Sample records for continuous streamflow records

  1. August median streamflow on ungaged streams in Eastern Coastal Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2004-01-01

    Methods for estimating August median streamflow were developed for ungaged, unregulated streams in eastern coastal Maine. The methods apply to streams with drainage areas ranging in size from 0.04 to 73.2 square miles and fraction of basin underlain by a sand and gravel aquifer ranging from 0 to 71 percent. The equations were developed with data from three long-term (greater than or equal to 10 years of record) continuous-record streamflow-gaging stations, 23 partial-record streamflow- gaging stations, and 5 short-term (less than 10 years of record) continuous-record streamflow-gaging stations. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record streamflow-gaging stations and short-term continuous-record streamflow-gaging stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term continuous-record streamflow-gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at streamflow-gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for different periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Thirty-one stations were used for the final regression equations. Two basin characteristics?drainage area and fraction of basin underlain by a sand and gravel aquifer?are used in the calculated regression equation to estimate August median streamflow for ungaged streams. The equation has an average standard error of prediction from -27 to 38 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -30 to 43 percent. Model error is larger than sampling error for both equations, indicating that additional or improved estimates of basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow at partial- record or continuous-record gaging stations range from 0.003 to 31.0 cubic feet per second or from 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in eastern coastal Maine, within the range of acceptable explanatory variables, range from 0.003 to 45 cubic feet per second or 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as drainage area and fraction of basin underlain by a sand and gravel aquifer increase.

  2. Surface-Water Conditions in Georgia, Water Year 2005

    USGS Publications Warehouse

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link to the National Water Inventory System Web (NWISWeb) Interface.

  3. Streamflow characteristics and trends in New Jersey, water years 1897-2003

    USGS Publications Warehouse

    Watson, Kara M.; Reiser, Robert G.; Nieswand, Steven P.; Schopp, Robert D.

    2005-01-01

    Streamflow statistics were computed for 111 continuous-record streamflow-gaging stations with 20 or more years of continuous record and for 500 low-flow partial-record stations, including 66 gaging stations with less than 20 years of continuous record. Daily mean streamflow data from water year 1897 through water year 2001 were used for the computations at the gaging stations. (The water year is the 12-month period, October 1 through September 30, designated by the calendar year in which it ends). The characteristics presented for the long-term continuous-record stations are daily streamflow, harmonic mean flow, flow frequency, daily flow durations, trend analysis, and streamflow variability. Low-flow statistics for gaging stations with less than 20 years of record and for partial-record stations were estimated by correlating base-flow measurements with daily mean flows at long-term (more than 20 years) continuous-record stations. Instantaneous streamflow measurements through water year 2003 were used to estimate low-flow statistics at the partial-record stations. The characteristics presented for partial-record stations are mean annual flow; harmonic mean flow; and annual and winter low-flow frequency. The annual 1-, 7-, and 30-day low- and high-flow data sets were tested for trends. The results of trend tests for high flows indicate relations between upward trends for high flows and stream regulation, and high flows and development in the basin. The relation between development and low-flow trends does not appear to be as strong as for development and high-flow trends. Monthly, seasonal, and annual precipitation data for selected long-term meteorological stations also were tested for trends to analyze the effects of climate. A significant upward trend in precipitation in northern New Jersey, Climate Division 1 was identified. For Climate Division 2, no general increase in average precipitation was observed. Trend test results indicate that high flows at undeveloped, unregulated sites have not been affected by the increase in average precipitation. The ratio of instantaneous peak flow to 3-day mean flow, ratios of flow duration, ratios of high-flow/low-flow frequency, and coefficient of variation were used to define streamflow variability. Streamflow variability was significantly greater among the group of gaging stations located outside the Coastal Plain than among the group of gaging stations located in the Coastal Plain.

  4. Methods for estimating tributary streamflow in the Chattahoochee River basin between Buford Dam and Franklin, Georgia

    USGS Publications Warehouse

    Stamey, Timothy C.

    1998-01-01

    Simple and reliable methods for estimating hourly streamflow are needed for the calibration and verification of a Chattahoochee River basin model between Buford Dam and Franklin, Ga. The river basin model is being developed by Georgia Department of Natural Resources, Environmental Protection Division, as part of their Chattahoochee River Modeling Project. Concurrent streamflow data collected at 19 continuous-record, and 31 partial-record streamflow stations, were used in ordinary least-squares linear regression analyses to define estimating equations, and in verifying drainage-area prorations. The resulting regression or drainage-area ratio estimating equations were used to compute hourly streamflow at the partial-record stations. The coefficients of determination (r-squared values) for the regression estimating equations ranged from 0.90 to 0.99. Observed and estimated hourly and daily streamflow data were computed for May 1, 1995, through October 31, 1995. Comparisons of observed and estimated daily streamflow data for 12 continuous-record tributary stations, that had available streamflow data for all or part of the period from May 1, 1995, to October 31, 1995, indicate that the mean error of estimate for the daily streamflow was about 25 percent.

