Cost-effectiveness of the stream-gaging program in the Hawaii District
Matsuoka, I.; Lee, R.; Thomas, W.O.
1985-01-01
This project documents the results of a study of the cost-effectiveness of the stream-gaging program in the Hawaii District. The stream gages in the District were divided into two groups, the State of Hawaii and the Other Pacific Areas. Data uses and funding sources were identified for the 124 continuous stream gages currently being operated in the Hawaii District with a budget of $570,620. All the stream-gages were identified as having sufficient reason to continue their operation and they should be maintained in the program for the foreseeable future. (USGS)
Cost effectiveness of the stream-gaging program in Pennsylvania
Flippo, H.N.; Behrendt, T.E.
1985-01-01
This report documents a cost-effectiveness study of the stream-gaging program in Pennsylvania. Data uses and funding were identified for 223 continuous-record stream gages operated in 1983; four are planned for discontinuance at the close of water-year 1985; two are suggested for conversion, at the beginning of the 1985 water year, for the collection of only continuous stage records. Two of 11 special-purpose short-term gages are recommended for continuation when the supporting project ends; eight of these gages are to be discontinued and the other will be converted to a partial-record type. Current operation costs for the 212 stations recommended for continued operation is $1,199,000 per year in 1983. The average standard error of estimation for instantaneous streamflow is 15.2%. An overall average standard error of 9.8% could be attained on a budget of $1,271,000, which is 6% greater than the 1983 budget, by adopted cost-effective stream-gaging operations. (USGS)
Cost effectiveness of the US Geological Survey's stream-gaging programs in New Hampshire and Vermont
Smath, J.A.; Blackey, F.E.
1986-01-01
Data uses and funding sources were identified for the 73 continuous stream gages currently (1984) being operated. Eight stream gages were identified as having insufficient reason to continue their operation. Parts of New Hampshire and Vermont were identified as needing additional hydrologic data. New gages should be established in these regions as funds become available. Alternative methods for providing hydrologic data at the stream gaging stations currently being operated were found to lack the accuracy that is required for their intended use. The current policy for operation of the stream gages requires a net budget of $297,000/yr. The average standard error of estimation of the streamflow records is 17.9%. This overall level of accuracy could be maintained with a budget of $285,000 if resources were redistributed among gages. Cost-effective analysis indicates that with the present budget, the average standard error could be reduced to 16.6%. A minimum budget of $278,000 is required to operate the present stream gaging program. Below this level, the gages and recorders would not receive the proper service and maintenance. At the minimum budget, the average standard error would be 20.4%. The loss of correlative data is a significant component of the error in streamflow records, especially at lower budgetary levels. (Author 's abstract)
Cost effectiveness of the stream-gaging program in Louisiana
Herbert, R.A.; Carlson, D.D.
1985-01-01
This report documents the results of a study of the cost effectiveness of the stream-gaging program in Louisiana. Data uses and funding sources were identified for the 68 continuous-record stream gages currently (1984) in operation with a budget of $408,700. Three stream gages have uses specific to a short-term study with no need for continued data collection beyond the study. The remaining 65 stations should be maintained in the program for the foreseeable future. In addition to the current operation of continuous-record stations, a number of wells, flood-profile gages, crest-stage gages, and stage stations, are serviced on the continuous-record station routes; thus, increasing the current budget to $423,000. The average standard error of estimate for data collected at the stations is 34.6%. Standard errors computed in this study are one measure of streamflow errors, and can be used as guidelines in comparing the effectiveness of alternative networks. By using the routes and number of measurements prescribed by the ' Traveling Hydrographer Program, ' the standard error could be reduced to 31.5% with the current budget of $423,000. If the gaging resources are redistributed, the 34.6% overall level of accuracy at the 68 continuous-record sites and the servicing of the additional wells or gages could be maintained with a budget of approximately $410,000. (USGS)
Real-time, continuous water-quality monitoring in Indiana and Kentucky
Shoda, Megan E.; Lathrop, Timothy R.; Risch, Martin R.
2015-01-01
Water-quality “super” gages (also known as “sentry” gages) provide real-time, continuous measurements of the physical and chemical characteristics of stream water at or near selected U.S. Geological Survey (USGS) streamgages in Indiana and Kentucky. A super gage includes streamflow and water-quality instrumentation and representative stream sample collection for laboratory analysis. USGS scientists can use statistical surrogate models to relate instrument values to analyzed chemical concentrations at a super gage. Real-time, continuous and laboratory-analyzed concentration and load data are publicly accessible on USGS Web pages.
Cost effectiveness of the stream-gaging program in Ohio
Shindel, H.L.; Bartlett, W.P.
1986-01-01
This report documents the results of the cost effectiveness of the stream-gaging program in Ohio. Data uses and funding sources were identified for 107 continuous stream gages currently being operated by the U.S. Geological Survey in Ohio with a budget of $682,000; this budget includes field work for other projects and excludes stations jointly operated with the Miami Conservancy District. No stream gage were identified as having insufficient reason to continue their operation; nor were any station identified as having uses specifically only for short-term studies. All 107 station should be maintained in the program for the foreseeable future. The average standard error of estimation of stream flow records is 29.2 percent at its present level of funding. A minimum budget of $679,000 is required to operate the 107-gage program; a budget less than this does no permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 31.1 percent The maximum budget analyzed was $1,282,000, which resulted in an average standard error of 11.1 percent. A need for additional gages has been identified by the other agencies that cooperate in the program. It is suggested that these gage be installed as funds can be made available.
Cost effectiveness of the stream-gaging program in northeastern California
Hoffard, S.H.; Pearce, V.F.; Tasker, Gary D.; Doyle, W.H.
1984-01-01
Results are documented of a study of the cost effectiveness of the stream-gaging program in northeastern California. Data uses and funding sources were identified for the 127 continuous stream gages currently being operated in the study area. One stream gage was found to have insufficient data use to warrant cooperative Federal funding. Flow-routing and multiple-regression models were used to simulate flows at selected gaging stations. The models may be sufficiently accurate to replace two of the stations. The average standard error of estimate of streamflow records is 12.9 percent. This overall level of accuracy could be reduced to 12.0 percent using computer-recommended service routes and visit frequencies. (USGS)
Cost effectiveness of the US Geological Survey's stream-gaging program in New York
Wolcott, S.W.; Gannon, W.B.; Johnston, W.H.
1986-01-01
The U.S. Geological Survey conducted a 5-year nationwide analysis to define and document the most cost effective means of obtaining streamflow data. This report describes the stream gaging network in New York and documents the cost effectiveness of its operation; it also identifies data uses and funding sources for the 174 continuous-record stream gages currently operated (1983). Those gages as well as 189 crest-stage, stage-only, and groundwater gages are operated with a budget of $1.068 million. One gaging station was identified as having insufficient reason for continuous operation and was converted to a crest-stage gage. Current operation of the 363-station program requires a budget of $1.068 million/yr. The average standard error of estimation of continuous streamflow data is 13.4%. Results indicate that this degree of accuracy could be maintained with a budget of approximately $1.006 million if the gaging resources were redistributed among the gages. The average standard error for 174 stations was calculated for five hypothetical budgets. A minimum budget of $970,000 would be needed to operated the 363-gage program; a budget less than this does not permit proper servicing and maintenance of the gages and recorders. Under the restrictions of a minimum budget, the average standard error would be 16.0%. The maximum budget analyzed was $1.2 million, which would decrease the average standard error to 9.4%. (Author 's abstract)
Rosa, Sarah N.; Oki, Delwyn S.
2010-01-01
Reliable estimates of the magnitude and frequency of floods are necessary for the safe and efficient design of roads, bridges, water-conveyance structures, and flood-control projects and for the management of flood plains and flood-prone areas. StreamStats provides a simple, fast, and reproducible method to define drainage-basin characteristics and estimate the frequency and magnitude of peak discharges in Hawaii?s streams using recently developed regional regression equations. StreamStats allows the user to estimate the magnitude of floods for streams where data from stream-gaging stations do not exist. Existing estimates of the magnitude and frequency of peak discharges in Hawaii can be improved with continued operation of existing stream-gaging stations and installation of additional gaging stations for areas where limited stream-gaging data are available.
Cost effectiveness of the U.S. Geological Survey's stream-gaging program in Illinois
Mades, D.M.; Oberg, K.A.
1984-01-01
Data uses and funding sources were identified for 138 continuous-record discharge-gaging stations currently (1983) operated as part of the stream-gaging program in Illinois. Streamflow data from five of those stations are used only for regional hydrology studies. Most streamflow data are used for defining regional hydrology, defining rainfall-runoff relations, flood forecasting, regulating navigation systems, and water-quality sampling. Based on the evaluations of data use and of alternative methods for determining streamflow in place of stream gaging, no stations in the 1983 stream-gaging program should be deactivated. The current budget (in 1983 dollars) for operating the 138-station program is $768,000 per year. The average standard error of instantaneous discharge for the current practice for visiting the gaging stations is 36.5 percent. Missing stage record accounts for one-third of the 36.5 percent average standard error. (USGS)
Cost-effectiveness of the U.S. Geological Survey stream-gaging program in Indiana
Stewart, J.A.; Miller, R.L.; Butch, G.K.
1986-01-01
Analysis of the stream gaging program in Indiana was divided into three phases. The first phase involved collecting information concerning the data need and the funding source for each of the 173 surface water stations in Indiana. The second phase used alternate methods to produce streamflow records at selected sites. Statistical models were used to generate stream flow data for three gaging stations. In addition, flow routing models were used at two of the sites. Daily discharges produced from models did not meet the established accuracy criteria and, therefore, these methods should not replace stream gaging procedures at those gaging stations. The third phase of the study determined the uncertainty of the rating and the error at individual gaging stations, and optimized travel routes and frequency of visits to gaging stations. The annual budget, in 1983 dollars, for operating the stream gaging program in Indiana is $823,000. The average standard error of instantaneous discharge for all continuous record gaging stations is 25.3%. A budget of $800,000 could maintain this level of accuracy if stream gaging stations were visited according to phase III results. A minimum budget of $790,000 is required to operate the gaging network. At this budget, the average standard error of instantaneous discharge would be 27.7%. A maximum budget of $1 ,000,000 was simulated in the analysis and the average standard error of instantaneous discharge was reduced to 16.8%. (Author 's abstract)
Cost-effectiveness of the stream-gaging program in Maryland, Delaware, and the District of Columbia
Carpenter, David H.; James, R.W.; Gillen, D.F.
1987-01-01
This report documents the results of a cost-effectiveness study of the stream-gaging program in Maryland, Delaware, and the District of Columbia. Data uses and funding sources were identified for 99 continuously operated stream gages in Maryland , Delaware, and the District of Columbia. The current operation of the program requires a budget of $465,260/year. The average standard error of estimation of streamflow records is 11.8%. It is shown that this overall level of accuracy at the 99 sites could be maintained with a budget of $461,000, if resources were redistributed among the gages. (USGS)
August median streamflow on ungaged streams in Eastern Coastal Maine
Lombard, Pamela J.
2004-01-01
Methods for estimating August median streamflow were developed for ungaged, unregulated streams in eastern coastal Maine. The methods apply to streams with drainage areas ranging in size from 0.04 to 73.2 square miles and fraction of basin underlain by a sand and gravel aquifer ranging from 0 to 71 percent. The equations were developed with data from three long-term (greater than or equal to 10 years of record) continuous-record streamflow-gaging stations, 23 partial-record streamflow- gaging stations, and 5 short-term (less than 10 years of record) continuous-record streamflow-gaging stations. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record streamflow-gaging stations and short-term continuous-record streamflow-gaging stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term continuous-record streamflow-gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at streamflow-gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for different periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Thirty-one stations were used for the final regression equations. Two basin characteristics?drainage area and fraction of basin underlain by a sand and gravel aquifer?are used in the calculated regression equation to estimate August median streamflow for ungaged streams. The equation has an average standard error of prediction from -27 to 38 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -30 to 43 percent. Model error is larger than sampling error for both equations, indicating that additional or improved estimates of basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow at partial- record or continuous-record gaging stations range from 0.003 to 31.0 cubic feet per second or from 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in eastern coastal Maine, within the range of acceptable explanatory variables, range from 0.003 to 45 cubic feet per second or 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as drainage area and fraction of basin underlain by a sand and gravel aquifer increase.
Olson, Scott A.
2003-01-01
The stream-gaging network in New Hampshire was analyzed for its effectiveness in providing regional information on peak-flood flow, mean-flow, and low-flow frequency. The data available for analysis were from stream-gaging stations in New Hampshire and selected stations in adjacent States. The principles of generalized-least-squares regression analysis were applied to develop regional regression equations that relate streamflow-frequency characteristics to watershed characteristics. Regression equations were developed for (1) the instantaneous peak flow with a 100-year recurrence interval, (2) the mean-annual flow, and (3) the 7-day, 10-year low flow. Active and discontinued stream-gaging stations with 10 or more years of flow data were used to develop the regression equations. Each stream-gaging station in the network was evaluated and ranked on the basis of how much the data from that station contributed to the cost-weighted sampling-error component of the regression equation. The potential effect of data from proposed and new stream-gaging stations on the sampling error also was evaluated. The stream-gaging network was evaluated for conditions in water year 2000 and for estimated conditions under various network strategies if an additional 5 years and 20 years of streamflow data were collected. The effectiveness of the stream-gaging network in providing regional streamflow information could be improved for all three flow characteristics with the collection of additional flow data, both temporally and spatially. With additional years of data collection, the greatest reduction in the average sampling error of the regional regression equations was found for the peak- and low-flow characteristics. In general, additional data collection at stream-gaging stations with unregulated flow, relatively short-term record (less than 20 years), and drainage areas smaller than 45 square miles contributed the largest cost-weighted reduction to the average sampling error of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active stations, the reactivation of discontinued stations, or the activation of new stations to maximize the regional information content provided by the stream-gaging network. Final decisions regarding altering the New Hampshire stream-gaging network would require the consideration of the many uses of the streamflow data serving local, State, and Federal interests.
Cost-effectiveness of the stream-gaging program in Maine; a prototype for nationwide implementation
Fontaine, Richard A.; Moss, M.E.; Smath, J.A.; Thomas, W.O.
1984-01-01
This report documents the results of a cost-effectiveness study of the stream-gaging program in Maine. Data uses and funding sources were identified for the 51 continuous stream gages currently being operated in Maine with a budget of $211,000. Three stream gages were identified as producing data no longer sufficiently needed to warrant continuing their operation. Operation of these stations should be discontinued. Data collected at three other stations were identified as having uses specific only to short-term studies; it is recommended that these stations be discontinued at the end of the data-collection phases of the studies. The remaining 45 stations should be maintained in the program for the foreseeable future. The current policy for operation of the 45-station program would require a budget of $180,300 per year. The average standard error of estimation of streamflow records is 17.7 percent. It was shown that this overall level of accuracy at the 45 sites could be maintained with a budget of approximately $170,000 if resources were redistributed among the gages. A minimum budget of $155,000 is required to operate the 45-gage program; a smaller budget would not permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 25.1 percent. The maximum budget analyzed was $350,000, which resulted in an average standard error of 8.7 percent. Large parts of Maine's interior were identified as having sparse streamflow data. It was determined that this sparsity be remedied as funds become available.
Esralew, Rachel A.; Baker, Ronald J.
2008-01-01
Hydrologic changes in New Jersey stream basins resulting from human activity can affect the flow and ecology of the streams. To assess future changes in streamflow resulting from human activity an understanding of the natural variability of streamflow is needed. The natural variability can be classified using Ecologically Relevant Hydrologic Indices (ERHIs). ERHIs are defined as selected streamflow statistics that characterize elements of the flow regime that substantially affect biological health and ecological sustainability. ERHIs are used to quantitatively characterize aspects of the streamflow regime, including magnitude, duration, frequency, timing, and rate of change. Changes in ERHI values can occur as a result of human activity, and changes in ERHIs over time at various stream locations can provide information about the degree of alteration in aquatic ecosystems at or near those locations. New Jersey streams can be divided into four classes (A, B, C, or D), where streams with similar ERHI values (determined from cluster analysis) are assigned the same stream class. In order to detect and quantify changes in ERHIs at selected streamflow-gaging stations, a 'baseline' period is needed. Ideally, a baseline period is a period of continuous daily streamflow record at a gaging station where human activity along the contributing stream reach or in the stream's basin is minimal. Because substantial urbanization and other development had already occurred before continuous streamflow-gaging stations were installed, it is not possible to identify baseline periods that meet this criterion for many reaches in New Jersey. Therefore, the baseline period for a considerably altered basin can be defined as a period prior to a substantial human-induced change in the drainage basin or stream reach (such as regulations or diversions), or a period during which development did not change substantially. Index stations (stations with minimal urbanization) were defined as streamflow-gaging stations in basins that contain less than 15 percent urban land use throughout the period of continuous streamflow record. A minimum baseline period of record for each stream class was determined by comparing the variability of selected ERHIs among consecutive 5-, 10-, 15-, and 20-year time increments for index stations. On the basis of this analysis, stream classes A and D were assigned a minimum of 20 years of continuous record as a baseline period and stream classes B and C, a minimum of 10 years. Baseline periods were calculated for 85 streamflow-gaging stations in New Jersey with 10 or more years of continuous daily streamflow data, and the values of 171 ERHIs also were calculated for these baseline periods for each station. Baseline periods were determined by using historical streamflow-gaging station data, estimated changes in impervious surface in the drainage basin, and statistically significant changes in annual base flow and runoff. Historical records were reviewed to identify years during which regulation, diversions, or withdrawals occurred in the drainage basins. Such years were not included in baseline periods of record. For some sites, the baseline period of record was shorter than the minimum period of record specified for the given stream class. In such cases, the baseline period was rated as 'poor'. Impervious surface was used as an indicator of urbanization and change in streamflow characteristics owing to increases in storm runoff and decreases in base flow. Percentages of impervious surface were estimated for 85 streamflow-gaging stations from available municipal population-density data by using a regression model. Where the period of record was sufficiently long, all years after the impervious surface exceeded 10 to 20 percent were excluded from the baseline period. The percentage of impervious surface also was used as a criterion in assigning qualitative ratings to baseline periods. Changes in trends of annual base fl
Data uses and funding for the stream-gaging program in Utah
Cruff, R.W.
1986-01-01
This report documents the results of the first phase of a study of the cost effectiveness of the streamflow-information program in Utah. Data use, funding, and data availability are described for the streamflow stations operated by the U.S. Geological Survey; and a history of the stream-gaging program is given. During the 1984 water year, 214 continuous streamflow stations were operated on a budget of $854,000. Data from most stations have multiple uses and all stations presently have sufficient justification for continuation.
A stream-gaging network analysis for the 7-day, 10-year annual low flow in New Hampshire streams
Flynn, Robert H.
2003-01-01
The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations.A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990.To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the network by application of GLS regression between streamflow and the climatic and basin characteristics of the drainage basin upstream from each stream-gaging station. Improvement to the predictive ability of the regression equations developed for the network analyses is measured by the reduction in the average sampling-error variance, and can be achieved by collecting additional streamflow data at existing stations. The predictive ability of the regression equations is enhanced even further with the addition of new stations to the network. Continued data collection at unregulated stream-gaging stations with less than 14 years of record resulted in the greatest cost-weighted reduction to the average sampling-error variance of the annual 7Q10 regional regression equation. The addition of new stations in basins with underrepresented values for the independent variables of the total drainage area, average mean annual basinwide temperature, or mean summer stream-gaging station precipitation in the annual 7Q10 regression equation yielded a much greater cost-weighted reduction to the average sampling-error variance than when more data were collected at existing unregulated stations. To maximize the regional information obtained from the stream-gaging network for the annual 7Q10, ranking of the streamflow data can be used to determine whether an active station should be continued or if a new or discontinued station should be activated for streamflow data collection. Thus, this network analysis can help determine the costs and benefits of continuing the operation of a particular station or activating a new station at another location to predict the 7Q10 at ungaged stream reaches. The decision to discontinue an existing station or activate a new station, however, must also consider its contribution to other water-resource analyses such as flood management, water quality, or trends in land use or climatic change.
Driscoll, Daniel G.; Zogorski, John S.
1990-01-01
The report presents a summary of basin characteristics affecting streamflow, a history of the U.S. Geological Survey 's stream-gaging program, and a compilation of discharge records and statistical summaries for selected sites within the Rapid Creek basin. It is the first in a series which will investigate surface-water/groundwater relations along Rapid Creek. The summary of basin characteristics includes descriptions of the geology and hydrogeology, physiography and climate, land use and vegetation, reservoirs, and water use within the basin. A recounting of the U.S. Geological Survey 's stream-gaging program and a tabulation of historic stream-gaging stations within the basin are furnished. A compilation of monthly and annual mean discharge values for nine currently operated, long-term, continuous-record, streamflow-gaging stations on Rapid Creek is presented. The statistical summary for each site includes summary statistics on monthly and annual mean values, correlation matrix for monthly values, serial correlation for 1 year lag for monthly values, percentile rankings for monthly and annual mean values, low and high value tables, duration curves, and peak-discharge tables. Records of monthend contents for two reservoirs within the basin also are presented. (USGS)
Cost-effectiveness of the stream-gaging program in New Jersey
Schopp, R.D.; Ulery, R.L.
1984-01-01
The results of a study of the cost-effectiveness of the stream-gaging program in New Jersey are documented. This study is part of a 5-year nationwide analysis undertaken by the U.S. Geological Survey to define and document the most cost-effective means of furnishing streamflow information. This report identifies the principal uses of the data and relates those uses to funding sources, applies, at selected stations, alternative less costly methods (that is flow routing, regression analysis) for furnishing the data, and defines a strategy for operating the program which minimizes uncertainty in the streamflow data for specific operating budgets. Uncertainty in streamflow data is primarily a function of the percentage of missing record and the frequency of discharge measurements. In this report, 101 continuous stream gages and 73 crest-stage or stage-only gages are analyzed. A minimum budget of $548,000 is required to operate the present stream-gaging program in New Jersey with an average standard error of 27.6 percent. The maximum budget analyzed was $650,000, which resulted in an average standard error of 17.8 percent. The 1983 budget of $569,000 resulted in a standard error of 24.9 percent under present operating policy. (USGS)
Cost effectiveness of the stream-gaging program in South Carolina
Barker, A.C.; Wright, B.C.; Bennett, C.S.
1985-01-01
The cost effectiveness of the stream-gaging program in South Carolina was documented for the 1983 water yr. Data uses and funding sources were identified for the 76 continuous stream gages currently being operated in South Carolina. The budget of $422,200 for collecting and analyzing streamflow data also includes the cost of operating stage-only and crest-stage stations. The streamflow records for one stream gage can be determined by alternate, less costly methods, and should be discontinued. The remaining 75 stations should be maintained in the program for the foreseeable future. The current policy for the operation of the 75 stations including the crest-stage and stage-only stations would require a budget of $417,200/yr. The average standard error of estimation of streamflow records is 16.9% for the present budget with missing record included. However, the standard error of estimation would decrease to 8.5% if complete streamflow records could be obtained. It was shown that the average standard error of estimation of 16.9% could be obtained at the 75 sites with a budget of approximately $395,000 if the gaging resources were redistributed among the gages. A minimum budget of $383,500 is required to operate the program; a budget less than this does not permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 18.6%. The maximum budget analyzed was $850,000, which resulted in an average standard error of 7.6 %. (Author 's abstract)
August Median Streamflow on Ungaged Streams in Eastern Aroostook County, Maine
Lombard, Pamela J.; Tasker, Gary D.; Nielsen, Martha G.
2003-01-01
Methods for estimating August median streamflow were developed for ungaged, unregulated streams in the eastern part of Aroostook County, Maine, with drainage areas from 0.38 to 43 square miles and mean basin elevations from 437 to 1,024 feet. Few long-term, continuous-record streamflow-gaging stations with small drainage areas were available from which to develop the equations; therefore, 24 partial-record gaging stations were established in this investigation. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record stations was applied by relating base-flow measurements at these stations to concurrent daily flows at nearby long-term, continuous-record streamflow- gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for varying periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Twenty-three partial-record stations and one continuous-record station were used for the final regression equations. The basin characteristics of drainage area and mean basin elevation are used in the calculated regression equation for ungaged streams to estimate August median flow. The equation has an average standard error of prediction from -38 to 62 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -40 to 67 percent. Model error is larger than sampling error for both equations, indicating that additional basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow, which can be used when making estimates at partial-record or continuous-record gaging stations, range from 0.03 to 11.7 cubic feet per second or from 0.1 to 0.4 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in the eastern part of Aroostook County, within the range of acceptable explanatory variables, range from 0.03 to 30 cubic feet per second or 0.1 to 0.7 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as mean elevation and drainage area increase.
Funkhouser, Jaysson E.; Eng, Ken; Moix, Matthew W.
2008-01-01
Water use in Arkansas has increased dramatically in recent years. Since 1990, the use of water for all purposes except power generation has increased 53 percent (4,004 cubic feet per second in 1990 to 6,113 cubic feet per second in 2005). The biggest users are agriculture (90 percent), municipal water supply (4 percent) and industrial supply (2 percent). As the population of the State continues to grow, so does the demand for the State's water resources. The low-flow characteristics of a stream ultimately affect its utilization by humans. Specific information on the low-flow characteristics of streams is essential to State water-management agencies such as the Arkansas Department of Environmental Quality, the Arkansas Natural Resources Commission, and the Arkansas Game and Fish Commission when dealing with problems related to irrigation, municipal and industrial water supplies, fish and wildlife conservation, and dilution of waste. Low-flow frequency data are of particular value to management agencies responsible for the development and management of the State's water resources. This report contains the low-flow characteristics for 70 active continuous-streamflow record gaging stations, 59 inactive continuous-streamflow record stations, and 101 partial-record gaging stations. These characteristics are the annual 7-day, 10-year low flow and the annual 7-day, 2-year low flow, and the seasonal, bimonthly, and monthly 7-day, 10-year low flow for the 129 active and inactive continuous-streamflow record and 101 partial-record gaging stations. Low-flow characteristics were computed on the basis of streamflow data for the period of record through September 2005 for the continuous-streamflow record and partial-record streamflow gaging stations. The low-flow characteristics of these continuous- and partial-record streamflow gaging stations were utilized in a regional regression analysis to produce equations for estimating the annual, seasonal, bimonthly, and monthly (November through April) 7-day, 10-year low flows and the annual 7-day, 2-year low flow for ungaged streams in the western two-thirds of Arkansas.
Low-flow characteristics of streams in Virginia
Hayes, Donald C.
1991-01-01
Streamflow data were collected and low-flow characteristics computed for 715 gaged sites in Virginia Annual minimum average 7-consecutive-day flows range from 0 to 2,195 cubic feet per second for a 2-year recurrence interval and from 0 to 1,423 cubic feet per second for a 10-year recurrence interval. Drainage areas range from 0.17 to 7,320 square miles. Existing and discontinued gaged sites are separated into three types: long-term continuous-record sites, short-term continuous-record sites, and partial-record sites. Low-flow characteristics for long-term continuous-record sites are determined from frequency curves of annual minimum average 7-consecutive-day flows . Low-flow characteristics for short-term continuous-record sites are estimated by relating daily mean base-flow discharge values at a short-term site to concurrent daily mean discharge values at nearby long-term continuous-record sites having similar basin characteristics . Low-flow characteristics for partial-record sites are estimated by relating base-flow measurements to daily mean discharge values at long-term continuous-record sites. Information from the continuous-record sites and partial-record sites in Virginia are used to develop two techniques for estimating low-flow characteristics at ungaged sites. A flow-routing method is developed to estimate low-flow values at ungaged sites on gaged streams. Regional regression equations are developed for estimating low-flow values at ungaged sites on ungaged streams. The flow-routing method consists of transferring low-flow characteristics from a gaged site, either upstream or downstream, to a desired ungaged site. A simple drainage-area proration is used to transfer values when there are no major tributaries between the gaged and ungaged sites. Standard errors of estimate for108 test sites are 19 percent of the mean for estimates of low-flow characteristics having a 2-year recurrence interval and 52 percent of the mean for estimates of low-flow characteristics having a 10-year recurrence interval . A more complex transfer method must be used when major tributaries enter the stream between the gaged and ungaged sites. Twenty-four stream networks are analyzed, and predictions are made for 84 sites. Standard errors of estimate are 15 percent of the mean for estimates of low-flow characteristics having a 2-year recurrence interval and 22 percent of the mean for estimates of low-flow characteristics having a 10-year recurrence interval. Regional regression equations were developed for estimating low-flow values at ungaged sites on ungaged streams. The State was divided into eight regions on the basis of physiography and geographic grouping of the residuals computed in regression analyses . Basin characteristics that were significant in the regression analysis were drainage area, rock type, and strip-mined area. Standard errors of prediction range from 60 to139 percent for estimates of low-flow characteristics having a 2-year recurrence interval and 90 percent to 172 percent for estimates of low-flow characteristics having a 10-year recurrence interval.
Gadoury, R.A.; Smath, J.A.; Fontaine, R.A.
1985-01-01
The report documents the results of a study of the cost-effectiveness of the U.S. Geological Survey 's continuous-record stream-gaging programs in Massachusetts and Rhode Island. Data uses and funding sources were identified for 91 gaging stations being operated in Massachusetts are being operated to provide data for two special purpose hydrologic studies, and they are planned to be discontinued at the conclusion of the studies. Cost-effectiveness analyses were performed on 63 continuous-record gaging stations in Massachusetts and 15 stations in Rhode Island, at budgets of $353,000 and $60,500, respectively. Current operations policies result in average standard errors per station of 12.3% in Massachusetts and 9.7% in Rhode Island. Minimum possible budgets to maintain the present numbers of gaging stations in the two States are estimated to be $340,000 and $59,000, with average errors per station of 12.8% and 10.0%, respectively. If the present budget levels were doubled, average standards errors per station would decrease to 8.1% and 4.2%, respectively. Further budget increases would not improve the standard errors significantly. (USGS)
Cost-effectiveness of the Federal stream-gaging program in Virginia
Carpenter, D.H.
1985-01-01
Data uses and funding sources were identified for the 77 continuous stream gages currently being operated in Virginia by the U.S. Geological Survey with a budget of $446,000. Two stream gages were identified as not being used sufficiently to warrant continuing their operation. Operation of these stations should be considered for discontinuation. Data collected at two other stations were identified as having uses primarily related to short-term studies; these stations should also be considered for discontinuation at the end of the data collection phases of the studies. The remaining 73 stations should be kept in the program for the foreseeable future. The current policy for operation of the 77-station program requires a budget of $446,000/yr. The average standard error of estimation of streamflow records is 10.1%. It was shown that this overall level of accuracy at the 77 sites could be maintained with a budget of $430,500 if resources were redistributed among the gages. A minimum budget of $428,500 is required to operate the 77-gage program; a smaller budget would not permit proper service and maintenance of the gages and recorders. At the minimum budget, with optimized operation, the average standard error would be 10.4%. The maximum budget analyzed was $650,000, which resulted in an average standard error of 5.5%. The study indicates that a major component of error is caused by lost or missing data. If perfect equipment were available, the standard error for the current program and budget could be reduced to 7.6%. This also can be interpreted to mean that the streamflow data have a standard error of this magnitude during times when the equipment is operating properly. (Author 's abstract)
Johnson, Kevin K.; Goodwin, Greg E.
2013-01-01
Lake Michigan diversion accounting is the process used by the U. S. Army Corps of Engineers to quantify the amount of water that is diverted from the Lake Michigan watershed into the Illinois and Mississippi River Basins. A network of streamgages within the Chicago area waterway system monitor tributary river flows and the major river flow on the Chicago Sanitary and Ship Canal near Lemont as one of the instrumental tools used for Lake Michigan diversion accounting. The mean annual discharges recorded by these streamgages are used as additions or deductions to the mean annual discharge recorded by the main stream gaging station currently used in the Lake Michigan diversion accounting process, which is the Chicago Sanitary and Ship Canal near Lemont, Illinois (station number 05536890). A new stream gaging station, Summit Conduit near Summit, Illinois (station number 414757087490401), was installed on September 23, 2010, for the purpose of monitoring stage, velocity, and discharge through the Summit Conduit for the U.S. Army Corps of Engineers in accordance with Lake Michigan diversion accounting. Summit Conduit conveys flow from a small part of the lower Des Plaines River watershed underneath the Des Plaines River directly into the Chicago Sanitary and Ship Canal. Because the Summit Conduit discharges into the Chicago Sanitary and Ship Canal upstream from the stream gaging station at Lemont, Illinois, but does not contain flow diverted from the Lake Michigan watershed, it is considered a flow deduction to the discharge measured by the Lemont stream gaging station in the Lake Michigan diversion accounting process. This report offers a technical summary of the techniques and methods used for the collection and computation of the stage, velocity, and discharge data at the Summit Conduit near Summit, Illinois stream gaging station for the 2011 and 2012 Water Years. The stream gaging station Summit Conduit near Summit, Illinois (station number 414757087490401) is an example of a nonstandard stream gage. Traditional methods of equating stage to discharge historically were not effective. Examples of the nonstandard conditions include the converging tributary flows directly upstream of the gage; the trash rack and walkway near the opening of the conduit introducing turbulence and occasionally entraining air bubbles into the flow; debris within the conduit creating conditions of variable backwater and the constant influx of smaller debris that escapes the trash rack and catches or settles in the conduit and on the equipment. An acoustic Doppler velocity meter was installed to measure stage and velocity to compute discharge. The stage is used to calculate area based the stage-area rating. The index-velocity from the acoustic Doppler velocity meter is applied to the velocity-velocity rating and the product of the two rated values is a rated discharge by the index-velocity method. Nonstandard site conditions prevalent at the Summit Conduit stream gaging station generally are overcome through the index-velocity method. Despite the difficulties in gaging and measurements, improvements continue to be made in data collection, transmission, and measurements. Efforts to improve the site and to improve the ratings continue to improve the quality and quantity of the data available for Lake Michigan diversion accounting.
Storage requirements for Arkansas streams
Patterson, James Lee
1968-01-01
The supply of good-quality surface water in Arkansas is abundant. owing to seasonal and annual variability of streamflow, however, storage must be provided to insure dependable year-round supplies in most of the State. Storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 49 continuous-record gaging stations can be obtained from tabular data in this report. Through regional analyses of streamflow data, the State was divided into three regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, the mean annual flow, and the low-flow index are known. These data are tabulated for 53 gaging stations used in the analyses and for 132 partial-record sites where only base-flow measurements have been made. Mean annual flow can be determined for any stream whose drainage lies within the State by using the runoff map in this report. Low-flow indices can be estimated by correlating base flows, determined from several discharge measurements, with concurrent flows at nearby continuous-record gaging stations, whose low-flow indices have been determined.
Water Resources Data, Nebraska, Water Year 2003
Hitch, D.E.; Hull, S.H.; Walczyk, V.C.; Miller, J.D.; Drudik, R.A.
2004-01-01
The Nebraska water resources data report for water year 2003 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 103 continuous and 5 crest-stage gaging stations, and 5 miscellaneous sites; stream water quality for 14 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 40 observation wells; and ground-water quality for 132 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, State, and Federal agencies.
Water resources data, Nebraska, water year 2004
Hitch, D. E.; Soensken, P.J.; Sebree, S.K.; Wilson, K.E.; Walczyk, V.C.; Drudik, R.A.; Miller, J.D.; Hull, S.H.
2005-01-01
The Nebraska water resources data report for water year 2004 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 101 continuous and 5 crest-stage gaging stations, and 6 miscellaneous sites; stream water quality for 7 gaging stations and 40 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 74 observation wells; and ground-water quality for 200 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating Federal, State, and local agencies.
Experimental Acoustic Velocity Measurements in a Tidally Affected Stream
Storm, J.B.; ,
2002-01-01
The U.S. Geological Survey (USGS) constructed a continuous steamgaging station on the tidally affected Escatawpa River at Interstate 10 near Orange Grove, Mississippi, in August 2001. The gage collects water quantity parameters of stage and stream velocity, and water quality parameters of water temperature, specific conductance, and salinity. Data are transmitted to the local USGS office via the GOES satellite and are presented on a near real-time web page. Due to tidal effects, the stream has multiple flow regimes which include downstream, bi-directional, and reverse flows. Advances in acoustic technology have made it possible to gage streams of this nature where conventional methods have been unsuccessful. An experimental mount was designed in an attempt to recognize, describe, and quantify these flow regimes by using acoustic Doppler equipment.
Falcone, James A.; Carlisle, Daren M.; Wolock, David M.; Meador, Michael R.
2010-01-01
In addition, watersheds were assessed for their reference quality within nine broad regions for use in studies intended to characterize stream flows under conditions minimally influenced by human activities. Three primary criteria were used to assess reference quality: (1) a quantitative index of anthropogenic modification within the watershed based on GIS-derived variables, (2) visual inspection of every stream gage and drainage basin from recent high-resolution imagery and topographic maps, and (3) information about man-made influences from USGS Annual Water Data Reports. From the set of 6785 sites, we identified 1512 as reference-quality stream gages. All data derived for these watersheds as well as the reference condition evaluation are provided as an online data set termed GAGES (geospatial attributes of gages for evaluating stream flow).
Konrad, Christopher P.; Voss, Frank D.
2012-01-01
The streamflow-gaging network in the Puget Sound basin was analyzed for its capacity to monitor stormwater in small streams. The analysis consisted of an inventory of active and inactive gages and an evaluation of the coverage and resolution of the gaging network with an emphasis on lowland areas. The active gaging network covers much of the Puget Lowland largely by gages located at sites on larger streams and rivers. Assessments of stormwater impacts and management will likely require streamflow information with higher spatial resolution than provided by the current gaging network. Monitoring that emphasizes small streams in combination with approaches for estimating streamflow at ungaged sites provides an alternative to expanding the current gaging network that can improve the spatial resolution of streamflow information in the region. The highest priority gaps in the gaging network are low elevation basins close to the Puget Sound shoreline and sites that share less than 10 percent of the drainage area of an active gage. Although small, lowland sites with long records of streamflow are particularly valuable to maintain in the region, other criteria for prioritizing sites in the gaging network should be based on the specific questions that stormwater managers need to answer.
Gingerich, Stephen B.
2005-01-01
Flow-duration statistics under natural (undiverted) and diverted flow conditions were estimated for gaged and ungaged sites on 21 streams in northeast Maui, Hawaii. The estimates were made using the optimal combination of continuous-record gaging-station data, low-flow measurements, and values determined from regression equations developed as part of this study. Estimated 50- and 95-percent flow duration statistics for streams are presented and the analyses done to develop and evaluate the methods used in estimating the statistics are described. Estimated streamflow statistics are presented for sites where various amounts of streamflow data are available as well as for locations where no data are available. Daily mean flows were used to determine flow-duration statistics for continuous-record stream-gaging stations in the study area following U.S. Geological Survey established standard methods. Duration discharges of 50- and 95-percent were determined from total flow and base flow for each continuous-record station. The index-station method was used to adjust all of the streamflow records to a common, long-term period. The gaging station on West Wailuaiki Stream (16518000) was chosen as the index station because of its record length (1914-2003) and favorable geographic location. Adjustments based on the index-station method resulted in decreases to the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow computed on the basis of short-term records that averaged 7, 3, 4, and 1 percent, respectively. For the drainage basin of each continuous-record gaged site and selected ungaged sites, morphometric, geologic, soil, and rainfall characteristics were quantified using Geographic Information System techniques. Regression equations relating the non-diverted streamflow statistics to basin characteristics of the gaged basins were developed using ordinary-least-squares regression analyses. Rainfall rate, maximum basin elevation, and the elongation ratio of the basin were the basin characteristics used in the final regression equations for 50-percent duration total flow and base flow. Rainfall rate and maximum basin elevation were used in the final regression equations for the 95-percent duration total flow and base flow. The relative errors between observed and estimated flows ranged from 10 to 20 percent for the 50-percent duration total flow and base flow, and from 29 to 56 percent for the 95-percent duration total flow and base flow. The regression equations developed for this study were used to determine the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow at selected ungaged diverted and undiverted sites. Estimated streamflow, prediction intervals, and standard errors were determined for 48 ungaged sites in the study area and for three gaged sites west of the study area. Relative errors were determined for sites where measured values of 95-percent duration discharge of total flow were available. East of Keanae Valley, the 95-percent duration discharge equation generally underestimated flow, and within and west of Keanae Valley, the equation generally overestimated flow. Reduction in 50- and 95-percent flow-duration values in stream reaches affected by diversions throughout the study area average 58 to 60 percent.
Continuous turbidity monitoring in streams of northwestern California
Rand Eads; Jack Lewis
2002-01-01
Abstract - Redwood Sciences Laboratory, a field office of the USDA Forest Service, Pacific Southwest Research Station has developed and refined methods and instrumentation to monitor turbidity and suspended sediment in streams of northern California since 1996. Currently we operate 21 stations and have provided assistance in the installation of 6 gaging stations for...
Telis, Pamela A.
1992-01-01
Mississippi State water laws require that the 7-day, 10-year low-flow characteristic (7Q10) of streams be used as a criterion for issuing wastedischarge permits to dischargers to streams and for limiting withdrawals of water from streams. This report presents techniques for estimating the 7Q10 for ungaged sites on streams in Mississippi based on the availability of baseflow discharge measurements at the site, location of nearby gaged sites on the same stream, and drainage area of the ungaged site. These techniques may be used to estimate the 7Q10 at sites on natural, unregulated or partially regulated, and non-tidal streams. Low-flow characteristics for streams in the Mississippi River alluvial plain were not estimated because the annual lowflow data exhibit decreasing trends with time. Also presented are estimates of the 7Q10 for 493 gaged sites on Mississippi streams.Techniques for estimating the 7Q10 have been developed for ungaged sites with base-flow discharge measurements, for ungaged sites on gaged streams, and for ungaged sites on ungaged streams. For an ungaged site with one or more base-flow discharge measurements, base-flow discharge data at the ungaged site are related to concurrent discharge data at a nearby gaged site. For ungaged sites on gaged streams, several methods of transferring the 7Q10 from a gaged site to an ungaged site were developed; the resulting 7Q10 values are based on drainage area prorations for the sites. For ungaged sites on ungaged streams, the 7Q10 is estimated from a map developed for. this study that shows the unit 7Q10 (7Q10 per square mile of drainage area) for ungaged basins in the State. The mapped values were estimated from the unit 7Q10 determined for nearby gaged basins, adjusted on the basis of the geology and topography of the ungaged basins.
GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow
Falcone, James A.
2011-01-01
This dataset, termed "GAGES II", an acronym for Geospatial Attributes of Gages for Evaluating Streamflow, version II, provides geospatial data and classifications for 9,322 stream gages maintained by the U.S. Geological Survey (USGS). It is an update to the original GAGES, which was published as a Data Paper on the journal Ecology's website (Falcone and others, 2010b) in 2010. The GAGES II dataset consists of gages which have had either 20+ complete years (not necessarily continuous) of discharge record since 1950, or are currently active, as of water year 2009, and whose watersheds lie within the United States, including Alaska, Hawaii, and Puerto Rico. Reference gages were identified based on indicators that they were the least-disturbed watersheds within the framework of broad regions, based on 12 major ecoregions across the United States. Of the 9,322 total sites, 2,057 are classified as reference, and 7,265 as non-reference. Of the 2,057 reference sites, 1,633 have (through 2009) 20+ years of record since 1950. Some sites have very long flow records: a number of gages have been in continuous service since 1900 (at least), and have 110 years of complete record (1900-2009) to date. The geospatial data include several hundred watershed characteristics compiled from national data sources, including environmental features (e.g. climate – including historical precipitation, geology, soils, topography) and anthropogenic influences (e.g. land use, road density, presence of dams, canals, or power plants). The dataset also includes comments from local USGS Water Science Centers, based on Annual Data Reports, pertinent to hydrologic modifications and influences. The data posted also include watershed boundaries in GIS format. This overall dataset is different in nature to the USGS Hydro-Climatic Data Network (HCDN; Slack and Landwehr 1992), whose data evaluation ended with water year 1988. The HCDN identifies stream gages which at some point in their history had periods which represented natural flow, and the years in which those natural flows occurred were identified (i.e. not all HCDN sites were in reference condition even in 1988, for example, 02353500). The HCDN remains a valuable indication of historic natural streamflow data. However, the goal of this dataset was to identify watersheds which currently have near-natural flow conditions, and the 2,057 reference sites identified here were derived independently of the HCDN. A subset, however, noted in the BasinID worksheet as “HCDN-2009”, has been identified as an updated list of 743 sites for potential hydro-climatic study. The HCDN-2009 sites fulfill all of the following criteria: (a) have 20 years of complete and continuous flow record in the last 20 years (water years 1990-2009), and were thus also currently active as of 2009, (b) are identified as being in current reference condition according to the GAGES-II classification, (c) have less than 5 percent imperviousness as measured from the NLCD 2006, and (d) were not eliminated by a review from participating state Water Science Center evaluators. The data posted here consist of the following items:- This point shapefile, with summary data for the 9,322 gages.- A zip file containing basin characteristics, variable definitions, and a more detailed report.- A zip file containing shapefiles of basin boundaries, organized by classification and aggregated ecoregion.- A zip file containing mainstem stream lines (Arc line coverages) for each gage.
Moss, Marshall E.; Gilroy, Edward J.
1980-01-01
This report describes the theoretical developments and illustrates the applications of techniques that recently have been assembled to analyze the cost-effectiveness of federally funded stream-gaging activities in support of the Colorado River compact and subsequent adjudications. The cost effectiveness of 19 stream gages in terms of minimizing the sum of the variances of the errors of estimation of annual mean discharge is explored by means of a sequential-search optimization scheme. The search is conducted over a set of decision variables that describes the number of times that each gaging route is traveled in a year. A gage route is defined as the most expeditious circuit that is made from a field office to visit one or more stream gages and return to the office. The error variance is defined as a function of the frequency of visits to a gage by using optimal estimation theory. Currently a minimum of 12 visits per year is made to any gage. By changing to a six-visit minimum, the same total error variance can be attained for the 19 stations with a budget of 10% less than the current one. Other strategies are also explored. (USGS)
Low-flow characteristics of Indiana streams
Fowler, K.K.; Wilson, J.T.
1996-01-01
Knowledge of low-flow characteristics of streams is essential for management of water resources. Low-flow characteristics are presented for 229 continuous-record, streamflow-gaging stations and 285 partial-record stations in Indiana. Low- flow-frequency characteristics were computed for 210 continuous-record stations that had at least 10 years of record, and flow-duration curves were computed for all continuous-record stations. Low-flow-frequency and flow-duration analyses are based on available streamflow records through September 1993. Selected low-flow-frequency curves were computed for annual low flows and seasonal low flows. The four seasons are represented by the 3-month groups of March-May, June-August, September-November, and December- February. The 7-day, 10-year and the 7-day, 2 year low flows were estimated for 285 partial-record stations, which are ungaged sites where streamflow measurements were made at base flow. The same low-flow characteristics were estimated for 19 continuous-record stations where less than 10 years of record were available. Precipitation and geology directly influence the streams in Indiana. Streams in the northern, glaciated part of the State tend to have higher sustained base flows than those in the nonglaciated southern part. Flow at several of the continuous-record gaging stations is affected by some form of regulation or diversion. Low-flow characteristics for continuous-record stations at which flow is affected by regulation are determined using the period of record affected by regulation; natural flows prior to regulation are not used.
Curran, Christopher A.; Olsen, Theresa D.
2009-01-01
Low-flow frequency statistics were computed at 17 continuous-record streamflow-gaging stations and 8 miscellaneous measurement sites in and near the Nooksack River basin in northwestern Washington and Canada, including the 1, 3, 7, 15, 30, and 60 consecutive-day low flows with recurrence intervals of 2 and 10 years. Using these low-flow statistics, 12 regional regression equations were developed for estimating the same low-flow statistics at ungaged sites in the Nooksack River basin using a weighted-least-squares method. Adjusted R2 (coefficient of determination) values for the equations ranged from 0.79 to 0.93 and the root-mean-squared error (RMSE) expressed as a percentage ranged from 77 to 560 percent. Streamflow records from six gaging stations located in mountain-stream or lowland-stream subbasins of the Nooksack River basin were analyzed to determine if any of the gaging stations could be removed from the network without significant loss of information. Using methods of hydrograph comparison, daily-value correlation, variable space, and flow-duration ratios, and other factors relating to individual subbasins, the six gaging stations were prioritized from most to least important as follows: Skookum Creek (12209490), Anderson Creek (12210900), Warm Creek (12207750), Fishtrap Creek (12212050), Racehorse Creek (12206900), and Clearwater Creek (12207850). The optimum streamflow-gaging station network would contain all gaging stations except Clearwater Creek, and the minimum network would include Skookum Creek and Anderson Creek.
Cost effectiveness of stream-gaging program in Michigan
Holtschlag, D.J.
1985-01-01
This report documents the results of a study of the cost effectiveness of the stream-gaging program in Michigan. Data uses and funding sources were identified for the 129 continuous gaging stations being operated in Michigan as of 1984. One gaging station was identified as having insufficient reason to continue its operation. Several stations were identified for reactivation, should funds become available, because of insufficiencies in the data network. Alternative methods of developing streamflow information based on routing and regression analyses were investigated for 10 stations. However, no station records were reproduced with sufficient accuracy to replace conventional gaging practices. A cost-effectiveness analysis of the data-collection procedure for the ice-free season was conducted using a Kalman-filter analysis. To define missing-record characteristics, cross-correlation coefficients and coefficients of variation were computed at stations on the basis of daily mean discharge. Discharge-measurement data were used to describe the gage/discharge rating stability at each station. The results of the cost-effectiveness analysis for a 9-month ice-free season show that the current policy of visiting most stations on a fixed servicing schedule once every 6 weeks results in an average standard error of 12.1 percent for the current $718,100 budget. By adopting a flexible servicing schedule, the average standard error could be reduced to 11.1 percent. Alternatively, the budget could be reduced to $700,200 while maintaining the current level of accuracy. A minimum budget of $680,200 is needed to operate the 129-gaging-station program; a budget less than this would not permit proper service and maintenance of stations. At the minimum budget, the average standard error would be 14.4 percent. A budget of $789,900 (the maximum analyzed) would result in a decrease in the average standard error to 9.07 percent. Owing to continual changes in the composition of the network and the changes in the uncertainties of streamflow accuracy at individual stations, the cost-effectiveness analysis will need to be updated regularly if it is to be used as a management tool. Cost of these updates need to be considered in decisions concerning the feasibility of flexible servicing schedules.
NASA Astrophysics Data System (ADS)
Rosner, A.; Letcher, B. H.; Vogel, R. M.
2014-12-01
Predicting streamflow in headwaters and over a broad spatial scale pose unique challenges due to limited data availability. Flow observation gages for headwaters streams are less common than for larger rivers, and gages with records lengths of ten year or more are even more scarce. Thus, there is a great need for estimating streamflows in ungaged or sparsely-gaged headwaters. Further, there is often insufficient basin information to develop rainfall-runoff models that could be used to predict future flows under various climate scenarios. Headwaters in the northeastern U.S. are of particular concern to aquatic biologists, as these stream serve as essential habitat for native coldwater fish. In order to understand fish response to past or future environmental drivers, estimates of seasonal streamflow are needed. While there is limited flow data, there is a wealth of data for historic weather conditions. Observed data has been modeled to interpolate a spatially continuous historic weather dataset. (Mauer et al 2002). We present a statistical model developed by pairing streamflow observations with precipitation and temperature information for the same and preceding time-steps. We demonstrate this model's use to predict flow metrics at the seasonal time-step. While not a physical model, this statistical model represents the weather drivers. Since this model can predict flows not directly tied to reference gages, we can generate flow estimates for historic as well as potential future conditions.
Cost effectiveness of the US Geological Survey stream-gaging program in Alabama
Jeffcoat, H.H.
1987-01-01
A study of the cost effectiveness of the stream gaging program in Alabama identified data uses and funding sources for 72 surface water stations (including dam stations, slope stations, and continuous-velocity stations) operated by the U.S. Geological Survey in Alabama with a budget of $393,600. Of these , 58 gaging stations were used in all phases of the analysis at a funding level of $328,380. For the current policy of operation of the 58-station program, the average standard error of estimation of instantaneous discharge is 29.3%. This overall level of accuracy can be maintained with a budget of $319,800 by optimizing routes and implementing some policy changes. The maximum budget considered in the analysis was $361,200, which gave an average standard error of estimation of 20.6%. The minimum budget considered was $299,360, with an average standard error of estimation of 36.5%. The study indicates that a major source of error in the stream gaging records is lost or missing data that are the result of streamside equipment failure. If perfect equipment were available, the standard error in estimating instantaneous discharge under the current program and budget could be reduced to 18.6%. This can also be interpreted to mean that the streamflow data records have a standard error of this magnitude during times when the equipment is operating properly. (Author 's abstract)
Estimates of Median Flows for Streams on the 1999 Kansas Surface Water Register
Perry, Charles A.; Wolock, David M.; Artman, Joshua C.
2004-01-01
The Kansas State Legislature, by enacting Kansas Statute KSA 82a?2001 et. seq., mandated the criteria for determining which Kansas stream segments would be subject to classification by the State. One criterion for the selection as a classified stream segment is based on the statistic of median flow being equal to or greater than 1 cubic foot per second. As specified by KSA 82a?2001 et. seq., median flows were determined from U.S. Geological Survey streamflow-gaging-station data by using the most-recent 10 years of gaged data (KSA) for each streamflow-gaging station. Median flows also were determined by using gaged data from the entire period of record (all-available hydrology, AAH). Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating median flows for uncontrolled stream segments. The drainage area of the gaging stations on uncontrolled stream segments used in the regression analyses ranged from 2.06 to 12,004 square miles. A logarithmic transformation of the data was needed to develop the best linear relation for computing median flows. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. Tobit analyses of KSA data yielded a model standard error of prediction of 0.285 logarithmic units, and the best equations using Tobit analyses of AAH data had a model standard error of prediction of 0.250 logarithmic units. These regression equations and an interpolation procedure were used to compute median flows for the uncontrolled stream segments on the 1999 Kansas Surface Water Register. Measured median flows from gaging stations were incorporated into the regression-estimated median flows along the stream segments where available. The segments that were uncontrolled were interpolated using gaged data weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled segments of Kansas streams, the median flow information was interpolated between gaging stations using only gaged data weighted by drainage area. Of the 2,232 total stream segments on the Kansas Surface Water Register, 34.5 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second when the KSA analysis was used. When the AAH analysis was used, 36.2 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second. This report supercedes U.S. Geological Survey Water-Resources Investigations Report 02?4292.
Channel degradation in southeastern Nebraska Rivers
Wahl, Kenneth L.; Weiss, Linda S.; ,
1995-01-01
Many stream channels in southeastern Nebraska were dredged and straightened during 1904-15. The resulting channels were both shorter and steeper than the original channels. Tests for time trends were conducted using the nonparametric Kendall tau test to see if the channels have responded to these changes. Tests were conducted on the stages associated with specific discharges and on measurement characteristics at gaging stations. Tests also were conducted on hydrologic forcing variables (annual mean precipitation, annual peak discharges, annual mean discharge, and annual mean base flows). The null hypothesis (that the data were free from trend) was rejected for stages associated with the mean of the annual discharges for 6 of 7 gaging stations in the study area, but was accepted for all 3 gages on the main stem of the Missouri River. The trends at the 6 streamflow gaging stations were for decreasing stages (degrading channels) for specific discharges. The rates of change ranged from about 0.2 to 0.5 m per decade. Mean stream bed elevations computed for individual discharge measurements at these streamflow gaging stations confirmed that the channels are degrading. However, neither the precipitation nor flow variables show evidence of trends. The tendency for the channels to degrade thus cannot be attributed to changes in runoff characteristics and are assumed to be a response to the channel modifications in the early 1900's. Indications are that the channels presently are continuing to degrade.
Low-flow characteristics of Virginia streams
Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute
2011-01-01
Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly streamflow statistics computed on the individual daily mean streamflows of selected continuous-record streamgaging stations and curves describing flow-duration are presented. Text, figures, and lists are provided summarizing low-flow estimates, selected low-flow sites, delineated physiographic regions, basin characteristics, regression equations, error estimates, definitions, and data sources. This study supersedes previous studies of low flows in Virginia.
Identifying dissolved organic carbon sources at a gaged headwater catchment using FDOM sensors
NASA Astrophysics Data System (ADS)
Malzone, J. M.; Shanley, J. B.
2014-12-01
The United States Geological Survey's (USGS) W-9 gage at the headwaters of Sleepers River, Vermont has been monitored for dissolved organic carbon (DOC) concentration for more than 20 years. However, the sources of this DOC during base flow and hydrologic events remain unclear. The major objectives of this research were to identify sources of DOC during storm events and to explain the observed DOC-streamflow counterclockwise hysteresis during hydrologic events. Two main hypotheses to explain hysteresis during hydrologic events were tested: (1) distant headwater wetlands are the major DOC source, which lags behind peak flow due to travel time; and (2) the entire watershed contributes to the DOC at the gage, but the response of DOC lags behind the period when groundwater contributes most to streamflow. Sources of DOC were tracked using fluorescent dissolved organic matter (FDOM) sensors in surface water and groundwater wells. Wells were installed at four depths, 0.3, 0.6, 0.9, and 1.2 m, at four sites: a peaty low-gradient riparian area near the headwaters; a mid-hillslope area on a long hillslope mid-watershed; a near-stream area on a long hillslope mid-watershed; and a low-gradient tributary confluence area just above the gage. During storm events, FDOM and hydraulic head were measured at the nested groundwater wells. Samples for DOC analysis were also taken to determine the relationship between FDOM and DOC. Results suggest that both distant sources and the greater watershed played a role in the transport of DOC to the W-9 gage. Distant peaty sources dominated during large storms and contributed the highest surface water FDOM measurements. The peak FDOM at the gage was therefore best described as a result of transport. However, export from these distant sources terminated rapidly and did not explain continued elevated FDOM at the gage. Groundwater across the watershed exhibited hysteresis analogous to that in the stream itself, with FDOM peaking as head receded. As groundwater is recharged, the water table intersects more carbon rich soil layers. Pre-event water is flushed out first before event water mobilizes DOC, causing the groundwater hysteresis. High FDOM groundwater discharging to the stream likely sustained elevated FDOM at the gage. The gage hysteresis, therefore, seems to be a result of both hypotheses tested.
McCarthy, Peter M.; Dutton, DeAnn M.; Sando, Steven K.; Sando, Roy
2016-04-05
The U.S. Geological Survey (USGS) provides streamflow characteristics and other related information needed by water-resource managers to protect people and property from floods, plan and manage water-resource activities, and protect water quality. Streamflow characteristics provided by the USGS, such as peak-flow and low-flow frequencies for streamflow-gaging stations, are frequently used by engineers, flood forecasters, land managers, biologists, and others to guide their everyday decisions. In addition to providing streamflow characteristics at streamflow-gaging stations, the USGS also develops regional regression equations and drainage area-adjustment methods for estimating streamflow characteristics at locations on ungaged streams. Regional regression equations can be complex and often require users to determine several basin characteristics, which are physical and climatic characteristics of the stream and its drainage basin. Obtaining these basin characteristics for streamflow-gaging stations and ungaged sites traditionally has been time consuming and subjective, and led to inconsistent results.StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. StreamStats allows users to easily obtain streamflow and basin characteristics for USGS streamflow-gaging stations and user-selected locations on ungaged streams. The USGS, in cooperation with Montana Department of Transportation, Montana Department of Environmental Quality, and Montana Department of Natural Resources and Conservation, completed a study to develop a StreamStats application for Montana, compute streamflow characteristics at streamflow-gaging stations, and develop regional regression equations to estimate streamflow characteristics at ungaged sites. Chapter A of this Scientific Investigations Report describes the Montana StreamStats application and the datasets, streamflow-gaging stations, streamflow characteristics, and regression equations (as described fully in Chapters B through G of this report) that are used for development of the StreamStats application for Montana.
Water resources data, North Carolina, water year 2004. Volume 2: Ground-water records
Howe, S.S.; Breton, P.L.; Chapman, M.J.
2005-01-01
Water-resources data for the 2004 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 217 gaging stations; stage and contents for 58 lakes and reservoirs; stage only records for 22 gaging stations; elevations for 9 stations; water quality for 39 gaging stations and 5 miscellaneous sites, and continuous water quality for 35 sites; and continuous precipitation at 127 sites. Volume 2 contains ground-water-level data from 161 observation wells, ground-water-quality data from 38 wells, continuous water quality for 7 sites and continuous precipitation at 7 sites. Additional water data were collected at 51 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durlin, R.R.; Schaffstall, W.P.
1997-07-01
This report, Volume, 2, contains (1) discharge records for 81 continuous-record streamflow-gaging stations, 16 partial-record stations, and 20 special study and miscellaneous streamflow sites; (2) elevation and contents records for 12 lakes and reservoirs; (3) water-quality records for 7 gaging stations and 46 ungaged stream sites; and (4) water-level records for 30 ground-water network observation wells. Site locations are shown in figures throughout the report.
Storm and flood of July 5, 1989, in northern New Castle County, Delaware
Paulachok, G.N.; Simmons, R.H.; Tallman, A.J.
1995-01-01
On July 5, 1989, intense rainfall from the remnants of Tropical Storm Allison caused severe flooding in northern New Castle County, Delaware. The flooding claimed three lives, and damage was estimated to be $5 million. Flood conditions were aggravated locally by rapid runoff from expansive urban areas. Record- breaking floods occurred on many streams in northern New Castle County. Peak discharges at three active, continuous-record streamflow-gaging stations, one active crest-stage station, and at two discontinued streamflow-gaging stations exceeded previously recorded maximums. Estimated recurrence intervals for peak flow at the three active, continuous-record streamflow stations exceeded 100 years. The U.S. Geological Survey conducted comprehensive post-flood surveys to determine peak water-surface elevations that occurred on affected streams and their tributaries during the flood of July 5, 1989. Detailed surveys were performed near bridge crossings to provide additional information on the extent and severity of the flooding and the effects of hydraulic constrictions on floodwaters.
Robbins, Clarence H.
1982-01-01
Peak stages, discharges, and rainfall recorded at 22 gaging stations on streams draining small (less than 25 mi super 2) urbanized basins across Tennessee are presented. The gaged basins are in 17 different municipalities with populations ranging between 5,000 and 100,000. The report gives a description of each gaged site along with a data sheet on which peak stages, discharges, and corresponding rainfall are listed. The description gives the station location, type of gage, basin characteristics, and general remarks. (USGS)
Floods on small streams in Texas
Ruggles, Frederick H.
1966-01-01
The first streamflow station in Texas was established on the Rio Grande at El Paso on May 10, 1889. Sip,ce that time the systematic collection of streamflow data. has expanded. In 1915 the Texas Board of Water Engineers (now the Texas Water Development Board) entered into a cooperative agreement with the U. S. Geological Survey for the purpose of expanding the network of stream-gaging stations in Texas. Sites were selected for stream-gaging stations to obtain hydrologic data for water supply and flood control. Therefore, the stream-gaging stations were located principally on major streams. Today, after three-quarters of a century.of hydrologic data collection, peak discharge data on small streams are still deficient in Texas. The Geological Survey and the Texas Highway Department, therefore, have entered into a cooperative program to collect peak discharge data on small streams for the purpose of deriving flood-frequency data needed for the economical design of culverts and small bridges.
Oki, Delwyn S.; Rosa, Sarah N.; Yeung, Chiu W.
2010-01-01
This study provides an updated analysis of the magnitude and frequency of peak stream discharges in Hawai`i. Annual peak-discharge data collected by the U.S. Geological Survey during and before water year 2008 (ending September 30, 2008) at stream-gaging stations were analyzed. The existing generalized-skew value for the State of Hawai`i was retained, although three methods were used to evaluate whether an update was needed. Regional regression equations were developed for peak discharges with 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated streams (those for which peak discharges are not affected to a large extent by upstream reservoirs, dams, diversions, or other structures) in areas with less than 20 percent combined medium- and high-intensity development on Kaua`i, O`ahu, Moloka`i, Maui, and Hawai`i. The generalized-least-squares (GLS) regression equations relate peak stream discharge to quantified basin characteristics (for example, drainage-basin area and mean annual rainfall) that were determined using geographic information system (GIS) methods. Each of the islands of Kaua`i,O`ahu, Moloka`i, Maui, and Hawai`i was divided into two regions, generally corresponding to a wet region and a dry region. Unique peak-discharge regression equations were developed for each region. The regression equations developed for this study have standard errors of prediction ranging from 16 to 620 percent. Standard errors of prediction are greatest for regression equations developed for leeward Moloka`i and southern Hawai`i. In general, estimated 100-year peak discharges from this study are lower than those from previous studies, which may reflect the longer periods of record used in this study. Each regression equation is valid within the range of values of the explanatory variables used to develop the equation. The regression equations were developed using peak-discharge data from streams that are mainly unregulated, and they should not be used to estimate peak discharges in regulated streams. Use of a regression equation beyond its limits will produce peak-discharge estimates with unknown error and should therefore be avoided. Improved estimates of the magnitude and frequency of peak discharges in Hawai`i will require continued operation of existing stream-gaging stations and operation of additional gaging stations for areas such as Moloka`i and Hawai`i, where limited stream-gaging data are available.
