete deuteration. Specifically, the detergents are sodium dodecyl sulphate (SDS), lauryldimethylamine-oxide (LDAO), n-octyl-β-D-glucoside (β-OG), n-dodecyl-β-D-maltoside (DDM) and fos-cholines including dodecylphosphocholine (DPC). The review also considers effects of deuteration, detergent screening and guidelines for detergent selection. Although deuterated detergents are relatively expensive and not always commercially available due to challenges associated with their chemical synthesis, they will continue to play important roles in structural and functional studies of membrane proteins, especially using solution-state NMR.
NASA Technical Reports Server (NTRS)
Farmer, Crofton B.; Norton, Robert H.
1989-01-01
During the period April 29 through May 2, 1985, the Atmospheric Trace Molecular Spectroscopy experiment was operated as part of the Spacelab-3 payload of the shuttle Challenger. The instrument, a modified Michelson Interferometer covering the frequency range from 600 to 5000/cm, at a spectral resolution of 0.01/cm, recorded infrared spectra of the Sun and of the Earth's atmosphere at times close to entry into and exit from occultation by the Earth's limb as seen from the shuttle orbit of 360 km. Spectra were obtained that are free from absorptions due to constituents of the atmosphere (i.e., solar pure spectra), as well as spectra of the atmosphere itself, covering line-of-sight tangent altitudes that span the range from the lower thermosphere to the bottom of the troposphere. This atlas, believed to be the first record of observations of the continuous high resolution infrared spectrum of the Sun and the Earth's atmosphere from space, provides a compilation of these spectra arranged in a hardcopy format suitable for quick-look reference purposes; the data are also available in digital form.
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.
Assessing the Application of Cloud-Shadow Atmospheric Correction Algorithm on HICO
2014-05-01
multiple times and intercompare the results to assess variability in the retrieved reflectance spectra. Retrieved chlorophyll values from this...intercomparison are similar and also agree well with the In situ chlorophyll measurements. 15. SUBJECT TERMS Atmospheric correction, cloud-shadow...reflectance spectra. Re- trieved chlorophyll values from this intercomparison are similar and also agree well with the in situ chlorophyll measurements
The deconvolution of complex spectra by artificial immune system
NASA Astrophysics Data System (ADS)
Galiakhmetova, D. I.; Sibgatullin, M. E.; Galimullin, D. Z.; Kamalova, D. I.
2017-11-01
An application of the artificial immune system method for decomposition of complex spectra is presented. The results of decomposition of the model contour consisting of three components, Gaussian contours, are demonstrated. The method of artificial immune system is an optimization method, which is based on the behaviour of the immune system and refers to modern methods of search for the engine optimization.
Dai, Quanqin; Wang, Yingnan; Zhang, Yu; Li, Xinbi; Li, Ruowang; Zou, Bo; Seo, JaeTae; Wang, Yiding; Liu, Manhong; Yu, William W
2009-10-20
Infrared-emitting PbSe nanocrystals are of increasing interest in both fundamental research and technical application. However, the practical applications are greatly limited by their poor stability. In this work, absorption and photoluminescence spectra of PbSe nanocrystals were utilized to observe the stability of PbSe nanocrystals over several conventional factors, that is, particle concentration, particle size, temperature, light exposure, contacting atmosphere, and storage forms (solution or solid powder). Both absorption and luminescence spectra of PbSe nanocrystals exposed to air showed dependence on particle concentration, size, and light exposure, which caused large and quick blue-shifts in the optical spectra. This air-contacted instability arising from the destructive oxidation and subsequent collision-induced decomposition was kinetically dominated and differed from the traditional thought that smaller particles with lower concentrations shrank fast. The photoluminescence emission intensity of the PbSe nanocrystal solution under ultraviolet (UV) exposure in air increased first and then decreased slowly; without UV irradiation, the emission intensity monotonously decreased over time. However, if stored under nitrogen, no obvious changes in absorption and photoluminescence spectra of the PbSe nanocrystals were observed even under UV exposure or upon being heated up to 100 degrees C.
(13)C-(15)N correlation via unsymmetrical indirect covariance NMR: application to vinblastine.
Martin, Gary E; Hilton, Bruce D; Blinov, Kirill A; Williams, Antony J
2007-12-01
Unsymmetrical indirect covariance processing methods allow the derivation of hyphenated 2D NMR data from the component 2D spectra, potentially circumventing the acquisition of the much lower sensitivity hyphenated 2D NMR experimental data. Calculation of HSQC-COSY and HSQC-NOESY spectra from GHSQC, COSY, and NOESY spectra, respectively, has been reported. The use of unsymmetrical indirect covariance processing has also been applied to the combination of (1)H- (13)C GHSQC and (1)H- (15)N long-range correlation data (GHMBC, IMPEACH, or CIGAR-HMBC). The application of unsymmetrical indirect covariance processing to spectra of vinblastine is now reported, specifically the algorithmic extraction of (13)C- (15)N correlations via the unsymmetrical indirect covariance processing of the combination of (1)H- (13)C GHSQC and long-range (1)H- (15)N GHMBC to produce the equivalent of a (13)C- (15)N HSQC-HMBC correlation spectrum. The elimination of artifact responses with aromatic solvent-induced shifts (ASIS) is shown in addition to a method of forecasting potential artifact responses through the indirect covariance processing of the GHSQC spectrum used in the unsymmetrical indirect covariance processing.
Mixture quantification using PLS in plastic scintillation measurements.
Bagán, H; Tarancón, A; Rauret, G; García, J F
2011-06-01
This article reports the capability of plastic scintillation (PS) combined with multivariate calibration (Partial least squares; PLS) to detect and quantify alpha and beta emitters in mixtures. While several attempts have been made with this purpose in mind using liquid scintillation (LS), no attempt was done using PS that has the great advantage of not producing mixed waste after the measurements are performed. Following this objective, ternary mixtures of alpha and beta emitters ((241)Am, (137)Cs and (90)Sr/(90)Y) have been quantified. Procedure optimisation has evaluated the use of the net spectra or the sample spectra, the inclusion of different spectra obtained at different values of the Pulse Shape Analysis parameter and the application of the PLS1 or PLS2 algorithms. The conclusions show that the use of PS+PLS2 applied to the sample spectra, without the use of any pulse shape discrimination, allows quantification of the activities with relative errors less than 10% in most of the cases. This procedure not only allows quantification of mixtures but also reduces measurement time (no blanks are required) and the application of this procedure does not require detectors that include the pulse shape analysis parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pugliara, A.; Bayle, M.; Bonafos, C.; Carles, R.; Respaud, M.; Makasheva, K.
2018-03-01
A predictive modelling of plasmonic substrates appropriate to read ellipsometric spectra is presented in this work. We focus on plasmonic substrates containing a single layer of silver nanoparticles (AgNPs) embedded in silica matrices. The model uses the Abeles matrix formalism and is based on the quasistatic approximation of the classical Maxwell-Garnett mixing rule, however accounting for the electronic confinement effect through the damping parameter. It is applied on samples elaborated by: (i) RF-diode sputtering followed by Plasma Enhanced Chemical Vapor Deposition (PECVD) and (ii) Low Energy Ion Beam Synthesis (LE-IBS), and represents situations with increasing degree of complexity that can be accounted for by the model. It allows extraction of the main characteristics of the AgNPs population: average size, volume fraction and distance of the AgNPs layer from the matrix free surface. Model validation is achieved through comparison with results obtained from transmission electron microscopy approving for its applicability. The advantages and limitations of the proposed model are discussed after eccentricity-based statistical analysis along with further developments related to the quality of comparison between the model-generated spectra and the experimentally-recorded ellipsometric spectra.
Adjusted Levenberg-Marquardt method application to methene retrieval from IASI/METOP spectra
NASA Astrophysics Data System (ADS)
Khamatnurova, Marina; Gribanov, Konstantin
2016-04-01
Levenberg-Marquardt method [1] with iteratively adjusted parameter and simultaneous evaluation of averaging kernels together with technique of parameters selection are developed and applied to the retrieval of methane vertical profiles in the atmosphere from IASI/METOP spectra. Retrieved methane vertical profiles are then used for calculation of total atmospheric column amount. NCEP/NCAR reanalysis data provided by ESRL (NOAA, Boulder,USA) [2] are taken as initial guess for retrieval algorithm. Surface temperature, temperature and humidity vertical profiles are retrieved before methane vertical profile retrieval for each selected spectrum. Modified software package FIRE-ARMS [3] were used for numerical experiments. To adjust parameters and validate the method we used ECMWF MACC reanalysis data [4]. Methane columnar values retrieved from cloudless IASI spectra demonstrate good agreement with MACC columnar values. Comparison is performed for IASI spectra measured in May of 2012 over Western Siberia. Application of the method for current IASI/METOP measurements are discussed. 1.Ma C., Jiang L. Some Research on Levenberg-Marquardt Method for the Nonlinear Equations // Applied Mathematics and Computation. 2007. V.184. P. 1032-1040 2.http://www.esrl.noaa.gov/psdhttp://www.esrl.noaa.gov/psd 3.Gribanov K.G., Zakharov V.I., Tashkun S.A., Tyuterev Vl.G.. A New Software Tool for Radiative Transfer Calculations and its application to IMG/ADEOS data // JQSRT.2001.V.68.№ 4. P. 435-451. 4.http://www.ecmwf.int/http://www.ecmwf.int
Applications of infrared photo-acoustic spectroscopy for wood samples
Mon-Lin Kuo; John F. McClelland; Siquan Luo; Po-Liang Chien; R.D. Walker; Chung-Yun Hse
1988-01-01
Various infrared (IR) spectroscopic techniques for the analysis of wood samples are briefly discussed. Theories and instrumentation of the newly developed photoacoustic spectroscopic (PAS) technique for measuring absorbance spectra of solids are presented. Some important applications of the PAS technique in wood science research are discussed. The application of the...
Li, Wen-Long; Qu, Hai-Bin
2016-10-01
In this paper, the principle of NIRS (near infrared spectroscopy)-based process trajectory technology was introduced.The main steps of the technique include:① in-line collection of the processes spectra of different technics; ② unfolding of the 3-D process spectra;③ determination of the process trajectories and their normal limits;④ monitoring of the new batches with the established MSPC (multivariate statistical process control) models.Applications of the technology in the chemical and biological medicines were reviewed briefly. By a comprehensive introduction of our feasibility research on the monitoring of traditional Chinese medicine technical process using NIRS-based multivariate process trajectories, several important problems of the practical applications which need urgent solutions are proposed, and also the application prospect of the NIRS-based process trajectory technology is fully discussed and put forward in the end. Copyright© by the Chinese Pharmaceutical Association.
Routes to spatiotemporal chaos in Kerr optical frequency combs.
Coillet, Aurélien; Chembo, Yanne K
2014-03-01
We investigate the various routes to spatiotemporal chaos in Kerr optical frequency combs, obtained through pumping an ultra-high Q-factor whispering-gallery mode resonator with a continuous-wave laser. The Lugiato-Lefever model is used to build bifurcation diagrams with regards to the parameters that are externally controllable, namely, the frequency and the power of the pumping laser. We show that the spatiotemporal chaos emerging from Turing patterns and solitons display distinctive dynamical features. Experimental spectra of chaotic Kerr combs are also presented for both cases, in excellent agreement with theoretical spectra.
Kantor, Innokenty; Labiche, Jean-Claude; Collet, Emmanuel; Siron, Laurent; Thevenin, Jean-Jacques; Ponchut, Cyril; Borrel, Jacques; Mairs, Trevor; Marini, Carlo; Strohm, Cornelius; Mathon, Olivier; Pascarelli, Sakura
2014-11-01
A new FReLoN (Fast-Readout Low-Noise) high-frame-rate detector adopted for the fast continuous collection of X-ray absorption spectra is presented. The detector is installed on the energy-dispersive X-ray absorption beamline ID24 at the ESRF and is capable of full time-resolved EXAFS spectra collection with over 4 kHz repetition rate and 0.2 ms exposure time. An example of the in situ kinetic study of the high-temperature oxidation of metallic iron is presented.
White dwarf stars with chemically stratified atmospheres
NASA Technical Reports Server (NTRS)
Muchmore, D.
1982-01-01
Recent observations and theory suggest that some white dwarfs may have chemically stratified atmospheres - thin layers of hydrogen lying above helium-rich envelopes. Models of such atmospheres show that a discontinuous temperature inversion can occur at the boundary between the layers. Model spectra for layered atmospheres at 30,000 K and 50,000 K tend to have smaller decrements at 912 A, 504 A, and 228 A than uniform atmospheres would have. On the basis of their continuous extreme ultraviolet spectra, it is possible to distinguish observationally between uniform and layered atmospheres for hot white dwarfs.
Rare-Earth Ion-Host Lattice Interactions: 15. Analysis of the Spectra of Nd3+ in Gd3Sc2Ga3O12.
1984-05-01
Luminescence of Cr3+ Ions in Gadolinium Gallium and Gadolinium Scandium Gallium Garnet CT’stals, Soy. J. Quant. Electron. 12 (1982), 1124. 6M. Dutoit, J. C...Shcherbakov, Absolute Quantum Efficiency of the Luminescence of Cr3+ Ions in Gadolinium Gallium and Gadolinium Scandium Gallium Garnet Crystals, Soy. J...HDL Project: 324332 19. KEY WORDS (Continue on reverse side it necessary end Identify by block number) Rare earth Mixed garnet Spectra Laser Judd-Ofelt
NASA Astrophysics Data System (ADS)
Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Tuzikov, Sergei A.; Yumov, Evgeny L.
2014-11-01
The results of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with respiratory diseases (chronic obstructive pulmonary disease, pneumonia and lung cancer) are presented. The absorption spectra of exhaled breath of all volunteers were measured, the classification methods of the scans of the absorption spectra were applied, the sensitivity/specificity of the classification results were determined. It were obtained a result of nosological in pairs classification for all investigated volunteers, indices of sensitivity and specificity.
Application of the Lucy–Richardson Deconvolution Procedure to High Resolution Photoemission Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rameau, J.; Yang, H.-B.; Johnson, P.D.
2010-07-01
Angle-resolved photoemission has developed into one of the leading probes of the electronic structure and associated dynamics of condensed matter systems. As with any experimental technique the ability to resolve features in the spectra is ultimately limited by the resolution of the instrumentation used in the measurement. Previously developed for sharpening astronomical images, the Lucy-Richardson deconvolution technique proves to be a useful tool for improving the photoemission spectra obtained in modern hemispherical electron spectrometers where the photoelectron spectrum is displayed as a 2D image in energy and momentum space.
NASA Technical Reports Server (NTRS)
Tai, M. H.; Harwit, M.; Melnick, G.; Dain, F. W.; Stasavage, G.; Briotta, D. A., Jr.; King, L. W.; Kameth, M.
1977-01-01
Infrared observations at different latitudes were studied in order to obtain spectra in the 10 micrometers region to understand differences in chemical composition or physical structure of the optical features. In order to receive such spectra of a rotating planet, simultaneous observations at different latitudes were made. A Hadamard transform spectrometer with 15 entrance slits was used to obtain 15 simultaneous spectra, at a resolution of 0.01 micrometers. The spectral band covered contained 255 spectral elements.
Application of a Laplace transform pair model for high-energy x-ray spectral reconstruction.
Archer, B R; Almond, P R; Wagner, L K
1985-01-01
A Laplace transform pair model, previously shown to accurately reconstruct x-ray spectra at diagnostic energies, has been applied to megavoltage energy beams. The inverse Laplace transforms of 2-, 6-, and 25-MV attenuation curves were evaluated to determine the energy spectra of these beams. The 2-MV data indicate that the model can reliably reconstruct spectra in the low megavoltage range. Experimental limitations in acquiring the 6-MV transmission data demonstrate the sensitivity of the model to systematic experimental error. The 25-MV data result in a physically realistic approximation of the present spectrum.
EPR study on gamma-irradiated fruits dehydrated via osmosis
NASA Astrophysics Data System (ADS)
Yordanov, N. D.; Aleksieva, K.
2007-06-01
The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit "sugar-like" EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.
Measurements of Euglena motion parameters by laser light scattering.
Ascoli, C; Barbi, M; Frediani, C; Murè, A
1978-01-01
Measurements of Euglena gracilis motion parameters have been performed by the spectral analysis of the scattered laser light. Samples were oriented by a radiofrequency field to obtain easily interpretable spectra. Cell rotation frequency and flagellar beating frequency distributions were obtained from the homodyne spectra, whereas the Doppler lines obtained at small observation angles by heterodyne detection yielded the swimming speed distributions. We discuss the broadening of the heterodyne spectra at large angles of observation. An application of this method to the study of the photo-kinetic effect is also described. Images FIGURE 3 PMID:104747
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Harvey, G. A.; Levine, J. S.; Smith, M. A. H.; Malathy Devi, V.; Thakur, K. B.
1986-01-01
Laboratory spectra covering the nu7 band of ethane (C2H6) have been recorded, and measurements of integrated intensities of selected Q branches from these spectra are reported. The method by which the spectra were obtained is described, and a typical spectrum covering the PQ3 branch at 2976.8/cm is shown along with a plot of equivalent width vs. optical density for this branch. The values of the integrated intensities reported for each branch are the means of five different optical densities.
Králík, M; Krása, J; Velyhan, A; Scholz, M; Ivanova-Stanik, I M; Bienkowska, B; Miklaszewski, R; Schmidt, H; Řezáč, K; Klír, D; Kravárik, J; Kubeš, P
2010-11-01
The spectra of neutrons outside the plasma focus device PF-1000 with an upper energy limit of ≈1 MJ was measured using a Bonner spheres spectrometer in which the active detector of thermal neutrons was replaced by nine thermoluminescent chips. As an a priori spectrum for the unfolding procedure, the spectrum calculated by means of the Monte Carlo method with a simplified model of the discharge chamber was selected. Differences between unfolded and calculated spectra are discussed with respect to properties of the discharge vessel and the laboratory layout.
Accurate proteome-wide protein quantification from high-resolution 15N mass spectra
2011-01-01
In quantitative mass spectrometry-based proteomics, the metabolic incorporation of a single source of 15N-labeled nitrogen has many advantages over using stable isotope-labeled amino acids. However, the lack of a robust computational framework for analyzing the resulting spectra has impeded wide use of this approach. We have addressed this challenge by introducing a new computational methodology for analyzing 15N spectra in which quantification is integrated with identification. Application of this method to an Escherichia coli growth transition reveals significant improvement in quantification accuracy over previous methods. PMID:22182234
NASA Technical Reports Server (NTRS)
Vandermeulen, Ryan A.; Mannino, Antonio; Neeley, Aimee; Werdell, Jeremy; Arnone, Robert
2017-01-01
Using a modified geostatistical technique, empirical variograms were constructed from the first derivative of several diverse remote sensing reflectance and phytoplankton absorbance spectra to describe how data points are correlated with distance across the spectra. The maximum rate of information gain is measured as a function of the kurtosis associated with the Gaussian structure of the output, and is determined for discrete segments of spectra obtained from a variety of water types (turbid river filaments, coastal waters, shelf waters, a dense Microcystis bloom, and oligotrophic waters), as well as individual and mixed phytoplankton functional types (PFTs; diatoms, chlorophytes, cyanobacteria, coccolithophores). Results show that a continuous spectrum of 5 to 7 nm spectral resolution is optimal to resolve the variability across mixed reflectance and absorbance spectra. In addition, the impact of uncertainty on subsequent derivative analysis is assessed, showing that a limit of 3 Gaussian noise (SNR 66) is tolerated without smoothing the spectrum, and 13 (SNR 15) noise is tolerated with smoothing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, Ayaka, E-mail: tamura.ayaka.88m@st.kyoto-u.ac.jp; Matsumoto, Ayumu; Nishi, Naoya
We investigate the effects of temporal laser profile on the emission spectra of laser ablation plasma in water. We use short-interval (76 ns) double pulses with different pulse durations of the composing two pulses for the irradiation of underwater target. Narrow atomic spectral lines in emission spectra are obtained by the irradiation, where the two pulses are wide enough to be merged into a single-pulse-like temporal profile, while deformed spectra are obtained when the two pulses are fully separated. The behavior of the atomic spectral lines for the different pulse durations is consistent with that of the temporal profiles of themore » optical emission intensities of the plasma. All these results suggest that continuous excitation of the plasma during the laser irradiation for ∼100 ns is a key to obtain narrow emission spectral lines.« less
Studying the highly bent spectra of FR II-type radio galaxies with the KDA EXT model
NASA Astrophysics Data System (ADS)
Kuligowska, Elżbieta
2018-04-01
Context. The Kaiser, Dennett-Thorpe & Alexander (KDA, 1997, MNRAS, 292, 723) EXT model, that is, the extension of the KDA model of Fanaroff & Riley (FR) II-type source evolution, is applied and confronted with the observational data for selected FR II-type radio sources with significantly aged radio spectra. Aim. A sample of FR II-type radio galaxies with radio spectra strongly bent at their highest frequencies is used for testing the usefulness of the KDA EXT model. Methods: The dynamical evolution of FR II-type sources predicted with the KDA EXT model is briefly presented and discussed. The results are then compared to the ones obtained with the classical KDA approach, assuming the source's continuous injection and self-similarity. Results: The results and corresponding diagrams obtained for the eight sample sources indicate that the KDA EXT model predicts the observed radio spectra significantly better than the best spectral fit provided by the original KDA model.
Conversion of 3-imidazoline-3-oxide nitroxyl radicals into nitronylnitroxyl radicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigor'ev, I.A.; Shchukin, G.I.; Khramtsov, V.V.
1986-04-20
Continuing the studies of the effect of the pH of the medium on the EPR spectra of nitroxyl radicals (NR) containing acid-base functional groups at a distance of 2-3 sigma-bonds from the radical center, they have examined the EPR spectra of NR, which contain OH groups in the 2-position of the heterocycle. It is assumed that deprotonation of the OH group is accompanied by changes in the hfc constant a/sub N//sup 1/ and the g-factor. At pH values greater than or equal to 12, however, the EPR spectra of aqueous solutions of radicals undergo irreversible changes from a triplet tomore » a more complex multiplet, similar to the spectra of nitronylnitroxyl radicals. The EPR spectra of these solutions remain unchanged over periods of several days. The spectra have a quintet structure, with further splitting into four or three components. When similar experiments are carried out in D/sub 2/O, the additional hfs disappear as a result of deuterium exchange in the CH/sub 2/ and CH/sub 3/ groups of the radicals. A simulation of the EPR spectra was carried out, assuming splitting into two N nuclei (a/sub N//sup 1/ and a/sub N//sup 3/), with three or two equivalent H. This resulted in complete agreement between the calculated and experimental spectra. In order to assign the nitrogen hfc constants, they synthesized radicals containing the N/sup 15/ isotope in the 3-position of the imidazole ring. Comparison of the results of simulations of the EPR spectra enabled unambiguous assignments of the hfc constants a/sub N//sup 1/ and a/sub N//sup 3/ to be made.« less
Therapeutic plasma exchange: a paired comparison of Fresenius AS104 vs. COBE Spectra.