  5. August Median Streamflow on Ungaged Streams in Eastern Aroostook County, Maine

    USGS Publications Warehouse

    Lombard, Pamela J.; Tasker, Gary D.; Nielsen, Martha G.

    2003-01-01

    Methods for estimating August median streamflow were developed for ungaged, unregulated streams in the eastern part of Aroostook County, Maine, with drainage areas from 0.38 to 43 square miles and mean basin elevations from 437 to 1,024 feet. Few long-term, continuous-record streamflow-gaging stations with small drainage areas were available from which to develop the equations; therefore, 24 partial-record gaging stations were established in this investigation. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record stations was applied by relating base-flow measurements at these stations to concurrent daily flows at nearby long-term, continuous-record streamflow- gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for varying periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Twenty-three partial-record stations and one continuous-record station were used for the final regression equations. The basin characteristics of drainage area and mean basin elevation are used in the calculated regression equation for ungaged streams to estimate August median flow. The equation has an average standard error of prediction from -38 to 62 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -40 to 67 percent. Model error is larger than sampling error for both equations, indicating that additional basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow, which can be used when making estimates at partial-record or continuous-record gaging stations, range from 0.03 to 11.7 cubic feet per second or from 0.1 to 0.4 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in the eastern part of Aroostook County, within the range of acceptable explanatory variables, range from 0.03 to 30 cubic feet per second or 0.1 to 0.7 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as mean elevation and drainage area increase.

  6. Low-Flow Characteristics and Regionalization of Low-Flow Characteristics for Selected Streams in Arkansas

    USGS Publications Warehouse

    Funkhouser, Jaysson E.; Eng, Ken; Moix, Matthew W.

    2008-01-01

    Water use in Arkansas has increased dramatically in recent years. Since 1990, the use of water for all purposes except power generation has increased 53 percent (4,004 cubic feet per second in 1990 to 6,113 cubic feet per second in 2005). The biggest users are agriculture (90 percent), municipal water supply (4 percent) and industrial supply (2 percent). As the population of the State continues to grow, so does the demand for the State's water resources. The low-flow characteristics of a stream ultimately affect its utilization by humans. Specific information on the low-flow characteristics of streams is essential to State water-management agencies such as the Arkansas Department of Environmental Quality, the Arkansas Natural Resources Commission, and the Arkansas Game and Fish Commission when dealing with problems related to irrigation, municipal and industrial water supplies, fish and wildlife conservation, and dilution of waste. Low-flow frequency data are of particular value to management agencies responsible for the development and management of the State's water resources. This report contains the low-flow characteristics for 70 active continuous-streamflow record gaging stations, 59 inactive continuous-streamflow record stations, and 101 partial-record gaging stations. These characteristics are the annual 7-day, 10-year low flow and the annual 7-day, 2-year low flow, and the seasonal, bimonthly, and monthly 7-day, 10-year low flow for the 129 active and inactive continuous-streamflow record and 101 partial-record gaging stations. Low-flow characteristics were computed on the basis of streamflow data for the period of record through September 2005 for the continuous-streamflow record and partial-record streamflow gaging stations. The low-flow characteristics of these continuous- and partial-record streamflow gaging stations were utilized in a regional regression analysis to produce equations for estimating the annual, seasonal, bimonthly, and monthly (November through April) 7-day, 10-year low flows and the annual 7-day, 2-year low flow for ungaged streams in the western two-thirds of Arkansas.