Cost effectiveness of the stream-gaging program in North Dakota
Ryan, Gerald L.
1989-01-01
This report documents results of a cost-effectiveness study of the stream-gaging program In North Dakota. It is part of a nationwide evaluation of the stream-gaging program of the U.S. Geological Survey.One phase of evaluating cost effectiveness is to identify less costly alternative methods of simulating streamflow records. Statistical or hydro logic flow-routing methods were used as alternative methods to simulate streamflow records for 21 combinations of gaging stations from the 94-gaging-station network. Accuracy of the alternative methods was sufficient to consider discontinuing only one gaging station.Operation of the gaging-station network was evaluated by using associated uncertainty in streamflow records. The evaluation was limited to the nonwinter operation of 29 gaging stations in eastern North Dakota. The current (1987) travel routes and measurement frequencies require a budget of about $248/000 and result in an average equivalent Gaussian spread in streamflow records of 16.5 percent. Changes in routes and measurement frequencies optimally could reduce the average equivalent Gaussian spread to 14.7 percent.Budgets evaluated ranged from $235,000 to $400,000. A $235,000 budget would increase the optimal average equivalent Gaussian spread from 14.7 to 20.4 percent, and a $400,000 budget could decrease it to 5.8 percent.
50. Stream gaging station in steelpipe well and shelter, looking ...
50. Stream gaging station in steel-pipe well and shelter, looking west. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
Barber, Nancy L.; Stamey, Timothy C.
2000-01-01
Droughts do not have the immediate effects of floods, but sustained droughts can cause economic stress throughout the State. The word 'drought' has various meanings, depending on a person's perspective. To a farmer, a drought is a period of moisture deficiency that affects the crops under cultivation - even two weeks without rainfall can stress many crops during certain periods of the growing cycle. To a meteorologist, a drought is a prolonged period when precipitation is less than normal. To a water manager, a drought is a deficiency in water supply that affects water availability and water quality. To a hydrologist, a drought is an extended period of decreased precipitation and streamflow. Droughts in Georgia have severely affected municipal and industrial water supplies, agriculture, stream water quality, recreation at major reservoirs, hydropower generation, navigation, and forest resources. In Georgia, droughts have been documented at U.S. Geological Survey (USGS) streamflow gaging stations since the 1890's. From 1910 to 1940, about 20 streamflow gaging stations were in operation. Since the early 1950's through the late 1980's, about 100 streamflow gaging stations were in operation. Currently (2000), the USGS streamflow gaging network consists of more than 135 continuous-recording gages. Ground-water levels are currently monitored at 165 wells equipped with continuous recorders.
49. View of unlined canal near inline stream gaging station, ...
49. View of unlined canal near in-line stream gaging station, looking west. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
Messinger, Terence; Wiley, Jeffrey B.
2004-01-01
Three bankfull channel characteristics?cross-sectional area, width, and depth?were significantly correlated with drainage area in regression equations developed for two regions in West Virginia. Channel characteristics were determined from analysis of flow measurements made at 74 U.S. Geological Survey stream-gaging stations at flows between 0.5 and 5.0 times bankfull flow between 1911 and 2002. Graphical and regression analysis were used to delineate an 'Eastern Region' and a 'Western Region,' which were separated by the boundary between the Appalachian Plateaus and Valley and Ridge Physiographic Provinces. Streams that drained parts of both provinces had channel characteristics typical of the Eastern Region, and were grouped with it. Standard error for the six regression equations, three for each region, ranged between 8.7 and 16 percent. Cross-sectional area and depth were greater relative to drainage area for the Western Region than they were for the Eastern Region. Regression equations were defined for streams draining between 46.5 and 1,619 square miles for the Eastern Region, and between 2.78 and 1,354 square miles for the Western Region. Stream-gaging stations with two or more cross sections where flow had been measured at flows between 0.5 and 5.0 times the 1.5-year flow showed poor replication of channel characteristics compared to the 95-percent confidence intervals of the regression, suggesting that within-reach variability for the stream-gaging stations may be substantial. A disproportionate number of the selected stream-gaging stations were on large (drainage area greater than 100 square miles) streams in the central highlands of West Virginia, and only one stream-gaging station that met data-quality criteria was available to represent the region within about 50 miles of the Ohio River north of Parkersburg, West Virginia. Many of the cross sections were at bridges, which can change channel shape. Although the data discussed in this report may not be representative of channelcharacteristics on many or most streams, the regional equations in this report provide useful information for field identification of bankfull indicators.
Low-flow characteristics of Indiana streams
Stewart, J.A.
1983-01-01
Knowledge of low-flow data for Indiana streams is essential to the planners and developers of water resources for municipal, industrial, and recreational uses in the State. Low-flow data for 219 continuous-record gaging stations through the 1978 water year and for some stations since then are presented in tables and curves. Flow-duration and low-flow-frequency data were estimated or determined for continuous-record stations having more than 10 years of record. In addition, low-flow-frequency data were estimated for 248 partial-record stations. Methods for estimating these data are included in the report. (USGS)
Konrad, Christopher; Sevier, Maria
2014-01-01
Geospatial information for the active streamflow gaging network in the Puget Sound Basin was compiled to support regional monitoring of stormwater effects to small streams. The compilation includes drainage area boundaries and physiographic and land use attributes that affect hydrologic processes. Three types of boundaries were used to tabulate attributes: Puget Sound Watershed Characterization analysis units (AU); the drainage area of active streamflow gages; and the catchments of Regional Stream Monitoring Program (RSMP) sites. The active streamflow gaging network generally includes sites that represent the ranges of attributes for lowland AUs, although there are few sites with low elevations (less than 60 meters), low precipitation (less than 1 meter year), or high stream density (greater than 5 kilometers per square kilometers). The active streamflow gaging network can serve to provide streamflow information in some AUs and RSMP sites, particularly where the streamflow gage measures streamflow generated from a part of the AU or that drains to the RSMP site, and that part of the AU or RSMP site is a significant fraction of the drainage area of the streamgage. The maximum fraction of each AU or RSMP catchment upstream of a streamflow gage and the maximum fraction of any one gaged basin in an AU or RSMP along with corresponding codes are provided in the attribute tables.
Lewis, Jason M.
2010-01-01
Peak-streamflow regression equations were determined for estimating flows with exceedance probabilities from 50 to 0.2 percent for the state of Oklahoma. These regression equations incorporate basin characteristics to estimate peak-streamflow magnitude and frequency throughout the state by use of a generalized least squares regression analysis. The most statistically significant independent variables required to estimate peak-streamflow magnitude and frequency for unregulated streams in Oklahoma are contributing drainage area, mean-annual precipitation, and main-channel slope. The regression equations are applicable for watershed basins with drainage areas less than 2,510 square miles that are not affected by regulation. The resulting regression equations had a standard model error ranging from 31 to 46 percent. Annual-maximum peak flows observed at 231 streamflow-gaging stations through water year 2008 were used for the regression analysis. Gage peak-streamflow estimates were used from previous work unless 2008 gaging-station data were available, in which new peak-streamflow estimates were calculated. The U.S. Geological Survey StreamStats web application was used to obtain the independent variables required for the peak-streamflow regression equations. Limitations on the use of the regression equations and the reliability of regression estimates for natural unregulated streams are described. Log-Pearson Type III analysis information, basin and climate characteristics, and the peak-streamflow frequency estimates for the 231 gaging stations in and near Oklahoma are listed. Methodologies are presented to estimate peak streamflows at ungaged sites by using estimates from gaging stations on unregulated streams. For ungaged sites on urban streams and streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow magnitude and frequency.
Water resources data, North Carolina, water year 2001. Volume 1A: Surface-water records
Ragland, B.C.; Walters, D.A.; Cartano, G.D.; Taylor, J.E.
2002-01-01
Water-resources data for the 2001 water year for North Carolina consist of records of stage, discharge, water-quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground water levels and water-quality of ground-water. Volume 1 contains discharge records for 209 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 52 gaging stations; water quality for 101 gaging stations and 91 miscellaneous sites; continuous daily tide stage at 4 sites; and continuous precipitation at 98 sites. Volume 2 contains ground-water-level data from 136 observation wells and ground-water-quality data from 68 wells. Additional water data were collected at 84 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.
Water resources data, North Carolina, water year 2002. Volume 1B: Surface-water records
Ragland, B.C.; Barker, R.G.; Robinson, J.B.
2003-01-01
Water-resources data for the 2002 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 211 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 20 gaging stations; water quality for 52 gaging stations and 7 miscellaneous sites, and continuous water quality for 30 sites; and continuous precipitation at 109 sites. Volume 2 contains ground-water-level data from 143 observation wells and ground-water-quality data from 72 wells. Additional water data were collected at 85 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.
Techniques for estimating magnitude and frequency of peak flows for Pennsylvania streams
Stuckey, Marla H.; Reed, Lloyd A.
2000-01-01
Regression equations for estimating the magnitude and frequency of floods on ungaged streams in Pennsylvania with drainage areas less that 2,000 square miles were developed on the basis of peak-flow data collected at 313 streamflow-gaging stations. All streamflow-gaging stations used in the development of the equations had 10 or more years of record and include active and discontinued continuous-record and crest-stage partial-record streamflow-gaging stations. Regional regression equations were developed for flood flows expected every 10, 25, 50, 100, and 500 years by the use of a weighted multiple linear regression model.The State was divided into two regions. The largest region, Region A, encompasses about 78 percent of Pennsylvania. The smaller region, Region B, includes only the northwestern part of the State. Basin characteristics used in the regression equations for Region A are drainage area, percentage of forest cover, percentage of urban development, percentage of basin underlain by carbonate bedrock, and percentage of basin controlled by lakes, swamps, and reservoirs. Basin characteristics used in the regression equations for Region B are drainage area and percentage of basin controlled by lakes, swamps, and reservoirs. The coefficient of determination (R2) values for the five flood-frequency equations for Region A range from 0.93 to 0.82, and for Region B, the range is from 0.96 to 0.89.While the regression equations can be used to predict the magnitude and frequency of peak flows for most streams in the State, they should not be used for streams with drainage areas greater than 2,000 square miles or less than 1.5 square miles, for streams that drain extensively mined areas, or for stream reaches immediately below flood-control reservoirs. In addition, the equations presented for Region B should not be used if the stream drains a basin with more than 5 percent urban development.
In Brief: Online database for instantaneous streamflow data
NASA Astrophysics Data System (ADS)
Showstack, Randy
2007-11-01
Access to U.S. Geological Survey (USGS) historical instantaneous streamflow discharge data, dating from around 1990, is now available online through the Instantaneous Data Archive (IDA), the USGS announced on 14 November. In this new system, users can find streamflow information reported at the time intervals at which it is collected, typically 15-minute to hourly intervals. Although instantaneous data have been available for many years, they were not accessible through the Internet. Robert Hirsch, USGS Associate Director of Water, said, ``A user-friendly archive of historical instantaneous streamflow data is important to many different users for such things as floodplain mapping, flood modeling, and estimating pollutant transport.''The site currently has about 1.5 billion instantaneous data values from 5500 stream gages in 26 states. The number of states and stream gages with data will continue to increase, according to the USGS. For more information, visit the Web site: http://ida.water.usgs.gov/ida/.
Izuka, Scot K.; Ewart, Charles J.
1995-01-01
A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride ions in water samples from Talufofo Stream are characteristic of water draining a heavily vegetated basin near the ocean. The streamflow and water-chemistry data indicate that discharge from springs is in hydraulic connection with the limestone aquifer near the headwaters of the basin. The base flow therefore is subject to stresses placed on the nearby limestone ground-water system. Pumping from wells in the limestones at the headwaters of Talufofo Stream Basin may decrease spring flow in Talufofo Stream.
Storage requirements for Georgia streams
Carter, Robert F.
1983-01-01
The suitability of a stream as a source of water supply or for waste disposal may be severely limited by low flow during certain periods. A water user may be forced to provide storage facilities to supplement the natural flow if the low flow is insufficient for his needs. This report provides data for evaluating the feasibility of augmenting low streamflow by means of storage facilities. It contains tabular data on storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 99 continuous-record gaging stations, and draft-storage diagrams for estimating storage requirements at many additional sites. Through analyses of streamflow data, the State was divided into four regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, mean annual flow, and the 7-day, 10-year low flow are known or can be estimated. These data are tabulated for the 99 gaging stations used in the analyses and for 102 partial-record sites where only base-flow measurements have been made. The draft-storage diagrams are useful not only for estimating in-channel storage required for low-flow augmentation, but also can be used for estimating the volume of off-channel storage required to retain wastewater during low-flow periods for later release. In addition, these relationships can be helpful in estimating the volume of wastewater to be disposed of by spraying on land, provided that the water disposed of in this manner is only that for which streamflow dilution water is not currently available. Mean annual flow can be determined for any stream within the State by using the runoff map in this report. Low-flow indices can be estimated by several methods, including correlation of base-flow measurements with concurrent flow at nearby continuous-record gaging stations where low-flow indices have been determined.
Wagner, Tyler; DeWeber, Jefferson Tyrell; Tsang, Yin-Phan; Krueger, Damon; Whittier, Joanna B.; Infante, Dana M.; Whelan, Gary
2014-01-01
Flow and water temperature are fundamental properties of stream ecosystems upon which many freshwater resource management decisions are based. U.S. Geological Survey (USGS) gages are the most important source of streamflow and water temperature data available nationwide, but the degree to which gages represent landscape attributes of the larger population of streams has not been thoroughly evaluated. We identified substantial biases for seven landscape attributes in one or more regions across the conterminous United States. Streams with small watersheds (<10 km2) and at high elevations were often underrepresented, and biases were greater for water temperature gages and in arid regions. Biases can fundamentally alter management decisions and at a minimum this potential for error must be acknowledged accurately and transparently. We highlight three strategies that seek to reduce bias or limit errors arising from bias and illustrate how one strategy, supplementing USGS data, can greatly reduce bias.
Stage measurement at gaging stations
Sauer, Vernon B.; Turnipseed, D. Phil
2010-01-01
Stream and reservoir stage are critical parameters in the computation of stream discharge and reservoir volume, respectively. In addition, a record of stream stage is useful in the design of structures that may be affected by stream elevation, as well as for the planning for various uses of flood plains. This report describes equipment and methodology for the observation, sensing, and recording of stage in streams and reservoirs. Although the U.S. Geological Survey (USGS) still uses the traditional, basic stilling-well float system as a predominant gaging station, modern electronic stage sensors and water-level recorders are now commonly used. Bubble gages coupled with nonsubmersible pressure transducers eliminate the need for stilling wells. Submersible pressure transducers have become common in use for the measurement of stage in both rivers and lakes. Furthermore, noncontact methods, such as radar, acoustic, and laser methods of sensing water levels, are being developed and tested, and in the case of radar, are commonly used for the measurement of stage. This report describes commonly used gaging-station structures, as well as the design and operation of gaging stations. Almost all of the equipment and instruments described in this report will meet the accuracy standard set by the USGS Office of Surface Water (OSW) for the measurement of stage for most applications, which is ±0.01 foot (ft) or 0.2 percent of the effective stage. Several telemetry systems are used to transmit stage data from the gaging station to the office, although satellite telemetry has become the standard. These telemetry systems provide near real-time stage data, as well as other information that alerts the hydrographer to extreme or abnormal events, and instrument malfunctions.
Lorenz, D.L.; Payne, G.A.
1994-01-01
Data describing the physical characteristics of stream subbasins upstream from selected points on streams in the Pomme de Terre River Basin, located in west-central Minnesota, are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. The points on the stream include outlets of subbasins of at least 5 square miles, outfalls of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.
Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.
2002-01-01
Water resources data for the 2002 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2002, including: discharge records of 154 gaging stations; stage for 165 gaging stations; precipitation for 105 gaging stations; information for 20 lakes and reservoirs; continuous water-quality records for 27 stations; the annual peak stage and annual peak discharge for 72 crest-stage partial-record stations; and miscellaneous streamflow measurements at 50 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2002, including continuous water-level records of 155 ground-water wells and periodic records at 132 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.
Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.
2004-01-01
Water resources data for the 2003 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2003, including: discharge records of 163 gaging stations; stage for 187 gaging stations; precipitation for 140 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 40 stations; the annual peak stage and annual peak discharge for 65 crest-stage partial-record stations; and miscellaneous streamflow measurements at 36 stations, and miscellaneous water-quality data at 162 stations in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2003, including continuous water-level records of 156 ground-water wells and periodic records at 130 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.
Citizen Hydrology and Compressed-Air Hydropower for Rural Electrification in Haiti
NASA Astrophysics Data System (ADS)
Allen, S. M.
2015-12-01
At the present time, only one in eight residents of Haiti has access to electricity. Two recent engineering and statistical innovations have the potential for vastly reducing the cost of installation of hydropower in Haiti and the rest of the developing world. The engineering innovation is that wind, solar and fluvial energy have been used to compress air for generation of electricity for only 20 per megawatt-hour, in contrast to the conventional World Bank practice of funding photovoltaic cells for 156 per megawatt-hour. The installation of hydropower requires a record of stream discharge, which is conventionally obtained by installing a gaging station that automatically monitors gage height (height of the water surface above a fixed datum). An empirical rating curve is then used to convert gage height to stream discharge. The multiple field measurements of gage height and discharge over a wide range of discharge values that are required to develop and maintain a rating curve require a manpower of hydrologic technicians that is prohibitive in remote and impoverished areas of the world. The statistical innovation is that machine learning has been applied to the USGS database of nearly four million simultaneous measurements of gage height and discharge to develop a new classification of rivers so that a rating curve can be developed solely from the stream slope, channel geometry, horizontal and vertical distances to the nearest upstream and downstream confluences, and two pairs of discharge - gage height measurements. The objective of this study is to organize local residents to monitor gage height at ten stream sites in the northern peninsula of Haiti over a one-year period in preparation for installation of hydropower at one of the sites. The necessary baseline discharge measurements and channel surveying are being carried out for conversion of gage height to discharge. Results will be reported at the meeting.
Trends in Streamflow Characteristics at Long-Term Gaging Stations, Hawaii
Oki, Delwyn S.
2004-01-01
The surface-water resources of Hawaii have significant cultural, aesthetic, ecologic, and economic importance. Proper management of the surface-water resources of the State requires an understanding of the long- and short-term variability in streamflow characteristics that may occur. The U.S. Geological Survey maintains a network of stream-gaging stations in Hawaii, including a number of stations with long-term streamflow records that can be used to evaluate long-term trends and short-term variability in flow characteristics. The overall objective of this study is to obtain a better understanding of long-term trends and variations in streamflow on the islands of Hawaii, Maui, Molokai, Oahu, and Kauai, where long-term stream-gaging stations exist. This study includes (1) an analysis of long-term trends in flows (both total flow and estimated base flow) at 16 stream-gaging stations, (2) a description of patterns in trends within the State, and (3) discussion of possible regional factors (including rainfall) that are related to the observed trends and variations. Results of this study indicate the following: 1. From 1913 to 2002 base flows generally decreased in streams for which data are available, and this trend is consistent with the long-term downward trend in annual rainfall over much of the State during that period. 2. Monthly mean base flows generally were above the long-term average from 1913 to the early 1940s and below average after the early 1940s to 2002, and this pattern is consistent with the detected downward trends in base flows from 1913 to 2002. 3. Long-term downward trends in base flows of streams may indicate a reduction in ground-water discharge to streams caused by a long-term decrease in ground-water storage and recharge. 4. From 1973 to 2002, trends in streamflow were spatially variable (up in some streams and down in others) and, with a few exceptions, generally were not statistically significant. 5. Short-term variability in streamflow is related to the seasons and to the EL Ni?o-Southern Oscillation phenomenon that may be partly modulated by the phase of the Pacific Decadal Oscillation. 6. At almost all of the long-term stream-gaging stations considered in this study, average total flow (and to a lesser extent average base flow) during the winter months of January to March tended to be low following El Ni?o periods and high following La Ni?a periods, and this tendency was accentuated during positive phases of the Pacific Decadal Oscillation. 7. The El Ni?o-Southern Oscillation phenomenon occurs at a relatively short time scale (a few to several years) and appears to be more strongly related to processes controlling rainfall and direct runoff than ground-water storage and base flow. Long-term downward trends in base flows of streams may indicate a reduction in ground-water storage and recharge. Because ground water provides about 99 percent of Hawaii's domestic drinking water, a reduction in ground-water storage and recharge has serious implications for drinking-water availability. In addition, reduction in stream base flows may reduce habitat availability for native stream fauna and water availability for irrigation purposes. Further study is needed to determine (1) whether the downward trends in base flows from 1913 to 2002 will continue or whether the observed pattern is part of a long-term cycle in which base flows may eventually return to levels measured during 1913 to the early 1940s, (2) the physical causes for the detected trends and variations in streamflow, and (3) whether regional climate indicators successfully can be used to predict streamflow trends and variations throughout the State. These needs for future study underscore the importance of maintaining a network of long-term-trend stream-gaging stations in Hawaii.
Index of stations: surface-water data-collection network of Texas, September 1999
Gandara, Susan C.; Barbie, Dana L.
2001-01-01
As of September 30, 1999, the surface-water data-collection network of Texas (table 1) included 321 continuous-record streamflow stations (D), 20 continuous-record gage-height only stations (G), 24 crest-stage partial-record stations (C), 40 floodhydrograph partial-record stations (H), 25 low-flow partial-record stations (L), 1 continuous-record temperature station (M1), 25 continuous-record temperature and specific conductance stations (M2), 17 continuous-record temperature, specific conductance, dissolved oxygen, and pH stations (M4), 4 daily water-quality stations (Qd), 115 periodic water-quality stations (Qp), 17 reservoir/lake surveys for water quality stations (Qs), 85 continuous or daily reservoircontent stations (R), and 10 daily precipitation stations (Pd). Plate 1 identifies the major river basins in Texas and shows the location of the stations listed in table 1. Table 1 shows the station number and name, latitude and longitude, type of station, and office responsible for the collection of the data and maintenance of the record. An 8-digit permanent numerical designation for all gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering between two main-stem stations are listed between these two stations. A similar order is followed in listing stations by first rank, second rank, and other ranks of tributaries. The rank of any tributary, with respect to the stream to which it is an immediate tributary, is indicated by an indention in the table. Each indention represents one rank. This downstream order and system of indention shows which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated.
Cost effectiveness of the stream-gaging program in Nevada
Arteaga, F.E.
1990-01-01
The stream-gaging network in Nevada was evaluated as part of a nationwide effort by the U.S. Geological Survey to define and document the most cost-effective means of furnishing streamflow information. Specifically, the study dealt with 79 streamflow gages and 2 canal-flow gages that were under the direct operation of Nevada personnel as of 1983. Cost-effective allocations of resources, including budget and operational criteria, were studied using statistical procedures known as Kalman-filtering techniques. The possibility of developing streamflow data at ungaged sites was evaluated using flow-routing and statistical regression analyses. Neither of these methods provided sufficiently accurate results to warrant their use in place of stream gaging. The 81 gaging stations were being operated in 1983 with a budget of $465,500. As a result of this study, all existing stations were determined to be necessary components of the program for the foreseeable future. At the 1983 funding level, the average standard error of streamflow records was nearly 28%. This same overall level of accuracy could have been maintained with a budget of approximately $445,000 if the funds were redistributed more equitably among the gages. The maximum budget analyzed, $1,164 ,000 would have resulted in an average standard error of 11%. The study indicates that a major source of error is lost data. If perfectly operating equipment were available, the standard error for the 1983 program and budget could have been reduced to 21%. (Thacker-USGS, WRD)
Evaluation of the cost effectiveness of the 1983 stream-gaging program in Kansas
Medina, K.D.; Geiger, C.O.
1984-01-01
The results of an evaluation of the cost effectiveness of the 1983 stream-gaging program in Kansas are documented. Data uses and funding sources were identified for the 140 complete record streamflow-gaging stations operated in Kansas during 1983 with a budget of $793,780. As a result of the evaluation of the needs and uses of data from the stream-gaging program, it was found that the 140 gaging stations were needed to meet these data requirements. The average standard error of estimation of streamflow records was 20.8 percent, assuming the 1983 budget and operating schedule of 6-week interval visitations and based on 85 of the 140 stations. It was shown that this overall level of accuracy could be improved to 18.9 percent by altering the 1983 schedule of station visitations. A minimum budget of $760 ,000, with a corresponding average error of estimation of 24.9 percent, is required to operate the 1983 program. None of the stations investigated were suitable for the application of alternative methods for simulating discharge records. Improved instrumentation can have a very positive impact on streamflow uncertainties by decreasing lost record. (USGS)
Methods for estimating magnitude and frequency of peak flows for natural streams in Utah
Kenney, Terry A.; Wilkowske, Chris D.; Wright, Shane J.
2007-01-01
Estimates of the magnitude and frequency of peak streamflows is critical for the safe and cost-effective design of hydraulic structures and stream crossings, and accurate delineation of flood plains. Engineers, planners, resource managers, and scientists need accurate estimates of peak-flow return frequencies for locations on streams with and without streamflow-gaging stations. The 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows were estimated for 344 unregulated U.S. Geological Survey streamflow-gaging stations in Utah and nearby in bordering states. These data along with 23 basin and climatic characteristics computed for each station were used to develop regional peak-flow frequency and magnitude regression equations for 7 geohydrologic regions of Utah. These regression equations can be used to estimate the magnitude and frequency of peak flows for natural streams in Utah within the presented range of predictor variables. Uncertainty, presented as the average standard error of prediction, was computed for each developed equation. Equations developed using data from more than 35 gaging stations had standard errors of prediction that ranged from 35 to 108 percent, and errors for equations developed using data from less than 35 gaging stations ranged from 50 to 357 percent.
Water Resources Data--Nebraska, Water Year 2002
Hitch, D.E.; Hull, S.H.; Walczyk, V.C.
2002-01-01
The Water Resources Discipline of the U.S. Geological Survey (USGS), in cooperation with State and local agencies, obtains a large amount of data pertaining to the water resources of Nebraska each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ?Water Resources Data - Nebraska.' The Nebraska water resources data report for water year 2002 includes records of stage, discharge, and water quality of streams; stage and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 96 continuous and 5 crest-state gaging stations, and 3 miscellaneous and 55 low-flow sites; stream water quality for 23 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 1 lake and 1 reservoir; ground-water levels for 43 observation wells; and ground-water quality for 115 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, state and Federal agencies.
Sanocki, Christopher A.
1996-01-01
Data that describe the physical characteristics of stream subbasins upstream from selected sites on streams in the Hawk Creek-Yellow Medicine River Basin, located in southwestern Minnesota and eastern South Dakota are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. Stream sites include outlets of subbasins of at least 5 square miles, outlets of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durlin, R.R.; Schaffstall, W.P.
1993-08-01
Water resources data for the 1992 water year for Pennsylvania consist of records of discharge and water quality of streams; contents and elevations of lakes and reservoirs; and water levels and water quality of ground-water wells. The report, Volume 2, includes records from the Susquehanna and Potomac River basins. Specifically, it contains discharge records for 85 continuous-record streamflow-gaging stations and 38 partial-record stations; elevation and contents records for 13 lakes and reservoirs; water-quality records for 12 streamflow-gaging stations and 48 ungaged streamsites; and water-level records for 25 observation wells.
The acoustic streamflow-measuring system on the Columbia River at The Dalles, Oregon
Smith, Winchell; Hubbard, Larry L.; Laenen, Antonius
1971-01-01
Installation of this sytem, which is the first application of an AVM (acoustic velocity meter) in a large natural channel, was completed in April 1969. It has been in continuous operation since that date. Performance has been satisfactory, and similar installations at other key points in the Columbia River basin are now under consideration. This paper covers the general theory behind acoustic velocity meters, tracing development from earlier concepts to the present commercially available system. Conclusions are that the AVM can now be considered as an operational instrument which permits accurate gaging of river discharge at many sites where conventional stream-gaging procedures have proved to be unreliable.
NASA Astrophysics Data System (ADS)
Bailey, S. W.
2016-12-01
Nine catchments are gaged at Hubbard Brook Experimental Forest, Woodstock, NH, USA, with weirs installed on adjacent first-order streams. These catchments have been used as unit ecosystems for analysis of chemical budgets, including evaluation of long term trends and response to disturbance. This study examines uncertainty in the representativeness of these budgets to other nearby catchments, or as representatives of the broader northern hardwood ecosystem, depending on choice of location of the stream gaging station. Within forested northern hardwood catchments across the Hubbard Brook region, there is relatively little spatial variation in amount or chemistry of precipitation inputs or in amount of streamwater outputs. For example, runoff per unit catchment area varies by less than 10% at gaging stations on first to sixth order streams. In contrast, concentrations of major solutes vary by an order of magnitude or more across stream sampling sites, with a similar range in concentrations seen within individual first order catchments as seen across the third order Hubbard Brook valley or across the White Mountain region. These spatial variations in stream chemistry are temporally persistent across a range of flow conditions. Thus first order catchment budgets vary greatly depending on very local variations in stream chemistry driven by choice of the site to develop a stream gage. For example, carbon output in dissolved organic matter varies by a factor of five depending on where the catchment output is defined at Watershed 3. I hypothesize that catchment outputs from first order streams are driven by spatially variable chemistry of shallow groundwater, reflecting local variations in the distribution of soils and vegetation. In contrast, spatial variability in stream chemistry decreases with stream order, hypothesized to reflect deeper groundwater inputs on larger streams, which are more regionally uniform. Thus, choice of a gaging site and definition of an ecosystem as a unit of analysis at a larger scale, such as the Hubbard Brook valley, would have less impact on calculated budgets than at the headwater scale. Monitoring of a larger catchment is more likely to be representative of other similar sized catchments. However, particular research questions may be better studied at the smaller headwater scale.
Estimation of magnitude and frequency of floods for streams in Puerto Rico : new empirical models
Ramos-Gines, Orlando
1999-01-01
Flood-peak discharges and frequencies are presented for 57 gaged sites in Puerto Rico for recurrence intervals ranging from 2 to 500 years. The log-Pearson Type III distribution, the methodology recommended by the United States Interagency Committee on Water Data, was used to determine the magnitude and frequency of floods at the gaged sites having 10 to 43 years of record. A technique is presented for estimating flood-peak discharges at recurrence intervals ranging from 2 to 500 years for unregulated streams in Puerto Rico with contributing drainage areas ranging from 0.83 to 208 square miles. Loglinear multiple regression analyses, using climatic and basin characteristics and peak-discharge data from the 57 gaged sites, were used to construct regression equations to transfer the magnitude and frequency information from gaged to ungaged sites. The equations have contributing drainage area, depth-to-rock, and mean annual rainfall as the basin and climatic characteristics in estimating flood peak discharges. Examples are given to show a step-by-step procedure in calculating a 100-year flood at a gaged site, an ungaged site, a site near a gaged location, and a site between two gaged sites.
Eash, D.A.
1993-01-01
Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.
Water resources data, Idaho, 2002; Volume 1. Great Basin and Snake River basin above King Hill
Brennan, T.S.; Lehmann, A.K.; Campbell, A.M.; O'Dell, I.; Beattie, S.E.
2003-01-01
Water resources data for the 2002 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The two volumes of this report contain discharge records for 196 stream-gaging stations and 15 irrigation diversions; stage only records for 5 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 78 stream-gaging stations and partial record sites, 3 lakes sites, and 383 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Brennan, T.S.; Lehmann, A.K.; Campbell, A.M.; O'Dell, I.; Beattie, S.E.
2003-01-01
Water resources data for the 2002 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The two volumes of this report contain discharge records for 196 stream-gaging stations and 15 irrigation diversions; stage only records for 5 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 78 stream-gaging stations and partial record sites, 3 lakes sites, and 383 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Omang, R.J.; Parrett, Charles; Hull, J.A.
1983-01-01
Equations using channel-geometry measurements were developed for estimating mean runoff and peak flows of ungaged streams in southeastern Montana. Two separate sets of esitmating equations were developed for determining mean annual runoff: one for perennial streams and one for ephemeral and intermittent streams. Data from 29 gaged sites on perennial streams and 21 gaged sites on ephemeral and intermittent streams were used in these analyses. Data from 78 gaged sites were used in the peak-flow analyses. Southeastern Montana was divided into three regions and separate multiple-regression equations for each region were developed that relate channel dimensions to peak discharge having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Channel-geometery relations were developed using measurements of the active-channel width and bankfull width. Active-channel width and bankfull width were the most significant channel features for estimating mean annual runoff for al types of streams. Use of this method requires that onsite measurements be made of channel width. The standard error of estimate for predicting mean annual runoff ranged from about 38 to 79 percent. The standard error of estimate relating active-channel width or bankfull width to peak flow ranged from about 37 to 115 percent. (USGS)
Groundwater recharge in Wisconsin--Annual estimates for 1970-99 using streamflow data
Gebert, Warren A.; Walker, John F.; Hunt, Randall J.
2011-01-01
The groundwater component of streamflow is important because it is indicative of the sustained flow of a stream during dry periods, is often of better quality, and has a smaller range of temperatures, than surface contributions to streamflow. All three of these characteristics are important to the health of aquatic life in a stream. If recharge to the aquifers is to be preserved or enhanced, it is important to understand the present partitioning of total streamflow into base flow and stormflow. Additionally, an estimate of groundwater recharge is important for understanding the flows within a groundwater system-information important for water availability/sustainability or other assessments. The U.S. Geological Survey operates numerous continuous-record streamflow-gaging stations (Hirsch and Norris, 2001), which can be used to provide estimates of average annual base flow. In addition to these continuous record sites, Gebert and others (2007) showed that having a few streamflow measurements in a basin can appreciably reduce the error in a base-flow estimate for that basin. Therefore, in addition to the continuous-record gaging stations, a substantial number of low-flow partial-record sites (6 to 15 discharge measurements) and miscellaneous-measurement sites (1 to 3 discharge measurements) that were operated during 1964-90 throughout the State were included in this work to provide additional insight into spatial distribution of annual base flow and, in turn, groundwater recharge.
Water budgets for major streams in the Central Valley, California, 1961-77
Mullen, J.R.; Nady, Paul
1985-01-01
A compilation of annual streamflow data for 20 major stream systems in the central Valley of California, for water years 1961-77, is presented. The water-budget tables list gaged and ungaged inflow from tributaries and canals, diversions, and gaged outflow. Theoretical outflow and gain or loss in a reach are computed. A schematic diagram and explanation of the data are provided for each water-budget table. (USGS)
Harkins, Joe R.; Green, Mark E.
1981-01-01
Drainage areas for about 1,600 surface-water sites on streams and lakes in Florida are contained in this report. The sites are generally either U.S. Geological Survey gaging stations or the mouths of gaged streas. Each site is identified by latitude and longitude, by the general stream type, and by the U.S. Geological Survey 7.5-minute topographic map on which it can be located. The gaging stations are furhter identified by a downstream order number, a county code, and a nearby city or town. In addition to drainage areas, the surface areas of lakes are shown for the elevation given on the topographic map. These data were retrieved from the Surface Water Index developed and maintained by the Hydrologic Surveillance section of the Florida District Office, U.S. Geological Survey. (USGS)
Methodology for Estimation of Flood Magnitude and Frequency for New Jersey Streams
Watson, Kara M.; Schopp, Robert D.
2009-01-01
Methodologies were developed for estimating flood magnitudes at the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated or slightly regulated streams in New Jersey. Regression equations that incorporate basin characteristics were developed to estimate flood magnitude and frequency for streams throughout the State by use of a generalized least squares regression analysis. Relations between flood-frequency estimates based on streamflow-gaging-station discharge and basin characteristics were determined by multiple regression analysis, and weighted by effective years of record. The State was divided into five hydrologically similar regions to refine the regression equations. The regression analysis indicated that flood discharge, as determined by the streamflow-gaging-station annual peak flows, is related to the drainage area, main channel slope, percentage of lake and wetland areas in the basin, population density, and the flood-frequency region, at the 95-percent confidence level. The standard errors of estimate for the various recurrence-interval floods ranged from 48.1 to 62.7 percent. Annual-maximum peak flows observed at streamflow-gaging stations through water year 2007 and basin characteristics determined using geographic information system techniques for 254 streamflow-gaging stations were used for the regression analysis. Drainage areas of the streamflow-gaging stations range from 0.18 to 779 mi2. Peak-flow data and basin characteristics for 191 streamflow-gaging stations located in New Jersey were used, along with peak-flow data for stations located in adjoining States, including 25 stations in Pennsylvania, 17 stations in New York, 16 stations in Delaware, and 5 stations in Maryland. Streamflow records for selected stations outside of New Jersey were included in the present study because hydrologic, physiographic, and geologic boundaries commonly extend beyond political boundaries. The StreamStats web application was developed cooperatively by the U.S. Geological Survey and the Environmental Systems Research Institute, Inc., and was designed for national implementation. This web application has been recently implemented for use in New Jersey. This program used in conjunction with a geographic information system provides the computation of values for selected basin characteristics, estimates of flood magnitudes and frequencies, and statistics for stream locations in New Jersey chosen by the user, whether the site is gaged or ungaged.
Roland, Mark A.; Stuckey, Marla H.
2008-01-01
Regression equations were developed for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania with drainage areas less than 2,000 square miles. These equations were developed utilizing peak-flow data from 322 streamflow-gaging stations within Pennsylvania and surrounding states. All stations used in the development of the equations had 10 or more years of record and included active and discontinued continuous-record as well as crest-stage partial-record stations. The state was divided into four regions, and regional regression equations were developed to estimate the 2-, 5-, 10-, 50-, 100-, and 500-year recurrence-interval flood flows. The equations were developed by means of a regression analysis that utilized basin characteristics and flow data associated with the stations. Significant explanatory variables at the 95-percent confidence level for one or more regression equations included the following basin characteristics: drainage area; mean basin elevation; and the percentages of carbonate bedrock, urban area, and storage within a basin. The regression equations can be used to predict the magnitude of flood flows for specified recurrence intervals for most streams in the state; however, they are not valid for streams with drainage areas generally greater than 2,000 square miles or with substantial regulation, diversion, or mining activity within the basin. Estimates of flood-flow magnitude and frequency for streamflow-gaging stations substantially affected by upstream regulation are also presented.
Water resources data, New Jersey, water year 2005. Volume 1 - surface-water data
White, B.T.; Hoppe, H.L.; Centinaro, G.L.; Dudek, J.F.; Painter, B.S.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.
2006-01-01
Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 103 gaging stations; tide summaries at 28 tidal gaging stations; stage and contents at 34 lakes and reservoirs; and diversions from 50 surface-water sources. Also included are stage and discharge for 116 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 155 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 222 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.
Water resources data, New Jersey, water year 2004-volume 1. surface-water data
Centinaro, G.L.; White, B.T.; Hoppe, H.L.; Dudek, J.F.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.
2005-01-01
Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 105 gaging stations; tide summaries at 27 tidal gaging stations; stage and contents at 39 lakes and reservoirs; and diversions from 51 surface-water sources. Also included are stage and discharge for 108 crest-stage partial-record stations, stage-only at 34 tidal crest-stage gages, and discharge for 124 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 131 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.
Streamflow characteristics and trends in New Jersey, water years 1897-2003
Watson, Kara M.; Reiser, Robert G.; Nieswand, Steven P.; Schopp, Robert D.
2005-01-01
Streamflow statistics were computed for 111 continuous-record streamflow-gaging stations with 20 or more years of continuous record and for 500 low-flow partial-record stations, including 66 gaging stations with less than 20 years of continuous record. Daily mean streamflow data from water year 1897 through water year 2001 were used for the computations at the gaging stations. (The water year is the 12-month period, October 1 through September 30, designated by the calendar year in which it ends). The characteristics presented for the long-term continuous-record stations are daily streamflow, harmonic mean flow, flow frequency, daily flow durations, trend analysis, and streamflow variability. Low-flow statistics for gaging stations with less than 20 years of record and for partial-record stations were estimated by correlating base-flow measurements with daily mean flows at long-term (more than 20 years) continuous-record stations. Instantaneous streamflow measurements through water year 2003 were used to estimate low-flow statistics at the partial-record stations. The characteristics presented for partial-record stations are mean annual flow; harmonic mean flow; and annual and winter low-flow frequency. The annual 1-, 7-, and 30-day low- and high-flow data sets were tested for trends. The results of trend tests for high flows indicate relations between upward trends for high flows and stream regulation, and high flows and development in the basin. The relation between development and low-flow trends does not appear to be as strong as for development and high-flow trends. Monthly, seasonal, and annual precipitation data for selected long-term meteorological stations also were tested for trends to analyze the effects of climate. A significant upward trend in precipitation in northern New Jersey, Climate Division 1 was identified. For Climate Division 2, no general increase in average precipitation was observed. Trend test results indicate that high flows at undeveloped, unregulated sites have not been affected by the increase in average precipitation. The ratio of instantaneous peak flow to 3-day mean flow, ratios of flow duration, ratios of high-flow/low-flow frequency, and coefficient of variation were used to define streamflow variability. Streamflow variability was significantly greater among the group of gaging stations located outside the Coastal Plain than among the group of gaging stations located in the Coastal Plain.
Maurer, Douglas K.; Watkins, Sharon A.; Burrowws, Robert L.
2004-01-01
Rapid population growth in Carson Valley has caused concern over the continued availability of water resources to sustain future growth. The U.S. Geological Survey, in cooperation with Douglas County, began a study to update estimates of water-budget components in Carson Valley for current climatic conditions. Data collected at 19 sites included 9 continuous records of tributary streamflows, 1 continuous record of outflow from the valley, and 408 measurements of 10 perennially flowing but ungaged drainages. These data were compiled and analyzed to provide updated computations and estimates of streamflows tributary to Carson Valley, 1990-2002. Mean monthly and annual flows were computed from continuous records for the period 1990-2002 for five streams, and for the period available, 1990-97, for four streams. Daily mean flow from ungaged drainages was estimated using multi-variate regressions of individual discharge measurements against measured flow at selected continuous gages. From the estimated daily mean flows, monthly and annual mean flows were calculated from 1990 to 2002. These values were used to compute estimates of mean monthly and annual flows for the ungaged perennial drainages. Using the computed and estimated mean annual flows, annual unit-area runoff was computed for the perennial drainages, which ranged from 0.30 to 2.02 feet. For the period 1990-2002, estimated inflow of perennial streams tributary to Carson Valley totaled about 25,900 acre-feet per year. Inflow computed from gaged perennial drainages totaled 10,300 acre-feet per year, and estimated inflow from ungaged perennial drainages totaled 15,600 acre-feet per year. The annual flow of perennial streams ranges from 4,210 acre-feet at Clear Creek to 450 acre-feet at Stutler Canyon Creek. Differences in unit-area runoff and in the seasonal timing of flow likely are caused by differences in geologic setting, altitude, slope, or aspect of the individual drainages. The remaining drainages are ephemeral and supply inflow to the valley floor only during spring runoff in wet years or during large precipitation events. Annual unit-area runoff for the perennial drainages was used to estimate inflow from ephemeral drainages totaling 11,700 acre-feet per year. The totaled estimate of perennial and ephemeral tributary inflows to Carson Valley is 37,600 acre-feet per year. Gaged perennial inflow is 27 percent of the total, ungaged perennial inflow is 42 percent, and ephemeral inflow is 31 percent. The estimate is from 50 to 60 percent greater than three previous estimates, one made for a larger area and similar to two other estimates made for larger areas. The combined uncertainty of the estimates totaled about 33 percent of the total inflow or about 12,000 acre-feet per year.
Perry, Charles A.; Wolock, David M.; Artman, Joshua C.
2004-01-01
Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean flow, and peak-discharge frequency values determined at available gaging stations were used to interpolate the regression-estimated flows for the stream locations where available. Streamflow statistics for locations that had uncontrolled flow were interpolated using data from gaging stations weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled reaches of Kansas streams, the streamflow statistics were interpolated between gaging stations using only gaged data weighted by drainage area.
Curran, Christopher A.; Eng, Ken; Konrad, Christopher P.
2012-01-01
Regional low-flow regression models for estimating Q7,10 at ungaged stream sites are developed from the records of daily discharge at 65 continuous gaging stations (including 22 discontinued gaging stations) for the purpose of evaluating explanatory variables. By incorporating the base-flow recession time constant τ as an explanatory variable in the regression model, the root-mean square error for estimating Q7,10 at ungaged sites can be lowered to 72 percent (for known values of τ), which is 42 percent less than if only basin area and mean annual precipitation are used as explanatory variables. If partial-record sites are included in the regression data set, τ must be estimated from pairs of discharge measurements made during continuous periods of declining low flows. Eight measurement pairs are optimal for estimating τ at partial-record sites, and result in a lowering of the root-mean square error by 25 percent. A low-flow survey strategy that includes paired measurements at partial-record sites requires additional effort and planning beyond a standard strategy, but could be used to enhance regional estimates of τ and potentially reduce the error of regional regression models for estimating low-flow characteristics at ungaged sites.
Estimating the magnitude of peak flows for streams in Kentucky for selected recurrence intervals
Hodgkins, Glenn A.; Martin, Gary R.
2003-01-01
This report gives estimates of, and presents techniques for estimating, the magnitude of peak flows for streams in Kentucky for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. A flowchart in this report guides the user to the appropriate estimates and (or) estimating techniques for a site on a specific stream. Estimates of peak flows are given for 222 U.S. Geological Survey streamflow-gaging stations in Kentucky. In the development of the peak-flow estimates at gaging stations, a new generalized skew coefficient was calculated for the State. This single statewide value of 0.011 (with a standard error of prediction of 0.520) is more appropriate for Kentucky than the national skew isoline map in Bulletin 17B of the Interagency Advisory Committee on Water Data. Regression equations are presented for estimating the peak flows on ungaged, unregulated streams in rural drainage basins. The equations were developed by use of generalized-least-squares regression procedures at 187 U.S. Geological Survey gaging stations in Kentucky and 51 stations in surrounding States. Kentucky was divided into seven flood regions. Total drainage area is used in the final regression equations as the sole explanatory variable, except in Regions 1 and 4 where main-channel slope also was used. The smallest average standard errors of prediction were in Region 3 (from -13.1 to +15.0 percent) and the largest average standard errors of prediction were in Region 5 (from -37.6 to +60.3 percent). One section of this report describes techniques for estimating peak flows for ungaged sites on gaged, unregulated streams in rural drainage basins. Another section references two previous U.S. Geological Survey reports for peak-flow estimates on ungaged, unregulated, urban streams. Estimating peak flows at ungaged sites on regulated streams is beyond the scope of this report, because peak flows on regulated streams are dependent upon variable human activities.
Price, Don; Plantz, G.G.
1987-01-01
The U.S. Geological Survey conducted a coal-hydrology monitoring program in coal-field areas of central and southern Utah during August 1978-September 1984 to determine possible hydrologic impacts of future mining and to provide a better understanding of the hydrologic systems of the coal resource areas monitored. Data were collected at 19 gaging stations--18 stations in the Price, San Rafael, and Dirty Devil River basins, and 1 in the Kanab Creek Basin. Streamflow data were collected continuously at 11 stations and seasonally at 5 stations. At the other three stations streamflow data were collected continuously during the 1979 water year and then seasonally for the rest of their periods of record. Types of data collected at each station included quantity and quality of streamflow; suspended sediment concentrations; and descriptions of stream bottom sediments, benthic invertebrate, and phytoplankton samples. Also, base flow measurements were made annually upstream from 12 of the gaging stations. Stream bottom sediment sampled at nearly all the monitoring sites contained small to moderate quantities of coal, which may be attributed chiefly to pre-monitoring mining. Streamflow sampled at several sites contained large concentrations of sulfate and dissolved solids. Also, concentrations of various trace elements at 10 stations, and phenols at 18 stations, exceeded the criteria of the EPA for drinking water. This may be attributed to contemporary (water years 1979-84) mine drainage activities. The data collected during the complete water years (1979-84) of monitoring do provide a better understanding of the hydrologic systems of the coal field areas monitored. The data also provide a definite base by which to evaluate hydrologic impacts of continued or increased coal mining in those areas. (Author 's abstract)
Alexander, Terry W.; Wilson, Gary L.
1995-01-01
A generalized least-squares regression technique was used to relate the 2- to 500-year flood discharges from 278 selected streamflow-gaging stations to statistically significant basin characteristics. The regression relations (estimating equations) were defined for three hydrologic regions (I, II, and III) in rural Missouri. Ordinary least-squares regression analyses indicate that drainage area (Regions I, II, and III) and main-channel slope (Regions I and II) are the only basin characteristics needed for computing the 2- to 500-year design-flood discharges at gaged or ungaged stream locations. The resulting generalized least-squares regression equations provide a technique for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood discharges on unregulated streams in rural Missouri. The regression equations for Regions I and II were developed from stream-flow-gaging stations with drainage areas ranging from 0.13 to 11,500 square miles and 0.13 to 14,000 square miles, and main-channel slopes ranging from 1.35 to 150 feet per mile and 1.20 to 279 feet per mile. The regression equations for Region III were developed from streamflow-gaging stations with drainage areas ranging from 0.48 to 1,040 square miles. Standard errors of estimate for the generalized least-squares regression equations in Regions I, II, and m ranged from 30 to 49 percent.
Water resources data, Idaho, 2003; Volume 3. Ground water records
Campbell, A.M.; Conti, S.N.; O'Dell, I.
2003-01-01
Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Water resources data, Idaho, 2004; Volume 3. Ground water records
Campbell, A.M.; Conti, S.N.; O'Dell, I.
2005-01-01
Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Magnitude and frequency of floods in small drainage basins in Idaho
Thomas, C.A.; Harenberg, W.A.; Anderson, J.M.
1973-01-01
A method is presented in this report for determining magnitude and frequency of floods on streams with drainage areas between 0.5 and 200 square miles. The method relates basin characteristics, including drainage area, percentage of forest cover, percentage of water area, latitude, and longitude, with peak flow characteristics. Regression equations for each of eight regions are presented for determination of QIQ/ the peak discharge, which, on the average, will be exceeded once in 10 years. Peak flows, Q25 and Q 50 , can then be estimated from Q25/Q10 and Q-50/Q-10 ratios developed for each region. Nomographs are included which solve the equations for basins between 1 and 50 square miles. The regional regression equations were developed using multiple regression techniques. Annual peaks for 303 sites were analyzed in the study. These included all records on unregulated streams with drainage areas less than about 500 square miles with 10 years or more of record or which could readily be extended to 10 years on the basis of nearby streams. The log-Pearson Type III method as modified and a digital computer were employed to estimate magnitude and frequency of floods for each of the 303 gaged sites. A large number of physical and climatic basin characteristics were determined for each of the gaged sites. The multiple regression method was then applied to determine the equations relating the floodflows and the most significant basin characteristics. For convenience of the users, several equations were simplified and some complex characteristics were deleted at the sacrifice of some increase in the standard error. Standard errors of estimate and many other statistical data were computed in the analysis process and are available in the Boise district office files. The analysis showed that QIQ was the best defined and most practical index flood for determination of the Q25 and 0,50 flood estimates.Regression equations are not developed because of poor definition for areas which total about 20,000 square miles, most of which are in southern Idaho. These areas are described in the report to prevent use of regression equations where they do not apply. They include urbanized areas, streams affected by regulation or diversion by works of man, unforested areas, streams with gaining or losing reaches, streams draining alluvial valleys and the Snake Plain, intense thunderstorm areas, and scattered areas where records indicate recurring floods which depart from the regional equations. Maximum flows of record and basin locations are summarized in tables and maps. The analysis indicates deficiencies in data exist. To improve knowledge regarding flood characteristics in poorly defined areas, the following data-collection programs are recommended. Gages should be operated on a few selected small streams for an extended period to define floods at long recurrence intervals. Crest-stage gages should be operated in representative basins in urbanized areas, newly developed irrigated areas and grasslands, and in unforested areas. Unusual floods should continue to be measured at miscellaneous sites on regulated streams and in intense thunderstorm-prone areas. The relationship between channel geometry and floodflow characteristics should be investigated as an alternative or supplement to operation of gaging stations. Documentation of historic flood data from newspapers and other sources would improve the basic flood-data base.
Ries, Kernell G.
1999-01-01
A network of 148 low-flow partial-record stations was operated on streams in Massachusetts during the summers of 1989 through 1996. Streamflow measurements (including historical measurements), measured basin characteristics, and estimated streamflow statistics are provided in the report for each low-flow partial-record station. Also included for each station are location information, streamflow-gaging stations for which flows were correlated to those at the low-flowpartial-record station, years of operation, and remarks indicating human influences of stream-flowsat the station. Three or four streamflow measurements were made each year for three years during times of low flow to obtain nine or ten measurements for each station. Measured flows at the low-flow partial-record stations were correlated with same-day mean flows at a nearby gaging station to estimate streamflow statistics for the low-flow partial-record stations. The estimated streamflow statistics include the 99-, 98-, 97-, 95-, 93-, 90-, 85-, 80-, 75-, 70-, 65-, 60-, 55-, and 50-percent duration flows; the 7-day, 10- and 2-year low flows; and the August median flow. Characteristics of the drainage basins for the stations that theoretically relate to the response of the station to climatic variations were measured from digital map data by use of an automated geographic information system procedure. Basin characteristics measured include drainage area; total stream length; mean basin slope; area of surficial stratified drift; area of wetlands; area of water bodies; and mean, maximum, and minimum basin elevation.Station descriptions and calculated streamflow statistics are also included in the report for the 50 continuous gaging stations used in correlations with the low-flow partial-record stations.
Bisese, James A.
1995-01-01
Methods are presented for estimating the peak discharges of rural, unregulated streams in Virginia. A Pearson Type III distribution is fitted to the logarithms of the unregulated annual peak-discharge records from 363 stream-gaging stations in Virginia to estimate the peak discharge at these stations for recurrence intervals of 2 to 500 years. Peak-discharge characteristics for 284 unregulated stations are divided into eight regions based on physiographic province, and regressed on basin characteristics, including drainage area, main channel length, main channel slope, mean basin elevation, percentage of forest cover, mean annual precipitation, and maximum rainfall intensity. Regression equations for each region are computed by use of the generalized least-squares method, which accounts for spatial and temporal correlation between nearby gaging stations. This regression technique weights the significance of each station to the regional equation based on the length of records collected at each cation, the correlation between annual peak discharges among the stations, and the standard deviation of the annual peak discharge for each station.Drainage area proved to be the only significant explanatory variable in four regions, while other regions have as many as three significant variables. Standard errors of the regression equations range from 30 to 80 percent. Alternate equations using drainage area only are provided for the five regions with more than one significant explanatory variable.Methods and sample computations are provided to estimate peak discharges at gaged and engaged sites in Virginia for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, and to adjust the regression estimates for sites on gaged streams where nearby gaging-station records are available.
Applications of remote sensing to stream discharge predictions
NASA Technical Reports Server (NTRS)
Krause, F. R.; Winn, C. B.
1972-01-01
A feasibility study has been initiated on the use of remote earth observations for augmenting stream discharge prediction for the design and/or operation of major reservoir systems, pumping systems and irrigation systems. The near-term objectives are the interpolation of sparsely instrumented precipitation surveillance networks and the direct measurement of water loss by evaporation. The first steps of the study covered a survey of existing reservoir systems, stream discharge prediction methods, gage networks and the development of a self-adaptive variation of the Kentucky Watershed model, SNOPSET, that includes snowmelt. As a result of these studies, a special three channel scanner is being built for a small aircraft, which should provide snow, temperature and water vapor maps for the spatial and temporal interpolation of stream gages.
Measuring surface-water loss in Honouliuli Stream near the ‘Ewa Shaft, O‘ahu, Hawai‘i
Rosa, Sarah N.
2017-05-30
The Honolulu Board of Water Supply is currently concerned with the possibility of bacteria in the pumped water of the ‘Ewa Shaft (State well 3-2202-21). Groundwater from the ‘Ewa Shaft could potentially be used to meet future potable water needs in the ‘Ewa area on the island of O‘ahu. The source of the bacteria in the pumped water is unknown, although previous studies indicate that surface water may be lost to the subsurface near the site. The ‘Ewa Shaft consists of a vertical shaft, started near the south bank of Honouliuli Stream at an altitude of about 161 feet, and two horizontal infiltration tunnels near sea level. The shaft extracts groundwater from near the top of the freshwater lens in the Waipahu-Waiawa aquifer system within the greater Pearl Harbor Aquifer Sector, a designated Water Management Area.The surface-water losses were evaluated with continuous groundwater-level data from the ‘Ewa Shaft and a nearby monitoring well, continuous stream-discharge data from U.S. Geological Survey streamflow-gaging station 16212490 (Honouliuli Stream at H-1 Freeway near Waipahu), and seepage-run measurements in Honouliuli Stream and its tributary. During storms, discharge at the Honouliuli Stream gaging station increases and groundwater levels at ‘Ewa Shaft and a nearby monitoring well also increase. The concurrent increase in water levels at ‘Ewa Shaft and the nearby monitoring well during storms indicates that regional groundwater-level changes related to increased recharge, reduced withdrawals (due to a decrease in demand during periods of rainfall), or both may be occurring; although these data do not preclude the possibility of local recharge from Honouliuli Stream. Discharge measurements from two seepage runs indicate that surface water in the immediate area adjacent to ‘Ewa Shaft infiltrates into the streambed and may later reach the groundwater system developed by the ‘Ewa Shaft. The estimated seepage loss rates in the vicinity of ‘Ewa Shaft from the two seepage runs generally ranged from 0.27 to 1.78 million gallons per day per mile of stream reach; although higher seepage rates may occur during periods of higher discharge in Honouliuli Stream. A potential source of bacteria in ‘Ewa Shaft maybe related to seepage from Honouliuli Stream; however, other sources of bacteria were not studied and cannot be excluded.
Wind Tunnel Tests of the Space Shuttle Foam Insulation with Simulated Debonded Regions
1981-04-01
set identification number Gage sensitivity Calculated gage sen8itivity 82 = Sl * f(TGE) Material specimen identification designation Free-stream...ColoY motion pictures (2 cameras) and pre- and posttest color stills recorded ariy changes "in the samples. The movie cameras were operated at...The oBli ~ue shock wave generated by the -wedge reduces the free-stream Mach nut1ber to the desired local Mach number. Since the free=sti’eam
Magnitude and Frequency of Floods on Nontidal Streams in Delaware
Ries, Kernell G.; Dillow, Jonathan J.A.
2006-01-01
Reliable estimates of the magnitude and frequency of annual peak flows are required for the economical and safe design of transportation and water-conveyance structures. This report, done in cooperation with the Delaware Department of Transportation (DelDOT) and the Delaware Geological Survey (DGS), presents methods for estimating the magnitude and frequency of floods on nontidal streams in Delaware at locations where streamgaging stations monitor streamflow continuously and at ungaged sites. Methods are presented for estimating the magnitude of floods for return frequencies ranging from 2 through 500 years. These methods are applicable to watersheds exhibiting a full range of urban development conditions. The report also describes StreamStats, a web application that makes it easy to obtain flood-frequency estimates for user-selected locations on Delaware streams. Flood-frequency estimates for ungaged sites are obtained through a process known as regionalization, using statistical regression analysis, where information determined for a group of streamgaging stations within a region forms the basis for estimates for ungaged sites within the region. One hundred and sixteen streamgaging stations in and near Delaware with at least 10 years of non-regulated annual peak-flow data available were used in the regional analysis. Estimates for gaged sites are obtained by combining the station peak-flow statistics (mean, standard deviation, and skew) and peak-flow estimates with regional estimates of skew and flood-frequency magnitudes. Example flood-frequency estimate calculations using the methods presented in the report are given for: (1) ungaged sites, (2) gaged locations, (3) sites upstream or downstream from a gaged location, and (4) sites between gaged locations. Regional regression equations applicable to ungaged sites in the Piedmont and Coastal Plain Physiographic Provinces of Delaware are presented. The equations incorporate drainage area, forest cover, impervious area, basin storage, housing density, soil type A, and mean basin slope as explanatory variables, and have average standard errors of prediction ranging from 28 to 72 percent. Additional regression equations that incorporate drainage area and housing density as explanatory variables are presented for use in defining the effects of urbanization on peak-flow estimates throughout Delaware for the 2-year through 500-year recurrence intervals, along with suggestions for their appropriate use in predicting development-affected peak flows. Additional topics associated with the analyses performed during the study are also discussed, including: (1) the availability and description of more than 30 basin and climatic characteristics considered during the development of the regional regression equations; (2) the treatment of increasing trends in the annual peak-flow series identified at 18 gaged sites, with respect to their relations with maximum 24-hour precipitation and housing density, and their use in the regional analysis; (3) calculation of the 90-percent confidence interval associated with peak-flow estimates from the regional regression equations; and (4) a comparison of flood-frequency estimates at gages used in a previous study, highlighting the effects of various improved analytical techniques.
Flood frequency estimates and documented and potential extreme peak discharges in Oklahoma
Tortorelli, Robert L.; McCabe, Lan P.
2001-01-01
Knowledge of the magnitude and frequency of floods is required for the safe and economical design of highway bridges, culverts, dams, levees, and other structures on or near streams; and for flood plain management programs. Flood frequency estimates for gaged streamflow sites were updated, documented extreme peak discharges for gaged and miscellaneous measurement sites were tabulated, and potential extreme peak discharges for Oklahoma streamflow sites were estimated. Potential extreme peak discharges, derived from the relation between documented extreme peak discharges and contributing drainage areas, can provide valuable information concerning the maximum peak discharge that could be expected at a stream site. Potential extreme peak discharge is useful in conjunction with flood frequency analysis to give the best evaluation of flood risk at a site. Peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years were estimated for 352 gaged streamflow sites. Data through 1999 water year were used from streamflow-gaging stations with at least 8 years of record within Oklahoma or about 25 kilometers into the bordering states of Arkansas, Kansas, Missouri, New Mexico, and Texas. These sites were in unregulated basins, and basins affected by regulation, urbanization, and irrigation. Documented extreme peak discharges and associated data were compiled for 514 sites in and near Oklahoma, 352 with streamflow-gaging stations and 162 at miscellaneous measurements sites or streamflow-gaging stations with short record, with a total of 671 measurements.The sites are fairly well distributed statewide, however many streams, large and small, have never been monitored. Potential extreme peak-discharge curves were developed for streamflow sites in hydrologic regions of the state based on documented extreme peak discharges and the contributing drainage areas. Two hydrologic regions, east and west, were defined using 98 degrees 15 minutes longitude as the dividing line.
Apparatus for measuring fluid flow
Smith, Jack E.; Thomas, David G.
1984-01-01
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Apparatus for measuring fluid flow
Smith, J.E.; Thomas, D.G.
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Cheng, Chui Ling
2016-08-03
Statistical models were developed to estimate natural streamflow under low-flow conditions for streams with existing streamflow data at measurement sites on the Islands of Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi. Streamflow statistics used to describe the low-flow characteristics are flow-duration discharges that are equaled or exceeded between 50 and 95 percent of the time during the 30-year base period 1984–2013. Record-augmentation techniques were applied to develop statistical models relating concurrent streamflow data at the measurement sites and long-term data from nearby continuous-record streamflow-gaging stations that were in operation during the base period and were selected as index stations. Existing data and subsequent low-flow analyses of the available data help to identify streams in under-represented geographic areas and hydrogeologic settings where additional data collection is suggested.Low-flow duration discharges were estimated for 107 measurement sites (including long-term and short-term continuous-record streamflow-gaging stations, and partial-record stations) and 27 index stations. The adequacy of statistical models was evaluated with correlation coefficients and modified Nash-Sutcliff coefficients of efficiency, and a majority of the low-flow duration-discharge estimates are satisfactory based on these regression statistics.Molokaʻi and Hawaiʻi have the fewest number of measurement sites (that are not located on ephemeral stream reaches) at which flow-duration discharges were estimated, which can be partially explained by the limited number of index stations available on these islands that could be used for record augmentation. At measurement sites on some tributary streams, low-flow duration discharges could not be estimated because no adequate correlations could be developed with the index stations. These measurement sites are located on streams where duration-discharge estimates are available at long-term stations at other locations on the main stream channel to provide at least some definition of low-flow characteristics on that stream. In terms of general natural streamflow data availability, data are scarce in the leeward areas for all five islands as many leeward streams are dry or have minimal flow. Other under-represented areas include central Oʻahu, central Maui, and southeastern Maui.
Somerset County Flood Information System
Hoppe, Heidi L.