Burgstaler, E A; Pineda, A A
2001-01-01
For therapeutic plasma exchange (TPE), continuous flow separators are known to be efficient as exemplified by Fresenius AS104 and COBE Spectra. The AS104 uses an interface monitoring system in the centrifuge during TPE, whereas Spectra uses computer algorithms to establish the plasma-cell interface. To determine the plasma collection efficiency (PLCE), anticoagulant (AC) volumes used, and platelets (PLT) lost of the AS104 and the Spectra, we performed a prospective paired comparison of 20 TPE (each machine). The study included 17 patients, 1.3 plasma volume exchanges (without AC), equal inlet rates, and AC ratio of 13:1. Processing times did not include reinfuse mode. Platelet loss was determined by sampling the collection bags. Inlet rates were between 60-110 ml/min. Diagnosis included peripheral neuropathies, TTP and cryoglobulinemia. The AS104 had significantly (P<0.0001) lower average whole blood processed (F:6,601 vs. S:8,584 ml), AC volume (F:532 vs. S:719 ml), and processing time (F:80 vs. S:102 minutes) than Spectra. The AS104 had significantly (P<0.0001) higher average plasma flow rates (F:53 vs. S:44 ml/minute), plasma collection efficiency (F:90 vs. S:69%), and platelet loss (F:2.0 vs. S:0.14 x 10(11) plt) than Spectra. Platelet loss correlated with inlet flow rate with the AS104 but not with the Spectra. The AS104 has a significantly higher collection efficiency than Spectra allowing it to remove the same amount of plasma in significantly less time, by processing significantly less blood, using significantly less AC, but removing significantly more platelets than Spectra. Copyright 2001 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silberman, E.; Morgan, H.W.
1977-01-01
Application of the mathematical theory of groups to the symmetry of molecules is a powerful method which permits the prediction, classification, and qualitative description of many molecular properties. In the particular case of vibrational molecular spectroscopy, applications of group theory lead to simple methods for the prediction of the number of bands to be found in the infrared and Raman spectra, their shape and polarization, and the qualitative description of the normal modes with which they are associated. The tables necessary for the application of group theory to vibrational spectroscopy and instructions on how to use them for molecular gases,more » liquids, and solutions are presented. A brief introduction to the concepts, definitions, nomenclature, and formulae is also included.« less
Wiegers, Evita C; Philips, Bart W J; Heerschap, Arend; van der Graaf, Marinette
2017-12-01
J-difference editing is often used to select resonances of compounds with coupled spins in 1 H-MR spectra. Accurate phase and frequency alignment prior to subtracting J-difference-edited MR spectra is important to avoid artefactual contributions to the edited resonance. In-vivo J-difference-edited MR spectra were aligned by maximizing the normalized scalar product between two spectra (i.e., the correlation over a spectral region). The performance of our correlation method was compared with alignment by spectral registration and by alignment of the highest point in two spectra. The correlation method was tested at different SNR levels and for a broad range of phase and frequency shifts. In-vivo application of the proposed correlation method showed reduced subtraction errors and increased fit reliability in difference spectra as compared with conventional peak alignment. The correlation method and the spectral registration method generally performed equally well. However, better alignment using the correlation method was obtained for spectra with a low SNR (down to ~2) and for relatively large frequency shifts. Our correlation method for simultaneously phase and frequency alignment is able to correct both small and large phase and frequency drifts and also performs well at low SNR levels.
NASA Astrophysics Data System (ADS)
Bernatowicz, P.; Czerski, I.; Jaźwiński, J.; Szymański, S.
2004-08-01
In the standard NMR spectra, the lineshape patterns produced by a molecular rate process are often poorly structured. When alternative theoretical models of such a process are to be compared, even quantitative lineshape fits may then give inconclusive results. A detailed description is presented of an approach involving fits of the competing models to series of Carr-Purcell echo spectra. Its high discriminative power has already been exploited in a number of cases of practical significance. An explanation is given why it can be superior to methods based on the standard spectra. Its applicability in practice is now illustrated on example of the methyl proton spectra in 1,2,3,4-tetrachloro-9,10-dimethyltriptycene TCDMT. It is shown that, in the echo spectra, the recently discovered effect of nonclassical stochastic reorientation of the methyl group can be identified clearly while it is practically nondiscernible in the standard spectra of TCDMT. This is the first detection of the effect at temperatures above 200 K. It is also shown that in computer-assisted interpretation of exchange-broadened echo spectra, the usual description of the stimulating radiofrequency pulses in terms of rotation operators ought to be replaced by a more realistic pulse model.
Even-odd alternation of near-infrared spectra of alkane-α,ω-diols in their solid states
NASA Astrophysics Data System (ADS)
Toyama, Yuta; Murakami, Kohei; Yoshimura, Norio; Takayanagi, Masao
2018-05-01
Even-odd alternation of the melting points of α,ω-disubstituted linear alkanes such as alkane-α,ω-diols, alkane-α,ω-dinitriles and α,ω-diaminoalkanes is well known. Melting points for compounds with an even number of carbons in their alkyl chains are systematically higher than those for compounds with an odd number of carbons. In order to clarify the origin of this alternation, near-infrared absorption spectra of linear alkane-α,ω-diols with 3 to 9 carbon atoms in their alkyl chains were measured in the liquid and solid states. The band due to the first overtone of the Osbnd H stretching mode was investigated. The temperature-dependent spectra of all alkane-α,ω-diols in their liquid states were found to be similar; no even-odd alternation was observed. In the solid state, however, spectra of alkane-α,ω-diols with even and odd numbers of carbon atoms differed greatly. Spectra of alkane-α,ω-diols with an odd number of carbon atoms in their solid states were similar to those in the liquid states, although the variation of spectra observed upon lowering the temperature of liquid seemed to continue when the liquids were frozen. In contrast, spectra of alkane-α,ω-diols with an even number of carbon atoms in their liquid and solid states were found to be quite different. New bands appeared upon freezing. The observed even-odd alternation of the spectra observed for alkane-α,ω-diols in their solid states is presumably caused by their even-odd alternation of crystal structures.
LSD-based analysis of high-resolution stellar spectra
NASA Astrophysics Data System (ADS)
Tsymbal, V.; Tkachenko, A.; Van, Reeth T.
2014-11-01
We present a generalization of the method of least-squares deconvolution (LSD), a powerful tool for extracting high S/N average line profiles from stellar spectra. The generalization of the method is effected by extending it towards the multiprofile LSD and by introducing the possibility to correct the line strengths from the initial mask. We illustrate the new approach by two examples: (a) the detection of astroseismic signatures from low S/N spectra of single stars, and (b) disentangling spectra of multiple stellar objects. The analysis is applied to spectra obtained with 2-m class telescopes in the course of spectroscopic ground-based support for space missions such as CoRoT and Kepler. Usually, rather high S/N is required, so smaller telescopes can only compete successfully with more advanced ones when one can apply a technique that enables a remarkable increase in the S/N of the spectra which they observe. Since the LSD profiles have a potential for reconstruction what is common in all the spectral profiles, it should have a particular practical application to faint stars observed with 2-m class telescopes and whose spectra show remarkable LPVs.
Bahreyni Toossi, M T; Moradi, H; Zare, H
2008-01-01
In this work, the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of X-ray spectra in diagnostic radiology. The electron's path in the target was followed until its energy was reduced to 10 keV. A user-friendly interface named 'diagnostic X-ray spectra by Monte Carlo simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user-friendly interface for: (i) modifying the MCNP input file, (ii) launching the MCNP program to simulate electron and photon transport and (iii) processing the MCNP output file to yield a summary of the results (relative photon number per energy bin). In this article, the development and characteristics of DXRaySMCS are outlined. As part of the validation process, output spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study.
pH titration monitored by quantum cascade laser-based vibrational circular dichroism.
Rüther, Anja; Pfeifer, Marcel; Lórenz-Fonfría, Víctor A; Lüdeke, Steffen
2014-04-10
Vibrational circular dichroism (VCD) spectra of aqueous solutions of proline were recorded in the course of titrations from basic to acidic pH using a spectrometer equipped with a quantum cascade laser (QCL) as an infrared light source in the spectral range from 1320 to 1220 cm(-1). The pH-dependent spectra were analyzed by singular value decomposition and global fitting of a two-pK Henderson-Hasselbalch model. The analysis delivered relative fractions of the three different protonation species. Their agreement with the relative fractions obtained from performing the same analysis on pH-dependent Fourier transform infrared (FT-IR) and QCL-IR spectra validates the quantitative results from QCL-VCD. Global fitting of the pH-dependent VCD spectra of L-proline allowed for extraction of pure spectra corresponding to anionic, zwitterionic, and cationic L-proline. From a static experiment, only pure spectra of the zwitterion would be accessible in a straightforward way. A comparison to VCD spectra calculated for all three species led to assignment of vibrational modes that are characteristic for the respective protonation states. The study demonstrates the applicability of QCL-VCD both for quantitative evaluation and for qualitative interpretation of dynamic processes in aqueous solutions.
A digital signal processing system for coherent laser radar
NASA Technical Reports Server (NTRS)
Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry
1991-01-01
A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.
Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D
2001-01-01
A study was made of the effect of electromagnetic EMI MMD-fluctuation on the frequencies of molecular spectra of radiation, and nitric oxide absorption under in vitro conditions on the functional activity of platelets in patients with unstable angina pectoris, with the help of a specially created generator. At amplitude-modulated and continuous modes of EMI MMD-irradiation of platelet-rich plasma for 5, 15 and 30 min the platelet functional activity decreases, which was shown up in reduction of their activation and fall of aggregative ability. The degree, to which platelet functional activity was inhibited, depended on the mode of irradiation and on duration of EMI MMD effect. The most obvious changes in platelet activation and in their readiness to aggregative response were observed at a continuous mode of irradiation within a 15 min interval.
A 21st century investigation of the lightning spectrum
NASA Astrophysics Data System (ADS)
Walker, Thomas Daniel
In the mid 1960s, Martin Uman, Leon Salanave and Richard Orville laid the foundation for lightning spectroscopy. They were among the first to acquire time resolved return stroke spectra and the first to use spectroscopy as a diagnostic technique to characterize physical properties of the lightning channel. Now, almost 50 years later, technology, including CMOS and CCD high speed cameras, volume-phase holographic (VPH) gratings, and triggered lightning, has progressed to the point at which new studies in lightning spectroscopy are needed to verify and extend past measurements. New spectral lines have been discovered in the lightning spectrum as a result of the modern studies, mainly doubly ionized nitrogen lines which had not been observed in the past. The modern technique uses CMOS and CCD cameras with frame rates of up to 1Mfps with exposure down to 0.5mus. The high frame rate paired with camera memory enables a view into the quick high temperature heating period within the first few microseconds of the return stroke, as well as a detailed look at the cooling period which can last for milliseconds. The spectra are recorded digitally and discretely, hence the data can be summed to to view different exposure times revealing long lasting low emission lines during the cooling period as well. Spectral line identification for the natural and triggered lightning are for a range of wavelengths from soft ultraviolet around 3800A to the near infrared at 9500A. The first few microseconds of the lightning return stroke spectrum consists of hydrogen from disassociated water and singly and doubly ionized lines of atomic atmospheric constituents, i.e. argon, nitrogen, and oxygen. Temperatures calculated during this period have been measured above 40000 K. The peak temperature is measured from the first spectrum of the return stroke. After this the channel continuously cools over the lifetime of the return stroke unless there is an increase in the continuing current. Tens of microseconds after the onset, a cool period in the spectra exists which consists solely of neutral atomic emission lines. The cooling period temperature measurements begin in the low 20000 K range and decrease slowly over the course of milliseconds until strength of the emission lines drop below measurement threshold. Besides the return stroke, other specific lightning processes analyzed include stepped leaders, dart-stepped leaders, and m-components within the continuing current. Stepped and dart-stepped leader spectra consist both of pulsing singly ionized lines and steadily growing neutral lines. Each step within these processes cause increased ionization to occur in the channel upward from the step, demonstrating a pulsing temperature throughout the lifetime of these stepped features. Spectra of the stroke processes, m-components and continuing currents, consist of neutral atmospheric emission lines and copper emission lines which demonstrate the long duration of the channel milliseconds after the initial stages. These spectra indicate long lasting low temperatures which should give insight into temperature profiles where NOx reactions occur. From the spectra, emission identification and lifetime as well as calculations of physical parameters such as temperature, number density, and conductivity about each of these processes give insight into what is physically happening within the channel throughout the lifetime of a stroke.
Detector-Response Correction of Two-Dimensional γ -Ray Spectra from Neutron Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rusev, G.; Jandel, M.; Arnold, C. W.
2015-05-28
The neutron-capture reaction produces a large variety of γ-ray cascades with different γ-ray multiplicities. A measured spectral distribution of these cascades for each γ-ray multiplicity is of importance to applications and studies of γ-ray statistical properties. The DANCE array, a 4π ball of 160 BaF 2 detectors, is an ideal tool for measurement of neutron-capture γ-rays. The high granularity of DANCE enables measurements of high-multiplicity γ-ray cascades. The measured two-dimensional spectra (γ-ray energy, γ-ray multiplicity) have to be corrected for the DANCE detector response in order to compare them with predictions of the statistical model or use them in applications.more » The detector-response correction problem becomes more difficult for a 4π detection system than for a single detector. A trial and error approach and an iterative decomposition of γ-ray multiplets, have been successfully applied to the detector-response correction. As a result, applications of the decomposition methods are discussed for two-dimensional γ-ray spectra measured at DANCE from γ-ray sources and from the 10B(n, γ) and 113Cd(n, γ) reactions.« less
Direct measurement of clinical mammographic x-ray spectra using a CdTe spectrometer.
Santos, Josilene C; Tomal, Alessandra; Furquim, Tânia A; Fausto, Agnes M F; Nogueira, Maria S; Costa, Paulo R
2017-07-01
To introduce and evaluate a method developed for the direct measurement of mammographic x-ray spectra using a CdTe spectrometer. The assembly of a positioning system and the design of a simple and customized alignment device for this application is described. A positioning system was developed to easily and accurately locate the CdTe detector in the x-ray beam. Additionally, an alignment device to line up the detector with the central axis of the radiation beam was designed. Direct x-ray spectra measurements were performed in two different clinical mammography units and the measured x-ray spectra were compared with computer-generated spectra. In addition, the spectrometer misalignment effect was evaluated by comparing the measured spectra when this device is aligned relatively to when it is misaligned. The positioning and alignment of the spectrometer have allowed the measurements of direct mammographic x-ray spectra in agreement with computer-generated spectra. The most accurate x-ray spectral shape, related with the minimal HVL value, and high photon fluence for measured spectra was found with the spectrometer aligned according to the proposed method. The HVL values derived from both simulated and measured x-ray spectra differ at most 1.3 and 4.5% for two mammography devices evaluated in this study. The experimental method developed in this work allows simple positioning and alignment of a spectrometer for x-ray spectra measurements given the geometrical constraints and maintenance of the original configurations of mammography machines. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Hegazy, Maha A.; Lotfy, Hayam M.; Mowaka, Shereen; Mohamed, Ekram Hany
2016-07-01
Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations.
HITRAN Application Programming Interface (hapi): Extending HITRAN Capabilities
NASA Astrophysics Data System (ADS)
Kochanov, Roman V.; Gordon, Iouli E.; Rothman, Laurence S.; Wcislo, Piotr; Hill, Christian; Wilzewski, Jonas
2016-06-01
In this talk we present an update on the HITRAN Application Programming Interface (HAPI). HAPI is a free Python library providing a flexible set of tools to work with the most up-to-date spectroscopic data provided by HITRANonline (www.hitran.org) HAPI gives access to the spectroscopic parameters which are continuously being added to HITRANonline. For instance, these include non-Voigt profile parameters, foreign broadenings and shifts, and line mixing. HAPI enables more accurate spectra calculations for the spectroscopic and astrophysical applications requiring the detailed modeling of the broadener. HAPI implements an expert algorithm for the line profile selection for a single-layer radiative transfer calculation, and can be extended by custom line profiles and algorithms of their calculations, partition sums, instrumental functions, and temperature and pressure dependences. Possible HAPI applications include spectroscopic data validation and analysis as well as radiative-transfer calculations, experiment verification and spectroscopic code benchmarking. Kochanov RV, Gordon IE, et al. Submitted to JQSRT HighRus Special Issue 2016 Kochanov RV, Hill C, et al. ISMS 2015. http://hdl.handle.net/2142/79241 Hill C, Gordon IE, et al. Accepted to JQSRT HighRus Special Issue 2016. Wcislo P, Gordon IE, et al. Accepted to JQSRT HighRus Special Issue 2016. Wilzewski JS, Gordon IE, et al. JQSRT 2016;168:193-206. Kochanov RV, Gordon IE, et al. Clim Past 2015;11:1097-105.
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2017-03-01
Inequality indices are widely applied in economics and in the social sciences as quantitative measures of the socioeconomic inequality of human societies. The application of inequality indices extends to size-distributions at large, where these indices can be used as general gauges of statistical heterogeneity. Moreover, as inequality indices are plentiful, arrays of such indices facilitate high-detail quantification of statistical heterogeneity. In this paper we elevate from arrays of inequality indices to inequality spectra: continuums of inequality indices that are parameterized by a single control parameter. We present a general methodology of constructing Lorenz-based inequality spectra, apply the general methodology to establish four sets of inequality spectra, investigate the properties of these sets, and show how these sets generalize known inequality gauges such as: the Gini index, the extended Gini index, the Rényi index, and hill curves.
Canagaratna, Manjula R; Massoli, Paola; Browne, Eleanor C; Franklin, Jonathan P; Wilson, Kevin R; Onasch, Timothy B; Kirchstetter, Thomas W; Fortner, Edward C; Kolb, Charles E; Jayne, John T; Kroll, Jesse H; Worsnop, Douglas R
2015-05-14
Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores tested in these studies include black carbon, silver, gold, and platinum nanoparticles. These results demonstrate that SP vaporization is capable of providing enhanced organic chemical composition information for a wide range of organic coating materials and IR absorbing particle cores. The potential of using this technique to study organic species of interest in seeded laboratory chamber or flow reactor studies is discussed.
Reusable rocket engine optical condition monitoring
NASA Technical Reports Server (NTRS)
Wyett, L.; Maram, J.; Barkhoudarian, S.; Reinert, J.
1987-01-01
Plume emission spectrometry and optical leak detection are described as two new applications of optical techniques to reusable rocket engine condition monitoring. Plume spectrometry has been used with laboratory flames and reusable rocket engines to characterize both the nominal combustion spectra and anomalous spectra of contaminants burning in these plumes. Holographic interferometry has been used to identify leaks and quantify leak rates from reusable rocket engine joints and welds.
NASA Astrophysics Data System (ADS)
Buldt, J.; Müller, M.; Klas, R.; Eidam, T.; Limpert, J.; Tünnermann, A.
2018-02-01
We present a novel approach for temporal contrast enhancement of energetic laser pulses by filtered SPM broadened spectra. A measured temporal contrast enhancement by at least 7 orders of magnitude in a simple setup has been achieved. This technique is applicable to a wide range of laser parameters and poses a highly efficient alternative to existing contrast-enhancement methods.
Libraries of Peptide Fragmentation Mass Spectra Database
National Institute of Standards and Technology Data Gateway
SRD 1C NIST Libraries of Peptide Fragmentation Mass Spectra Database (Web, free access) The purpose of the library is to provide peptide reference data for laboratories employing mass spectrometry-based proteomics methods for protein analysis. Mass spectral libraries identify these compounds in a more sensitive and robust manner than alternative methods. These databases are freely available for testing and development of new applications.
[A new peak detection algorithm of Raman spectra].
Jiang, Cheng-Zhi; Sun, Qiang; Liu, Ying; Liang, Jing-Qiu; An, Yan; Liu, Bing
2014-01-01
The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.
Space Weathering Investigations Enabled by NASA's Virtual Heliophysical Observatories
NASA Technical Reports Server (NTRS)
Cooper, John F.; King, Joseph H.; Papitashvili, Natalia E.; Lal, Nand; Sittler, Edward C.; Sturner, Steven J.; Hills, Howard K.; Lipatov, Alexander S.; Kovalick, Tamara J.; Johnson, Rita C.;
2012-01-01
Structural and chemical impact of the heliospheric space environment on exposed planetary surfaces and interplanetary dust grains may be generally defined as space weathering . In the inner solar system, from the asteroid belt inwards towards the Sun, the surface regolith structures of airless bodies are primarily determined by cumulative meteoritic impacts over billions of years, but the molecular composition to meters in depth can be substantially modified by irradiation effects. Plasma ions at eV to keV energies may both erode uppermost surfaces by sputtering, and implant or locally produce exogenic material, e.g. He-3 and H2O, while more energetic ions drive molecular change through electronic ionization. Galactic cosmic ray ions and more energetic solar ions can impact chemistry to meters in depth. High energy cosmic ray interactions produce showers of secondary particles and energetic photons that present hazards for robotic and human exploration missions but also enable detection of potentially useable resources such as water ice, oxygen, and many other elements. Surface sputtering also makes ejected elemental and molecular species accessible for in-situ compositional analysis by spacecraft with ion and neutral mass spectrometers. Modeling of relative impacts for these various space weathering processes requires knowledge of the incident species-resolved ion flux spectra at plasma to cosmic ray energies and as integrated over varying time scales. Although the main drivers for investigations of these processes come from NASA's planetary science and human exploration programs, the NASA heliophysics program provides the requisite data measurement and modeling resources to enable specification of the field & plasma and energetic particle irradiation environments for application to space weather and surface weathering investigations. The Virtual Heliospheric Observatory (VHO), Virtual Energetic Particle Observatory (VEPO), Lunar Solar Origins Exploration (LunaSOX), and Space Physics Data Facility (SPDF) services now provide a wide range of inner heliospheric spacecraft data that can be applied to space weathering of potential exploration destinations including the Moon, asteroids, and the moons of Mars, as well to radiation hazard assessment for the spacecraft and human explorers. For example, the new VEPO service for time-averaging of multi-source ion flux spectra enables the specification of composite flux spectra from a variety of ongoing and legacy missions for applications to surface interaction modeling. Apollo to Artemis data resources of LunaSOX enable specific space weathering investigations for the Moon, while VHO more generally covers the space field and plasma environments of the inner and outer solar system from the sunward-most perihelia of the twin Helios spacecraft to the ongoing heliosheath passages of the twin Voyagers. Composite multi-source spectra from VEPO can also be applied to the continuing compilation of accumulated 1-AU fluence spectra, mostly contributed by solar wind plasma and energetic particle events, for determination of time-averaged particle compositional and kinetic energy output from the Sun and for modeling of long-term irradiation impacts on planetary surfaces.
Monte Carlo simulation of semiconductor detector response to (222)Rn and (220)Rn environments.
Irlinger, J; Trinkl, S; Wielunksi, M; Tschiersch, J; Rühm, W
2016-07-01
A new electronic radon/thoron monitor employing semiconductor detectors based on a passive diffusion chamber design has been recently developed at the Helmholtz Zentrum München (HMGU). This device allows for acquisition of alpha particle energy spectra, in order to distinguish alpha particles originating from radon and radon progeny decays, as well as those originating from thoron and its progeny decays. A Monte-Carlo application is described which uses the Geant4 toolkit to simulate these alpha particle spectra. Reasonable agreement between measured and simulated spectra were obtained for both (220)Rn and (222)Rn, in the energy range between 1 and 10 MeV. Measured calibration factors could be reproduced by the simulation, given the uncertainties involved in the measurement and simulation. The simulated alpha particle spectra can now be used to interpret spectra measured in mixed radon/thoron atmospheres. The results agreed well with measurements performed in both radon and thoron gas environments. It is concluded that the developed simulation allows for an accurate prediction of calibration factors and alpha particle energy spectra. Copyright © 2016 Elsevier Ltd. All rights reserved.