  7. June and August median streamflows estimated for ungaged streams in southern Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2010-01-01

    Methods for estimating June and August median streamflows were developed for ungaged, unregulated streams in southern Maine. The methods apply to streams with drainage areas ranging in size from 0.4 to 74 square miles, with percentage of basin underlain by a sand and gravel aquifer ranging from 0 to 84 percent, and with distance from the centroid of the basin to a Gulf of Maine line paralleling the coast ranging from 14 to 94 miles. Equations were developed with data from 4 long-term continuous-record streamgage stations and 27 partial-record streamgage stations. Estimates of median streamflows at the continuous-record and partial-record stations are presented. A mathematical technique for estimating standard low-flow statistics, such as June and August median streamflows, at partial-record streamgage stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term (at least 10 years of record) continuous-record streamgage stations (index stations). Weighted least-squares regression analysis (WLS) was used to relate estimates of June and August median streamflows at streamgage stations to basin characteristics at these same stations to develop equations that can be used to estimate June and August median streamflows on ungaged streams. WLS accounts for different periods of record at the gaging stations. Three basin characteristics-drainage area, percentage of basin underlain by a sand and gravel aquifer, and distance from the centroid of the basin to a Gulf of Maine line paralleling the coast-are used in the final regression equation to estimate June and August median streamflows for ungaged streams. The three-variable equation to estimate June median streamflow has an average standard error of prediction from -35 to 54 percent. The three-variable equation to estimate August median streamflow has an average standard error of prediction from -45 to 83 percent. Simpler one-variable equations that use only drainage area to estimate June and August median streamflows were developed for use when less accuracy is acceptable. These equations have average standard errors of prediction from -46 to 87 percent and from -57 to 133 percent, respectively.

  8. Updated techniques for estimating monthly streamflow-duration characteristics at ungaged and partial-record sites in central Nevada

    USGS Publications Warehouse

    Hess, Glen W.

    2002-01-01

    Techniques for estimating monthly streamflow-duration characteristics at ungaged and partial-record sites in central Nevada have been updated. These techniques were developed using streamflow records at six continuous-record sites, basin physical and climatic characteristics, and concurrent streamflow measurements at four partial-record sites. Two methods, the basin-characteristic method and the concurrent-measurement method, were developed to provide estimating techniques for selected streamflow characteristics at ungaged and partial-record sites in central Nevada. In the first method, logarithmic-regression analyses were used to relate monthly mean streamflows (from all months and by month) from continuous-record gaging sites of various percent exceedence levels or monthly mean streamflows (by month) to selected basin physical and climatic variables at ungaged sites. Analyses indicate that the total drainage area and percent of drainage area at altitudes greater than 10,000 feet are the most significant variables. For the equations developed from all months of monthly mean streamflow, the coefficient of determination averaged 0.84 and the standard error of estimate of the relations for the ungaged sites averaged 72 percent. For the equations derived from monthly means by month, the coefficient of determination averaged 0.72 and the standard error of estimate of the relations averaged 78 percent. If standard errors are compared, the relations developed in this study appear generally to be less accurate than those developed in a previous study. However, the new relations are based on additional data and the slight increase in error may be due to the wider range of streamflow for a longer period of record, 1995-2000. In the second method, streamflow measurements at partial-record sites were correlated with concurrent streamflows at nearby gaged sites by the use of linear-regression techniques. Statistical measures of results using the second method typically indicated greater accuracy than for the first method. However, to make estimates for individual months, the concurrent-measurement method requires several years additional streamflow data at more partial-record sites. Thus, exceedence values for individual months are not yet available due to the low number of concurrent-streamflow-measurement data available. Reliability, limitations, and applications of both estimating methods are described herein.

  9. Groundwater recharge in Wisconsin--Annual estimates for 1970-99 using streamflow data

    USGS Publications Warehouse

    Gebert, Warren A.; Walker, John F.; Hunt, Randall J.

    2011-01-01

    The groundwater component of streamflow is important because it is indicative of the sustained flow of a stream during dry periods, is often of better quality, and has a smaller range of temperatures, than surface contributions to streamflow. All three of these characteristics are important to the health of aquatic life in a stream. If recharge to the aquifers is to be preserved or enhanced, it is important to understand the present partitioning of total streamflow into base flow and stormflow. Additionally, an estimate of groundwater recharge is important for understanding the flows within a groundwater system-information important for water availability/sustainability or other assessments. The U.S. Geological Survey operates numerous continuous-record streamflow-gaging stations (Hirsch and Norris, 2001), which can be used to provide estimates of average annual base flow. In addition to these continuous record sites, Gebert and others (2007) showed that having a few streamflow measurements in a basin can appreciably reduce the error in a base-flow estimate for that basin. Therefore, in addition to the continuous-record gaging stations, a substantial number of low-flow partial-record sites (6 to 15 discharge measurements) and miscellaneous-measurement sites (1 to 3 discharge measurements) that were operated during 1964-90 throughout the State were included in this work to provide additional insight into spatial distribution of annual base flow and, in turn, groundwater recharge.