2007-01-01
The timely warning of a flood is crucial to the protection of lives and property. One has only to recall the floods of August 2, 1973, September 16 and 17, 1999, and April 16, 2007, in Somerset County, New Jersey, in which lives were lost and major property damage occurred, to realize how costly, especially in terms of human life, an unexpected flood can be. Accurate forecasts and warnings cannot be made, however, without detailed information about precipitation and streamflow in the drainage basin. Since the mid 1960's, the National Weather Service (NWS) has been able to forecast flooding on larger streams in Somerset County, such as the Raritan and Millstone Rivers. Flooding on smaller streams in urban areas was more difficult to predict. In response to this problem the NWS, in cooperation with the Green Brook Flood Control Commission, installed a precipitation gage in North Plainfield, and two flash-flood alarms, one on Green Brook at Seeley Mills and one on Stony Brook at Watchung, in the early 1970's. In 1978, New Jersey's first countywide flood-warning system was installed by the U.S. Geological Survey (USGS) in Somerset County. This system consisted of a network of eight stage and discharge gages equipped with precipitation gages linked by telephone telemetry and eight auxiliary precipitation gages. The gages were installed throughout the county to collect precipitation and runoff data that could be used to improve flood-monitoring capabilities and flood-frequency estimates. Recognizing the need for more detailed hydrologic information for Somerset County, the USGS, in cooperation with Somerset County, designed and installed the Somerset County Flood Information System (SCFIS) in 1990. This system is part of a statewide network of stream gages, precipitation gages, weather stations, and tide gages that collect data in real time. The data provided by the SCFIS improve the flood forecasting ability of the NWS and aid Somerset County and municipal agencies in the planning and execution of flood-preparation and emergency-evacuation procedures in the county. This fact sheet describes the SCFIS and identifies its benefits.
Brennan, T.S.; Lehmann, A.K.; O'Dell, I.
2005-01-01
Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 3 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Brennan, T.S.; Lehmann, A.K.; O'Dell, I.
2004-01-01
Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Brennan, T.S.; Lehmann, A.K.; O'Dell, I.
2004-01-01
Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Brennan, T.S.; Lehmann, A.K.; O'Dell, I.
2005-01-01
Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 3 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.
Floods of Selected Streams in Arkansas, Spring 2008
Funkhouser, Jaysson E.; Eng, Ken
2009-01-01
Floods can cause loss of life and extensive destruction to property. Monitoring floods and understanding the reasons for their occurrence are the responsibility of many Federal agencies. The National Weather Service, the U.S. Army Corps of Engineers, and the U.S. Geological Survey are among the most visible of these agencies. Together, these three agencies collect and analyze floodflow information to better understand the variety of mechanisms that cause floods, and how the characteristics and frequencies of floods vary with time and location. The U.S. Geological Survey (USGS) has monitored and assessed the quantity of streamflow in our Nation's streams since the agency's inception in 1879. Because of ongoing collection and assessment of streamflow data, the USGS can provide information about a range of surface-water issues including the suitability of water for public supply and irrigation and the effects of agriculture and urbanization on streamflow. As part of its streamflow-data collection activities, the USGS measured streamflow in multiple streams during extreme flood events in Arkansas in the spring of 2008. The analysis of streamflow information collected during flood events such as these provides a scientific basis for decision making related to resource management and restoration. Additionally, this information can be used by water-resource managers to better define flood-hazard areas and to design bridges, culverts, dams, levees, and other structures. Water levels (stage) and streamflow (discharge) currently are being monitored in near real-time at approximately 150 locations in Arkansas. The streamflow-gaging stations measure and record hydrologic data at 15-minute or hourly intervals; the data then are transmitted through satellites to the USGS database and displayed on the internet every 1 to 4 hours. Streamflow-gaging stations in Arkansas are part of a network of over 7,500 active streamflow-gaging stations operated by the USGS throughout the United States in cooperation with other Federal, State, and local government agencies. In Arkansas, the major supporters of the streamflow-gaging network are the U.S. Army Corps of Engineers, Arkansas Natural Resources Commission, Arkansas Department of Environmental Quality, and Arkansas Geological Survey. Many other Federal, State, and local government entities provide additional support for streamflow-gaging stations. It is the combined support of the USGS and all funding partners that make it possible to maintain an adequate streamflow-gaging network in Arkansas. Data collected over the years at streamflow-gaging stations can be used to characterize the relative magnitude of flood events and their statistical frequency of occurrence. These analyses provide water-resource managers with accurate and reliable hydrologic information based on present and historical flow conditions. Continued collection of streamflow data, with consideration of changes in land use, agricultural practices, and climate change, will help scientists to more accurately characterize the magnitude of extreme floods in the future.
Cost-effectiveness of the US Geological Survey stream-gaging program in Arkansas
Darling, M.E.; Lamb, T.E.
1984-01-01
This report documents the results of the cost-effectiveness of the stream-gaging program in Arkansas. Data uses and funding sources were identified for the daily-discharge stations. All daily-discharge stations were found to be in one or more data use categories, and none were candidates for alternate methods which would result in discontinuation or conversion to a partial record station. The cost for operation of daily-discharge stations and routing costs to partial record stations, crest gages, pollution control stations as well as seven recording ground-water stations was evaluated in the Kalman-Filtering Cost-Effective Resource allocation (K-CERA) analysis. This operation under current practices requires a budget of $292,150. The average standard error of estimate of streamflow record for the Arkansas District was analyzed at 33 percent.
A hot-wire surface gage for skin friction and separation detection measurements
NASA Technical Reports Server (NTRS)
Rubesin, M. W.; Okuno, A. F.; Mateer, G. G.; Brosh, A.
1975-01-01
A heated-element, skin-friction gage employing a very low thermal conductivity support is described. It is shown that the effective dimension of the gage in the stream direction in only 0.06 mm, including the effects of heat conduction in the supporting material. Because of its small size, the calibration of the gage is independent of the kind of boundary-layer flow (whether laminar or turbulent) and is insensitive to pressure gradients. Construction tolerances can be maintained so that a single universal calibration can be applied. Multiple gages, sufficiently closely spaced so as to interfere with each other, are shown to provide accurate determinations of the locations of the points of boundary-layer separation and reattachment.
Cost-effectiveness of the stream-gaging program in North Carolina
Mason, R.R.; Jackson, N.M.
1985-01-01
This report documents the results of a study of the cost-effectiveness of the stream-gaging program in North Carolina. Data uses and funding sources are identified for the 146 gaging stations currently operated in North Carolina with a budget of $777,600 (1984). As a result of the study, eleven stations are nominated for discontinuance and five for conversion from recording to partial-record status. Large parts of North Carolina 's Coastal Plain are identified as having sparse streamflow data. This sparsity should be remedied as funds become available. Efforts should also be directed toward defining the efforts of drainage improvements on local hydrology and streamflow characteristics. The average standard error of streamflow records in North Carolina is 18.6 percent. This level of accuracy could be improved without increasing cost by increasing the frequency of field visits and streamflow measurements at stations with high standard errors and reducing the frequency at stations with low standard errors. A minimum budget of $762,000 is required to operate the 146-gage program. A budget less than this does not permit proper service and maintenance of the gages and recorders. At the minimum budget, and with the optimum allocation of field visits, the average standard error is 17.6 percent.
Peak-flow characteristics of Virginia streams
Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute
2011-01-01
Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.
Low-flow-frequency characteristics for continuous-record streamflow stations in Minnesota
Arntson, A.D.; Lorenz, D.L.
1987-01-01
Annual and summer (May 1 to September 30) low-flow frequency curves are presented for 175 continuous-record streamflow stations in Minnesota. The curves were developed for all stations with 10 or more years of continuous record. The 1-, 7-, and 30-day low-flow discharges at selected recurrence intervals obtained from these curves are listed. Low-flow characteristics can and will vary for a station depending upon the number of years of record and the period gaged. When comparing low-flow characteristics between two or more stations, it should be remembered that no provisions were made to use concurrent periods of record for stations along the same stream.
Problems with indirect determinations of peak streamflows in steep, desert stream channels
Glancy, Patrick A.; Williams, Rhea P.
1994-01-01
Many peak streamflow values used in flood analyses for desert areas are derived using the Manning equation. Data used in the equation are collected after the flow has subsided, and peak flow is thereby determined indirectly. Most measurement problems and associated errors in peak-flow determinations result from (1) channel erosion or deposition that cannot be discerned or properly evaluated after the fact, (2) unsteady and non-uniform flow that rapidly changes in magnitude, and (3) appreciable sediment transport that has unknown effects on energy dissipation. High calculated velocities and Froude numbers are unacceptable to some investigators. Measurement results could be improved by recording flows with a video camera, installing a recording stream gage and recording rain gages, measuring channel scour with buried chains, analyzing measured data by multiple techniques, and supplementing indirect measurements with direct measurements of stream velocities in similar ephemeral streams.
Streamflow characteristics related to channel geometry of streams in western United States
Hedman, E.R.; Osterkamp, W.R.
1982-01-01
Assessment of surface-mining and reclamation activities generally requires extensive hydrologic data. Adequate streamflow data from instrumented gaging stations rarely are available, and estimates of surface- water discharge based on rainfall-runoff models, drainage area, and basin characteristics sometimes have proven unreliable. Channel-geometry measurements offer an alternative method of quickly and inexpensively estimating stream-flow characteristics for ungaged streams. The method uses the empirical development of equations to yield a discharge value from channel-geometry and channel-material data. The equations are developed by collecting data at numerous streamflow-gaging sites and statistically relating those data to selected discharge characteristics. Mean annual runoff and flood discharges with selected recurrence intervals can be estimated for perennial, intermittent, and ephemeral streams. The equations were developed from data collected in the western one-half of the conterminous United States. The effect of the channel-material and runoff characteristics are accounted for with the equations.
Measuring flood discharge in unstable stream channels using ground-penetrating radar
Spicer, K.R.; Costa, J.E.; Placzek, G.
1997-01-01
Field experiments were conducted to test the ability of ground-penetrating radar (GPR) to measure stream-channel cross sections at high flows without the necessity of placing instruments in the water. Experiments were conducted at four U.S. Geological Survey gaging stations in southwest Washington State. With the GPR antenna suspended above the water surface from a bridge or cableway, traverses were made across stream channels to collect radar profile plots of the streambed. Subsequent measurements of water depth were made using conventional depth-measuring equipment (weight and tape) and were used to calculate radar signal velocities. Other streamflow-parameter data were collected to examine their relation to radar signal velocity and to claritv of streambed definition. These initial tests indicate that GPR is capable of producing a reasonably accurate (??20%) stream-channel profile and discharge far more quickly than conventional stream-gaging procedures, while avoiding the problems and hazards associated with placing instruments in the water.
Smith, Winchell
1971-01-01
Current-meter measurements of high accuracy will be required for calibration of an acoustic flow-metering system proposed for installation in the Sacramento River at Chipps Island in California. This report presents an analysis of the problem of making continuous accurate current-meter measurements in this channel where the flow regime is changing constantly in response to tidal action. Gaging-system requirements are delineated, and a brief description is given of the several applicable techniques that have been developed by others. None of these techniques provides the accuracies required for the flowmeter calibration. A new system is described--one which has been assembled and tested in prototype and which will provide the matrix of data needed for accurate continuous current-meter measurements. Analysis of a large quantity of data on the velocity distribution in the channel of the Sacramento River at Chipps Island shows that adequate definition of the velocity can be made during the dominant flow periods--that is, at times other than slack-water periods--by use of current meters suspended at elevations 0.2 and 0.8 of the depth below the water surface. However, additional velocity surveys will be necessary to determine whether or not small systematic corrections need be applied during periods of rapidly changing flow. In the proposed system all gaged parameters, including velocities, depths, position in the stream, and related times, are monitored continuously as a boat moves across the river on the selected cross section. Data are recorded photographically and transferred later onto punchcards for computer processing. Computer programs have been written to permit computation of instantaneous discharges at any selected time interval throughout the period of the current meter measurement program. It is anticipated that current-meter traverses will be made at intervals of about one-half hour over periods of several days. Capability of performance for protracted periods was, consequently, one of the important elements in system design. Analysis of error sources in the proposed system indicates that errors in individual computed discharges can be kept smaller than 1.5 percent if the expected precision in all measured parameters is maintained.
Hydraulic and hydrologic aspects of flood-plain planning
Wiitala, S.W.; Jetter, K.R.; Sommerville, Alan J.
1961-01-01
The valid incentives compelling occupation of the flood plain, up to and eve n into the stream channel, undoubtedly have contributed greatly to the development of the country. But the result has been a heritage of flood disaster, suffering, and enormous costs. Flood destruction awakened a consciousness toward reduction and elimination of flood hazards, originally manifested in the protection of existing developments. More recently, increased knowledge of the problem has shown the impracticability of permitting development that requires costly flood protect/on. The idea of flood zoning, or flood-plain planning, has received greater impetus as a result of this realization. This study shows how hydraulic and hydrologic data concerning the flood regimen of a stream can be used in appraising its flood potential and the risk inherent in occupation of its flood plain. The approach involves the study of flood magnitudes as recorded or computed; flood frequencies based1 on experience shown by many years of gaging-station record; use of existing or computed stagedischarge relations and flood profiles; and, where required, the preparation of flood-zone maps to show the areas inundated by floods of several magnitudes and frequencies. The planner can delineate areas subject to inundation by floods o* specific recurrence intervals for three conditions: (a) for the immediate vicinity of a gaging station; (b) for a gaged stream at a considerable distance from a gaging station; and (c) for an ungaged stream. The average depth for a flood of specific frequency can be estimated on the basis of simple measurements of area of drainage basin, width of channel, and slope of streambed. This simplified approach should be useful in the initial stages of flood-plain planning. Brief discussions are included on various types of flood hazards, the effects of urbanization on flood runoff, and zoning considerations.
McMurdo LTER: streamflow measurements in Taylor Valley
McKnight, D.; House, H.; Von Guerard, P.
1994-01-01
Has established a stream gaging network for the three major lake basins in Taylor Valley. These data are critical for determining nutrient budgets for the lake ecosystems and for understanding physical factors controlling microbial mats in the streams.
Use of submersible pressure transducers in water-resources investigations
Freeman, Lawrence A.; Carpenter, Michael C.; Rosenberry, Donald O.; Rousseau, Joseph P.; Unger, Randy; McLean, John S.
2004-01-01
Submersible pressure transducers, developed in the early 1960s, have made the collection of water-level and pressure data much more convenient than former methods. Submersible pressure transducers, when combined with electronic data recorders have made it possible to collect continuous or nearly continuous water-level or pressure data from wells, piezometers, soil-moisture tensiometers, and surface water gages. These more frequent measurements have led to an improved understanding of the hydraulic processes in streams, soils, and aquifers. This manual describes the operational theory behind submersible pressure transducers and provides information about their use in hydrologic investigations conducted by the U.S. Geological Survey.
2016-04-05
About this volumeMontana StreamStats is a Web-based geographic information system (http://water.usgs.gov/osw/streamstats/) application that provides users with access to basin and streamflow characteristics for gaged and ungaged streams in Montana. Montana StreamStats was developed by the U.S. Geological Survey (USGS) in cooperation with the Montana Departments of Transportation, Environmental Quality, and Natural Resources and Conservation. The USGS Scientific Investigations Report consists of seven independent but complementary chapters dealing with various aspects of this effort.Chapter A describes the Montana StreamStats application, the basin and streamflow datasets, and provides a brief overview of the streamflow characteristics and regression equations used in the study. Chapters B through E document the datasets, methods, and results of analyses to determine streamflow characteristics, such as peak-flow frequencies, low-flow frequencies, and monthly and annual characteristics, for USGS streamflow-gaging stations in and near Montana. The StreamStats analytical toolsets that allow users to delineate drainage basins and solve regression equations to estimate streamflow characteristics at ungaged sites in Montana are described in Chapters F and G.
Cost-effectiveness of the stream-gaging program in Missouri
Waite, L.A.
1987-01-01
This report documents the results of an evaluation of the cost effectiveness of the 1986 stream-gaging program in Missouri. Alternative methods of developing streamflow information and cost-effective resource allocation were used to evaluate the Missouri program. Alternative methods were considered statewide, but the cost effective resource allocation study was restricted to the area covered by the Rolla field headquarters. The average standard error of estimate for records of instantaneous discharge was 17 percent; assuming the 1986 budget and operating schedule, it was shown that this overall degree of accuracy could be improved to 16 percent by altering the 1986 schedule of station visitations. A minimum budget of $203,870, with a corresponding average standard error of estimate 17 percent, is required to operate the 1986 program for the Rolla field headquarters; a budget of less than this would not permit proper service and maintenance of the stations or adequate definition of stage-discharge relations. The maximum budget analyzed was $418,870, which resulted in an average standard error of estimate of 14 percent. Improved instrumentation can have a positive effect on streamflow uncertainties by decreasing lost records. An earlier study of data uses found that data uses were sufficient to justify continued operation of all stations. One of the stations investigated, Current River at Doniphan (07068000) was suitable for the application of alternative methods for simulating discharge records. However, the station was continued because of data use requirements. (Author 's abstract)
Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio
Koltun, G.F.
2003-01-01
Regional equations for estimating 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood-peak discharges at ungaged sites on rural, unregulated streams in Ohio were developed by means of ordinary and generalized least-squares (GLS) regression techniques. One-variable, simple equations and three-variable, full-model equations were developed on the basis of selected basin characteristics and flood-frequency estimates determined for 305 streamflow-gaging stations in Ohio and adjacent states. The average standard errors of prediction ranged from about 39 to 49 percent for the simple equations, and from about 34 to 41 percent for the full-model equations. Flood-frequency estimates determined by means of log-Pearson Type III analyses are reported along with weighted flood-frequency estimates, computed as a function of the log-Pearson Type III estimates and the regression estimates. Values of explanatory variables used in the regression models were determined from digital spatial data sets by means of a geographic information system (GIS), with the exception of drainage area, which was determined by digitizing the area within basin boundaries manually delineated on topographic maps. Use of GIS-based explanatory variables represents a major departure in methodology from that described in previous reports on estimating flood-frequency characteristics of Ohio streams. Examples are presented illustrating application of the regression equations to ungaged sites on ungaged and gaged streams. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site on the same stream. A region-of-influence method, which employs a computer program to estimate flood-frequency characteristics for ungaged sites based on data from gaged sites with similar characteristics, was also tested and compared to the GLS full-model equations. For all recurrence intervals, the GLS full-model equations had superior prediction accuracy relative to the simple equations and therefore are recommended for use.
Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska
Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.
1999-01-01
Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more data from existing stations, probably would produce the greatest reduction in average sampling errors of the equations.
Senior, Lisa A.
2017-09-15
Several streams used for recreational activities, such as fishing, swimming, and boating, in Chester County, Pennsylvania, are known to have periodic elevated concentrations of fecal coliform bacteria, a type of bacteria used to indicate the potential presence of fecally related pathogens that may pose health risks to humans exposed through water contact. The availability of near real-time continuous stream discharge, turbidity, and other water-quality data for some streams in the county presents an opportunity to use surrogates to estimate near real-time concentrations of fecal coliform (FC) bacteria and thus provide some information about associated potential health risks during recreational use of streams.The U.S. Geological Survey (USGS), in cooperation with the Chester County Health Department (CCHD) and the Chester County Water Resources Authority (CCWRA), has collected discrete stream samples for analysis of FC concentrations during March–October annually at or near five gaging stations where near real-time continuous data on stream discharge, turbidity, and water temperature have been collected since 2007 (or since 2012 at 2 of the 5 stations). In 2014, the USGS, in cooperation with the CCWRA and CCHD, began to develop regression equations to estimate FC concentrations using available near real-time continuous data. Regression equations included possible explanatory variables of stream discharge, turbidity, water temperature, and seasonal factors calculated using Julian Day with base-10 logarithmic (log) transformations of selected variables.The regression equations were developed using the data from 2007 to 2015 (101–106 discrete bacteria samples per site) for three gaging stations on Brandywine Creek (West Branch Brandywine Creek at Modena, East Branch Brandywine Creek below Downingtown, and Brandywine Creek at Chadds Ford) and from 2012 to 2015 (37–38 discrete bacteria samples per site) for one station each on French Creek near Phoenixville and White Clay Creek near Strickersville. Fecal coliform bacteria data collected by USGS in 2016 (about nine samples per site) were used to validate the equations. The best-fit regression equations included log turbidity and seasonality factors computed using Julian Day as explanatory variables to estimate log FC concentrations at all five stream sites. The adjusted coefficient of determination for the equations ranged from 0.61 to 0.76, with the strength of the regression equations likely affected in part by the limited amount and variability of FC bacteria data. During summer months, the estimated and measured FC concentrations commonly were greater than the Pennsylvania Department of Environmental Protection established standards of 200 and 400 colonies per 100 milliliters for water contact from May through September at the 5 stream sites, with concentrations typically higher at 2 sites (White Clay Creek and West Branch Brandywine Creek at Modena) than at the other 3 sites. The estimated concentrations of FC bacteria during the summer months commonly were higher than measured concentrations and therefore could be considered cautious estimates of potential human-health risk. Additional water-quality data are needed to maintain and (or) improve the ability of regression equations to estimate FC concentrations by use of surrogate data.
Empirical flow parameters - a tool for hydraulic model validity assessment.
DOT National Transportation Integrated Search
2013-08-01
Data in Texas from the U.S. Geological Survey (USGS) physical stream flow and channel property measurements for gaging stations in the state of Texas were used to construct relations between observed stream flow, topographic slope, mean section veloc...
Establishing a Multi-scale Stream Gaging Network in the Whitewater River Basin, Kansas, USA
Clayton, J.A.; Kean, J.W.
2010-01-01
Investigating the routing of streamflow through a large drainage basin requires the determination of discharge at numerous locations in the channel network. Establishing a dense network of stream gages using conventional methods is both cost-prohibitive and functionally impractical for many research projects. We employ herein a previously tested, fluid-mechanically based model for generating rating curves to establish a stream gaging network in the Whitewater River basin in south-central Kansas. The model was developed for the type of channels typically found in this watershed, meaning that it is designed to handle deep, narrow geomorphically stable channels with irregular planforms, and can model overbank flow over a vegetated floodplain. We applied the model to ten previously ungaged stream reaches in the basin, ranging from third- to sixth-order channels. At each site, detailed field measurements of the channel and floodplain morphology, bed and bank roughness, and vegetation characteristics were used to quantify the roughness for a range of flow stages, from low flow to overbank flooding. Rating curves that relate stage to discharge were developed for all ten sites. Both fieldwork and modeling were completed in less than 2 years during an anomalously dry period in the region, which underscores an advantage of using theoretically based (as opposed to empirically based) discharge estimation techniques. ?? 2010 Springer Science+Business Media B.V.
D. Max Smith; Deborah M. Finch
2016-01-01
Riparian ecosystems are vital components of aridlands within the southwestern United States. Historically, surface flows influenced population dynamics of native riparian trees. Many southwestern streams has been altered by regulation, however, and will be further affected by greenhouse warming. Our analysis of stream gage data revealed that decreases in...
NASA Technical Reports Server (NTRS)
Garecht, D. M.
1988-01-01
The Three-in-One Gage is a three way gage designed to measure pressure, temperature, and displacement at the same port continuously. The Two-in-One Gage is a two way gage designed to measure pressure and temperature in the same port continuously. The Two-in-One is an adaptation of the Three-in-One to incorporate dual seals, however, without the proximity sensor. The Three-in-One is assembled using two Type K thermocouples, 1 Kulite Pressure Transducer, and one Kaman Proximity Displacement Sensor. Tests of performance were completed.
52. View of sitdown cable car, cable way, and stream ...
52. View of sit-down cable car, cable way, and stream gaging station, looking southeast. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
Prediction of flood quantiles at ungaged watersheds in Louisiana : final report.
DOT National Transportation Integrated Search
1989-12-01
Four popular regional flood frequency methods were compared using Louisiana stream flow series. The state was divided into four homogeneous regions and all undistorted, long-term stream gages were used in the analysis. The GEV, TCEV, regional LP3 and...
Summary of records of surface waters of Texas, 1898-1937
Ellsworth, Clarence E.
1939-01-01
The first gaging station In Texas urns established on the Rio Grande at El Paso on May 10, 1889, under the provisions of the Act of Congress of October 2, 1888, which authorized the organization of the Irrigation Survey by the United States Geological Survey. A few miscellaneous measurements of streams In central Texas, between Del Rio and Austin, were made, by C. C. Babb of the Geological Survey in 1894, 1895, and 1896. In 1897 T. U. Taylor, professor of civil engineering at the University of Texas, at Austin, began a systematic study for the Geological Survey of as many of the principal streams as the limited funds would permit. In the same year the American section of the International Water Commission began collecting records of flow of the Rio Grande in Texas. Records for the Rio Grande and some of its tributaries from 1897 to 1913, inclusive, collected by that commission under the immediate direction of W. W. Follett, United States consulting engineer, are contained in Geological Survey Water-supply Paper 358. It was not until 1915, when the State Legislature appropriated funds for stream measurement investigations by the Texas Board of Water Engineers, that a substantial beginning toward the systematic collection of stream-flow records was made. The work has been continued and enlarged gradually so that records have been collected at about 230 stations in Texas. In September 1937 86 gaging stations were being maintained in Texas by the Geological Survey and the cooperating agencies. Many miscellaneous discharge measurements have been made at other points. The records collected by the Geological Survey from 1889 to 1937 are now scattered through more than 50 reports, many of which are out of print.
USGS reservoir and lake gage network: Elevation and volumetric contents data, and their uses
Kroska, Anita C.
2014-01-01
In December of 2013, the U.S. Geological Survey (USGS) marked the 125th anniversary of the installation of its first official water level and streamflow gage, on the Rio Grande at Embudo, New Mexico. The gage was installed because it was recognized that water data were important to expanding irrigation needs. The USGS is a federal agency that provides nationally consistent and unbiased surface-water elevation and streamflow data at more than 10,000 gaging locations in the United States, about 330 of which are lakes and reservoirs (referred to hereafter as lakes) (Figure 1). The job of quantifying water resources, whether lakes, streams, or aquifers, is fundamental to proper water management and conservation of resources.
Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma
Esralew, Rachel A.; Smith, S. Jerrod
2010-01-01
Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage-basin characteristics by using a k-means cluster analysis. Three regions were identified for Oklahoma on the basis of the clustering of gaging stations and a manual delineation of distinguishable hydrologic and geologic boundaries: Region 1 (western Oklahoma excluding the Oklahoma and Texas Panhandles), Region 2 (north- and south-central Oklahoma), and Region 3 (eastern and central Oklahoma). A total of 228 regression equations (225 flow-duration regressions and three annual mean-flow regressions) were developed using ordinary least-squares and left-censored (Tobit) multiple-regression techniques. These equations can be used to estimate 75 flow-duration statistics and annual mean-flow for ungaged streams in the three regions. Drainage-basin characteristics that were statistically significant independent variables in the regression analyses were (1) contributing drainage area; (2) station elevation; (3) mean drainage-basin elevation; (4) channel slope; (5) percentage of forested canopy; (6) mean drainage-basin hillslope; (7) soil permeability; and (8) mean annual, seasonal, and monthly precipitation. The accuracy of flow-duration regression equations generally decreased from high-flow exceedance (low-exceedance probability) to low-flow exceedance (high-exceedance probability) . This decrease may have happened because a greater uncertainty exists for low-flow estimates and low-flow is largely affected by localized geology that was not quantified by the drainage-basin characteristics selected. The standard errors of estimate of regression equations for Region 1 (western Oklahoma) were substantially larger than those standard errors for other regions, especially for low-flow exceedances. These errors may be a result of greater variability in low flow because of increased irrigation activities in this region. Regression equations may not be reliable for sites where the drainage-basin characteristics are outside the range of values of independent vari
Surface-water hydrology of the Western New York Nuclear Service Center Cattaraugus County, New York
Kappel, W.M.; Harding, W.E.
1987-01-01
Precipitation data were collected from October 1980 through September 1983 from three recording gages at the Western New York Nuclear Service Center, and surface water data were collected at three continuous-record gaging stations and one partial-record gage on streams that drain a 0.7 sq km part of the site. Seepage from springs was measured periodically during the study. The data were used to identify runoff characteristics at the waste burial ground and the reprocessing plant area, 400 meters to the north. Preliminary water budgets for April 1982 through March 1983 were calculated to aid in the development of groundwater flow models to the two areas. Nearly 80% of the measured runoff from the burial ground area was storm runoff; the remaining 20% was base flow. In contrast, only 30% of the runoff leaving the reprocessing plant area was storm runoff, and 70% was base flow. This difference is attributed to soil composition. The burial ground soil consists of clayey silty till that limits infiltration and causes most precipitation to flow to local channels as direct runoff. In contrast, the reprocessing plant area is overlain by alluvial sand and gravel that allows rapid infiltration of precipitation and subsequent steady discharge from the water table to nearby stream channels and seepage faces. Measured total annual runoff and estimated evapotranspiration from the reprocessing plant area exceeded the precipitation by 35%, which suggests that the groundwater basin is larger than the surface water basin. The additional outflow probably includes underflow from bedrock upgradient from the plant, water leakage from plant facilities, and groundwater flow from adjacent basins. (Author 's abstract)
Wiley, J.B.; Atkins, John T.; Tasker, Gary D.
2000-01-01
Multiple and simple least-squares regression models for the log10-transformed 100-year discharge with independent variables describing the basin characteristics (log10-transformed and untransformed) for 267 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions of the State, designated East, North, and South. Exploratory data analysis procedures identified 31 gaging stations at which discharges are different than would be expected for West Virginia. Regional equations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak discharges were determined by generalized least-squares regression using data from 236 gaging stations. Log10-transformed drainage area was the most significant independent variable for all regions.Equations developed in this study are applicable only to rural, unregulated, streams within the boundaries of West Virginia. The accuracy of estimating equations is quantified by measuring the average prediction error (from 27.7 to 44.7 percent) and equivalent years of record (from 1.6 to 20.0 years).
Weaver, J. Curtis; Fine, Jason M.
2003-01-01
An understanding of the magnitude and frequency of low-flow discharges is an important part of protecting surface-water resources and planning for municipal and industrial economic expansion. Low-flow characteristics are summarized for 12 continuous-record gaging stations and 44 partial-record measuring sites in the Rocky River basin in North Carolina. Records of discharge collected through the 2002 water year at continuous-record gaging stations and through the 2001 water year at partial-record measuring sites were used. Flow characteristics included in the summary are (1) average annual unit flow; (2) 7Q10 low-flow discharge, the minimum average discharge for a 7-consecutive-day period occurring, on average, once in 10 years; (3) 30Q2 low-flow discharge; (4) W7Q10 low-flow discharge, which is similar to 7Q10 discharge but is based only on flow during the winter months of November through March; and (5) 7Q2 low-flow discharge. The Rocky River basin drains 1,413 square miles (mi2) of the southern Piedmont Province in North Carolina. The Rocky River is about 91 miles long and merges with the Yadkin River in eastern Stanly County to form the Pee Dee River, which discharges into the Atlantic Ocean in South Carolina. Low-flow characteristics compiled for selected sites in the Rocky River basin indicated that the potential for sustained base flows in the upper half of the basin is relatively higher than for streams in the lower half of the basin. The upper half of the basin is underlain by the Charlotte Belt, where streams have been identified as having moderate potentials for sustained base flows. In the lower half of the basin, many streams were noted as having little to no potential for sustained base flows. Much of the decrease in base-flow potential is attributed to the underlying rock types of the Carolina Slate Belt. Of the 19 sites in the basin having minimal (defined as less than 0.05 cubic foot per second) or zero 7Q10 discharges, 18 sites are located in the lower half of the basin underlain by the Carolina Slate Belt. Assessment of these 18 sites indicates that streams that have drainage areas less than about 25 square miles are likely to have minimal or zero 7Q10 discharges. No drainage-area threshold for minimal or zero 7Q10 discharges was identified for the upper half of the basin, which is underlain by the Charlotte Belt. Tributaries to the Rocky River include the West Branch Rocky River (22.8 mi2), Clarke Creek (28.2 mi2), Mallard Creek (41.2 mi2), Coddle Creek (78.8 mi2), Reedy Creek (43.0 mi2), Irish Buffalo/Coldwater Creeks (110 mi2), Dutch Buffalo Creek (99 mi2), Long Creek (200 mi2), Richardson Creek (234 mi2), and Lanes Creek (135 mi2). In the 20-mile reach upstream from the mouth (about 22 percent of the river length), the drainage area increases by 648 mi2, or about 46 percent of the total drainage area as a result of the confluences with Long Creek, Richardson Creek, and Lanes Creek. Low-flow discharge profiles for the Rocky River include 7Q10, 30Q2, W7Q10, and 7Q2 discharges in a continuous profile with contributions from major tributaries included. At the gaging stations above Irish Buffalo Creek and near Stanfield, the 7Q10 discharges are 25.2 and 42.3 cubic feet per second, corresponding to 0.09 and 0.07 cubic feet per second per square mile, respectively. At the gaging station near Norwood, the 7Q10 discharge is 45.8 cubic feet per second, equivalent to 0.03 cubic foot per second per square mile. Low-flow discharge profiles reflect the presence of several major flow diversions in the reaches upstream from Stanfield and an apparent losing reach between the continuous-record gaging stations near Stanfield and Norwood, North Carolina.
Crowdsourcing Stream Stage in Data Scarce Regions: Applications of CrowdHydrology
NASA Astrophysics Data System (ADS)
Lowry, C.; Fienen, M. N.
2013-12-01
Crowdsourced data collection using citizen scientists and mobile phones is a promising way to collect supplemental information in data scarce or remote regions. The research presented here explore the possibilities and pitfalls of crowdsourcing hydrologic data via mobile phone text messaging through the example of CrowdHydrology, a distributed network of over 40 stream gages in four states. Signage at the CrowdHydrology gages ask citizen scientists to answer to a simple question via text message: 'What is the water height?'. While these data in no way replace more traditional measurements of stream stage, they do provide low cost supplemental measurements in data scarce regions. Results demonstrate the accuracy of crowdsourced data and provide insight for successful future crowdsourced data collection efforts. A less recognized benefit is that even in data rich areas, crowdsourced data collection is a cost-effective way to perform quality assurance on more sophisticated, and costly, data collection efforts.
Analyzing Flash Flood Data in an Ultra-Urban Region
NASA Astrophysics Data System (ADS)
Smith, B. K.; Rodriguez, S.
2016-12-01
New York City is an ultra-urban region, with combined sewers and buried stream channels. Traditional flood studies rely on the presence of stream gages to detect flood stage and discharge, but ultra-urban regions frequently lack the surface stream channels and gages necessary for this approach. In this study we aggregate multiple non-traditional data for detecting flash flood events. These data including phone call reports, city records, and, for one particular flood event, news reports and social media reports. These data are compared with high-resolution bias-corrected radar rainfall fields to study flash flood events in New York City. We seek to determine if these non-traditional data will allow for a comprehensive study of rainfall-runoff relationships in New York City. We also seek to map warm season rainfall heterogeneities in the city and to compare them to spatial distribution of reported flood occurrence.
Cost effectiveness of the U.S. Geological Survey's stream-gaging program in Wisconsin
Walker, J.F.; Osen, L.L.; Hughes, P.E.
1987-01-01
A minimum budget of $510,000 is required to operate the program; a budget less than this does not permit proper service and maintenance of the gaging stations. At this minimum budget, the theoretical average standard error of instantaneous discharge is 14.4%. The maximum budget analyzed was $650,000 and resulted in an average standard of error of instantaneous discharge of 7.2%.
M.B. Adams; P.J. Edwards; J.N. Kochenderfer; F. Wood
2004-01-01
In 1951, stream gaging was begun on five small headwater catchments on the Fernow Experimental Forest in West Virginia, to study the effects of forest management activities, particularly timber harvesting, on water yield and quality. Results from these watersheds, and others gaged more recently, have shown that annual water yields increase in proportion to the basal...
Graphical correlation of gaging-station records
Searcy, James K.
1960-01-01
A gaging-station record is a sample of the rate of flow of a stream at a given site. This sample can be used to estimate the magnitude and distribution of future flows if the record is long enough to be representative of the long-term flow of the stream. The reliability of a short-term record for estimating future flow characteristics can be improved through correlation with a long-term record. Correlation can be either numerical or graphical, but graphical correlation of gaging-station records has several advantages. The graphical correlation method is described in a step-by-step procedure with an illustrative problem of simple correlation, illustrative problems of three examples of multiple correlation--removing seasonal effect--and two examples of correlation of one record with two other records. Except in the problem on removal of seasonal effect, the same group of stations is used in the illustrative problems. The purpose of the problems is to illustrate the method--not to show the improvement that can result from multiple correlation as compared with simple correlation. Hydrologic factors determine whether a usable relation exists between gaging-station records. Statistics is only a tool for evaluating and using an existing relation, and the investigator must be guided by a knowledge of hydrology.
McCallum, Brian E.; Hickey, Andrew C.
2000-01-01
Water resources data for the 2000 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 125 gaging stations; stage for 20 gaging stations; information for 18 lakes and reservoirs; continuous water-quality records for 10 stations; the annual peak stage and annual peak discharge for 77 crest-stage partial-record stations; and miscellaneous streamflow measurements at 21 stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins.
Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii
Gingerich, Stephen B.
1999-01-01
The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high-elevation saturated zone. Total average daily ground-water discharge from the high-elevation saturated zone upstream of 1,200 feet altitude is greater than 38 million gallons per day, all of which is eventually removed from the streams by surface-water diversion systems. Perennial streamflow has been measured at altitudes greater than 3,000 feet in several of the streams. Discharge from the high-elevation saturated zone is persistent even during periods of little rainfall. The total average annual streamflow of the gaged streams east of Keanae Valley is about 109 million gallons per day at about 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast nor at higher altitudes. All of the base flow measured east of Keanae Valley represents ground-water discharge from the vertically extensive freshwater-lens system. Total average daily ground-water discharge to gaged streams upstream of 1,200 feet altitude is about 27 million gallons per day. About 19 million gallons per day of ground water discharges through the Kula and Hana Volcanics between about 500 feet and 1,300 feet altitude in the gaged stream sub-basins. About 13 million gallons per day of this discharge is in Hanawi Stream. The total ground-water discharge above 500 feet altitude in this part of the study area is greater than 56 million gallons per day.
Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams
Stuckey, Marla H.
2006-01-01
Low-flow, base-flow, and mean-flow characteristics are an important part of assessing water resources in a watershed. These streamflow characteristics can be used by watershed planners and regulators to determine water availability, water-use allocations, assimilative capacities of streams, and aquatic-habitat needs. Streamflow characteristics are commonly predicted by use of regression equations when a nearby streamflow-gaging station is not available. Regression equations for predicting low-flow, base-flow, and mean-flow characteristics for Pennsylvania streams were developed from data collected at 293 continuous- and partial-record streamflow-gaging stations with flow unaffected by upstream regulation, diversion, or mining. Continuous-record stations used in the regression analysis had 9 years or more of data, and partial-record stations used had seven or more measurements collected during base-flow conditions. The state was divided into five low-flow regions and regional regression equations were developed for the 7-day, 10-year; 7-day, 2-year; 30-day, 10-year; 30-day, 2-year; and 90-day, 10-year low flows using generalized least-squares regression. Statewide regression equations were developed for the 10-year, 25-year, and 50-year base flows using generalized least-squares regression. Statewide regression equations were developed for harmonic mean and mean annual flow using weighted least-squares regression. Basin characteristics found to be significant explanatory variables at the 95-percent confidence level for one or more regression equations were drainage area, basin slope, thickness of soil, stream density, mean annual precipitation, mean elevation, and the percentage of glaciation, carbonate bedrock, forested area, and urban area within a basin. Standard errors of prediction ranged from 33 to 66 percent for the n-day, T-year low flows; 21 to 23 percent for the base flows; and 12 to 38 percent for the mean annual flow and harmonic mean, respectively. The regression equations are not valid in watersheds with upstream regulation, diversions, or mining activities. Watersheds with karst features need close examination as to the applicability of the regression-equation results.
Groschen, George E.; King, Robin B.
2005-01-01
Eight streams, representing a wide range of environmental and water-quality conditions across Illinois, were monitored from July 2001 to October 2003 for five water-quality parameters as part of a pilot study by the U.S. Geological Survey (USGS) in cooperation with the Illinois Environmental Protection Agency (IEPA). Continuous recording multi-parameter water-quality monitors were installed to collect data on water temperature, dissolved-oxygen concentrations, specific conductivity, pH, and turbidity. The monitors were near USGS streamflow-gaging stations where stage and streamflow are continuously recorded. During the study period, the data collected for these five parameters generally met the data-quality objectives established by the USGS and IEPA at all eight stations. A similar pilot study during this period for measurement of chlorophyll concentrations failed to achieve the data-quality objectives. Of all the sensors used, the temperature sensors provided the most accurate and reliable measurements (generally within ?5 percent of a calibrated thermometer reading). Signal adjustments and calibration of all other sensors are dependent upon an accurate and precise temperature measurement. The dissolved-oxygen sensors were the next most reliable during the study and were responsive to changing conditions and accurate at all eight stations. Specific conductivity was the third most accurate and reliable measurement collected from the multi-parameter monitors. Specific conductivity at the eight stations varied widely-from less than 40 microsiemens (?S) at Rayse Creek near Waltonville to greater than 3,500 ?S at Salt Creek at Western Springs. In individual streams, specific conductivity often changed quickly (greater than 25 percent in less than 3 hours) and the sensors generally provided good to excellent record of these variations at all stations. The widest range of specific-conductivity measurements was in Salt Creek at Western Springs in the Greater Chicago metropolitan area. Unlike temperature, dissolved oxygen, and specific conductivity that have been typically measured over a wide range of historical streamflow conditions in many streams, there are few historical turbidity data and the full range of turbidity values is not well known for many streams. Because proposed regional criteria for turbidity in regional streams are based on upper 25th percentiles of concentration in reference streams, accurate determination of the distribution of turbidity in monitored streams is important. Digital data from all five sensors were recorded within each of the eight sondes deployed in the streams and in automated data recorders in the nearby streamflow-gaging houses at each station. The data recorded on each sonde were retrieved to a field laptop computer at each station visit. The feasibility of transmitting these data in near-real time to a central processing point for dissemination on the World-Wide Web was tested successfully. Data collected at all eight stations indicate that a number of factors affect the dissolved-oxygen concentration in the streams and rivers monitored. These factors include: temperature, biological activity, nutrient runoff, and weather (storm runoff). During brief periods usually in late summer, dissolved-oxygen concentrations in half or more of the eight streams and rivers monitored were below the 5 milligrams per liter minimum established by the Illinois Pollution Control Board to protect aquatic life. Because the streams monitored represent a wide range in water-quality and environmental conditions, including diffuse (non-point) runoff and wastewater-effluent contributions, this result indicates that deleterious low dissolved-oxygen concentrations during late summer may be widespread in Illinois streams.
Liscum, Fred; Brown, D.W.; Kasmarek, M.C.
1997-01-01
The study area, a metropolitan area in southeast Texas about 45 miles north of the Gulf of Mexico, has been undergoing extensive urban development since the 1950s. The Houston Urban Runoff Program was begun by the U.S. Geological Survey in water year 1964 to define the magnitude and frequency of flood peaks, to determine the impact of continuing urban development on surface-water hydrologic responses, and to determine variations in stream water quality for different flow conditions, seasons, and urban development. An extensive data base has been developed.During water years 1964-89, the Houston Urban Runoff Program collected information from a total of 54 U.S. Geological Survey streamflow-gaging stations, 30 U.S. Geological Survey water-quality sampling sites, and 102 rain gages (operated by the U.S. Geological Survey, the National Weather Service, and local agencies). In addition, basin characteristics were developed to aid in understanding the effects of urban development on surface-water hydrologic responses.Surface-water hydrologic data on diskettes describe the 54 U.S. Geological Survey streamflow-gaging stations, list annual peaks (and where available, peaks above an arbitrary base) for 50 streamflow sites, tabulate 1,125 storm hydrographs from 43 sites, and document 102 waterquality parameters determined from 3,242 available samples.
Peak-flow frequency estimates through 1994 for gaged streams in South Dakota
Burr, M.J.; Korkow, K.L.
1996-01-01
Annual peak-flow data are listed for 250 continuous-record and crest-stage gaging stations in South Dakota. Peak-flow frequency estimates for selected recurrence intervals ranging from 2 to 500 years are given for 234 of these 250 stations. The log-Pearson Type III procedure was used to compute the frequency relations for the 234 stations, which in 1994 included 105 active and 129 inactive stations. The log-Pearson Type III procedure is recommended by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data, 1982, "Guidelines for Determining Flood Flow Frequency."No peak-flow frequency estimates are given for 16 of the 250 stations because: (1) of extreme variability in data set; (2) more than 20 percent of years had no flow; (3) annual peak flows represent large outflow from a spring; (4) of insufficient peak-flow record subsequent to reservoir regulation; and (5) peak-flow records were combined with records from nearby stations.
Streamflow statistics for selected streams in North Dakota, Minnesota, Manitoba, and Saskatchewan
Williams-Sether, Tara
2012-01-01
Statistical summaries of streamflow data for the periods of record through water year 2009 for selected active and discontinued U.S. Geological Survey streamflow-gaging stations in North Dakota, Minnesota, Manitoba, and Saskatchewan were compiled. The summaries for each streamflow-gaging station include a brief station description, a graph of the annual peak and annual mean discharge for the period of record, statistics of monthly and annual mean discharges, monthly and annual flow durations, probability of occurrence of annual high discharges, annual peak discharge and corresponding gage height for the period of record, and monthly and annual mean discharges for the period of record.
Tortorelli, Robert L.
1997-01-01
Statewide regression equations for Oklahoma were determined for estimating peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years for ungaged sites on natural unregulated streams. The most significant independent variables required to estimate peak-streamflow frequency for natural unregulated streams in Oklahoma are contributing drainage area, main-channel slope, and mean-annual precipitation. The regression equations are applicable for watersheds with drainage areas less than 2,510 square miles that are not affected by regulation from manmade works. Limitations on the use of the regression relations and the reliability of regression estimates for natural unregulated streams are discussed. Log-Pearson Type III analysis information, basin and climatic characteristics, and the peak-stream-flow frequency estimates for 251 gaging stations in Oklahoma and adjacent states are listed. Techniques are presented to make a peak-streamflow frequency estimate for gaged sites on natural unregulated streams and to use this result to estimate a nearby ungaged site on the same stream. For ungaged sites on urban streams, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow frequency. For ungaged sites on streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow frequency. The statewide regression equations are adjusted by substituting the drainage area below the floodwater retarding structures, or drainage area that represents the percentage of the unregulated basin, in the contributing drainage area parameter to obtain peak-streamflow frequency estimates.
Annual peak discharges from small drainage areas in Montana through September 1977
Omang, R.J.; Hull, J.A.
1978-01-01
Annual peak stage and stream-discharge data have been collected and tabulated for crest-stage gaging sites in Montana. The crest-stage program was begun in July 1955 to investigate the magnitude and frequency of floods from small drainage areas. The program has expanded from 45 crest-stage gaging stations initially to 191 stations in 1977. Data are tabulated for 336 sites throughout the period of record. (Woodard-USGS)
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Gage. 213.53 Section 213.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Track Geometry § 213.53 Gage. (a) Gage is measured between the heads of the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Gage. 213.53 Section 213.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Track Geometry § 213.53 Gage. (a) Gage is measured between the heads of the...
Gazetteer of hydrologic characteristics of streams in Massachusetts; Housatonic River basin
Wandle, S.W.; Lippert, R.G.
1984-01-01
The Housatonic River basin includes streams that drain 504 square miles in western Massachusetts and 30.5 square miles in eastern New York. Drainage areas, using the latest available 1:24,000 scale topographic maps, were computed for the first time for streams draining more than 3 square miles and were recomputed for data-collection sites. Streamflow characteristics for four gaged streams were calculated using a new data base with daily flow records through 1981. These characteristics include annual and monthly flow statistics, duration of daily flow values, and the annual 7-day mean low flow at the 2-year and 10-year recurrence intervals. Seven-day low-flow statistics are presented for 52 partial-record sites, and the procedures used to determine the hydrologic characteristics of the basin are summarized. Basin characteristics representing 14 commonly used indices to estimate various streamflows are provided for selected gaging stations. This gazetteer will aid in the planning and siting of water-resources related activities and will provide a common data base for governmental agencies and the engineering and planning communities. (USGS)
Peak-flow characteristics of Wyoming streams
Miller, Kirk A.
2003-01-01
Peak-flow characteristics for unregulated streams in Wyoming are described in this report. Frequency relations for annual peak flows through water year 2000 at 364 streamflow-gaging stations in and near Wyoming were evaluated and revised or updated as needed. Analyses of historical floods, temporal trends, and generalized skew were included in the evaluation. Physical and climatic basin characteristics were determined for each gaging station using a geographic information system. Gaging stations with similar peak-flow and basin characteristics were grouped into six hydrologic regions. Regional statistical relations between peak-flow and basin characteristics were explored using multiple-regression techniques. Generalized least squares regression equations for estimating magnitudes of annual peak flows with selected recurrence intervals from 1.5 to 500 years were developed for each region. Average standard errors of estimate range from 34 to 131 percent. Average standard errors of prediction range from 35 to 135 percent. Several statistics for evaluating and comparing the errors in these estimates are described. Limitations of the equations are described. Methods for applying the regional equations for various circumstances are listed and examples are given.
Rea, Alan; Cederstrand, Joel R.
1994-01-01
The data sets on this compact disc are a compilation of several geographic reference data sets of interest to the global-change research community. The data sets were chosen with input from the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP) Data Committee and the GCIP Hydrometeorology and Atmospheric Subpanels. The data sets include: locations and periods of record for stream gages, reservoir gages, and meteorological stations; a 500-meter-resolution digital elevation model; grid-node locations for the Eta numerical weather-prediction model; and digital map data sets of geology, land use, streams, large reservoirs, average annual runoff, average annual precipitation, average annual temperature, average annual heating and cooling degree days, hydrologic units, and state and county boundaries. Also included are digital index maps for LANDSAT scenes, and for the U.S. Geological Survey 1:250,000, 1:100,000, and 1:24,000-scale map series. Most of the data sets cover the conterminous United States; the digital elevation model also includes part of southern Canada. The stream and reservoir gage and meteorological station files cover all states having area within the Mississippi River Basin plus that part of the Mississippi River Basin lying within Canada. Several data-base retrievals were processed by state, therefore many sites outside the Mississippi River Basin are included.
Ten years of real-time streamflow gaging of turkey creek - where we have been and where we are going
Paul Conrads; Devendra Amatya
2016-01-01
The Turkey Creek watershed is a third-order coastal plain stream system draining an area of approximately 5,240 hectares of the Francis Marion National Forest and located about 37 miles northwest of Charleston near Huger, South Carolina. The U.S. Department of Agriculture (USDA) Forest Service maintained a streamflow gaging station on Turkey Creek from 1964 to 1981....
Exploring the Link Between Streamflow Trends and Climate Change in Indiana, USA
NASA Astrophysics Data System (ADS)
Kumar, S.; Kam, J.; Thurner, K.; Merwade, V.
2007-12-01
Streamflow trends in Indiana are evaluated for 85 USGS streamflow gaging stations that have continuous unregulated streamflow records varying from 10 to 80 years. The trends are analyzed by using the non-parametric Mann-Kendall test with prior trend-free pre-whitening to remove serial correlation in the data. Bootstrap method is used to establish field significance of the results. Trends are computed for 12 streamflow statistics to include low-, medium- (median and mean flow), and high-flow conditions on annual and seasonal time step. The analysis is done for six study periods, ranging from 10 years to more than 65 years, all ending in 2003. The trends in annual average streamflow, for 50 years study period, are compared with annual average precipitation trends from 14 National Climatic Data Center (NCDC) stations in Indiana, that have 50 years of continuous daily record. The results show field significant positive trends in annual low and medium streamflow statistics at majority of gaging stations for study periods that include 40 or more years of records. In seasonal analysis, all flow statistics in summer and fall (low flow seasons), and only low flow statistics in winter and spring (high flow seasons) are showing positive trends. No field significant trends in annual and seasonal flow statistics are observed for study periods that include 25 or fewer years of records, except for northern Indiana where localized negative trends are observed in 10 and 15 years study periods. Further, stream flow trends are found to be highly correlated with precipitation trends on annual time step. No apparent climate change signal is observed in Indiana stream flow records.
Techniques for estimating magnitude and frequency of floods on streams in Indiana
Glatfelter, D.R.
1984-01-01
A rainfall-runoff model was tlsed to synthesize long-term peak data at 11 gaged locations on small streams. Flood-frequency curves developed from the long-term synthetic data were combined with curves based on short-term observed data to provide weighted estimates of flood magnitude and frequency at the rainfall-runoff stations.
Comparison of current meters used for stream gaging
Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.
1994-01-01
The U.S. Geological Survey (USGS) is field and laboratory testing the performance of several current meters used throughout the world for stream gaging. Meters tested include horizontal-axis current meters from Germany, the United Kingdom, and the People's Republic of China, and vertical-axis and electromagnetic current meters from the United States. Summarized are laboratory test results for meter repeatability, linearity, and response to oblique flow angles and preliminary field testing results. All current meters tested were found to under- and over-register velocities; errors usually increased as the velocity and angle of the flow increased. Repeatability and linearity of all meters tested were good. In the field tests, horizontal-axis meters, except for the two meters from the People's Republic of China, registered higher velocity than did the vertical-axis meters.
Hoffman, E.B.; Bowers, J.C.; Jensen, R.M.
1990-01-01
Water resources data for the 1989 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 137 gaging stations; stage and contents for 15 lakes and reservoirs; water quality for 25 streams; and precipitation for 8 gaging stations. Also included are 15 crest-stage partial-record stations, 7 miscellaneous measurement sites, and 5 water-quality partial record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.
2006-01-01
Water-resources data for the 2005 water year for Virginia includes records of stage, discharge, and water quality of streams and stage, contents, and water quality of lakes and reservoirs. This volume contains records for water discharge at 172 gaging stations; stage only at 2 gaging stations; elevation at 2 reservoirs and 2 tide gages; contents at 1 reservoir, and water quality at 25 gaging stations. Also included are data for 50 crest-stage partial-record stations. Locations of these sites are shown on figures 4A-B and 5A-B. Miscellaneous hydrologic data were collected at 128 measuring sites and 19 water-quality sampling sites not involved in the systematic data-collection program. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.
Water Resources Data, Massachusetts and Rhode Island, Water Year 2003
Socolow, R.S.; Zanca, J.L.; Driskell, T.R.; Ramsbey, L.R.
2004-01-01
Water resources data for the 2003 water year for Massachusetts and Rhode Island consists of records of stage, discharge, and water quality of streams; contents of lakes and reservoirs; and water levels of ground-water wells. This report contains discharge records for 108 gaging stations, stage records for 2 gaging stations, stage records for 3 ponds; monthend contents of 1 reservoir, precipitation totals at 8 gaging stations; water quality for 27 gaging stations, air temperature at 2 climatological stations; water levels for 129 observation wells, and ground-water quality for 15 wells. Miscellaneous hydrologic data were collected at various sites that were not a part of the systematic data-collection program and are published as miscellaneous discharge measurements and miscellaneous surface-water-quality data. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Massachusetts and Rhode Island.
Water resources data for Massachusetts and Rhode Island, water year 2004
Socolow, R.S.; Comeau, L.Y.; Murino, Domenic
2005-01-01
This report includes records of stage, discharge, and water quality of streams; contents and elevation of lakes and ponds; and water levels of ground-water wells. This volume contains discharge records for 112 gaging stations; stage records for 2 gaging stations; stage records for 2 ponds; month-end contents of 1 reservoir; precipitation totals at 6 gaging stations; water quality for 21 gaging stations; air temperature at 2 climatological stations; and water levels for 131 observation wells. Locations of these sites are shown in figures 1 and 2. Hydrologic data were collected at many sites that were not involved in the systematic data-collection program; these data are published as miscellaneous discharge measurements, miscellaneous surface-water-quality, and miscellaneous ground-water-quality data. The data in this report represent that part of the National Water Information System (NWIS) operated by the U.S. Geological Survey and cooperating State and Federal agencies in Massachusetts and Rhode Island.
Validation of streamflow measurements made with M9 and RiverRay acoustic Doppler current profilers
Boldt, Justin A.; Oberg, Kevin A.
2015-01-01
The U.S. Geological Survey (USGS) Office of Surface Water (OSW) previously validated the use of Teledyne RD Instruments (TRDI) Rio Grande (in 2007), StreamPro (in 2006), and Broadband (in 1996) acoustic Doppler current profilers (ADCPs) for streamflow (discharge) measurements made by the USGS. Two new ADCPs, the SonTek M9 and the TRDI RiverRay, were first used in the USGS Water Mission Area programs in 2009. Since 2009, the OSW and USGS Water Science Centers (WSCs) have been conducting field measurements as part of their stream-gaging program using these ADCPs. The purpose of this paper is to document the results of USGS OSW analyses for validation of M9 and RiverRay ADCP streamflow measurements. The OSW required each participating WSC to make comparison measurements over the range of operating conditions in which the instruments were used until sufficient measurements were available. The performance of these ADCPs was evaluated for validation and to identify any present and potential problems. Statistical analyses of streamflow measurements indicate that measurements made with the SonTek M9 ADCP using firmware 2.00–3.00 or the TRDI RiverRay ADCP using firmware 44.12–44.15 are unbiased, and therefore, can continue to be used to make streamflow measurements in the USGS stream-gaging program. However, for the M9 ADCP, there are some important issues to be considered in making future measurements. Possible future work may include additional validation of streamflow measurements made with these instruments from other locations in the United States and measurement validation using updated firmware and software.
Impact of river discharge on the California coastal ocean circulation and variability
NASA Astrophysics Data System (ADS)
Leiva, J.; Chao, Y.; Farrara, J. D.; Zhang, H.
2016-12-01
A real-time California coastal ocean nowcast and forecast system is used to quantify the impact of river discharge on the California coastal ocean circulation and variability. River discharge and freshwater runoff is monitored by an extensive network of stream gages maintained through the U.S. Geological Survey, that offers archived stream flow records as well as real-time datasets. Of all the rivers monitored by the USGS, 25 empty into the Pacific Ocean and contribute a potential source of runoff data. Monthly averages for the current water year yield discharge estimates as high as 6,000 cubic meters per second of additional freshwater input into our present model. Using Regional Ocean Modeling System (ROMS), we performed simulations from October 2015 to May 2016 with and without the river discharge. Results of these model simulations are compared with available observations including both in situ and satellite. Particular attention is paid to the salinity simulation. Validation is done with comparisons to sea glider data available through Oregon State University and UC San Diego, which provides depth profiles along the California coast during this time period. Additional validation is performed through comparisons with sea surface salinity measurements from the Soil Moisture and Ocean Salinity (SMOS) mission. Continued testing for previous years, e.g. between 2011 and 2015, is being made using the Aquarius sea surface salinity data. Discharge data collected by the USGS stream gages provides a necessary source of freshwater input that must be accounted for. Incorporating a new runoff source produces a more robust model that generates improved forecasts. Following validation with available sea glider and satellite data, the enhanced model can be adapted to real-time forecasting.
Low-flow characteristics of streams in South Carolina
Feaster, Toby D.; Guimaraes, Wladmir B.
2017-09-22
An ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina is important for the protection and preservation of the State’s water resources. Information concerning the low-flow characteristics of streams is especially important during critical flow periods, such as during the historic droughts that South Carolina has experienced in the past few decades.Between 2008 and 2016, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, updated low-flow statistics at 106 continuous-record streamgages operated by the U.S. Geological Survey for the eight major river basins in South Carolina. The low-flow frequency statistics included the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day mean flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamflow-gaging station. Computations of daily mean flow durations for the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance also were included.This report summarizes the findings from publications generated during the 2008 to 2016 investigations. Trend analyses for the annual minimum 7-day average flows are provided as well as trend assessments of long-term annual precipitation data. Statewide variability in the annual minimum 7-day average flow is assessed at eight long-term (record lengths from 55 to 78 years) streamgages. If previous low-flow statistics were available, comparisons with the updated annual minimum 7-day average flow, having a 10-year recurrence interval, were made. In addition, methods for estimating low-flow statistics at ungaged locations near a gaged location are described.
Water Resources Data, New Jersey, Water Year 2003; Volume 1. Surface-Water Data
Reed, T.J.; White, B.T.; Centinaro, G.L.; Dudek, J.F.; Protz, A.R.; Shvanda, J.C.; Watson, A.F.
2004-01-01
Water-resources data for the 2003 Water Year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 1 contains discharge records for 100 gaging stations; tide summaries at 29 tidal gaging stations; and stage and contents at 39 lakes and reservoirs. Also included are stage and discharge for 106 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 142 low-flow partial- record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 143 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including streamflow, precipitation, reservoir conditions, and air temperatures.
Estimating the Magnitude and Frequency of Floods in Small Urban Streams in South Carolina, 2001
Feaster, Toby D.; Guimaraes, Wladimir B.
2004-01-01
The magnitude and frequency of floods at 20 streamflowgaging stations on small, unregulated urban streams in or near South Carolina were estimated by fitting the measured wateryear peak flows to a log-Pearson Type-III distribution. The period of record (through September 30, 2001) for the measured water-year peak flows ranged from 11 to 25 years with a mean and median length of 16 years. The drainage areas of the streamflow-gaging stations ranged from 0.18 to 41 square miles. Based on the flood-frequency estimates from the 20 streamflow-gaging stations (13 in South Carolina; 4 in North Carolina; and 3 in Georgia), generalized least-squares regression was used to develop regional regression equations. These equations can be used to estimate the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows for small urban streams in the Piedmont, upper Coastal Plain, and lower Coastal Plain physiographic provinces of South Carolina. The most significant explanatory variables from this analysis were mainchannel length, percent impervious area, and basin development factor. Mean standard errors of prediction for the regression equations ranged from -25 to 33 percent for the 10-year recurrence-interval flows and from -35 to 54 percent for the 100-year recurrence-interval flows. The U.S. Geological Survey has developed a Geographic Information System application called StreamStats that makes the process of computing streamflow statistics at ungaged sites faster and more consistent than manual methods. This application was developed in the Massachusetts District and ongoing work is being done in other districts to develop a similar application using streamflow statistics relative to those respective States. Considering the future possibility of implementing StreamStats in South Carolina, an alternative set of regional regression equations was developed using only main channel length and impervious area. This was done because no digital coverages are currently available for basin development factor and, therefore, it could not be included in the StreamStats application. The average mean standard error of prediction for the alternative equations was 2 to 5 percent larger than the standard errors for the equations that contained basin development factor. For the urban streamflow-gaging stations in South Carolina, measured water-year peak flows were compared with those from an earlier urban flood-frequency investigation. The peak flows from the earlier investigation were computed using a rainfall-runoff model. At many of the sites, graphical comparisons indicated that the variance of the measured data was much less than the variance of the simulated data. Several statistical tests were applied to compare the variances and the means of the measured and simulated data for each site. The results indicated that the variances were significantly different for 11 of the 13 South Carolina streamflow-gaging stations. For one streamflow-gaging station, the test for normality, which is one of the assumptions of the data when comparing variances, indicated that neither the measured data nor the simulated data were distributed normally; therefore, the test for differences in the variances was not used for that streamflow-gaging station. Another statistical test was used to test for statistically significant differences in the means of the measured and simulated data. The results indicated that for 5 of the 13 urban streamflowgaging stations in South Carolina there was a statistically significant difference in the means of the two data sets. For comparison purposes and to test the hypothesis that there may have been climatic differences between the period in which the measured peak-flow data were measured and the period for which historic rainfall data were used to compute the simulated peak flows, 16 rural streamflow-gaging stations with long-term records were reviewed using similar techniques as those used for the measured an
Outlaw, G.S.; Butner, D.E.; Kemp, R.L.; Oaks, A.T.; Adams, G.S.
1992-01-01
Rainfall, stage, and streamflow data in the Murfreesboro area, Middle Tennessee, were collected from March 1989 through July 1992 from a network of 68 gaging stations. The network consists of 10 tipping-bucket rain gages, 2 continuous-record streamflow gages, 4 partial-record flood hydrograph gages, and 72 crest-stage gages. Data collected by the gages includes 5minute time-step rainfall hyetographs, 15-minute time-step flood hydrographs, and peak-stage elevations. Data are stored in a computer data base and are available for many computer modeling and engineering applications.
Westergard, Britt E.; Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.
2005-01-01
Equations that relate drainage area to bankfull discharge and channel dimensions (width, depth, and cross-sectional area) at gaged sites are needed to define bankfull discharge and channel dimensions at ungaged sites and to provide information for the design of stream-restoration projects. Such equations are most accurate if derived from streams within an area of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. A study to develop equations to predict bankfull data for ungaged streams in New York established eight regions that coincided with previously defined hydrologic regions. This report presents drainage areas and bankfull characteristics (discharge and channel dimensions) for streams in central New York (Region 5) selected for this pilot study.Stream-survey data and discharge records from seven active (currently gaged) sites and nine inactive (discontinued gaged) sites were used in regression analyses to relate size of drainage area to bankfull discharge and bankfull channel width, depth, and cross-sectional area. The resulting equations are:(1) bankfull discharge, in cubic feet per second = 45.3*(drainage area, in square miles)0.856;(2) bankfull channel width, in feet = 13.5*(drainage area, in square miles)0.449;(3) bankfull channel depth, in feet = 0.801*(drainage area, in square miles)0.373; and(4) bankfull channel cross-sectional area, in square feet = 10.8*(drainage area, in square miles)0.823.The high correlation coefficients (R2) for these four equations (0.96, 0.92, 0.91, 0.98, respectively) indicate that much of the variation in the variables is explained by the size of the drainage area. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.11 to 3.40 years; the mean recurrence interval was 1.51 years. The 16 surveyed streams were classified by Rosgen stream type; most were mainly C-type reaches, with occasional B- and F-type reaches. The Region 5 equation was compared with equations developed for six other large areas in the Northeast. The major differences among results indicate a need to refine equations so they can be applied by water-resources managers to local planning and design efforts.