Observations of the Infrared Solar Spectrum from Space by the ATMOS Experiment
NASA Technical Reports Server (NTRS)
Abrams, M. C.; Goldman, A.; Gunson, M. R.; Rinsland, C. P.; Zander, R.
1999-01-01
The final flight of the Atmospheric Trace Molecule Spectroscopy experiment as part of the Atmospheric na Laboratory for Applications and Science (ATLAS-3) Space Shuttle mission in 1994 provided a new opportunity to measure broadband 625-4800/ cm, 2.1 - 16 micron infrared solar spectra at an unapodized resolution of 0.0l/ cm from space. The majority of the observations were obtained as exoatmospheric, of near Sun center, absorption spectra, which were later ratioed to grazing atmospheric measurements to compute the atmospheric transmission of the Earth's atmosphere and analyzed for vertical profiles of minor and trace gases. Relative to the SPACELAB-3 mission that produced 4800 high Sun spectra (which were averaged into four grand average spectra), the ATLAS-3 mission produced some 40,000 high Sun spectra (which have been similarly averaged) with an improvement in signal-to-noise ratio of a factor of 3-4 in the spectral region between 1000 and 4800/ cm. A brief description of the spectral calibration and spectral quality is given as well as the location of electronic archives of these spectra.
First light with Trident: multi-platform synthetic quasar spectra
NASA Astrophysics Data System (ADS)
Silvia, Devin W.; Hummels, Cameron B.; Smith, Britton
2017-01-01
Observational efforts to better understand the nature of the intergalactic and circumgalactic media have relied heavily on the information encoded in the absorption line systems of quasar spectra. Numerical simulations of large-scale structure and galaxy evolution are well-suited to explore the properties of those same media owing to the relative ease with which one can access physical quantities from complex, three-dimensional data. However, a difficulty arises when one tries to make direct “apple-to-apples” comparisons between observed spectra and simulated data. In an effort to provide a common language capable of linking theory and observation, we announce the release of Trident. Trident is a publicly available software tool that enables the creation of realistic synthetic absorption spectra from virtually all widely-used hydrodynamics simulation codes. Through user-controlled levels of spectral realism, direct comparisons between simulated and observed data become not only possible, but greatly simplified. We present the methods for extracting artificial quasar sightlines and generating spectra as well as early-stage applications of those spectra to intergalactic and circumgalactic absorption line studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meglinskii, I V
2001-12-31
The reflection spectra of a multilayer random medium - the human skin - strongly scattering and absorbing light are numerically simulated. The propagation of light in the medium and the absorption spectra are simulated by the stochastic Monte Carlo method, which combines schemes for calculations of real photon trajectories and the statistical weight method. The model takes into account the inhomogeneous spatial distribution of blood vessels, water, and melanin, the degree of blood oxygenation, and the hematocrit index. The attenuation of the incident radiation caused by reflection and refraction at Fresnel boundaries of layers inside the medium is also considered.more » The simulated reflection spectra are compared with the experimental reflection spectra of the human skin. It is shown that a set of parameters that was used to describe the optical properties of skin layers and their possible variations, despite being far from complete, is nevertheless sufficient for the simulation of the reflection spectra of the human skin and their quantitative analysis. (laser applications and other topics in quantum electronics)« less
Mavridis, Lazaros; Janes, Robert W
2017-01-01
Circular dichroism (CD) spectroscopy is extensively utilized for determining the percentages of secondary structure content present in proteins. However, although a large contributor, secondary structure is not the only factor that influences the shape and magnitude of the CD spectrum produced. Other structural features can make contributions so an entire protein structural conformation can give rise to a CD spectrum. There is a need for an application capable of generating protein CD spectra from atomic coordinates. However, no empirically derived method to do this currently exists. PDB2CD has been created as an empirical-based approach to the generation of protein CD spectra from atomic coordinates. The method utilizes a combination of structural features within the conformation of a protein; not only its percentage secondary structure content, but also the juxtaposition of these structural components relative to one another, and the overall structure similarity of the query protein to proteins in our dataset, the SP175 dataset, the 'gold standard' set obtained from the Protein Circular Dichroism Data Bank (PCDDB). A significant number of the CD spectra associated with the 71 proteins in this dataset have been produced with excellent accuracy using a leave-one-out cross-validation process. The method also creates spectra in good agreement with those of a test set of 14 proteins from the PCDDB. The PDB2CD package provides a web-based, user friendly approach to enable researchers to produce CD spectra from protein atomic coordinates. http://pdb2cd.cryst.bbk.ac.uk CONTACT: r.w.janes@qmul.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Franke, M.; Skolnik, D. A.; Harvey, D.; Lindquist, K.
2014-12-01
A novel and robust approach is presented that provides near real-time earthquake alarms for critical structures at distributed locations and large facilities using real-time estimation of response spectra obtained from near free-field motions. Influential studies dating back to the 1980s identified spectral response acceleration as a key ground motion characteristic that correlates well with observed damage in structures. Thus, monitoring and reporting on exceedance of spectra-based thresholds are useful tools for assessing the potential for damage to facilities or multi-structure campuses based on input ground motions only. With as little as one strong-motion station per site, this scalable approach can provide rapid alarms on the damage status of remote towns, critical infrastructure (e.g., hospitals, schools) and points of interests (e.g., bridges) for a very large number of locations enabling better rapid decision making during critical and difficult immediate post-earthquake response actions. Details on the novel approach are presented along with an example implementation for a large energy company. Real-time calculation of PSA exceedance and alarm dissemination are enabled with Bighorn, an extension module based on the Antelope software package that combines real-time spectral monitoring and alarm capabilities with a robust built-in web display server. Antelope is an environmental data collection software package from Boulder Real Time Technologies (BRTT) typically used for very large seismic networks and real-time seismic data analyses. The primary processing engine produces continuous time-dependent response spectra for incoming acceleration streams. It utilizes expanded floating-point data representations within object ring-buffer packets and waveform files in a relational database. This leads to a very fast method for computing response spectra for a large number of channels. A Python script evaluates these response spectra for exceedance of one or more specified spectral limits, reporting any such exceedances via alarm packets that are put in the object ring-buffer for use by any alarm processes that need them. The web-display subsystem allows alert dissemination, interactive exploration, and alarm cancellation via the WWW.
Directed Abelian algebras and their application to stochastic models.
Alcaraz, F C; Rittenberg, V
2008-10-01
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .
Presti, Davide; Pedone, Alfonso; Licari, Daniele; Barone, Vincenzo
2017-05-09
We present the implementation of the solid state (SoS)NMR module for the simulation of several 1D and 2D NMR spectra of all the elements in the periodic table in the virtual multifrequency spectrometer (VMS). This module is fully integrated with the graphical user interface of VMS (VMS-Draw) [Licari et al., J. Comput. Chem. 36, 2015, 321-334], a freeware tool which allows a user-friendly handling of structures and analyses of advanced spectroscopical properties of chemical compounds-from model systems to real-world applications. Besides the numerous modules already available in VMS for the study of electronic, optical, vibrational, vibronic, and EPR properties, here the simulation of NMR spectra is presented with a particular emphasis on those techniques usually employed to investigate solid state systems. The SoSNMR module benefits from its ability to work under both periodic and nonperiodic conditions, such that small molecules/molecular clusters can be treated, as well as extended three-dimensional systems enforcing (or not) translational periodicity. These features allow VMS to simulate spectra resulting from NMR calculations by some popular quantum chemistry codes, namely Gaussian09/16, Castep, and Quantum Espresso. The effectiveness of the SoSNMR module of VMS is examined throughout the manuscript, and applied to simulate 1D static, MAS, and VAS NMR spectra as well as 2D correlation (90°, MAS) and MQMAS spectra of active NMR nuclei embedded in different amorphous and crystalline systems of actual interest in chemistry and material science. Finally, the program is able to simulate the spectra of both the total ensemble of spin-active nuclei present in the system and of subensembles differentiated depending on the chemical environment of the first and second coordination sphere in a very general way applicable to any kind of systems.
NASA Astrophysics Data System (ADS)
Zare, Samad; Ati, Ali A.; Dabagh, Shadab; Rosnan, R. M.; Othaman, Zulkafli
2015-06-01
A series of nano-sized Zn-Al substituted cobalt ferrite Co(1-x)Zn(x)Fe2-xAlxO4 with 0.0 ⩽ x ⩽ 1.0 have been synthesized by chemical co-precipitation technique. The XRD spectra revealed the single phase spinel structure of Co(1-x)Zn(x)Fe2-xAlxO4 with average size of nanoparticles are estimated to be 17-30 nm. These are small enough to achieve the suitable signal to noise ratio, which is important in the high-density recording media. The FTIR spectra show the characteristic of two strong absorption bands at 560-600 cm-1 corresponds to the intrinsic stretching vibrations of the metal at the tetrahedral site and lowest band is observed at 370-410 cm-1 corresponds to octahedral site. The crystalline structures of nanoparticles composite were characterized by Field Emission Scanning Electron Microscopy (FE-SEM). The magnetic properties such as saturation magnetization, remanence magnetization, and coercivity were calculated from the hysteresis loops. Saturation magnetization were found to increase up to x = 0.4 while remanence magnetization and coercivity continuously decrease with increasing Zn-Al concentration. The stability in coercivity while increase in saturation magnetization confirms that the Co0.6Zn0.4Fe1.6Al0.4O4 ferrite sample is suitable for applications in high-density recording media.
NASA Astrophysics Data System (ADS)
Pleitez, Miguel A.; Lieblein, Tobias; Bauer, Alexander; Hertzberg, Otto; von Lilienfeld-Toal, Hermann; Mäntele, Werner
2013-08-01
The application of a novel open, windowless cell for the photoacoustic infrared spectroscopy of human skin is described. This windowless cavity is tuned for optimum performance in the ultrasound range between 50 and 60 kHz. In combination with an external cavity tunable quantum cascade laser emitting in the range from ˜1000 cm-1 to 1245 cm-1, this approach leads to high signal-to-noise-ratio (SNR) for mid-infrared spectra of human skin. This opens the possibility to measure in situ the absorption spectrum of human epidermis in the mid-infrared region at high SNR in a few (˜5) seconds. Rapid measurement of skin spectra greatly reduces artifacts arising from movements. As compared to closed resonance cells, the windowless cell exhibits the advantage that the influence of air pressure variations, temperature changes, and air humidity buildup that are caused by the contact of the cell to the skin surface can be minimized. We demonstrate here that this approach can be used for continuous and non-invasive monitoring of the glucose level in human epidermis, and thus may form the basis for a non-invasive monitoring of the glucose level for diabetes patients.
Blakely, Richard J.
1981-01-01
Estimations of the depth to magnetic sources using the power spectrum of magnetic anomalies generally require long magnetic profiles. The method developed here uses the maximum entropy power spectrum (MEPS) to calculate depth to source on short windows of magnetic data; resolution is thereby improved. The method operates by dividing a profile into overlapping windows, calculating a maximum entropy power spectrum for each window, linearizing the spectra, and calculating with least squares the various depth estimates. The assumptions of the method are that the source is two dimensional and that the intensity of magnetization includes random noise; knowledge of the direction of magnetization is not required. The method is applied to synthetic data and to observed marine anomalies over the Peru-Chile Trench. The analyses indicate a continuous magnetic basement extending from the eastern margin of the Nazca plate and into the subduction zone. The computed basement depths agree with acoustic basement seaward of the trench axis, but deepen as the plate approaches the inner trench wall. This apparent increase in the computed depths may result from the deterioration of magnetization in the upper part of the ocean crust, possibly caused by compressional disruption of the basaltic layer. Landward of the trench axis, the depth estimates indicate possible thrusting of the oceanic material into the lower slope of the continental margin.
NASA Astrophysics Data System (ADS)
Schreier, Franz; Gimeno García, Sebastián; Hedelt, Pascal; Hess, Michael; Mendrok, Jana; Vasquez, Mayte; Xu, Jian
2014-04-01
A suite of programs for high resolution infrared-microwave atmospheric radiative transfer modeling has been developed with emphasis on efficient and reliable numerical algorithms and a modular approach appropriate for simulation and/or retrieval in a variety of applications. The Generic Atmospheric Radiation Line-by-line Infrared Code - GARLIC - is suitable for arbitrary observation geometry, instrumental field-of-view, and line shape. The core of GARLIC's subroutines constitutes the basis of forward models used to implement inversion codes to retrieve atmospheric state parameters from limb and nadir sounding instruments. This paper briefly introduces the physical and mathematical basics of GARLIC and its descendants and continues with an in-depth presentation of various implementation aspects: An optimized Voigt function algorithm combined with a two-grid approach is used to accelerate the line-by-line modeling of molecular cross sections; various quadrature methods are implemented to evaluate the Schwarzschild and Beer integrals; and Jacobians, i.e. derivatives with respect to the unknowns of the atmospheric inverse problem, are implemented by means of automatic differentiation. For an assessment of GARLIC's performance, a comparison of the quadrature methods for solution of the path integral is provided. Verification and validation are demonstrated using intercomparisons with other line-by-line codes and comparisons of synthetic spectra with spectra observed on Earth and from Venus.
Ultrafast shock-induced orientation of polycrystalline films: Applications to high explosives
NASA Astrophysics Data System (ADS)
Franken, Jens; Hambir, Selezion A.; Dlott, Dana D.
1999-02-01
Tiny laser-driven shock waves of ˜5 GPa pressure (nanoshocks) are used to study fast mechanical processes occurring in a thin layer of polycrystalline insensitive energetic material, (3-nitro-1,2,4-triazol-5-one) (NTO). Ultrafast coherent Raman spectroscopy of shocked NTO shows the existence of three distinct mechanical processes. Very fast (˜600 ps) changes in intensity and the appearance of new transitions are associated with the uniaxial nature of compression by the shock front. Frequency shifting and broadening processes which track the ˜2 ns duration nanoshock are associated with transient changes in density and temperature. A novel slower process (5-10 ns) starts as the shock begins to unload, and continues for several nanoseconds after the shock is over, resulting in changes of widths and intensities of several vibrational transitions. By comparing ultrafast spectra to static Raman spectra of single NTO crystals in various orientations, it is concluded that this process involves shock-induced partial orientation of the crystals in the NTO layer. The NTO crystals are oriented faster than the time scale for initiating chemical reactions. The sensitivity of explosive crystals to shock initiation may depend dramatically on the orientation of the crystal relative to the direction of shock propagation, so the implications of fast shock-induced orientation for energetic materials initiation are discussed briefly.
GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff
An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less
GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra
Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff; ...
2016-08-02
An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less
[Galaxy/quasar classification based on nearest neighbor method].
Li, Xiang-Ru; Lu, Yu; Zhou, Jian-Ming; Wang, Yong-Jun
2011-09-01
With the wide application of high-quality CCD in celestial spectrum imagery and the implementation of many large sky survey programs (e. g., Sloan Digital Sky Survey (SDSS), Two-degree-Field Galaxy Redshift Survey (2dF), Spectroscopic Survey Telescope (SST), Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) program and Large Synoptic Survey Telescope (LSST) program, etc.), celestial observational data are coming into the world like torrential rain. Therefore, to utilize them effectively and fully, research on automated processing methods for celestial data is imperative. In the present work, we investigated how to recognizing galaxies and quasars from spectra based on nearest neighbor method. Galaxies and quasars are extragalactic objects, they are far away from earth, and their spectra are usually contaminated by various noise. Therefore, it is a typical problem to recognize these two types of spectra in automatic spectra classification. Furthermore, the utilized method, nearest neighbor, is one of the most typical, classic, mature algorithms in pattern recognition and data mining, and often is used as a benchmark in developing novel algorithm. For applicability in practice, it is shown that the recognition ratio of nearest neighbor method (NN) is comparable to the best results reported in the literature based on more complicated methods, and the superiority of NN is that this method does not need to be trained, which is useful in incremental learning and parallel computation in mass spectral data processing. In conclusion, the results in this work are helpful for studying galaxies and quasars spectra classification.
Final Technical Report - Polymeric Multilayer Infrared Reflecting Mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, John
2016-09-16
The goal of this project was to develop a clear, polymeric, multilayer film with an expanded infrared (IR) reflection band which would allow improved rejection of incident IR energy. The IR reflection band is covering the region from about 850 nm to 1830 nm. This film is essentially clear and colorless in the visible portion of the electromagnetic spectra (visible light transmission of about 89%) while reflecting 90-95% of the IR energy over the portion of the spectra indicated above. This film has a nominal thickness of 3 mils, is polymeric in nature (contains no metals, metal oxides, or othermore » material types) and is essentially clear in appearance This film can then be used as a component of other products such as a solar window film, an IR reflecting interlayer for laminated glass, a heat rejecting skylight film, a base film for daylight redirecting products, a greenhouse film, and many more applications. One of the main strengths of this product is that because it is a standalone IR rejecting film, it can be incorporated and retrofitted into many applications that desire or require the transmission of visible light, but want to block other portions of the solar spectra, especially the IR portion. Many of the applications exist in the window glazing product area where this film can provide for substantial energy improvements in applications where visible light is desired.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierbach, Jana; Yeung, Mark; Eckner, Erich
Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less
An Overview of the XGAM Code and Related Software for Gamma-ray Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, W.
2014-11-13
The XGAM spectrum-fitting code and associated software were developed specifically to analyze the complex gamma-ray spectra that can result from neutron-induced reactions. The XGAM code is designed to fit a spectrum over the entire available gamma-ray energy range as a single entity, in contrast to the more traditional piecewise approaches. This global-fit philosophy enforces background continuity as well as consistency between local and global behavior throughout the spectrum, and in a natural way. This report presents XGAM and the suite of programs built around it with an emphasis on how they fit into an overall analysis methodology for complex gamma-raymore » data. An application to the analysis of time-dependent delayed gamma-ray yields from 235U fission is shown in order to showcase the codes and how they interact.« less
NASA Astrophysics Data System (ADS)
Hassan, Said A.; Abdel-Gawad, Sherif A.
2018-02-01
Two signal processing methods, namely, Continuous Wavelet Transform (CWT) and the second was Discrete Fourier Transform (DFT) were introduced as alternatives to the classical Derivative Spectrophotometry (DS) in analysis of binary mixtures. To show the advantages of these methods, a comparative study was performed on a binary mixture of Naltrexone (NTX) and Bupropion (BUP). The methods were compared by analyzing laboratory prepared mixtures of the two drugs. By comparing performance of the three methods, it was proved that CWT and DFT methods are more efficient and advantageous in analysis of mixtures with overlapped spectra than DS. The three signal processing methods were adopted for the quantification of NTX and BUP in pure and tablet forms. The adopted methods were validated according to the ICH guideline where accuracy, precision and specificity were found to be within appropriate limits.
VUV-Photoionization CES-Detector of Volatile Bio-Marker Molecules
NASA Astrophysics Data System (ADS)
Mustafaev, Alexander; Luneva, Nataliya; Panasyuk, George; Timofeev, Nikolay; Tsyganov, Alexander
2014-10-01
Energy spectra of characteristic electrons released via photoionization by vacuum ultraviolet (VUV) radiation of admixture molecules in the atmospheric air, not using traditional evacuated energy analyzers, can be determined by Collisional Electron Spectroscopy (CES) method. Some details of CES-photoionization sensor were described in. Our further developments are devoted to application of CES-detectors for a mobile continuous bio-chemical diagnostics. It is known that ``on breathing'' it is possible to find out volatile bio-marker molecules of a lot of diseases (lung cancer, tuberculosis, COPD, asthma, diabetes, kidney disease, mammary cancer, Crohn's disease, ulcerative colitis, etc). But today's weighty and expensive laboratory equipment (like GC MS) provides observation of these bio-markers only during patients' visits to a doctor. In this way we study pocket-size CES-sensor with micro-plasma krypton resonance radiation source (10.6 eV photons) for the photoionization detection of metabolic ammonia, ethanol, acetone and pentane molecules directly in atmospheric air.
Rapid bacterial diagnostics via surface enhanced Raman microscopy.
Premasiri, W R; Sauer-Budge, A F; Lee, J C; Klapperich, C M; Ziegler, L D
2012-06-01
There is a continuing need to develop new techniques for the rapid and specific identification of bacterial pathogens in human body fluids especially given the increasing prevalence of drug resistant strains. Efforts to develop a surface enhanced Raman spectroscopy (SERS) based approach, which encompasses sample preparation, SERS substrates, portable Raman microscopy instrumentation and novel identification software, are described. The progress made in each of these areas in our laboratory is summarized and illustrated by a spiked infectious sample for urinary tract infection (UTI) diagnostics. SERS bacterial spectra exhibit both enhanced sensitivity and specificity allowing the development of an easy to use, portable, optical platform for pathogen detection and identification. SERS of bacterial cells is shown to offer not only reproducible molecular spectroscopic signatures for analytical applications in clinical diagnostics, but also is a new tool for studying biochemical activity in real time at the outer layers of these organisms.
NASA Astrophysics Data System (ADS)
Avramenko, M. V.; Roshal, S. B.
2016-05-01
A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.
Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang
2013-01-01
Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943
Exploratory analysis of TOF-SIMS data from biological surfaces
NASA Astrophysics Data System (ADS)
Vaidyanathan, Seetharaman; Fletcher, John S.; Henderson, Alex; Lockyer, Nicholas P.; Vickerman, John C.
2008-12-01
The application of multivariate analytical tools enables simplification of TOF-SIMS datasets so that useful information can be extracted from complex spectra and images, especially those that do not give readily interpretable results. There is however a challenge in understanding the outputs from such analyses. The problem is complicated when analysing images, given the additional dimensions in the dataset. Here we demonstrate how the application of simple pre-processing routines can enable the interpretation of TOF-SIMS spectra and images. For the spectral data, TOF-SIMS spectra used to discriminate bacterial isolates associated with urinary tract infection were studied. Using different criteria for picking peaks before carrying out PC-DFA enabled identification of the discriminatory information with greater certainty. For the image data, an air-dried salt stressed bacterial sample, discussed in another paper by us in this issue, was studied. Exploration of the image datasets with and without normalisation prior to multivariate analysis by PCA or MAF resulted in different regions of the image being highlighted by the techniques.
Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems
Martin-Diaconescu, Vlad; Gennari, Marcello; Gerey, Bertrand; ...
2014-12-10
Calcium K-edge pre-edges coupled with TD-DFT theoretical calculation of spectra provide a powerful approach for the characterization of complex calcium centers in inorganic and bioinorganic chemistry. Herein, Ca K-edge X-ray absorption spectroscopy (XAS) is developed as a means to characterize the local environment of calcium centers. The spectra for six, seven, and eight coordinate inorganic and molecular calcium complexes were analyzed and determined to be primarily influenced by the coordination environment and site symmetry at the calcium center. The experimental results are closely correlated to time-dependent density functional theory (TD-DFT) calculations of the XAS spectra. The applicability of this methodologymore » to complex systems was investigated using structural mimics of the oxygen-evolving complex (OEC) of PSII. It was found that Ca K-edge XAS is a sensitive probe for structural changes occurring in the cubane heterometallic cluster due to Mn oxidation. Future applications to the OEC are discussed.« less
One-dimensional dielectric bi-periodic photonic structures based on ternary photonic crystals
NASA Astrophysics Data System (ADS)
Dadoenkova, Nataliya N.; Dadoenkova, Yuliya S.; Panyaev, Ivan S.; Sannikov, Dmitry G.; Lyubchanskii, Igor L.