Sauer, Vernon B.
1974-01-01
The 2-, 5-, 10-, 25-, 50-, and 100-year recurrence interval floods are related to basin and climatic parameters for natural streams in Oklahoma by multiple regression techniques through the mathematical model, Qx=aAbScPd,where Qx is peak discharge for recurrence interval x, A is contributing drainage area, S is main channel slope, P is mean annual precipitation, and a, b, c, and d are regression constants and coefficients. One equation for each recurrence interval applies statewide for all natural streams of less than 2,500 mil (6,500 km2), except where manmade works, such as dams, flood-detention structures, levees, channelization, and urban development, appreciably affect flood runoff. The equations can be used to estimate flood frequency of a stream at an ungaged site if drainage area size, main channel slope, and mean annual precipitation are known. At or near gaged sites, a weighted average of the regression results and the gaging station data is recommended.Individual relations of flood magnitude to contributing drainage area are given for all or parts of the main stems of the Arkansas, Salt Fork Arkansas, Cimarron, North Canadian, Canadian, Washita, North Fork Red, and Red Rivers. Parts of some of these streams, and all of the Neosho and Verdigris Rivers are not included because the effects of. major regulation from large reservoirs cannot be evaluated within the scope of the report. Graphical relations of maximum floods of record for eastern and western Oklahoma provide a guide to maximum probable floods. A random sampling of the seasonal occurrence of floods indicated about two-thirds of all annual floods in Oklahoma occur during. April through July. Less than one-half of one percent of annual floods occur in December. A compilation of flood records at all gaging sites in Oklahoma and some selected sites in adjacent States is given in an appendix. Basin and climatic parameters and log-Pearson Type III frequency data and statistics are given for most station records. A second appendix gives a reprint of the U.S. Water Resources Council Bulletin 15 which describes procedures for fitting a log-Pearson Type III distribution to gaging station data.
Regionalization of harmonic-mean streamflows in Kentucky
Martin, Gary R.; Ruhl, Kevin J.
1993-01-01
Harmonic-mean streamflow (Qh), defined as the reciprocal of the arithmetic mean of the reciprocal daily streamflow values, was determined for selected stream sites in Kentucky. Daily mean discharges for the available period of record through the 1989 water year at 230 continuous record streamflow-gaging stations located in and adjacent to Kentucky were used in the analysis. Periods of record affected by regulation were identified and analyzed separately from periods of record unaffected by regulation. Record-extension procedures were applied to short-term stations to reducetime-sampling error and, thus, improve estimates of the long-term Qh. Techniques to estimate the Qh at ungaged stream sites in Kentucky were developed. A regression model relating Qh to total drainage area and streamflow-variability index was presented with example applications. The regression model has a standard error of estimate of 76 percent and a standard error of prediction of 78 percent.
A Case Study of Differing Effects of Urbanization on Streamflow From Two Proximate Watersheds
NASA Astrophysics Data System (ADS)
Brandes, D.; Lott, F.
2007-12-01
The effects of urbanization on streamflow from two proximate watersheds (Little Lehigh Creek (LLC) and Monocacy Creek (MC)) are investigated. Despite close similarities in rainfall, population growth, land use, imperviousness, and geology of the watersheds, streamflows at the LLC gage have changed markedly over the past 50 years, while those at the MC gage have not. In LLC, there are significant increasing trends in annual stormflow volume, annual maximum flow, and flashiness, but there are no significant trends in these measures in MC. Neither stream shows significant trends in annual baseflow volume or low flow. It appears that the distinct difference in response to urbanization of these two streams can be ascribed to differences in 1) watershed geomorphology, 2) spatial distribution, composition, and infiltration characteristics of carbonate bedrock, and 3) the spatial pattern of land development in each watershed with respect to the gage location. In regards to geomorphology, there is a steeper main channel and narrower floodplains in LLC than in MC. Carbonate soil and bedrock (primarily dolostone) are distributed throughout much of LLC watershed but only in the lower half of MC watershed; however the lower MC watershed (primarily limestone) has much more abundant sinkholes and karst features than in the LLC watershed. Finally, residential and commercial development is concentrated in the upper two thirds of the LLC watershed, where travel times are such that these areas contribute to the peak flows measured at the gage. Development is concentrated in the lower third of the MC watershed, where it has had less effect on peak flows at the gage. Overall, the study indicates that relatively subtle differences between watershed characteristics and development patterns can result in significant differences in runoff and in how streamflow regimes may change in response to urbanization.
NASA Technical Reports Server (NTRS)
Long, M. J.
1983-01-01
"Built-in" gage determines whether large bolt or stud has been torqued to desired load and provides for continuous inspection to ensure proper load is being maintained. Gage detects longitudinal stress/strain bolt; requires no electronic or sonic test equipment.
Index of surface-water stations in Texas, January 1984
Carrillo, E.R.; Buckner, H.D.
1984-01-01
This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2 the 8-digit station number is abbreviated because of space limitation.
Index of surface-water stations in Texas, January 1985
Carrillo, E.R.; Buckner, H.D.; Rawson, Jack
1984-01-01
This index shows the station number -and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.
Index of surface-water stations in Texas, January 1987
Rawson, Jack; Carrillo, E.R.; Buckner, H.D.
1987-01-01
This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.
Index of surface-water stations in Texas, January 1988
Rawson, Jack; Carrillo, E.R.; Buckner, H.D.
1988-01-01
This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.
McCarthy, Peter M.
2016-04-05
Chapter E of this Scientific Investigations Report documents results from a study by the U.S. Geological Survey, in cooperation with the Montana Department of Environmental Quality and the Montana Department of Natural Resources and Conservation, to provide an update of statewide streamflow characteristics based on data through water year 2009 for streamflow-gaging stations in or near Montana. Streamflow characteristics are presented for 408 streamflow-gaging stations in Montana and adjacent areas having 10 or more years of record. Data include the magnitude and probability of annual low and high streamflow, the magnitude and probability of low streamflow for three seasons (March–June, July–October, and November–February), streamflow duration statistics for monthly and annual periods, and mean streamflows for monthly and annual periods. Streamflow is considered to be regulated at streamflow-gaging stations where dams or other large-scale human modifications affect 20 percent or more of the contributing drainage basin. Separate streamflow characteristics are presented for the unregulated and regulated periods of record for streamflow-gaging stations with sufficient data.
Application of the Hydroecological Integrity Assessment Process for Missouri Streams
Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.
2009-01-01
Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and proposed hydrologic alterations; and (2) a Missouri Stream Classification Tool (MOSCT) designed for placing previously unclassified streams into one of the five pre-defined stream types.
Ahearn, Elizabeth A.
2004-01-01
Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual maximum flows at the gaging station, and the other estimate from the regression equation?are weighted together based on the years of record at the gaging station and the equivalent years of record value determined from the regression. Weighted averages of flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are tabulated for the 70 streamflow-gaging stations used in the regression analysis. Generally, weighted averages give the most accurate estimate of flood flows at gaging stations. An evaluation of the Connecticut's streamflow-gaging network was performed to determine whether the spatial coverage and range of geographic and hydrologic conditions are adequately represented for transferring flood characteristics from gaged to ungaged sites. Fifty-one of 54 stations in the current (2004) network support one or more flood needs of federal, state, and local agencies. Twenty-five of 54 stations in the current network are considered high-priority stations by the U.S. Geological Survey because of their contribution to the longterm understanding of floods, and their application for regionalflood analysis. Enhancements to the network to improve overall effectiveness for regionalization can be made by increasing the spatial coverage of gaging stations, establishing stations in regions of the state that are not well-represented, and adding stations in basins with drainage area sizes not represented. Additionally, the usefulness of the network for characterizing floods can be maintained and improved by continuing operation at the current stations because flood flows can be more accurately estimated at stations with continuous, long-term record.
A model to predict stream water temperature across the conterminous USA
Catalina Segura; Peter Caldwell; Ge Sun; Steve McNulty; Yang Zhang
2014-01-01
Stream water temperature (ts) is a critical water quality parameter for aquatic ecosystems. However, ts records are sparse or nonexistent in many river systems. In this work, we present an empirical model to predict ts at the site scale across the USA. The model, derived using data from 171 reference sites selected from the Geospatial Attributes of Gages for Evaluating...
Tortorelli, R.L.; Bergman, D.L.
1985-01-01
Statewide regression relations for Oklahoma were determined for estimating peak discharge of floods for selected recurrence intervals from 2 to 500 years. The independent variables required for estimating flood discharge for rural streams are contributing drainage area and mean annual precipitation. Main-channel slope, a variable used in previous reports, was found to contribute very little to the accuracy of the relations and was not used. The regression equations are applicable for watersheds with drainage areas less than 2,500 square miles that are not significantly affected by regulation from manmade works. These relations are presented in graphical form for easy application. Limitations on the use of the regression relations and the reliability of regression estimates for rural unregulated streams are discussed. Basin and climatic characteristics, log-Pearson Type III statistics and the flood-frequency relations for 226 gaging stations in Oklahoma and adjacent states are presented. Regression relations are investigated for estimating flood magnitude and frequency for watersheds affected by regulation from small FRS (floodwater retarding structures) built by the U.S. Soil Conservation Service in their watershed protection and flood prevention program. Gaging-station data from nine FRS regulated sites in Oklahoma and one FRS regulated site in Kansas are used. For sites regulated by FRS, an adjustment of the statewide rural regression relations can be used to estimate flood magnitude and frequency. The statewide regression equations are used by substituting the drainage area below the FRS, or drainage area that represents the percent of the basin unregulated, in the contributing drainage area parameter to obtain flood-frequency estimates. Flood-frequency curves and flow-duration curves are presented for five gaged sites to illustrate the effects of FRS regulation on peak discharge.
Webster, M.D.; Rockwell, G.L.; Friebel, M.F.; Brockner, S.J.
2005-01-01
Water-resources data for the 2004 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 4 contains discharge records for 188 gaging stations, stage and contents for 62 lakes and reservoirs, gage-height records for 1 station, water quality for 20 streamflow-gaging stations and 1 partial-record stations. Also included are 4 miscellaneous partial-record sites. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Freeman, L.A.; Smithson, J.R.; Webster, M.D.; Pope, G.L.; Friebel, M.F.
2003-01-01
Water-resources data for the 2002 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 2 contains discharge records for 133 gaging stations, stage and contents for 8 lakes and reservoirs, gage-height records for 6 stations, water quality for 43 streamflow-gaging stations and 5 partial-record stations. Also included are data for 1 low-flow partial-record station, and 5 miscellaneous-measurement stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Streamflow Characteristics of Streams in the Helmand Basin, Afghanistan
Williams-Sether, Tara
2008-01-01
Statistical summaries of streamflow data for all historical streamflow-gaging stations for the Helmand Basin upstream from the Sistan Wetlands are presented in this report. The summaries for each streamflow-gaging station include (1) manuscript (station description), (2) graph of the annual mean discharge for the period of record, (3) statistics of monthly and annual mean discharges, (4) graph of the annual flow duration, (5) monthly and annual flow duration, (6) probability of occurrence of annual high discharges, (7) probability of occurrence of annual low discharges, (8) probability of occurrence of seasonal low discharges, (9) annual peak discharge and corresponding gage height for the period of record, and (10) monthly and annual mean discharges for the period of record.
History of natural flows--Kansas River
Leeson, Elwood R.
1958-01-01
Through its Water Resources Division, the United States Geological Survey has become the major water-resources historian for the nation. The Geological Survey's collection of streamflow records in Kansas began on a very small scale in 1895 in response to some early irrigation interest, Since that time the program has grown, and we now have about 21 350 station-years of record accumulated. A station-year of record is defined as a continuous record of flow collected at a fixed point for a period of one year. Volume of data at hand, however, is not in itself an, adequate measure of its usefullness. An important element in historical streamflow data which enhances its value as a tool for the prediction of the future is the length of continuous records available in the area being studied. The records should be of sufficient length that they may be regarded as a reasonable sample of what has gone before and may be expected in the future. Table 1 gives a graphical inventory of the available streamflow records in Kansas. It shows that, in general, there is a fair coverage of stations with records of about thirty-seven years in length, This is not a long period as history goes but it does include considerable experience with floods and droughts.Although a large quantity of data on Kansas streamflow has been accumulated, hydrologists and planning engineers find that stream flow information for many areas of the State is considerably less than adequate. The problem of obtaining adequate coverage has been given careful study by the Kansas Water Resources Board in cooperation with the U. S. Geological Survey and a report entitled "Development of A Balanced Stream-Gaging Program For Kansas", has been published by the Board as Bulletin No. 4, That report presents an analysis of the existing stream-gaging program and recommendations for a program to meet the rapidly expanding needs for more comprehensive basic data.The Kansas River is formed near Junction City, Kansas, by the confluence of the Smoky Hill and Republican Rivers, From that point the river flows eastward about 175 miles to Kansas City where it empties into the Missouri River. The basic history of its natural flow can be depicted in general by the records from three gaging stations. The one at Bonner Springs, about 21 miles upstream from the mouth, may be considered as representing the total outflow from the basin; the one at Ogden, about 8 miles downstream from the confluence of the Smoky Hill and Republican Rivers, may be considered as representing the combined contribution of those streams to the Kansas River flow; and the one at Topeka, being only about 16 river miles nearer to Ogden than to Bonner Springs, may be considered as representing flows at the mid-point along the river.
Estimating Selected Streamflow Statistics Representative of 1930-2002 in West Virginia
Wiley, Jeffrey B.
2008-01-01
Regional equations and procedures were developed for estimating 1-, 3-, 7-, 14-, and 30-day 2-year; 1-, 3-, 7-, 14-, and 30-day 5-year; and 1-, 3-, 7-, 14-, and 30-day 10-year hydrologically based low-flow frequency values for unregulated streams in West Virginia. Regional equations and procedures also were developed for estimating the 1-day, 3-year and 4-day, 3-year biologically based low-flow frequency values; the U.S. Environmental Protection Agency harmonic-mean flows; and the 10-, 25-, 50-, 75-, and 90-percent flow-duration values. Regional equations were developed using ordinary least-squares regression using statistics from 117 U.S. Geological Survey continuous streamflow-gaging stations as dependent variables and basin characteristics as independent variables. Equations for three regions in West Virginia - North, South-Central, and Eastern Panhandle - were determined. Drainage area, precipitation, and longitude of the basin centroid are significant independent variables in one or more of the equations. Estimating procedures are presented for determining statistics at a gaging station, a partial-record station, and an ungaged location. Examples of some estimating procedures are presented.
Estimating 1970-99 average annual groundwater recharge in Wisconsin using streamflow data
Gebert, Warren A.; Walker, John F.; Kennedy, James L.
2011-01-01
Average annual recharge in Wisconsin for the period 1970-99 was estimated using streamflow data from U.S. Geological Survey continuous-record streamflow-gaging stations and partial-record sites. Partial-record sites have discharge measurements collected during low-flow conditions. The average annual base flow of a stream divided by the drainage area is a good approximation of the recharge rate; therefore, once average annual base flow is determined recharge can be calculated. Estimates of recharge for nearly 72 percent of the surface area of the State are provided. The results illustrate substantial spatial variability of recharge across the State, ranging from less than 1 inch to more than 12 inches per year. The average basin size for partial-record sites (50 square miles) was less than the average basin size for the gaging stations (305 square miles). Including results for smaller basins reveals a spatial variability that otherwise would be smoothed out using only estimates for larger basins. An error analysis indicates that the techniques used provide base flow estimates with standard errors ranging from 5.4 to 14 percent.
Laine, L.L.
1958-01-01
Analysis of streamflow data shows that water supply in the Washita River basin is variable, ranging from substantial amounts and almost continuous flow in the Washita River in the lower end of the basin to somewhat limited and intermittent flow in the upper part of the basin. The total yield of the basin averages 1,557,000 acre-ft per year, of which somewhat less than 1.3 percent is contributed by headwater areas in Texas. The surface waters are generally of acceptable quality for drinking purposes, excellent for irrigation uses, and suitable for many industrial purposes. In Oklahoma the high amounts of runoff tend to occur in the spring months. High runoff may occur during any month in the year but, in general, the available streamflow is relatively small in the summer. Most tributary streams have little sustained base flow and many are dry at times each year. Because of the high variability in flow, development of storage will be necessary to attain maximum utilization of the available water supplies. This report gives the average discharge at most gaging stations and at several additional sites for the 16-year period October 1938 to September 1954, used as a standard period in this report. Data are also shown on water available at several gaging stations and other sites for a given percentage of the time during the 16-year standard period. For several gaging stations data are given on minimum discharges for periods of various length during the most critical periods of record. For all gaging stations a summary of available basic data on streamflow is presented on a monthly annual basis. For other sites at which discharge measurements have been made, a tabulation of observed discharge is given. (available as photostat copy only)
A Precipitation-Runoff Model for the Blackstone River Basin, Massachusetts and Rhode Island
Barbaro, Jeffrey R.; Zarriello, Phillip J.
2007-01-01
A Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model of the Blackstone River Basin was developed and calibrated to study the effects of changing land- and water-use patterns on water resources. The 474.5 mi2 Blackstone River Basin in southeastern Massachusetts and northern Rhode Island is experiencing rapid population and commercial growth throughout much of its area. This growth and the corresponding changes in land-use patterns are increasing stress on water resources and raising concerns about the future availability of water to meet residential and commercial needs. Increased withdrawals and wastewater-return flows also could adversely affect aquatic habitat, water quality, and the recreational value of the streams in the basin. The Blackstone River Basin was represented by 19 hydrologic response units (HRUs): 17 types of pervious areas (PERLNDs) established from combinations of surficial geology, land-use categories, and the distribution of public water and public sewer systems, and two types of impervious areas (IMPLNDs). Wetlands were combined with open water and simulated as stream reaches that receive runoff from surrounding pervious and impervious areas. This approach was taken to achieve greater flexibility in calibrating evapotranspiration losses from wetlands during the growing season. The basin was segmented into 50 reaches (RCHRES) to represent junctions at tributaries, major lakes and reservoirs, and drainage areas to streamflow-gaging stations. Climatological, streamflow, water-withdrawal, and wastewater-return data were collected during the study to develop the HSPF model. Climatological data collected at Worcester Regional Airport in Worcester, Massachusetts and T.F. Green Airport in Warwick, Rhode Island, were used for model calibration. A total of 15 streamflow-gaging stations were used in the calibration. Streamflow was measured at eight continuous-record streamflow-gaging stations that are part of the U.S. Geological Survey cooperative streamflow-gaging network, and at seven partial-record stations installed in 2004 for this study. Because the model-calibration period preceded data collection at the partial-record stations, a continuous streamflow record was estimated at these stations by correlation with flows at nearby continuous-record stations to provide additional streamflow data for model calibration. Water-use information was compiled for 1996-2001 and included municipal and commercial/industrial withdrawals, private residential withdrawals, golf-course withdrawals, municipal wastewater-return flows, and on-site septic effluent return flows. Streamflow depletion was computed for all time-varying ground-water withdrawals prior to simulation. Water-use data were included in the model to represent the net effect of water use on simulated hydrographs. Consequently, the calibrated values of the hydrologic parameters better represent the hydrologic response of the basin to precipitation. The model was calibrated for 1997-2001 to coincide with the land-use and water-use data compiled for the study. Four long-term stations (Nipmuc River near Harrisville, Rhode Island; Quinsigamond River at North Grafton, Massachusetts; Branch River at Forestdale, Rhode Island; and Blackstone River at Woonsocket, Rhode Island) that monitor flow at 3.3, 5.4, 19, and 88 percent of the total basin area, respectively, provided the primary model-calibration points. Hydrographs, scatter plots, and flow-duration curves of observed and simulated discharges, along with various model-fit statistics, indicated that the model performed well over a range of hydrologic conditions. For example, the total runoff volume for the calibration period simulated at the Nipmuc River near Harrisville, Rhode Island; Quinsigamond River at North Grafton, Massachusetts; Branch River at Forestdale, Rhode Island; and Blackstone River at Woonsocket, Rhode Island streamflow-gaging stations differed from the observed runoff v
Peak streamflow on selected streams in Arkansas, December 2015
Breaker, Brian K.
2017-01-11
Heavy rainfall during December 2015 resulted in flooding across parts of Arkansas; rainfall amounts were as high as 12 inches over a period from December 27, 2015, to December 29, 2015. Although precipitation accumulations were highest in northwestern Arkansas, significant flooding occurred in other parts of the State. Flood damage occurred in several counties as water levels rose in streams, and disaster declarations were declared in 32 of the 75 counties in Arkansas.Given the severity of the December 2015 flooding, the U.S. Geological Survey (USGS), in cooperation with the Federal Emergency Management Agency (FEMA), conducted a study to document the meteorological and hydrological conditions prior to and during the flood; compiled flood-peak gage heights, streamflows, and flood probabilities at USGS streamflow-gaging stations; and estimated streamflows and flood probabilities at selected ungaged locations.
Hydrologic data for North Creek, Trinity River basin, Texas, 1975
Kidwell, C.C.
1977-01-01
This report contains the rainfall, runoff, and storage data collected during the 1975 water year for the 21.6-square-mile area above the stream-gaging station North Creek near Jacksboro, Texas. The weighted-mean rainfall in the study area during the water year was 39.01 inches, which is greater than the 18-year average of 30.21 inches for the period 1958-75. Monthly rainfall totals ranged from 1.04 inches in November to 7.94 inches in May. The mean discharge for 1975 at the stream-gaging station was 5.98 cfs, compared with the 14-year (1957-70) average of 5.75 cfs. The annual runoff from the basin above the stream-gaging station was 4,330 acre-feet or 3.76 inches. Three storms were selected for detailed computations for the 1975 water year. The storms occurred on Oct. 30-31, 1974, May 2, 1975 , and Aug. 26, 1975. Rainfall and discharge were computed on the basis of a refined time breakdown. Patterns of the storms are illustrated by hydrographs and mass curves. A summary of rainfall-runoff data is tabulated. There are five floodwater-retarding structures in the study area. These structures have a total capacity of 4,425 acre-feet below flood-spillway crests and regulate streamflow from 16.3 square miles, or 75 percent of the study area. A summary of the physical data at each of the floodwater-retarding structures is included. (Woodard-USGS)
Coffin, Robert; Grams, Susan C.; Cressler, Alan M.; Leeth, David C.
2001-01-01
Water resources data for the 2001 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2001, including: discharge records of 133 gaging stations; stage for 144 gaging stations; precipitation for 58 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 17 stations; the annual peak stage and annual peak discharge for 76 crest-stage partial-record stations; and miscellaneous streamflow measurements at 27 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2001, including continuous water-level records of 159 ground-water wells and periodic records at 138 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins. To obtain a copy of the CD version of this report, you may call the U.S. Geological Survey office in Atlanta at (770) 903-9100, or send e-mail to request the publication. Please include your name and mailing address in your e-mail.
Hopkins, H.T.; Fisher, G.T.; McGreevy, L.J.
1986-01-01
The water table in the alluvium of the Zekiah Swamp Run valley in southern Maryland is above stream level during most of the year and the alluvial aquifer contributes water to the stream. During the summer, however, high evapotranspiration sometimes lowers the water table below the stream level. Water then moves from the stream to the alluvium and, at times, reaches of the stream become dry. Pumping from the confined aquifers has caused water levels to decline several tens of ft, which has increased the downward gradient between the water-table aquifer and the underlying confined aquifers. Three synoptic surveys of base flow show areal and temporal variations in stream discharge, pH, specific conductance, dissolved oxygen, and temperature. April 1984 base flows were high (141 cu ft/sec, at the Route 6 gage) because of high precipitation during March. July 1983 base flows were low (2.35 cu ft/sec at the Route 6 gage) and showed significant loss of streamflow because of high antecedent evapotranspiration. Estimates of inflow and outflow of the Zekiah Swamp Run basin above Route 6 during the 1984 water year include: Precipitation, 50.21 in; stream outflow, 20.10 in; shallow groundwater underflow, 0.1 in; stream outflow, 20.10 in; shallow groundwater underflow, 0.1 in; and evapotranspiration, 33 in. A streamflow budget of a 5.1 mi area of the valley of Zekiah Swamp Run between Routes 5 and 6, during the April 1984 survey and a loss of almost 5 cu ft during the July 1983 survey. (Author 's abstract)
Magnitude and frequency of low flows in the Suwannee River Water Management District, Florida
Giese, G.L.; Franklin, M.A.
1996-01-01
Low-flow frequency statistics for 20 gaging stations having at least 10 years of continuous record and 31 other stations having less than 10 years of continu ous record or a series of at least two low- flow measurements are presented for unregulated streams in the Suwannee River Water Management District in north-central Florida. Statistics for the 20 continuous-record stations included are the annual and monthly minimum consecutive-day average low- flow magnitudes for 1, 3, 7, 14, and 30 consecutive days for recurrence intervals of 2, 5, 10, 20, and, for some long-term stations, 50 years, based on records available through the 1994 climatic year.Only theannual statistics are given for the 31 other stations; these are for the 7- and 30-consecutive day periods only and for recurrence intervals of 2 and 10 years only. Annual low-flow frequency statistics range from zero for many small streams to 5,500 cubic feet per second for the annual 30- consecutive-day average flow with a recurrenceinterval of 2 years for the Suwannee River near Wilcox (station 02323500). Monthly low-flow frequency statistics range from zero for many small streams to 13,800 cubic feet per second for the minimum 30-consecutive-day average flow with a 2-year recurrence interval for the month of March for the same station. Generally, low-flow characteristics of streams in the Suwannee River Water Management District are controlled by climatic, topographic, and geologic fac tors. The carbonate Floridan aquifer system underlies, or is at the surface of, the entire District. The terrane's karstic nature results in manysinkholes and springs. In some places, springs may contribute greatly to low streamflow and the contributing areas of such springs may include areasoutside the presumed surface drainage area of the springs. In other places, water may enter sinkholes within a drainage basin, then reappear in springs downstream from a gage. Many of the smaller streams in the District go dry or have no flow forseveral months in many years. In addition to the low-flow statistics, four synoptic low-flow measurement surveys were conducted on 161 sites during 1990, 1995, and 1996. Themeasurements were made to provide "snapshots" of flow conditions of streams throughout the Suwannee River Water Management District. Magnitudes of low flows during the 1990 series of measurements were in the range associated withminimum 7-consecutive-day 50-year recurrence interval to the minimum 7-consecutive-day 20-year recurrence interval, except in Taylor and Dixie Counties, where the magnitudes ranged from the minimum 7-consecutive-day 5-year flow level to the7-consecutive-day 2-year flow level. The magnitudes were all greater than the minimum 7- consecutive-day 2-year flow level during 1995 and 1996. Observations of no flow were recorded at many of the sites for all four series of measurements.
Henriksen, James A.; Heasley, John; Kennen, Jonathan G.; Nieswand, Steven
2006-01-01
Applying the Hydroecological Integrity Assessment Process involves four steps: (1) a hydrologic classification of relatively unmodified streams in a geographic area using long-term gage records and 171 ecologically relevant indices; (2) the identification of statistically significant, nonredundant, hydroecologically relevant indices associated with the five major flow components for each stream class; and (3) the development of a stream-classification tool and a hydrologic assessment tool. Four computer software tools have been developed.
Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.
2016-04-05
The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application (http://water.usgs.gov/osw/streamstats/) for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from this study were compared with results of previous studies. For most hydrologic regions, the regression equations reported for this study had lower mean standard errors of prediction (in percent) than the previously reported regression equations for Montana. The equations presented for this study are considered to be an improvement on the previously reported equations primarily because this study (1) included 13 more years of peak-flow data; (2) included 35 more streamflow-gaging stations than previous studies; (3) used a detailed geographic information system (GIS)-based definition of the regulation status of streamflow-gaging stations, which allowed better determination of the unregulated peak-flow records that are appropriate for use in the regional regression analysis; (4) included advancements in GIS and remote-sensing technologies, which allowed more convenient calculation of basin characteristics and investigation of many more candidate basin characteristics; and (5) included advancements in computational and analytical methods, which allowed more thorough and consistent data analysis.This report chapter also presents other methods for estimating peak-flow frequencies at ungaged sites. Two methods for estimating peak-flow frequencies at ungaged sites located on the same streams as streamflow-gaging stations are described. Additionally, envelope curves relating maximum recorded annual peak flows to contributing drainage area for each of the eight hydrologic regions in Montana are presented and compared to a national envelope curve. In addition to providing general information on characteristics of large peak flows, the regional envelope curves can be used to assess the reasonableness of peak-flow frequency estimates determined using the regression equations.
Near real time water resources data for river basin management
NASA Technical Reports Server (NTRS)
Paulson, R. W. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.
Water Resources Data for Alaska, Water Year 1996
Linn, K.R.; Shaw, S.K.; Swanner, W.C.; Rickman, R.L.; Schellekens, M.F.
1997-01-01
Water resources data for the 1996 water year for Alaska consist of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground water. This volume contains records for water discharge at 85 gaging stations; stage or contents only at 5 gaging stations; water quality at 19 gaging stations; and water levels for 49 observation wells. Also included are data for 56 crest-stage partial-record stations and 2 lakes. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.
Hayes, P.D.; Agajanian, J.A.; Rockwell, G.L.
1998-01-01
Water-resources data for the 1997 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 151 gaging stations and 16 crest-stage partial-record stations, stage and contents for 21 lakes and reservoirs, gage height records for 1 station, water quality for 23 streamflow-gaging stations and 10 partialrecord stations, and precipitation data for 5 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Califomia.
Pope, G.L.; Agajanian, J.; Caldwell, L.A.; Rockwell, G.L.
2004-01-01
Water-resources data for the 2003 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 193 gaging stations and 11 crest-stage partial-record stations, stage and contents for 22 lakes and reservoirs, gage-height records for 2 stations, water quality for 47 streamflow-gaging stations and 12 partial-record stations, and precipitation data for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Agajanian, J.; Rockwell, G.L.; Anderson, S.W.; Pope, G.L.
2002-01-01
Water-resources data for the 2001 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 180 gaging stations and 13 crest-stage partial-record stations, stage and contents for 20 lakes and reservoirs, gage-height records for 2 stations, water quality for 37 streamflow-gaging stations and 2 partial-record stations, and precipitation data for 3 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Rockwell, G.L.; Pope, G.L.; Agajanian, J.; Caldwell, L.A.
2003-01-01
Water-resources data for the 2002 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 188 gaging stations and 10 crest-stage partial-record stations, stage and contents for 19 lakes and reservoirs, gage-height records for 2 stations, water quality for 39 streamflow-gaging stations and 11 partial-record stations, and precipitation data for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Agajanian, J.; Caldwell, L.A.; Rockwell, G.L.; Pope, G.L.
2005-01-01
Water-resources data for the 2004 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 195 gaging stations and 10 crest-stage partial-record stations, stage and contents for 25 lakes and reservoirs, gage-height records for 2 stations, water quality for 47 streamflow-gaging stations and 7 partial-record stations, and precipitation data for 5 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Agajanian, J.; Rockwell, G.L.; Hayes, P.D.; Anderson, S.W.
1999-01-01
Water-resources data for the 1998 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 157 gaging stations and 13 crest-stage partial-record stations, stage and contents for 21 lakes and reservoirs, gage-height records for 1 station, water quality for 22 streamflow-gaging stations and 14 partialrecord stations, and precipitation data for 3 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Rockwell, G.L.; Hayes, P.D.; Agajanian, J.A.
1997-01-01
Water-resources data for the 1996 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 149 gaging stations and 6 crest-stage partial-record stations, stage and contents for 21 lakes and reservoirs, gage height records for 1 station, water quality for 19 streamflow-gaging stations and 17 partial record stations, and precipitation data for 4 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Anderson, S.W.; Agajanian, J.; Rockwell, G.L.
2001-01-01
Water-resources data for the 2000 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 175 gaging stations and 13 crest-stage partial-record stations, stage and contents for 20 lakes and reservoirs, gage-height records for 2 stations, water quality for 27 streamflow-gaging stations and 3 partial-record stations, and precipitation data for 4 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Water Resources Data, Alaska, Water Year 2000
Meyer, D.F.; Hess, D.L.; Schellekens, M.F.; Smith, C.W.; Snyder, E.F.; Solin, G.L.
2001-01-01
Water-resources data for the 2000 water year for Alaska consists of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 106 gaging stations; stage or contents only at 4 gaging stations; water quality at 31 gaging stations; and water levels for 30 observation wells and 1 water-quality well. Also included are data for 47 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.
Wilson, John Thomas
2000-01-01
A mathematical technique of estimating low-flow frequencies from base-flow measurements was evaluated by using data for streams in Indiana. Low-flow frequencies at low- flow partial-record stations were estimated by relating base-flow measurements to concurrent daily flows at nearby streamflow-gaging stations (index stations) for which low-flowfrequency curves had been developed. A network of long-term streamflow-gaging stations in Indiana provided a sample of sites with observed low-flow frequencies. Observed values of 7-day, 10-year low flow and 7-day, 2-year low flow were compared to predicted values to evaluate the accuracy of the method. Five test cases were used to evaluate the method under a variety of conditions in which the location of the index station and its drainage area varied relative to the partial-record station. A total of 141 pairs of streamflow-gaging stations were used in the five test cases. Four of the test cases used one index station, the fifth test case used two index stations. The number of base-flow measurements was varied for each test case to see if the accuracy of the method was affected by the number of measurements used. The most accurate and least variable results were produced when two index stations on the same stream or tributaries of the partial-record station were used. All but one value of the predicted 7-day, 10-year low flow were within 15 percent of the values observed for the long-term continuous record, and all of the predicted values of the 7-day, 2-year lowflow were within 15 percent of the observed values. This apparent accuracy, to some extent, may be a result of the small sample set of 15. Of the four test cases that used one index station, the most accurate and least variable results were produced in the test case where the index station and partial-record station were on the same stream or on streams tributary to each other and where the index station had a larger drainage area than the partial-record station. In that test case, the method tended to over predict, based on the median relative error. In 23 of 28 test pairs, the predicted 7-day, 10-year low flow was within 15 percent of the observed value; in 26 of 28 test pairs, the predicted 7-day, 2-year low flow was within 15 percent of the observed value. When the index station and partial-record station were on the same stream or streams tributary to each other and the index station had a smaller drainage area than the partial-record station, the method tended to under predict the low-flow frequencies. Nineteen of 28 predicted values of the 7-day, 10-year low flow were within 15 percent of the observed values. Twenty-five of 28 predicted values of the 7-day, 2-year low flow were within 15 percent of the observed values. When the index station and the partial-record station were on different streams, the method tended to under predict regardless of whether the index station had a larger or smaller drainage area than that of the partial-record station. Also, the variability of the relative error of estimate was greatest for the test cases that used index stations and partial-record stations from different streams. This variability, in part, may be caused by using more streamflow-gaging stations with small low-flow frequencies in these test cases. A small difference in the predicted and observed values can equate to a large relative error when dealing with stations that have small low-flow frequencies. In the test cases that used one index station, the method tended to predict smaller low-flow frequencies as the number of base-flow measurements was reduced from 20 to 5. Overall, the average relative error of estimate and the variability of the predicted values increased as the number of base-flow measurements was reduced.
Water Resources Data North Dakota Water Year 2002 Volume 1. Surface Water
Harkness, R.E.; Lundgren, R.F.; Norbeck, S.W.; Robinson, S.M.; Sether, B.A.
2003-01-01
Water-resources data for the 2002 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 106 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 96 streamflow-gaging stations, 3 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.
Water Resources Data North Dakota Water Year 2003, Volume 1. Surface Water
Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.
2004-01-01
Water-resources data for the 2003 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 108 streamflow-gaging stations; stage only for 24 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 32 crest-stage stations; and water-quality for 99 streamflow-gaging stations, 5 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.
Water resources data--North Dakota water year 2005, Volume 1. Surface water
Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.
2006-01-01
Water-resources data for the 2005 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 107 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 31 crest-stage stations; and water quality for 93 streamflow-gaging stations, 6 river-stage stations, 15 lake or reservoir stations, and about 50 miscellaneous sample sites on lakes and wetlands. Data are included for 8 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.
Water Resources Data North Dakota Water Year 2001, Volume 1. Surface Water
Harkness, R.E.; Berkas, W.R.; Norbeck, S.W.; Robinson, S.M.
2002-01-01
Water-resources data for the 2001 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 103 streamflow-gaging stations; stage only for 20 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 94 streamflow-gaging stations, 2 river-stage stations, 9 lake or reservoir stations, 7 miscellaneous sample sites on rivers, and 58 miscellaneous sample sites on lakes and wetlands. Data are included for 9 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.
Water Resources Data, West Virginia, Water Year 2003
Ward, S.M.; Rosier, M.T.; Crosby, G.R.
2004-01-01
Water-resources data for the 2003 water year for West Virginia consists of records of stream discharge, reservoir and ground-water levels, and water quality of streams and ground-water wells. This report contains discharge records for 70 streamflow-gaging stations; discharge records provided by adjacent states for 8 streamflow-gaging stations; annual maximum discharge at 16 crest-stage partial-record stations; stage records for 6 detention reservoirs; water-quality records for 2 stations; and water-level records for 8 observation wells. Locations of streamflow, detention reservoir, and water-quality stations are shown on figure 4. Locations of ground-water observation wells are shown on figure 5. Additional water data were collected at various sites, not involved in the systematic data-collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.
Water resources data-West Virginia, water year 2004
Ward, S.M.; Rosier, M.T.; Crosby, G.R.
2005-01-01
Water-resources data for the 2004 water year for West Virginia consist of records of stream discharge, reservoir and ground-water levels, and water quality of streams and ground-water wells. This report contains discharge records for 65 streamflow-gaging stations; discharge records provided by adjacent states for 8 streamflow-gaging stations; annual maximum discharge at 17 crest-stage partial-record stations; stage records for 14 detention reservoirs; water-quality records for 2 stations; and water-level records for 10 observation wells. Locations of streamflow, detention reservoir, and water-quality stations are shown on figure 4. Locations of ground-water observation wells are shown on figure 5. Additional water-quality data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.
Miscellaneous streamflow measurements in the State of Washington, January 1961 to September 1985
Williams, John R.; Riis, S.A.
1989-01-01
This report is a compilation of previously published miscellaneous streamflow measurements made in Washington State by the U.S. Geological Survey between January 1961 and September 1985. It is a supplement to a volume of similar data for the period 1890 to January 1961. The data include stream name and stream to which it is tributary, latitude and longitude, county code, hydrologic unit code, land-line location, drainage area, and measurement dates and discharges. In general, the data sites are not at gaging stations; however, some data are given for gaging station sites during periods when the stations were not in operation. All data in this report have been entered into a computerized data base that includes the data for the period 1890 to January 1961. The data can be retrieved in a variety of ways, such as by county, by hydrologic unit code, by river basin , or by size of drainage area. (USGS)
Sando, Steven K.; McCarthy, Peter M.; Sando, Roy; Dutton, DeAnn M.
2016-04-05
The two low-elevation gaging stations in eastern Montana (Poplar River at international boundary [gaging station 06178000] and Powder River at Moorhead, Montana [gaging station 06324500]) had considerable changes in annual-peakflow characteristics after the mid-1970s, which might provide evidence of potential nonstationarity in the peak-flow records. The two low-elevation gaging stations that have potential nonstationarity are located in drainage basins that are strongly affected by agricultural activities that potentially affect the hydrologic regimes. Primary agricultural activities that might alter natural hydrologic conditions include construction of small impoundments (primarily for stock-watering purposes) and irrigation diversions. Temporal variability in these activities might contribute to the potential nonstationarity issues. Changes in climatic characteristics after the mid-1970s also possibly contribute to the potential nonstationarity issues. Lack of considerable indication of potential nonstationarity in annual peak flow for the other long-term gaging stations in this study might indicate that climatic changes have been more pronounced with respect to effects on peak flows in low elevation areas in eastern Montana than in areas represented by the other long-term gaging stations. Another possibility is that climatic changes after the mid-1970s are exacerbated in low-elevation areas where small-impoundment development and potential effects of irrigation diversions might be more extensive.
49 CFR 179.400-19 - Valves and gages.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-19 Valves and gages...
Stewart, Anne M.; Callegary, James B.; Smith, Christopher F.; Gupta, Hoshin V.; Leenhouts, James M.; Fritzinger, Robert A.
2012-01-01
The continuous slope-area (CSA) method is an innovative gaging method for indirect computation of complete-event discharge hydrographs that can be applied when direct measurement methods are unsafe, impractical, or impossible to apply. This paper reports on use of the method to produce event-specific discharge hydrographs in a network of sand-bedded ephemeral stream channels in southeast Arizona, USA, for water year 2008. The method provided satisfactory discharge estimates for flows that span channel banks, and for moderate to large flows, with about 10–16% uncertainty, respectively for total flow volume and peak flow, as compared to results obtained with an alternate method. Our results also suggest that the CSA method may be useful for estimating runoff of small flows, and during recessions, but with increased uncertainty.
Continuous Groundwater Monitoring Collocated at USGS Streamgages
NASA Astrophysics Data System (ADS)
Constantz, J. E.; Eddy-Miller, C.; Caldwell, R.; Wheeer, J.; Barlow, J.
2012-12-01
USGS Office of Groundwater funded a 2-year pilot study collocating groundwater wells for monitoring water level and temperature at several existing continuous streamgages in Montana and Wyoming, while U.S. Army Corps of Engineers funded enhancement to streamgages in Mississippi. To increase spatial relevance with in a given watershed, study sites were selected where near-stream groundwater was in connection with an appreciable aquifer, and where logistics and cost of well installations were considered representative. After each well installation and surveying, groundwater level and temperature were easily either radio-transmitted or hardwired to existing data acquisition system located in streamgaging shelter. Since USGS field personnel regularly visit streamgages during routine streamflow measurements and streamgage maintenance, the close proximity of observation wells resulted in minimum extra time to verify electronically transmitted measurements. After field protocol was tuned, stream and nearby groundwater information were concurrently acquired at streamgages and transmitted to satellite from seven pilot-study sites extending over nearly 2,000 miles (3,200 km) of the central US from October 2009 until October 2011, for evaluating the scientific and engineering add-on value of the enhanced streamgage design. Examination of the four-parameter transmission from the seven pilot study groundwater gaging stations reveals an internally consistent, dynamic data suite of continuous groundwater elevation and temperature in tandem with ongoing stream stage and temperature data. Qualitatively, the graphical information provides appreciation of seasonal trends in stream exchanges with shallow groundwater, as well as thermal issues of concern for topics ranging from ice hazards to suitability of fish refusia, while quantitatively this information provides a means for estimating flux exchanges through the streambed via heat-based inverse-type groundwater modeling. In June USGS Fact Sheet 2012-3054 was released online, summarizing the results of the pilot project.
Friday, John
1974-01-01
A crest-stage gaging station provides an excellent means for determining peak water-surface elevations at a selected location on a stream channel. When related to streamflow, these data provide hydrologists with a knowledge of the flood experience of a drainage basin. If an adequate flood history is known, it is possible to estimate the probable magnitude and frequency of floods likely to occur in that basin, and this information is a valuable asset to anyone who must estimate design floods at proposed drainage structures. However, most design problems involve estimating peak flows on ungaged streams. This is difficult because the rate of storm runoff is not the same in all basins due to the influence of various basin characteristics which can either assist or retard the runoff. The crest-stage gaging program in Oregon is designed to provide a representative sampliing of peak flows at basins having a wide range in characteristics. Then, after sufficient data are collected, a statistical analysis can be made which will provide a means for estimating design floods at ungaged sites on the basis of known basin characteristics.This report is one of a series presenting a compilation of peak data collected at 232 crest-stage gaging stations in Oregon. The collection and publication of these data are made possible through mutual funding by State and Federal agencies. The Geological Survey, the Oregon State Highway Commission, the Federal Highway Administration, and the Bureau of Land Management are currently supporting 160 active crest-stage stations in Oregon.
NASA Astrophysics Data System (ADS)
Praskievicz, S. J.; Luo, C.
2017-12-01
Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.
Flood of April 2-3, 2005, Neversink River Basin, New York
Suro, Thomas P.; Firda, Gary D.
2006-01-01
Heavy rain on April 2-3, 2005 produced rainfall amounts of 3 inches to almost 6 inches within a 36-hour period throughout the Delaware River basin. Major flooding occurred in the East and West Branches of the Delaware River and their tributaries, the main stem of the Delaware River and the Neversink River, a major tributary to the Delaware River. The resultant flooding damaged hundreds of homes, caused millions of dollars in damage to infrastructure in Orange and Sullivan Counties, and forced more than 1,000 residents to evacuate their homes. A total of 20 New York counties were declared Federal disaster areas. Some of the most extensive flooding occurred along the Neversink and Delaware Rivers in Orange and Sullivan Counties, New York. Disaster recovery assistance from the April 2005 flooding in New York stood at almost $35 million in 2005, at which time more than 3,400 New Yorkers had registered for Federal aid. All U.S. Geological Survey stream-gaging stations on the Neversink River below the Neversink Reservoir recorded peak water-surface elevations higher than those recorded during the September 2004 flooding. Peak water-surface elevations at some study sites on the Neversink River exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey stream-gaging stations were the highest ever recorded. Several U.S. Geological Survey stream-gaging stations on the Delaware River also recorded peak water-surface elevations that exceeded those recorded during the September 2004 flooding.
Relations for estimating unit-hydrograph parameters in New Mexico
Waltemeyer, Scott D.
2001-01-01
Data collected from 20 U.S. Geological Survey streamflow-gaging stations, most of which were operated in New Mexico between about 1969 and 1977, were used to define hydrograph characteristics for small New Mexico streams. Drainage areas for the gaging stations ranged from 0.23 to 18.2 square miles. Observed values for the hydrograph characteristics were determined for 87 of the most significant rainfall-runoff events at these gaging stations and were used to define regional regression relations with basin characteristics. Regional relations defined lag time (tl), time of concentration (tc), and time to peak (tp) as functions of stream length and basin shape. The regional equation developed for time of concentration for New Mexico agrees well with the Kirpich equation developed for Tennessee. The Kirpich equation is based on stream length and channel slope, whereas the New Mexico equation is based on stream length and basin shape. Both equations, however, underestimate tc when applied to larger basins where tc is greater than about 2 hours. The median ratio between tp and tc for the observed data was 0.66, which equals the value (0.67) recommended by the Natural Resources Conservation Service (formerly the Soil Conservation Service). However, the median ratio between tl and tc was only 0.42, whereas the commonly used ratio is 0.60. A relation also was developed between unit-peak discharge (qu) and time of concentration. The unit-peak discharge relation is similar in slope to the Natural Resources Conservation Service equation, but the equation developed for New Mexico in this study produces estimates of qu that range from two to three times as large as those estimated from the Natural Resources Conservation Service equation. An average value of 833 was determined for the empirical constant Kp. A default value of 484 has been used by the Natural Resources Conservation Service when site-specific data are not available. The use of a lower value of Kp in calculations generally results in a lower peak discharge. A relation between the empirical constant Kp and average channel slope was defined in this study. The predicted Kp values from the equation ranged from 530 to 964 for the 20 flood-hydrograph gaging stations. The standard error of estimate for the equation is 36 percent.
Evaluation results of the 700 deg C Chinese strain gages
NASA Technical Reports Server (NTRS)
Hobart, H. F.
1984-01-01
There is a continuing interest and need for resistance strain gages capable of making static strain measurements on components located in the hot section of gas turbine engines. A paper by Tsen-tai Wu describes the development and evaluation of high temperature gauges fabricated from specially developed Fe-Cr-Al-V-Ti-Y alloy wire. Several of these gages and a quantity of P12-2 ceramic adhesive were purchased for evaluation. Nine members of the aircraft turbine engine community were invited to participate in an evaluation of these gages. Each participant was sent one strain gage, a small amount of ceramic adhesive, instructions for mounting the gage on a test beam, and a set of suggestions for the experiment. Data on gage factor variation with temperature, apparent strain, and drift are discussed.
Water Resources Data, New Jersey, Water Year 2002, Volume 1. Surface-Water Data
Reed, T.J.; White, B.T.; Centinaro, G.L.; Dudek, J.F.; Spehar, A.B.; Protz, A.R.; Shvanda, J.C.; Watson, A.F.; Holzer, G.K.
2003-01-01
Water-resources data for the 2002 Water Year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 1 contains discharge records for 93 gaging stations; tide summaries at 31 gaging stations; and stage and contents at 39 lakes and reservoirs. Also included are stage and discharge for 104 crest-stage partial-record stations and stage-only at 31 tidal crest-stage gages. Locations of these sites are shown in figures 8-11. Additional water data were collected at various sites that are not part of the systematic data-collection program. Discharge measurements were made at 201 low-flow partial-record stations and 121 miscellaneous sites.
Water Resources Data, Louisiana, Water Year 2002
Goree, B.B.; Lovelace, W.M.; Montgomery, P.A.; Resweber, J.C.; Labbe, Charles K.; Walters, David J.
2003-01-01
Water resources data for the 2002 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 85 gaging stations; stage only for 79 gaging stations and 7 lakes; water quality for 52 surface-water stations (including 40 gaging stations) and 104 wells; and water levels for 300 observation wells. Also included are data for 143 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.
Surface-Water Techniques: On Demand Training Opportunities
,
2007-01-01
The U.S. Geological Survey (USGS) has been collecting streamflow information since 1889 using nationally consistent methods. The need for such information was envisioned by John Wesley Powell as a key component for settlement of the arid western United States. Because of Powell?s vision the nation now has a rich streamflow data base that can be analyzed with confidence in both space and time. This means that data collected at a stream gaging station in Maine in 1903 can be compared to data collected in 2007 at the same gage in Maine or at a different gage in California. Such comparisons are becoming increasingly important as we work to assess climate variability and anthropogenic effects on streamflow. Training employees in proper and consistent techniques to collect and analyze streamflow data forms a cornerstone for maintaining the integrity of this rich data base.
NASA Astrophysics Data System (ADS)
Wang, Hongrui; Wang, Cheng; Wang, Ying; Gao, Xiong; Yu, Chen
2017-06-01
This paper presents a Bayesian approach using Metropolis-Hastings Markov Chain Monte Carlo algorithm and applies this method for daily river flow rate forecast and uncertainty quantification for Zhujiachuan River using data collected from Qiaotoubao Gage Station and other 13 gage stations in Zhujiachuan watershed in China. The proposed method is also compared with the conventional maximum likelihood estimation (MLE) for parameter estimation and quantification of associated uncertainties. While the Bayesian method performs similarly in estimating the mean value of daily flow rate, it performs over the conventional MLE method on uncertainty quantification, providing relatively narrower reliable interval than the MLE confidence interval and thus more precise estimation by using the related information from regional gage stations. The Bayesian MCMC method might be more favorable in the uncertainty analysis and risk management.
Water resources data, Louisiana, water year 2004
Baumann, Todd; Goree, B.B.; Lovelace, W.M.; Montogmery, P.A.; Resweber, J.C.; Ross, Garron B.; Ward, Aub N.; Walters, David J.
2005-01-01
Water resources data for the 2004 water year for Louisiana consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 77 gaging stations; stage only for 86 gaging stations and 7 lakes; water quality for 60 surface-water stations (including 42 gaging stations) and 112 wells; and water levels for 304 observation wells. Also included are data for 158 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.
The Plate Boundary Observatory: Current status and plans for the next five years
NASA Astrophysics Data System (ADS)
Mattioli, G. S.; Feaux, K.; Meertens, C. M.; Mencin, D.; Miller, M.
2013-12-01
UNAVCO currently operates and maintains the NSF-funded Plate Boundary Observatory (PBO), which is the geodetic facility of EarthScope. PBO was designed and built from 2003 to 2008 with $100M investment from the NSF Major Research Equipment and Facilities Construction (MREFC) Program. UNAVCO operated and maintained PBO under a Cooperative Agreement (CA) with NSF from 2008 to 2013 and will continue PBO O&M for the next five years as part of the new Geodesy Advancing Geosciences and EarthScope (GAGE) Facility. PBO is largest continuous GPS and borehole geophysical network in the Americas, with 1100 continuous Global Positioning System (cGPS) sites, including several with multiple monuments, 79 boreholes, with 75 tensor strainmeters, 78 short-period, 3-component seismometers, and pore pressure sensors at 23 sites. PBO also includes 26 tiltmeters deployed at volcanoes in Alaska, Mt St Helens, and Yellowstone caldera and 6 long-baseline laser strainmeters. Surface meteorological sensors are collocated at 154 GPS sites. UNAVCO provides high-rate (1 Hz), low-latency (<1 s) GPS data streams (RT-GPS) from 382 stations in PBO. UNAVCO has delivered over 62 Tb of geodetic data to the EarthScope community since its PBO's inception in 2004. Over the past year, data return for the cGPS component of PBO is 98%, well above the data return metric of 85% set by the NSF, a result of efforts to upgrade power systems and communications infrastructure. In addition, PBO has set the standard for the design, construction, and operation of other multi-hazard networks across the Americas, including COCONet in the Caribbean region and TLALOCNet in Mexico. Funding to support ongoing PBO O&M has declined from FY2012 CA levels under the new GAGE Facility. The implications for data return and data quality metrics as well as replacement of aging PBO GPS instruments with GNSS-compatible systems are as yet unknown. A process to assess the cost of specific PBO components, data rates, enhanced capabilities, and method of delivery (i.e. continuous streams vs. archived files) relative to their scientific value will be proposed. In addition, options to partner with other federal mission-oriented agencies and possible commercial ventures also will be discussed. 1100 station PBO continuous GPS Network.
Raines, Timothy H.
1998-01-01
The potential extreme peak-discharge curves as related to contributing drainage area were estimated for each of the three hydrologic regions from measured extreme peaks of record at 186 sites with streamflow-gaging stations and from measured extreme peaks at 37 sites without streamflow-gaging stations in and near the Brazos River Basin. The potential extreme peak-discharge curves generally are similar for hydrologic regions 1 and 2, and the curve for region 3 consistently is below the curves for regions 1 and 2, which indicates smaller peak discharges.
Flood-frequency characteristics of Wisconsin streams
Walker, John F.; Peppler, Marie C.; Danz, Mari E.; Hubbard, Laura E.
2017-05-22
Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of the equations presented in this report. The State was divided into eight areas of similar physiographic characteristics. The most significant basin characteristics are drainage area, soil saturated hydraulic conductivity, main-channel slope, and several land-use variables. The standard error of prediction for the equation for the 1-percent annual exceedance probability flood ranges from 56 to 70 percent for Wisconsin Streams; these values are larger than results presented in previous reports. The increase in the standard error of prediction is likely due to increased variability of the annual-peak discharges, resulting in increased variability in the magnitude of flood peaks at higher frequencies. For each of the unregulated rural streamflow-gaging stations, a weighted estimate based on the at-site log Pearson type III analysis and the multiple regression results was determined. The weighted estimate generally has a lower uncertainty than either the Log Pearson type III or multiple regression estimates. For regulated streams, a graphical method for estimating flood-frequency characteristics was developed from the relations of discharge and drainage area for selected annual exceedance probabilities. Graphs for the major regulated streams in Wisconsin are presented in the report.
Payne, G.A.
1983-01-01
Streamflow and suspended-sediment-transport data were collected in Garvin Brook watershed in Winona County, southeastern Minnesota, during 1982. The data collection was part of a study to determine the effectiveness of agricultural best-management practices designed to improve rural water quality. The study is part of a Rural Clean Water Program demonstration project undertaken by the U.S. Department of Agriculture. Continuous streamflow data were collected at three gaging stations during March through September 1982. Suspended-sediment samples were collected at two of the gaging stations. Samples were collected manually at weekly intervals. During periods of rapidly changing stage, samples were collected at 30-minute to 12-hour intervals by stage-activated automatic samplers. The samples were analyzed for suspendedsediment concentration and particle-size distribution. Particlesize distributions were also determined for one set of bedmaterial samples collected at each sediment-sampling site. The streamflow and suspended-sediment-concentration data were used to compute records of mean-daily flow, mean-daily suspended-sediment concentration, and daily suspended-sediment discharge. The daily records are documented and results of analyses for particle-size distribution and of vertical sampling in the stream cross sections are given.
Water Resources Data, Alabama, Water Year 2002
Pearman, J.L.; Stricklin, V.E.; Psinakis, W.L.
2003-01-01
Water resources data for the 2002 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations, for 41 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 47 stations; (3) water-quality records for 12 streamflow-gaging stations, for 17 ungaged streamsites, and for 2 precipitation stations; (4) water temperature at 14 surfacewater stations; (5) specific conductance and dissolved oxygen at 12 stations; (6) turbidity at 3 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observation wells; and (9) water-quality records for 21 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.
Water Resources Data, Alabama, Water Year 2003
Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.
2004-01-01
Water resources data for the 2003 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 130 streamflow-gaging stations, for 29 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 46 stations; (3) water-quality records for 12 streamflow-gaging stations, for 29 ungaged streamsites, and for 1 precipitation stations; (4) water temperature at 12 surfacewater stations; (5) specific conductance and dissolved oxygen at 12 stations; (6) turbidity at 3 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observation wells; and (9) water-quality records for 9 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.
Water Resources Data, Alabama, Water Year 2004
Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.
2005-01-01
Water resources data for the 2004 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations, for 19 partial-record or miscellaneous streamflow stations; (2) stage and content records for 16 lakes and reservoirs and stage at 44 stations; (3) water-quality records for 21 streamflow-gaging stations, for 11 ungaged streamsites, and for 1 precipitation stations; (4) water temperature at 20 surface-water stations; (5) specific conductance and dissolved oxygen at 20 stations; (6) turbidity at 5 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observa-tion wells; and (9) water-quality records for 6 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous sur-face-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.
Water Resources Data, Alabama, Water Year 2005
Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.
2006-01-01
Water resources data for the 2005 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations and 23 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 44 stations; (3) water-quality records for 125 streamflow-gaging stations and 67 ungaged streamsites; (4) water temperature at 179 surface-water stations; (5) specific conductance at 180 stations; (6) dissolved oxygen at 17 stations; (7) turbidity at 52 stations; (8) sediment data at 2 stations; (9) water-level records for 2 recording observation wells; and (10) water-quality records for 6 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface- water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.
NASA Astrophysics Data System (ADS)
Renschler, Chris S.; Wang, Zhihao
2017-10-01
In light of climate and land use change, stakeholders around the world are interested in assessing historic and likely future flood dynamics and flood extents for decision-making in watersheds with dams as well as limited availability of stream gages and costly technical resources. This research evaluates an assessment and communication approach of combining GIS, hydraulic modeling based on latest remote sensing and topographic imagery by comparing the results to an actual flood event and available stream gages. On August 28th 2011, floods caused by Hurricane Irene swept through a large rural area in New York State, leaving thousands of people homeless, devastating towns and cities. Damage was widespread though the estimated and actual floods inundation and associated return period were still unclear since the flooding was artificially increased by flood water release due to fear of a dam break. This research uses the stream section right below the dam between two stream gages North Blenheim and Breakabeen along Schoharie Creek as a case study site to validate the approach. The data fusion approach uses a GIS, commonly available data sources, the hydraulic model HEC-RAS as well as airborne LiDAR data that were collected two days after the flood event (Aug 30, 2011). The aerial imagery of the airborne survey depicts a low flow event as well as the evidence of the record flood such as debris and other signs of damage to validate the hydrologic simulation results with the available stream gauges. Model results were also compared to the official Federal Emergency Management Agency (FEMA) flood scenarios to determine the actual flood return period of the event. The dynamic of the flood levels was then used to visualize the flood and the actual loss of the Old Blenheim Bridge using Google Sketchup. Integration of multi-source data, cross-validation and visualization provides new ways to utilize pre- and post-event remote sensing imagery and hydrologic models to better understand and communicate the complex spatial-temporal dynamics, return periods and potential/actual consequences to decision-makers and the local population.
Evaluation of streamflow records in Rogue River basin, Oregon
Richardson, Donald
1952-01-01
This report presents data which are, in general, supplementary to those the surface-water investigations made in the past by the U. S. Geological Survey. Those have been essentially investigations of the operation of the many gaging stations on the Rogue River and tributaries. The data presented were obtained from a detailed field investigation of the various #actors resulting from man-made structures that influence the quantity or regimen of the flow at the gaging stations. These factors include diversions from the stream, bypass channels carrying water around the gaging stations, return flow from irrigation or other projects, storage and release of flood waters, and other similar factors. Where feasible, the location, size, effect upon the streamflow periods of use, method of operation,, and similar information are. given. The information is divided into sections corresponding to areas determined by the location of gaging stations. An index of streamflow records is included. A section dealing with the adequacy of available water-resources data and containing location and period of record also is included. This information is given in general terms only, and is portrayed mainly by maps and graphs.
Lagtime relations for urban streams in Georgia
Inman, Ernest J.
2000-01-01
Urban flood hydrographs are needed for the design of many highway drainage structures, embankments, and entrances to detention ponds. The three components that are needed to simulate urban flood hydrographs at ungaged sites are the design flood, the dimensionless hydrograph, and lagtime. The design flood and the dimensionless hydrograph have been presented in earlier studies for urban streams in Georgia. The objective of this study was to develop equations for estimating lagtime for urban streams in Georgia. Lagtimes were computed for 329 floods at 69 urban gaging stations in 11 cities in Georgia. These data were used to compute an average lagtime for each gaging station. Multiple regression analysis was then used to define relations between lagtime and certain physical basin characteristics, of which drainage area, slope, and impervious area were found to be significant. A qualitative variable was used to account for a geographical bias in flood-frequency region 4, a small area of southwestern Georgia. Information from this report can be used to simulate a flood hydrograph using a dimensionless hydrograph, the design flood, and the lagtime obtained from regression equations for any urban site with less than a 25-square-mile drainage area in Georgia.
53. View of unlined canal about 1,500' west of streamgaging ...
53. View of unlined canal about 1,500' west of stream-gaging station, looking west. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
51. View of sitdown cable car and cable way for ...
51. View of sit-down cable car and cable way for stream gaging, looking west. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
"Artificial intelligence" at streamgaging stations
R. B. Thomas
1985-01-01
Two types of problems are related to collecting hydrologic data at stream gaging stations. One includes the technical/logistical questions associated with measuring and transferring data for processing. Effort spent on these problems ranges from improving devices for sensing data to using electronic data loggers.
Oregon Hydrologic Landscapes: An Approach for Broadscale Hydrologic Classification
Gaged streams represent only a small percentage of watershed hydrologic conditions throughout the Unites States and globe, but there is a growing need for hydrologic classification systems that can serve as the foundation for broad-scale assessments of the hydrologic functions of...
NASA Astrophysics Data System (ADS)
Silverman, N. L.; Moore, J. N.; Maneta, M. P.
2014-12-01
The majority of watersheds within the United States have been disturbed by anthropogenic land use change. On top of this, there is strong evidence of (historic and projected) climatic changes that affect earth's hydrologic cycle. Streamflow measurements integrate the effects of land use and climate change on watershed hydrology. Therefore, when temporal trends are present, teasing out the cause is challenging due to the overlying climate and land use signals. In this study, we develop an analytical framework for distinguishing trends in streamflow that are driven by climate change from those that are driven by land use change. This framework is based on the theory that during wetter years runoff is affected more by changes in climate than during drier years. Whereas, the inverse is true for land use change. During wetter years runoff is affected less by land use change than during drier years. This difference can be seen in the quantile regression of the 75th and 25th percentile annual stream flows which represent wetter and drier years, respectively. This creates a defining characteristic in how these two forcing mechanisms manifest within the streamflow record. We empirically test this framework and show that the sensitivity of runoff to climate and land use change is uniquely dependent on the spatiotemporal water and energy limitations of a catchment. Finally we apply the framework using 1,566 watersheds across the contiguous United States. We use gages from the United States Geological Survey (USGS) National Water Information System (NWIS) network. The gages are selected because they have continuous and complete data from the years 1950 to 2009 and represent watersheds which are characterized by a range of disturbances. Our results show that the driving mechanisms of streamflow change across the U.S. are regionally coherent and correspond with land management activities and climate zones. This methodology provides a simple means of classifying watershed to regional scale hydroclimatic change without relying on reference stream gages, complex models, or observational climate networks.
Brown, Christopher R.