2018-01-01
We investigate the transmittivity spectra, fields, and energy distribution of the electromagnetic eigenwaves propagating in a one-dimensional (1D) dielectric photonic crystal [(TiO2/SiO2)NAl2O3]M with two periods formed by unit cells TiO2/SiO2 and (TiO2/SiO2)NAl2O3. Spectra of TE- and TM-modes depend on the geometric parameters of the structure and undergo modifications with the change in the period numbers, layer thicknesses, and incidence angle. Special attention is paid to the applicability of the hybrid effective medium approximation comprising the long-wave approximation and two-dimensional (2 × 2) transfer matrix method. We demonstrate spectral peculiarities of the bi-periodic structure and also show the differences between the band gap spectra of the bi-periodic and ternary 1D dielectric photonic crystals. The presented photonic crystal structure can find its applications in optoelectronics and nanophotonics areas as omnidirectional reflectors, optical ultra-narrow bandpass filters, and antireflection coatings.
NASA Astrophysics Data System (ADS)
Dasri, Thananchai; Chingsungnoen, Artit
2018-06-01
Surface plasmon in nano-sized particles, such as gold, silver, copper and their composites, has recently attracted a great deal of attention due to its possible uses in many applications, especially in life sciences. It is desirable for application devices with a tenability of surface plasmon wavelength and optical properties enhancement. This article presents enhanced optical light absorption and tunable wavelength in gold-coated magnetite (Fe3O4@Au core-shell) nanoparticles embedded in water using the theoretical method of discrete dipole approximation (DDA). The absorption spectra in the wavelengths from 350 to 900 nm were found to be the spectra obtained from Fe3O4@Au core-shell nanoparticles, and when compared with pure Fe3O4 nanoparticles, the surface plasmon resonance can be enhanced and tuned over the entire visible spectrum (viz. 350-800 nm) of the electromagnetic spectrum by varying the Au shell thickness (2-5 nm). Similarly, the Faraday rotation spectra can also be obtained.
Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries.
Patel, Manu U M; Dominko, Robert
2014-08-01
Application of UV/Vis spectroscopy for the qualitative and quantitative determination of differences in the mechanism of lithium-sulfur battery behavior is presented. With the help of catholytes prepared from chemically synthesized stoichiometric mixtures of lithium and sulfur, calibration curves for two different types of electrolyte can be constructed. First-order derivatives of UV/Vis spectra show five typical derivative peak positions in both electrolytes. In operando measurements show a smooth change in the UV/Vis spectra in the wavelength region between λ=650 and 400 nm. Derivatives are in agreement with derivative peak positions observed with catholytes. Recalculation of normalized reflections of UV/Vis spectra obtained in operando mode enable the formation of polysulfides and their concentrations to be followed. In such a way, it is possible to distinguish differences in the mechanism of polysulfide shuttling between two electrolytes and to correlate differences in capacity fading. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of interferential correlation of spectrum to the detection of atmospheric pollutants
NASA Technical Reports Server (NTRS)
Fortunato, G.
1979-01-01
The general correlation principles for spectra and spectra derivatives are studied by using the Fourier transform of the spectral distribution of energy from a source illuminating a double beam interferometer with transverse splitting by dividing luminance. In this correlation technique, the use of such an interferometer has the advantage of greater luminosity as compared with a slit spectrometer. However, the correlation example indicates that it is necessary to adapt the correlator to the particular case considered, in order to obtain the best gain in the signal to noise ratio. In the case of sulfur dioxide detection, a very simple mounting which could be used in some interesting industrial applications was developed. This mounting can be used each time that the substance to be analyzed has a quasi-periodic absorption spectrum: in particular this is often the case with absorption spectra of gases, and a mounting identical to the one described for sulfur dioxide proved to be effective in the detection of nitrogen oxides.
Fourier transform spectra of quantum dots
NASA Astrophysics Data System (ADS)
Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.
2009-09-01
Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.
Fourier transform spectra of quantum dots
NASA Astrophysics Data System (ADS)
Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.
2010-05-01
Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.
sup 40 Ar/ sup 39 Ar ages of six Apollo 15 impact melt rocks by laser step heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalrymple, G.B.; Ryder, G.
1991-06-01
The authors have obtained 15 high resolution (21-51 step) {sup 40}Ar/{sup 39}Ar age spectra on six Apollo 15 impact melt rocks of different compositions using a continuous laser system on submilligram subsamples and on single crystal plagioclase clasts. Four of the six samples gave reproducible age spectra with well-defined intermediate temperature plateaus over 48% or more of the {sup 39}AR released; the plateaus are interpreted as crystallization ages. Samples 15304,7,69, 15294,6,21, and 15314,26,156 gave virtually identical plateau ages whose weighted mean is 3,870 {plus minus} 6 Ma. These three melt rocks differ in composition and likely formed in three separatemore » impact events. Sample 15356,9 gave replicate plateau ages that average 3,836 {plus minus} 12 Ma and date a fourth and younger impact event. The age spectra for samples 15308,9 and 15414,3,36 increase with increasing increment temperature and may have been formed in or affected by impacts at about 2,700 Ma and 3,870 Ma, respectively. So far there continues to be no convincing evidence in the lunar record for impact melts older than about 3.9 Ga.« less
Organic photovoltaic cells utilizing ultrathin sensitizing layer
Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ; Rand, Barry P [Somers, NY
2011-09-06
A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.
Organic hybrid planar-nanocrystalline bulk heterojunctions
Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ
2011-03-01
A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.
Organic hybrid planar-nanocrystalline bulk heterojunctions
Forrest, Stephen R.; Yang, Fan
2013-04-09
A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.
PEPSI deep spectra. I. The Sun-as-a-star
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Ilyin, I.; Steffen, M.
2018-04-01
Context. Full-disk solar flux spectra can be directly compared to stellar spectra and thereby serve as our most important reference source for, for example stellar chemical abundances, magnetic activity phenomena, radial-velocity signatures or global pulsations. Aim. As part of the first Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) key-science project, we aim to provide well-exposed and average-combined (viz. deep) high-resolution spectra of representative stellar targets. Such deep spectra contain an overwhelming amount of information, typically much more than what could be analyzed and discussed within a single publication. Therefore, these spectra will be made available in form of (electronic) atlases. The first star in this series of papers is our Sun. It also acts as a system-performance cornerstone. Methods: The Sun was monitored with PEPSI at the Large Binocular Telescope (LBT). Instead of the LBT we used a small robotic solar disk integration (SDI) telescope. The deep spectra in this paper are the results of combining up to ≈100 consecutive exposures per wavelength setting and are compared with other solar flux atlases. Results: Our software for the optimal data extraction and reduction of PEPSI spectra is described and verified with the solar data. Three deep solar flux spectra with a spectral resolution of up to 270 000, a continuous wavelength coverage from 383 nm to 914 nm, and a photon signal to noise ratio (S/N) of between 2000-8000:1 depending on wavelength are presented. Additionally, a time-series of 996 high-cadence spectra in one cross disperser is used to search for intrinsic solar modulations. The wavelength calibration based on Th-Ar exposures and simultaneous Fabry-Pérot combs enables an absolute wavelength solution within 10 m s-1 (rms) with respect to the HARPS laser-comb solar atlas and a relative rms of 1.2 m s-1 for one day. For science demonstration, we redetermined the disk-average solar Li abundance to 1.09 ± 0.04 dex on the basis of 3D NLTE model atmospheres. We detected disk-averaged p-mode RV oscillations with a full amplitude of 47 cm s-1 at 5.5 min. Conclusions: Comparisons with two solar FTS atlases, as well as with the HARPS solar atlas, validate the PEPSI data product. Now, PEPSI/SDI solar-flux spectra are being taken with a sampling of one deep spectrum per day, and are supposed to continue a full magnetic cycle of the Sun. Based on data acquired with PEPSI fed by the solar disk integration (SDI) telescope operated by AIP at the Large Binocular Telescope Observatory (LBTO). The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona Board of Regents; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, The Leibniz Institute for Astrophysics Potsdam (AIP), and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia.
An IR investigation of solid amorphous ethanol - Spectra, properties, and phase changes
NASA Astrophysics Data System (ADS)
Hudson, Reggie L.
2017-12-01
Mid- and far-infrared spectra of condensed ethanol (CH3CH2OH) at 10-160 K are presented, with a special focus on amorphous ethanol, the form of greatest astrochemical interest, and with special attention given to changes at 155-160 K. Infrared spectra of amorphous and crystalline forms are shown. The refractive index at 670 nm of amorphous ethanol at 16 K is reported, along with three IR band strengths and a density. A comparison is made to recent work on the isoelectronic compound ethanethiol (CH3CH2SH), and several astrochemical applications are suggested for future study.
An IR Investigation of Solid Amorphous Ethanol-Spectra, Properties, and Phase Changes
NASA Technical Reports Server (NTRS)
Hudson, Reggie L.
2017-01-01
Mid- and far-infrared spectra of condensed ethanol (CH3CH2OH) at 10-160 K are presented, with a special focus on amorphous ethanol, the form of greatest astrochemical interest, and with special attention given to changes at 155-160 K. Infrared spectra of amorphous and crystalline forms are shown. The refractive index at 670 nm of amorphous ethanol at 16 K is reported, along with three IR band strengths and a density. A comparison is made to recent work on the isoelectronic compound ethanethiol (CH3CH2SH), and several astrochemical applications are suggested for future study.
Spectral Analysis of B Stars: An Application of Bayesian Statistics
NASA Astrophysics Data System (ADS)
Mugnes, J.-M.; Robert, C.
2012-12-01
To better understand the processes involved in stellar physics, it is necessary to obtain accurate stellar parameters (effective temperature, surface gravity, abundances…). Spectral analysis is a powerful tool for investigating stars, but it is also vital to reduce uncertainties at a decent computational cost. Here we present a spectral analysis method based on a combination of Bayesian statistics and grids of synthetic spectra obtained with TLUSTY. This method simultaneously constrains the stellar parameters by using all the lines accessible in observed spectra and thus greatly reduces uncertainties and improves the overall spectrum fitting. Preliminary results are shown using spectra from the Observatoire du Mont-Mégantic.
Visible properties of Sm{sup 3+} ions in chloro-fluoro-borate glasses for reddish - orange emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, K. Venkata, E-mail: drvenkataraok@gmail.com; Babu, S.; Ratnakaram, Y. C.
2016-05-23
Optical properties of different concentration (0.2, 0.4, 0.6, 0.8 and 1.0 mol %) of Sm{sup 3+} doped chloro-fluoro-borate glasses have been synthesized and discussed. Structural characterizations have been studied through XRD analysis. Spectroscopic analysis has done from absorption spectra, luminescence spectra and decay lifetime profiles. From the emission spectra, concentration quenching is observed, with increase of samarium concentration and discussed behind the phenomena. The nature of decay curve analysis was performed for the {sup 4}G{sub 5/2} level. These glasses are expected to give interesting application in the field of optics.
NASA Astrophysics Data System (ADS)
Amalanathan, M.; Hubert Joe, I.; Rastogi, V. K.
2011-12-01
Molecular structure, FT-IR and Raman spectra of L-phenylalanine phenylalanium nitrate have been investigated using density functional theory calculation. The polarizability and hyperpolarizability value of the crystal is also calculated. Natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction. Simultaneous activation of ring C sbnd C stretching modes shows the non-centrosymmetric symmetry. Terahertz time-domain spectroscopy has been used to detect the absorption spectra in the frequency range from 0.05 to 1.3 THz. Theoretically predicted β value exhibits the high nonlinear optical activity.
Infrared reflectance spectra (2. 2-15. mu. m) of plagioclase feldspars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, D.B.; Salisbury, J.W.
Laboratory results show that (1) the Christiansen frequency (CF) feature in mid-infrared reflectance spectra of powders can be used to accurately distinguish plagioclase composition, and (2) the wavelength position of the CF is not affected by vitrification of the plagioclase. Although the CF position does not distinguish glass from crystalline forms of plagioclase, other features (combination-tone, overtone, restrahlen bands) in the mid-IR spectra of plagioclase can be used for that purpose. These results have important implications for application of thermal emission spectroscopy to mapping the surface composition of regolith-covered planetary bodies like the Moon, Mars, and asteroids.
NASA Technical Reports Server (NTRS)
Green, A. E. S.; Singhal, R. P.
1979-01-01
An analytic representation for the spatial (radial and longitudinal) yield spectra is developed in terms of a model containing three simple 'microplumes'. The model is applied to electron energy degradation in molecular nitrogen gas for 0.1 to 5 keV incident electrons. From the nature of the cross section input to this model it is expected that the scaled spatial yield spectra for other gases will be quite similar. The model indicates that each excitation, ionization, etc. plume should have its individual spatial and energy dependence. Extensions and aeronomical and radiological applications of the model are discussed.
Temperature estimation from molecular nitrogen UV spectra in atmospheric pressure plasmas
NASA Astrophysics Data System (ADS)
Pepper, Keenan; Kim, Yongho; Kim, Jihun
2008-11-01
Atmospheric pressure plasmas have many potential applications to fuel processing, surface treatment, and manipulation of chemical reactions. These plasmas are often non-thermal, which means different species are not in equilibrium and have different effective temperatures. This is critical for many applications because it allows high concentrations of reactive species to be produced without using a prohibitive amount of power. In the present work, numerical software was developed to estimate the vibrational and rotational temperatures (Tvib and Trot) of N2 molecules from their ultraviolet emission spectra. The electron temperature Te can also be estimated by comparing the N2 spectrum to that of the N2^+ molecular ion. This technique is applied to several plasma sources including audio frequency, RF, and microwave devices. The results are presented and their implications for practical applications are discussed.
NASA Technical Reports Server (NTRS)
Ramakrishnan, R.; Randall, D.; Hosier, R. N.
1976-01-01
The programing language used is FORTRAN IV. A description of all main and subprograms is provided so that any user possessing a FORTRAN compiler and random access capability can adapt the program to his facility. Rotor blade surface-pressure spectra can be used by the program to calculate: (1) blade station loading spectra, (2) chordwise and/or spanwise integrated blade-loading spectra, and (3) far-field rotational noise spectra. Any of five standard inline functions describing the chordwise distribution of the blade loading can be chosen in order to study parametrically the acoustic predictions. The program output consists of both printed and graphic descriptions of the blade-loading coefficient spectra and far-field acoustic spectrum. The results may also be written on binary file for future processing. Examples of the application of the program along with a description of the rotational noise prediction theory on which the program is based are also provided.
Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J.; Freiberg, Arvi; Köhler, Jürgen
2014-01-01
We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy. PMID:24806933
ANNA: A Convolutional Neural Network Code for Spectroscopic Analysis
NASA Astrophysics Data System (ADS)
Lee-Brown, Donald; Anthony-Twarog, Barbara J.; Twarog, Bruce A.
2018-01-01
We present ANNA, a Python-based convolutional neural network code for the automated analysis of stellar spectra. ANNA provides a flexible framework that allows atmospheric parameters such as temperature and metallicity to be determined with accuracies comparable to those of established but less efficient techniques. ANNA performs its parameterization extremely quickly; typically several thousand spectra can be analyzed in less than a second. Additionally, the code incorporates features which greatly speed up the training process necessary for the neural network to measure spectra accurately, resulting in a tool that can easily be run on a single desktop or laptop computer. Thus, ANNA is useful in an era when spectrographs increasingly have the capability to collect dozens to hundreds of spectra each night. This talk will cover the basic features included in ANNA and demonstrate its performance in two use cases: an open cluster abundance analysis involving several hundred spectra, and a metal-rich field star study. Applicability of the code to large survey datasets will also be discussed.
[A method for obtaining redshifts of quasars based on wavelet multi-scaling feature matching].
Liu, Zhong-Tian; Li, Xiang-Ru; Wu, Fu-Chao; Zhao, Yong-Heng
2006-09-01
The LAMOST project, the world's largest sky survey project being implemented in China, is expected to obtain 10(5) quasar spectra. The main objective of the present article is to explore methods that can be used to estimate the redshifts of quasar spectra from LAMOST. Firstly, the features of the broad emission lines are extracted from the quasar spectra to overcome the disadvantage of low signal-to-noise ratio. Then the redshifts of quasar spectra can be estimated by using the multi-scaling feature matching. The experiment with the 15, 715 quasars from the SDSS DR2 shows that the correct rate of redshift estimated by the method is 95.13% within an error range of 0. 02. This method was designed to obtain the redshifts of quasar spectra with relative flux and a low signal-to-noise ratio, which is applicable to the LAMOST data and helps to study quasars and the large-scale structure of the universe etc.
Leon-Bejarano, Maritza; Dorantes-Mendez, Guadalupe; Ramirez-Elias, Miguel; Mendez, Martin O; Alba, Alfonso; Rodriguez-Leyva, Ildefonso; Jimenez, M
2016-08-01
Raman spectroscopy of biological tissue presents fluorescence background, an undesirable effect that generates false Raman intensities. This paper proposes the application of the Empirical Mode Decomposition (EMD) method to baseline correction. EMD is a suitable approach since it is an adaptive signal processing method for nonlinear and non-stationary signal analysis that does not require parameters selection such as polynomial methods. EMD performance was assessed through synthetic Raman spectra with different signal to noise ratio (SNR). The correlation coefficient between synthetic Raman spectra and the recovered one after EMD denoising was higher than 0.92. Additionally, twenty Raman spectra from skin were used to evaluate EMD performance and the results were compared with Vancouver Raman algorithm (VRA). The comparison resulted in a mean square error (MSE) of 0.001554. High correlation coefficient using synthetic spectra and low MSE in the comparison between EMD and VRA suggest that EMD could be an effective method to remove fluorescence background in biological Raman spectra.
Delayed neutron spectral data for Hansen-Roach energy group structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, J.M.; Spriggs, G.D.
A detailed knowledge of delayed neutron spectra is important in reactor physics. It not only allows for an accurate estimate of the effective delayed neutron fraction {beta}{sub eff} but also is essential to calculating important reactor kinetic parameters, such as effective group abundances and the ratio of {beta}{sub eff} to the prompt neutron generation time. Numerous measurements of delayed neutron spectra for various delayed neutron precursors have been performed and reported in the literature. However, for application in reactor physics calculations, these spectra are usually lumped into one of the traditional six groups of delayed neutrons in accordance to theirmore » half-lives. Subsequently, these six-group spectra are binned into energy intervals corresponding to the energy intervals of a chosen nuclear cross-section set. In this work, the authors present a set of delayed neutron spectra that were formulated specifically to match Keepin`s six-group parameters and the 16-energy-group Hansen-Roach cross sections.« less
Camerlingo, Carlo; Zenone, Flora; Perna, Giuseppe; Capozzi, Vito; Cirillo, Nicola; Gaeta, Giovanni Maria; Lepore, Maria
2008-06-01
A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome problems related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. This numerical data treatment can automatically extract quantitative information from the Raman spectra and makes more reliable the data comparison. Even if an exhaustive investigation has not been done in this work, the feasibility of the follow-up monitoring of pemphigus vulgaris pathology has been clearly proved with useful implications for the clinical applications.
Camerlingo, Carlo; Zenone, Flora; Perna, Giuseppe; Capozzi, Vito; Cirillo, Nicola; Gaeta, Giovanni Maria; Lepore, Maria
2008-01-01
A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome problems related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. This numerical data treatment can automatically extract quantitative information from the Raman spectra and makes more reliable the data comparison. Even if an exhaustive investigation has not been done in this work, the feasibility of the follow-up monitoring of pemphigus vulgaris pathology has been clearly proved with useful implications for the clinical applications. PMID:27879899
Dehghany, M; Michaelian, K H
2012-06-01
Quantum cascade laser-based instrumentation for dual beam photoacoustic (PA) spectroscopy is described in this article. Experimental equipment includes a 4.55 μm (2141-2265 cm(-1)) continuous wave external cavity quantum cascade laser (EC-QCL), two gas-microphone PA cells, and two lock-in amplifiers. Correction for the time and wavenumber dependence of the laser output is effected through real-time division of the PA signals derived from the sample and reference channels. Source-compensated mid-infrared absorption spectra of carbon black powder and aromatic hydrocarbon solids were obtained to confirm the reliability of the method. Absorption maxima in the EC-QCL PA spectra of hydrocarbons are better defined than those in Fourier transform infrared spectra acquired under similar conditions, enabling the detection of several previously unknown bands.
NASA Technical Reports Server (NTRS)
Lindner, Bernhard Lee
1992-01-01
Research activities to date are discussed. Selected Mariner 9 UV spectra were obtained. Radiative transfer models were updated and then exercised to simulate spectra. Simulated and observed spectra compare favorably. It is noted that large amounts of ozone are currently not retrieved with reflectance spectroscopy, raising large doubts about earlier published ozone abundances. As these published abundances have been used as a benchmark for all theoretical photochemical models of Mars, this deserves further exploration. Three manuscripts were published, and one is in review. Papers were presented and published at three conferences, and are planned for five more conferences in the next six months. The research plan for the next reporting period is discussed and involves continuing studies of reflectance spectroscopy, further examination of Mariner 9 data, and climate change studies of ozone.
NASA Technical Reports Server (NTRS)
Montegani, F. J.; Schaefer, J. W.; Stakolich, E. G.
1974-01-01
A significant effort within the NASA Quiet Engine Program has been devoted to acoustical evaluation at the Lewis Research Center noise test facility of a family of full-scale fans. This report, documents the noise results obtained with fan A - a 1.5-pressure-ratio, 1160-ft/sec-tip-speed fan. The fan is described and some aerodynamic operating data are given. Far-field noise around the fan was measured for a variety of configurations pertaining to acoustical treatment and over a range of operating conditions. Complete results of 1/3-octave band analysis of the data are presented in tabular form. Included also are power spectra and sideline perceived noise levels. Some representative 1/3-octave band data are presented graphically, and sample graphs of continuous narrow-band spectra are also provided.
Optimal Spectral Regions For Laser Excited Fluorescence Diagnostics For Point Of Care Application
NASA Astrophysics Data System (ADS)
Vaitkuviene, A.; Gėgžna, V.; Varanius, D.; Vaitkus, J.
2011-09-01
The tissue fluorescence gives the response of light emitting molecule signature, and characterizes the cell composition and peculiarities of metabolism. Both are useful for the biomedical diagnostics, as reported in previous our and others works. The present work demonstrates the results of application of laser excited autofluorescence for diagnostics of pathology in genital tissues, and the feasibility for the bedside at "point of care—off lab" application. A portable device using the USB spectrophotometer, micro laser (355 nm Nd:YAG, 0,5 ns pulse, repetition rate 10 kHz, output power 15 mW), three channel optical fiber and computer with diagnostic program was designed and ready for clinical trial to be used for cytology and biopsy specimen on site diagnostics, and for the endoscopy/puncture procedures. The biopsy and cytology samples, as well as intervertebral disc specimen were evaluated by pathology experts and the fluorescence spectra were investigated in the fresh and preserved specimens. The spectra were recorded in the spectral range 350-900 nm. At the initial stage the Gaussian components of spectra were found and the Mann-Whitney test was used for the groups' differentiation and the spectral regions for optimal diagnostics purpose were found. Then a formal dividing of spectra in the components or the definite width bands, where the main difference of the different group spectra was observed, was used to compare these groups. The ROC analysis based diagnostic algorithms were created for medical prognosis. The positive prognostic values and negative prediction values were determined for cervical Liquid PAP smear supernatant sediment diagnosis of being Cervicitis and Norma versus CIN2+. In a case of intervertebral disc the analysis allows to get the additional information about the disc degeneration status. All these results demonstrated an efficiency of the proposed procedure and the designed device could be tested at the point-of-care site or for intervertebral disc operations.