2014-01-01
In 2013, the U.S. Geological Survey (USGS), in cooperation with the U. S. Department of the Army, compiled available precipitation and streamflow data for the years of 2008–2012 from the Fort Carson Military Reservation (Fort Carson) near Colorado Springs, Colo., and precipitation, streamflow, and suspended-sediment loads from the Piñon Canyon Maneuver Site (PCMS) near Trinidad, Colo. Graphical representations of the data presented herein are a continuation of work completed by the USGS in 2008 to gain a better understanding of spatial and temporal trends within the hydrologic data. Precipitation stations at Fort Carson and the PCMS were divided into groups based on their land-surface altitude (LSA) to determine if there is a spatial difference in precipitation amounts based on LSA for either military facility. Two-sample t-tests and Wilcoxon rank-sum tests indicated statistically significant differences exist between precipitation values at different groups for Fort Carson but not for the PCMS. All five precipitation stations at Fort Carson exhibit a decrease in median daily total precipitation from years 2002–2007 to 2008–2012. For the PCMS, median precipitation values decreased from the first study period to the second for the 13 stations monitored year-round except for Burson and Big Hills. Mean streamflow for 2008–2012 is less than mean streamflow for 1983–2007 for all stream-gaging stations at Fort Carson and at the PCMS. During the study period, each of the stream-gaging stations within the tributary channels at the PCMS accounted for less than three percent of the total streamflow at the Purgatoire River at Rock Crossing gage. Peak streamflow for 2008–2012 is less than peak streamflow for 2002–2007 at both Fort Carson and the PCMS. At the PCMS, mean suspended-sediment yield for 2008–2012 increased by 54 percent in comparison to the mean yield for 2002–2007. This increase is likely related to the destruction of groundcover by a series of wildfires within the PCMS in 2008 and 2011.
Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio
Koltun, G.F.; Roberts, J.W.
1990-01-01
Multiple-regression equations are presented for estimating flood-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at ungaged sites on rural, unregulated streams in Ohio. The average standard errors of prediction for the equations range from 33.4% to 41.4%. Peak discharge estimates determined by log-Pearson Type III analysis using data collected through the 1987 water year are reported for 275 streamflow-gaging stations. Ordinary least-squares multiple-regression techniques were used to divide the State into three regions and to identify a set of basin characteristics that help explain station-to- station variation in the log-Pearson estimates. Contributing drainage area, main-channel slope, and storage area were identified as suitable explanatory variables. Generalized least-square procedures, which include historical flow data and account for differences in the variance of flows at different gaging stations, spatial correlation among gaging station records, and variable lengths of station record were used to estimate the regression parameters. Weighted peak-discharge estimates computed as a function of the log-Pearson Type III and regression estimates are reported for each station. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site located on the same stream. Limitations and shortcomings cited in an earlier report on the magnitude and frequency of floods in Ohio are addressed in this study. Geographic bias is no longer evident for the Maumee River basin of northwestern Ohio. No bias is found to be associated with the forested-area characteristic for the range used in the regression analysis (0.0 to 99.0%), nor is this characteristic significant in explaining peak discharges. Surface-mined area likewise is not significant in explaining peak discharges, and the regression equations are not biased when applied to basins having approximately 30% or less surface-mined area. Analyses of residuals indicate that the equations tend to overestimate flood-peak discharges for basins having approximately 30% or more surface-mined area. (USGS)
Wang, Hongrui; Wang, Cheng; Wang, Ying; ...
2017-04-05
This paper presents a Bayesian approach using Metropolis-Hastings Markov Chain Monte Carlo algorithm and applies this method for daily river flow rate forecast and uncertainty quantification for Zhujiachuan River using data collected from Qiaotoubao Gage Station and other 13 gage stations in Zhujiachuan watershed in China. The proposed method is also compared with the conventional maximum likelihood estimation (MLE) for parameter estimation and quantification of associated uncertainties. While the Bayesian method performs similarly in estimating the mean value of daily flow rate, it performs over the conventional MLE method on uncertainty quantification, providing relatively narrower reliable interval than the MLEmore » confidence interval and thus more precise estimation by using the related information from regional gage stations. As a result, the Bayesian MCMC method might be more favorable in the uncertainty analysis and risk management.« less
Water resources data, Ohio, water year 2003 : Volume 1. Ohio River basin excluding project data
Shindel, H.L.; Mangus, J.P.; Frum, S.R.
2004-01-01
Water-resources data for the 2003 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 138 gaging stations and various partial-record sites; water levels at 217 observation wells and 35 crest-stage gages; and water quality at 30 gaging stations, 34 observation wells, and no partial-record sites. Also included are data from miscellaneous and synoptic sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Information System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Ohio.
Shindel, H.L.; Mangus, J.P.; Frum, S.R.
2004-01-01
Water-resources data for the 2003 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 138 gaging stations and various partial-record sites; water levels at 217 observation wells and 35 crest-stage gages; and water quality at 30 gaging stations, 34 observation wells, and no partial-record sites. Also included are data from miscellaneous and synoptic sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Information System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Ohio.
Williams-Sether, Tara
2015-08-06
Annual peak-flow frequency data from 231 U.S. Geological Survey streamflow-gaging stations in North Dakota and parts of Montana, South Dakota, and Minnesota, with 10 or more years of unregulated peak-flow record, were used to develop regional regression equations for exceedance probabilities of 0.5, 0.20, 0.10, 0.04, 0.02, 0.01, and 0.002 using generalized least-squares techniques. Updated peak-flow frequency estimates for 262 streamflow-gaging stations were developed using data through 2009 and log-Pearson Type III procedures outlined by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data. An average generalized skew coefficient was determined for three hydrologic zones in North Dakota. A StreamStats web application was developed to estimate basin characteristics for the regional regression equation analysis. Methods for estimating a weighted peak-flow frequency for gaged sites and ungaged sites are presented.
Water Resources Data for Oregon, Water Year 2002
Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.
2003-01-01
The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in the State and contains discharge records for 181 stream-gaging stations, 47 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records for 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.
Water Resources Data for Oregon, Water Year 2003
Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.
2004-01-01
The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in Oregon and contains discharge records for 199 stream-gaging stations, 25 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records collected at 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockwell, G.L.; Hayes, P.D.; Agajanian, J.
1997-07-01
Water-resources data for the 1996 water year for California consist of records of stage, discharge, and water quality of streams, stage and contents in lakes and reservoirs, and water levels and water quality in wells. Volume 1 contains discharge records for 149 gaging stations and 6 crest-stage partial-record stations, stage and contents for 21 lakes and reservoirs, gage height records for 1 station, water quality for 19 streamflow-gaging stations and 17 partial-record stations, and precipitation data for 4 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State andmore » Federal agencies in California.« less
Lee, Karl K.; Risley, John C.
2002-03-19
Precipitation-runoff models, base-flow-separation techniques, and stream gain-loss measurements were used to study recharge and ground-water surface-water interaction as part of a study of the ground-water resources of the Willamette River Basin. The study was a cooperative effort between the U.S. Geological Survey and the State of Oregon Water Resources Department. Precipitation-runoff models were used to estimate the water budget of 216 subbasins in the Willamette River Basin. The models were also used to compute long-term average recharge and base flow. Recharge and base-flow estimates will be used as input to a regional ground-water flow model, within the same study. Recharge and base-flow estimates were made using daily streamflow records. Recharge estimates were made at 16 streamflow-gaging-station locations and were compared to recharge estimates from the precipitation-runoff models. Base-flow separation methods were used to identify the base-flow component of streamflow at 52 currently operated and discontinued streamflow-gaging-station locations. Stream gain-loss measurements were made on the Middle Fork Willamette, Willamette, South Yamhill, Pudding, and South Santiam Rivers, and were used to identify and quantify gaining and losing stream reaches both spatially and temporally. These measurements provide further understanding of ground-water/surface-water interactions.
ESTIMATING STREAMFLOW AND ASSOCIATED HYDRAULIC GEOMETRY, THE MID-ATLANTIC REGION, USA
Methods to estimate streamflow and channel hydraulic geometry were developed for ungaged streams in the Mid-Atlantic Region. Observed mean annual streamflow and associated hydraulic geometry data from 75 gaging stations located in the Appalachian Plateau, the Ridge and Valley, an...
Cost-effectiveness of the stream-gaging program in Iowa
Burmeister, I.L.; Lara, O.G.
1984-01-01
Data simulated by using the flow-routing and regression methods for stations in 6 river basins do not meet the accuracy required for their data use. Other basins will be studied later to determine if alternative methods to meet accuracy standards are feasible.
Water resources data, Kentucky. Water year 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClain, D.L.; Byrd, F.D.; Brown, A.C.
1991-12-31
Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at amore » regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.« less
Estimates of streamflow characteristics for selected small streams, Baker River basin, Washington
Williams, John R.
1987-01-01
Regression equations were used to estimate streamflow characteristics at eight ungaged sites on small streams in the Baker River basin in the North Cascade Mountains, Washington, that could be suitable for run-of-the-river hydropower development. The regression equations were obtained by relating known streamflow characteristics at 25 gaging stations in nearby basins to several physical and climatic variables that could be easily measured in gaged or ungaged basins. The known streamflow characteristics were mean annual flows, 1-, 3-, and 7-day low flows and high flows, mean monthly flows, and flow duration. Drainage area and mean annual precipitation were not the most significant variables in all the regression equations. Variance in the low flows and the summer mean monthly flows was reduced by including an index of glacierized area within the basin as a third variable. Standard errors of estimate of the regression equations ranged from 25 to 88%, and the largest errors were associated with the low flow characteristics. Discharge measurements made at the eight sites near midmonth each month during 1981 were used to estimate monthly mean flows at the sites for that period. These measurements also were correlated with concurrent daily mean flows from eight operating gaging stations. The correlations provided estimates of mean monthly flows that compared reasonably well with those estimated by the regression analyses. (Author 's abstract)
Crack growth measured on flat and curved surfaces at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Orange, T. W.; Sullivan, T. L.
1967-01-01
Multiple element continuity gage measures plane stress crack growth plus surface crack growth under plane strain conditions. The gage measures flat and curved surfaces and operates at cryogenic temperatures.
Moyer, Douglas; Bennett, Mark
2007-01-01
The U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (USEPA), Chesapeake Bay Program (CBP), Interstate Commission for the Potomac River Basin (ICPRB), Maryland Department of the Environment (MDE), Virginia Department of Conservation and Recreation (VADCR), and University of Maryland (UMD) are collaborating to improve the resolution of the Chesapeake Bay Regional Watershed Model (CBRWM). This watershed model uses the Hydrologic Simulation Program-Fortran (HSPF) to simulate the fate and transport of nutrients and sediment throughout the Chesapeake Bay watershed and extended areas of Virginia, Maryland, and Delaware. Information from the CBRWM is used by the CBP and other watershed managers to assess the effectiveness of water-quality improvement efforts as well as guide future management activities. A critical step in the improvement of the CBRWM framework was the development of an HSPF function table (FTABLE) for each represented stream channel. The FTABLE is used to relate stage (water depth) in a particular stream channel to associated channel surface area, channel volume, and discharge (streamflow). The primary tool used to generate an FTABLE for each stream channel is the XSECT program, a computer program that requires nine input variables used to represent channel morphology. These input variables are reach length, upstream and downstream elevation, channel bottom width, channel bankfull width, channel bankfull stage, slope of the floodplain, and Manning's roughness coefficient for the channel and floodplain. For the purpose of this study, the nine input variables were grouped into three categories: channel geometry, Manning's roughness coefficient, and channel and floodplain slope. Values of channel geometry for every stream segment represented in CBRWM were obtained by first developing regional regression models that relate basin drainage area to observed values of bankfull width, bankfull depth, and bottom width at each of the 290 USGS streamflow-gaging stations included in the areal extent of the model. These regression models were developed on the basis of data from stations in four physiographic provinces (Appalachian Plateaus, Valley and Ridge, Piedmont, and Coastal Plain) and were used to predict channel geometry for all 738 stream segments in the modeled area from associated basin drainage area. Manning's roughness coefficient for the channel and floodplain was represented in the XSECT program in two forms. First, all available field-estimated values of roughness were compiled for gaging stations in each physiographic province. The median of field-estimated values of channel and floodplain roughness for each physiographic province was applied to all respective stream segments. The second representation of Manning's roughness coefficient was to allow roughness to vary with channel depth. Roughness was estimated at each gaging station for each 1-foot depth interval. Median values of roughness were calculated for each 1-foot depth interval for all stations in each physiographic province. Channel and floodplain slope were determined for every stream segment in CBRWM using the USGS National Elevation Dataset. Function tables were generated by the XSECT program using values of channel geometry, channel and floodplain roughness, and channel and floodplain slope. The FTABLEs for each of the 290 USGS streamflow-gaging stations were evaluated by comparing observed discharge to the XSECT-derived discharge. Function table stream discharge derived using depth-varying roughness was found to be more representative of and statistically indistinguishable from values of observed stream discharge. Additionally, results of regression analysis showed that XSECT-derived discharge accounted for approximately 90 percent of the variability associated with observed discharge in each of the four physiographic provinces. The results of this study indicate that the methodology developed to generate FTABLEs for every s
Sando, Steven K.; Sando, Roy; McCarthy, Peter M.; Dutton, DeAnn M.
2016-04-05
The climatic conditions of the specific time period during which peak-flow data were collected at a given streamflow-gaging station (hereinafter referred to as gaging station) can substantially affect how well the peak-flow frequency (hereinafter referred to as frequency) results represent long-term hydrologic conditions. Differences in the timing of the periods of record can result in substantial inconsistencies in frequency estimates for hydrologically similar gaging stations. Potential for inconsistency increases with decreasing peak-flow record length. The representativeness of the frequency estimates for a short-term gaging station can be adjusted by various methods including weighting the at-site results in association with frequency estimates from regional regression equations (RREs) by using the Weighted Independent Estimates (WIE) program. Also, for gaging stations that cannot be adjusted by using the WIE program because of regulation or drainage areas too large for application of RREs, frequency estimates might be improved by using record extension procedures, including a mixed-station analysis using the maintenance of variance type I (MOVE.1) procedure. The U.S. Geological Survey, in cooperation with the Montana Department of Transportation and the Montana Department of Natural Resources and Conservation, completed a study to provide adjusted frequency estimates for selected gaging stations through water year 2011.The purpose of Chapter D of this Scientific Investigations Report is to present adjusted frequency estimates for 504 selected streamflow-gaging stations in or near Montana based on data through water year 2011. Estimates of peak-flow magnitudes for the 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities are reported. These annual exceedance probabilities correspond to the 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.The at-site frequency estimates were adjusted by weighting with frequency estimates from RREs using the WIE program for 438 selected gaging stations in Montana. These 438 selected gaging stations (1) had periods of record less than or equal to 40 years, (2) represented unregulated or minor regulation conditions, and (3) had drainage areas less than about 2,750 square miles.The weighted-average frequency estimates obtained by weighting with RREs generally are considered to provide improved frequency estimates. In some cases, there are substantial differences among the at-site frequency estimates, the regression-equation frequency estimates, and the weighted-average frequency estimates. In these cases, thoughtful consideration should be applied when selecting the appropriate frequency estimate. Some factors that might be considered when selecting the appropriate frequency estimate include (1) whether the specific gaging station has peak-flow characteristics that distinguish it from most other gaging stations used in developing the RREs for the hydrologic region; and (2) the length of the peak-flow record and the general climatic characteristics during the period when the peak-flow data were collected. For critical structure-design applications, a conservative approach would be to select the higher of the at-site frequency estimate and the weighted-average frequency estimate.The mixed-station MOVE.1 procedure generally was applied in cases where three or more gaging stations were located on the same large river and some of the gaging stations could not be adjusted using the weighted-average method because of regulation or drainage areas too large for application of RREs. The mixed-station MOVE.1 procedure was applied to 66 selected gaging stations on 19 large rivers.The general approach for using mixed-station record extension procedures to adjust at-site frequencies involved (1) determining appropriate base periods for the gaging stations on the large rivers, (2) synthesizing peak-flow data for the gaging stations with incomplete peak-flow records during the base periods by using the mixed-station MOVE.1 procedure, and (3) conducting frequency analysis on the combined recorded and synthesized peak-flow data for each gaging station. Frequency estimates for the combined recorded and synthesized datasets for 66 gaging stations with incomplete peak-flow records during the base periods are presented. The uncertainties in the mixed-station record extension results are difficult to directly quantify; thus, it is important to understand the intended use of the estimated frequencies based on analysis of the combined recorded and synthesized datasets. The estimated frequencies are considered general estimates of frequency relations among gaging stations on the same stream channel that might be expected if the gaging stations had been gaged during the same long-term base period. However, because the mixed-station record extension procedures involve secondary statistical analysis with accompanying errors, the uncertainty of the frequency estimates is larger than would be obtained by collecting systematic records for the same number of years in the base period.
Niesen, Shelley L.; Christensen, Eric D.
2015-01-01
Water-quality, hydrological, and ecological data collected from June 2005 through September 2013 from the Little Blue River and smaller streams within the City of Independence, Missouri, are presented in this report. These data were collected as a part of an ongoing cooperative study between the U.S. Geological Survey and the City of Independence Water Pollution Control Department to characterize the water quality and ecological condition of Independence streams. The quantities, sources of selected constituents, and processes affecting water quality and aquatic life were evaluated to determine the resulting ecological condition of streams within Independence. Data collected for this study fulfill the municipal separate sewer system permit requirements for the City of Independence and can be used to provide a baseline with which city managers can determine the effectiveness of current (2014) and future best management practices within Independence. Continuous streamflow and water-quality data, collected during base flow and stormflow, included physical and chemical properties, inorganic constituents, common organic micro-constituents, pesticides in streambed sediment and surface water, fecal indicator bacteria and microbial source tracking data, and suspended sediment. Dissolved oxygen, pH, specific conductance, water temperature, and turbidity data were measured continuously at seven sites within Independence. Base-flow and stormflow samples were collected at eight gaged and two ungaged sites. Fecal sources samples were collected for reference for microbial source tracking, and sewage influent samples were collected as additional source samples. Dry-weather screening was done on 11 basins within Independence to identify potential contaminant sources to the streams. Benthic macroinvertebrate community surveys and habitat assessments were done on 10 stream sites and 2 comparison sites outside the city. Sampling and laboratory procedures and quality-assurance and quality-control methods used in data collection for this study are described in this report.
42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the hose connection shall not exceed 863 kN/m.2 (125 pounds per square inch gage). (c) Where the pressure at any point in the supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the... connection from exceeding 863 kN/m.2 (125 pounds per square inch gage) under any conditions. ...
42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the hose connection shall not exceed 863 kN/m.2 (125 pounds per square inch gage). (c) Where the pressure at any point in the supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the... connection from exceeding 863 kN/m.2 (125 pounds per square inch gage) under any conditions. ...
42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the hose connection shall not exceed 863 kN/m.2 (125 pounds per square inch gage). (c) Where the pressure at any point in the supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the... connection from exceeding 863 kN/m.2 (125 pounds per square inch gage) under any conditions. ...
42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the hose connection shall not exceed 863 kN/m.2 (125 pounds per square inch gage). (c) Where the pressure at any point in the supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the... connection from exceeding 863 kN/m.2 (125 pounds per square inch gage) under any conditions. ...
42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the hose connection shall not exceed 863 kN/m.2 (125 pounds per square inch gage). (c) Where the pressure at any point in the supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the... connection from exceeding 863 kN/m.2 (125 pounds per square inch gage) under any conditions. ...
Baldys, Stanley; Churchill, Christopher J.; Mobley, Craig A.; Coffman, David K.
2010-01-01
The U.S. Geological Survey, in cooperation with the City of Dallas Water Utilities Division, did a study to characterize bromide, chloride, and sulfate concentrations and loads at three U.S. Geological Survey streamflow-gaging stations on the reach of the Red River from Denison Dam, which impounds Lake Texoma, to the U.S. Highway 259 bridge near DeKalb, Texas. Bromide, chloride, and sulfate concentrations and loads were computed for streamflow-gaging stations on the study reach of the Red River. Continuous streamflow and specific conductance data and discrete samples for bromide, chloride, sulfate, and specific conductance were collected at three main-stem streamflow-gaging stations on the Red River: 07331600 Red River at Denison Dam near Denison, Texas (Denison Dam gage), 07335500 Red River at Arthur City, Texas (Arthur City gage), and 07336820 Red River near DeKalb, Texas (DeKalb gage). At each of these streamflow-gaging stations, discrete water-quality data were collected during January 2007-February 2009; continuous water-quality data were collected during March 2007-February 2009. Two periods of high flow resulted from floods during the study; floods during June-July 2007 resulted in elevated flow during June-September 2007 and smaller floods during March-April 2008 resulted in elevated flow during March-April 2008. Bromide, chloride, and sulfate concentrations in samples collected at the three gages decreased downstream. Median bromide concentrations ranged from 0.32 milligram per liter at the Denison Dam gage to 0.19 milligram per liter at the DeKalb gage. Median chloride concentrations ranged from 176 milligrams per liter at the Denison Dam gage to 108 milligrams per liter at the DeKalb gage, less than the 300-milligrams per liter secondary maximum contaminant level established by the Texas Commission on Environmental Quality. Median sulfate concentrations ranged from 213 milligrams per liter at the Denison Dam gage to 117 milligrams per liter at the DeKalb gage, also less than the 300-milligrams per liter secondary maximum contaminant level. Kruskal-Wallis analyses indicated statistically significant differences among bromide, chloride, and sulfate concentrations at the three gages. Regression equations to estimate bromide, chloride, and sulfate loads were developed for each of the three gages. The largest loads were estimated for a period of relatively large streamflow, June-September 2007, when about 50 percent of the load for the study period occurred at each gage. Adjusted R-squared values were largest for regression equations for the DeKalb gage, ranging from .957 for sulfate to .976 for chloride. Adjusted R-squared values for all regression equations developed to estimate loads of bromide, chloride, and sulfate at the three gages were .899 or larger.
Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.; Zeeb, Hannah L.
2016-11-22
Results of a flood-hazard analysis conducted by the U.S. Geological Survey, in cooperation with the Argonne National Laboratory, for four headwater streams within the Argonne National Laboratory property indicate that the 1-percent and 0.2-percent annual exceedance probability floods would cause multiple roads to be overtopped. Results indicate that most of the effects on the infrastructure would be from flooding of Freund Brook. Flooding on the Northeast and Southeast Drainage Ways would be limited to overtopping of one road crossing for each of those streams. The Northwest Drainage Way would be the least affected with flooding expected to occur in open grass or forested areas.The Argonne Site Sustainability Plan outlined the development of hydrologic and hydraulic models and the creation of flood-plain maps of the existing site conditions as a first step in addressing resiliency to possible climate change impacts as required by Executive Order 13653 “Preparing the United States for the Impacts of Climate Change.” The Hydrological Simulation Program-FORTRAN is the hydrologic model used in the study, and the Hydrologic Engineering Center‒River Analysis System (HEC–RAS) is the hydraulic model. The model results were verified by comparing simulated water-surface elevations to observed water-surface elevations measured at a network of five crest-stage gages on the four study streams. The comparison between crest-stage gage and simulated elevations resulted in an average absolute difference of 0.06 feet and a maximum difference of 0.19 feet.In addition to the flood-hazard model development and mapping, a qualitative stream assessment was conducted to evaluate stream channel and substrate conditions in the study reaches. This information can be used to evaluate erosion potential.
Stamey, Timothy C.
2001-01-01
In 1999, the U.S. Geological Survey, in cooperation with the U.S. Army Signal Center and Fort Gordon, began collection of periodic streamflow data at four streams on the military base to assess and estimate streamflow characteristics of those streams for potential water-supply sources. Simple and reliable methods of determining streamflow characteristics of selected streams on the military base are needed for the initial implementation of the Fort Gordon Integrated Natural Resources Management Plan. Long-term streamflow data from the Butler Creek streamflow gaging station were used along with several concurrent discharge measurements made at three selected partial-record streamflow stations on Fort Gordon to determine selected low-flow streamflow characteristics. Streamflow data were collected and analyzed using standard U.S. Geological Survey methods and computer application programs to verify the use of simple drainage area to discharge ratios, which were used to estimate the low-flow characteristics for the selected streams. Low-flow data computed based on daily mean streamflow include: mean discharges for consecutive 1-, 3-, 7-, 14-, and 30-day period and low-flow estimates of 7Q10, 30Q2, 60Q2, and 90Q2 recurrence intervals. Flow-duration data also were determined for the 10-, 30-, 50-, 70-, and 90-percent exceedence flows. Preliminary analyses of the streamflow indicate that the flow duration and selected low-flow statistics for the selected streams averages from about 0.15 to 2.27 cubic feet per square mile. The long-term gaged streamflow data indicate that the streamflow conditions for the period analyzed were in the 50- to 90-percent flow range, or in which streamflow would be exceeded about 50 to 90 percent of the time.
Periodic water- and air-temperature records for Utah streams, 1966-70
Whitaker, G.L.
1971-01-01
Since 1967, all Geological Survey hydrographers have been instructed to observe and record the water and air temperatures at times when water-discharge measurements were being made at stream-gaging stations in Utah. The frequency of these observations generally varies from I to 5 weeks, depending upon the magnitude of the stream flow.This report summarizes the periodic water and air temperatures that have been recorded in Utah since that effort began. This information may be of value to individuals or agencies concerned with thermal pollution of streams, or with enforcement of water-quality standards.A compilation of all daily water-temperature records recorded for streams in Utah by the U. S. Geological Survey during the period 1944-68 is contained in Utah Basic-Data Release No. 19.
Koltun, G.F.; Holtschlag, David J.
2010-01-01
Bootstrapping techniques employing random subsampling were used with the AFINCH (Analysis of Flows In Networks of CHannels) model to gain insights into the effects of variation in streamflow-gaging-network size and composition on the accuracy and precision of streamflow estimates at ungaged locations in the 0405 (Southeast Lake Michigan) hydrologic subregion. AFINCH uses stepwise-regression techniques to estimate monthly water yields from catchments based on geospatial-climate and land-cover data in combination with available streamflow and water-use data. Calculations are performed on a hydrologic-subregion scale for each catchment and stream reach contained in a National Hydrography Dataset Plus (NHDPlus) subregion. Water yields from contributing catchments are multiplied by catchment areas and resulting flow values are accumulated to compute streamflows in stream reaches which are referred to as flow lines. AFINCH imposes constraints on water yields to ensure that observed streamflows are conserved at gaged locations. Data from the 0405 hydrologic subregion (referred to as Southeast Lake Michigan) were used for the analyses. Daily streamflow data were measured in the subregion for 1 or more years at a total of 75 streamflow-gaging stations during the analysis period which spanned water years 1971–2003. The number of streamflow gages in operation each year during the analysis period ranged from 42 to 56 and averaged 47. Six sets (one set for each censoring level), each composed of 30 random subsets of the 75 streamflow gages, were created by censoring (removing) approximately 10, 20, 30, 40, 50, and 75 percent of the streamflow gages (the actual percentage of operating streamflow gages censored for each set varied from year to year, and within the year from subset to subset, but averaged approximately the indicated percentages).Streamflow estimates for six flow lines each were aggregated by censoring level, and results were analyzed to assess (a) how the size and composition of the streamflow-gaging network affected the average apparent errors and variability of the estimated flows and (b) whether results for certain months were more variable than for others. The six flow lines were categorized into one of three types depending upon their network topology and position relative to operating streamflow-gaging stations. Statistical analysis of the model results indicates that (1) less precise (that is, more variable) estimates resulted from smaller streamflow-gaging networks as compared to larger streamflow-gaging networks, (2) precision of AFINCH flow estimates at an ungaged flow line is improved by operation of one or more streamflow gages upstream and (or) downstream in the enclosing basin, (3) no consistent seasonal trend in estimate variability was evident, and (4) flow lines from ungaged basins appeared to exhibit the smallest absolute apparent percent errors (APEs) and smallest changes in average APE as a function of increasing censoring level. The counterintuitive results described in item (4) above likely reflect both the nature of the base-streamflow estimate from which the errors were computed and insensitivity in the average model-derived estimates to changes in the streamflow-gaging-network size and composition. Another analysis demonstrated that errors for flow lines in ungaged basins have the potential to be much larger than indicated by their APEs if measured relative to their true (but unknown) flows. “Missing gage” analyses, based on examination of censoring subset results where the streamflow gage of interest was omitted from the calibration data set, were done to better understand the true error characteristics for ungaged flow lines as a function of network size. Results examined for 2 water years indicated that the probability of computing a monthly streamflow estimate within 10 percent of the true value with AFINCH decreased from greater than 0.9 at about a 10-percent network-censoring level to less than 0.6 as the censoring level approached 75 percent. In addition, estimates for typically dry months tended to be characterized by larger percent errors than typically wetter months.
DOT National Transportation Integrated Search
2017-03-01
Reliable estimates of the magnitude and frequency of floods are needed by Federal, regional, State, and local infrastructure designers and water-resource managers for the design of highway, road, and other bridge crossings of rivers, delineation of f...
D. G. Fox; H. C. Humphries; K. F. Zeller; B. H. Connell; G. L. Wooldridge
1994-01-01
GLEES is contained within the Snowy Range Observatory. This Observatory consists of many weather stations, precipitation monitors, and stream gages scattered throughout the Snowy Range. These sites have been operated by the Wyoming Water Research Center (WWRC) since 1968. Data from the sites are available from the WWRC and were last summarized by Wesche (1982).
Methods for estimating magnitude and frequency of floods in Montana based on data through 1983
Omang, R.J.; Parrett, Charles; Hull, J.A.
1986-01-01
Equations are presented for estimating flood magnitudes for ungaged sites in Montana based on data through 1983. The State was divided into eight regions based on hydrologic conditions, and separate multiple regression equations were developed for each region. These equations relate annual flood magnitudes and frequencies to basin characteristics and are applicable only to natural flow streams. In three of the regions, equations also were developed relating flood magnitudes and frequencies to basin characteristics and channel geometry measurements. The standard errors of estimate for an exceedance probability of 1% ranged from 39% to 87%. Techniques are described for estimating annual flood magnitude and flood frequency information at ungaged sites based on data from gaged sites on the same stream. Included are curves relating flood frequency information to drainage area for eight major streams in the State. Maximum known flood magnitudes in Montana are compared with estimated 1 %-chance flood magnitudes and with maximum known floods in the United States. Values of flood magnitudes for selected exceedance probabilities and values of significant basin characteristics and channel geometry measurements for all gaging stations used in the analysis are tabulated. Included are 375 stations in Montana and 28 nearby stations in Canada and adjoining States. (Author 's abstract)
Hydrologic investigations in the Araguaia-Tocantins River basin (Brazil)
Snell, Leonard J.
1979-01-01
The Araguaia-Tocantins River basin system of central and northern Brazil drains an area of about 770,000 square kilometers and has the potential for supporting large-scale developments. During a short visit to the headquarters of the Interstate Commission for the Araguaia-Tocantins Valley and to several stream-gaging stations in June 1964, the author reviewed the status of the streamflow and meteorological data-collection programs in relation to the streamflow and meteorological data-collection programs in relation to the pressing needs of development project studies. To provide data for areal and project-site studies and for main-stream sites, an initial network of 33 stream gaging stations was proposed, including the 7 stations then in operation. Suggestions were made in regard to operations, staffing and equipment. Organizational responsibilities for operations were found to be divided uncertainly. The Brazilian Meteorological Service had 15 synoptic stations in operation in and near the basin, some in need of reconditioning. Plans were at hand for the addition of 15 sites to the synoptic network and for limited data collection at 27 other sites. The author proposed collection of precipitation data at about 50 other locations to achieve a more representative areal distribution. Temperature, evaporation, and upper-air data sites were suggested to enhance the prospective hydrometeorological studies. (USGS)
Stream-temperature patterns of the Muddy Creek basin, Anne Arundel County, Maryland
Pluhowski, E.J.
1981-01-01
Using a water-balance equation based on a 4.25-year gaging-station record on North Fork Muddy Creek, the following mean annual values were obtained for the Muddy Creek basin: precipitation, 49.0 inches; evapotranspiration, 28.0 inches; runoff, 18.5 inches; and underflow, 2.5 inches. Average freshwater outflow from the Muddy Creek basin to the Rhode River estuary was 12.2 cfs during the period October 1, 1971, to December 31, 1975. Harmonic equations were used to describe seasonal maximum and minimum stream-temperature patterns at 12 sites in the basin. These equations were fitted to continuous water-temperature data obtained periodically at each site between November 1970 and June 1978. The harmonic equations explain at least 78 percent of the variance in maximum stream temperatures and 81 percent of the variance in minimum temperatures. Standard errors of estimate averaged 2.3C (Celsius) for daily maximum water temperatures and 2.1C for daily minimum temperatures. Mean annual water temperatures developed for a 5.4-year base period ranged from 11.9C at Muddy Creek to 13.1C at Many Fork Branch. The largest variations in stream temperatures were detected at thermograph sites below ponded reaches and where forest coverage was sparse or missing. At most sites the largest variations in daily water temperatures were recorded in April whereas the smallest were in September and October. The low thermal inertia of streams in the Muddy Creek basin tends to amplify the impact of surface energy-exchange processes on short-period stream-temperature patterns. Thus, in response to meteorologic events, wide ranging stream-temperature perturbations of as much as 6C have been documented in the basin. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, P.D.; Agajanian, J.A.; Rockwell, G.L.
1995-03-01
Water resources data for the 1994 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 143 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations; (2) stage and contents records for 20 lakes and reservoirs; (3) water quality records for 19 streamflow-gaging stations and 2 partial-record stations; and (4) precipitation records for 8 stations.
Index of stations; surface-water data-collections network of Texas, September 1993
Gandara, S.C.; Jones, R.E.
1995-01-01
Table 1 shows the station number and name, latitude and longitude, type of station, and the office principally responsible for collection of the data. An 8-digit permanent numerical designation for all gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering between two main-stem stations are listed between them. A similar order is followed in listing stations by first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is an immediate tributary is indicated by an indention in the table. Each indention represents one rank. This downstream order and system of indention shows which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated.
Index of stations: surface-water data-collection network of Texas, September 1995
Gandara, S.C.; Jones, R.E.
1996-01-01
Table 1 shows the station number and name, latitude and longitude, type of station, and the office responsible for the collection of the data and the record. An 8-digit permanent numerical designation for all gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering between two main-stem stations are listed between them. A similar order is followed in listing stations by first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is an immediate tributary is indicated by an indention in the table. Each indention represents one rank. This downstream order and system of indention shows which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated.
Saleh, Dina K.
2010-01-01
Statistical summaries of streamflow data for all long-term streamflow-gaging stations in the Tigris River and Euphrates River Basins in Iraq are presented in this report. The summaries for each streamflow-gaging station include (1) a station description, (2) a graph showing annual mean discharge for the period of record, (3) a table of extremes and statistics for monthly and annual mean discharge, (4) a graph showing monthly maximum, minimum, and mean discharge, (5) a table of monthly and annual mean discharges for the period of record, (6) a graph showing annual flow duration, (7) a table of monthly and annual flow duration, (8) a table of high-flow frequency data (maximum mean discharge for 3-, 7-, 15-, and 30-day periods for selected exceedance probabilities), and (9) a table of low-flow frequency data (minimum mean discharge for 3-, 7-, 15-, 30-, 60-, 90-, and 183-day periods for selected non-exceedance probabilities).
High-temperature Strain Sensor and Mounting Development
NASA Technical Reports Server (NTRS)
Williams, W. Dan; Lei, Jih-Fen; Reardon, Lawrence F.; Krake, Keith; Lemcoe, M. M.; Holmes, Harlan K.; Moore, Thomas C., Sr.
1996-01-01
This report describes Government Work Package Task 29 (GWP29), whose purpose was to develop advanced strain gage technology in support of the National Aerospace Plane (NASP) Program. The focus was on advanced resistance strain gages with a temperature range from room temperature to 2000 F (1095 C) and on methods for reliably attaching these gages to the various materials anticipated for use in the NASP program. Because the NASP program required first-cycle data, the installed gages were not prestabilized or heat treated on the test coupons before first-cycle data were recorded. NASA Lewis Research Center, the lead center for GWP29, continued its development of the palladium-chromium gage; NASA Langley Research Center investigated a new concept gage using Kanthal A1; and the NASA Dryden Flight Research Center chose the well-known BCL-3 iron-chromium-aluminum gage. Each center then tested all three gages. The parameters investigated were apparent strain, drift strain, and gage factor as a function of temperature, plus gage size and survival rate over the test period. Although a significant effort was made to minimize the differences in test equipment between the three test sites (e.g., the same hardware and software were used for final data processing), the center employed different data acquisition systems and furnace configurations so that some inherent differences may be evident in the final results.
June and August median streamflows estimated for ungaged streams in southern Maine
Lombard, Pamela J.
2010-01-01
Methods for estimating June and August median streamflows were developed for ungaged, unregulated streams in southern Maine. The methods apply to streams with drainage areas ranging in size from 0.4 to 74 square miles, with percentage of basin underlain by a sand and gravel aquifer ranging from 0 to 84 percent, and with distance from the centroid of the basin to a Gulf of Maine line paralleling the coast ranging from 14 to 94 miles. Equations were developed with data from 4 long-term continuous-record streamgage stations and 27 partial-record streamgage stations. Estimates of median streamflows at the continuous-record and partial-record stations are presented. A mathematical technique for estimating standard low-flow statistics, such as June and August median streamflows, at partial-record streamgage stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term (at least 10 years of record) continuous-record streamgage stations (index stations). Weighted least-squares regression analysis (WLS) was used to relate estimates of June and August median streamflows at streamgage stations to basin characteristics at these same stations to develop equations that can be used to estimate June and August median streamflows on ungaged streams. WLS accounts for different periods of record at the gaging stations. Three basin characteristics-drainage area, percentage of basin underlain by a sand and gravel aquifer, and distance from the centroid of the basin to a Gulf of Maine line paralleling the coast-are used in the final regression equation to estimate June and August median streamflows for ungaged streams. The three-variable equation to estimate June median streamflow has an average standard error of prediction from -35 to 54 percent. The three-variable equation to estimate August median streamflow has an average standard error of prediction from -45 to 83 percent. Simpler one-variable equations that use only drainage area to estimate June and August median streamflows were developed for use when less accuracy is acceptable. These equations have average standard errors of prediction from -46 to 87 percent and from -57 to 133 percent, respectively.
Surface waters of Kansas, 1919-1924
Kinnison, H.B.
1926-01-01
From 1906 to 1916 no stream-gaging investigations were made in Kansas, and the only records available for this period are those of river stages taken by the United States Weather Bureau, at a few selected stations, for use by the river forcast service. The floods of 1908, 1909 and 1915 occurred during this period.
Flood characteristics of streams in Owyhee County, Idaho
Riggs, H.C.; Harenberg, W.A.
1976-01-01
Channel-width measurements were used to estimate annual peaks with a recurrence interval of 10 years at 79 sites in Owyhee County, Idaho, and adjacent areas. These discharges and those from 33 gaging stations are plotted on a map of the area. The map will allow the user to interpolate between sites. (Woodard-USGS)
Lorenz, David L.; Sanocki, Chris A.; Kocian, Matthew J.
2010-01-01
Knowledge of the peak flow of floods of a given recurrence interval is essential for regulation and planning of water resources and for design of bridges, culverts, and dams along Minnesota's rivers and streams. Statistical techniques are needed to estimate peak flow at ungaged sites because long-term streamflow records are available at relatively few places. Because of the need to have up-to-date peak-flow frequency information in order to estimate peak flows at ungaged sites, the U.S. Geological Survey (USGS) conducted a peak-flow frequency study in cooperation with the Minnesota Department of Transportation and the Minnesota Pollution Control Agency. Estimates of peak-flow magnitudes for 1.5-, 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are presented for 330 streamflow-gaging stations in Minnesota and adjacent areas in Iowa and South Dakota based on data through water year 2005. The peak-flow frequency information was subsequently used in regression analyses to develop equations relating peak flows for selected recurrence intervals to various basin and climatic characteristics. Two statistically derived techniques-regional regression equation and region of influence regression-can be used to estimate peak flow on ungaged streams smaller than 3,000 square miles in Minnesota. Regional regression equations were developed for selected recurrence intervals in each of six regions in Minnesota: A (northwestern), B (north central and east central), C (northeastern), D (west central and south central), E (southwestern), and F (southeastern). The regression equations can be used to estimate peak flows at ungaged sites. The region of influence regression technique dynamically selects streamflow-gaging stations with characteristics similar to a site of interest. Thus, the region of influence regression technique allows use of a potentially unique set of gaging stations for estimating peak flow at each site of interest. Two methods of selecting streamflow-gaging stations, similarity and proximity, can be used for the region of influence regression technique. The regional regression equation technique is the preferred technique as an estimate of peak flow in all six regions for ungaged sites. The region of influence regression technique is not appropriate for regions C, E, and F because the interrelations of some characteristics of those regions do not agree with the interrelations throughout the rest of the State. Both the similarity and proximity methods for the region of influence technique can be used in the other regions (A, B, and D) to provide additional estimates of peak flow. The peak-flow-frequency estimates and basin characteristics for selected streamflow-gaging stations and regional peak-flow regression equations are included in this report.
Climate change and the detection of trends in annual runoff
McCabe, G.J.; Wolock, D.M.
1997-01-01
This study examines the statistical likelihood of detecting a trend in annual runoff given an assumed change in mean annual runoff, the underlying year-to-year variability in runoff, and serial correlation of annual runoff. Means, standard deviations, and lag-1 serial correlations of annual runoff were computed for 585 stream gages in the conterminous United States, and these statistics were used to compute the probability of detecting a prescribed trend in annual runoff. Assuming a linear 20% change in mean annual runoff over a 100 yr period and a significance level of 95%, the average probability of detecting a significant trend was 28% among the 585 stream gages. The largest probability of detecting a trend was in the northwestern U.S., the Great Lakes region, the northeastern U.S., the Appalachian Mountains, and parts of the northern Rocky Mountains. The smallest probability of trend detection was in the central and southwestern U.S., and in Florida. Low probabilities of trend detection were associated with low ratios of mean annual runoff to the standard deviation of annual runoff and with high lag-1 serial correlation in the data.
NASA Technical Reports Server (NTRS)
Pedrosa, A. C. F.; Nagamatsu, H. T.; Hinckel, J. A.
1984-01-01
Heat transfer measurements were determined for a flat plate with and without pressure gradient for various free stream temperatures, wall temperature ratios, and Reynolds numbers for an inlet flow Mach number of 0.45, which is a representative inlet Mach number for gas turbine rotor blades. A shock tube generated the high temperature and pressure air flow, and a variable geometry test section was used to produce inlet flow Mach number of 0.45 and accelerate the flow over the plate to sonic velocity. Thin-film platinum heat gages recorded the local heat flux for laminar, transition, and turbulent boundary layers. The free stream temperatures varied from 611 R (339 K) to 3840 R (2133 K) for a T(w)/T(r,g) temperature ratio of 0.87 to 0.14. The Reynolds number over the heat gages varied from 3000 to 690,000. The experimental heat transfer data were correlated with laminar and turbulent boundary layer theories for the range of temperatures and Reynolds numbers and the transition phenomenon was examined.
Real-time streamflow conditions
Graczyk, David J.; Gebert, Warren A.
1996-01-01
Would you like to know streamflow conditions before you go fishing in Wisconsin or in more distant locations? Real-time streamflow data throughout Wisconsin and the United States are available on the Internet from the U.S. Geological Survey. You can see if the stream you are interested in fishing is high due to recent rain or low because of an extended dry spell. Flow conditions at more than 100 stream-gaging stations located throughout Wisconsin can be viewed by accessing the Wisconsin District Home Page at: http://wwwdwimdn.er.usgs.gov
Straub, D.E.
1998-01-01
The streamflow-gaging station network in Ohio was evaluated for its effectiveness in providing regional streamflow information. The analysis involved application of the principles of generalized least squares regression between streamflow and climatic and basin characteristics. Regression equations were developed for three flow characteristics: (1) the instantaneous peak flow with a 100-year recurrence interval (P100), (2) the mean annual flow (Qa), and (3) the 7-day, 10-year low flow (7Q10). All active and discontinued gaging stations with 5 or more years of unregulated-streamflow data with respect to each flow characteristic were used to develop the regression equations. The gaging-station network was evaluated for the current (1996) condition of the network and estimated conditions of various network strategies if an additional 5 and 20 years of streamflow data were collected. Any active or discontinued gaging station with (1) less than 5 years of unregulated-streamflow record, (2) previously defined basin and climatic characteristics, and (3) the potential for collection of more unregulated-streamflow record were included in the network strategies involving the additional 5 and 20 years of data. The network analysis involved use of the regression equations, in combination with location, period of record, and cost of operation, to determine the contribution of the data for each gaging station to regional streamflow information. The contribution of each gaging station was based on a cost-weighted reduction of the mean square error (average sampling-error variance) associated with each regional estimating equation. All gaging stations included in the network analysis were then ranked according to their contribution to the regional information for each flow characteristic. The predictive ability of the regression equations developed from the gaging station network could be improved for all three flow characteristics with the collection of additional streamflow data. The addition of new gaging stations to the network would result in an even greater improvement of the accuracy of the regional regression equations. Typically, continued data collection at stations with unregulated streamflow for all flow conditions that had less than 11 years of record with drainage areas smaller than 200 square miles contributed the largest cost-weighted reduction to the average sampling-error variance of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active gaging stations or the reactivation of discontinued gaging stations if the objective is to maximize the regional information content in the streamflow-gaging station network.
Turnipseed, D.P.; ,
2002-01-01
Three tidal gages were constructed to collect hydraulic and water-quality properties that could be used to compute the tidal flux of the Pearl River and Lake Pontchartrain estuarine systems in Mississippi and Louisiana. The gages record continuous tidal stage, velocity, water temperature, specific conductance, and salinity, and transmit these data via the GOES satellite for output to a USGS real-time Internet portal. A 25-hour tidal study was completed during a maximum slack tide period in September 2001, which measured hydraulic and water-quality properties. These data were correlated with data recorded by the gages. Relations were developed for stage and area, and for an index acoustic velocity signal and average velocity. Continuous tidal inflow/outflow was computed for all three gages. Tidal effects were attenuated using a ninth-order Butterworth low-pass filter. Net inflows were recorded at two of three sites during the tidal study. The data will be used to help calibrate a regional RMA2 flow model.
Effects of hydraulic and geologic factors on streamflow of the Yakima River Basin, Washington
Kinnison, Hallard B.; Sceva, Jack E.
1963-01-01
The Yakima River basin, in south-central Washington, is the largest single river system entirely within the confines of the State. Its waters are the most extensively utilized of all the rivers in Washington. The river heads high on the eastern slope of the Cascade Mountains, flows for 180 miles in a generally southeast direction, and discharges into the Columbia River. The western part of the basin is a mountainous area formed by sedimentary, volcanic, and metamorphic rocks, which generally have a low capacity for storing and transmitting water. The eastern part of the basin is. formed by a thick sequence of lava flows that have folded into long ridges and troughs. Downwarped structural basins between many of the ridges are partly filled with younger sedimentary deposits, which at some places are many hundreds of feet thick. The Yakima River flows from structural basin to structural basin through narrow water gaps that have been eroded through the anticlinal ridges. Each basin is also a topographic basin and a ground-water subbasin. A gaging station will measure the total outflow of a drainage area only if it is located at the surface outlet of a ground-water subbasin and then only if the stream basin is nearly coextensive with the ground-water subbasin. Many gaging stations in the Yakima basin are so located. The geology, hydrology, size. and location of 25 ground-water subbasins are described. Since the settlement of the valley began, the development of the land and water resources have caused progressive changes in the natural regimen of the basin's runoff. These changes have resulted from diversion of water from the streams, the application of water on the land for irrigation, the storage and release of flood waters, the pumping of ground water, and other factors Irrigation in the Yakima basin is reported 'to have begun about 1864. In 1955 about 425,000 acres were under irrigation. During the past 60-odd years many gaging stations have been operated at different sites within the basin. Only stations in the upper reaches, such as those below Keechelus, Kachess, or Cle Elum Lakes, give discharge records which are an accurate measure of the natural outflow of the drainage area. Farther down, stream, as the utilization of water becomes more extensive, the records at a gaging station show the discharge passing a particular point, but they do not reflect the natural outflow of the basin. Large canals divert water for use on lands above a station or carry it around a station for irrigation downstream. The deep sedimentary deposits within subbasins and the overlying alluvial gravels permit downvalley movement of large subsurface flows which bypass the gaging stations, except in the near vicinity of the water gaps. At the water gaps ground water rises to the surface, becoming streamflow, and can be accurately measured. The location of gaging stations within each subbasin is important, therefore, in determining whether the flow measured represents the total downvalley outflow or whether it is merely the surface-water component. Surface and subsurface factors that may affect the discharge records at each gaging station in the Yakima River basin include a description of upstream diversions, surface return flows, bypass canals, storage reservoirs, subsurface bypass flows, ground-water withdrawals, and other items. The available data are not sufficiently complete to permit a quantitative determination of the total basin yield at most gaging stations. However, data on the existing bypass channels, such as canals and drainage ditches, and on related subsurface movement of water provide valuable information necessary to proper use and interpretation of the streamflow records.
Whetstone, B.H.
1982-01-01
A program to collect and analyze flood data from small streams in South Carolina was conducted from 1967-75, as a cooperative research project with the South Carolina Department of Highways and Public Transportation and the Federal Highway Administration. As a result of that program, a technique is presented for estimating the magnitude and frequency of floods on small streams in South Carolina with drainage areas ranging in size from 1 to 500 square miles. Peak-discharge data from 74 stream-gaging stations (25 small streams were synthesized, whereas 49 stations had long-term records) were used in multiple regression procedures to obtain equations for estimating magnitude of floods having recurrence intervals of 10, 25, 50, and 100 years on small natural streams. The significant independent variable was drainage area. Equations were developed for the three physiographic provinces of South Carolina (Coastal Plain, Piedmont, and Blue Ridge) and can be used for estimating floods on small streams. (USGS)
Koltun, G.F.; Kula, Stephanie P.
2013-01-01
This report presents the results of a study to develop methods for estimating selected low-flow statistics and for determining annual flow-duration statistics for Ohio streams. Regression techniques were used to develop equations for estimating 10-year recurrence-interval (10-percent annual-nonexceedance probability) low-flow yields, in cubic feet per second per square mile, with averaging periods of 1, 7, 30, and 90-day(s), and for estimating the yield corresponding to the long-term 80-percent duration flow. These equations, which estimate low-flow yields as a function of a streamflow-variability index, are based on previously published low-flow statistics for 79 long-term continuous-record streamgages with at least 10 years of data collected through water year 1997. When applied to the calibration dataset, average absolute percent errors for the regression equations ranged from 15.8 to 42.0 percent. The regression results have been incorporated into the U.S. Geological Survey (USGS) StreamStats application for Ohio (http://water.usgs.gov/osw/streamstats/ohio.html) in the form of a yield grid to facilitate estimation of the corresponding streamflow statistics in cubic feet per second. Logistic-regression equations also were developed and incorporated into the USGS StreamStats application for Ohio for selected low-flow statistics to help identify occurrences of zero-valued statistics. Quantiles of daily and 7-day mean streamflows were determined for annual and annual-seasonal (September–November) periods for each complete climatic year of streamflow-gaging station record for 110 selected streamflow-gaging stations with 20 or more years of record. The quantiles determined for each climatic year were the 99-, 98-, 95-, 90-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 25-, 20-, 10-, 5-, 2-, and 1-percent exceedance streamflows. Selected exceedance percentiles of the annual-exceedance percentiles were subsequently computed and tabulated to help facilitate consideration of the annual risk of exceedance or nonexceedance of annual and annual-seasonal-period flow-duration values. The quantiles are based on streamflow data collected through climatic year 2008.
Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.
2016-04-05
Chapter C of this Scientific Investigations Report documents results from a study by the U.S. Geological Survey, in cooperation with the Montana Department of Transportation and the Montana Department of Natural Resources, to provide an update of statewide peak-flow frequency analyses and results for Montana. The purpose of this report chapter is to present peak-flow frequency analyses and results for 725 streamflow-gaging stations in or near Montana based on data through water year 2011. The 725 streamflow-gaging stations included in this study represent nearly all streamflowgaging stations in Montana (plus some from adjacent states or Canadian Provinces) that have at least 10 years of peak-flow records through water year 2011. For 29 of the 725 streamflow-gaging stations, peak-flow frequency analyses and results are reported for both unregulated and regulated conditions. Thus, peak-flow frequency analyses and results are reported for a total of 754 analyses. Estimates of peak-flow magnitudes for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities are reported. These annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals.
Annual maximum and minimum lake levels for Indiana, 1942-85
Fowler, Kathleen K.
1988-01-01
Indiana has many natural and manmade lakes. Lake-level data are available for 217 lakes. These data were collected during water years 1942-85 by use of staff gages and, more recently, continuous recorders. The period of record at each site ranges from 1 to 43 years. Data from the lake stations have been compiled, and maximum and minimum lake levels for each year of record are reported. In addition to annual maximum and minimum lake levels, each lake station is described by gage location, surface area, drainage area, period of record, datum of gage, gage type, established legal level, lake level control, inlets and outlets, and extremes for the period of record.
NASA Astrophysics Data System (ADS)
Nord, G.; Braud, I.; Boudevillain, B.; Gérard, S.; Molinié, G.; Vandervaere, J. P.; Huza, J.; Le Coz, J.; Dramais, G.; Legout, C.; Berne, A.; Grazioli, J.; Raupach, T.; Van Baelen, J.; Wijbrans, A.; Delrieu, G.; Andrieu, J.; Caliano, M.; Aubert, C.; Teuling, R.; Le Boursicaud, R.; Branger, F.; Vincendon, B.; Horner, I.
2014-12-01
A comprehensive hydrometeorological dataset is presented spanning the period 1 Jan 2011-31 Dec 2014 to improve the understanding and simulation of the hydrological processes leading to flash floods in a mesoscale catchment (Auzon, 116 km2) of the Mediterranean region. The specificity of the dataset is its high space-time resolution, especially concerning rainfall and the hydrological response which is particularly adapted to the highly spatially variable rainfall events that may occur in this region. This type of dataset is rare in scientific literature because of the quantity and type of sensors for meteorology and surface hydrology. Rainfall data include continuous precipitation measured by rain-gages (5 min time step for the research network of 21 rain-gages and 1h time step for the operational network of 9 rain-gages), S-band Doppler dual-polarization radar (1 km2, 5 min resolution), and disdrometers (11 sensors working at 1 min time step). During the special observation period (SOP-1) and enhanced observation period (Sep-Dec 2012, Sep-Dec 2013) of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, two X-band radars provided precipitation measurements at very fine spatial and temporal scales (1 ha, 5 min). Meteorological data are taken from the operational surface weather observation stations of Meteo France at the hourly time resolution (6 stations in the region of interest). The monitoring of surface hydrology and suspended sediment is multi-scale and based on nested catchments. Three hydrometric stations measure water discharge and additional physico-chemical variables at a 2-10 min time resolution. Two experimental plots monitor overland flow and erosion at 1 min time resolution on a hillslope with vineyard. A network of 11 gauges continuously measures water level and temperature in headwater subcatchments at a time resolution of 2-5 min. A network of soil moisture sensors enable the continuous measurement of soil volumetric water content at 20 min time resolution at 9 sites. Additionally, opportunistic observations (soil moisture measurements and stream gauging) were performed during floods between 2012 and 2014. The data are appropriate for understanding rainfall variability, improving areal rainfall estimations and progress in distributed hydrological modelling.
NASA Astrophysics Data System (ADS)
Nord, G.; Braud, I.; Boudevillain, B.; Gérard, S.; Molinié, G.; Vandervaere, J. P.; Huza, J.; Le Coz, J.; Dramais, G.; Legout, C.; Berne, A.; Grazioli, J.; Raupach, T.; Van Baelen, J.; Wijbrans, A.; Delrieu, G.; Andrieu, J.; Caliano, M.; Aubert, C.; Teuling, R.; Le Boursicaud, R.; Branger, F.; Vincendon, B.; Horner, I.
2015-12-01
A comprehensive hydrometeorological dataset is presented spanning the period 1 Jan 2011-31 Dec 2014 to improve the understanding and simulation of the hydrological processes leading to flash floods in a mesoscale catchment (Auzon, 116 km2) of the Mediterranean region. The specificity of the dataset is its high space-time resolution, especially concerning rainfall and the hydrological response which is particularly adapted to the highly spatially variable rainfall events that may occur in this region. This type of dataset is rare in scientific literature because of the quantity and type of sensors for meteorology and surface hydrology. Rainfall data include continuous precipitation measured by rain-gages (5 min time step for the research network of 21 rain-gages and 1h time step for the operational network of 9 rain-gages), S-band Doppler dual-polarization radar (1 km2, 5 min resolution), and disdrometers (11 sensors working at 1 min time step). During the special observation period (SOP-1) and enhanced observation period (Sep-Dec 2012, Sep-Dec 2013) of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, two X-band radars provided precipitation measurements at very fine spatial and temporal scales (1 ha, 5 min). Meteorological data are taken from the operational surface weather observation stations of Meteo France at the hourly time resolution (6 stations in the region of interest). The monitoring of surface hydrology and suspended sediment is multi-scale and based on nested catchments. Three hydrometric stations measure water discharge and additional physico-chemical variables at a 2-10 min time resolution. Two experimental plots monitor overland flow and erosion at 1 min time resolution on a hillslope with vineyard. A network of 11 gauges continuously measures water level and temperature in headwater subcatchments at a time resolution of 2-5 min. A network of soil moisture sensors enable the continuous measurement of soil volumetric water content at 20 min time resolution at 9 sites. Additionally, opportunistic observations (soil moisture measurements and stream gauging) were performed during floods between 2012 and 2014. The data are appropriate for understanding rainfall variability, improving areal rainfall estimations and progress in distributed hydrological modelling.
Water-resources activities of the U.S. Geological Survey in New Mexico, fiscal year 1992
Allen, Harriet R.
1994-01-01
Awareness of our environment in general, and water resources in particular, has brought increased interest in and support of hydrologic data collection and research. The quantity, quality, and distribution of water are extremely important to the future well-being of New Mexico. The State's surface-water resources are minimal and highly variable due to climate and to regulation and diversion; ground-water resources are subject to development that exceeds natural recharge and to potential contamination by land use. Issues related to global climate change, disposal of hazardous wastes, toxic substances in water, water rights, and ground-water contamination are evolving areas of greater public concern. At the same time there is a continuing need for a better understanding of various hydrologic systems and processes in order to manage these limited water resources for maximum benefit to present and future generations.The U.S. Geological Survey has collected and disseminated information on the water resources of New Mexico for more than a century. The Survey began to collect records of streamflow in New Mexico in December 1888 when the first discharge measurements were made on the Rio Grande near the present gaging station at Embudo. This site, called the "birthplace of systematic stream gaging," was chosen to be the training center for the first hydrographers of the Irrigation Survey, a bureau within the original Geological Survey. Since that time, in cooperation with Federal, State, local, and tribal agencies, we have monitored streams at hundreds of sites throughout the State and have a current network of more than 200 streamflow-gaging stations. Through the Cooperative Program, we also have established sites where ground-water levels are monitored to document changes in ground-water storage or where surface-water and groundwater samples are collected to determine water chemistry, and we have undertaken investigative studies to define the availability, quality, and distribution of water resources. Information from the data program and results of investigative studies are made available to water-resources managers, regulators, and the public to be used for the effective management of the State's water resources.This report provides a brief summary of the activities of the New Mexico District for FY (fiscal year) 1992, including our mission, organization, sources of funding, and descriptions of current projects. This report serves to document not only the content of the program, but also the diversity and complexity of that program. Cooperation among water-resources agencies will be essential in effectively dealing with water-related issues facing New Mexico. We look forward to the challenge of addressing these issues by continuing to provide factual hydrologic data and technically sound areal appraisals and interpretive studies.
Channel-morphology data for the Tongue River and selected tributaries, southeastern Montana, 2001-02
Chase, Katherine J.
2004-01-01
Coal-bed methane exploration and production have begun within the Tongue River watershed in southeastern Montana. The development of coal-bed methane requires production of large volumes of ground water, some of which may be discharged to streams, potentially increasing stream discharge and sediment load. Changes in stream discharge or sediment load may result in changes to channel morphology through changes in erosion and vegetation. These changes might be subtle and difficult to detect without baseline data that indicate stream-channel conditions before extensive coal-bed methane development began. In order to provide this baseline channel-morphology data, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, collected channel-morphology data in 2001-02 to document baseline conditions for several reaches along the Tongue River and selected tributaries. This report presents channel-morphology data for five sites on the mainstem Tongue River and four sites on its tributaries. Bankfull, water-surface, and thalweg elevations, channel sections, and streambed-particle sizes were measured along reaches near streamflow-gaging stations. At each site, the channel was classified using methods described by Rosgen. For six sites, bankfull discharge was determined from the stage- discharge relation at the gage for the stage corresponding to the bankfull elevation. For three sites, the step-backwater computer model HEC-RAS was used to estimate bankfull discharge. Recurrence intervals for the bankfull discharge also were estimated for eight of the nine sites. Channel-morphology data for each site are presented in maps, tables, graphs, and photographs.
Wyoming Water Resources Data, Water Year 2002, Volume 2. Ground Water
Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.
2003-01-01
Water resources data for the 2002 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 156 gaging stations; water quality for 33 gaging stations and 34 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.
Water Resources Data, Wyoming, Water Year 2001, Volume 1. Surface Water
Swanson, R.B.; Woodruff, R.E.; Laidlaw, G.A.; Watson, K.R.; Clark, M.L.
2002-01-01
Water resources data for the 2001 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 151 gaging stations, stage and contents for 12 lakes and reservoirs, and water quality for 33 gaging stations and 32 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.
Wyoming Water Resources Data, Water Year 2003, Volume 2. Ground Water
Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.
2004-01-01
Water resources data for the 2003 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 160 gaging stations; water quality for 42 gaged stations and 28 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.
Water resources data, Indiana, water year 1982
Miller, R.L.; Hoggatt, R.E.; Nell, G.E.
1983-01-01
Water resources data for the 1982 water year for Indiana consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels in wells. This report contains discharge records for 176 gaging stations, stage and contents for 9 lakes and reservoirs, releases from 8 flood control reservoirs, water quality for 26 gaging stations, and water levels for 87 observation wells. Also included are 71 crest-stage partial-record stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Indiana.
Water resources data, Indiana, water year 1983
Miller, R.L.; Hoggatt, R.E.; Nell, G.E.
1984-01-01
Water resources data for the 1983 water year for Indiana consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels in wells. This report contains discharge records for 174 gaging stations, stage and contents for 9 lake and reservoirs, releases from 7 flood control reservoirs, water quality for 5 gaging stations, and water levels for 84 observation wells. Also included are 23 crest-stage partial-record stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Indiana.
Wyoming Water Resources Data, Water Year 2000, Volume 2. Ground Water
Mason, J.P.; Swanson, R.B.; Roberts, S.C.
2001-01-01
Water resources data for the 2000 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 141 gaging stations; stage and contents for 15 lakes and reservoirs; and water quality for 22 gaging stations and 21 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, E.B.; Bowers, J.C.; Mullen, J.R.
1993-09-01
Water resources data for the 1992 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 161 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 23 streamflow-gaging stations and 3 partial-record stations; and (4) precipitation records for 11 stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullen, J.R.; Hayes, P.D.; Agajanian, J.A.
1994-06-01
Water resources data for the 1993 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 156 streamflow-gaging stations, 12 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 17 streamflow-gaging stations and 6 partial-record stations; and (4) precipitation records for 10 stations.
46 CFR 98.25-45 - Liquid level gaging device.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Liquid level gaging device. 98.25-45 Section 98.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-45 - Liquid level gaging device.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Liquid level gaging device. 98.25-45 Section 98.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-45 - Liquid level gaging device.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Liquid level gaging device. 98.25-45 Section 98.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-45 - Liquid level gaging device.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Liquid level gaging device. 98.25-45 Section 98.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-45 - Liquid level gaging device.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Liquid level gaging device. 98.25-45 Section 98.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
Surface water data at Los Alamos National Laboratory: 2009 water year
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, David; McCullough, Betsy
2010-05-01
The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.
Surface water data at Los Alamos National Laboratory: 2008 water year
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, David; Cata, Betsy; Kuyumjian, Gregory
2009-09-01
The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durlin, R.R.; Schaffstall, W.P.
1994-01-01
Water resources data for the 1993 water year for Pennsylvania consist of records of discharge and water quality of streams; contents and elevations of lakes and reservoirs; and water levels and water quality of ground-water wells. The report, Volume 2, includes records from the Susquehanna and Potomac River Basins. Specifically, Volume 2 contains (1) discharge records for 97 continuous-record streamflow-gaging stations and 39 partial-record stations; (2) elevation and contents records for 13 lakes and reservoirs; and (3) water-level records for 25 observation wells. The location of these sites is shown in figures 6-8. Additional waste data collected at various sitesmore » not involved in the systematic data-collection program are also presented.« less
NASA Technical Reports Server (NTRS)
Miller, C. G., III
1981-01-01
Thin film gages deposited at the stagnation region of small (8.1-mm-diameter) hemispheres and gages mounted flush with the surface of a sharp-leading-edge flat plate were tested in the Langley continuous-flow hypersonic tunnel and in the Langley hypersonic CF4 tunnel. Two substrate materials were tested, quartz and a machinable glass-ceramic. Small hemispheres were also tested utilizing the thin-skin transient calorimeter technique usually employed in conventional tunnels. One transient calorimeter model was a thin shell of stainless steel, and the other was a thin-skin insert of stainless steel mounted into a hemisphere fabricated from a machinable-glass-ceramic. Measured heat-transfer rates from the various hemispheres were compared with one another and with predicted rates. The results demonstrate the feasibility and advantages of using-film resistance heat-transfer gages in conventional hypersonic wind tunnels over a wide range of conditions.