Spectroscopic properties of Sm3 + ions doped Alkaliborate glasses for photonics applications
NASA Astrophysics Data System (ADS)
Nagaraj, R.; Suthanthirakumar, P.; Vijayakumar, R.; Marimuthu, K.
2017-10-01
A new series of Sm3 + doped alkaliborate glasses have been prepared by melt quenching technique and their structural and spectroscopic properties were analysed employing XRD, FTIR, optical absorption, photoluminescence and decay spectral measurements in order to explore their suitability for photonic applications. The amorphous nature have been confirmed through XRD analysis and the FTIR spectra reveal the presence of fundamental stretching and bending vibrations of the borate networks in the prepared glasses. From the absorption peak positions, bonding parameter (δ) values were calculated to examine the nature of the metal-ligand bond. The optical band gap (Eopt) corresponds to the direct and indirect allowed transitions and the Urbach energies (ΔE) were calculated from the absorption spectra to understand the electronic band structure of the studied glasses. The Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2, 4 and 6) were determined to explore the symmetry of the ligand environment around the Sm3 + ions in the studied glasses. The luminescence spectra exhibit four emission bands in the visible region due to the 4G5/2 → 6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions. The radiative parameters such as transition probability (A), stimulated emission cross-section (σPE), branching ratios (βR) and radiative lifetime (τR) have been determined from the luminescence spectra using JO theory to ensure the suitability of the studied glasses for optoelectronic applications. The luminescence spectra were characterized through CIE 1931 chromaticity diagram to examine the dominant emission color of the studied glasses. The lifetime values of the Sm3 + doped studied glasses pertaining to the 4G5/2 excited level have been determined through decay curve measurements and the non-exponential decay curves were fitted to the Inokuti-Hirayama model to analyze the energy transfer mechanism between the nearby Sm3 + ions. The obtained results were discussed and compared with the similar reported glasses.
How specific Raman spectroscopic models are: a comparative study between different cancers
NASA Astrophysics Data System (ADS)
Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali
2010-02-01
Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.
Li, Tsung-Lung; Lu, Wen-Cai
2015-10-05
In this work, Koopmans' theorem for Kohn-Sham density functional theory (KS-DFT) is applied to the photoemission spectra (PES) modeling over the entire valence-band. To examine the validity of this application, a PES modeling scheme is developed to facilitate a full valence-band comparison of theoretical PES spectra with experiments. The PES model incorporates the variations of electron ionization cross-sections over atomic orbitals and a linear dispersion of spectral broadening widths. KS-DFT simulations of pristine rubrene (5,6,11,12-tetraphenyltetracene) and potassium-rubrene complex are performed, and the simulation results are used as the input to the PES models. Two conclusions are reached. First, decompositions of the theoretical total spectra show that the dissociated electron of the potassium mainly remains on the backbone and has little effect on the electronic structures of phenyl side groups. This and other electronic-structure results deduced from the spectral decompositions have been qualitatively obtained with the anionic approximation to potassium-rubrene complexes. The qualitative validity of the anionic approximation is thus verified. Second, comparison of the theoretical PES with the experiments shows that the full-scale simulations combined with the PES modeling methods greatly enhance the agreement on spectral shapes over the anionic approximation. This agreement of the theoretical PES spectra with the experiments over the full valence-band can be regarded, to some extent, as a collective validation of the application of Koopmans' theorem for KS-DFT to valence-band PES, at least, for this hydrocarbon and its alkali-adsorbed complex. Copyright © 2015 Elsevier B.V. All rights reserved.
Automated generation and ensemble-learned matching of X-ray absorption spectra
NASA Astrophysics Data System (ADS)
Zheng, Chen; Mathew, Kiran; Chen, Chi; Chen, Yiming; Tang, Hanmei; Dozier, Alan; Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Piper, Louis F. J.; Persson, Kristin A.; Ong, Shyue Ping
2018-12-01
X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique to determine oxidation states, coordination environment, and other local atomic structure information. Analysis of XAS relies on comparison of measured spectra to reliable reference spectra. However, existing databases of XAS spectra are highly limited both in terms of the number of reference spectra available as well as the breadth of chemistry coverage. In this work, we report the development of XASdb, a large database of computed reference XAS, and an Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of spectra. XASdb currently hosts more than 800,000 K-edge X-ray absorption near-edge spectra (XANES) for over 40,000 materials from the open-science Materials Project database. We discuss a high-throughput automation framework for FEFF calculations, built on robust, rigorously benchmarked parameters. FEFF is a computer program uses a real-space Green's function approach to calculate X-ray absorption spectra. We will demonstrate that the ELSIE algorithm, which combines 33 weak "learners" comprising a set of preprocessing steps and a similarity metric, can achieve up to 84.2% accuracy in identifying the correct oxidation state and coordination environment of a test set of 19 K-edge XANES spectra encompassing a diverse range of chemistries and crystal structures. The XASdb with the ELSIE algorithm has been integrated into a web application in the Materials Project, providing an important new public resource for the analysis of XAS to all materials researchers. Finally, the ELSIE algorithm itself has been made available as part of veidt, an open source machine-learning library for materials science.
Plasma spectroscopy of uranium and tungsten, part 1
NASA Technical Reports Server (NTRS)
Wilkerson, T. D.
1973-01-01
Results of research on uranium and tungsten spectra are summarized. Measurements of visible line spectra and opacities were carried out on shock tube plasmas which, prior to shock compression, were mixtures of rare gases and UF6 or WF6. Opacities were compared to theoretical predictions. Feasibility of light source methods other than the shock tube was explored for future applications in the spectroscopy of heavy metals and ions.
NASA Astrophysics Data System (ADS)
Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham
This work represents the application of the isosbestic points present in different absorption spectra. Three novel spectrophotometric methods were developed, the first method is the absorption subtraction method (AS) utilizing the isosbestic point in zero-order absorption spectra; the second method is the amplitude modulation method (AM) utilizing the isosbestic point in ratio spectra; and third method is the amplitude summation method (A-Sum) utilizing the isosbestic point in derivative spectra. The three methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The components at the isosbestic point were determined using the corresponding unified regression equation at this point with no need for a complementary method. The obtained results were statistically compared to each other and to that of the developed PLS model. The specificity of the developed methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed.
Application of a relativistic accretion disc model to X-ray spectra of LMC X-1 and GRO J1655-40
NASA Astrophysics Data System (ADS)
Gierliński, Marek; Maciołek-Niedźwiecki, Andrzej; Ebisawa, Ken
2001-08-01
We present a general relativistic accretion disc model and its application to the soft-state X-ray spectra of black hole binaries. The model assumes a flat, optically thick disc around a rotating Kerr black hole. The disc locally radiates away the dissipated energy as a blackbody. Special and general relativistic effects influencing photons emitted by the disc are taken into account. The emerging spectrum, as seen by a distant observer, is parametrized by the black hole mass and spin, the accretion rate, the disc inclination angle and the inner disc radius. We fit the ASCA soft-state X-ray spectra of LMC X-1 and GRO J1655-40 by this model. We find that, having additional limits on the black hole mass and inclination angle from optical/UV observations, we can constrain the black hole spin from X-ray data. In LMC X-1 the constraint is weak, and we can only rule out the maximally rotating black hole. In GRO J1655-40 we can limit the spin much better, and we find 0.68<=a<=0.88. Accretion discs in both sources are radiation-pressure dominated. We do not find Compton reflection features in the spectra of any of these objects.
NASA Astrophysics Data System (ADS)
Parente, Mario; Makarewicz, Heather D.; Bishop, Janice L.
2011-04-01
This study advances curve-fitting modeling of absorption bands of reflectance spectra and applies this new model to spectra of Martian meteorites ALH 84001 and EETA 79001 and data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). This study also details a recently introduced automated parameter initialization technique. We assess the performance of this automated procedure by comparing it to the currently available initialization method and perform a sensitivity analysis of the fit results to variation in initial guesses. We explore the issues related to the removal of the continuum, offer guidelines for continuum removal when modeling the absorptions and explore different continuum-removal techniques. We further evaluate the suitability of curve fitting techniques using Gaussians/Modified Gaussians to decompose spectra into individual end-member bands. We show that nonlinear least squares techniques such as the Levenberg-Marquardt algorithm achieve comparable results to the MGM model ( Sunshine and Pieters, 1993; Sunshine et al., 1990) for meteorite spectra. Finally we use Gaussian modeling to fit CRISM spectra of pyroxene and olivine-rich terrains on Mars. Analysis of CRISM spectra of two regions show that the pyroxene-dominated rock spectra measured at Juventae Chasma were modeled well with low Ca pyroxene, while the pyroxene-rich spectra acquired at Libya Montes required both low-Ca and high-Ca pyroxene for a good fit.
Even-odd alternation of near-infrared spectra of alkane-α,ω-diols in their solid states.
Toyama, Yuta; Murakami, Kohei; Yoshimura, Norio; Takayanagi, Masao
2018-05-15
Even-odd alternation of the melting points of α,ω-disubstituted linear alkanes such as alkane-α,ω-diols, alkane-α,ω-dinitriles and α,ω-diaminoalkanes is well known. Melting points for compounds with an even number of carbons in their alkyl chains are systematically higher than those for compounds with an odd number of carbons. In order to clarify the origin of this alternation, near-infrared absorption spectra of linear alkane-α,ω-diols with 3 to 9 carbon atoms in their alkyl chains were measured in the liquid and solid states. The band due to the first overtone of the OH stretching mode was investigated. The temperature-dependent spectra of all alkane-α,ω-diols in their liquid states were found to be similar; no even-odd alternation was observed. In the solid state, however, spectra of alkane-α,ω-diols with even and odd numbers of carbon atoms differed greatly. Spectra of alkane-α,ω-diols with an odd number of carbon atoms in their solid states were similar to those in the liquid states, although the variation of spectra observed upon lowering the temperature of liquid seemed to continue when the liquids were frozen. In contrast, spectra of alkane-α,ω-diols with an even number of carbon atoms in their liquid and solid states were found to be quite different. New bands appeared upon freezing. The observed even-odd alternation of the spectra observed for alkane-α,ω-diols in their solid states is presumably caused by their even-odd alternation of crystal structures. Copyright © 2018 Elsevier B.V. All rights reserved.
Taplin, Francis; O'Donnell, Deanna; Kubic, Thomas; Leona, Marco; Lombardi, John
2013-10-01
We evaluated the normal Raman (NR) and the surface-enhanced Raman scattering (SERS) of three sympathomimetic amines: phenethylamine, ephedrine, and 3,4-methylenedioxymethamphetamine (MDMA). In addition, quantum mechanical calculations-geometry optimization and calculations of the harmonic vibrational frequencies-were performed using the density functional theory (DFT) approach. Vibrational assignments were made by comparing the experimental and calculated spectra. The study found that both NR and SERS provided excellent spectra for the drugs tested. Certain conditions, such as response to various laser wavelengths and background fluorescence of the analyte, could be easily managed using SERS techniques. The DFT-calculated spectra could be correlated with the experimental spectra without the aid of a scaling factor. We also present a set of discriminant bands, useful for distinguishing the three compounds, despite their structural similarities.
Quantitative analysis of NMR spectra with chemometrics
NASA Astrophysics Data System (ADS)
Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.
2008-01-01
The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, He; Yuan, Ping; Cen, Jian-Yong
2014-03-15
A cloud-to-ground lightning with six return strokes has been recorded with a slit-less spectrograph in Qinghai province. According to the spectra of return strokes without continuous current, the electron density, the channel temperature, and the gas pressure have been calculated. Then, the correlativity of these parameters has been analyzed. The results indicate that the total intensity of spectra is positive correlated to the intensity of spectral line, they both decrease with time rapidly; furthermore, the channel temperature and the gas pressure decrease with time slowly in the similar trends.
Numerical Simulation of the Anomalous Transport of High-Energy Cosmic Rays in Galactic Superbubble
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; Price, E. M.; MeWaldt, R. A.
2013-01-01
A continuous-time random-walk (CTRW) model to simulate the transport and acceleration of high-energy cosmic rays in galactic superbubbles has recently been put forward (Barghouty & Schnee 2102). The new model has been developed to simulate and highlight signatures of anomalous transport on particles' evolution and their spectra in a multi-shock, collective acceleration context. The superbubble is idealized as a heterogeneous region of particle sources and sinks bounded by a random surface. This work concentrates on the effects of the bubble's assumed astrophysical characteristics (cf. geometry and roughness) on the particles' spectra.
Micro and nanocrystalline diamond formation on reticulated vitreous carbon substrate
NASA Astrophysics Data System (ADS)
Diniz, A. V.; Trava-Airoldi, V. J.; Corat, E. J.; Ferreira, N. G.
2005-10-01
High diamond nucleation and a three-dimensional growth on reticulated vitreous carbon substrate are obtained by chemical vapor deposition. Scanning electron microscopy images show continuous films covering the whole substrate including the center of 3.5 mm thick porous samples. It is evident the nanocrystalline diamond (NCD) film formation on deeper substrate regions. The grain size can vary from nano to micro scale for deposition time of 20 h. Raman spectra of sample regions closer to filaments exhibit well-defined diamond line. For central regions of sample (depth between 1.0 and 2.0 mm) Raman spectra also confirm NCD film.
NASA Technical Reports Server (NTRS)
Goldberg, Leo
1987-01-01
Observational evidence for mass loss from cool stars is reviewed. Spectra line profiles are used for the derivation of mass-loss rates with the aid of the equation of continuity. This equation implies steady mass loss with spherical symmetry. Data from binary stars, Mira variables, and red giants in globular clusters are examined. Silicate emission is discussed as a useful indicator of mass loss in the middle infrared spectra. The use of thermal millimeter-wave radiation, Very Large Array (VLA) measurement of radio emission, and OH/IR masers are discussed as a tool for mass loss measurement. Evidence for nonsteady mass loss is also reviewed.
Analysis of human hair by Raman microspectroscopy
NASA Astrophysics Data System (ADS)
Plascencia-Castro, A. S.; Cordova-Fraga, T.; Piña-Ruiz, A. L.; Hernández-Rayas, A.; Bernal, J. J.
2017-04-01
Raman microspectroscopy is an optical compound identification technique, which is widely used nowadays for different field applications. A crucial part of this technique is the focus given to the sample in the microscope because it depends on which part of the sample it will analyze. In this work, the effects of irradiating a natural hair samples, obtained from women aged 18 to 55, with a monochromatic light of the Raman spectrometer in two different focus is presented. Two different spectra were obtained with a peak in common. Depending on the information wanted, how the sample is focused plays a crucial role, either way the spectra is information-rich and may be used for biomedical applications.
NASA Astrophysics Data System (ADS)
Freedman, R. S.; Schwenke, D. W.
2000-12-01
Methane is not only an important opacity source in brown dwarfs and giant planets, but its appearance in the spectrum is often used as an indicator of a low temperature object. Unfortunately, the analysis of the spectrum of this important molecule is far from complete due to its great complexity. In this presentation we will show progress that has been made by David Schwenke and Harry Partridge in developing an ab initio potential surface for CH4. Examples will be given to illustrate the current state of the calculations, and the applications to the interpretation of astronomical spectra. Computational Chemistry Branch - NASA Ames.
NASA Astrophysics Data System (ADS)
Lucey, Paul G.; Trang, David; Johnson, Jeffrey R.; Glotch, Timothy D.
2018-01-01
Several studies have detected the presence of nanophase ferric oxide, such as nanophase hematite, across the martian surface through spacecraft and rover data. In this study, we used the radiative transfer method to detect and quantify the abundance of these nanophase particles. Because the visible/near-infrared spectral characteristics of hematite > 10 nm in size are different from nanophase hematite < 10 nm, there are not any adequate optical constants of nanophase hematite to study visible to near-infrared rover/spacecraft data of the martian surface. Consequently, we found that radiative transfer models based upon the optical constants of crystalline hematite are unable to reproduce laboratory spectra of nanophase hematite. In order to match the model spectra to the laboratory spectra, we developed a new set of optical constants of nanophase hematite in the visible and near-infrared and found that radiative transfer models based upon these optical constants consistently model the laboratory spectra. We applied our model to the passive bidirectional reflectance spectra data from the Chemistry and Camera (ChemCam) instrument onboard the Mars Science Laboratory rover, Curiosity. After modeling six spectra representing different major units identified during the first year of rover operations, we found that the nanophase hematite abundance was no more than 4 wt%.
Chen, Shuo; Ong, Yi Hong; Lin, Xiaoqian; Liu, Quan
2015-01-01
Raman spectroscopy has shown great potential in biomedical applications. However, intrinsically weak Raman signals cause slow data acquisition especially in Raman imaging. This problem can be overcome by narrow-band Raman imaging followed by spectral reconstruction. Our previous study has shown that Raman spectra free of fluorescence background can be reconstructed from narrow-band Raman measurements using traditional Wiener estimation. However, fluorescence-free Raman spectra are only available from those sophisticated Raman setups capable of fluorescence suppression. The reconstruction of Raman spectra with fluorescence background from narrow-band measurements is much more challenging due to the significant variation in fluorescence background. In this study, two advanced Wiener estimation methods, i.e. modified Wiener estimation and sequential weighted Wiener estimation, were optimized to achieve this goal. Both spontaneous Raman spectra and surface enhanced Raman spectra were evaluated. Compared with traditional Wiener estimation, two advanced methods showed significant improvement in the reconstruction of spontaneous Raman spectra. However, traditional Wiener estimation can work as effectively as the advanced methods for SERS spectra but much faster. The wise selection of these methods would enable accurate Raman reconstruction in a simple Raman setup without the function of fluorescence suppression for fast Raman imaging. PMID:26203387
Goddard, Braden; Croft, Stephen; Lousteau, Angela; ...
2016-05-25
Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with ( α,n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured spectra ofmore » various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. Finally, the singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis.« less
NASA Astrophysics Data System (ADS)
Yehia, Ali M.; Abd El-Rahman, Mohamed K.
2015-03-01
Normalized spectra have a great power in resolving spectral overlap of challenging Orphenadrine (ORP) and Paracetamol (PAR) binary mixture, four smart techniques utilizing the normalized spectra were used in this work, namely, amplitude modulation (AM), simultaneous area ratio subtraction (SARS), simultaneous derivative spectrophotometry (S1DD) and ratio H-point standard addition method (RHPSAM). In AM, peak amplitude at 221.6 nm of the division spectra was measured for both ORP and PAR determination, while in SARS, concentration of ORP was determined using the area under the curve from 215 nm to 222 nm of the regenerated ORP zero order absorption spectra, in S1DD, concentration of ORP was determined using the peak amplitude at 224 nm of the first derivative ratio spectra. PAR concentration was determined directly at 288 nm in the division spectra obtained during the manipulation steps in the previous three methods. The last RHPSAM is a dual wavelength method in which two calibrations were plotted at 216 nm and 226 nm. RH point is the intersection of the two calibration lines, where ORP and PAR concentrations were directly determined from coordinates of RH point. The proposed methods were applied successfully for the determination of ORP and PAR in their dosage form.
USDA-ARS?s Scientific Manuscript database
CP flat-fan nozzles with selectable tips were evaluated for droplet spectra and coverage using water sensitive papers placed in the spray swath. This study used low application volumes (1, 2, and 3 GPA) at a certain spray application height as measured precisely by laser mounted in the aircraft. No...
JointMMCC: Joint Maximum-Margin Classification and Clustering of Imaging Data
Filipovych, Roman; Resnick, Susan M.; Davatzikos, Christos
2012-01-01
A number of conditions are characterized by pathologies that form continuous or nearly-continuous spectra spanning from the absence of pathology to very pronounced pathological changes (e.g., normal aging, Mild Cognitive Impairment, Alzheimer's). Moreover, diseases are often highly heterogeneous with a number of diagnostic subcategories or subconditions lying within the spectra (e.g., Autism Spectrum Disorder, schizophrenia). Discovering coherent subpopulations of subjects within the spectrum of pathological changes may further our understanding of diseases, and potentially identify subconditions that require alternative or modified treatment options. In this paper, we propose an approach that aims at identifying coherent subpopulations with respect to the underlying MRI in the scenario where the condition is heterogeneous and pathological changes form a continuous spectrum. We describe a Joint Maximum-Margin Classification and Clustering (JointMMCC) approach that jointly detects the pathologic population via semi-supervised classification, as well as disentangles heterogeneity of the pathological cohort by solving a clustering subproblem. We propose an efficient solution to the non-convex optimization problem associated with JointMMCC. We apply our proposed approach to an MRI study of aging, and identify coherent subpopulations (i.e., clusters) of cognitively less stable adults. PMID:22328179
NASA Astrophysics Data System (ADS)
Fahey, D. W.; Gao, R.; Thornberry, T. D.; Rollins, D. W.; Schwarz, J. P.; Perring, A. E.
2013-12-01
In-situ sampling with particle size spectrometers is an important method to provide detailed size spectra for atmospheric aerosol in the troposphere and stratosphere. The spectra are essential for understanding aerosol sources and aerosol chemical evolution and removal, and for aerosol remote sensing validation. These spectrometers are usually bulky, heavy, and expensive, thereby limiting their application to specific airborne platforms. Here we report a new type of small and light-weight optical aerosol particle size spectrometer that is sensitive enough for many aerosol applications yet is inexpensive enough to be disposable. 3D printing is used for producing structural components for simplicity and low cost. Weighing less than 1 kg individually, we expect these spectrometers can be deployed successfully on small unmanned aircraft systems (UASs) and up to 25 km on weather balloons. Immediate applications include the study of Arctic haze using the Manta UAS, detection of the Asian Tropopause Aerosol Layer in the Asian monsoon system and SAGE III validation onboard weather balloons.
Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development.
Gala, Urvi; Chauhan, Harsh
2015-02-01
In recent years, Raman spectroscopy has become increasingly important as an analytical technique in various scientific areas of research and development. This is partly due to the technological advancements in Raman instrumentation and partly due to detailed fingerprinting that can be derived from Raman spectra. Its versatility of applications, rapidness of collection and easy analysis have made Raman spectroscopy an attractive analytical tool. The following review describes Raman spectroscopy and its application within the pharmaceutical industry. The authors explain the theory of Raman scattering and its variations in Raman spectroscopy. The authors also highlight how Raman spectra are interpreted, providing examples. Raman spectroscopy has a number of potential applications within drug discovery and development. It can be used to estimate the molecular activity of drugs and to establish a drug's physicochemical properties such as its partition coefficient. It can also be used in compatibility studies during the drug formulation process. Raman spectroscopy's immense potential should be further investigated in future.
A spectroscopic approach to monitor the cut processing in pulsed laser osteotomy.
Henn, Konrad; Gubaidullin, Gail G; Bongartz, Jens; Wahrburg, Jürgen; Roth, Hubert; Kunkel, Martin
2013-01-01
During laser osteotomy surgery, plasma arises at the place of ablation. It was the aim of this study to explore whether a spectroscopic analysis of this plasma would allow identification of the type of tissue that was affected by the laser. In an experimental setup (Rofin SCx10, CO(2) Slab Laser, wavelength 10.6 μm, pulse duration 80 μs, pulse repetition rate 200 Hz, max. output in cw-mode 100 W), the plasma spectra evoked by a pulsed laser, cutting 1-day postmortem pig and cow bones, were recorded. Spectra were compared to the reference spectrum of bone via correlation analysis. Our measurements show a clear differentiation between the plasma spectra when cutting either a bone or a soft tissue. The spectral changes could be detected from one to the next spectrum within 200 ms. Continuous surveillance of plasma spectra allows us to differentiate whether bone or soft tissue is hit by the last laser pulse. With this information, it may be possible to stop the laser when cutting undesired soft tissue and to design an automatic control of the ablation process.