Changes in streamflow characteristics in Wisconsin as related to precipitation and land use
Gebert, Warren A.; Garn, Herbert S.; Rose, William J.
2016-01-19
Streamflow characteristics were determined for 15 longterm streamflow-gaging stations for the periods 1915–2008, 1915–68, and 1969–2008 to identify trends. Stations selected represent flow characteristics for the major river basins in Wisconsin. Trends were statistically significant at the 95 percent confidence level at 13 of the 15 streamflow-gaging stations for various streamflow characteristics for 1915–2008. Most trends indicated increases in low flows for streams with agriculture as the dominant land use. The three most important findings are: increases in low flows and average flows in agricultural watersheds, decreases in flood peak discharge for many streams in both agricultural and forested watersheds, and climatic change occurred with increasing annual precipitation and changes in monthly occurrence of precipitation. When the 1915–68 period is compared to the 1969–2008 period, the annual 7-day low flow increased an average of 60 percent for nine streams in agricultural areas as compared to a 15 percent increase for the five forested streams. Average annual flow for the same periods increased 23 percent for the agriculture streams and 0.6 percent for the forested streams. The annual flood peak discharge for the same periods decreased 15 percent for agriculture streams and 8 percent for forested streams. The largest increase in the annual 7-day low flow was 117 percent, the largest increase in annual average flow was 41 percent, and the largest decrease in annual peak discharge was 51 percent. The trends in streamflow characteristics affect frequency characteristics, which are used for a variety of design and compliance purposes. The frequencies for the 1969–2008 period were compared to frequencies for the 1915–68 period. The 7-day, 10-year (Q7, 10) low flow increased 91 percent for nine agricultural streams, while the five forested streams had an increase of 18 percent. The 100-year flood peak discharge decreased an average of 15 percent for streams in the agriculture area and 27 percent for streams in the forested area. Increases in low flow for agriculture streams are attributed to changes in agricultural practices and land use as well as increased precipitation. The decrease in annual flood peak discharge with increased annual precipitation is less clear, but is attributed to increased infiltration from changes in agricultural practices and climatic changes. For future low-flow studies, the 1969–2008 period should be used to determine low-flow characteristics since it represents current (2014) conditions and was generally free of significant trends.
Paretti, Nicholas V.; Kennedy, Jeffrey R.; Turney, Lovina A.; Veilleux, Andrea G.
2014-01-01
The regional regression equations were integrated into the U.S. Geological Survey’s StreamStats program. The StreamStats program is a national map-based web application that allows the public to easily access published flood frequency and basin characteristic statistics. The interactive web application allows a user to select a point within a watershed (gaged or ungaged) and retrieve flood-frequency estimates derived from the current regional regression equations and geographic information system data within the selected basin. StreamStats provides users with an efficient and accurate means for retrieving the most up to date flood frequency and basin characteristic data. StreamStats is intended to provide consistent statistics, minimize user error, and reduce the need for large datasets and costly geographic information system software.
Flood profiles for lower Brooker Creek, west-central Florida
Murphy, W.R.
1978-01-01
Flood heights are computed for a range of recurrence intervals for a 12.6 mile reach of Brooker Creek, beginning at the mouth at Lake Tarpon. A Geological Survey step-backwater computer program, E431, was used in these analyses using: (1) Stream and valley cross-section geometry and roughness data; (2) Recurrence interval flood-peak discharges; (3) Recurrence interval starting elevations; (4) Gaging station stage-discharge relations. Flood heights may be plotted versus distance above stream mouth and connected to construct flood profiles. They may also be used to indicate areas of inundation on detailed topographic maps.
Drainage areas of the Guyandotte River basin, West Virginia
Mathes, M.V.
1977-01-01
This report, prepared in cooperation with the West Virginia Office of Federal-State Relations (now the Office of Economic and Community Development), lists in tabular form 435 drainage areas for basins within the Guyandotte River basin of West Virginia. Drainage areas are compiled for sites at the mouths of all streams having drainage areas of approximately five square miles or greater, for sites at U.S. Geological Survey gaging stations (past and present), and for other miscellaneous sites. Drainage areas are summed in a downstream direction to provide areas for main channel sites. The site or reference point of each basin can be located by stream miles measured upstream from the mouth of each stream, by county, by quadrangle, and by latitude and longitude.
Ishii, Audrey L.; Soong, David T.; Sharpe, Jennifer B.
2010-01-01
Illinois StreamStats (ILSS) is a Web-based application for computing selected basin characteristics and flood-peak quantiles based on the most recently (2010) published (Soong and others, 2004) regional flood-frequency equations at any rural stream location in Illinois. Limited streamflow statistics including general statistics, flow durations, and base flows also are available for U.S. Geological Survey (USGS) streamflow-gaging stations. ILSS can be accessed on the Web at http://streamstats.usgs.gov/ by selecting the State Applications hyperlink and choosing Illinois from the pull-down menu. ILSS was implemented for Illinois by obtaining and projecting ancillary geographic information system (GIS) coverages; populating the StreamStats database with streamflow-gaging station data; hydroprocessing the 30-meter digital elevation model (DEM) for Illinois to conform to streams represented in the National Hydrographic Dataset 1:100,000 stream coverage; and customizing the Web-based Extensible Markup Language (XML) programs for computing basin characteristics for Illinois. The basin characteristics computed by ILSS then were compared to the basin characteristics used in the published study, and adjustments were applied to the XML algorithms for slope and basin length. Testing of ILSS was accomplished by comparing flood quantiles computed by ILSS at a an approximately random sample of 170 streamflow-gaging stations computed by ILSS with the published flood quantile estimates. Differences between the log-transformed flood quantiles were not statistically significant at the 95-percent confidence level for the State as a whole, nor by the regions determined by each equation, except for region 1, in the northwest corner of the State. In region 1, the average difference in flood quantile estimates ranged from 3.76 percent for the 2-year flood quantile to 4.27 percent for the 500-year flood quantile. The total number of stations in region 1 was small (21) and the mean difference is not large (less than one-tenth of the average prediction error for the regression-equation estimates). The sensitivity of the flood-quantile estimates to differences in the computed basin characteristics are determined and presented in tables. A test of usage consistency was conducted by having at least 7 new users compute flood quantile estimates at 27 locations. The average maximum deviation of the estimate from the mode value at each site was 1.31 percent after four mislocated sites were removed. A comparison of manual 100-year flood-quantile computations with ILSS at 34 sites indicated no statistically significant difference. ILSS appears to be an accurate, reliable, and effective tool for flood-quantile estimates.
Ruddy, Barbara C.; Williams, Cory A.
2007-01-01
In 2007, the U.S. Geological Survey, in cooperation with Bowie Mining Company, initiated a study to characterize the streamflow and streamflow gain-loss in a reach of Hubbard Creek in Delta County, Colorado, in the vicinity of a mine-permit area planned for future coal mining. Premining streamflow characteristics and streamflow gain-loss variation were determined so that pre- and postmining gain-loss characteristics could be compared. This report describes the methods used in this study and the results of two streamflow-measurement sets collected during low-flow conditions. Streamflow gain-loss measurements were collected using rhodamine WT and sodium bromide tracers at four sites spanning the mine-permit area on June 26-28, 2007. Streamflows were estimated and compared between four measurement sites within three stream subreaches of the study reach. Data from two streamflow-gaging stations on Hubbard Creek upstream and downstream from the mine-permit area were evaluated. Streamflows at the stations were continuous, and flow at the upstream station nearly always exceeded the streamflow at the downstream station. Furthermore, streamflow at both stations showed similar diurnal patterns with traveltime offsets. On June 26, streamflow from the gain-loss measurements was greater at site 1 (most upstream site) than at site 4 (most downstream site); on June 27, streamflow was greater at site 4 than at site 2; and on June 27, there was no difference in streamflow between sites 2 and 3. Data from streamflow-gaging stations 09132940 and 09132960 showed diurnal variations and overall decreasing streamflow over time. The data indicate a dynamic system, and streamflow can increase or decrease depending on hydrologic conditions. The streamflow within the study reach was greater than the streamflows at either the upstream or downstream stations. A second set of gain-loss measurements was collected at sites 2 and 4 on November 8-9, 2007. On November 8, streamflow was greater at site 4 than at site 2, and on the following day, November 9, streamflow was greater at site 2 than at site 4. Data collection on November 8 occurred while the streamflow was increasing due to contributions from stream ice melting throughout different parts of the basin. Data collection on November 9 occurred earlier in the day with less stream ice melting and more steady-state conditions, so the indication that streamflow decreased between sites 2 and 4 may be more accurate. Diurnal variations in streamflow are common at both the upper and the lower streamflow-gaging stations. The upper streamflow-gaging station shows a melt-freeze influence from tributaries to Hubbard Creek during the winter season. Downstream from the study reach, observed diurnal variation is likely due to evapotranspiration associated with dense flood-plain vegetation, which consumes water from the creek during the middle of the day. Varying diurnal patterns in streamflow, combined with possible variations in tributary inflows to Hubbard Creek in the study reach, probably account for the observed variations in streamflow at the tracer measurement sites. During both sampling periods in June and November 2007, conditions were less than ideal and not steady state. The June 27 sampling indicates that the streamflow was increasing between measurement sites 2 and 4, and the November 9 sampling indicates that the streamflow was decreasing between measurement sites 2 and 4. The data collected during the diurnal and day-to-day variations in streamflow indicated that the streamflow reach is dynamic and can be gaining, losing, or constant.
Uses, funding, and availability of continuous streamflow data in Montana
Shields, R.R.; White, M.K.
1984-01-01
This report documents the results of a study of the uses, funding, and availability of continuous streamflow data collected and published by the U.S. Geological Survey in Montana. Data uses and funding sources are identified for the 218 continuous streamflow gages currently (1984) being operated. These stations are supported by 18 different funding sources at a budget for the 1984 water year of $1,065,000. The streamflow-gaging program in Montana has evolved through the years as Federal, State, and local needs for surface-water data have increased. Continuous streamflow records for periods ranging from less than 1 year to more than 90 years have been collected. This report describes phase 1 of a cost-effectiveness study of the streamflow-gaging program in Montana. Evaluation of the program indicates that numerous agencies use the data for studies involving regional hydrology, hydrologic systems, and planning and design. They also use the data for operations of existing hydroelectric and irrigation dams, forecasting flood and seasonal flows, water-quality monitoring, research studies for fish habitat, and other uses such as recreational management. (USGS)
Umatilla River Basin Anadromous Fsh Habitat Enhancement Project : 2000 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, R. Todd
2001-12-31
The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2000 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla River Basin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Habitat enhancement projects continued to be maintained on 44 private properties, four riparian easements and one in-stream enhancement agreement were secured, two new projects implemented and two existing projects improved to enhance anadromous fish habitat and natural fisheries production capabilitiesmore » in the Umatilla River Basin. New project locations included sites on the mid Umatilla River and Buckaroo Creek. Improvements were implemented at existing project sites on the upper Umatilla River and Wildhorse Creek. A stream bank stabilization project was implemented at approximately River Mile 37.4 Umatilla River to stabilize 760 feet of eroding stream bank and improve in-stream habitat diversity. Habitat enhancements at this site included construction of six rock barbs with one large conifer root wad incorporated into each barb, stinging approximately 10,000 native willow cuttings, planting 195 tubling willows and 1,800 basin wildrye grass plugs, and seeding 40 pounds of native grass seed. Staff time to assist in development of a subcontract and fence materials were provided to establish eight spring sites for off-stream watering and to protect wetlands within the Buckaroo Creek Watershed. A gravel bar was moved and incorporated into an adjacent point bar to reduce stream energy and stream channel confinement within the existing project area at River Mile 85 Umatilla River. Approximately 10,000 native willow cuttings were stung and trenched into the stream channel margins and stream banks, and 360 basin wildrye grass plugs planted and 190 pounds of native grass seed broadcast on terraces between River Mile 10 and 12.5 within the existing Wildhorse Creek Project Area. Approximately 70 pounds of native grasses were seeded in the existing McKay Creek Project Area at approximately River Mile 21.5. Financial and in-kind cost share assistance was provided by the Confederated Tribes of the Umatilla Indian Reservation, U.S. Bureau of Indian Affairs, U.S. Department of Agriculture, U.S. Fish and Wildlife Service, National Fish and Wildlife Federation and the Umatilla National Forest for the enhancements at River Mile 37.4 Umatilla River and within the Buckaroo Creek Watershed. Monitoring continued to quantify effects of habitat enhancements in the upper basin. Maximum, minimum and average daily stream temperatures were collected from June through September at 22 sites. Suspended sediment samples were obtained at three gage stations to arrive at daily sediment load estimates. Photographs were taken at 94 existing and two newly established photo points to document habitat recovery. Umatilla Basin Watershed Assessment efforts were continued under a subcontract with Washington State University. This endeavor involves compiling existing information, identifying data gaps, determining habitat-limiting factors and recommending actions to improve anadromous fisheries habitat. This watershed assessment document and working databases will be completed in fiscal year 2002 and made available to assist project personnel with sub-watershed prioritization of habitat needs.« less
Elizabeth T. Keppeler; Jack Lewis; Thomas E. Lisle
2003-01-01
Abstract - Caspar Creek Experimental Watersheds were established in 1962 to research the effects of forest management on streamflow, sedimentation, and erosion in the rainfall-dominated, forested watersheds of north coastal California. Currently, 21 stream sites are gaged in the North Fork (473 ha) and South Fork (424 ha) of Caspar Creek. From 1971 to 1973, 65% of...
Accuracy in streamflow measurements on the Fernow Experimental Forest
James W. Hornbeck
1965-01-01
Measurement of streamflow from small watersheds on the Fernow Experimental Forest at Parsons, West Virginia was begun in 1951. Stream-gaging stations are now being operated on 9 watersheds ranging from 29 to 96 acres in size; and 91 watershed-years of record have been collected. To determine how accurately streamflow is being measured at these stations, several of the...
Surface Water Data at Los Alamos National Laboratory: 2002 Water Year
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.A. Shaull; D. Ortiz; M.R. Alexander
2003-03-03
The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.
Surface Water Data at Los Alamos National Laboratory 2006 Water Year
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.P. Romero, D. Ortiz, G. Kuyumjian
2007-08-01
The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.
Large rivers of the United States
Iseri, Kathleen T.; Langbein, Walter Basil
1974-01-01
Information on the flow of the 28 largest rivers in the United States is presented for the base periods 1931-60 and 1941-70. Drainage area, stream length, source, and mouth are included. Table 1 shows the average discharge at downstream gaging stations. Table 2 lists large rivers in order of average discharge at the mouth, based on the period 1941-70.
Water resources of the Cook Inlet Basin, Alaska
Freethey, Geoffrey W.; Scully, David R.
1980-01-01
Ground-water and surface-water systems of Cook Inlet basin, Alaska, are analyzed. Geologic and topographic features that control the movement and regional availability of ground water are explained and illustrated. Five aquifer systems beneath the most populous areas are described. Estimates of ground-water yield were determined for the region by using ground-water data for the populated areas and by extrapolating known subsurface conditions and interpreting subsurface conditions from surficial features in the other areas. Area maps of generalized geology, Quaternary sediment thickness, and general availability of ground water are shown. Surface-water resources are summarized by describing how basin characteristics affect the discharge in streams. Seasonal trend of streamflow for three types of streams is described. Regression equations for 4 streamflow characteristics (annual, monthly minimum, and maximum discharge) were obtained by using gaging station streamflow characteristics and 10 basin characteristics. In the 24 regression equations presented, drainage area is the most significant basin characteristic, but 5 others are used. Maps of mean annual unit runoff and minimum unit yield for 7 consecutive days with a recurrence interval of 10 years are shown. Historic discharge data at gaging stations is tabulated and representative low-flow and flood-flow frequency curves are shown. (USGS)
Lotspeich, R. Russell
2009-01-01
Natural-channel design involves constructing a stream channel with the dimensions, slope, and plan-view pattern that would be expected to transport water and sediment and yet maintain habitat and aesthetics consistent with unimpaired stream segments, or reaches. Regression relations for bankfull stream characteristics based on drainage area, referred to as 'regional curves,' are used in natural stream channel design to verify field determinations of bankfull discharge and stream channel characteristics. One-variable, ordinary least-squares regressions relating bankfull discharge, bankfull cross-sectional area, bankfull width, bankfull mean depth, and bankfull slope to drainage area were developed on the basis of data collected at 17 streamflow-gaging stations in rural areas with less than 20 percent urban land cover within the basin area (non-urban areas) of the Piedmont Physiographic Province in Virginia. These regional curves can be used to estimate the bankfull discharge and bankfull channel geometry when the drainage area of a watershed is known. Data collected included bankfull cross-sectional geometry, flood-plain geometry, and longitudinal profile data. In addition, particle-size distributions of streambed material were determined, and data on basin characteristics were compiled for each reach. Field data were analyzed to determine bankfull cross-sectional area, bankfull width, bankfull mean depth, bankfull discharge, bankfull channel slope, and D50 and D84 particle sizes at each site. The bankfull geometry from the 17 sites surveyed during this study represents the average of two riffle cross sections for each site. Regional curves developed for the 17 sites had coefficient of determination (R2) values of 0.950 for bankfull cross-sectional area, 0.913 for bankfull width, 0.915 for bankfull mean depth, 0.949 for bankfull discharge, and 0.497 for bankfull channel slope. The regional curves represent conditions for streams with defined channels and bankfull features in the Piedmont Physiographic Province in Virginia with drainage areas ranging from 0.29 to 111 square miles. All sites included in the development of the regional curves were located on streams with current or historical U.S. Geological Survey streamflow-gaging stations. These curves can be used to verify bankfull features identified in the field and bankfull stage for ungaged streams in non-urban areas.
Water resources data West Virginia water wear 2001
Ward, S.M.; Taylor, B.C.; Crosby, G.R.
2002-01-01
Water-resources data for the 2001 water year for West Virginia consist of records of discharge and water quality of streams and water levels of observation wells. This report contains discharge records for 65 streamflow-gaging stations; discharge records provided by adjacent states for 7 streamflow-gaging stations; annual maximum discharge at 18 crest-stage partial-record stations; water-quality records for 4 stations; and water-level records for 10 observation wells. Locations of these sites are shown on figures 4 and 5. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.
Water resources data, Kansas, water year 2004
Putnam, J.E.; Schneider, D.R.
2005-01-01
Water-resources data for the 2004 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 155 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 14 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 16 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 29 high-flow partial-record stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.
Hayes, P.D.; Agajanian, J.A.; Rockwell, G.L.
1995-01-01
Water resources data for the 1994 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 143 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations; (2) stage and contents records for 20 lakes and reservoirs; (3) water quality records for 19 streamflow-gaging stations and 2 partial-record stations; and ( 4) precipitation records for 8 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Bowers, J.C.; Jensen, R.M.; Hoffman, E.B.
1991-01-01
Water resources data for the 1990 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 157 streamflow-gaging stations, 16 crest-stage partial-record streamflow stations, and 2miscellaneous measurement stations; stage and contents records for 16 lakes and reservoirs; water-quality records for 19 streamflow-gaging stations, 2 partial-record stations; and precipitation records for 13 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Agajanian, J.A.; Rockwell, G.L.; Hayes, P.D.
1996-01-01
Water resources data for the 1995 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 141 streamflow-gaging stations, 6 crest-stage partial-record streamflow stations; (2) stage and contents records for 20 lakes and reservoirs; (3) water quality records for 21 streamflow-gaging stations and 3 partial-record stations; and (4) precipitation records for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Jensen, R.M.; Hoffman, E.B.; Bowers, J.C.; Mullen, J.R.
1992-01-01
Water resources data for the 1991 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains dischrage records for 171 streamflow-gaging stations, 16 crest-stage partial-record streamflow stations, and 3 miscellaneous measurement stations; stage and contents records for 24 lakes and reservoirs; water-quality records for 23 streamflow-gaging stations, 4 partial-record stations; and precipitation records for 16 stations. These data represent that part of the National Water Data System operated by the U,S. Geological Survey and cooperating State and Federal agencies in California.
Blodgett, J.C.; Oltmann, R.N.; Poeschel, K.R.
1984-01-01
Daily mean and monthly discharges were estimated for 10 sites on the Carson and Truckee Rivers for periods of incomplete records and for tributary sites affected by reservoir regulation. On the basis of the hydrologic characteristics, stream-flow data for a water year were grouped by month or season for subsequent regression analysis. In most cases, simple linear regressions adequately defined a relation of streamflow between gaging stations, but in some instances a nonlinear relation for several months of the water year was derived. Statistical data are presented to indicate the reliability of the estimated streamflow data. Records of discharges including historical and estimated data for the gaging stations for the water years 1944-80 are presented. (USGS)
The Future of the Plate Boundary Observatory in the GAGE Facility and beyond 2018
NASA Astrophysics Data System (ADS)
Mattioli, G. S.; Bendick, R. O.; Foster, J. H.; Freymueller, J. T.; La Femina, P. C.; Miller, M. M.; Rowan, L.
2014-12-01
The Geodesy Advancing Geosciences and Earthscope (GAGE) Facility, which operates the Plate Boundary Observatory (PBO), builds on UNAVCO's strong record of facilitating research and education in the geosciences and geodesy-related engineering fields. Precise positions and velocities for the PBO's ~1100 continuous GPS stations and other PBO data products are used to address a wide range of scientific and technical issues across North America. A large US and international community of scientists, surveyors, and civil engineers access PBO data streams, software, and other on-line resources daily. In a global society that is increasingly technology-dependent, consistently risk-averse, and often natural resource-limited, communities require geodetic research, education, and infrastructure to make informed decisions about living on a dynamic planet. The western U.S. and Alaska, where over 95% of the PBO sensor assets are located, have recorded significant geophysical events like earthquakes, volcanic eruptions, and tsunami. UNAVCO community science provides first-order constraints on geophysical processes to support hazards mapping and zoning, and form the basis for earthquake and tsunami early warning applications currently under development. The future of PBO was discussed at a NSF-sponsored three-day workshop held in September 2014 in Breckenridge, CO. Over 40 invited participants and community members, including representatives from interested stakeholder groups, UNAVCO staff, and members of the PBO Working Group and Geodetic Infrastructure Advisory Committee participated in workshop, which included retrospective and prospective plenary presentations and breakout sessions focusing on specific scientific themes. We will present some of the findings of that workshop in order to continue a dialogue about policies and resources for long-term earth observing networks. How PBO fits into the recently released U.S. National Plan for Civil Earth Observations will also be discussed.
Ahearn, Elizabeth A.
2008-01-01
Flow durations, low-flow frequencies, and monthly median streamflows were computed for 91 continuous-record, streamflow-gaging stations in Connecticut with 10 or more years of record. Flow durations include the 99-, 98-, 97-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 25-, 20-, 10-, 5-, and 1-percent exceedances. Low-flow frequencies include the 7-day, 10-year (7Q10) low flow; 7-day, 2-year (7Q2) low flow; and 30-day, 2-year (30Q2) low flow. Streamflow estimates were computed for each station using data for the period of record through water year 2005. Estimates of low-flow statistics for 7 short-term (operated between 3 and 10 years) streamflow-gaging stations and 31 partial-record sites were computed. Low-flow estimates were made on the basis of the relation between base flows at a short-term station or partial-record site and concurrent daily mean streamflows at a nearby index station. The relation is defined by the Maintenance of Variance Extension, type 3 (MOVE.3) method. Several short-term stations and partial-record sites had poorly defined relations with nearby index stations; therefore, no low-flow statistics were derived for these sites. The estimated low-flow statistics for the short-term stations and partial-record sites include the 99-, 98-, 97-, 95-, 90-, and 85-percent flow durations; the 7-day, 10-year (7Q10) low flow; 7-day, 2-year (7Q2) low flow; and 30-day, 2-year (30Q2) low-flow frequencies; and the August median flow. Descriptive information on location and record length, measured basin characteristics, index stations correlated to the short-term station and partial-record sites, and estimated flow statistics are provided in this report for each station. Streamflow estimates from this study are stored on USGS's World Wide Web application 'StreamStats' (http://water.usgs.gov/osw/streamstats/connecticut.html).
Beck, David A.; Ryan, Roslyn; Veley, Ronald J.; Harper, Donald P.; Tanko, Daron J.
2006-01-01
The U.S. Geological Survey, in cooperation with Southern Nevada Water Authority and the Nevada Division of Water Resources, operates and maintains a surface-water monitoring network of 6 continuous-record stream-flow gaging stations and 11 partial-record stations in the Warm Springs area near Moapa, Nevada. Permanent land-surface bench marks were installed within the Warm Springs area by the Las Vegas Valley Water District, the Southern Nevada Water Authority, and the U.S. Geological Survey to determine water-surface elevations at all network monitoring sites. Vertical datum elevation and horizontal coordinates were established for all bench marks through a series of Differential Global Positioning System surveys. Optical theodolite surveys were made to transfer Differential Global Positioning System vertical datums to reference marks installed at each monitoring site. The surveys were completed in June 2004 and water-surface elevations were measured on August 17, 2004. Water-surface elevations ranged from 1,810.33 feet above North American Vertical Datum of 1988 at a stream-gaging station in the Pederson Springs area to 1,706.31 feet at a station on the Muddy River near Moapa. Discharge and water-quality data were compiled for the Warm Springs area and include data provided by the U.S. Geological Survey, Nevada Division of Water Resources, U.S. Fish and Wildlife Service, Moapa Valley Water District, Desert Research Institute, and Converse Consultants. Historical and current hydrologic data-collection networks primarily are related to changes in land- and water-use activities in the Warm Springs area. These changes include declines in ranching and agricultural use, the exportation of water to other areas of Moapa Valley, and the creation of a national wildlife refuge. Water-surface elevations, discharge, and water-quality data compiled for the Warm Springs area will help identify (1) effects of changing vegetation within the former agricultural lands, (2) effects of restoration activities in the wildlife refuge, and (3) potential impacts of ground-water withdrawals.
Flood of July 12-13, 2004, Burlington and Camden Counties, South-Central New Jersey
Protz, Amy R.; Reed, Timothy J.
2006-01-01
Intense rainfall inundated south-central New Jersey on July 12-13, 2004, causing major flooding with heavy property, road, and bridge damage in Burlington and Camden Counties. Forty-five dams were topped or damaged, or failed completely. The affected areas were in the Rancocas Creek, Cooper River, and Pennsauken Creek Basins. The U.S. Geological Survey (USGS) documented peak stream elevations and flows at 56 selected sites within the affected area. With rainfall totals averaging more than 6 inches throughout the three basins, peak-of-record flood elevations and streamflows occurred at all but one USGS stream gage, where the previous record was tied. Flood-frequency recurrence-intervals ranged from 30 to greater than 100 years and maximum streamflow per square mile ranged from 13.9 to 263 cubic feet per second per square mile (ft3/s/mi2). Peak streamflow at USGS stream gages surrounding the affected basins are associated with considerably lower recurrence intervals and demonstrate the limited extent of the flood. A high tide of about 1 foot above monthly mean high tide did not contribute to high-water conditions. Low ground-water levels prior to the rainfall helped to mitigate flooding in the affected basins. Compared with historical floods in the Rancocas Creek Basin during 1938-40, the July 2004 flood had greater streamflow, but lower stream elevations. Property damage from the event was estimated at $50 million. Governor James E. McGreevy declared a State of Emergency in Burlington and Camden Counties on July 13, 2004. After assessment of the damage by the Federal Emergency Management Agency (FEMA), President George W. Bush declared Burlington and Camden Counties disaster areas on July 16, 2004.
Evaluation of a Crack-Growth Gage for Monitoring Possible Structural Fatigue-Crack Growth
1978-02-01
the gages and structural components and tested the specimens. Appreciation is also extended to Dennis E. Macha for his effort in making the laser...SDM Conference AIAA/ASME, San Diego, California, March 21-23, 1977. 20 AFML-TR-77-233 REFERENCES (CONTINUED) 12. D. E. Macha , W. N. Sharpe, Jr., and A
Modeling Flood Plain Hydrology and Forest Productivity of Congaree Swamp, South Carolina
Doyle, Thomas W.
2009-01-01
An ecological field and modeling study was conducted to examine the flood relations of backswamp forests and park trails of the flood plain portion of Congaree National Park, S.C. Continuous water level gages were distributed across the length and width of the flood plain portion - referred to as 'Congaree Swamp' - to facilitate understanding of the lag and peak flood coupling with stage of the Congaree River. A severe and prolonged drought at study start in 2001 extended into late 2002 before backswamp zones circulated floodwaters. Water levels were monitored at 10 gaging stations over a 4-year period from 2002 to 2006. Historical water level stage and discharge data from the Congaree River were digitized from published sources and U.S. Geological Survey (USGS) archives to obtain long-term daily averages for an upstream gage at Columbia, S.C., dating back to 1892. Elevation of ground surface was surveyed for all park trails, water level gages, and additional circuits of roads and boundaries. Rectified elevation data were interpolated into a digital elevation model of the park trail system. Regression models were applied to establish time lags and stage relations between gages at Columbia, S.C., and gages in the upper, middle, and lower reaches of the river and backswamp within the park. Flood relations among backswamp gages exhibited different retention and recession behavior between flood plain reaches with greater hydroperiod in the lower reach than those in the upper and middle reaches of the Congaree Swamp. A flood plain inundation model was developed from gage relations to predict critical river stages and potential inundation of hiking trails on a real-time basis and to forecast the 24-hour flood In addition, tree-ring analysis was used to evaluate the effects of flood events and flooding history on forest resources at Congaree National Park. Tree cores were collected from populations of loblolly pine (Pinus taeda), baldcypress (Taxodium distichum), water tupelo (Nyssa aquatica), green ash (Fraxinus pennslyvanica), laurel oak (Quercus laurifolia), swamp chestnut oak (Quercus michauxii), and sycamore (Plantanus occidentalis) within Congaree Swamp in highand low-elevation sites characteristic of shorter and longer flood duration and related to upriver flood controls and dam operation. Ring counts and dating indicated that all loblolly pine trees and nearly all baldcypress collections in this study are postsettlement recruits and old-growth cohorts, dating from 100 to 300 years in age. Most hardwood species and trees cored for age analysis were less than 100 years old, demonstrating robust growth and high site quality. Growth chronologies of loblolly pine and baldcypress exhibited positive and negative inflections over the last century that corresponded with climate history and residual effects of Hurricane Hugo in 1989. Stemwood production on average was less for trees and species on sites with longer flood retention and hydroperiod affected more by groundwater seepage and site elevation than river floods. Water level data provided evidence that stream regulation and operations of the Saluda Dam (post-1934) have actually increased the average daily water stage in the Congaree River. There was no difference in tree growth response by species or hydrogeomorphic setting to predam and postdam flood conditions and river stage. Climate-growth analysis showed that long-term growth variation is controlled more by spring/ summer temperatures in loblolly pine and by spring/summer precipitation in baldcypress than flooding history.
The USGS at Embudo, New Mexico: 125 years of systematic streamgaging in the United States
Gunn, Mark A.; Matherne, Anne Marie; Mason, Jr., Robert R.
2014-01-01
John Wesley Powell, second Director of the U.S. Geological Survey, had a vision for the Western United States. In the late 1800s, Powell explored the West as head of the Geographical and Geological Survey of the Rocky Mountain Region. He devoted a large part of “Report on the Lands of the Arid Region of the United States with a more detailed account of the land of Utah with maps,” his 1878 report to the General Land Office on the lands west of the 100th meridian, to the feasibility of “reclaiming” large portions of this arid land. Powell recognized that the availability of water was key to the wise settlement of the region. He proposed to inventory all streams in the West to evaluate the potential for irrigation. The essential first step was to gage the flows of the rivers and streams. A few cities in the Eastern United States had established primitive streamgages as early as the 1870s to acquire data needed for the design of their water supply systems. Their methods generally used constructed channels and dams to enable accurate gaging. These methods were not feasible in the West, and certainly not on the vast scale and extreme range of flows common to western streams. New, more flexible techniques were needed. A site was chosen where these methods could be worked out and developed in a practical setting.
Pugh, Aaron L.
2014-01-01
Users of streamflow information often require streamflow statistics and basin characteristics at various locations along a stream. The USGS periodically calculates and publishes streamflow statistics and basin characteristics for streamflowgaging stations and partial-record stations, but these data commonly are scattered among many reports that may or may not be readily available to the public. The USGS also provides and periodically updates regional analyses of streamflow statistics that include regression equations and other prediction methods for estimating statistics for ungaged and unregulated streams across the State. Use of these regional predictions for a stream can be complex and often requires the user to determine a number of basin characteristics that may require interpretation. Basin characteristics may include drainage area, classifiers for physical properties, climatic characteristics, and other inputs. Obtaining these input values for gaged and ungaged locations traditionally has been time consuming, subjective, and can lead to inconsistent results.
Baseline Characteristics of Jordan Creek, Juneau, Alaska
Host, Randy H.; Neal, Edward G.
2004-01-01
Anadromous fish populations historically have found healthy habitat in Jordan Creek, Juneau, Alaska. Concern regarding potential degradation to the habitat by urban development within the Mendenhall Valley led to a cooperative study among the City and Borough of Juneau, Alaska Department of Environmental Conservation, and the U.S. Geological Survey, that assessed current hydrologic, water-quality, and physical-habitat conditions of the stream corridor. Periods of no streamflow were not uncommon at the Jordan Creek below Egan Drive near Auke Bay stream gaging station. Additional flow measurements indicate that periods of no flow are more frequent downstream of the gaging station. Although periods of no flow typically were in March and April, streamflow measurements collected prior to 1999 indicate similar periods in January, suggesting that no flow conditions may occur at any time during the winter months. This dewatering in the lower reaches likely limits fish rearing and spawning habitat as well as limiting the migration of juvenile salmon out to the ocean during some years. Dissolved-oxygen concentrations may not be suitable for fish survival during some winter periods in the Jordan Creek watershed. Dissolved-oxygen concentrations were measured as low as 2.8 mg/L at the gaging station and were measured as low as 0.85 mg/L in a tributary to Jordan Creek. Intermittent measurements of pH and dissolved-oxygen concentrations in the mid-reaches of Jordan Creek were all within acceptable limits for fish survival, however, few measurements of these parameters were made during winter-low-flow conditions. One set of water quality samples was collected at six different sites in the Jordan Creek watershed and analyzed for major ions and dissolved nutrients. Major-ion chemistry showed Jordan Creek is calcium bicarbonate type water with little variation between sampling sites.
Cost-effectiveness of the stream-gaging program in Kentucky
Ruhl, K.J.
1989-01-01
This report documents the results of a study of the cost-effectiveness of the stream-gaging program in Kentucky. The total surface-water program includes 97 daily-discharge stations , 12 stage-only stations, and 35 crest-stage stations and is operated on a budget of $950,700. One station used for research lacks adequate source of funding and should be discontinued when the research ends. Most stations in the network are multiple-use with 65 stations operated for the purpose of defining hydrologic systems, 48 for project operation, 47 for definition of regional hydrology, and 43 for hydrologic forecasting purposes. Eighteen stations support water quality monitoring activities, one station is used for planning and design, and one station is used for research. The average standard error of estimation of streamflow records was determined only for stations in the Louisville Subdistrict. Under current operating policy, with a budget of $223,500, the average standard error of estimation is 28.5%. Altering the travel routes and measurement frequency to reduce the amount of lost stage record would allow a slight decrease in standard error to 26.9%. The results indicate that the collection of streamflow records in the Louisville Subdistrict is cost effective in its present mode of operation. In the Louisville Subdistrict, a minimum budget of $214,200 is required to operate the current network at an average standard error of 32.7%. A budget less than this does not permit proper service and maintenance of the gages and recorders. The maximum budget analyzed was $268,200, which would result in an average standard error of 16.9% indicating that if the budget was increased by 20%, the percent standard error would be reduced 40 %. (USGS)
NASA Astrophysics Data System (ADS)
Anderson, S. W.; Konrad, C. P.
2016-12-01
Understanding the connections between climate and river bed morphology is relevant both for interpreting the geologic record and understanding modern channel change. Here, we use changing stage-discharge relations at USGS stream-gage sites in western Washington State to infer local bed-elevation changes over the past 50 to 90 years. A network of gages in a large, unregulated basin with active glaciation show decadal periods of aggradation and incision that are strongly correlated when lagged. Best-fit lag times indicate the downstream propagation of single coherent signal at a slope-dependent velocity of 1-4 km/yr. This same pattern of change is observed at the outlets of regional rivers with glaciated headwaters but is absent in unglaciated river systems. Sites high in glaciated river systems also show coherency across basins, suggesting that the similarity in the downstream trends across glaciated basins is the result of the downstream propagation of a regionally coherent headwater signal. Incisional trends emanating from headwaters between 1950 and 1980 match a period when regional glaciers were stable or advancing, but assigning causation is complicated by hydroclimatic trends with similar temporal patterns. The recent trend is aggradational, though current bed elevations are generally similar to those prior to 1950, and are consistent with regional data indicating that sediment production in glaciated basins from 1950 to 1980 was anomalously low relative to conditions over the past several hundred years. Regionally, our results suggest the possibility of forecasting periods of aggradation and increased flood hazards several years to decades in advance in populated downstream settings. More broadly, the methods used in this analysis involve simple calculations on publically available data and provide a low-cost means of assessing local channel change wherever USGS stream-gages have been operated.
Combs, L.J.
1984-01-01
Water-resources data and the results of hydrologic investigations in Kansas are published or released by the U.S. Geological Survey, by cooperating State or Federal agencies, or by technical or scientific journals. This report lists more than 800 water-resources reports prepared by or in cooperation with the U.S. Geological Survey in Kansas for 1886 through 1983. The reports are listed by author, publication series, year of publication, and subject. The first water-resources investigations by the U.S. Geological Survey in Kansas was completed by A.C. Peale in 1886. The first cooperative program with a State agency was initiated 9 years later in 1895 and included the first stream-gaging stations operated by the Survey in western Kansas. The U.S. Geological Survey continues to investigate the occurrence, quantity, quality, distribution, and movement of surface and ground waters within the State. (USGS)
Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.
2005-01-01
Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period, the pumps underdischarged the tracer by 5.8-15.9 percent as compared to the initial pumping rate setting, which may explain some of the error in the tracer-dilution streamflow record as compared to current-meter streamflow record.
Streamflow losses along the Balcones Fault Zone, Nueces River basin, Texas
Land, L.F.; Boning, C.W.; Harmsen, Lynn; Reeves, R.D.
1983-01-01
Statistical evaluations of historical daily flow records for the streams that have gaging stations upstream and downstream from the recharge zone provided mathematical relationships that expressed downstream flow in terms of other significant parameters. For each stream, flow entering the recharge zone is most significant in defining downstream flow; for some streams, antecedent flows at the upstream site and ground-water levels are also significantly related to downstream flow. The analyses also determined the discharges required upstream from the recharge zone to sustain flow downstream from that zone. These discharges ranged from 355 cubic feet per second for the combined Frio and Dry Frio Rivers to 33 cubic feet per second for the Nueces River. The entire flows of lesser magnitude are generally lost to recharge to the aquifer.
Experimental measurements of unsteady turbulent boundary layers near separation
NASA Technical Reports Server (NTRS)
Simpson, R. L.
1982-01-01
Investigations conducted to document the behavior of turbulent boundary layers on flat surfaces that separate due to adverse pressure gradients are reported. Laser and hot wire anemometers measured turbulence and flow structure of a steady free stream separating turbulent boundary layer produced on the flow of a wind tunnel section. The effects of sinusoidal and unsteadiness of the free stream velocity on this separating turbulent boundary layer at a reduced frequency were determined. A friction gage and a thermal tuft were developed and used to measure the surface skin friction and the near wall fraction of time the flow moves downstream for several cases. Abstracts are provided of several articles which discuss the effects of the periodic free stream unsteadiness on the structure or separating turbulent boundary layers.
Cost-effectiveness of the stream-gaging program in Nebraska
Engel, G.B.; Wahl, K.L.; Boohar, J.A.
1984-01-01
This report documents the results of a study of the cost-effectiveness of the streamflow information program in Nebraska. Presently, 145 continuous surface-water stations are operated in Nebraska on a budget of $908,500. Data uses and funding sources are identified for each of the 145 stations. Data from most stations have multiple uses. All stations have sufficient justification for continuation, but two stations primarily are used in short-term research studies; their continued operation needs to be evaluated when the research studies end. The present measurement frequency produces an average standard error for instantaneous discharges of about 12 percent, including periods when stage data are missing. Altering the travel routes and the measurement frequency will allow a reduction in standard error of about 1 percent with the present budget. Standard error could be reduced to about 8 percent if lost record could be eliminated. A minimum budget of $822,000 is required to operate the present network, but operations at that funding level would result in an increase in standard error to about 16 percent. The maximum budget analyzed was $1,363,000, which would result in an average standard error of 6 percent. (USGS)
Hydrologic and hydraulic analyses for the Black Fork Mohican River Basin in and near Shelby, Ohio
Huitger, Carrie A.; Ostheimer, Chad J.; Koltun, G.F.
2016-05-06
Hydrologic and hydraulic analyses were done for selected reaches of five streams in and near Shelby, Richland County, Ohio. The U.S. Geological Survey (USGS), in cooperation with the Muskingum Watershed Conservancy District, conducted these analyses on the Black Fork Mohican River and four tributaries: Seltzer Park Creek, Seltzer Park Tributary, Tuby Run, and West Branch. Drainage areas of the four stream reaches studied range from 0.51 to 60.3 square miles. The analyses included estimation of the 10-, 2-, 1-, and 0.2-percent annual-exceedance probability (AEP) flood-peak discharges using the USGS Ohio StreamStats application. Peak discharge estimates, along with cross-sectional and hydraulic structure geometries, and estimates of channel roughness coefficients were used as input to step-backwater models. The step-backwater water models were used to determine water-surface elevation profiles of four flood-peak discharges and a regulatory floodway. This study involved the installation of, and data collection at, a streamflow-gaging station (Black Fork Mohican River at Shelby, Ohio, 03129197), precipitation gage (Rain gage at Reservoir Number Two at Shelby, Ohio, 405209082393200), and seven submersible pressure transducers on six selected river reaches. Two precipitation-runoff models, one for the winter events and one for nonwinter events for the headwaters of the Black Fork Mohican River, were developed and calibrated using the data collected. With the exception of the runoff curve numbers, all other parameters used in the two precipitation-runoff models were identical. The Nash-Sutcliffe model efficiency coefficients were 0.737, 0.899, and 0.544 for the nonwinter events and 0.850 and 0.671 for the winter events. Both of the precipitation-runoff models underestimated the total volume of water, with residual runoff ranging from -0.27 inches to -1.53 inches. The results of this study can be used to assess possible mitigation options and define flood hazard areas that will contribute to the protection of life and property. This study could also assist emergency managers, community officials, and residents in determining when flooding may occur and planning evacuation routes during a flood.
Lenfest, L.W.
1987-01-01
Quantifying the recharge from ephemeral streams to alluvial and bedrock aquifers will help evaluate the effects of surface mining on alluvial valley floors in Wyoming. Two stream reaches were chosen for study in the Powder River basin. One reach was located along the North Fork Dry Fork Cheyenne River near Glenrock, Wyoming, and the other reach was located along Black Thunder Creek near Hampshire, Wyoming. The reach along the North Fork Dry Fork Cheyenne River was instrumented with 3 gaging stations to measure streamflow and with 6 observation wells to measure groundwater level fluctuations in alluvial and bedrock aquifers in response to streamflow. The 3 streamflow gaging stations were located within the 2.5-mi study reach to measure the approximate gain or loss of discharge along the reach. Computed streamflow losses ranged from 0.43 acre-ft/mi on July 9 , 1982, to 1.44 acre-ft/mi on August 9, 1982. The observation wells completed only in the alluvial aquifer were dry during flow in the North Fork Dry Fork Cheyenne River, whereas water levels in half of the observation wells completed in the bedrock aquifers or the alluvial and bedrock aquifers rose in response to flow in the North Fork Dry Fork Cheyenne River. Groundwater recharge on August 9, 1982, was calculated using a convolution technique using groundwater levels at the upstream site and was estimated to be 26.5 acre-ft/mi. The reach along Black Thunder Creek was instrumented with one gaging station to measure streamflow and with 4 observation wells to measure water level response in alluvial and bedrock aquifers to streamflow. Recharge to the alluvial aquifer from flow in Black Thunder Creek ranged from 3.56 to 12.4 acre-ft/mi. The recharge was estimated using the convolution technique using water level measurements in the observation wells completed in the alluvial aquifer. Water level measurements in the observation wells indicated water level rises in the alluvial and bedrock aquifers in response to flow in Black Thunder Creek. (Author 's abstract)
Using Chemical Tracers to Estimate Pesticide Mass Discharge in an Agricultural Watershed
NASA Astrophysics Data System (ADS)
Simmons, A. N.; Allen-King, R. M.; Van Biersel, T. P.; Keller, C. K.; Smith, J. L.
2001-12-01
The goal of this research is to use environmental tracers to quantify the contributions of subsurface and surface runoff to predict the mass discharge of non-point source agricultural pollutants to rivers at multiple scales of study. Easily measured chemical tracers, such as electrical conductivity (EC), are used to distinguish ground and surface water contributions to the river system. The study area is the Missouri Flat Creek watershed, a 14,400 ha semi-arid dryland agricultural setting located near Pullman, WA. Ground and surface water samples are collected at approximately two-week intervals from an ephemeral stream and a tile drain located in actively farmed and topographically constrained fields ( ~20 ha), and from seven stream-gaging stations. Surface water discharge is monitored continuously. Samples are routinely analyzed for two pesticides (the insecticide lindane or gamma-hexachlorocyclohexane (HCH) and the herbicide triallate, S-(2,3,3-trichloroallyl) diisopropylthiocarbamate), a nutrient (nitrate), and the tracers EC and silica. Lindane is applied as a seed coating on most spring and fall crops in the region. Observed lindane concentrations in the different hydrologic reservoirs ranged over approximately two orders of magnitude, from typically less than the detection limit ( ~0.005 μ g/L) in most soil pore water and groundwater samples to a weighted mean of 0.25 μ g/L in field (ephemeral stream) surface runoff. A two-component, ground and surface water, hydrograph separation was performed using tile drain and ephemeral stream tracer concentrations from field plots to represent groundwater and surface runoff end-members. The hydrograph separation was used to predict lindane discharge. Reasonable agreement between model and observed lindane discharge timing and trend supports the hypothesis that in-stream pesticide is derived from annual surface runoff. During the high flow winter months, the model predictions are two to five times greater than observed. The differences between the model and observed mass discharges are likely attributable to dilution (from fields to which the chemical was not applied) or attenuation by biological processes. These are the subjects of continued work.
Data compilation and assessment for water resources in Pennsylvania state forest and park lands
Galeone, Daniel G.
2011-01-01
As a result of a cooperative study between the U.S. Geological Survey and the Pennsylvania Department of Conservation and Natural Resources (PaDCNR), available electronic data were compiled for Pennsylvania state lands (state forests and parks) to allow PaDCNR to initially determine if data exist to make an objective evaluation of water resources for specific basins. The data compiled included water-quantity and water-quality data and sample locations for benthic macroinvertebrates within state-owned lands (including a 100-meter buffer around each land parcel) in Pennsylvania. In addition, internet links or contacts for geographic information system coverages pertinent to water-resources studies also were compiled. Water-quantity and water-quality data primarily available through January 2007 were compiled and summarized for site types that included streams, lakes, ground-water wells, springs, and precipitation. Data were categorized relative to 35 watershed boundaries defined by the Pennsylvania Department of Environmental Protection for resource-management purposes. The primary sources of continuous water-quantity data for Pennsylvania state lands were the U.S. Geological Survey (USGS) and the National Weather Service (NWS). The USGS has streamflow data for 93 surface-water sites located in state lands; 38 of these sites have continuous-recording data available. As of January 2007, 22 of these 38 streamflow-gaging stations were active; the majority of active gaging stations have over 40 years of continuous record. The USGS database also contains continuous ground-water elevation data for 32 wells in Pennsylvania state lands, 18 of which were active as of January 2007. Sixty-eight active precipitation stations (primarily from the NWS network) are located in state lands. The four sources of available water-quality data for Pennsylvania state lands were the USGS, U.S. Environmental Protection Agency, Pennsylvania Department of Environmental Protection (PaDEP), and the Susquehanna River Basin Commission. The water-quality data, which were primarily collected after 1970, were summarized by categorizing the analytical data for each site into major groups (for example, trace metals, pesticides, major ions, etc.) for each type (streams, lakes, ground-water wells, and springs) of data compiled. The number of samples and number of detections for each analyte within each group also were summarized. A total of 410 stream sites and 205 ground-water wells in state lands had water-quality data from the available data sets, and these sites were well-distributed across the state. A total of 107 lakes and 47 springs in state lands had water-quality data from the available data sets, but these data types were not well-distributed across the state; the majority of water-quality data for lakes was in the western or eastern sections of the state and water-quality data for springs was primarily located in the central part of the Lower Susquehanna River Valley. The most common types of water-quality data collected were major ions, trace elements, and nutrients. Physical parameters, such as water temperature, stream discharge, or water level, typically were collected for most water-quality samples. Given the large database available from PaDEP for benthic macroinvertebrates, along with some data from other agencies, there is very good distribution of benthic-macroinvertebrate data for state lands. Benthic macroinvertebrate samples were collected at 1,077 locations in state lands from 1973 to 2006. Most (980 samples) of the benthic-macroinvertebrate samples were collected by PaDEP as part of the state assessment of stream conditions required by the Clean Water Act. Data compiled in this report can be used for various water-resource issues, such as basin-wide water-budget analysis, studies of ecological or instream flow, or water-quality assessments. The determination of an annual water budget in selected basins is best supported by the availab
Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.
2006-01-01
Computation of bankfull discharge and channel dimensions (width, depth, and cross-sectional area) at ungaged sites requires equations that relate bankfull discharge and channel dimensions to drainage-area at gaged sites. Bankfull-channel information commonly is needed for watershed assessments, stream channel classification, and the design of stream-restoration projects. Such equations are most accurate if they are derived on the basis of data from streams within a region of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. New York State contains eight hydrologic regions that were previously delineated on the basis of high-flow (flood) characteristics. This report presents drainage areas and associated bankfull characteristics (discharge and channel dimensions) for surveyed streams in western New York (Region 7).Stream-survey data and discharge records from seven active and three inactive USGS streamflow-gaging stations were used in regression analyses to relate drainage area to bankfull discharge and to bankfull channel width, depth, and cross-sectional area. The resulting equations are:(1) bankfull discharge, in cubic feet per second = 37.1*(drainage area, in square miles)0.765;(2) bankfull channel width, in feet = 10.8*(drainage area, in square miles)0.458;(3) bankfull channel depth, in feet = 1.47*(drainage area, in square miles)0.199; and(4) bankfull channel cross-sectional area, in square feet = 15.9*(drainage area, in square mile)0.656.The coefficients of determination (R2) for these four equations were 0.94, 0.89, 0.52, and 0.96, respectively. The high coefficients of determination for three of these equations (discharge, width, and cross-sectional area) indicate that much of the range in the variables was explained by the drainage area. The low coefficient of determination for the equation relating bankfull depth to drainage area, however, suggests that other factors also affected water depth. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.05 to 3.60 years; the mean recurrence interval was 2.13 years. The 10 surveyed streams were classified by Rosgen stream type; most were C- and E-type, with occasional B- and F-type cross sections. The equation (curve) for bankfull discharge for Region 7 was compared with those previously developed for four other hydrologic regions in New York State. The differences confirm that the hydraulic geometry of streams is affected by local climatic and physiographic conditions.
Watson, K.R.; Woodruff, R.E.; Laidlaw, G.A.; Clark, M.L.; Miller, K.A.
2005-01-01
Water resources data for the 2004 water year for Wyoming consist of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 164 gaging stations; water quality for 43 gaging stations and 45 ungaged stations, and stage and contents for one reservoir. Volume 2 of this report contains water levels records for 64 wells. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent part of the National Water Information System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.
Water Resources Data, Kansas, Water Year 2001
Putnam, J.E.; Lacock, D.L.; Schneider, D.R.
2002-01-01
Water-resources data for the 2001 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 145 complete-record gaging stations; elevation and contents at 20 lakes and reservoirs; waterquality records at 2 precipitation stations, water-level data at 19 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 140 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.
Water Resources Data, Kansas, Water Year 2002
Putnam, J.E.; Schneider, D.R.
2003-01-01
Water-resources data for the 2002 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 149 complete-record gaging stations; elevation and contents at 20 lakes and reservoirs; waterquality records at 2 precipitation stations, water-level data at 18 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 142 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.
Water Resources Data, Kansas, Water Year 2000
Putnam, J.E.; Lacock, D.L.; Schneider, D.R.; Carlson, M.D.
2001-01-01
Water-resources data for the 2000 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 144 complete-record gaging stations; elevation and contents at 19 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 18 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 8 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, and miscellaneous onsite water-quality data collected at 134 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.
Hoffman, E.B.; Bowers, J.C.; Mullen, J.R.; Hayes, P.D.
1993-01-01
Water resources data for the 1992 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 161 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 23 streamflow-gaging stations and 3 partialrecord stations; and ( 4) precipitation records for 11 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Mullen, J.R.; Hayes, P.D.; Agajanian, J.A.
1994-01-01
Water resources data for the 1993 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 156 streamflow-gaging stations, 12 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 17 streamflow-gaging stations and 6 partial-record stations; and (4) precipitation records for 10 stations . These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Water Resources Data for Illinois - Water Year 2005 (Includes Historical Data)
LaTour, J.K.; Weldon, E.A.; Dupre, D.H.; Halfar, T.M.
2006-01-01
This annual Water-Data Report for Illinois contains current water year (Oct. 1, 2004, to Sept. 30, 2005) and historical data of discharge, stage, water quality and biology of streams; stage of lakes and reservoirs; levels and quality of ground water; and records of precipitation, air temperature, dew point, solar radiation, and wind speed. The current year's (2005) data provided in this report include (1) discharge for 182 surface-water gaging stations and for 9 crest-stage partial-record stations; (2) stage for 33 surface-water gaging stations; (3) water-quality records for 10 surface-water stations; (4) sediment-discharge records for 14 surface-water stations; (5) water-level records for 98 ground-water wells; (6) water-quality records for 17 ground-water wells; (7) precipitation records for 48 rain gages; (8) records of air temperature, dew point, solar radiation and wind speed for 1 meteorological station; and (9) biological records for 6 sample sites. Also included are miscellaneous data collected at various sites not in the systematic data-collection network. Data were collected and compiled as a part of the National Water Information System (NWIS) maintained by the U.S. Geological Survey in cooperation with Federal, State, and local agencies.
Floods of March 1982, Indiana, Michigan, and Ohio
Glatfelter, D.R.; Butch, G.K.; Stewart, J.A.
1984-01-01
Rapid melting of a snowpack containing 2 to 6 inches of water equivalent coinciding with moderate rainfall caused flooding in March 1982 across northern Indiana, southern Michigan, and northwestern Ohio. Millions of dollars in property damage and the loss of four lives resulted from the flooding. Peak discharges at several gaging stations in each of the following river basins have recurrence intervals of 50 to greater than 100 years: Wabash, St. Joseph, River Raisin, Maumee, and Kankakee. Flooding in the Wabash River basin was confined to major tributaries draining from the north. The St. Joseph River experienced flooding having a recurrence interval of about 50 years. Peak discharges having recurrence intervals of 50 to greater than 100 years were recorded on the River Raisin. Flooding on most large streams in the Maumee River basin was the worst since 1913. The Kankakee River and its major tributary, Yellow River, recorded peak discharges having recurrence intervals greater than 100 years. Hydrologic data have been tabulated for 83 gaging stations and partial-record sites. Maps are presented to emphasize the severity and untimely sequence of meteorological conditions that provided the potential and triggered the floods. Hydrographs are shown for 32 gaging stations.
Methods for estimating flood frequency in Montana based on data through water year 1998
Parrett, Charles; Johnson, Dave R.
2004-01-01
Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the different methods and the average standard errors of prediction. When all three methods were combined, the average standard errors of prediction ranged from 37.4 percent to 120.2 percent. Weighting of estimates reduced the standard errors of prediction for all T-year flood estimates in four regions, reduced the standard errors of prediction for some T-year flood estimates in two regions, and provided no reduction in average standard error of prediction in two regions. A computer program for solving the regression equations, weighting estimates, and determining reliability of individual estimates was developed and placed on the USGS Montana District World Wide Web page. A new regression method, termed Region of Influence regression, also was tested. Test results indicated that the Region of Influence method was not as reliable as the regional equations based on generalized least squares regression. Two additional methods for estimating flood frequency at ungaged sites located on the same streams as gaged sites also are described. The first method, based on a drainage-area-ratio adjustment, is intended for use on streams where the ungaged site of interest is located near a gaged site. The second method, based on interpolation between gaged sites, is intended for use on streams that have two or more streamflow-gaging stations.
Purton, A.B.
1930-01-01
General stream measurement work looking toward a comprehensive inventory of the water resources of the state has been continued during the biennium by the United States Geological Survey under the usual cooperative agreement with the State Engineer.Since 1909 Utah in company with many other states has made regular legislative appropriations for the purpose of assisting and hastening the determination of the water supply of the United States by the Geographical Survey. Because of the comparatively small Federal appropriations the scope of this wok in the individual states has been largely influenced by the amount of the state cooperation. The funds contributed by each state have all been expended within that state and matched as far as possible by funds of the Geographical Survey. Up to the present, however, the Federal funds have been insufficient to match the state contributions beyond a very limited amount and in many localities the large amount of work done has been made possible only by correspondingly large unmatched state appropriations.During this period the regular stream gaging work in Utah has been practically limited to that possible with approximately ten thousand dollars annually divided about equally between the state and Geological Survey with the government’s share including the cost at Washington of general supervision, and the review, editing, and publication of the records. This has been the maximum amount that it has been possible to allot any one state to meet state cooperation.
Aucott, W.R.; Meadows, R.S.; Patterson, G.G.
1987-01-01
Base flow was computed to estimate discharge from regional aquifers for six large streams in the upper Coastal Plain of South Carolina and parts of North Carolina and Georgia. Aquifers that sustain the base flow of both large and small streams are stratified into shallow and deep flow systems. Base-flow during dry conditions on main stems of large streams was assumed to be the discharge from the deep groundwater flow system. Six streams were analyzed: the Savannah, South and North Fork Edisto, Lynches, Pee Dee, and the Luber Rivers. Stream reaches in the Upper Coastal Plain were studied because of the relatively large aquifer discharge in these areas in comparison to the lower Coastal Plain. Estimates of discharge from the deep groundwater flow system to the six large streams averaged 1.8 cu ft/sec/mi of stream and 0.11 cu ft/sec/sq mi of surface drainage area. The estimates were made by subtracting all tributary inflows from the discharge gain between two gaging stations on a large stream during an extreme low-flow period. These estimates pertain only to flow in the deep groundwater flow system. Shallow flow systems and total base flow are > flow in the deep system. (USGS)
Paleoflood Data, Extreme Floods and Frequency: Data and Models for Dam Safety Risk Scenarios
NASA Astrophysics Data System (ADS)
England, J. F.; Godaire, J.; Klinger, R.
2007-12-01
Extreme floods and probability estimates are crucial components in dam safety risk analysis and scenarios for water-resources decision making. The field-based collection of paleoflood data provides needed information on the magnitude and probability of extreme floods at locations of interest in a watershed or region. The stratigraphic record present along streams in the form of terrace and floodplain deposits represent direct indicators of the magnitude of large floods on a river, and may provide 10 to 100 times longer records than conventional stream gaging records of large floods. Paleoflood data is combined with gage and historical streamflow estimates to gain insights to flood frequency scaling, model extrapolations and uncertainty, and provide input scenarios to risk analysis event trees. We illustrate current data collection and flood frequency modeling approaches via case studies in the western United States, including the American River in California and the Arkansas River in Colorado. These studies demonstrate the integration of applied field geology, hydraulics, and surface-water hydrology. Results from these studies illustrate the gains in information content on extreme floods, provide data- based means to separate flood generation processes, guide flood frequency model extrapolations, and reduce uncertainties. These data and scenarios strongly influence water resources management decisions.
Flood of April 2-3, 2005, Esopus Creek Basin, New York
Suro, Thomas P.; Firda, Gary D.
2007-01-01
On April 2-3, 2005, heavy rain moved into southern New York and delivered rainfall amounts that ranged from about 2 in. to almost 6 in. within a 36-hour period. Significant flooding occurred on many small streams and tributaries in the area, and extensive flooding occurred on the Esopus and Roundout Creeks in Ulster and Greene Counties, New York. The flooding damaged many homes, caused millions of dollars worth of damage, and forced hundreds of residents to evacuate their homes. A total of 20 New York counties were declared Federal disaster areas. Disaster recovery assistance for those people affected stands at almost $35 million, according to the Federal Emergency Management Agency, as more than 3,400 New Yorkers registered for Federal aid. U.S. Geological Survey stream-gaging stations on the Esopus Creek above the Ashokan Reservoir at Allaben, N.Y., and below the Ashokan Reservoir at Mount Marion, N.Y., each recorded a new record maximum water-surface elevation and discharge for the respective periods of record as a result of this storm. The peak water-surface elevation and discharge recorded during the April 2-3, 2005, storm at the U.S. Geological Survey stream-gaging station on the Esopus Creek at Cold Brook, N.Y. were the third highest elevation and discharge since the station was put into operation in 1914. Most of the study sites along the Esopus Creek indicated water-surface elevations near the 50-year flood elevations, as documented in flood-insurance studies by the Federal Emergency Management Agency.
Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.
2005-01-01
Equations that relate bankfull discharge and channel characteristics (width, depth, and cross-sectional area) to drainage-area size at gaged sites are needed to define bankfull discharge and channel dimensions at ungaged sites and to provide information for watershed assessments, stream-channel classification, and the design of stream-restoration projects. Such equations are most accurate if derived from streams within an area of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. In New York State, eight hydrologic regions were previously defined on the basis of similar high-flow (flood) characteristics. This report presents drainage areas and associated bankfull characteristics (discharge and channel dimensions) for surveyed streams in southwestern New York (Region 6).Stream-survey data and discharge records from 11 active (currently gaged) sites and 3 inactive (discontinued) sites were used in regression analyses to relate bankfull discharge and bankfull channel width, depth, and cross-sectional area to the size of the drainage area. The resulting equations are:(1) bankfull discharge, in cubic feet per second = 48.0*(drainage area, in square miles)0.842;(2) bankfull channel width, in feet = 16.9*(drainage area, in square miles)0.419;(3) bankfull channel depth, in feet = 1.04*(drainage area, in square miles)0.244; and(4) bankfull channel cross-sectional area, in square feet = 17.6*(drainage area, in square miles)0.662.The coefficient of determination (R2) for these four equations were 0.90, 0.79, 0.64, and 0.89, respectively. The high correlation coefficients for bankfull discharge and cross-sectional area indicate that much of the variation in these variables is explained by the size of the drainage area. The smaller correlation coefficients for bankfull channel width and depth indicate that other factors also affect these relations. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.01 to 2.35 years; the mean recurrence interval was 1.54 years. The 14 surveyed streams were classified by Rosgen stream type; most were C-type reaches, with occasional B-type reaches. The Region 6 equation (curve) for bankfull discharge was compared with equations previously developed for four other large areas in New York State and southeastern Pennsylvania. The differences among results indicate that, although the equations need to be refined by region before being applied by water-resources managers to local planning and design efforts, similar regions have similar relations between bankfull discharge and channel characteristics.
Smith, S. Jerrod; Esralew, Rachel A.
2010-01-01
The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at http://water.usgs.gov/osw/streamstats/. The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the drainage-basin outlet for the period 1961-1990, 10-85 channel slope (slope between points located at 10 percent and 85 percent of the longest flow-path length upstream from the outlet), and percent impervious area. The Oklahoma StreamStats application interacts with the National Streamflow Statistics database, which contains the peak-flow regression equations in a previously published report. Fourteen peak-flow (flood) frequency statistics are available for computation in the Oklahoma StreamStats application. These statistics include the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural, unregulated streams; and the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural streams that are regulated by Natural Resources Conservation Service floodwater retarding structures. Basin characteristics and streamflow statistics cannot be computed for locations in playa basins (mostly in the Oklahoma Panhandle) and along main stems of the largest river systems in the state, namely the Arkansas, Canadian, Cimarron, Neosho, Red, and Verdigris Rivers, because parts of the drainage areas extend outside of the processed hydrologic units.
Esralew, Rachel A.; Andrews, William J.; Smith, S. Jerrod
2011-01-01
The U.S. Geological Survey, in cooperation with the city of Oklahoma City, collected water-quality samples from the North Canadian River at the streamflow-gaging station near Harrah, Oklahoma (Harrah station), since 1968, and at an upstream streamflow-gaging station at Britton Road at Oklahoma City, Oklahoma (Britton Road station), since 1988. Statistical summaries and frequencies of detection of water-quality constituent data from water samples, and summaries of water-quality constituent data from continuous water-quality monitors are described from the start of monitoring at those stations through 2009. Differences in concentrations between stations and time trends for selected constituents were evaluated to determine the effects of: (1) wastewater effluent discharges, (2) changes in land-cover, (3) changes in streamflow, (4) increases in urban development, and (5) other anthropogenic sources of contamination on water quality in the North Canadian River downstream from Oklahoma City. Land-cover changes between 1992 and 2001 in the basin between the Harrah station and Lake Overholser upstream included an increase in developed/barren land-cover and a decrease in pasture/hay land cover. There were no significant trends in median and greater streamflows at either streamflow-gaging station, but there were significant downward trends in lesser streamflows, especially after 1999, which may have been associated with decreases in precipitation between 1999 and 2009 or construction of low-water dams on the river upstream from Oklahoma City in 1999. Concentrations of dissolved chloride, lead, cadmium, and chlordane most frequently exceeded the Criterion Continuous Concentration (a water-quality standard for protection of aquatic life) in water-quality samples collected at both streamflow-gaging stations. Visual trends in annual frequencies of detection were investigated for selected pesticides with frequencies of detection greater than 10 percent in all water samples collected at both streamflow-gaging stations. Annual frequencies of detection of 2,4-dichlorophenoxyacetic acid and bromacil increased with time. Annual frequencies of detection of atrazine, chlorpyrifos, diazinon, dichlorprop, and lindane decreased with time. Dissolved nitrogen and phosphorus concentrations were significantly greater in water samples collected at the Harrah station than at the Britton Road station, whereas specific conductance was greater at the Britton Road station. Concentrations of dissolved oxygen, biochemical oxygen demand, and fecal coliform bacteria were not significantly different between stations. Daily minimum, mean, and maximum specific conductance collected from continuous water-quality monitors were significantly greater at the Britton Road station than in water samples collected at the Harrah station. Daily minimum, maximum, and diurnal fluctuations of water temperature collected from continuous water-quality monitors were significantly greater at the Harrah station than at the Britton Road station. The daily maximums and diurnal range of dissolved oxygen concentrations were significantly greater in water samples collected at the Britton Road station than at the Harrah station, but daily mean dissolved oxygen concentrations in water at those streamflow-gaging stations were not significantly different. Daily mean and diurnal water temperature ranges increased with time at the Britton Road and Harrah streamflow-gaging stations, whereas daily mean and diurnal specific conductance ranges decreased with time at both streamflow-gaging stations from 1988–2009. Daily minimum dissolved oxygen concentrations collected from continuous water-quality monitors more frequently indicated hypoxic conditions at the Harrah station than at the Britton Road station after 1999. Fecal coliform bacteria counts in water decreased slightly from 1988–2009 at the Britton Road station. The Seasonal Kendall's tau test indicated significant downward trends in
Hydrologic data for the Cache Creek-Bear Thrust environmental impact statement near Jackson, Wyoming
Craig, G.S.; Ringen, B.H.; Cox, E.R.
1981-01-01
Information on the quantity and quality of surface and ground water in an area of concern for the Cache Creek-Bear Thrust Environmental Impact Statement in northwestern Wyoming is presented without interpretation. The environmental impact statement is being prepared jointly by the U.S. Geological Survey and the U.S. Forest Service and concerns proposed exploration and development of oil and gas on leased Federal land near Jackson, Wyoming. Information includes data from a gaging station on Cache Creek and from wells, springs, and miscellaneous sites on streams. Data include streamflow, chemical and suspended-sediment quality of streams, and the occurrence and chemical quality of ground water. (USGS)
NASA Astrophysics Data System (ADS)
Downing, B. D.; Pellerin, B. A.; Bergamaschi, B. A.; Saraceno, J.
2011-12-01
Studying controls on geochemical processes in rivers and streams is difficult because concentration and composition often changes rapidly in response to physical and biological forcings. Understanding biogeochemical dynamics in rivers will improve current understanding of the role of watershed sources to carbon cycling, river and stream ecology, and loads to estuaries and oceans. Continuous measurements of dissolved organic carbon (DOC), nitrate (NO3-) and soluble reactive phosphate (SRP) concentrations are now possible, along with some information about DOC composition. In situ sensors designed to measure these constituents provide high frequency, real-time data that can elucidate hydrologic and biogeochemical controls which are difficult to detect using more traditional sampling approaches. Here we present a coupled approach, using in situ optical instrumentation with discharge measurements to provide quantitative estimates of constituent loads to investigate C, NO3- and SRP sources and processing in the Sacramento River, CA, USA. Continuous measurement of DOC concentration was conducted by use of a miniature in situ fluorometer (Turner Designs Cyclops) designed to measure chromophoric dissolved organic matter fluorescence (FDOM) over the course of an entire year. Nitrate was measured concurrently using a Satlantic SUNA and phosphate was measured using a WETLabs model Cycle-P instrument for a two week period in July 2011. Continuous measurement from these instruments paired with continuous measurement of physical water quality variables such as temperature, pH, specific conductance, dissolved oxygen, and turbidity, were used to investigate physical and chemical dynamics of DOC, NO3-, SRP over varying time scales. Deploying these instruments at pre-existing USGS discharge gages allowed for calculation of instantaneous and integrated constituent fluxes, as well as filling in gaps in our understanding biogeochemical processes and transport. Results from the study show that diurnal, event driven and seasonal changes are key to calculating accurate watershed fluxes and detecting transient sources of DOC, NO3- and SRP.
Johnson, C.D.; Tepper, D.H.; Morrissey, D.J.
1987-01-01
Hydrogeologic data was collected for a study of the Saco River valley glacial aquifer. The study area extends along the Saco River from Bartlett, New Hampshire to Fryeburg, Maine. The study was done in cooperation with the Maine Geological Survey (Department of Conservation), the New Hampshire Water Supply and Pollution Control Commission, the New Hampshire Water Resources Board, and the Town of Conway, New Hampshire. The data include information on 54 well-inventory sites, 69 exploration-hole logs , analyses of grain-size distribution in 130 samples of glacial sediments, monthly water-table measurements in 100 wells, and continuous water-table measurements in 7 wells. Discharge data are presented from 6 stream-gaging stations operated for this study during the 1984 and 1985 water years. Data from 50 sets of seepage runs and 15 miscellaneous discharge measurements conducted on the mainstream of the Saco River and on 7 tributary streams during the 1984 and 1985 water years are also presented. Water quality analyses of groundwater samples from 92 sites and surface water samples from 12 sites are presented. Field determinations include pH, temperature, and specific conductance. Laboratory determinations include nutrients, common inorganic anions and cations, selected volatile organic compounds, and detergents. Maps show the locations of data-collection sites. (USGS)
Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.
2001-01-01
To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include: illegal discharge of sewage to storm-water drains, malfunctioning sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, and runoff from livestock pens. Long-term fecal coliform data at two sampling stations, Quebrada Blasina in Carolina and the Rio Grande de Loiza, downstream from the town of Trujillo Alto, indicate that the sanitary quality of Quebrada Blasina is and has generally been poor for more than a decade. The sanitary quality of the Rio Grande de Loiza has generally been in compliance with the water-quality goal standard fecal coliform concentrations established in July 1990 by the Puerto Rico Environmental Quality Board. Geologic, topographic, soil, hydrogeologic, and streamflow data were used to divide the municipio of Carolina into five hydrogeologic terranes. This integrated database was then used to evaluate the ground-water potential of each hydrogeologic terrane. Analysis suggests that areas with slopes greater than 15 degrees have relatively low ground-water development potential. Fractures may be locally important in enhancing the water-bearing properties in the hydrogeologic terranes containing igneous rocks. Potentiometric-surface elevations recorded in piezometers installed in the coastal area during this study were used to define ground-water flow directions in the hydrogeologic terranes composed of coastal plain clastic and limestone units. The resultant potentiometric map indicates that the coastal plain aquifer and streams in the lowland parts of the municipio of Carolina are hydraulically connected. The potentiometric map also indicates that ground-water discharge to the Rio Grande de Loiza, downstream from highway PR-3, has been enhanced by dredging of the streambed for
Baldigo, Barry P.
1999-01-01
The increases in peak stormflows in the lower Beaver Kill basin through the period of record may have increased the rates of bed-sediment erosion (degradation) and deposition and accelerated changes in stream-channel morphology, however, these possible effects were not examined. Suggestions for further investigation of the effects of NY 17 and of other factors on hydrology, channel morphology, fish habitat, and fish populations in the Beaver Kill Basin include (1) addition of streamflow gages or a creststage gage network at critical locations, (2) a review of engineering records and other aerial photographs for indications of changes in channel morphology, (3) compilation of temperature data and modeling spatial extent and magnitude of stressful summer temperatures (to selected trout species), and (4) confirming the extent and severity of toxic thermal episodes using in-situ fish toxicity tests.
Water resources data, Montana, water year 2005: Volume 1. Hudson Bay and upper Missouri River basins
Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.
2005-01-01
Water resources data for Montana for the 2004 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 134 streamflow-gaging stations; stage or content records for 18 lakes and reservoirs; and water-quality records for 66 streamflow stations (34 ungaged), and 13 ground-water wells. Additional water year 2004 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.
Water Resources Data, Montana, 2003; Volume 1. Hudson Bay and Upper Missouri River Basins
Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.
2004-01-01
Water resources data for Montana for the 2003 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 132 streamflow-gaging stations; stage or content records for 5 lakes and large reservoirs and content for 5 smaller reservoirs; and water-quality records for 66 streamflow stations (34 ungaged), and 7 ground-water wells. Additional water year 2003 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.
Water Resources Data, Montana, 2002
Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.
2003-01-01
Water resources data for Montana for the 2002 water year consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This report contains discharge records for 244 streamflow-gaging stations; stage or content records for 9 lakes and large reservoirs and content for 31 smaller reservoirs; water-quality records for 142 streamflow stations (42 ungaged), 9 ground-water wells, and 3 lakes; precipitation records for 2 atmospheric-deposition stations; and water-level records for 53 observation wells. Additional water year 2002 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.
Water Resources Data--Kansas, Water Year 2003
Putnam, J.E.; Schneider, D.R.
2004-01-01
Water-resources data for the 2003 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 148 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 12 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 27 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 138 stations, and suspended-sediment concentration for 11 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.
Water resources data for New Mexico, water year 1975
,
1976-01-01
Water resources data for the 1975 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 201 gaging stations; stage and contents far 23 lakes and reservoirs; water quality for 62 gaging stations, 77 partial-record flow stations, 1 reservoir, 47 springs and 197 wells; and water levels for 93 observation wells. Also included are 162 crest-stage partial-record stations and 2 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic da,ta collection program, and are pu,blis"Q,ed as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico.
Web services in the U.S. geological survey streamstats web application
Guthrie, J.D.; Dartiguenave, C.; Ries, Kernell G.
2009-01-01
StreamStats is a U.S. Geological Survey Web-based GIS application developed as a tool for waterresources planning and management, engineering design, and other applications. StreamStats' primary functionality allows users to obtain drainage-basin boundaries, basin characteristics, and streamflow statistics for gaged and ungaged sites. Recently, Web services have been developed that provide the capability to remote users and applications to access comprehensive GIS tools that are available in StreamStats, including delineating drainage-basin boundaries, computing basin characteristics, estimating streamflow statistics for user-selected locations, and determining point features that coincide with a National Hydrography Dataset (NHD) reach address. For the state of Kentucky, a web service also has been developed that provides users the ability to estimate daily time series of drainage-basin average values of daily precipitation and temperature. The use of web services allows the user to take full advantage of the datasets and processes behind the Stream Stats application without having to develop and maintain them. ?? 2009 IEEE.
Technique for estimating depth of 100-year floods in Tennessee
Gamble, Charles R.; Lewis, James G.
1977-01-01
Preface: A method is presented for estimating the depth of the loo-year flood in four hydrologic areas in Tennessee. Depths at 151 gaging stations on streams that were not significantly affected by man made changes were related to basin characteristics by multiple regression techniques. Equations derived from the analysis can be used to estimate the depth of the loo-year flood if the size of the drainage basin is known.
Development of Predictive Relationships for Flood Hazard Assessments in Ungaged Basins
2016-02-01
Hydrological Analysis (GSSHA) model (Downer and Ogden 2004) was deployed in megascale for ungaged basins of the Philippine Islands . The GSSHA...et al. [1988]). STUDY AREA: Two megascale catchments in the Philippine Islands were considered in this study. No stream gage data exists for either...imagery. The Cagayan River Basin on Luzon Island (Figure 1[a]) is the largest river in the Philippines with a drainage area of 27,280 km2
In Situ Measurement of Ground-Surface Flow Resistivity
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.
1984-01-01
New instrument allows in situ measurement of flow resistivity on Earth's ground surface. Nonintrusive instrument includes specimen holder inserted into ground. Flow resistivity measured by monitoring compressed air passing through flow-meters; pressure gages record pressure at ground surface. Specimen holder with knife-edged inner and outer cylinders easily driven into ground. Air-stream used in measuring flow resistivity of ground enters through quick-connect fitting and exits through screen and venthole.
Jack Lewis; Sylvia R. Mori; Elizabeth T. Keppeler; Robert R. Ziemer
2001-01-01
Abstract - Models are fit to 11 years of storm peak flows, flow volumes, and suspended sediment loads on a network of 14 stream gaging stations in the North Fork Caspar Creek, a 473-ha coastal watershed bearing a second-growth forest of redwood and Douglas-fir. For the first 4 years of monitoring, the watershed was in a relatively undisturbed state, having last been...
Elizabeth Keppeler; Jack Lewis
2007-01-01
The Caspar Creek Experimental Watersheds were established in 1962 to study the effects of forest management on streamflow, sedimentation, and erosion in the rainfall-dominated, forested watersheds of north coastal California. Currently, 21 stream sites are gaged in the North Fork (473 ha) and South Fork (424 ha) of Caspar Creek. From 1971 to 1973, 65% of the timber...
Spies, Ryan R.; Over, Thomas M.; Ortel, Terry W.
2018-05-21
In this report, precipitation data from 2002 to 2012 from the hourly gridded Next-Generation Radar (NEXRAD)-based Multisensor Precipitation Estimate (MPE) precipitation product are compared to precipitation data from two rain gage networks—an automated tipping bucket network of 25 rain gages operated by the U.S. Geological Survey (USGS) and 51 rain gages from the volunteer-operated Community Collaborative Rain, Hail, and Snow (CoCoRaHS) network—in and near DuPage County, Illinois, at a daily time step to test for long-term differences in space, time, and distribution. The NEXRAD–MPE data that are used are from the fifty 2.5-mile grid cells overlying the rain gages from the other networks. Because of the challenges of measuring of frozen precipitation, the analysis period is separated between days with or without the chance of freezing conditions. The NEXRAD–MPE and tipping-bucket rain gage precipitation data are adjusted to account for undercatch by multiplying by a previously determined factor of 1.14. Under nonfreezing conditions, the three precipitation datasets are broadly similar in cumulative depth and distribution of daily values when the data are combined spatially across the networks. However, the NEXRAD–MPE data indicate a significant trend relative to both rain gage networks as a function of distance from the NEXRAD radar just south of the study area. During freezing conditions, of the USGS network rain gages only the heated gages were considered, and these gages indicate substantial mean undercatch of 50 and 61 percent compared to the NEXRAD–MPE and the CoCoRaHS gages, respectively. The heated USGS rain gages also indicate substantially lower quantile values during freezing conditions, except during the most extreme (highest) events. Because NEXRAD precipitation products are continually evolving, the report concludes with a discussion of recent changes in those products and their potential for improved precipitation estimation. An appendix provides an analysis of spatially combined NEXRAD–MPE precipitation data as a function of temperature at an hourly time scale and indicates, among other results, that most precipitation in the study area occurs at moderate temperatures of 30 to 74 degrees Fahrenheit. However, when precipitation does occur, its intensity increases with temperature to about 86 degrees Fahrenheit.
Flood-Inundation Maps for a 1.6-Mile Reach of Salt Creek, Wood Dale, Illinois
Soong, David T.; Murphy, Elizabeth A.; Sharpe, Jennifer B.
2012-01-01
Digital flood-inundation maps for a 1.6-mile reach of Salt Creek from upstream of the Chicago, Milwaukee, St. Paul & Pacific Railroad to Elizabeth Drive, Wood Dale, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the DuPage County Stormwater Management Division. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage on Salt Creek at Wood Dale, Illinois (station number 05531175). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05531175. In this study, flood profiles were computed for the stream reach by means of a one-dimensional unsteady flow Full EQuations (FEQ) model. The unsteady flow model was verified by comparing the rating curve output for a September 2008 flood event to discharge measurements collected at the Salt Creek at Wood Dale gage. The hydraulic model was then used to determine 14 water-surface profiles for gage heights at 0.5-ft intervals referenced to the streamgage datum and ranging from less than bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The areal extent of the inundation was verified with high-water marks from a flood in July 2010 with a peak gage height of 14.08 ft recorded at the Salt Creek at Wood Dale gage. The availability of these maps along with Internet information regarding current gage height from USGS streamgages provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.
NASA Astrophysics Data System (ADS)
Murphy, Kevin W.; Ellis, Andrew W.
2014-02-01
Several studies drawing upon general circulation models have investigated the potential impacts of future climate change on precipitation and runoff to stream flow in the southwest United States, suggesting reduced runoff in response to increasing temperatures and less precipitation. With the hydroclimatic changes considered to be underway, water management professionals have been counseled to abandon historical assumptions of stationarity in the natural systems governing surface water replenishments. Stationarity is predicated upon an assumption that the generating process is in equilibrium around an underlying mean and that variance remains constant over time. The implications of a more arid future are significant for surface water resources in the semi-arid Colorado River Basin (CRB). To examine the evidence of forthcoming change, eight sub-basins were identified for this study having unregulated runoff to stream flow gages, providing a 22% spatial sampling of the CRB. Their long-term record of surface temperature and precipitation along with corresponding gage records were evaluated with time series analysis methods and testing criteria established per statistical definitions of stationarity. Statistically significant temperature increases in all sub-basins were found, with persistently non-stationary time series in the recent record relative to the earlier historical record. However, tests of precipitation and runoff did not reveal persistent reductions, indicating that they remain stationary processes. Their transitions through periods of drought and excess have been characterized, with precipitation and stream flows found to be currently close to their long-term average. The evidence also indicates that resolving precipitation and runoff trends amidst natural modes of variability will be challenging and unlikely within the next several decades. Abandonment of stationarity assumptions for the CRB is not necessarily supported by the evidence, making it premature to discard its historical record as an instrument by which to assess sustainability of water resource systems.
Drainage areas in the Vermillion River basin in eastern South Dakota
Benson, Rick D.; Freese, M.D.; Amundson, Frank D.
1988-01-01
Above-normal precipitation in the northern portion of the Vermillion River basin from 1982 through 1987 caused substantial rises in lake levels in the Lake Thompson chain of lakes, resulting in discharge from Lake Thompson to the East Fork Vermillion River. Prior to 1986, the Lake Thompson chain of lakes was thought to be a noncontributing portion of the Vermillion River basin. To better understand surface drainage, the map delineates all named stream basins, and all unnamed basins larger than approximately 10 sq mi within the Vermillion River basin in South Dakota and lists by stream name the area of each basin. Stream drainage basins were delineated by visual interpretation of contour information of U.S. Geological Survey 7 1/2 minute topographic maps. Two tables list areas of drainage basins and reaches, as well as drainage areas above gaging stations. (USGS)
Tice, Richard H.
1968-01-01
Flood magnitude-frequency relation applicable to streams in the North Atlantic slope basins, New York to York River, Va., are presented in this report. The relations are based on flood data collected at 487 gaging stations having 5 or more years of record not materially affected by regulation. For sites on most streams, the magnitude of a flood of any given frequency between 1.1 and 50 years can be determined from two curves - one expressing the relation between the mean annual flood and size of draining basin and the other expressing the ratio to the mean annual flood of floods of other recurrence intervals. For New Jersey streams, an adjustment to the mean annual flood is based on the percentage of surface area covered by lakes and swamps in the basin.
A technique for estimating time of concentration and storage coefficient values for Illinois streams
Graf, Julia B.; Garklavs, George; Oberg, Kevin A.
1982-01-01
Values of the unit hydrograph parameters time of concentration (TC) and storage coefficient (R) can be estimated for streams in Illinois by a two-step technique developed from data for 98 gaged basins in the State. The sum of TC and R is related to stream length (L) and main channel slope (S) by the relation (TC + R)e = 35.2L0.39S-0.78. The variable R/(TC + R) is not significantly correlated with drainage area, slope, or length, but does exhibit a regional trend. Regional values of R/(TC + R) are used with the computed values of (TC + R)e to solve for estimated values of time of concentration (TCe) and storage coefficient (Re). The use of the variable R/(TC + R) is thought to account for variations in unit hydrograph parameters caused by physiographic variables such as basin topography, flood-plain development, and basin storage characteristics. (USGS)
Pyne, Matthew I.; Carlisle, Daren M.; Konrad, Christopher P.; Stein, Eric D.
2017-01-01
Regional classification of streams is an early step in the Ecological Limits of Hydrologic Alteration framework. Many stream classifications are based on an inductive approach using hydrologic data from minimally disturbed basins, but this approach may underrepresent streams from heavily disturbed basins or sparsely gaged arid regions. An alternative is a deductive approach, using watershed climate, land use, and geomorphology to classify streams, but this approach may miss important hydrological characteristics of streams. We classified all stream reaches in California using both approaches. First, we used Bayesian and hierarchical clustering to classify reaches according to watershed characteristics. Streams were clustered into seven classes according to elevation, sedimentary rock, and winter precipitation. Permutation-based analysis of variance and random forest analyses were used to determine which hydrologic variables best separate streams into their respective classes. Stream typology (i.e., the class that a stream reach is assigned to) is shaped mainly by patterns of high and mean flow behavior within the stream's landscape context. Additionally, random forest was used to determine which hydrologic variables best separate minimally disturbed reference streams from non-reference streams in each of the seven classes. In contrast to stream typology, deviation from reference conditions is more difficult to detect and is largely defined by changes in low-flow variables, average daily flow, and duration of flow. Our combined deductive/inductive approach allows us to estimate flow under minimally disturbed conditions based on the deductive analysis and compare to measured flow based on the inductive analysis in order to estimate hydrologic change.
NASA Astrophysics Data System (ADS)
Congdon, R. D.
2012-12-01
There is frequently a need in land management agencies for a quick and easy method for estimating hydrogeologic conditions in a watershed for which there is very little subsurface information. Setting up a finite difference or finite element model takes valuable time that often is not available when decisions need to be made quickly. An analytic element model (AEM), GFLOW in this case, may enable the investigator to produce a preliminary steady-state model for a watershed, and to easily evaluate variants of the conceptual model. Use of preexisting data, such as stream gage data or USGS reports makes the job much easier. Solutions to analytic element models are obtained within seconds. The Eagle Creek watershed in central New Mexico is a site of local water supply issues in an area of volcanic and plutonic rocks. Parameters estimated by groundwater consultants and the USGS, and discharge data from three USGS stream gages were used to set up the steady-state analytical model (GFLOW). Matching gage records with line-sink fluxes facilitated conceptualization of local groundwater flow and quick analysis of the effects of steady water supply pumping on Eagle Creek. Because of steep topgraphy and limited access, a water supply well is located within the stream channel within 20 meters of the creek, and it would be useful to evaluate the effects of the well on stream flow. A USGS report (SIR 2010-5205) revealed a section of Eagle Creek with a high vertical conductivity which results in flow loss of up to 34 l/s (including flow to the water table and flow into alluvium) when the well was pumped and the water table was lowered below the channel bottom. The water supply well was simulated with a steady-state well pumping at the average and maximum rates of 12 l/s and 31 l/s. The initial simulation shows that pumping at these rates results in stream flow loss of 19% and 51%, respectively. The simulation was conducted with average flow conditions, and this information will be important in planning for management during periods of drought, as well as times of more normal precipitation; as water uses must be balanced with the needs of the existing ecosystem. Alternatives, such as low conductivity blocks between stream channels and different volumetric and geographic pumping scenarios may also be readily explored in an AEM. Exporting these scenarios into MODFLOW simulations will enable us to evaluate transient and cyclical pumping effects on the surface waters for each AEM conceptualization, as well as being able to simulate seasonal recharge. However, in many cases the use of MODFLOW may not be necessary, if the AEM proves sufficient to answer the relevant questions. Symbiotic use of GFLOW and MODFLOW will be an invaluable aid in evaluating groundwater and its uses in National Forest watersheds, especially in cases when time is a critical factor in informed decision-making.
Parrett, Charles; Hull, J.A.
1990-01-01
Five streamflow-gaging stations were installed in the Rock Creek basin north of the Milk River near Hinsdale, Montana. Streamflow was monitored at these stations and at an existing gaging station upstream on Rock Creek from May 1983 through September 1987. The data collected were used to describe the flow characteristics of four small tributary streams. Annual mean streamflow ranges from 2.8 to 57 cu ft/sec in the mainstem and from 0 to 0.60 cu ft/sec in the tributaries. Monthly mean streamflow ranged from 0 to 528 cu ft/sec in Rock Creek and from zero to 5.3 cu ft/sec in the four tributaries. The six gaged sites show similar patterns of daily mean streamflow during periods of large runoff, but substantial individual variations during periods of lesser runoff. During periods of lesser runoff , the small tributaries may have small daily mean streamflows. At other times, daily mean streamflow at the two mainstem sites decreased downstream. Daily mean streamflow in the tributaries appears to be closely related to daily mean streamflow in the mainstem only during periods of substantial area-wide runoff. Thus, streamflow in the tributaries resulting from local storms or local snowmelt may not contribute to streamflow in the mainstem. (USGS)
Armstrong, David S.; Parker, Gene W.
2003-01-01
The relations among stream habitat and hydrologic conditions were investigated in the Usquepaug?Queen River Basin in southern Rhode Island. Habitats were assessed at 13 sites on the mainstem and tributaries from July 1999 to September 2000. Channel types are predominantly low-gradient glides, pools, and runs that have a sand and gravel streambed and a forest or shrub riparian zone. Along the stream margins,overhanging brush, undercut banks supported by roots, and downed trees create cover; within the channel, submerged aquatic vegetation and woody debris create cover. These habitat features decrease in quality and availability with declining streamflows, and features along stream margins generally become unavailable once streamflows drop to the point at which water recedes from the stream banks. Riffles are less common, but were identified as critical habitat areas because they are among the first to exhibit habitat losses or become unavailable during low-flow periods. Stream-temperature data were collected at eight sites during summer 2000 to indicate the suitability of those reaches for cold-water fish communities. Data indicate stream temperatures provide suitable habitat for cold-water species in the Fisherville and Locke Brook tributaries and in the mainstem Queen River downstream of the confluence with Fisherville Brook. Stream temperatures in the Usquepaug River downstream from Glen Rock Reservoir are about 6?F warmer than in the Queen River upstream from the impoundment. These warmer temperatures may make habitat in the Usquepaug River marginal for cold-water species. Fish-community composition was determined from samples collected at seven sites on tributaries and at three sites on the mainstem Usquepaug?Queen River. Classification of the fish into habitat-use groups and comparison to target fish communities developed for the Quinebaug and Ipswich Rivers indicated that the sampled reaches of the Usquepaug?Queen River contained most of the riverine fish species that would have been expected to occur in this area. Streamflow records from the gaging station Usquepaug River near Usquepaug were used to (1) determine streamflow requirements for habitat protection by use of the Tennant method, and (2) define a flow regime that mimics the river's natural flow regime by use of the Range of Variability Approach. The Tennant streamflow requirement, defined as 30 percent of the mean annual flow, was 0.64 cubic feet per second per square mile (ft3/s/mi2). This requirement should be considered an initial estimate because flows measured at the Usquepaug River gaging station are reduced by water withdrawals upstream from the gage. The streamflow requirements may need to be revised once a watershed-scale precipitationrunoff model of the Usquepaug River is complete and a simulation of streamflows without water withdrawals has been determined. Streamflow requirements for habitat protection were also determined at seven riffle sites by use of the Wetted-Perimeter and R2Cross methods. Two of these sites were on the mainstem Usquepaug River, one was on the mainstem Queen River, and four were on tributaries and the headwaters of the Queen River. Median streamflow requirements for habitat protection for these sites were 0.41 (ft3/s)/mi2, determined by the Wetted-Perimeter method and 0.72 ft3/s/mi2, determined by the R2Cross method.
Messinger, Terence; Paybins, Katherine S.
2003-01-01
Large-scale surface mining using valley fills has changed hydrologic storage and processes in the Ballard Fork Watershed in West Virginia. Total unit flow for the 2-year study period (November 15, 1999?November 14, 2001) on the Unnamed Tributary (extensively mined) (11,700 cubic feet per second per square mile) was almost twice that on Spring Branch (unmined) (6,260 cubic feet per second per square mile), and about 1.75 times that on Ballard Fork (downstream, partly mined) (6,690 cubic feet per second per square mile). Unit flow from the Unnamed Tributary exceeded that from the other two streams for all flows analyzed (5?95 percent duration). Unit flow from Ballard Fork exceeded unit flow from Spring Branch about 80 percent of the time, but was about the same for high flows (less than 20 percent duration). The proportional differences among sites were greatest at low flows. Spring Branch was dry for several days in October and November 2000 and for most of October 2001, and the Unnamed Tributary had flow throughout the study period. The increase in flows from mined parts of the Ballard Fork Watershed appears to result from decreases in evapotranspiration caused by removal of trees and soil during mining. During both years, evapotranspiration from the Spring Branch Watershed greatly exceeded that from the Unnamed Tributary Watershed during May through October, when leaves were open. Evapotranspiration from the Unnamed Tributary Watershed slightly exceeded that from the Spring Branch Watershed in February and March during both years. Evapotranspiration, as a percentage of total rainfall, decreased from the first to the second, drier, year from the Unnamed Tributary Watershed (from 61 percent to 49 percent) but changed little from the Spring Branch (from 77 to 76 percent) and Ballard Fork (73 to 76 percent) Watersheds. Precipitation and flow during the study period at three nearby long-term sites, the U.S. Geological Survey stream-gaging station East Fork Twelvepole Creek near Dunlow, West Virginia, and two National Oceanic Atmospheric Administration rain gages at Madison and Dunlow, West Virginia, were less than long-term annual averages. Relations observed among the three streams in the Ballard Fork Watershed during this study may not represent those in years when annual precipitation and flow are closer to long-term averages.
Flood of June 26-29, 2006, Mohawk, Delaware, and Susquehanna River Basins, New York
Suro, Thomas P.; Firda, Gary D.; Szabo, Carolyn O.
2009-01-01
A stalled frontal system caused tropical moisture to be funneled northward into New York, causing severe flooding in the Mohawk, Delaware, and Susquehanna River basins during June 26-29, 2006. Rainfall totals for this multi-day event ranged from 2 to 3 inches to greater than 13 inches in southern New York. The storm and flooding claimed four lives in New York, destroyed or damaged thousands of homes and businesses, and closed hundreds of roads and highways. Thousands of people evacuated their homes as floodwaters reached new record elevations at many locations within the three basins. Twelve New York counties were declared Federal disaster areas, more than 15,500 residents applied for disaster assistance, and millions of dollars in damages resulted from the flooding. Disaster-recovery assistance for individuals and businesses adversely affected by the floods of June 2006 reached more than $227 million. The National Weather Service rainfall station at Slide Mountain recorded storm totals of more than 8 inches of rainfall, and the stations at Walton and Fishs Eddy, NY, recorded storm totals of greater than 13 inches of rainfall. The U.S. Geological Survey (USGS) stream-gaging stations at Mohawk River at Little Falls, West Branch Delaware River at Hale Eddy, and Susquehanna River at Vestal, NY, among others, recorded peak discharges of 35,000 ft3/s, 43,400 ft3/s, and 119,000 ft3/s respectively, with greater than 100-year recurrence intervals. The peak water-surface elevation 21.47 ft and the peak discharge 189,000 ft3/s recorded on June 28, 2006, at the Delaware River at Port Jervis stream-gaging station were the highest recorded since the flood of August 1955. At the Susquehanna River at Conklin, NY, stream-gaging station, which has been in operation since 1912, the peak water-surface elevation 25.02 ft and peak discharge 76,800 ft3/s recorded on June 28, 2006, exceeded the previous period-of-record maximums that were set during the flood of March 1936. Documented peak water-surface elevations during the June 2006 flood at many study sites in the Mohawk, Delaware, and Susquehanna River basins exceeded the 100-year flood-profile elevations determined in the flood-insurance studies prepared by the Federal Emergency Management Agency.
Method for estimating low-flow characteristics of ungaged streams in Indiana
Arihood, Leslie D.; Glatfelter, Dale R.
1991-01-01
Equations for estimating the 7-day, 2-year and 7oday, 10-year low flows at sites on ungaged streams are presented. Regression analysis was used to develop equations relating basin characteristics and low-flow characteristics at 82 gaging stations. Significant basin characteristics in the equations are contributing drainage area and flow-duration ratio, which is the 20-percent flow duration divided by the 90-percent flow duration. Flow-duration ratio has been regionalized for Indiana on a plate. Ratios for use in the equations are obtained from the plate. Drainage areas are determined from maps or are obtained from reports. The predictive capability of the method was determined by tests of the equations and of the flow-duration ratios on the plate. The accuracy of the equations alone was tested by estimating the low-flow characteristics at 82 gaging stations where flow-duration ratio is already known. In this case, the standard errors of estimate for 7-day, 2-year and 7-day, 10-year low flows are 19 and 28 percent. When flow-duration ratios for the 82 gaging stations are obtained from the map, the standard errors are 46 and 61 percent. However, when stations having drainage areas of less than 10 square miles are excluded from the test, the standard errors decrease to 38 and 49 percent. Standard errors increase when stations with small basins are included, probably because some of the flow-duration ratios obtained for these small basins are incorrect. Local geology and its effect on the ratio are not adequately reflected on the plate, which shows the regional variation in flow-duration ratio. In all the tests, no bias is apparent areally, with increasing drainage area or with increasing ratio. Guidelines and limitations should be considered when using the method. The method can be applied only at sites in the northern and central physiographic zones of the State. Low-flow characteristics cannot be estimated for regulated streams unless the amount of regulation is known so that the estimated low-flow characteristic can be adjusted. The method is most accurate for sites having drainage areas ranging from 10 to 1,000 square miles and for predictions of 7-day, 10-year low flows ranging from 0.5 to 340 cubic feet per second.
Method for estimating low-flow characteristics of ungaged streams in Indiana
Arihood, L.D.; Glatfelter, D.R.
1986-01-01
Equations for estimating the 7-day, 2-yr and 7-day, 10-yr low flows at sites on ungaged streams are presented. Regression analysis was used to develop equations relating basin characteristics and low flow characteristics at 82 gaging stations. Significant basin characteristics in the equations are contributing drainage area and flow duration ratio, which is the 20% flow duration divided by the 90% flow duration. Flow duration ratio has been regionalized for Indiana on a plate. Ratios for use in the equations are obtained from this plate. Drainage areas are determined from maps or are obtained from reports. The predictive capability of the method was determined by tests of the equations and of the flow duration ratios on the plate. The accuracy of the equations alone was tested by estimating the low flow characteristics at 82 gaging stations where flow duration ratio is already known. In this case, the standard errors of estimate for 7-day, 2-yr and 7-day, 10-yr low flows are 19% and 28%. When flow duration ratios for the 82 gaging stations are obtained from the map, the standard errors are 46% and 61%. However, when stations with drainage areas < 10 sq mi are excluded from the test, the standard errors reduce to 38% and 49%. Standard errors increase when stations with small basins are included, probably because some of the flow duration ratios obtained for these small basins are incorrect. Local geology and its effect on the ratio are not adequately reflected on the plate, which shows the regional variation in flow duration ratio. In all the tests, no bias is apparent areally, with increasing drainage area or with increasing ratio. Guidelines and limitations should be considered when using the method. The method can be applied only at sites in the northern and the central physiographic zones of the state. Low flow characteristics cannot be estimated for regulated streams unless the amount of regulation is known so that the estimated low flow characteristic can be adjusted. The method is most accurate for sites with drainage areas ranging from 10 to 1,000 sq mi and for predictions of 7-day, 10-yr low flows ranging from 0.5 to 340 cu ft/sec. (Author 's abstract)
New Jersey StreamStats: A web application for streamflow statistics and basin characteristics
Watson, Kara M.; Janowicz, Jon A.
2017-08-02
StreamStats is an interactive, map-based web application from the U.S. Geological Survey (USGS) that allows users to easily obtain streamflow statistics and watershed characteristics for both gaged and ungaged sites on streams throughout New Jersey. Users can determine flood magnitude and frequency, monthly flow-duration, monthly low-flow frequency statistics, and watershed characteristics for ungaged sites by selecting a point along a stream, or they can obtain this information for streamgages by selecting a streamgage location on the map. StreamStats provides several additional tools useful for water-resources planning and management, as well as for engineering purposes. StreamStats is available for most states and some river basins through a single web portal.Streamflow statistics for water resources professionals include the 1-percent annual chance flood flow (100-year peak flow) used to define flood plain areas and the monthly 7-day, 10-year low flow (M7D10Y) used in water supply management and studies of recreation, wildlife conservation, and wastewater dilution. Additionally, watershed or basin characteristics, including drainage area, percent area forested, and average percent of impervious areas, are commonly used in land-use planning and environmental assessments. These characteristics are easily derived through StreamStats.
Feaster, Toby D.; Tasker, Gary D.
2002-01-01
Data from 167 streamflow-gaging stations in or near South Carolina with 10 or more years of record through September 30, 1999, were used to develop two methods for estimating the magnitude and frequency of floods in South Carolina for rural ungaged basins that are not significantly affected by regulation. Flood frequency estimates for 54 gaged sites in South Carolina were computed by fitting the water-year peak flows for each site to a log-Pearson Type III distribution. As part of the computation of flood-frequency estimates for gaged sites, new values for generalized skew coefficients were developed. Flood-frequency analyses also were made for gaging stations that drain basins from more than one physiographic province. The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, updated these data from previous flood-frequency reports to aid officials who are active in floodplain management as well as those who design bridges, culverts, and levees, or other structures near streams where flooding is likely to occur. Regional regression analysis, using generalized least squares regression, was used to develop a set of predictive equations that can be used to estimate the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows for rural ungaged basins in the Blue Ridge, Piedmont, upper Coastal Plain, and lower Coastal Plain physiographic provinces of South Carolina. The predictive equations are all functions of drainage area. Average errors of prediction for these regression equations ranged from -16 to 19 percent for the 2-year recurrence-interval flow in the upper Coastal Plain to -34 to 52 percent for the 500-year recurrence interval flow in the lower Coastal Plain. A region-of-influence method also was developed that interactively estimates recurrence- interval flows for rural ungaged basins in the Blue Ridge of South Carolina. The region-of-influence method uses regression techniques to develop a unique relation between flow and basin characteristics for an individual watershed. This, then, can be used to estimate flows at ungaged sites. Because the computations required for this method are somewhat complex, a computer application was developed that performs the computations and compares the predictive errors for this method. The computer application includes the option of using the region-of-influence method, or the generalized least squares regression equations from this report to compute estimated flows and errors of prediction specific to each ungaged site. From a comparison of predictive errors using the region-of-influence method with those computed using the regional regression method, the region-of-influence method performed systematically better only in the Blue Ridge and is, therefore, not recommended for use in the other physiographic provinces. Peak-flow data for the South Carolina stations used in the regionalization study are provided in appendix A, which contains gaging station information, log-Pearson Type III statistics, information on stage-flow relations, and water-year peak stages and flows. For informational purposes, water-year peak-flow data for stations on regulated streams in South Carolina also are provided in appendix D. Other information pertaining to the regulated streams is provided in the text of the report.
Fey, D.L.; Wirt, L.; Besser, J.M.; Wright, W.G.
2002-01-01
This report presents hydrologic, water-quality, and biologic toxicity data collected during the annual spring thaw of 2002 in the upper Animas River watershed near Silverton, Colorado. The spring-thaw runoff is a concern because elevated concentrations of iron oxyhydroxides can contain sorbed trace metals that are potentially toxic to aquatic life. Water chemistry of streams draining the San Juan Mountains is affected by natural acid drainage and weathering of hydrothermal altered volcanic rocks and by more than a century of mining activities. The timing of the spring-thaw sampling effort was determined by reviewing historical climate and stream-flow hydrographs and current weather conditions. Twenty-one water-quality samples were collected between 11:00 AM March 27, 2002 and 6:00 PM March 30, 2002 to characterize water chemistry at the A-72 gage on the upper Animas River below Silverton. Analyses of unfiltered water at the A-72 gage showed a relation between turbidity and total-recoverable iron concentrations, and showed diurnal patterns. Copper and lead concentrations were related to iron concentrations, indicating that these elements are probably sorbed to colloidal iron material. Calcium, strontium, and sulfate concentrations showed overall decreasing trends due to dilution, but the loads of those constituents increased over the sampling period. Nine water-quality samples were collected near the confluence of Mineral Creek with the Animas River, the confluence of Cement Creek with the Animas River, and on the upper Animas River above the confluence with Cement Creek (three samples at each site). A total of six bulk water-toxicity samples were collected before, during, and after the spring thaw from the Animas River at the A-72 gage site. Toxicity tests conducted with the bulk water samples on amphipods did not show strong differences in toxicity among the three sampling periods; however, toxicity of river water to fathead minnows showed a decreasing trend during the course of the study.
Estimation of stream conditions in tributaries of the Klamath River, northern California
Manhard, Christopher V.; Som, Nicholas A.; Jones, Edward C.; Perry, Russell W.
2018-01-01
Because of their critical ecological role, stream temperature and discharge are requisite inputs for models of salmonid population dynamics. Coho Salmon inhabiting the Klamath Basin spend much of their freshwater life cycle inhabiting tributaries, but environmental data are often absent or only seasonally available at these locations. To address this information gap, we constructed daily averaged water temperature models that used simulated meteorological data to estimate daily tributary temperatures, and we used flow differentials recorded on the mainstem Klamath River to estimate daily tributary discharge. Observed temperature data were available for fourteen of the major salmon bearing tributaries, which enabled estimation of tributary-specific model parameters at those locations. Water temperature data from six mid-Klamath Basin tributaries were used to estimate a global set of parameters for predicting water temperatures in the remaining tributaries. The resulting parameter sets were used to simulate water temperatures for each of 75 tributaries from 1980-2015. Goodness-of-fit statistics computed from a cross-validation analysis demonstrated a high precision of the tributary-specific models in predicting temperature in unobserved years and of the global model in predicting temperatures in unobserved streams. Klamath River discharge has been monitored by four gages that broadly intersperse the 292 kilometers from the Iron Gate Dam to the Klamath River mouth. These gages defined the upstream and downstream margins of three reaches. Daily discharge of tributaries within a reach was estimated from 1980-2015 based on drainage-area proportionate allocations of the discharge differential between the upstream and downstream margin. Comparisons with measured discharge on Indian Creek, a moderate-sized tributary with naturally regulated flows, revealed that the estimates effectively approximated both the variability and magnitude of discharge.
Stets, Edward G.; Winter, Thomas C.; Rosenberry, Donald O.; Striegl, Robert G.
2010-01-01
Accurate quantification of hydrologic fluxes in lakes is important to resource management and for placing hydrologic solute flux in an appropriate biogeochemical context. Water stable isotopes can be used to describe water movements, but they are typically only effective in lakes with long water residence times. We developed a descriptive time series model of lake surface water oxygen‐18 stable isotope signature (δL) that was equally useful in open‐ and closed‐basin lakes with very different hydrologic residence times. The model was applied to six lakes, including two closed‐basin lakes and four lakes arranged in a chain connected by a river, located in a headwaters watershed. Groundwater discharge was calculated by manual optimization, and other hydrologic flows were constrained by measured values including precipitation, evaporation, and streamflow at several stream gages. Modeled and observed δL were highly correlated in all lakes (r = 0.84–0.98), suggesting that the model adequately described δL in these lakes. Average modeled stream discharge at two points along the river, 16,000 and 11,800 m3d−1, compares favorably with synoptic measurement of stream discharge at these sites, 17,600 and 13,700 m3 d−1, respectively. Water yields in this watershed were much higher, 0.23–0.45 m, than water yields calculated from gaged streamflow in regional rivers, approximately 0.10 m, suggesting that regional groundwater discharge supports water flux through these headwaters lakes. Sensitivity and robustness analyses also emphasized the importance of considering hydrologic residence time when designing a sampling protocol for stable isotope use in lake hydrology studies.
Thermal infrared remote sensing of water temperature in riverine landscapes
Handcock, Rebecca N.; Torgersen, Christian E.; Cherkauer, Keith A.; Gillespie, Alan R.; Klement, Tockner; Faux, Russell N.; Tan, Jing; Carbonneau, Patrice E.; Piégay, Hervé
2012-01-01
Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001).Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature.
Thermal infrared remote sensing of water temperature in riverine landscapes: Chapter 5
Carbonneau, Rebecca N.; Piégay, Hervé; Handcock, R.N; Torgersen, Christian E.; Cherkauer, K.A; Gillespie, A.R; Tockner, K; Faux, R. N.; Tan, Jing
2012-01-01
Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001). Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature (Cherkauer et al., 2005).
NASA Astrophysics Data System (ADS)
Gasperi, J. T.; McClung, J. M.; Hanson, D. L.
2006-12-01
The USDA-Natural Resources Conservation Service has developed regional hydraulic geometry curves relating drainage area to bankfull top width, mean depth and cross-sectional area for the east and west sides of the northern Cascade Mountains in Chelan and King Counties, Washington. NRCS surveyed 10 channel reaches with drainage areas from 1 to 1000 square miles within the Wenatchee River drainage of Chelan County and 10 channel reaches with drainage areas of 1 to 100 square miles within the Cedar and Green River drainages of King County. Selection criteria for stream reaches required a minimum of 20 years of USGS stream gage discharge records, unregulated flows and safe access. Survey data were collected with a Sokkia Total Station during low flow conditions from August 2004 to September 2005. NRCS measured a channel cross-section at each of the USGS stream gage sites and two or three additional cross-sections up and downstream. The authors also collected samples of bed material for gradation analysis and estimation of Manning's roughness coefficient, n. Bankfull elevations were estimated based on visual identification of field indicators and USGS flood discharges for the 50% exceedance probability event. Field data were evaluated with the Ohio DNR Reference Reach spreadsheet to determine bankfull top width, mean depth and cross-sectional area. We applied a simple linear regression to the data following USGS statistical methods to evaluate the closeness of fit between drainage area and bankfull channel dimensions. The resulting R2 values of 0.83 to 0.93 for the eastern Cascade data of Chelan County and 0.71 to 0.88 for the western Cascade data of King County indicate a close association between drainage area and bankfull channel dimensions for these two sets of data.
Lee, Casey J.; Rasmussen, Patrick P.; Ziegler, Andrew C.
2008-01-01
Storage capacity in John Redmond Reservoir is being lost to sedimentation more rapidly than in other federal impoundments in Kansas. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, initiated a study to characterize suspended-sediment loading to and from John Redmond Reservoir from February 21, 2007, through February 21, 2008. Turbidity sensors were installed at two U.S. Geological Survey stream gages upstream (Neosho River near Americus and the Cottonwood River near Plymouth) and one stream gage downstream (Neosho River at Burlington) from the reservoir to compute continuous, real-time (15-minute) measurements of suspended-sediment concentration and loading. About 1,120,000 tons of suspended-sediment were transported to, and 100,700 tons were transported from John Redmond Reservoir during the study period. Dependent on the bulk density of sediment stored in the reservoir, 5.0 to 1.4 percent of the storage in the John Redmond conservation pool was lost during the study period, with an average deposition of 3.4 to 1.0 inches. Nearly all (98-99 percent) of the incoming sediment load was transported during 9 storms which occurred 25 to 27 percent of the time. The largest storm during the study period (peak-flow recurrence interval of about 4.6-4.9 years) transported about 37 percent of the sediment load to the reservoir. Suspended-sediment yield from the unregulated drainage area upstream from the Neosho River near Americus was 530 tons per square mile, compared to 400 tons per square mile upstream from the Cottonwood River near Plymouth. Comparison of historical (1964-78) to current (2007) sediment loading estimates indicate statistically insignificant (99 percent) decrease in sediment loading at the Neosho River at Burlington. Ninety-percent confidence intervals of streamflow-derived estimates of total sediment load were 7 to 21 times larger than turbidity-derived estimates. Results from this study can be used by natural resource managers to calibrate sediment models and estimate the ability of John Redmond Reservoir to support designated uses into the future.
Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.
2008-01-01
A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370 hydrologic units in Pennsylvania predicted a range of ground-water recharge from about 6.0 to 22 inches per year. A map of the predicted recharge illustrates the general magnitude and variability of recharge throughout Pennsylvania.
Export of fine particulate organic carbon from redwood-dominated catchments
Madej, Mary Ann
2015-01-01
Recently, researchers have recognized the significant role of small mountainous river systems in the transport of carbon from terrestrial environments to the ocean, and the scale of such studies have ranged from channel bed units to continents. In temperate zones, these mountain river systems commonly drain catchments that are largely forested. However, the magnitude of carbon export from rivers draining old-growth redwood forests has not been evaluated to date. Old-growth redwood stands support some of the largest quantities of biomass in the world, up to 350 000 Mg of stem biomass km-2 and soil organic carbon can reach 46 800 Mg km-2. In north coastal California, suspended sediment samples were collected at three gaging stations for two to four years on streams draining old-growth redwood forests. Carbon content, determined through loss-on-ignition tests, was strongly correlated with turbidity, and continuous turbidity records from the gaging stations were used to estimate annual carbon exports of 1 · 6 to 4 · 2 Mg km-2 yr-1. These values, representing 13 to 33% of the suspended sediment load, are some of the highest percentages reported in the global literature. The fraction of organic carbon as part of the suspended sediment load decreased with discharge, but reached an asymptote of 5 to 10% at flows 10 to 20 times the mean annual flows. Although larger rivers in this region exhibit high sediment yields (up to 3600 Mg km-2 yr-1), mainly attributed to high rates of uplift, mass movement, and timber harvest, the small pristine streams in this study have sediment yields of only 8 to 100 Mg km-2 yr-1. Because the current extent of old-growth redwood stands is less than 5% of its pre-European-settlement distribution, the present organic carbon signature in suspended sediment loads in this region is likely different from that in the early 20th century. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Troester, J. W.
2001-12-01
For more than four decades, the U.S. Geological Survey (USGS) has collected riverine nutrient concentration data in Puerto Rico, a mountainous Caribbean tropical island. During the last forty years the population of this 9043 square km island has increased from about 2.4 to 3.8 million people. Much of the island has been developed for agriculture, and later for industry and urbanization. Data from gaging stations located within four of the larger, mixed land-use drainage basins of Puerto Rico were compiled and analyzed. The stations selected were the Rio Grande de Manati at Highway 2 (Station 50038100), Rio de la Plata at Highway 2 (Station 50046000), Rio Grande de Patillas near Patillas (Station 50092000), and Rio Grande de Anasco near San Sebastian (Station 50144000). Analytical results were compared with a shorter-term data set from smaller forested watersheds (that are part of the USGS Water, Energy, and Biogeochemical Budgets (WEBB) Program) to evaluate the impact of human activity on the water quality. During the 1960's, discharge weighted average concentrations (DWAC) of dissolved nitrate-nitrogen (nitrate-N) ranged from 0.10 to 0.51 mg/L in the four rivers. DWAC of nitrate-N increased and peaked in the 1970's and 1980's (range of 0.35 to 1.00 mg/L), and have subsequently decreased (range of 0.30 to 0.95 mg/L). DWAC of nitrate-N declined, even though the average nitrate-N concentration continued to increase in three of these rivers. The decrease in DWAC of nitrate-N may reflect the changes in land use from the 1960's to present, which includes an increase in forest and a decrease in cropland throughout much of Puerto Rico. However, the largest decrease (from 0.77 to 0.34 mg/L) occurred in the Rio de la Plata after it was dammed in 1974. DWAC of nitrate-N in the four rivers were several times higher than the total nitrate-N observed at gaging stations in undisturbed forested watersheds, such as at the Rio Mameyes near Sabana (Station 50065500) and the Rio Icacos near Naguabo (Station 50075000), where DWAC of the total nitrate-N were 0.09 and 0.10 mg/L, respectively. Forest disturbance associated with the passage of Hurricane Hugo, in September 1989, more than doubled the nitrate concentration in streams draining the forested watersheds for a number of months afterward. But Hurricane Georges, which greatly affected the entire island in September 1998 did not cause a similar increase in dissolved nitrate concentrations in the larger rivers. The average nitrate-N yields (calculated by multiplying the DWAC by total runoff) at the gaging stations on the larger rivers ranged from 2.0 to 8.6 kg/ha/yr, which is only slightly higher than the range of 1.8 to 4.6 kg/ha/yr observed for streams draining forested watersheds. DWAC of total phosphate-phosphorous (phosphate-P) have remained comparatively constant through three decades of measurement in both the larger, mixed land-use basins and the smaller forested watersheds. In the four larger rivers the DWAC of total phosphate-P ranged from 0.03 to 0.32 mg/L, while in the smaller forested watersheds, DWAC of total phosphate-P were lower, and ranged from 0.001 to 0.003 mg/L. The average total phosphate-P yields at the gaging stations on the larger rivers ranged from 0.5 to 1.4 kg/ha/yr, which is much higher than the range of 0.03 to 0.07 kg/ha/yr observed for streams draining forested watersheds. These low concentrations suggest the rivers are phosphate limited.
Water resources activities, Georgia District, 1986
Casteel, Carolyn A.; Ballew, Mary D.
1987-01-01
The U.S. Geological Survey, through its Water Resources Division , investigates the occurrence, quantity, quality, distribution, and movement of the surface and underground water that composes the Nation 's water resources. Much of the work is a cooperative effort in which planning and financial support are shared by state and local governments and other federal agencies. This report contains a brief description of the water-resources investigations in Georgia in which the Geological Survey participates, and a list of selected references. Water-resources data for the 1985 water year for Georgia consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and groundwater levels. These data include discharge records for 108 gaging stations; water quality for 43 continuous stations, 109 periodic stations, and miscellaneous sites; peak stage and discharge only for 130 crest-stage partial-record stations and 44 miscellaneous sites; and water levels of 27 observation wells. Nineteen Georgia District projects are summarized. (Lantz-PTT)
Methods for estimating streamflow at mountain fronts in southern New Mexico
Waltemeyer, S.D.
1994-01-01
The infiltration of streamflow is potential recharge to alluvial-basin aquifers at or near mountain fronts in southern New Mexico. Data for 13 streamflow-gaging stations were used to determine a relation between mean annual stream- flow and basin and climatic conditions. Regression analysis was used to develop an equation that can be used to estimate mean annual streamflow on the basis of drainage areas and mean annual precipi- tation. The average standard error of estimate for this equation is 46 percent. Regression analysis also was used to develop an equation to estimate mean annual streamflow on the basis of active- channel width. Measurements of the width of active channels were determined for 6 of the 13 gaging stations. The average standard error of estimate for this relation is 29 percent. Stream- flow estimates made using a regression equation based on channel geometry are considered more reliable than estimates made from an equation based on regional relations of basin and climatic conditions. The sample size used to develop these relations was small, however, and the reported standard error of estimate may not represent that of the entire population. Active-channel-width measurements were made at 23 ungaged sites along the Rio Grande upstream from Elephant Butte Reservoir. Data for additional sites would be needed for a more comprehensive assessment of mean annual streamflow in southern New Mexico.
Streamflow from the United States into the Atlantic Ocean during 1931-1960
Bue, Conrad D.
1970-01-01
Streamflow from the United States into the Atlantic Ocean, between the international stream St. Croix River, inclusive, and Cape Sable, Fla., averaged about 355,000 cfs (cubic feet per second) during the 30-year period 1931-60, or roughly 20 percent of the water that, on the average flows out of the conterminous United States. The area drained by streams flowing into the Atlantic Ocean is about 288,000 square miles, including the Canadian part of the St. Croix and Connecticut River basins, or a little less than 10 percent of the area of the conterminous United States. Hence, the average streamflow into the Atlantic Ocean, in terms of cubic feet per second per square mile, is about twice the national average of the flow that leaves the conterminous United States. Flow from about three-fourths of the area draining into the Atlantic Ocean is gaged at streamflow measuring stations of the U.S. Geological Survey. The remaining one-fourth of the drainage area consists mostly of low-lying coastal areas from which the flow was estimated, largely on the basis of nearby gaging stations. Streamflow, in terms of cubic feet per second per square mile, decreases rather progressively from north to south. It averages nearly 2 cfs along the Maine coast, about 1 cfs along the North Carolina coast, and about 0.9 cfs along the Florida coast.
Evaluation of the streamflow-gaging network of Alaska in providing regional streamflow information
Brabets, Timothy P.
1996-01-01
In 1906, the U.S. Geological Survey (USGS) began operating a network of streamflow-gaging stations in Alaska. The primary purpose of the streamflow- gaging network has been to provide peak flow, average flow, and low-flow characteristics to a variety of users. In 1993, the USGS began a study to evaluate the current network of 78 stations. The objectives of this study were to determine the adequacy of the existing network in predicting selected regional flow characteristics and to determine if providing additional streamflow-gaging stations could improve the network's ability to predict these characteristics. Alaska was divided into six distinct hydrologic regions: Arctic, Northwest, Southcentral, Southeast, Southwest, and Yukon. For each region, historical and current streamflow data were compiled. In Arctic, Northwest, and Southwest Alaska, insufficient data were available to develop regional regression equations. In these areas, proposed locations of streamflow-gaging stations were selected by using clustering techniques to define similar areas within a region and by spatial visual analysis using the precipitation, physiographic, and hydrologic unit maps of Alaska. Sufficient data existed in Southcentral and Southeast Alaska to use generalized least squares (GLS) procedures to develop regional regression equations to estimate the 50-year peak flow, annual average flow, and a low-flow statistic. GLS procedures were also used for Yukon Alaska but the results should be used with caution because the data do not have an adequate spatial distribution. Network analysis procedures were used for the Southcentral, Southeast, and Yukon regions. Network analysis indicates the reduction in the sampling error of the regional regression equation that can be obtained given different scenarios. For Alaska, a 10-year planning period was used. One scenario showed the results of continuing the current network with no additional gaging stations and another scenario showed the results of adding gaging stations to the network. With the exception of the annual average discharge equation for Southeast Alaska, by adding gaging stations in all three regions, the sampling error was reduced to a greater extent than by not adding gaging stations. The proposed streamflow-gaging network for Alaska consists of 308 gaging stations, of which 32 are designated as index stations. If the proposed network can not be implemented in its entirety, then a lesser cost alternative would be to establish the index stations and to implement the network for a particular region.
Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.
1988-01-01
Water resources data for the 1986 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 144 gaging stations; stage and contents for 15 lakes and reservoirs; watet quality for 21 streams. Also included are crest-stage partial-record stations, 3 miscellaneous measurement sites, and 5 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.
1987-01-01
Water resources data for the 1985 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 150 gaging stations; stage and contents for 17 lakes and reservoirs; water quality for 23 streams. Also included are 10 crest-stage partial-record stations, three miscellaneous measurement sites, and one waterquality partial-record station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Bowers, J.C.; Butcher, M.T.; Lamb, C.E.; Singer, J.A.; Smith, G.B.
1985-01-01
Water resources data for the 1983 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 154 gaging stations; stage and contents for 18 lakes and reservoirs; water quality for 20 streams and 18 wells; water levels for 165 observation wells. Also included are 10 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and federal agencies in California.
Bowers, J.C.; Butcher, M.T.; Lamb, C.E.; Singer, J.A.; Smith, G.B.
1984-01-01
Water-resources data for the 1982 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 160 gaging stations; stage and contents for 19 lakes and reservoirs; water quality for 20 streams and 20 wells; water levels for 174 observation wells. Also included are 10 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Velocity profile, water-surface slope, and bed-material size for selected streams in Colorado
Marchand, J.P.; Jarrett, R.D.; Jones, L.L.
1984-01-01
Existing methods for determining the mean velocity in a vertical sampling section do not address the conditions present in high-gradient, shallow-depth streams common to mountainous regions such as Colorado. The report presents velocity-profile data that were collected for 11 streamflow-gaging stations in Colorado using both a standard Price type AA current meter and a prototype Price Model PAA current meter. Computational results are compiled that will enable mean velocities calculated from measurements by the two current meters to be compared with each other and with existing methods for determining mean velocity. Water-surface slope, bed-material size, and flow-characteristic data for the 11 sites studied also are presented. (USGS)
Waltemeyer, Scott D.
2006-01-01
Estimates of the magnitude and frequency of peak discharges are necessary for the reliable flood-hazard mapping in the Navajo Nation in Arizona, Utah, Colorado, and New Mexico. The Bureau of Indian Affairs, U.S. Army Corps of Engineers, and Navajo Nation requested that the U.S. Geological Survey update estimates of peak discharge magnitude for gaging stations in the region and update regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites using data collected through 1999 at 146 gaging stations, an additional 13 years of peak-discharge data since a 1997 investigation, which used gaging-station data through 1986. The equations for estimation of peak discharges at ungaged sites were developed for flood regions 8, 11, high elevation, and 6 and are delineated on the basis of the hydrologic codes from the 1997 investigation. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 82 of the 146 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge having a recurrence interval of less than 1.4 years in the probability-density function. Within each region, logarithms of the peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then was applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction for a peak discharge have a recurrence interval of 100-years for region 8 was 53 percent (average) for the 100-year flood. The average standard of prediction, which includes average sampling error and average standard error of regression, ranged from 45 to 83 percent for the 100-year flood. Estimated standard error of prediction for a hybrid method for region 11 was large in the 1997 investigation. No distinction of floods produced from a high-elevation region was presented in the 1997 investigation. Overall, the equations based on generalized least-squares regression techniques are considered to be more reliable than those in the 1997 report because of the increased length of record and improved GIS method. Techniques for transferring flood-frequency relations to ungaged sites on the same stream can be estimated at an ungaged site by a direct application of the regional regression equation or at an ungaged site on a stream that has a gaging station upstream or downstream by using the drainage-area ratio and the drainage-area exponent from the regional regression equation of the respective region.
Water-quality characteristics of Montana streams in a statewide monitoring network, 1999-2003
Lambing, John H.; Cleasby, Thomas E.
2006-01-01
A statewide monitoring network of 38 sites was operated during 1999-2003 in cooperation with the Montana Department of Environmental Quality to provide a broad geographic base of water-quality information on Montana streams. The purpose of this report is to summarize and describe the water-quality characteristics for those sites. Samples were collected at U.S. Geological Survey streamflow-gaging stations in the Missouri, Yellowstone, and Columbia River basins for stream properties, nutrients, suspended sediment, major ions, and selected trace elements. Mean annual streamflows were below normal during the period, which likely influenced water quality. Continuous water-temperature monitors were operated at 26 sites. The median of daily mean water temperatures for the June-August summer period ranged from 12.5 degC at Kootenai River below Libby Dam to 23.0 degC at Poplar River near Poplar and Tongue River at Miles City. In general, sites in the Missouri River basin commonly had the highest water temperatures. Median daily mean summer water temperatures at four sites (Jefferson River near Three Forks, Missouri River at Toston, Judith River near Winifred, and Poplar River near Poplar) classified as supporting or marginally supporting cold-water biota exceeded the general guideline of 19.4 degC for cold-water biota. Median daily mean temperatures at sites in the network classified as supporting warm-water biota did not exceed the guideline of 26.7 degC for warm-water biota, although several sites exceeded the warm-water guideline on several days during the summer. More...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durlin, R.R.; Schaffstall, W.P.
1996-03-01
Volume 2 contains: (1) discharge records for 94 continuous-record streamflow-gaging stations and 39 partial-record stations; (2) elevation and contents records for 12 lakes and reservoirs; (3) water-quality records for 17 gaging stations and 125 partial-record and project stations; and (4) water-level records for 25 observation wells. Additional water data collected at various sites not involved in the systematic data-collection program are also presented.
Asquith, William H.; Vrabel, Joseph; Roussel, Meghan C.