Automation of peak-tracking analysis of stepwise perturbed NMR spectra.
Banelli, Tommaso; Vuano, Marco; Fogolari, Federico; Fusiello, Andrea; Esposito, Gennaro; Corazza, Alessandra
2017-02-01
We describe a new algorithmic approach able to automatically pick and track the NMR resonances of a large number of 2D NMR spectra acquired during a stepwise variation of a physical parameter. The method has been named Trace in Track (TINT), referring to the idea that a gaussian decomposition traces peaks within the tracks recognised through 3D mathematical morphology. It is capable of determining the evolution of the chemical shifts, intensity and linewidths of each tracked peak.The performances obtained in term of track reconstruction and correct assignment on realistic synthetic spectra were high above 90% when a noise level similar to that of experimental data were considered. TINT was applied successfully to several protein systems during a temperature ramp in isotope exchange experiments. A comparison with a state-of-the-art algorithm showed promising results for great numbers of spectra and low signal to noise ratios, when the graduality of the perturbation is appropriate. TINT can be applied to different kinds of high throughput chemical shift mapping experiments, with quasi-continuous variations, in which a quantitative automated recognition is crucial.
NASA Astrophysics Data System (ADS)
Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.
2003-08-01
A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman-Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.
NASA Astrophysics Data System (ADS)
Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.
2004-03-01
A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman- Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.
NASA Astrophysics Data System (ADS)
Zagorska, A.; Bliznakova, K.; Buchakliev, Z.
2015-09-01
In 2012, the International Commission on Radiological Protection has recommended a reduction of the dose limits to the eye lens for occupational exposure. Recent studies showed that in interventional rooms is possible to reach these limits especially without using protective equipment. The aim of this study was to calculate the scattered energy spectra distribution at the level of the operator's head. For this purpose, an in-house developed Monte Carlo-based computer application was used to design computational phantoms (patient and operator), the acquisition geometry as well as to simulate the photon transport through the designed system. The initial spectra from 70 kV tube voltage and 8 different filtrations were calculated according to the IPEM Report 78. An experimental study was carried out to verify the results from the simulations. The calculated scattered radiation distributions were compared to the initial incident on the patient spectra. Results showed that there is no large difference between the effective energies of the scattered spectra registered in front of the operator's head obtained from simulations of all 8 incident spectra. The results from the experimental study agreed well to simulations as well.
NASA Astrophysics Data System (ADS)
Bolte, Nathan; Heidbrink, W. W.; Pace, D. C.; van Zeeland, M. A.; Chen, X.
2015-11-01
A new fast-ion diagnostic method uses passive emission of D-alpha radiation to determine fast-ion losses quantitatively. The passive fast-ion D-alpha simulation (P-FIDAsim) forward models the Doppler-shifted spectra of first-orbit fast ions that charge exchange with edge neutrals. Simulated spectra are up to 80 % correlated with experimental spectra. Calibrated spectra are used to estimate the 2D neutral density profile by inverting simulated spectra. The inferred neutral density shows the expected increase toward each x-point and an average value of 8 × 10 9 cm-3 at the plasma boundary and 1 × 10 11 cm-3 near the wall. Measuring and simulating first-orbit spectra effectively ``calibrates'' the system, allowing for the quantification of more general fast-ion losses. Sawtooth crashes are estimated to eject 1.2 % of the fast-ion inventory, in good agreement with a 1.7 % loss estimate made by TRANSP. Sightlines sensitive to passing ions observe larger sawtooth losses than sightlines sensitive to trapped ions. Supported by US DOE under SC-G903402, DE-FC02-04ER54698.
Analytic calculations of anharmonic infrared and Raman vibrational spectra
Louant, Orian; Ruud, Kenneth
2016-01-01
Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives—that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree–Fock and Kohn–Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used. PMID:26784673
Covariance NMR Processing and Analysis for Protein Assignment.
Harden, Bradley J; Frueh, Dominique P
2018-01-01
During NMR resonance assignment it is often necessary to relate nuclei to one another indirectly, through their common correlations to other nuclei. Covariance NMR has emerged as a powerful technique to correlate such nuclei without relying on error-prone peak peaking. However, false-positive artifacts in covariance spectra have impeded a general application to proteins. We recently introduced pre- and postprocessing steps to reduce the prevalence of artifacts in covariance spectra, allowing for the calculation of a variety of 4D covariance maps obtained from diverse combinations of pairs of 3D spectra, and we have employed them to assign backbone and sidechain resonances in two large and challenging proteins. In this chapter, we present a detailed protocol describing how to (1) properly prepare existing 3D spectra for covariance, (2) understand and apply our processing script, and (3) navigate and interpret the resulting 4D spectra. We also provide solutions to a number of errors that may occur when using our script, and we offer practical advice when assigning difficult signals. We believe such 4D spectra, and covariance NMR in general, can play an integral role in the assignment of NMR signals.
Spectrometric microbiological analyzer
NASA Astrophysics Data System (ADS)
Schlager, Kenneth J.; Meissner, Ken E.
1996-04-01
Currently, there are four general approaches to microbiological analysis, i.e., the detection, identification and quantification of micro-organisms: (1) Traditional culturing and staining procedures, metabolic fermentations and visual morphological characteristics; (2) Immunological approaches employing microbe-specific antibodies; (3) Biotechnical techniques employing DNA probes and related genetic engineering methods; and (4) Physical measurement techniques based on the biophysical properties of micro-organisms. This paper describes an instrumentation development in the fourth of the above categories, physical measurement, that uses a combination of fluorometric and light scatter spectra to detect and identify micro-organisms at the species level. A major advantage of this approach is the rapid turnaround possible in medical diagnostic or water testing applications. Fluorometric spectra serve to define the biochemical characteristics of the microbe, and light scatter spectra the size and shape morphology. Together, the two spectra define a 'fingerprint' for each species of microbe for detection, identification and quantification purposes. A prototype instrument has been developed and tested under NASA sponsorship based on fluorometric spectra alone. This instrument demonstrated identification and quantification capabilities at the species level. The paper reports on test results using this instrument, and the benefits of employing a combination of fluorometric and light scatter spectra.
NASA Technical Reports Server (NTRS)
Jackson, F. C.; Walton, W. T.; Baker, P. L.
1982-01-01
A microwave radar technique for remotely measuring the vector wave number spectrum of the ocean surface is described. The technique, which employs short-pulse, noncoherent radars in a conical scan mode near vertical incidence, is shown to be suitable for both aircraft and satellite application, the technique was validated at 10 km aircraft altitude, where we have found excellent agreement between buoy and radar-inferred absolute wave height spectra.
2011-11-01
were evaluated. For these experiments, an aliquot of the common bacillus spore B. coagulans was drop-dried onto the SERS substrate active surface...the Klarite surface. Spectra for bacillus spore B. coagulans on different substrate types. 3.5 Energetic Sample Evaluation Hazard detection...substrate types (a–f). Notice the dramatic difference in size between the spore and the active areas on the Klarite surface. Spectra for bacillus
Prior, Christopher; Oganesyan, Vasily S
2017-09-21
We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of the motional electron paramagnetic resonance (EPR) spectra of lyotropic liquid crystals in different aggregation states doped with a paramagnetic spin probe. The purpose of this study is twofold. First, given that EPR spectra are highly sensitive to the motions and order of the spin probes doped within lyotropic aggregates, simulation of EPR line shapes from the results of MD modelling provides an ultimate test bed for the force fields currently employed to model such systems. Second, the EPR line shapes are simulated using the motional parameters extracted from MD trajectories using the Model-Free (MF) approach. Thus a combined MD-EPR methodology allowed us to test directly the validity of the application of the MF approach to systems with multi-component molecular motions. All-atom MD simulations using the General AMBER Force Field (GAFF) have been performed on sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium chloride (DTAC) liquid crystals. The resulting MD trajectories were used to predict and interpret the EPR spectra of pre-micellar, micellar, rod and lamellar aggregates. The predicted EPR spectra demonstrate good agreement with most of experimental line shapes thus confirming the validity of both the force fields employed and the MF approach for the studied systems. At the same time simulation results confirm that GAFF tends to overestimate the packing and the order of the carbonyl chains of the surfactant molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gaffar, M. A.; Abd-Elrahman, M. I.
2004-10-01
Lattice, rotation and intramolecular vibrations of ferrocene, Fe(C5H5)(2), crystallites of the C-2h(5) factor group in the disordered phase are calculated using the correlation theorem based on group theory. The correlation between the species of the C-1 site symmetry occupied by cyclopentadienyl molecules and those of the factor group C-2h, of the crystal are calculated. The number of lattice vibrations of the cyclopentadienyl molecules is found to be 12. with active modes in Raman and infrared (IR) spectra. The same number of rotations for the cyclopentadienyl molecules is expected to be allowed in both spectra. The active number of intramolecular vibrations for the cyclopentadienyl molecules having D-5 molecular symmetry is expected to be 80 vibrations in both the Raman and the IR spectra. The effect of gamma-irradiation with different doses and heat treatment at different temperatures on the IR spectra of ferrocene in the energy range 4000-200 cm(-1) is discussed. A number of bands continuously shifted their position, and a decrease in intensity with increasing gamma-dose is observed. New bands appeared in this spectral region for different annealing temperatures and different gamma-doses. These changes are discussed in terms of intermolecular interactions between molecules within the unit cell.
GHRS Spectra of the Very Low Mass Star VB 10 (M8 Ve)
NASA Astrophysics Data System (ADS)
Linsky, J. L.; Wood, B.; Brown, A.
1994-12-01
We report on ultraviolet spectra of the M8 Ve star VB10 = Gl 752B, probably the coolest and lowest mass star observed so far in the ultraviolet. This star is of great interest because it lies almost at the end of the main sequence where stars are thought to be fully convective and solar-type dynamo processes should not be present. On 1994 October 12 we observed the brighter companion Gl 752A (M3 Ve) and then offset to VB10. Both stars were observed with the G140L grating on the HST Goddard High Resolution Spectrograph. The spectrum of Gl 752A shows the expected transition region lines of solar-type stars consisting of C III 1175 Angstroms, H I Lyman-alpha , N V 1240 Angstroms, O I 1304 Angstroms, C II 1335 Angstroms, Si IV 1400 Angstroms, C IV 1550 Angstroms, He II 1640 Angstroms, and others. The spectrum of VB10, on the other hand, provided a surprise. Our spectra of this star consists of 11 integrations, each of about 5 minutes duration. The first 10 integrations show no emission features with very small upper limits to the surface fluxes in the transition region lines. The last integration, however, shows strong emission in the C II, Si IV, and C IV lines, which we interpret as a flare. The VB10 spectra imply that there is little if any continuous heating of the transition regions of the very coolest M dwarf stars. Instead, there is only transient emission during major realignments of the magnetic field. By contrast, hotter stars show continuous emission in the transition region lines, indicating a continuous heating process or a large number of small flares (microflaring). This change in behavior may be due to the absence of radiative cores in the coolest M dwarfs and the inability of the solar-type alpha -omega dynamo to operate in stars without an interface between a radiative core and a convective envelope. Our data indicate that the coolest M dwarfs nevertheless do have magnetic fields. This work is supported by NASA Interagency Transfer S-56460-D to the National Institute of Standards and Technology.
NASA Technical Reports Server (NTRS)
Cohen, Martin; Witteborn, Fred C.; Carbon, Duane F.; Davies, John K.; Wooden, Diane H.; Bregman, Jesse D.
1996-01-01
We present five new absolutely calibrated continuous stellar spectra constructed as far as possible from spectral fragments observed from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer. These stars-alpha Boo, gamma Dra, alpha Cet, gamma Cru, and mu UMa-augment our six, published, absolutely calibrated spectra of K and early-M giants. All spectra have a common calibration pedigree. A revised composite for alpha Boo has been constructed from higher quality spectral fragments than our previously published one. The spectrum of gamma Dra was created in direct response to the needs of instruments aboard the Infrared Space Observatory (ISO); this star's location near the north ecliptic pole renders it highly visible throughout the mission. We compare all our low-resolution composite spectra with Kurucz model atmospheres and find good agreement in shape, with the obvious exception of the SiO fundamental, still lacking in current grids of model atmospheres. The CO fundamental seems slightly too deep in these models, but this could reflect our use of generic models with solar metal abundances rather than models specific to the metallicities of the individual stars. Angular diameters derived from these spectra and models are in excellent agreement with the best observed diameters. The ratio of our adopted Sirius and Vega models is vindicated by spectral observations. We compare IRAS fluxes predicted from our cool stellar spectra with those observed and conclude that, at 12 and 25 microns, flux densities measured by IRAS should be revised downwards by about 4.1% and 5.7%, respectively, for consistency with our absolute calibration. We have provided extrapolated continuum versions of these spectra to 300 microns, in direct support of ISO (PHT and LWS instruments). These spectra are consistent with IRAS flux densities at 60 and 100 microns.
Spectroscopic study of trivalent praseodymium in barium yttrium fluoride
NASA Astrophysics Data System (ADS)
Bowlby, Brian Edward
1998-09-01
This work investigates the spectroscopic properties of trivalent praseodymium (Pr3+) in barium yttrium fluoride (BaY2F8). Two doping concentrations were studied: BaY2F8:Pr3+ (.3%) and BaY2F8:Pr3+ (1%). Absorption spectra were taken at 77K and 300K and these were then used to calculate the Judd-Ofelt coefficients for both samples. These coefficients were then used to calculate the theoretical lifetimes and radiative branching ratios for all manifolds. Continuous luminescence spectra and lifetime measurements were also performed, and from these, experimentally determined values for the branching ratio and lifetimes were determined. These were then compared to their theoretical counterparts. It was found that while the theory gave values that were qualitatively correct, the quantitative correlation between theory and experiment shows the complexity of the physical reality and the difficulty of synthesizing an encompassing theoretical model. Absorption spectra and continuous luminescence spectra were also used to determine the energy levels of all manifolds in both samples. A total of 59 energy levels in 11 manifolds were identified in the BaY2F8:Pr3+ (1%) sample, while 51 levels in 11 manifolds were identified in the BaY2F8:Pr3+ (.3%) sample. Finally, the effects of temperature on the line width and line position for several radiative transitions was studied. It was found that while most transitions exhibited the expected broadening and shifting towards longer wavelengths at higher temperatures (a 'red shift'), the transition from the 3P0 level to the 3H4 ground state showed a shift towards shorter wavelengths at higher temperature (a 'blue shift'). Again this highlights the complexity of the ion- host interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yuqing; Cai, Shuhui; Yang, Yu
2016-03-14
High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this methodmore » are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.« less
Rate-compatible punctured convolutional codes (RCPC codes) and their applications
NASA Astrophysics Data System (ADS)
Hagenauer, Joachim
1988-04-01
The concept of punctured convolutional codes is extended by punctuating a low-rate 1/N code periodically with period P to obtain a family of codes with rate P/(P + l), where l can be varied between 1 and (N - 1)P. A rate-compatibility restriction on the puncturing tables ensures that all code bits of high rate codes are used by the lower-rate codes. This allows transmission of incremental redundancy in ARQ/FEC (automatic repeat request/forward error correction) schemes and continuous rate variation to change from low to high error protection within a data frame. Families of RCPC codes with rates between 8/9 and 1/4 are given for memories M from 3 to 6 (8 to 64 trellis states) together with the relevant distance spectra. These codes are almost as good as the best known general convolutional codes of the respective rates. It is shown that the same Viterbi decoder can be used for all RCPC codes of the same M. The application of RCPC codes to hybrid ARQ/FEC schemes is discussed for Gaussian and Rayleigh fading channels using channel-state information to optimize throughput.
Development of the (d,n) Proton-transfer Reaction in Inverse Kinematics for Structure Studies
NASA Astrophysics Data System (ADS)
Jones, K. L.; Thornsberry, C.; Allen, J.; Atencio, A.; Bardayan, D. W.; Blankstein, D.; Burcher, S.; Carter, A. B.; Chipps, K. A.; Cizewski, J. A.; Cox, I.; Elledge, Z.; Febbraro, M.; Fijałkowska, A.; Grzywacz, R.; Hall, M. R.; King, T. T.; Lepailleur, A.; Madurga, M.; Marley, S. T.; O'Malley, P. D.; Paulauskas, S. V.; Pain, S. D.; Peters, W. A.; Reingold, C.; Smith, K.; Taylor, S.; Tan, W.; Vostinar, M.; Walter, D.
Transfer reactions have provided exciting opportunities to study the structure of exotic nuclei and are often used to inform studies relating to nucleosynthesis and applications. In order to benefit from these reactions and their application to rare ion beams (RIBs) it is necessary to develop the tools and techniques to perform and analyze the data from reactions performed in inverse kinematics, that is with targets of light nuclei and heavier beams. We are continuing to expand the transfer reaction toolbox in preparation for the next generation of facilities, such as the Facility for Rare Ion Beams (FRIB), which is scheduled for completion in 2022. An important step in this process is to perform the (d,n) reaction in inverse kinematics, with analyses that include Q-value spectra and differential cross sections. In this way, proton-transfer reactions can be placed on the same level as the more commonly used neutron-transfer reactions, such as (d,p), (9Be,8Be), and (13C,12C). Here we present an overview of the techniques used in (d,p) and (d,n), and some recent data from (d,n) reactions in inverse kinematics using stable beams of 12C and 16O.
Application of laser Raman spectroscopy to dental diagnosis
NASA Astrophysics Data System (ADS)
Izawa, Takahiro; Wakaki, Moriaki
2005-03-01
The aim of this research is related with the diagnosis of caries by use of a laser. We study the fundamental characterization of the diagnosis method using both fluorescence and Raman scattering spectroscopy. We try to evaluate the possibility of the caries diagnosis using Raman spectroscopy and its clinical application. We focus on the PO34- ion that flows out with the dissolution of hydroxyapatite (HAp), and the fluorescence that increases in connection with caries. The Raman line of P-O vibration is overlapped on the continuous, background spectrum by fluorescence. Consequently, we try to find out the correlation between a healthy part and a carious part by analyzing both fluorescence and Raman spectra. It was found that Raman intensity of HAp at carious lesion was weaker than those of healthy parts and the florescence intensity at the same portions was stronger. We have obtained the feasibility to estimate the degree of caries and health condition by deriving the ratio between Raman and florescence intensity. And the trial measurements in vivo were carried out to verify the availability of the method by using a fiber probe type multi channel Raman spectrometer. The process of remineralization is under researching for the development of preventive medicine.
Laser marking on microcrystalline silicon film.
Park, Min Gyu; Choi, Se-Bum; Ruh, Hyun; Hwang, Hae-Sook; Yu, Hyunung
2012-07-01
We present a compact dot marker using a CW laser on a microcrystalline silicon (Si) thin film. A laser annealing shows a continuous crystallization transformation from nano to a large domain (> 200 nm) of Si nanocrystals. This microscale patterning is quite useful since we can manipulate a two-dimentional (2-D) process of Si structural forms for better and efficient thin-film transistor (TFT) devices as well as for photovoltaic application with uniform electron mobility. A Raman scattering microscope is adopted to draw a 2-D mapping of crystal Si film with the intensity of optical-phonon mode at 520 cm(-1). At a 300-nm spatial resolution, the position resolved the Raman scattering spectra measurements carried out to observe distribution of various Si species (e.g., large crystalline, polycrystalline and amorphous phase). The population of polycrystalline (poly-Si) species in the thin film can be analyzed with the frequency shift (delta omega) from the optical-phonon line since poly-Si distribution varies widely with conditions, such as an irradiated-laser power. Solid-phase crystallization with CW laser irradiation improves conductivity of poly-Si with micropatterning to develop the potential of the device application.
NASA Astrophysics Data System (ADS)
Penilla, E. H.; Hardin, C. L.; Kodera, Y.; Basun, S. A.; Evans, D. R.; Garay, J. E.
2016-01-01
Light scattering due to birefringence has prevented the use of polycrystalline ceramics with anisotropic optical properties in applications such as laser gain media. However, continued development of processing technology has allowed for very low porosity and fine grains, significantly improving transparency and is paving the way for polycrystalline ceramics to be used in demanding optical applications. We present a method for producing highly transparent Cr3+ doped Al2O3 (ruby) using current activated pressure assisted densification. The one-step doping/densification process produces fine grained ceramics with well integrated (doped) Cr, resulting in good absorption and emission. In order to explain the light transmission properties, we extend the analytical model based on the Rayleigh-Gans-Debye approximation that has been previously used for undoped alumina to include absorption. The model presented captures reflection, scattering, and absorption phenomena in the ceramics. Comparison with measured transmission confirms that the model adequately describes the properties of polycrystalline ruby. In addition the measured emission spectra and emission lifetime are found to be similar to single crystals, confirming the high optical quality of the ceramics.
A promising diagnostic method: Terahertz pulsed imaging and spectroscopy
Sun, Yiwen; Sy, Ming Yiu; Wang, Yi-Xiang J; Ahuja, Anil T; Zhang, Yuan-Ting; Pickwell-MacPherson, Emma
2011-01-01
The terahertz band lies between the microwave and infrared regions of the electromagnetic spectrum. This radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. It is strongly attenuated by water and very sensitive to water content. Unique absorption spectra due to intermolecular vibrations in this region have been found in different biological materials. These unique features make terahertz imaging very attractive for medical applications in order to provide complimentary information to existing imaging techniques. There has been an increasing interest in terahertz imaging and spectroscopy of biologically related applications within the last few years and more and more terahertz spectra are being reported. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques, and a number of applications such as molecular spectroscopy, tissue characterization and skin imaging are discussed. PMID:21512652
A posteriori noise estimation in variable data sets. With applications to spectra and light curves
NASA Astrophysics Data System (ADS)
Czesla, S.; Molle, T.; Schmitt, J. H. M. M.
2018-01-01
Most physical data sets contain a stochastic contribution produced by measurement noise or other random sources along with the signal. Usually, neither the signal nor the noise are accurately known prior to the measurement so that both have to be estimated a posteriori. We have studied a procedure to estimate the standard deviation of the stochastic contribution assuming normality and independence, requiring a sufficiently well-sampled data set to yield reliable results. This procedure is based on estimating the standard deviation in a sample of weighted sums of arbitrarily sampled data points and is identical to the so-called DER_SNR algorithm for specific parameter settings. To demonstrate the applicability of our procedure, we present applications to synthetic data, high-resolution spectra, and a large sample of space-based light curves and, finally, give guidelines to apply the procedure in situation not explicitly considered here to promote its adoption in data analysis.
Zhang, Shang; Dong, Yuhan; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin
2018-02-22
The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.
Zhang, Shang; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin
2018-01-01
The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer. PMID:29470406
Laser probe for measuring 2-D wave slope spectra of ocean capillary waves
NASA Technical Reports Server (NTRS)
Palm, C. S.; Anderson, R. C.; Reece, A. M.