2007-01-01
Analysts and managers of surface-water resources might have interest in selected statistics of daily mean streamflow for U.S. Geological Survey (USGS) streamflow-gaging stations in Texas. The selected statistics are the annual mean, maximum, minimum, and L-scale of daily meanstreamflow. Annual L-scale of streamflow is a robust measure of the variability of the daily mean streamflow for a given year. The USGS, in cooperation with the Texas Commission on Environmental Quality, initiated in 2006a data and reporting process to generate annual statistics for 712 USGS streamflow-gaging stations in Texas. A graphical depiction of the history of the annual statistics for most active and inactive, continuous-record gaging stations in Texas provides valuable information by conveying the historical perspective of streamflow for the watershed. Each figure consists off our time-series plots of the annual statistics of daily mean streamflow for each streamflow-gaging station. Each of the four plots is augmented with horizontal lines that depict the mean and median annual values of the corresponding statistic for the period of record. Monotonic trends for each of the four annual statistics also are identified using Kendall's T. The history of one or more streamflow-gaging stations could be used in a watershed, river basin, or other regional context by analysts and managers of surface-water resources to guide scientific, regulatory, or other inquiries of streamflow conditions in Texas.
Measurement of local high-level, transient surface heat flux
NASA Technical Reports Server (NTRS)
Liebert, Curt H.
1988-01-01
This study is part of a continuing investigation to develop methods for measuring local transient surface heat flux. A method is presented for simultaneous measurements of dual heat fluxes at a surface location by considering the heat flux as a separate function of heat stored and heat conducted within a heat flux gage. Surface heat flux information is obtained from transient temperature measurements taken at points within the gage. Heat flux was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for heat flux measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in heat flux gage calibrators.
Cox, Marisa H.; Hatch, Christine
2003-01-01
Temperature, water level elevation, stage height, and river discharge data for this report were collected in and adjacent to the Russian River from Hopland to Guerneville, CA over a four-year period from 1998 to 2002 to establish baselines for long-term water quality, water supply and habitat. Data files presented in this report were collected by the USGS and the Sonoma County Water Agency's Engineering Resource and Planning, and Natural Resource Divisions. Temperature data were collected in single-channel submersible microloggers or temperature data were collected simultaneously with water-elevation data in dual-channel down-hole data loggers. Stream stage and streamflow data were collected at USGS stream gaging stations located near Hopland, Healdsburg, and Guerneville over a 130 km reach of the Russian River. During the period of record stream flow ranged from 3 to 1458 m3/s. Stream temperature ranged from 8 to 29 oC while groundwater temperature ranged from 10 to 38 oC. Stream stage varied 5 m seasonly, while ground-water level varied 19 m over the same time scale.
Archiving and Near Real Time Visualization of USGS Instantaneous Data
NASA Astrophysics Data System (ADS)
Zaslavsky, I.; Ryan, D.; Whitenack, T.; Valentine, D. W.; Rodriguez, M.
2009-12-01
The CUAHSI Hydrologic Information System project has been developing databases, services and online and desktop software applications supporting standards-based publication and access to large volumes of hydrologic data from US federal agencies and academic partners. In particular, the CUAHSI WaterML 1.x schema specification for exchanging hydrologic time series, earlier published as an OGC Discussion Paper (2007), has been adopted by the United States Geological Survey to provide web service access to USGS daily values and instantaneous data. The latter service, making available raw measurements of discharge, gage height and several other parameters for over 10,000 USGS real time measurement points, was announced by USGS, as an experimental WaterML-compliant service, at the end of July 2009. We demonstrate an online application that leverages the new service for nearly continuous harvesting of USGS real time data, and simultaneous visualization and analysis of the data streams. To make this possible, we integrate service components of the CUAHSI software stack with Open Source Data Turbine (OSDT) system, an NSF-supported software environment for robust and scalable assimilation of multimedia data streams (e.g. from sensors), and interfacing with a variety of viewers, databases, archival systems and client applications. Our application continuously queries USGS Instantaneous water data service (which provides access to 15-min measurements updated at USGS every 4 hours), and maps the results for each station-variable combination to a separate "channel", which is used by OSDT to quickly access and manipulate the time series. About 15,000 channels are used, which makes it by far the largest deployment of OSDT. Using RealTime Data Viewer, users can now select one or more stations of interest (e.g. from upstream or downstream from each other), and observe and annotate simultaneous dynamics in the respective discharge and gage height values, using fast forward or backward modes, real-time mode, etc. Memory management, scheduling service-based retrieval from USGS web services, and organizing access to 7,330 selected stations, turned out to be the major challenges in this project. To allow station navigation, they are grouped by state and county in the user interface. Memory footprint has been monitored under different Java VM settings, to find the correct regime. These and other solutions are discussed in the paper, and accompanied with a series of examples of simultaneous visualization of discharge from multiple stations as a component of hydrologic analysis.
Conrads, Paul; Roehl, Edwin A.; Daamen, Ruby C.; Kitchens, Wiley M.
2006-01-01
The Savannah Harbor is one of the busiest ports on the East Coast of the United States and is located downstream from the Savannah National Wildlife Refuge, which is one of the Nation?s largest freshwater tidal marshes. The Georgia Ports Authority and the U.S. Army Corps of Engineers funded hydrodynamic and ecological studies to evaluate the potential effects of a proposed deepening of Savannah Harbor as part of the Environmental Impact Statement. These studies included a three-dimensional (3D) model of the Savannah River estuary system, which was developed to simulate changes in water levels and salinity in the system in response to geometry changes as a result of the deepening of Savannah Harbor, and a marsh-succession model that predicts plant distribution in the tidal marshes in response to changes in the water-level and salinity conditions in the marsh. Beginning in May 2001, the U.S. Geological Survey entered into cooperative agreements with the Georgia Ports Authority to develop empirical models to simulate the water level and salinity of the rivers and tidal marshes in the vicinity of the Savannah National Wildlife Refuge and to link the 3D hydrodynamic river-estuary model and the marsh-succession model. For the development of these models, many different databases were created that describe the complexity and behaviors of the estuary. The U.S. Geological Survey has maintained a network of continuous streamflow, water-level, and specific-conductance (field measurement to compute salinity) river gages in the study area since the 1980s and a network of water-level and salinity marsh gages in the study area since 1999. The Georgia Ports Authority collected water-level and salinity data during summer 1997 and 1999 and collected continuous water-level and salinity data in the marsh and connecting tidal creeks from 1999 to 2002. Most of the databases comprise time series that differ by variable type, periods of record, measurement frequency, location, and reliability. Understanding freshwater inflows, tidal water levels, and specific conductance in the rivers and marshes is critical to enhancing the predictive capabilities of a successful marsh succession model. Data-mining techniques, including artificial neural network (ANN) models, were applied to address various needs of the ecology study and to integrate the riverine predictions from the 3D model to the marsh-succession model. ANN models were developed to simulate riverine water levels and specific conductance in the vicinity of the tidal marshes for the full range of historical conditions using data from the river gaging networks. ANN models were also developed to simulate the marsh water levels and pore-water salinities using data from the marsh gaging networks. Using the marsh ANN models, the continuous marsh network was hindcasted to be concurrent with the long-term riverine network. The hindcasted data allow ecologists to compute hydrologic parameters?such as hydroperiods and exposure frequency?to help analyze historical vegetation data. To integrate the 3D hydrodynamic model, the marsh-succession model, and various time-series databases, a decision support system (DSS) was developed to support the various needs of regulatory and scientific stakeholders. The DSS required the development of a spreadsheet application that integrates the database, 3D hydrodynamic model output, and ANN riverine and marsh models into a single package that is easy to use and can be readily disseminated. The DSS allows users to evaluate water-level and salinity response for different hydrologic conditions. Savannah River streamflows can be controlled by the user as constant flow, a percentage of historical flows, a percentile daily flow hydrograph, or as a user-specified hydrograph. The DSS can also use output from the 3D model at stream gages near the Savannah National Wildlife Refuge to simulate the effects in the tidal marshes. The DSS is distributed with a two-dimensional (
NASA Astrophysics Data System (ADS)
Leary, K. P.; Buscombe, D.; Schmeeckle, M.; Kaplinski, M. A.
2017-12-01
Bedforms are ubiquitous in sand-bedded rivers, and understanding their morphodynamics is key to quantifying bedload transport. As such, mechanistic understanding of the spatiotemporal details of sand transport through and over bedforms is paramount to quantifying total sediment flux in sand-bedded river systems. However, due to the complexity of bedform field geometries and migration in natural settings, our ability to relate migration to bedload flux, and to quantify the relative role of tractive and suspended processes in their dynamics, is incomplete. Recent flume and numerical investigations indicate the potential importance of cross-stream transport, a process previously regarded as secondary and diffusive, to the three-dimensionality of bedforms and spatially variable translation and deformation rates. This research seeks to understand and quantify the importance of cross-stream transport in bedform three-dimensionality in a field setting. This work utilizes a high-resolution (0.25 m grid) data set of bedforms migrating in the channel of the Colorado River in Grand Canyon National Park. This data set comprises multi-beam sonar surveys collected at 3 different flow discharges ( 283, 566, and 1076 m3/s) along a reach of the Colorado River just upstream of the Diamond Creek USGS gage. Data were collected every 6 minutes almost continuously for 12 hours. Using bed elevation profiles (BEPs), we extract detailed bedform geometrical data (i.e. bedform height, wavelength) and spatial sediment flux data over a suite of bedforms at each flow. Coupling this spatially extensive data with a generalized Exner equation, we conduct mass balance calculations that evaluate the possibility, and potential importance, of cross-stream transport in the spatial variability of translation and deformation rates. Preliminary results suggest that intra-dune cross-stream transport can partially account for changes in the planform shape of dunes and may play an important role in spatially variable translation and deformation rates. Parameterization of cross-stream sediment transport could lead to accounting for ambiguities in bedload flux calculations caused by dune deformation, which in turn could significantly improve overall calculation of bedload and total load sediment transport in sand bedded rivers.
Cummans, J.E.
1976-01-01
Low-flow-frequency data are tabulated for 90 streamflow sites on the Kitsap Peninsula and adjacent islands, Washington. Also listed are data for 56 additional sites which have insufficient measurements for frequency analysis but which have been observed having no flow at least once during the low-flow period. The streams drain relatively small basins; only three streams have drainage areas greater than 20.0 square miles, and only nine other streams have drainage areas greater than 10.0 square miles. Mean annual precipitation during the period 1931-60 ranged from about 25 inches near Hansville to about 70 inches near Tahuya. Low-flow-frequency curves plotted from records of streamflow at eight long-term gaging stations were used to determine data for low-flow durations of 7, 30, 60, 90, and 183 days. Regression techniques then were used to estimate low flows with frequencies up to 20 years for stations with less than 10 years of record and for miscellaneous sites where discharge measurements have been made. (Woodard-USGS)
Gordon Tribble; Jonathan Stock; Jim Jacobi
2016-01-01
Molokaiâs south shore has some of Hawaiiâs most extensive and best-developed coral reefs. Historic terrigenous sedimentation appears to have impacted coral growth along several miles of fringing reef. The land upslope of the reef consists of small watersheds with streams that flow intermittently to the ocean. A USGS gage at the outlet of one of the most impacted...
The physical behavior and geologic control of radon in mountain streams
Rogers, Allen S.
1956-01-01
Radon measurement were made in several small, turbulent mountain streams in the Wasatch Mountains near Salt Lake City and Ogden, Utah, to determine the relationship between the distribution of radon and its geologic environment. In this area, the distribution of radon in streams can be sued to locate points where relatively large amounts of radon-bearing ground water enter the stream, although other evidence of spring activity may be lacking. These points of influence ground water are marked by abrupt increases (as much as two orders of magnitude within a distance of 50 feet) in the radon content of the stream waters. The excess radon in the stream water is then rapidly lost to the atmosphere through stream turbulence. The rate of radon dissipation is an exponential function, of different slopes, with respect to distance of streamflow, and depend upon the rate and volume of streamflow, and the gradient and nature of the stream channel. The higher radon concentration can be generally related to specific stratigraphic horizons in several different drainage area. Thus, lithologic units which act as the primary aquifers can be identifies. In one area, thrust faults were found to control he influx of ground water into the stream. Estimates, based on radon concentration in stream and related spring waters, can also be made of the major increments of addition of ground water to streamflow where conventional methods such as stream gaging are not practical. The radon in the waters studied was found to be almost completely unsupported by radium in solution.
Etheridge, Alexandra B.
2015-12-07
Ninety-eight percent of the estimated total mercury load transported downstream of the study area is attributable to Sugar Creek. A maximum concentration of 26 micrograms per liter was measured in Sugar Creek during May 2013 when snowmelt runoff occurred during a single peak in the hydrograph. Monitoring and modeling results indicate sediment and sediment-associated constituent concentrations and loads increase along Meadow Creek, likely because of the inflow of the East Fork of Meadow Creek, and decrease between sites 3 and 4 because the Glory Hole is trapping sediments. Sugar Creek (site 5) accounted for most of the sediment and sediment-associated constituent loading leaving the study area because loads from the East Fork of Meadow Creek remained trapped in the Glory Hole. Additionally, total mercury was detected at all five streamflow-gaging stations, and sampled mercury concentrations exceeded Idaho ambient water-quality criteria at all five streamflow-gaging stations.
Slade, Raymond M.; Bentley, J. Taylor; Michaud, Dana
2002-01-01
Data for all 366 known streamflow gain-loss studies conducted by the U.S. Geological Survey in Texas were aggregated. A water-budget equation that includes discharges for main channels, tributaries, return flows, and withdrawals was used to document the channel gain or loss for each of 2,872 subreaches for the studies. The channel gain or loss represents discharge from or recharge to aquifers crossed by the streams. Where applicable, the major or minor aquifer outcrop traversed by each subreach was identified, as was the length and location for each subreach. These data will be used to estimate recharge or discharge for major and minor aquifers in Texas, as needed by the Ground-Water Availability Modeling Program being conducted by the Texas Water Development Board. The data also can be used, along with current flow rates for streamflow-gaging stations, to estimate streamflow at sites remote from gaging stations, including sites where streamflow availability is needed for permitted withdrawals.
Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.
2004-01-01
Water resources data for Montana for the 2003 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 114 streamflow-gaging stations; stage or content records for 4 lakes and large reservoirs and content for 26 smaller reservoirs; water-quality records for 76 streamflow stations (11 ungaged), and 3 lakes; water-level records for 53 observation wells; and precipitation and water-quality records for 2 atmospheric-deposition stations. Additional water year 2003 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.
Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.
2006-01-01
Water resources data for Montana for the 2005 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 120 streamflow-gaging stations; stage or content records for 22 lakes and reservoirs; water-quality records for 86 streamflow stations (32 ungaged), and 25 ground-water wells; water-level records for 25 observation wells; and precipitation records for 2 atmospheric-deposition stations. Additional water year 2005 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.
Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.
2005-01-01
Water resources data for Montana for the 2004 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 119 streamflow-gaging stations; stage or content records for 21 lakes and reservoirs; and water-quality records for 69 streamflow stations (17 ungaged), and 3 lake sites; water-level records for 51 observation wells; and precipitation and water-quality records for 2 atmospheric-deposition stations. Additional water year 2004 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.
Nelms, D.L.; Harlow, G.E.; Hayes, Donald C.
1995-01-01
Growth within the Valley and Ridge, Blue Ridge, and Piedmont Physiographic Provinces of Virginia has focussed concern about allocation of surface-water flow and increased demands on the ground-water resources. The purpose of this report is to (1) describe the base-flow characteristics of streams, (2) identify regional differences in these flow characteristics, and (3) describe, if possible, the potential surface-water and ground-water yields of basins on the basis of the base-flow character- istics. Base-flow characteristics are presented for streams in the Valley and Ridge, Blue Ridge, and Piedmont Physiographic Provinces of Virginia. The provinces are separated into five regions: (1) Valley and Ridge, (2) Blue Ridge, (3) Piedmont/Blue Ridge transition, (4) Piedmont northern, and (5) Piedmont southern. Different flow statistics, which represent streamflows predominantly comprised of base flow, were determined for 217 continuous-record streamflow-gaging stations from historical mean daily discharge and for 192 partial-record streamflow-gaging stations by means of correlation of discharge measurements. Variability of base flow is represented by a duration ratio developed during this investigation. Effective recharge rates were also calculated. Median values for the different flow statistics range from 0.05 cubic foot per second per square mile for the 90-percent discharge on the streamflow-duration curve to 0.61 cubic foot per second per square mile for mean base flow. An excellent estimator of mean base flow for the Piedmont/Blue Ridge transition region and Piedmont southern region is the 50-percent discharge on the streamflow-duration curve, but tends to under- estimate mean base flow for the remaining regions. The base-flow variability index ranges from 0.07 to 2.27, with a median value of 0.55. Effective recharge rates range from 0.07 to 33.07 inches per year, with a median value of 8.32 inches per year. Differences in the base-flow characteristics exist between regions. The median discharges for the Valley and Ridge, Blue Ridge, and Piedmont/Blue Ridge transition regions are higher than those for the Piedmont regions. Results from statistical analysis indicate that the regions can be ranked in terms of base-flow characteristics from highest to lowest as follows: (1) Piedmont/Blue Ridge transition, (2) Valley and Ridge and Blue Ridge, (3) Piedmont southern, and (4) Piedmont northern. The flow statistics are consistently higher and the values for base-flow variability are lower for basins within the Piedmont/Blue Ridge transition region relative to those from the other regions, whereas the basins within the Piedmont northern region show the opposite pattern. The group rankings of the base-flow characteristics were used to designate the potential surface-water yield for the regions. In addition, an approach developed for this investigation assigns a rank for potential surface- water yield to a basin according to the quartiles in which the values for the base-flow character- istics are located. Both procedures indicate that the Valley and Ridge, Blue Ridge, and Piedmont/Blue Ridge transition regions have moderate-to-high potential surface-water yield and the Piedmont regions have low-to-moderate potential surface- water yield. In order to indicate potential ground-water yield from base-flow characteristics, aquifer properties for 51 streamflow-gaging stations with continuous record of streamflow data were determined by methods that use streamflow records and basin characteristics. Areal diffusivity ranges from 17,100 to 88,400 feet squared per day, with a median value of 38,400 feet squared per day. Areal transmissivity ranges from 63 to 830 feet squared per day, with a median value of 270 feet squared per day. Storage coefficients, which were estimated by dividing areal transmissivity by areal diffusivity, range from approximately 0.001 to 0.019 (dimensionless), with a median value of 0.007. The median value for areal diffus
Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, R. Todd; Sexton, Amy D.
The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on themore » mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites included development of a 105-foot well for off-stream livestock watering at approximately River Mile 12.0 Wildhorse Creek and construction of an engineered stream ford at approximately River Mile 3.0 Mission Creek. A total of $277,848 in financial cost share assistance was provided by the Confederated Tribes of the Umatilla Indian Reservation, U.S. Bureau of Indian Affairs, U.S. Environmental Protection Agency, U.S. Department of Agriculture, National Oceanic and Atmospheric Administration, U.S. Workforce Investment Act, Oregon Watershed Enhancement Board, Umatilla County and Pheasants Forever for planning efforts and habitat enhancements. Monitoring continued to quantify baseline conditions and the effects of habitat enhancements in the upper basin. Daily stream temperatures were collected from June through September at 22 sites. Suspended sediment samples were obtained at three gage stations to arrive at daily sediment load estimates. Photographs were taken at 96 existing and three newly established photo points to document habitat recovery and pre-project conditions. Transects were measured at three stream channel cross sections to assist with engineering and design and to obtain baseline data regarding channel morphology. Biological inventories were conducted at River Mile 3.0 Mission Creek to determine pre-project fish utilization above and below the passage barrier. Post-project inventories were also conducted at River Mile 85.0 of the Umatilla River at a project site completed in 1999. Umatilla Subbasin Watershed Assessment efforts were continued under a subcontract with Eco-Pacific. This watershed assessment document and working databases will be completed in fiscal year 2002 and made available to assist project personnel with sub-watershed prioritization of habitat needs. Water Works Consulting, Duck Creek Associates and Ed Salminen Consulting were subcontracted for watershed assessment and restoration planning in the Meacham Creek Subwatershed. A document detailing current conditions in the Meacham Creek Subwatershed and necessary restoration actions will be available for review in 2003.« less
Solid precipitation measurement intercomparison in Bismarck, North Dakota, from 1988 through 1997
Ryberg, Karen R.; Emerson, Douglas G.; Macek-Rowland, Kathleen M.
2009-01-01
A solid precipitation measurement intercomparison was recommended by the World Meteorological Organization (WMO) and was initiated after approval by the ninth session of the Commission for Instruments and Methods of Observation. The goal of the intercomparison was to assess national methods of measuring solid precipitation against methods whose accuracy and reliability were known. A field study was started in Bismarck, N. Dak., during the 1988-89 winter as part of the intercomparison. The last official field season of the WMO intercomparison was 1992-93; however, the Bismarck site continued to operate through the winter of 1996-97. Precipitation events at Bismarck were categorized as snow, mixed, or rain on the basis of descriptive notes recorded as part of the solid precipitation intercomparison. The rain events were not further analyzed in this study. Catch ratios (CRs) - the ratio of the precipitation catch at each gage to the true precipitation measurement (the corrected double fence intercomparison reference) - were calculated. Then, regression analysis was used to develop equations that model the snow and mixed precipitation CRs at each gage as functions of wind speed and temperature. Wind speed at the gages, functions of temperature, and upper air conditions (wind speed and air temperature at 700 millibars pressure) were used as possible explanatory variables in the multiple regression analysis done for this study. The CRs were modeled by using multiple regression analysis for the Tretyakov gage, national shielded gage, national unshielded gage, AeroChem gage, national gage with double fence, and national gage with Wyoming windshield. As in earlier studies by the WMO, wind speed and air temperature were found to influence the CR of the Tretyakov gage. However, in this study, the temperature variable represented the average upper air temperature over the duration of the event. The WMO did not use upper air conditions in its analysis. The national shielded and unshielded gages where found to be influenced by functions of wind speed only, as in other studies, but the upper air wind speed was used as an explanatory variable in this study. The AeroChem gage was not used in the WMO intercomparison study for 1987-93. The AeroChem gage had a highly varied CR at Bismarck, and a number of variables related to wind speed and temperature were used in the model for the CR. Despite extensive efforts to find a model for the national gage with double fence, no statistically significant regression model was found at the 0.05 level of statistical significance. The national gage with Wyoming windshield had a CR modeled by temperature and wind speed variables, and the regression relation had the highest coefficient of determination (R2 = 0.572) and adjusted coefficient of multiple determination (R2a = 0.476) of all of the models identified for any gage. Three of the gage CRs evaluated could be compared with those in the WMO intercomparison study for 1987-93. The WMO intercomparison had the advantage of a much larger dataset than this study. However, the data in this study represented a longer time period. Snow precipitation catch is highly varied depending on the equipment used and the weather conditions. Much of the variation is not accounted for in the WMO equations or in the equations developed in this study, particularly for unshielded gages. Extensive attempts at regression analysis were made with the mixed precipitation data, but it was concluded that the sample sizes were not large enough to model the CRs. However, the data could be used to test the WMO intercomparison equations. The mixed precipitation equations for the Tretyakov and national shielded gages are similar to those for snow in that they are more likely to underestimate precipitation when observed amounts were small and overestimate precipitation when observed amounts were relatively large. Mixed precipitation is underestimated by the WMO adjustment and t
Hydrology of the Chicod Creek basin, North Carolina, prior to channel improvements
Simmons, Clyde E.; Aldridge, Mary C.
1980-01-01
Extensive modification and excavation of stream channels in the 6-square mile Chicod Creek basin began in mid-1979 to reduce flooding and improve stream runoff conditions. The effects of channel improvements on this Coastal Pain basin 's hydrology will be determined from data collected prior to, during, and for several years following channel alternations. This report summarizes the findings of data collected prior to these improvements. During the 3-year study period, flow data collected from four stream gaging stations in the basin show that streams are dry approximately 10 percent of the time. Chemical analyses of water samples from the streams and from eight shallow groundwater observation wells indicate that water discharge from the surficial aquifer is the primary source of streamflow during rainless periods. Concentrations of Kjeldahl nitrogen, total nitrogen, and total phosphorus were often 5 to 10 times greater at Chicod Creek sites than those at nearby baseline sites. It is probable that runoff from farming and livestock operations contributes significantly to these elevated concentrations in Chicod Creek. The only pesticides detected in stream water were low levels of DDT and dieldrin, which occurred during storm runoff. A much wider range of pesticides, however, are found associated with streambed materials. The ratio of fecal coliform counts to those of fecal streptococcus indicate that the streams receive fecal wastes from livestock and poultry operations.
Drainage areas of the Potomac River basin, West Virginia
Wiley, Jeffrey B.; Hunt, Michelle L.; Stewart, Donald K.
1996-01-01
This report contains data for 776 drainage-area divisions of the Potomac River Basin, from the headwaters to the confluence of the Potomac River and the Shenandoah River. Data, compiled in downstream order, are listed for streams with a drainage area of approximately 2 square miles or larger within West Virginia and for U.S. Geological Survey streamflow-gaging stations. The data presented are the stream name, the geographical limits in river miles, the latitude and longitude of the point, the name of the county, and the 7 1/2-minute quadrangle in which the point lies, and the drainage area of that site. The total drainage area of the Potomac River Basin downstream of the confluence of the Shenandoah River at the State boundary is 9,367.29 square miles.
Polinoski, K.G.; Hoffman, E.B.; Smith, G.B.; Bowers, J.C.
1989-01-01
Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 134 gaging stations; stage and contents for 17 lakes and reservoirs; and water quality for 24 streams. Also included are 10 crest-stage partial-record stations, 5 miscellaneous measurement sites, and 16 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Bowers, J.C.; McConaughy, C.E.; Polinoski, K.G.; Smith, G.B.
1988-01-01
Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 134 gaging stations; stage and contents for 16 lakes and reservoirs; and water quality for 16 streams. Also included are 10 crest-stage partial-record stations, 3 miscellaneous measurement sites, and 10 water-quality partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
,
1982-01-01
Water-resources data for the 1981 water year for California consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 169 gaging stations; stage and contents for 19 lakes and reservoirs; water quality for 42 streams and 21 wells; water levels for 169 observation wells. Also included are 10 crest-stage partial-record stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.
Analysis of trends in climate, streamflow, and stream temperature in north coastal California
Madej, Mary Ann; Medley, C. Nicholas; Patterson, Glenn; Parker, Melanie J.
2011-01-01
As part of a broader project analyzing trends in climate, streamflow, vegetation, salmon, and ocean conditions in northern California national park units, we compiled average monthly air temperature and precipitation data from 73 climate stations, streamflow data from 21 river gaging stations, and limited stream temperature data from salmon-bearing rivers in north coastal California. Many climate stations show a statistically significant increase in both average maximum and average minimum air temperature in early fall and midwinter during the last century. Concurrently, average September precipitation has decreased. In many coastal rivers, summer low flow has decreased and summer stream temperatures have increased, which affects summer rearing habitat for salmonids. Nevertheless, because vegetative cover has also changed during this time period, we cannot ascribe streamflow changes to climate change without first assessing water budgets. Although shifts in the timing of the centroid of runoff have been documented in snowmelt-dominated watersheds in the western United States, this was not the case in lower elevation coastal rivers analyzed in this study.
Low-Carbon Metallurgical Concepts for Seamless Octg Pipe
NASA Astrophysics Data System (ADS)
Mohrbacher, Hardy
Seamless pipes are available with wall gages of up to 100 mm and outer diameters up to around 700 mm. Such pipes are typically used for oil country tubular goods as well as for structural applications. Due to market requirements the demand for high strength grade seamless pipes is increasing. Many applications need high toughness in addition to high strength. The different rolling processes applied in production depend on wall gage and pipe diameter. The continuous mandrel mill process is used to produce smaller gages and diameters; plug mill processing covers medium gages and diameters; Pilger mill processing allows producing larger diameters and heavy wall gage. In all these processes only a limited degree of thermo-mechanical rolling can be achieved. Therefore strengthening and toughening by severe grain refinement employing a conventional niobium-based microalloying concept is not easily achievable. Accordingly, high strength and toughness seamless pipe is typically produced via a quench and tempering process route. This route however is costly and above that often constitutes a capacity bottleneck in the mill. Innovative low-carbon alloy concepts however do allow producing strength up to grade X70 at very high toughness directly off the rolling plant, i.e., without quench and tempering treatment. Due to the low carbon content also welding is much facilitated. The paper reveals the metallurgical principles, which are based on appropriate niobium and molybdenum alloying. Additionally the paper demonstrates how heavy gaged seamless pipes up to 70 mm wall thickness can be produced based on a low-carbon Nb-Mo approach using quench and temper treatment.
NASA Astrophysics Data System (ADS)
Kentel, E.; Cetinkaya, M. A.
2013-12-01
Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.
Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change
Reynolds, Lindsay V.; Shafroth, Patrick B.; Poff, N. LeRoy
2015-01-01
Longer, drier summers projected for arid and semi-arid regions of western North America under climate change are likely to have enormous consequences for water resources and river-dependent ecosystems. Many climate change scenarios for this region involve decreases in mean annual streamflow, late summer precipitation and late-summer streamflow in the coming decades. Intermittent streams are already common in this region, and it is likely that minimum flows will decrease and some perennial streams will shift to intermittent flow under climate-driven changes in timing and magnitude of precipitation and runoff, combined with increases in temperature. To understand current intermittency among streams and analyze the potential for streams to shift from perennial to intermittent under a warmer climate, we analyzed historic flow records from streams in the Upper Colorado River Basin (UCRB). Approximately two-thirds of 115 gaged stream reaches included in our analysis are currently perennial and the rest have some degree of intermittency. Dry years with combinations of high temperatures and low precipitation were associated with more zero-flow days. Mean annual flow was positively related to minimum flows, suggesting that potential future declines in mean annual flows will correspond with declines in minimum flows. The most important landscape variables for predicting low flow metrics were precipitation, percent snow, potential evapotranspiration, soils, and drainage area. Perennial streams in the UCRB that have high minimum-flow variability and low mean flows are likely to be most susceptible to increasing streamflow intermittency in the future.
Field evaluation of shallow-water acoustic doppler current profiler discharge measurements
Rehmel, M.S.
2007-01-01
In 2004, the U.S. Geological Survey (USGS) Office of Surface Water staff and USGS Water Science employees began testing the StreamPro, an acoustic Doppler current profiler (ADCP) for shallow-water discharge measurements. Teledyne RD Instruments introduced the StreamPro in December of 2003. The StreamPro is designed to make a "moving boat" discharge measurement in streams with depths between 0.15 and 2 m. If the StreamPro works reliably in these conditions, it will allow for use of ADCPs in a greater number of streams than previously possible. Evaluation sites were chosen to test the StreamPro over a range of conditions. Simultaneous discharge measurements with mechanical and other acoustic meters, along with stable rating curves at established USGS streamflow-gaging stations, were used for comparisons. The StreamPro measurements ranged in mean velocity from 0.076 to 1.04 m/s and in discharge from 0.083 m 3/s to 43.4 m 3/s. Tests indicate that discharges measured with the StreamPro compare favorably to the discharges measured with the other meters when the mean channel velocity is greater than 0.25 m/s. When the mean channel velocity is less than 0.25 m/s, the StreamPro discharge measurements for individual transects have greater variability than those StreamPro measurements where the mean channel velocity is greater than 0.25 m/s. Despite this greater variation in individual transects, there is no indication that the StreamPro measured discharges (the mean discharge for all transects) are biased, provided that enough transects are used to determine the mean discharge. ?? 2007 ASCE.
Water Stage Forecasting in Tidal streams during High Water Using EEMD
NASA Astrophysics Data System (ADS)
Chen, Yen-Chang; Kao, Su-Pai; Su, Pei-Yi
2017-04-01
There are so many factors may affect the water stages in tidal streams. Not only the ocean wave but also the stream flow affects the water stage in a tidal stream. During high water, two of the most important factors affecting water stages in tidal streams are flood and tide. However the hydrological processes in tidal streams during high water are nonlinear and nonstationary. Generally the conventional methods used for forecasting water stages in tidal streams are very complicated. It explains the accurately forecasting water stages, especially during high water, in tidal streams is always a difficult task. The study makes used of Ensemble Empirical Model Decomposition (EEMD) to analyze the water stages in tidal streams. One of the advantages of the EEMD is it can be used to analyze the nonlinear and nonstationary data. The EEMD divides the water stage into several intrinsic mode functions (IMFs) and a residual; meanwhile, the physical meaning still remains during the process. By comparing the IMF frequency with tidal frequency, it is possible to identify if the IMF is affected by tides. Then the IMFs is separated into two groups, affected by tide or not by tide. The IMFs in each group are assembled to become a factor. Therefore the water stages in tidal streams are only affected by two factors, tidal factor and flood factor. Finally the regression analysis is used to establish the relationship between the factors of the gaging stations in the tidal stream. The available data during 15 typhoon periods of the Tanshui River whose downstream reach is in estuary area is used to illustrate the accuracy and reliability of the proposed method. The results show that the simple but reliable method is capable of forecasting water stages in tidal streams.
2001 floods in the Red River of the North basin in eastern North Dakota and western Minnesota
Macek-Rowland, K. M.
2001-01-01
The Red River of the North is a complex river system in the north-central plains of the United States. The river continues to impact the people and property within its basin. During the spring of 2001, major flooding occurred for the second time in four years on the Red River of the North and its many tributaries in eastern North Dakota and western Minnesota. Unlike the 1997 floods, which were the result of record-high snowpacks region-wide and a late spring blizzard, the 2001 floods were the result of above-average soil moistures in some areas of the basin, rapid melting of above-average snowpacks in the upper basin, and heavy rainfall that swept across the region on April 7, 2001. The U.S. Geological Survey (USGS), one of the principal Federal agencies responsible for the collection and interpretation of water-resources data, works with other Federal, State, and local agencies to ensure that accurate and timely data are available for making decisions regarding the public's welfare. This report presents preliminary water-resources 2001 flood data that were obtained from selected streamflow-gaging stations located in the Red River of the North Basin.Flooding in eastern North Dakota and western Minnesota usually is caused by spring snowmelt, and the severity of the flooding is affected by (1) substantial precipitation in the fall that produces high levels of soil moisture, (2) above-normal snowfall in the winter, (3) moist, frozen ground that prohibits infiltration of moisture, (4) a late spring thaw, (5) above-normal precipitation during spring thaw, and (6) ice jams (temporary dams of ice) on rivers and streams.Stream stages (height of water in a stream above an arbitrarily established datum) and discharges measured by USGS personnel at streamflow-gaging stations are used to define a unique relation between stage and discharge. This relation, commonly called a rating curve, may not be well defined at extreme high discharges because these discharges are rare events of short duration and have unstable conditions that often make measurement extremely difficult. Therefore, estimates for some peak discharges need to be extrapolated from rating curves extended to known peak stages. The peak discharges are used to determine the probability, often expressed in recurrence intervals, that a given discharge will be exceeded in the future. For example, a flood that has a 1-percent chance of exceedance in any given year would, on the long-term average, be expected to occur only about once a century; therefore, the flood would be termed a "100-year flood." However, the chance of such a flood occurring in any given year is 1 percent. Thus, a 100-year flood can occur in successive years at the same location. In some instances, recurrence interval estimates can be based on periods of regulated flow or made with historic adjustments when historic data are available.Historical peak stages and peak discharges and the 2001 peak stages, peak discharges, and recurrence intervals are shown in table 1. The streamflow-gaging stations are listed in downstream order by station number, and station locations are shown in figure 1. Revisions to the 2001 peak stages and peak discharges given in this preliminary report may occur as site surveys are completed and additional field data are reviewed in the upcoming months.
2001 floods in the Red River of the North basin in eastern North Dakota and western Minnesota
Macek-Rowland, K. M.
2001-01-01
The Red River of the North is a complex river system in the north-central plains of the United States. The river continues to impact the people and property within its basin. During the spring of 2001, major flooding occurred for the second time in four years on the Red River of the North and its many tributaries in eastern North Dakota and western Minnesota. Unlike the 1997 floods, which were the result of record-high snowpacks region-wide and a late spring blizzard, the 2001 floods were the result of above-average soil moistures in some areas of the basin, rapid melting of above-average snowpacks in the upper basin, and heavy rainfall that swept across the region on April 7, 2001. The U.S. Geological Survey (USGS), one of the principal Federal agencies responsible for the collection and interpretation of water-resources data, works with other Federal, State, and local agencies to ensure that accurate and timely data are available for making decisions regarding the public's welfare. This report presents preliminary water-resources 2001 flood data that were obtained from selected streamflow-gaging stations located in the Red River of the North Basin. Flooding in eastern North Dakota and western Minnesota usually is caused by spring snowmelt, and the severity of the flooding is affected by (1) substantial precipitation in the fall that produces high levels of soil moisture, (2) above-normal snowfall in the winter, (3) moist, frozen ground that prohibits infiltration of moisture, (4) a late spring thaw, (5) above-normal precipitation during spring thaw, and (6) ice jams (temporary dams of ice) on rivers and streams. Stream stages (height of water in a stream above an arbitrarily established datum) and discharges measured by USGS personnel at streamflow-gaging stations are used to define a unique relation between stage and discharge. This relation, commonly called a rating curve, may not be well defined at extreme high discharges because these discharges are rare events of short duration and have unstable conditions that often make measurement extremely difficult. Therefore, estimates for some peak discharges need to be extrapolated from rating curves extended to known peak stages. The peak discharges are used to determine the probability, often expressed in recurrence intervals, that a given discharge will be exceeded in the future. For example, a flood that has a 1-percent chance of exceedance in any given year would, on the long-term average, be expected to occur only about once a century; therefore, the flood would be termed a "100-year flood." However, the chance of such a flood occurring in any given year is 1 percent. Thus, a 100-year flood can occur in successive years at the same location. In some instances, recurrence interval estimates can be based on periods of regulated flow or made with historic adjustments when historic data are available. Historical peak stages and peak discharges and the 2001 peak stages, peak discharges, and recurrence intervals are shown in table 1. The streamflow-gaging stations are listed in downstream order by station number, and station locations are shown in figure 1. Revisions to the 2001 peak stages and peak discharges given in this preliminary report may occur as site surveys are completed and additional field data are reviewed in the upcoming months.
Missouri StreamStats—A water-resources web application
Ellis, Jarrett T.
2018-01-31
The U.S. Geological Survey (USGS) maintains and operates more than 8,200 continuous streamgages nationwide. Types of data that may be collected, computed, and stored for streamgages include streamgage height (water-surface elevation), streamflow, and water quality. The streamflow data allow scientists and engineers to calculate streamflow statistics, such as the 1-percent annual exceedance probability flood (also known as the 100-year flood), the mean flow, and the 7-day, 10-year low flow, which are used by managers to make informed water resource management decisions, at each streamgage location. Researchers, regulators, and managers also commonly need physical characteristics (basin characteristics) that describe the unique properties of a basin. Common uses for streamflow statistics and basin characteristics include hydraulic design, water-supply management, water-use appropriations, and flood-plain mapping for establishing flood-insurance rates and land-use zones. The USGS periodically publishes reports that update the values of basin characteristics and streamflow statistics at selected gaged locations (locations with streamgages), but these studies usually only update a subset of streamgages, making data retrieval difficult. Additionally, streamflow statistics and basin characteristics are most often needed at ungaged locations (locations without streamgages) for which published streamflow statistics and basin characteristics do not exist. Missouri StreamStats is a web-based geographic information system that was created by the USGS in cooperation with the Missouri Department of Natural Resources to provide users with access to an assortment of tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain the most recent published streamflow statistics and basin characteristics for streamgage locations and to automatically calculate selected basin characteristics and estimate streamflow statistics at ungaged locations.
Quantifying Sediment Transport in a Premontane Transitional Cloud Forest
NASA Astrophysics Data System (ADS)
Waring, E. R.; Brumbelow, J. K.
2013-12-01
Quantifying sediment transport is a difficult task in any watershed, and relatively little direct measurement has occurred in tropical, mountainous watersheds. The Howler Monkey Watershed (2.2 hectares) is located in a premontane transitional cloud forest in San Isidro de Peñas Blancas, Costa Rica. In June 2012, a V-notch stream-gaging weir was built in the catchment with a 8 ft by 6 ft by 4 ft concrete stilling basin. Sediment captured by the weir was left untouched for an 11 month time period. To collect the contents of the weir, the stream was rerouted and the weir was drained. The stilling basin contents were systematically sampled, and samples were taken to a lab and characterized using sieve and hydrometer tests. The wet volume of the remaining sediment was obtained, and dry mass was estimated. Particle size distribution of samples were obtained from lab tests, with 96% of sediment trapped by the weir being sand or coarser. The efficiency of the weir as a sediment collector was evaluated by comparing particle fall velocities to residence time of water in the weir under baseflow conditions. Under these assumptions, only two to three percent of the total mass of soil transported in the stream is thought to have been suspended in the water and lost over the V-notch. Data were compared to the Universal Soil Loss Equation (USLE), a widely accepted method for predicting soil loss in agricultural watersheds. As expected, application of the USLE to a tropical rainforest was problematic with uncertainty in parameters yielding a soil loss estimate varying by a factor of 50. Continued monitoring of sediment transport should yield data for improved methods of soil loss estimation applicable to tropical mountainous forests.
Magnitude and frequency of floods in the United States. Part 13. Snake River basin
Thomas, C.A.; Broom, H.C.; Cummans, J.E.
1963-01-01
The magnitude of a flood of any selected frequency up to 50 years for any site on any stream in the Snake River basin can be determined by methods outlined in this report, with some limitations. The methods are not applicable for regulated streams, for drainage basins smaller than 10 or larger than 5,000 square miles, for streams fed by large springs, or for streams that have flow characteristics materially different from the regional pattern. The magnitude of a flood for a selected frequency at a given site is determined by using the appropriate composite frequency curve and the mean annual flood for the given site. The mean annual flood is computed from either a formula or a nomograph in which drainage area, mean annual precipitation, and a geographic factor are used as independent variables. The standard error of estimate for the computation of mean annual floods is plus 17 percent and minus 15 percent.Nine flood-frequency regions (A-I) are defined. In all except regions B and I, frequency relations vary with the mean altitude of the basin as well as with the geographic location; therefore, families of curves are required for 7 of the 9 flood-frequency regions.The report includes a brief description of the physiography and climate of the Snake River basin to explain the reason for the large variation in mean annual floods, which range from zero to about 27 cubic feet per second per square mile.Composite frequency curves and formulas for computing mean annual floods are based on all suitable flood data collected in the Snake River basin. Tables show the data used to derive the formula. Following the analysis of data are station descriptions and lists of peak stages and discharges for 295 gaging stations at which 5 or more years of annual flood records were collected pr'or to Sept. 30, 1957. Many flood peak data are not usable in defining the frequency curves and deriving the formula because of large diversions and regulation upstream from the gaging stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brainard, James Robert; Tidwell, Vincent Carroll; Coplen, Amy K.
2004-11-01
Time domain reflectometry (TDR) operates by propagating a radar frequency electromagnetic pulse down a transmission line while monitoring the reflected signal. As the electromagnetic pulse propagates along the transmission line, it is subject to impedance by the dielectric properties of the media along the transmission line (e.g., air, water, sediment), reflection at dielectric discontinuities (e.g., air-water or water-sediment interface), and attenuation by electrically conductive materials (e.g., salts, clays). Taken together, these characteristics provide a basis for integrated stream monitoring; specifically, concurrent measurement of stream stage, channel profile and aqueous conductivity. Here, we make novel application of TDR within the contextmore » of stream monitoring. Efforts toward this goal followed three critical phases. First, a means of extracting the desired stream parameters from measured TDR traces was required. Analysis was complicated by the fact that interface location and aqueous conductivity vary concurrently and multiple interfaces may be present at any time. For this reason a physically based multisection model employing the S11 scatter function and Cole-Cole parameters for dielectric dispersion and loss was developed to analyze acquired TDR traces. Second, we explored the capability of this multisection modeling approach for interpreting TDR data acquired from complex environments, such as encountered in stream monitoring. A series of laboratory tank experiments were performed in which the depth of water, depth of sediment, and conductivity were varied systematically. Comparisons between modeled and independently measured data indicate that TDR measurements can be made with an accuracy of {+-}3.4x10{sup -3} m for sensing the location of an air/water or water/sediment interface and {+-}7.4% of actual for the aqueous conductivity. Third, monitoring stations were sited on the Rio Grande and Paria rivers to evaluate performance of the TDR system under normal field conditions. At the Rio Grande site (near Central Bridge in Albuquerque, New Mexico) continuous monitoring of stream stage and aqueous conductivity was performed for 6 months. Additionally, channel profile measurements were acquired at 7 locations across the river. At the Paria site (near Lee's Ferry, Arizona) stream stage and aqueous conductivity data were collected over a 4-month period. Comparisons drawn between our TDR measurements and USGS gage data indicate that the stream stage is accurate within {+-}0.88 cm, conductivity is accurate within {+-}11% of actual, and channel profile measurements agree within {+-}1.2 cm.« less
Wetherbee, Gregory A.; Latysh, Natalie E.; Chesney, Tanya A.
2010-01-01
The U.S. Geological Survey (USGS) used six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program / National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2007-08. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples, and a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory (CAL), Mercury (Hg) Analytical Laboratory (HAL), and 12 other participating laboratories. A blind-audit program was also implemented for the MDN to evaluate analytical bias in HAL total Hg concentration data. A co-located-sampler program was used to identify and quantify potential shifts in NADP data resulting from replacement of original network instrumentation with new electronic recording rain gages (E-gages) and prototype precipitation collectors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the U.S. NADP data-quality objectives continued to be achieved during 2007-08. Results also indicate that retrofit of the NADP networks with the new E-gages is not likely to create step-function type shifts in NADP precipitation-depth records, except for sites where annual precipitation depth is dominated by snow because the E-gages tend to catch more snow than the original NADP rain gages. Evaluation of prototype precipitation collectors revealed no difference in sample volumes and analyte concentrations between the original NADP collectors and modified, deep-bucket collectors, but the Yankee Environmental Systems, Inc. (YES) collector obtained samples of significantly higher volumes and analyte concentrations than the standard NADP collector.
Thompson, Ronald E.; Hoffman, Scott A.
2006-01-01
A suite of 28 streamflow statistics, ranging from extreme low to high flows, was computed for 17 continuous-record streamflow-gaging stations and predicted for 20 partial-record stations in Monroe County and contiguous counties in north-eastern Pennsylvania. The predicted statistics for the partial-record stations were based on regression analyses relating inter-mittent flow measurements made at the partial-record stations indexed to concurrent daily mean flows at continuous-record stations during base-flow conditions. The same statistics also were predicted for 134 ungaged stream locations in Monroe County on the basis of regression analyses relating the statistics to GIS-determined basin characteristics for the continuous-record station drainage areas. The prediction methodology for developing the regression equations used to estimate statistics was developed for estimating low-flow frequencies. This study and a companion study found that the methodology also has application potential for predicting intermediate- and high-flow statistics. The statistics included mean monthly flows, mean annual flow, 7-day low flows for three recurrence intervals, nine flow durations, mean annual base flow, and annual mean base flows for two recurrence intervals. Low standard errors of prediction and high coefficients of determination (R2) indicated good results in using the regression equations to predict the statistics. Regression equations for the larger flow statistics tended to have lower standard errors of prediction and higher coefficients of determination (R2) than equations for the smaller flow statistics. The report discusses the methodologies used in determining the statistics and the limitations of the statistics and the equations used to predict the statistics. Caution is indicated in using the predicted statistics for small drainage area situations. Study results constitute input needed by water-resource managers in Monroe County for planning purposes and evaluation of water-resources availability.
Sando, Steven K.; Driscoll, Daniel G.; Parrett, Charles
2008-01-01
Numerous users, including the South Dakota Department of Transportation, have continuing needs for peak-flow information for the design of highway infrastructure and many other purposes. This report documents results from a cooperative study between the South Dakota Department of Transportation and the U.S. Geological Survey to provide an update of peak-flow frequency estimates for South Dakota. Estimates of peak-flow magnitudes for 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals are reported for 272 streamflow-gaging stations, which include most gaging stations in South Dakota with 10 or more years of systematic peak-flow records through water year 2001. Recommended procedures described in Bulletin 17B were used as primary guidelines for developing peak-flow frequency estimates. The computer program PEAKFQ developed by the U.S. Geological Survey was used to run the frequency analyses. Flood frequencies for all stations were initially analyzed by using standard Bulletin 17B default procedures for fitting the log-Pearson III distribution. The resulting preliminary frequency curves were then plotted on a log-probability scale, and fits of the curves with systematic data were evaluated. In many cases, results of the default Bulletin 17B analyses were determined to be satisfactory. In other cases, however, the results could be improved by using various alternative procedures for frequency analysis. Alternative procedures for some stations included adjustments to skew coefficients or use of user-defined low-outlier criteria. Peak-flow records for many gaging stations are strongly influenced by low- or zero-flow values. This situation often results in a frequency curve that plots substantially above the systematic record data points at the upper end of the frequency curve. Adjustments to low-outlier criteria reduced the influence of very small peak flows and generally focused the analyses on the upper parts of the frequency curves (10- to 500-year recurrence intervals). The most common alternative procedures involved several different methods to extend systematic records, which was done primarily to address biases resulting from nonrepresentative climatic conditions during several specific periods of record and to reduce inconsistencies among multiple gaging stations along common stream channels with different periods of record. In some cases, records for proximal stations could be combined directly. In other cases, the two-station comparison procedure recommended in Bulletin 17B was used to adjust the mean and standard deviation of the logs of the systematic data for a target station on the basis of correlation with concurrent records from a nearby long-term index station. In some other cases, a 'mixed-station procedure' was used to adjust the log-distributional parameters for a target station, on the basis of correlation with one or more index stations, for the purpose of fitting the log-Pearson III distribution. Historical adjustment procedures were applied to peak-flow frequency analyses for 17 South Dakota gaging stations. A historical adjustment period extending back to 1881 (121 years) was used for 12 gaging stations in the James and Big Sioux River Basins, and various other adjustment periods were used for additional stations. Large peak flows that occurred in 1969 and 1997 accounted for 13 of the 17 historical adjustments. Other years for which historical peak flows were used include 1957, 1962, 1992, and 2001. A regional mixed-population analysis was developed to address complications associated with many high outliers for the Black Hills region. This analysis included definition of two populations of flood events. The population of flood events that composes the main body of peak flows for a given station is considered the 'ordinary-peaks population,' and the population of unusually large peak flows that plot substantially above the main body of peak flows on log-probability scale is co
Sophocleous, M.A.
1991-01-01
The hypothesis is explored that groundwater-level rises in the Great Bend Prairie aquifer of Kansas are caused not only by water percolating downward through the soil but also by pressure pulses from stream flooding that propagate in a translatory motion through numerous high hydraulic diffusivity buried channels crossing the Great Bend Prairie aquifer in an approximately west to east direction. To validate this hypothesis, two transects of wells in a north-south and east-west orientation crossing and alongside some paleochannels in the area were instrumented with water-level-recording devices; streamflow data from all area streams were obtained from available stream-gaging stations. A theoretical approach was also developed to conceptualize numerically the stream-aquifer processes. The field data and numerical simulations provided support for the hypothesis. Thus, observation wells located along the shoulders or in between the inferred paleochannels show little or no fluctuations and no correlations with streamflow, whereas wells located along paleochannels show high water-level fluctuations and good correlation with the streamflows of the stream connected to the observation site by means of the paleochannels. The stream-aquifer numerical simulation results demonstrate that the larger the hydraulic diffusivity of the aquifer, the larger the extent of pressure pulse propagation and the faster the propagation speed. The conceptual simulation results indicate that long-distance propagation of stream floodwaves (of the order of tens of kilometers) through the Great Bend aquifer is indeed feasible with plausible stream and aquifer parameters. The sensitivity analysis results indicate that the extent and speed of pulse propagation is more sensitive to variations of stream roughness (Manning's coefficient) and stream channel slope than to any aquifer parameter. ?? 1991.
Olson, Scott A.; Tasker, Gary D.; Johnston, Craig M.
2003-01-01
Estimates of the magnitude and frequency of streamflow are needed to safely and economically design bridges, culverts, and other structures in or near streams. These estimates also are used for managing floodplains, identifying flood-hazard areas, and establishing flood-insurance rates, but may be required at ungaged sites where no observed flood data are available for streamflow-frequency analysis. This report describes equations for estimating flow-frequency characteristics at ungaged, unregulated streams in Vermont. In the past, regression equations developed to estimate streamflow statistics required users to spend hours manually measuring basin characteristics for the stream site of interest. This report also describes the accompanying customized geographic information system (GIS) tool that automates the measurement of basin characteristics and calculation of corresponding flow statistics. The tool includes software that computes the accuracy of the results and adjustments for expected probability and for streamflow data of a nearby stream-gaging station that is either upstream or downstream and within 50 percent of the drainage area of the site where the flow-frequency characteristics are being estimated. The custom GIS can be linked to the National Flood Frequency program, adding the ability to plot peak-flow-frequency curves and synthetic hydrographs and to compute adjustments for urbanization.
Innovative Remote Sensors for Streamflow Measurement
NASA Astrophysics Data System (ADS)
Gourley, J. J.; Fulton, J. W.; Daniel, W.
2016-12-01
The United States Geological Survey operates and maintains over 7000 streamgages across the United States., Conventional streamgages have several important limitations: annual maintenance cost of approximately $15k makes gaging smaller basins uneconomical, manual updating of stage-discharge rating curves is inefficient and can be hazardous to operators, and instruments in contact with the water are sometimes damaged or lost during flood events. A suite of new, non-contact sensors is proposed to address these limitations and add new, previously unmeasured variables. First, a commercially available radar system has been fielded in a very dynamic stream environment and successfully used to measure stage height and stream velocity at high temporal resolution, on the order of a few minutes. Second, a custom water-penetrating lidar has been developed and demonstrated to map 1-D bathymetry (cross-section) in clear streams. Combined with stage and velocity measurements from the radar, this will allow for computation of discharge using non-contact methods without the need to update and maintain an empirical rating curve. Once mature, these technologies promise to reduce cost and manual intervention, allow proliferation of measurements to smaller streams, and introduce previously unmeasured variables to the hydrological scientist's toolbox.
The ALE/GAGE/AGAGE Network (DB1001)
Prinn, Ronald G. [MIT, Center for Global Change Science; Weiss, Ray F. [University of California, San Diego; Scripps Institution of Oceanography; Krummel, Paul B. [CSIRO Oceans and Atmosphere, Cape Grim; O'Doherty, Simon [University of Bristol, Barbados and Mace Head Stations; Fraser, Paul [CSIRO Oceans and Atmosphere; Muhle, Jens [UCSD Scripps Institution of Oceanography; Cape Matatula Station; Reimann, Stefan [Swiss Federal Laboratories for Materials Science and Research (EMPA); Jungfraujoch Station; Vollmer, Martin [Swiss Federal Laboratories for Materials Science and Research (EMPA); Jungfraujoch Station; Simmonds, Peter G. [University of Bristol, Atmospheric Chemistry Research Group; Mace Head Station; Malone, Michela [University of Urbino; Monte Cimone Station; Arduini, Jgor [University of Urbino; Monte Cimone Station; Lunder, Chris [Norwegian Institute for Air Research; Ny Alesund Station; Hermansen, Ove [Norwegian Inst. for Air Research (NILU), Kjeller (Norway); Ny Alesund Station; Schmidbauer, Norbert [Norwegian Inst. for Air Research (NILU), Kjeller (Norway); Global Network; Young, Dickon [University of Bristol; Ragged Point Station; Wang, Hsiang J. (Ray) [Geogia Institute of Technology, School of Earth and Atmospheric Sciences; Global Network; Huang, Jin; Rigby, Matthew [University of Bristol; Global Network; Harth, Chris [UCSD, Scripps Institutioon of Oceanography; Global Network; Salameh, Peter [UCSD, Scripps Institution of Oceanography; Global Network; Spain, Gerard [National University of Ireland; Global Network; Steele, Paul [CSIRO Oceans and Atmosphere; Global Network; Arnold, Tim; Kim, Jooil [UCSD, Scripps Institution of Oceanography; Global Network; Derek, Nada; mitrevski, Blagoj; Langenfelds, Ray
2008-01-01
In the ALE/GAGE/AGAGE global network program, continuous high frequency gas chromatographic measurements of four biogenic/anthropogenic gases (methane, CH4; nitrous oxide, N2O; hydrogen, H; and carbon monoxide, CO) and several anthropogenic gases that contribute to stratospheric ozone destruction and/or to the greenhouse effect have been carried out at five globally distributed sites for several years. The program, which began in 1978, is divided into three parts associated with three changes in instrumentation: the Atmospheric Lifetime Experiment (ALE), which used Hewlett Packard HP5840 gas chromatographs; the Global Atmospheric Gases Experiment (GAGE), which used HP5880 gas chromatographs; and the present Advanced GAGE (AGAGE). AGAGE uses two types of instruments: a gas chromatograph with multiple detectors (GC-MD), and a gas chromatograph with mass spectrometric analysis (GC-MS). Beginning in January 2004, an improved cryogenic preconcentration system (Medusa) replaced the absorption-desorption module in the GC-MS systems at Mace Head and Cape Grim; this provided improved capability to measure a broader range of volatile perfluorocarbons with high global warming potentials. More information may be found at the AGAGE home page: http://agage.eas.gatech.edu/instruments-gcms-medusa.htm.
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B
NASA Technical Reports Server (NTRS)
Frederick, Michael; Ratnayake, Nalin
2011-01-01
The results are described of the Rake Airflow Gage Experiment (RAGE), which was designed and fabricated to support the flight test of a new supersonic inlet design using Dryden's Propulsion Flight Test Fixture (PFTF) and F-15B testbed airplane (see figure). The PFTF is a unique pylon that was developed for flight-testing propulsion-related experiments such as inlets, nozzles, and combustors over a range of subsonic and supersonic flight conditions. The objective of the RAGE program was to quantify the local flowfield at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment (CCIE). The CCIE is a fixed representation of a conceptual mixed-compression supersonic inlet with a translating biconic centerbody. The primary goal of RAGE was to identify the relationship between free-stream and local Mach number in the low supersonic regime, with emphasis on the identification of the particular free-stream Mach number that produced a local Mach number of 1.5. Measurements of the local flow angularity, total pressure distortion, and dynamic pressure over the interface plane were also desired. The experimental data for the RAGE program were obtained during two separate research flights. During both flights, local flowfield data were obtained during straight and level acceleration segments out to steady-state test points. The data obtained from the two flights showed small variations in Mach number, flow angularity, and dynamic pressure across the interface plane at all flight conditions. The data show that a free-stream Mach number of 1.65 will produce the desired local Mach number of 1.5 for CCIE. The local total pressure distortion over the interface plane at this condition was approximately 1.5%. At this condition, there was an average of nearly 2 of downwash over the interface plane. This small amount of downwash is not expected to adversely affect the performance of the CCIE inlet.
Flood of May 26-27, 1984 in Tulsa, Oklahoma
Bergman, DeRoy L.; Tortorelli, Robert L.
1988-01-01
The greatest flood disaster in the history of Tulsa, Oklahoma occurred during 8 hours from 2030 hours May 26 to 0430 hours May 27, 1984, as a result of intense rainfall centered over the metropolitan area. Storms of the magnitude that caused this flood are not uncommon to the southern great plains. Such storms are seldom documented in large urban areas. Total rainfall depth and rainfall distribution in the Tulsa metropolitan area during the May 26-27 storm were recorded by 16 recording rain gages. This report presents location of recording rain gages with corresponding rainfall histograms and mass curves, lines of equal rainfall depth (map A), and flood magnitudes and inundated areas of selected streams within the city (map B). The limits of the study areas (fig. 1) are the corporate boundaries of Tulsa, an area of about 185 square miles. Streams draining the city are: Dirty Butter, Coal, and Mingo Creeks which drain northward into Bird Creek along the northern boundary of the city; and Cherry, Crow, Harlow, Joe Haikey, Fry, Vensel, Fred, and Mooser Creeks which flow into the Arkansas River along the southern part of the city. Flooding along Haikey, Fry, Fred, Vensel, and Mooser Creeks was not documented for this report. The Arkansas River is regulated by Keystone Dam upstream from Tulsa (fig. 1). The Arkansas River remained below flood stage during the storm. Flooded areas in Tulsa (map B) were delineated on the topographic maps using flood profiles based on surveys of high-water marks identified immediately after the flood. The flood boundaries show the limits of stream flooding. Additional areas flooded because of overfilled storm drains or by sheet runoff are not shown in this report. Data presented in this report, including rainfall duration and frequency, and flood discharges and elevations, provide city officials and consultants a technical basis for making flood-plain management decisions.
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane
NASA Technical Reports Server (NTRS)
Frederick, Michael A.; Ratnayake, Nalin A.
2010-01-01
The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, and it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flowfield properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of 2 were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane
NASA Technical Reports Server (NTRS)
Frederick, Michael A.; Ratnayake, Nalin A.
2011-01-01
The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, an< it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flow-field properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.
A New Streamflow-Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000
Prudic, David E.; Konikow, Leonard F.; Banta, Edward R.
2004-01-01
The increasing concern for water and its quality require improved methods to evaluate the interaction between streams and aquifers and the strong influence that streams can have on the flow and transport of contaminants through many aquifers. For this reason, a new Streamflow-Routing (SFR1) Package was written for use with the U.S. Geological Survey's MODFLOW-2000 ground-water flow model. The SFR1 Package is linked to the Lake (LAK3) Package, and both have been integrated with the Ground-Water Transport (GWT) Process of MODFLOW-2000 (MODFLOW-GWT). SFR1 replaces the previous Stream (STR1) Package, with the most important difference being that stream depth is computed at the midpoint of each reach instead of at the beginning of each reach, as was done in the original Stream Package. This approach allows for the addition and subtraction of water from runoff, precipitation, and evapotranspiration within each reach. Because the SFR1 Package computes stream depth differently than that for the original package, a different name was used to distinguish it from the original Stream (STR1) Package. The SFR1 Package has five options for simulating stream depth and four options for computing diversions from a stream. The options for computing stream depth are: a specified value; Manning's equation (using a wide rectangular channel or an eight-point cross section); a power equation; or a table of values that relate flow to depth and width. Each stream segment can have a different option. Outflow from lakes can be computed using the same options. Because the wetted perimeter is computed for the eight-point cross section and width is computed for the power equation and table of values, the streambed conductance term no longer needs to be calculated externally whenever the area of streambed changes as a function of flow. The concentration of solute is computed in a stream network when MODFLOW-GWT is used in conjunction with the SFR1 Package. The concentration of a solute in a stream reach is based on a mass-balance approach and accounts for exchanges with (inputs from or losses to) ground-water systems. Two test examples are used to illustrate some of the capabilities of the SFR1 Package. The first test simulation was designed to illustrate how pumping of ground water from an aquifer connected to streams can affect streamflow, depth, width, and streambed conductance using the different options. The second test simulation was designed to illustrate solute transport through interconnected lakes, streams, and aquifers. Because of the need to examine time series results from the model simulations, the Gage Package first described in the LAK3 documentation was revised to include time series results of selected variables (streamflows, stream depth and width, streambed conductance, solute concentrations, and solute loads) for specified stream reaches. The mass-balance or continuity approach for routing flow and solutes through a stream network may not be applicable for all interactions between streams and aquifers. The SFR1 Package is best suited for modeling long-term changes (months to hundreds of years) in ground-water flow and solute concentrations using averaged flows in streams. The Package is not recommended for modeling the transient exchange of water between streams and aquifers when the objective is to examine short-term (minutes to days) effects caused by rapidly changing streamflows.
Profile surveys along Henrys Fork, Idaho, and Logan River and Blacksmith Fork, Utah
Herron, William Harrison
1916-01-01
In order to determine the location of undeveloped water powers the United States Geological Survey has from time to time, alone and in cooperation with State organizations, made surveys and profiles of some of the rivers of the United States that are adapted to the development of power by low or medium heads of 20 to 100 feet.The surveys are made by means of plane table and stadia. Elevations are based on heights derived from primary or precise levels of the United States Geological Survey. The maps/are made in the field, and show not only the outlines of the river banks, the islands, the positions of rapids/falls, shoals, and existing dams, and the crossings of all ferries and roads, but the contours of banks to an elevation high enough to indicate the possibility of using the stream. The elevations of the various bench marks left are noted on the field sheets in their proper positions. The figures given with the gaging stations shown on the maps indicate the elevation of the zero of the gage.
Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2002
Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.
2004-01-01
The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2002.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 28 streamflow stations, 27 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 102 observation wells.
Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2001
Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.
2002-01-01
The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2001.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 23 streamflow stations, 20 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 103 observation wells.
Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 1999
Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.
2000-01-01
The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 1999.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 76 streamflow gaging stations, daily sediment records for 25 streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 107 observation wells.
Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2000
Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.
2001-01-01
The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2000.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 85 streamflow gaging stations, daily sediment records for 26 streamflow stations, 21 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 108 observation wells.
Water resources data, Puerto Rico and the U.S. Virgin Islands, Water Year 1998
Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.
1999-01-01
The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 1998.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 76 streamflow gaging stations, daily sediment records for 27 streamflow stations, 99 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 97 observation wells.