1977-01-01
A laser-optical instrument for use in determining the two-dimensional wave-slope spectrum of ocean capillary waves is described. The instrument measures up to a 35-deg tip angle of the surface normal by measuring the position of a refracted laser beam directed vertically upward through a water surface. A telescope, a continuous two-dimensional Schottky barrier photodiode, and a pair of analog dividers render the signals independent of water height and insensitive to laser-beam intensity fluctuations. Calibration is performed entirely in the laboratory before field use. Sample records and wave-slope spectra are shown for one-dimensional wave-tank tests and for two-dimensional ocean tests. These are presented along with comparison spectra for calm and choppy water conditions. A mechanical wave follower was used to adjust the instrument position in the presence of large ocean swell and tides.
Rapid-scan EPR of immobilized nitroxides
NASA Astrophysics Data System (ADS)
Yu, Zhelin; Quine, Richard W.; Rinard, George A.; Tseitlin, Mark; Elajaili, Hanan; Kathirvelu, Velavan; Clouston, Laura J.; Boratyński, Przemysław J.; Rajca, Andrzej; Stein, Richard; Mchaourab, Hassane; Eaton, Sandra S.; Eaton, Gareth R.
2014-10-01
X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for 14N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for 15N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10″ magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes.
Synchrotron-Radiation Photoemission Study of Electronic Structures of a Cs-Doped Rubrene Surface
NASA Astrophysics Data System (ADS)
Cheng, Chiu-Ping; Lu, Meng-Han; Chu, Yu-Ya; Pi, Tun-Wen
Using synchrotron-radiation photoemission spectroscopy, we have studied the electronic structure of a cesium-doped rubrene thin film. The addition of cesium atoms causes the movement of the valence-band spectra and the change in line shapes at different concentration that can be separated into four different stages. In the first stage, the cesium atoms continuously diffuse into the substrate, and the Fermi level moves in the energy gap as a result of an electron transferred from the cesium to the rubrene. The second stage, in which the shifts of the spectra are interrupted, is characterized by the introduction of two in-gap states. When increasing doping of cesium into the third stage, the spectra move again; whereas, the line shapes maintain at the stoichiometric ratio of one. In the fourth stage, new in-gap states appear, which are the highest occupied molecular orbital (HOMO) and HOMO+1 states of (rubrene)2- anion.
NASA Technical Reports Server (NTRS)
Fisher, Richard R. (Technical Monitor); Holman, G. D.; Sui, L.; McTiernan, J. M.; Petrosian, V.
2003-01-01
We have computed bremsstrahlung and gyrosynchrotron images and spectra from a model flare loop. Electrons with a power-law energy distribution are continuously injected at the top of a semi-circular magnetic loop. The Fokker-Planck equation is integrated to obtain the steady-state electron distribution throughout the loop. Coulomb scattering and energy losses and magnetic mirroring are included in the model. The resulting electron distributions are used to compute the radiative emissions. Sample images and spectra are presented. We are developing these models for the interpretation of the High Energy Solar Spectroscopic Imager (HESSI) x-ray/gamma ray data and coordinated microwave observations. The Fokker-Planck and radiation codes are available on the Web at http://hesperia.gsfc.nasa.gov/hessi/modelware.htm This work is supported in part by the NASA Sun-Earth Connection Program.
Wave attenuation in the marginal ice zone during LIMEX
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.; Bhogal, A. S.
1992-01-01
The effect of ice cover on ocean-wave attenuation is investigated for waves under flexure in the marginal ice zone (MIZ) with SAR image spectra and the results of models. Directional wavenumber spectra are taken from the SAR image data, and the wave-attenuation rate is evaluated with SAR image spectra and by means of the model by Liu and Mollo-Christensen (1988). Eddy viscosity is described by means of dimensional analysis as a function of ice roughness and wave-induced velocity, and comparisons are made with the remotely sensed data. The model corrects the open-water model by introducing the effects of a continuous ice sheet, and turbulent eddy viscosity is shown to depend on ice thickness, floe sizes, significant wave height, and wave period. SAR and wave-buoy data support the trends described in the model results, and a characteristic rollover is noted in the model and experimental wave-attenuation rates at high wavenumbers.
NASA Technical Reports Server (NTRS)
Eggleston, John M; Diederich, Franklin W
1957-01-01
The correlation functions and power spectra of the rolling and yawing moments on an airplane wing due to the three components of continuous random turbulence are calculated. The rolling moments to the longitudinal (horizontal) and normal (vertical) components depend on the spanwise distributions of instantaneous gust intensity, which are taken into account by using the inherent properties of symmetry of isotropic turbulence. The results consist of expressions for correlation functions or spectra of the rolling moment in terms of the point correlation functions of the two components of turbulence. Specific numerical calculations are made for a pair of correlation functions given by simple analytic expressions which fit available experimental data quite well. Calculations are made for four lift distributions. Comparison is made with the results of previous analyses which assumed random turbulence along the flight path and linear variations of gust velocity across the span.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Entin, V. M.; Yakshina, E. A.; Tretyakov, D. B.
2013-05-15
The spectra of the three-photon laser excitation 5S{sub 1/2} {yields} 5P{sub 3/2} {yields} 6S{sub 1/2}nP of cold Rb Rydberg atoms in an operating magneto-optical trap based on continuous single-frequency lasers at each stage are studied. These spectra contain two partly overlapping peaks of different amplitudes, which correspond to coherent three-photon excitation and incoherent three-step excitation due to the presence of two different ways of excitation through the dressed states of intermediate levels. A four-level theoretical model based on optical Bloch equations is developed to analyze these spectra. Good agreement between the experimental and calculated data is achieved by introducing additionalmore » decay of optical coherence induced by a finite laser line width and other broadening sources (stray electromagnetic fields, residual Doppler broadening, interatomic interactions) into the model.« less
A Public Set of Synthetic Spectra from Expanding Atmospheres for X-Ray Novae. I. Solar Abundances
NASA Astrophysics Data System (ADS)
van Rossum, Daniel R.
2012-09-01
X-ray grating observations have revealed great detail in the spectra of novae in the Super Soft Source (SSS) phase. Notable features in the SSS spectra are blueshifted absorption lines, P-Cygni line profiles, and the absence of strong ionization edges, all of which are indicators of an expanding atmosphere. We present, and make publicly available, a set of 672 wind-type (WT) synthetic spectra, obtained from the expanding NLTE SSS models introduced in Van Rossum & Ness with the PHOENIX stellar atmosphere code. The set presented in this paper is limited to solar abundances with the aim to focus on the basic model parameters and their effect on the spectra, providing the basis upon which abundance effects can be studied using a much bigger non-solar set in the next paper in this series. We fit the WT spectra to the five grating spectra taken in the SSS phase of nova V4743 Sgr 2003 as an example application of the WT models. Within the limits of solar abundances we demonstrate that the following parameters are constrained by the data (in order of decreasing accuracy): column density N H, bolometric luminosity L bol, effective temperature T eff, white dwarf radius R, wind asymptotic velocity v ∞, and the mass-loss rate \\dot{M}. The models are also sensitive to the assumed white dwarf mass M WD but the effect on the spectra can largely be compensated by the other model parameters. The WT spectra with solar abundances fit the data better than abundance optimized hydrostatic models.
A new application of hyperspectral radiometry: the characterization of painted surfaces
NASA Astrophysics Data System (ADS)
Wang, Cong; Salvatici, Teresa; Camaiti, Mara; Del Ventisette, Chiara; Moretti, Sandro
2016-04-01
Hyperspectral sensors, working in the Visible-Near Infrared and Short Wave Infrared (VNIR-SWIR) regions, are widely employed for geological applications since they can discriminate many inorganic (e.g. mineral phases) and organic compounds (i.e. vegetations and soils) [1]. Their advantage is to work in the portion of the solar spectrum used for remote sensors. Some examples of application of the hyperspectral sensors to the conservation of cultural heritage are also known. These applications concern the detection of gypsum on historical buildings [2], and the monitoring of organic protective materials on stone surfaces [3]. On the contrary, hyperspectral radiometry has not been employed on painted surfaces. Indeed, the characterization of these surfaces is mainly performed with sophisticated, micro-destractive and time-consuming laboratory analyses (i.e. SEM-EDS, FTIR and, GC-MS spectroscopy) or through portable and non-invasive instruments (mid FTIR, micro Raman, XRF, FORS) which work in different spectral ranges [4,5]. In this work the discrimination of many organic and inorganic components from paintings was investigated through a hyperspectral spectroradiometer ,which works in the 350-2500 nm region. The reflectance spectra were collected by the contact reflectance probe, equipped with an internal light source with fixed geometry of illumination and shot. Several standards samples, selected among the most common materials of paintings, were prepared and analysed in order to collect reference spectra. The standards were prepared with powders of 7 pure pigments, films of 5 varnishes (natural and synthetic), and films of 3 dried binding media. Monochromatic painted surfaces have also been prepared and investigated to verify the identification of different compounds on the surface. The results show that the discrimination of pure products is possible in the VNIR-SWIR region, except for compounds with similar composition (e.g. natural resins such as dammar and mastic). The reflectance spectra of painted surfaces, as supposed, are more complex than the spectra of pure materials, but the identification of single components is possible if the superficial layer of varnish was thin enough to allow the "penetration" of the irradiation light until the pictorial layer. Finally, the hyperspectral technique, owe to the fast spectra collection (10 spectra/second) and the friendly use of the instrument, has been proved to be a successful method for the evaluation of cleaning treatments, because of the possibility to monitor the partial or total elimination of varnish. References 1) Ramakrishnan D, Bharti R (2015) Hyperspectral remote sensing and geological applications. Curr Sci 108(5):879-891 2) Camaiti M, Benvenuti M, Chiarantini L et al (2011) Hyperspectral sensor for gypsum detection on monumental buildings. J Geophys Eng 8:S126-S131 3) Vettori S et al (2012) Portable hyperspectral device as a valuable tool for the detection of protective agents applied on historical buildings. In: Geophysical Research Abstracts of EGU General Assembly 2012, Wien, 22-27 April 2012, vol 14, p 9459 4) Miliani C, Rosi F, Brunetti BG et al (2010) In Situ Noninvasive Study of Artworks: The MOLAB Multitechnique Approach. Accounts Chem Res 43(6):758-738 5) Bacci M (1995) Fibre optics applications to works of art. Sensor Actuat B-Chem 29:190-196
NASA Astrophysics Data System (ADS)
Setiya Pradana, Jalu; Hidayat, Rahmat
2018-04-01
In this paper, we report our research work on developing a Surface Plasmon Resonance (SPR) element with sub-micron (hundreds of nanometers) periodicity grating structure. This grating structure was fabricated by using a simple nano-imprint lithography technique from an organically siloxane polymers, which was then covered by nanometer thin gold layer. The formed grating structure was a very well defined square-shaped periodic structure. The measured reflectance spectra indicate the SPR wave excitation on this grating structure. For comparison, the simulations of reflectance spectra have been also carried out by using Rigorous Coupled-Wave Analysis (RCWA) method. The experimental results are in very good agreement with the simulation results.
NASA Astrophysics Data System (ADS)
Gelzinis, Andrius; Valkunas, Leonas; Fuller, Franklin D.; Ogilvie, Jennifer P.; Mukamel, Shaul; Abramavicius, Darius
2013-07-01
We propose an optimized tight-binding electron-hole model of the photosystem II (PSII) reaction center (RC). Our model incorporates two charge separation pathways and spatial correlations of both static disorder and fast fluctuations of energy levels. It captures the main experimental features observed in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern, lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific regions of the 2D spectra of the PSII RC are sensitive to the charge transfer states. We find that the energy disorder of two peripheral chlorophylls is four times larger than the other RC pigments.
Skibiński, Robert; Komsta, Łukasz
2012-01-01
The photodegradation of moclobemide was studied in methanolic media. Ultra-HPLC (UHPLC)/MS/MS analysis proved decomposition to 4-chlorobenzamide as a major degradation product and small amounts of Ro 16-3177 (4-chloro-N-[2-[(2-hydroxyethyl)amino] ethyl]benzamide) and 2-[(4-chlorobenzylidene)amino]-N-[2-ethoxyethenyl]ethenamine. The methanolic solution was investigated spectrophotometrically in the UV region, registering the spectra during 30 min of degradation. Using reference spectra and a multivariate chemometric method (multivariate curve resolution-alternating least squares), the spectra were resolved and concentration profiles were obtained. The obtained results were in good agreement with a quantitative approach, with UHPLC-diode array detection as the reference method.
NASA Astrophysics Data System (ADS)
Tristani-Kendra, M.; Eckhardt, C. J.
1984-08-01
The reflection and Kramers-Kronig absorption spectra have been obtained from the monoclinic and triclinic polymorphs of a squarylium dye, 2,4-bis(4-diethylamino-2-hydroxy phenyl) cyclobutadienediylium-1,3-diolate. The extremely different optical responses were found to arise from two molecular singlet transitions of essentially long axis polarization. Successful application of a four oscillator molecular exciton-polariton theory required the use of point charge densities rather than point dipoles in an extension of the theory which employed both interactions between the two singlets as well as a frequency dependent lattice damping. An intermolecular charge transfer transition is also assigned.
Study of XAFS of some Fe compounds and determination of first shell radial distance
NASA Astrophysics Data System (ADS)
Parsai, Neetu; Mishra, Ashutosh
2017-05-01
X-ray absorption fine structure (XAFS) of some Fe compounds have been studied using the latest XAFS analysis software Demeter with Strawberry Perl. The processed XAFS data of the Fe compounds have been taken from available model compound library. The XAFS data have been processed to plot the µ(E) verses E spectra. These spectra have been converted into K-space, R-space and q-space. R-space spectra have been used to obtain first shell radial distance in Fe compounds. Structural parameters like first shell radial distance is useful in determination of bond length in Fe compounds. Hence the study play important role in biological applications.
Spectroscopy of carotenoids and its application to the investigation of autoxidation
NASA Astrophysics Data System (ADS)
Finkelshtein, E. I.; Krasnokutskaya, I. S.; Vakulova, L. A.
1999-05-01
The electronic and attenuated total reflection IR spectra of β-carotene, canthaxanthin, lycopene, axerophtene, retinyl acetate, methyl retinoate, and retinal were recorded and investigated. The main specimens were thin (thickness of about 0.1 μ) amorphous films on the optically transparent supports. In most cases the electronic spectra of the films differ from the solution ones. Alterations of the spectra during the exposing of the films to oxygen permit to propose the sequence of the oxidation products formation. The compounds with short polyenic chains conjugated with β-ionone ring are formed. Polyperoxides are the primary oxidation products, and they gradually transform firstly into epoxy and then into carbonyl compounds.
NASA Astrophysics Data System (ADS)
El-Mansy, M. A. M.
2017-08-01
Structural and vibrational spectroscopic studies were performed on indigo carmine (IC) isomers using FT-IR spectral analysis along with DFT/B3LYP method utilizing Gaussian 09 software. GaussView 5 program has been employed to perform a detailed interpretation of vibrational spectra. Simulation of infrared spectra has led to an excellent overall agreement with the observed spectral patterns. Mulliken population analyses on atomic charges, MEP, HOMO-LUMO, NLO, first order hyperpolarizability and thermodynamic properties have been examined by (DFT/B3LYP) method with the SDD basis set level. Density of state spectra (DOS) were calculated using GaussSum 3 at the same level of theory. Molecular modeling approved that DOS Spectra are the most significant tools for differentiating between two IC isomers so far. Moreover, The IC isomers (cis-isomer) have shown an extended applicability for manufacturing both NLO and photovoltaic devices such as solar cells.
NASA Astrophysics Data System (ADS)
Nagle, Kenneth; Balasubramanian, Mali; Johnson, Christopher; Seidler, Gerald; Belharouak, Ilias
2008-03-01
Although lithium-ion batteries now see widespread use, there remain considerable questions concerning the basic solid state chemistry of both electrodes. Improved understanding of the local electronic structure, particularly the mechanism of charge transfer upon insertion and removal of lithium, could lead to innovation in battery design and improved performance. We present non-resonant inelastic x-ray scattering (NRIXS) spectra from 2p initial states in titanium; these spectra are among the first recorded for such states in a transition metal. These spectra were obtained using the lower energy resolution inelastic x-ray scattering (LERIX) spectrometer, which is capable of making simultaneous measurements at nineteen values of momentum transfer. We demonstrate the ability to obtain soft x-ray absorption-like information using a bulk-sensitive, hard x-ray technique. In addition, at high momentum transfer NRIXS provides information about non-dipole transitions that are inaccessible by soft x-ray spectroscopic methods.
Theoretical studies on absorption, emission, and resonance Raman spectra of Coumarin 343 isomers
NASA Astrophysics Data System (ADS)
Wu, Wenpeng; Cao, Zexing; Zhao, Yi
2012-03-01
The vibrationally resolved spectral method and quantum chemical calculations are employed to reveal the structural and spectral properties of Coumarin 343 (C343), an ideal candidate for organic dye photosensitizers, in vacuum and solution. The results manifest that the ground-state energies are dominantly determined by different placements of hydrogen atom in carboxylic group of C343 conformations. Compared to those in vacuum, the electronic absorption spectra in methanol solvent show a hyperchromic property together with the redshift and blueshift for the neutral C343 isomers and their deprotonated anions, respectively. From the absorption, emission, and resonance Raman spectra, it is found that the maximal absorption and emission come from low-frequency modes whereas the high-frequency modes have high Raman activities. The detailed spectra are further analyzed for the identification of the conformers and understanding the potential charge transfer mechanism in their photovoltaic applications.
Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan
2017-08-01
We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.
Machine Learning Method for Pattern Recognition in Volcano Seismic Spectra
NASA Astrophysics Data System (ADS)
Radic, V.; Unglert, K.; Jellinek, M.
2016-12-01
Variations in the spectral content of volcano seismicity related to changes in volcanic activity are commonly identified manually in spectrograms. However, long time series of monitoring data at volcano observatories require tools to facilitate automated and rapid processing. Techniques such as Self-Organizing Maps (SOM), Principal Component Analysis (PCA) and clustering methods can help to quickly and automatically identify important patterns related to impending eruptions. In this study we develop and evaluate an algorithm applied on a set of synthetic volcano seismic spectra as well as observed spectra from Kılauea Volcano, Hawai`i. Our goal is to retrieve a set of known spectral patterns that are associated with dominant phases of volcanic tremor before, during, and after periods of volcanic unrest. The algorithm is based on training a SOM on the spectra and then identifying local maxima and minima on the SOM 'topography'. The topography is derived from the first two PCA modes so that the maxima represent the SOM patterns that carry most of the variance in the spectra. Patterns identified in this way reproduce the known set of spectra. Our results show that, regardless of the level of white noise in the spectra, the algorithm can accurately reproduce the characteristic spectral patterns and their occurrence in time. The ability to rapidly classify spectra of volcano seismic data without prior knowledge of the character of the seismicity at a given volcanic system holds great potential for real time or near-real time applications, and thus ultimately for eruption forecasting.
Quantum Gravity, Information Theory and the CMB
NASA Astrophysics Data System (ADS)
Kempf, Achim
2018-04-01
We review connections between the metric of spacetime and the quantum fluctuations of fields. We start with the finding that the spacetime metric can be expressed entirely in terms of the 2-point correlator of the fluctuations of quantum fields. We then discuss the open question whether the knowledge of only the spectra of the quantum fluctuations of fields also suffices to determine the spacetime metric. This question is of interest because spectra are geometric invariants and their quantization would, therefore, have the benefit of not requiring the modding out of diffeomorphisms. Further, we discuss the fact that spacetime at the Planck scale need not necessarily be either discrete or continuous. Instead, results from information theory show that spacetime may be simultaneously discrete and continuous in the same way that information can. Finally, we review the recent finding that a covariant natural ultraviolet cutoff at the Planck scale implies a signature in the cosmic microwave background (CMB) that may become observable.
Hegazy, Maha A; Lotfy, Hayam M; Mowaka, Shereen; Mohamed, Ekram Hany
2016-07-05
Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timonen, Hilkka; Cubison, Mike; Aurela, Minna
The applicability, methods and limitations of constrained peak fitting on mass spectra of low mass resolving power ( m/Δ m 50~500) recorded with a time-of-flight aerosol chemical speciation monitor (ToF-ACSM) are explored. Calibration measurements as well as ambient data are used to exemplify the methods that should be applied to maximise data quality and assess confidence in peak-fitting results. Sensitivity analyses and basic peak fit metrics such as normalised ion separation are employed to demonstrate which peak-fitting analyses commonly performed in high-resolution aerosol mass spectrometry are appropriate to perform on spectra of this resolving power. Information on aerosol sulfate, nitrate,more » sodium chloride, methanesulfonic acid as well as semi-volatile metal species retrieved from these methods is evaluated. The constants in a commonly used formula for the estimation of the mass concentration of hydrocarbon-like organic aerosol may be refined based on peak-fitting results. Lastly, application of a recently published parameterisation for the estimation of carbon oxidation state to ToF-ACSM spectra is validated for a range of organic standards and its use demonstrated for ambient urban data.« less
NASA Astrophysics Data System (ADS)
Mahadik, Ashwini; Soni, P. H.; Desai, C. F.
2017-12-01
Among quite a number of technologically important NLO materials, Potassium Dihydrogen Phosphate (KDP) is one of the most favourable ones for second harmonic generation applications, such as in electro-optic modulators, parametric oscillators and harmonic generators. The authors report here their studies on KDP crystals doped with L-Cysteine (1 mol% and 2 mol%). The dopant inclusion in the crystals was confirmed using Fourier transform infrared (FT-IR) spectroscopy and Powder X-Ray Diffraction (XRD). The XRD results also confirm the tetragonal structure with lattice parameters a = b = 7.45 Å and c = 6.98 Å. The presence of functional groups of crystals was analyzed using the FTIR spectra. For band gap evaluation, UV-Vis spectra were used and it was found to be 3.41 eV, 4.40eVand 4.50 eV, respectively in the cases of pure KDP, 1 mol% and 2 mol% L-Cysteine dopings. The spectra quality indicates good transparency of the doped crystals in the visible region, a feature quite desirable for applications in optoelectronics.
Minor Distortions with Major Consequences: Correcting Distortions in Imaging Spectrographs
Esmonde-White, Francis W. L.; Esmonde-White, Karen A.; Morris, Michael D.
2010-01-01
Projective transformation is a mathematical correction (implemented in software) used in the remote imaging field to produce distortion-free images. We present the application of projective transformation to correct minor alignment and astigmatism distortions that are inherent in dispersive spectrographs. Patterned white-light images and neon emission spectra were used to produce registration points for the transformation. Raman transects collected on microscopy and fiber-optic systems were corrected using established methods and compared with the same transects corrected using the projective transformation. Even minor distortions have a significant effect on reproducibility and apparent fluorescence background complexity. Simulated Raman spectra were used to optimize the projective transformation algorithm. We demonstrate that the projective transformation reduced the apparent fluorescent background complexity and improved reproducibility of measured parameters of Raman spectra. Distortion correction using a projective transformation provides a major advantage in reducing the background fluorescence complexity even in instrumentation where slit-image distortions and camera rotation were minimized using manual or mechanical means. We expect these advantages should be readily applicable to other spectroscopic modalities using dispersive imaging spectrographs. PMID:21211158
Development and applications of ruggedized VIS/NIR spectrometer system for oilfield wellbores
NASA Astrophysics Data System (ADS)
Fujisawa, Go; Yamate, Tsutomu
2013-12-01
The development and applications of a ruggedized visible to near-infrared (VIS/NIR) spectrometer system capable of measuring fluid spectra in oilfield wellbores are presented. Real-time assessment of formation fluid properties penetrated by an oilfield wellbore is critically important for oilfield operating companies to make informed decisions to optimize the development plan of the well and hydrocarbon reservoir. A ruggedized VIS/NIR spectrometer was designed and built to measure and analyze hydrocarbon spectra reliably under the harsh conditions of the oilfield wellbore environment, including temperature up to 175 °C, pressure up to 170 MPa, and severe mechanical shocks and vibrations. The accuracy of hydrocarbon group composition analysis was compared well with gas chromatography results in the laboratory.
Application of Raman Spectroscopy for Nondestructive Evaluation of Composite Materials
NASA Technical Reports Server (NTRS)
Washer, Glenn A.; Brooks, Thomas M. B.; Saulsberry, Regor
2007-01-01
This paper will present an overview of efforts to investigate the application of Raman spectroscopy for the characterization of Kevlar materials. Raman spectroscopy is a laser technique that is sensitive to molecular interactions in materials such as Kevlar, graphite and carbon used in composite materials. The overall goal of this research reported here is to evaluate Raman spectroscopy as a potential nondestructive evaluation (NDE) tool for the detection of stress rupture in Kevlar composite over-wrapped pressure vessels (COPVs). Characterization of the Raman spectra of Kevlar yarn and strands will be presented and compared with analytical models provided in the literature. Results of testing to investigate the effects of creep and high-temperature aging on the Raman spectra will be presented.
Full-Spectrum-Analysis Isotope ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G.
2017-06-28
FSAIsotopeID analyzes gamma ray spectra to identify radioactive isotopes (radionuclides). The algorithm fits the entire spectrum with combinations of pre-computed templates for a comprehensive set of radionuclides with varying thicknesses and compositions of shielding materials. The isotope identification algorithm is suitable for the analysis of spectra collected by gamma-ray sensors ranging from medium-resolution detectors, such a NaI, to high-resolution detectors, such as HPGe. In addition to analyzing static measurements, the isotope identification algorithm is applied for the radiation search applications. The search subroutine maintains a running background spectrum that is passed to the isotope identification algorithm, and it also selectsmore » temporal integration periods that optimize the responsiveness and sensitivity. Gain stabilization is supported for both types of applications.« less
Tunable Terahertz Metamaterials with Germanium Telluride Components
2016-03-24
emerging field with many exciting applications. THz waves can be used to locate explosives and illicit drugs in security applications, or DNA and...17 Fig. 7. Absorbance spectra of various drugs and explosives. The resonant peaks of each material are clearly distinguishable [22...holder designed with help from the school model shop
Review on DTU-parton model for hadron-hadron and hadron-nucleus collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, C.B.
1980-08-01
The parton picture of color separation of dual string and its subsequent breakup is used to motivate the DTU-parton model for high energy small p/sub T/ multiparticle productions in hadron-hadron and hadron-nucleus collisions. A brief survey on phenomenological applications of the model: such as the inclusive spectra for various hh processes and central plateau heights predicted, hA inclusive spectra and the approximate anti v-universalities is presented.
Applications of Fourier transform Raman and infrared spectroscopy in forensic sciences
NASA Astrophysics Data System (ADS)
Kuptsov, Albert N.
2000-02-01
First in the world literature comprehensive digital complementary vibrational spectra collection of polymer materials and search system was developed. Non-destructive combined analysis using complementary FT-Raman and FTIR spectra followed by cross-parallel searching on digital spectral libraries, was applied in different fields of forensic sciences. Some unique possibilities of Raman spectroscopy has been shown in the fields of examination of questioned documents, paper, paints, polymer materials, gemstones and other physical evidences.
Surface composition of Mercury from reflectance spectrophotometry
NASA Technical Reports Server (NTRS)
Vilas, Faith
1988-01-01
The controversies surrounding the existing spectra of Mercury are discussed together with the various implications for interpretations of Mercury's surface composition. Special attention is given to the basic procedure used for reducing reflectance spectrophotometry data, the factors that must be accounted for in the reduction of these data, and the methodology for defining the portion of the surface contributing the greatest amount of light to an individual spectrum. The application of these methodologies to Mercury's spectra is presented.
A Pipeline for the Analysis of APOGEE Spectra Based on Equivalent Widths
NASA Astrophysics Data System (ADS)
Arfon Williams, Rob; Bosley, Corinne; Jones, Hayden; Schiavon, Ricardo P.; Allende-Prieto, Carlos; Bizyaev, Dmitry; Carrera, Ricardo; Cunha, Katia M. L.; Nguyen, Duy; Feuillet, Diane; Frinchaboy, Peter M.; García Pérez, Ana; Hasselquist, Sten; Hayden, Michael R.; Hearty, Fred R.; Holtzman, Jon A.; Johnson, Jennifer; Majewski, Steven R.; Meszaros, Szabolcs; Nidever, David L.; Shetrone, Matthew D.; Smith, Verne V.; Sobeck, Jennifer; Troup, Nicholas William; Wilson, John C.; Zasowski, Gail
2015-01-01
The Apache Point Galactic Evolution Experiment (APOGEE) forms part of the third Sloan Digital Sky Survey and has obtained high resolution, high signal-to-noise infrared spectra for ~1.3 x 105 stars across the galactic bulge, disc and halo. From these, stellar parameters are derived together with abundances for various elements using the APOGEE Stellar Parameters and Chemical Abundance Pipeline (ASPCAP). In this poster we report preliminary results from application of an alternative stellar parameters and abundances pipeline, based on measurements of equivalent widths of absorption lines in APOGEE spectra. The method is based on a sequential grid inversion algorithm, originally designed for the derivation of ages and elemental abundances of stellar populations from line indices in their integrated spectra. It allows for the rapid processing of large spectroscopic data sets from both current and future surveys, such as APOGEE and APOGEE 2, and it is easily adaptable for application to other very large data sets that are being/will be generated by other massive surveys of the stellar populations of the Galaxy. It will also allow the cross checking of ASPCAP results using an independent method. In this poster we present preliminary results showing estimates of effective temperature and iron abundance [Fe/H] for a subset of the APOGEE sample, comparing with DR12 numbers produced by the ASPCAP pipeline.
A top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets from commercial blocky phosphors
NASA Astrophysics Data System (ADS)
Zhang, Haoran; Xue, Zhiping; Lei, Bingfu; Dong, Hanwu; Zhang, Haiming; Deng, Suqing; Zheng, Mingtao; Liu, Yingliang; Xiao, Yong
2014-09-01
By using commercial SrAl2O4:Eu2+,Dy3+ phosphor as raw material, we have developed a novel and simple top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets that are useful for potential practical applications, especially as fluorescent labels for biomolecules and mechano-optical nano-devices. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) results demonstrate that the treated samples are still pure-phase of SrAl2O4:Eu2+,Dy3+. The field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results indicate that the treated SrAl2O4:Eu2+,Dy3+ phosphors are built up by nanosheets bundles. Excitation and emission spectra, afterglow emission spectra and decay curves are used to analyze the luminescence properties of SrAl2O4:Eu2+,Dy3+ nanosheets, and the results show that, compared with commercial samples, the treated samples show similar spectra characteristic including the spectra shapes and the band position. Furthermore, the fluorescence and afterglow intensity of SrAl2O4:Eu2+,Dy3+ nanosheets can be tuned linearly by changing the circumstance temperatures, which further indicates its potential applications in fiber-optical thermometer materials.
Liu, Yan-Chun; Xiao, Sa; Yang, Kun; Ling, Li; Sun, Zhi-Liang; Liu, Zhao-Ying
2017-06-01
This study reports an applicable analytical strategy of comprehensive identification and structure characterization of target components from Gelsemium elegans by using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QqTOF MS) based on the use of accurate mass databases combined with MS/MS spectra. The databases created included accurate masses and elemental compositions of 204 components from Gelsemium and their structural data. The accurate MS and MS/MS spectra were acquired through data-dependent auto MS/MS mode followed by an extraction of the potential compounds from the LC-QqTOF MS raw data of the sample. The same was matched using the databases to search for targeted components in the sample. The structures for detected components were tentatively characterized by manually interpreting the accurate MS/MS spectra for the first time. A total of 57 components have been successfully detected and structurally characterized from the crude extracts of G. elegans, but has failed to differentiate some isomers. This analytical strategy is generic and efficient, avoids isolation and purification procedures, enables a comprehensive structure characterization of target components of Gelsemium and would be widely applicable for complicated mixtures that are derived from Gelsemium preparations. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Rey, Michael; Nikitin, Andrei; Bezard, Bruno; Rannou, Pascal; Coustenis, Athena; Tyuterev, Vladimir
2016-06-01
Knowledge of intensities of spectral transitions in various temperature ranges including very low-T conditions is essential for the modeling of optical properties of planetary atmospheres and for other astrophysical applications. The temperature dependence of spectral features is crucial, but quantified experimental information in a wide spectral range is generally missing. A significant progress has been recently achieved in first principles quantum mechanical predictions (ab initio electronic structure + variational nuclear motion calculations) of rotationally resolved spectra for hydrocarbon molecules such as methane , ethylene and their isotopic species [1,2] . We have recently reported the TheoReTS information system (theorets.univ-reims.fr, theorets.tsu.ru) for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces [3] that permits online simulation of radiative properties including low-T conditions of cold planets. In this work, we apply ab initio predictions of the spectra of methane isotopologues down to T=80 K for the modeling of the transmittance in the atmosphere of Titan, Saturn's largest satellite explored by the Cassini-Huygens space mission. A very good agreement over the whole infrared range from 6,000 to 11,000 cm-1 compared with observations obtained by the Descent Imager / Spectral Radiometer (DISR) on the Huygens probe [4,5] at various altitudes will be reported.
Reainthippayasakul, W; Paosawatyanyong, B; Bhanthumnavin, W
2013-05-01
Conjugated meso-alkynyl 5,15-dimesitylporphyrin metal complexes have been synthesized by Sonogashira coupling reaction in good yields. Alkynyl groups were chosen as a link at the meso positions in order to extend the pi-conjugated length of porphyrin rings. These synthesized porphyrin derivatives were characterized by 1H NMR spectroscopy and MALDI-TOF mass spectrometry. Moreover, UV-visible spectroscopy and fluorescence spectroscopy were also used to investigate their photophysical properties. It has been demonstrated that central metal ions as well as meso substituents on porphyrin rings affected the electronic absorption and emission spectra of the compounds. Spectroscopic results revealed that alkyne-linked porphyrin metal complexes showed higher pi-conjugation compared with porphyrin building blocks resulting in red shifts in both absorption and emission spectra. Coordination properties of synthesized porphyrins were preliminarily investigated by UV-visible absorption and fluorescence emission spectroscopic titration with pyridine as axial ligand. The formation of porphyrin-pyridine complexes resulted in significant red shifts in absorption spectra and decrease of fluorescence intensity in emission spectra. Moreover, the 1H NMR titration experiments suggested that central metal ions play an important role to coordinate with pyridine and the coordination of porphyrin zinc(II) complex with pyridine occur in a 1:1 ratio. From these spectroscopic results, alkyne-linked porphyrin metal complexes offer potential applications as materials for optical organic nanosensors.
NASA Astrophysics Data System (ADS)
Gao, Wei; Li, Xiang-ru
2017-07-01
The multi-task learning takes the multiple tasks together to make analysis and calculation, so as to dig out the correlations among them, and therefore to improve the accuracy of the analyzed results. This kind of methods have been widely applied to the machine learning, pattern recognition, computer vision, and other related fields. This paper investigates the application of multi-task learning in estimating the stellar atmospheric parameters, including the surface temperature (Teff), surface gravitational acceleration (lg g), and chemical abundance ([Fe/H]). Firstly, the spectral features of the three stellar atmospheric parameters are extracted by using the multi-task sparse group Lasso algorithm, then the support vector machine is used to estimate the atmospheric physical parameters. The proposed scheme is evaluated on both the Sloan stellar spectra and the theoretical spectra computed from the Kurucz's New Opacity Distribution Function (NEWODF) model. The mean absolute errors (MAEs) on the Sloan spectra are: 0.0064 for lg (Teff /K), 0.1622 for lg (g/(cm · s-2)), and 0.1221 dex for [Fe/H]; the MAEs on the synthetic spectra are 0.0006 for lg (Teff /K), 0.0098 for lg (g/(cm · s-2)), and 0.0082 dex for [Fe/H]. Experimental results show that the proposed scheme has a rather high accuracy for the estimation of stellar atmospheric parameters.
Temperature dependence of Er³⁺ ionoluminescence and photoluminescence in Gd₂O₃:Bi nanopowder.
Boruc, Zuzanna; Gawlik, Grzegorz; Fetliński, Bartosz; Kaczkan, Marcin; Malinowski, Michał
2014-06-01
Ionoluminescence (IL) and photoluminescence (PL) of trivalent erbium ions (Er(3+)) in Gd2O3 nanopowder host activated with Bi(3+) ions has been studied in order to establish the link between changes in luminescent spectra and temperature of the sample material. IL measurements have been performed with H2 (+) 100 keV ion beam bombarding the target material for a few seconds, while PL spectra have been collected for temperatures ranging from 20 °C to 700 °C. The PL data was used as a reference in determining the temperature corresponding to IL spectra. The collected data enabled the definition of empirical formula based on the Boltzmann distribution, which allows the temperature to be determined with a maximum sensitivity of 9.7 × 10(-3) °C(-1). The analysis of the Er(3+) energy level structure in terms of tendency of the system to stay in thermal equilibrium, explained different behaviors of the line intensities. This work led to the conclusion that temperature changes during ion excitation can be easily defined with separately collected PL spectra. The final result, which is empirical formula describing dependence of fluorescence intensity ratio on temperature, raises the idea of an application of method in temperature control, during processes like ion implantation and some nuclear applications.
Models for various aspects of dwarf novae and nova-like stars
NASA Technical Reports Server (NTRS)
Ladous, Constanze
1993-01-01
The first attempts to explain the nature of dwarf novae were based on the assumption of single-star phenomena, in which emission lines were assumed to be caused by circumstellar gas shells. The outburst behavior was tentatively ascribed to the kind of (also not understood) mechanism leading to nova outbursts. The realization that some, and possibly all, dwarf novae and nova-like stars (and novae) are binaries eventually led to models which bore more and more similarities to the modern interpretation on the basis of the Roche model. Not all cataclysmic variables are known binaries. In fact, with respect to the entire number of known objects, the proven binaries are still the minority, but all the brightest variables are in fact known to binaries. Not a single system is known which exhibits the usual characteristics of a cataclysmic variable and at the same time can be declared with certainty to be a single star. Two systems are known, the dwarf nova EY Cyg and the recurrent nova V1017 Sgr, in which, in spite of intensive search, no radial velocity variations have been found; but they still exhibit composite spectra consisting of a bright continuum, an emission spectrum, and a cool absorption spectrum. If the Roche model is correct, it is to be expected that a small percentage of objects is viewed pole-on, so orbital motions do not make themselves felt as Doppler shifts of spectral lines. So even these two systems support the hypothesis that all cataclysmic variables (with the possible exception of symbiotic stars) are binaries. In cataclysmic variables, it seems that the brightness changes observed in dwarf novae and nova-like stars in the optical and the UV are due directly to changes in the accretion disks. The study and understanding of accretion disks in these systems can bear potentially valuable consequences for many other fields in astronomy. The observed spectra of dwarf novae and nova-like stars comprise a fairly large range: pure emission spectra, pure absorption spectra, a mixture of both, asymmetric line profiles, very different slopes of the continuous flux distribution -- and one single system may exhibit all of these features at different times. Agreement and disagreement between computed and observed spectra should show whether or not the Roche model is applicable and where it probably will have to be modified and improved. Except for their outburst behavior and its immediate consequences, novae, dwarf novae, and nova-like stars cannot be physically distinguished from each other.
Vegetation Biochemistry: What Can Imaging Spectrometry Tell Us About Canopies?
NASA Technical Reports Server (NTRS)
Goetz, Alexander F. H.; Gao, Bo-Cai; Wessman, Carol
1991-01-01
Changes in ecosystem processes such as productivity and decomposition may be expressed in the canopy foliar chemistry resulting from altered carbon allocation patterns, metabolic processes and nutrient availability. Understanding carbon balance on land over large regions requires quantitative determination of leaf constituents such as lignin and total nitrogen from remote sensing imaging systems. Results from spectral reflectance measurements of stacked leaves in the laboratory show that spectrum matching techniques are applicable to the derivation of the equivalent liquid water thickness in plants as well as to the extraction of dry leaf matter reflectance spectra from spectra of green leaves. The residual spectra derived by subtracting water spectra from the spectra of green leaves shows a feature at 1.72 micrometers that can be related to the lignin content of the leaves. Oak leaves have a deeper residual absorption feature than do cotton leaves which is consistent with their relative lignin content. Similar results are achieved when deriving the residuals from images taken over areas of grass and pine trees. Imaging spectrometry provides promise in developing images of various foliar biochemical constituents.
Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J; Freiberg, Arvi; Köhler, Jürgen
2014-05-06
We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wood, G. M., Jr.
1974-01-01
A mass spectrometric system for determining the characteristics of materials used in instrumental development and aerospace applications was developed. The desorption spectra of cesium that was ion-implanted into polycrystalline tungsten and the effects on the spectra of bombardment of the tungsten by low energy (70 eV) electrons were investigated. Work function changes were measured by the retarding potential diode method. Flash desorption characteristics were observed and gas-reaction mechanisms of the surface of heated metal filaments were studied. Desorption spectra were measured by linearly increasing the sample temperature at a selected rate, the temperature cycling being generated from a ramp-driven dc power supply, with the mass spectrometer tuned to a mass number of interest. Results of the study indicate an anomolous desorption mechanism following an electron bombardment of the sample surface. The enhanced spectra are a function of the post-bombardment time and energy and are suggestive of an increased concentration of cesium atoms, up to 10 or more angstroms below the surface.
Wood, Bayden R; Heraud, Philip; Stojkovic, Slobodanka; Morrison, Danielle; Beardall, John; McNaughton, Don
2005-08-01
We report the coupling of a portable Raman spectrometer to an acoustic levitation device to enable environmental monitoring and the potential taxonomic identification of microalgae. Spectra of living cells were recorded at 785 nm using a fiber-optic probe coupled to a portable Raman spectrometer. The spectra exhibit an excellent signal-to-noise ratio and clearly show bands from chlorophyll a and beta-carotene. Spectra of levitated photobleached microalgae clearly show a reduction in chlorophyll a concentration relative to beta-carotene after 10 min of exposure to a quartz halogen lamp. Spectra recorded from levitated nitrogen-limited cells also show a significant reduction in bands associated with chlorophyll a, as compared to nitrogen-replete cells. To investigate the diagnostic capability of the technique, four species of microalgae were analyzed. Good quality spectra of all four species were obtained showing varying ratios of beta-carotene to chlorophyll. The combination of an acoustic levitation device and a portable Raman spectrometer shows potential as a taxonomic and environmental monitoring tool with direct application to field studies in remote environments.
González-Vidal, Juan José; Pérez-Pueyo, Rosanna; Soneira, María José; Ruiz-Moreno, Sergio
2015-03-01
A new method has been developed to automatically identify Raman spectra, whether they correspond to single- or multicomponent spectra. The method requires no user input or judgment. There are thus no parameters to be tweaked. Furthermore, it provides a reliability factor on the resulting identification, with the aim of becoming a useful support tool for the analyst in the decision-making process. The method relies on the multivariate techniques of principal component analysis (PCA) and independent component analysis (ICA), and on some metrics. It has been developed for the application of automated spectral analysis, where the analyzed spectrum is provided by a spectrometer that has no previous knowledge of the analyzed sample, meaning that the number of components in the sample is unknown. We describe the details of this method and demonstrate its efficiency by identifying both simulated spectra and real spectra. The method has been applied to artistic pigment identification. The reliable and consistent results that were obtained make the methodology a helpful tool suitable for the identification of pigments in artwork or in paint in general.
Identifying Broadband Rotational Spectra with Neural Networks
NASA Astrophysics Data System (ADS)
Zaleski, Daniel P.; Prozument, Kirill
2017-06-01
A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.
Mikuła, A; Król, M; Koleżyński, A
2015-06-05
Zeolites are a group of tecto-aluminosilicates with numerous practical applications, e.g. gas separators, molecular sieves and sorbents. The unique properties result from porous structure of channels and cages which are built from smaller units - the so-called Secondary Building Units (SBU), and sometimes also larger groups (Breck, 1974; Ciciszwili et al., 1974; Mozgawa, 2008; Čejka and van Bekkum, 2005). The aim of this study was the examination of the influence of long-range order on vibrational spectra of sodalite and zeolite A. Ab initio calculations (geometry optimizations and vibrational spectra calculations) of sodalite cage and selected SBU were carried out by means of Gaussian09 (Frisch et al., 2009) (in the case of isolated clusters) and Crystal09 (Dovesi et al., 2005, 2009) (for periodic structures). The obtained results were compared with the experimental spectra of sodalite and zeolite A crystal structures, synthesized under hydrothermal conditions. These results allowed analyzing of the long-range ordering influence on the vibrational spectra, as well as the identification of the characteristic vibrations in β cage based frameworks. It has been found, that based on small structural fragment (SBU) models a characteristic vibrations can be identify. However, full spectra analysis and especially the interpretation of far-infrared region of the spectra require using periodic models under the influence of translational crystal lattice. Copyright © 2015 Elsevier B.V. All rights reserved.
On the use of Lineal Energy Measurements to Estimate Linear Energy Transfer Spectra
NASA Technical Reports Server (NTRS)
Adams, David A.; Howell, Leonard W., Jr.; Adam, James H., Jr.
2007-01-01
This paper examines the error resulting from using a lineal energy spectrum to represent a linear energy transfer spectrum for applications in the space radiation environment. Lineal energy and linear energy transfer spectra are compared in three diverse but typical space radiation environments. Different detector geometries are also studied to determine how they affect the error. LET spectra are typically used to compute dose equivalent for radiation hazard estimation and single event effect rates to estimate radiation effects on electronics. The errors in the estimations of dose equivalent and single event rates that result from substituting lineal energy spectra for linear energy spectra are examined. It is found that this substitution has little effect on dose equivalent estimates in interplanetary quiet-time environment regardless of detector shape. The substitution has more of an effect when the environment is dominated by solar energetic particles or trapped radiation, but even then the errors are minor especially if a spherical detector is used. For single event estimation, the effect of the substitution can be large if the threshold for the single event effect is near where the linear energy spectrum drops suddenly. It is judged that single event rate estimates made from lineal energy spectra are unreliable and the use of lineal energy spectra for single event rate estimation should be avoided.
Far-infrared spectral studies of phase changes in water ice induced by proton irradiation
NASA Technical Reports Server (NTRS)
Moore, Marla H.; Hudson, Reggie L.
1992-01-01
Changes in the FIR spectrum of crystalline and amorphous water ice as a function of temperature are reported. The dramatic differences between the spectra of these ices in the FIR are used to examine the effect of proton irradiation on the stability of the crystalline and amorphous ice phases from 13 to 77 K. In particular, the spectra near 13 K show interconversion between the amorphous and crystalline ice phases beginning at doses near 2 eV/molecule and continuing cyclically with increased dose. The results are used to estimate the stability of irradiated ices in astronomical environments.