  10. Estimated flow-duration curves for selected ungaged sites in Kansas

    USGS Publications Warehouse

    Studley, S.E.

    2001-01-01

    Flow-duration curves for 1968-98 were estimated for 32 ungaged sites in the Missouri, Smoky Hill-Saline, Solomon, Marais des Cygnes, Walnut, Verdigris, and Neosho River Basins in Kansas. Also included from a previous report are estimated flow-duration curves for 16 ungaged sites in the Cimarron and lower Arkansas River Basins in Kansas. The method of estimation used six unique factors of flow duration: (1) mean streamflow and percentage duration of mean streamflow, (2) ratio of 1-percent-duration streamflow to mean streamflow, (3) ratio of 0.1-percent-duration streamflow to 1-percent-duration streamflow, (4) ratio of 50-percent-duration streamflow to mean streamflow, (5) percentage duration of appreciable streamflow (0.10 cubic foot per second), and (6) average slope of the flow-duration curve. These factors were previously developed from a regionalized study of flow-duration curves using streamflow data for 1921-76 from streamflow-gaging stations with drainage areas of 100 to 3,000 square miles. The method was tested on a currently (2001) measured, continuous-record streamflow-gaging station on Salt Creek near Lyndon, Kansas, with a drainage area of 111 square miles and was found to adequately estimate the computed flow-duration curve for the station. The method also was tested on a currently (2001) measured, continuous-record, streamflow-gaging station on Soldier Creek near Circleville, Kansas, with a drainage area of 49.3 square miles. The results of the test on Soldier Creek near Circleville indicated that the method could adequately estimate flow-duration curves for sites with drainage areas of less than 100 square miles. The low-flow parts of the estimated flow-duration curves were verified or revised using 137 base-flow discharge measurements made during 1999-2000 at the 32 ungaged sites that were correlated with base-flow measurements and flow-duration analyses performed at nearby, long-term, continuous-record, streamflow-gaging stations (index stations). The method did not adequately estimate the flow-duration curves for two sites in the western one-third of the State because of substantial changes in farming practices (terracing and intensive ground-water withdrawal) that were not accounted for in the two previous studies (Furness, 1959; Jordan, 1983). For these two sites, there was enough historic, continuous-streamflow record available to perform record-extension techniques correlated to their respective index stations for the development of the estimated flow-duration curves. The estimated flow-duration curves at the ungaged sites can be used for projecting future flow frequencies for assessment of total maximum daily loads (TMDLs) or other water-quality constituents, water-availability studies, and for basin-characteristic studies.

  11. Determination of Baseline Periods of Record for Selected Streamflow-Gaging Stations in New Jersey for Determining Ecologically Relevant Hydrologic Indices (ERHI)

    USGS Publications Warehouse

    Esralew, Rachel A.; Baker, Ronald J.

    2008-01-01

    Hydrologic changes in New Jersey stream basins resulting from human activity can affect the flow and ecology of the streams. To assess future changes in streamflow resulting from human activity an understanding of the natural variability of streamflow is needed. The natural variability can be classified using Ecologically Relevant Hydrologic Indices (ERHIs). ERHIs are defined as selected streamflow statistics that characterize elements of the flow regime that substantially affect biological health and ecological sustainability. ERHIs are used to quantitatively characterize aspects of the streamflow regime, including magnitude, duration, frequency, timing, and rate of change. Changes in ERHI values can occur as a result of human activity, and changes in ERHIs over time at various stream locations can provide information about the degree of alteration in aquatic ecosystems at or near those locations. New Jersey streams can be divided into four classes (A, B, C, or D), where streams with similar ERHI values (determined from cluster analysis) are assigned the same stream class. In order to detect and quantify changes in ERHIs at selected streamflow-gaging stations, a 'baseline' period is needed. Ideally, a baseline period is a period of continuous daily streamflow record at a gaging station where human activity along the contributing stream reach or in the stream's basin is minimal. Because substantial urbanization and other development had already occurred before continuous streamflow-gaging stations were installed, it is not possible to identify baseline periods that meet this criterion for many reaches in New Jersey. Therefore, the baseline period for a considerably altered basin can be defined as a period prior to a substantial human-induced change in the drainage basin or stream reach (such as regulations or diversions), or a period during which development did not change substantially. Index stations (stations with minimal urbanization) were defined as streamflow-gaging stations in basins that contain less than 15 percent urban land use throughout the period of continuous streamflow record. A minimum baseline period of record for each stream class was determined by comparing the variability of selected ERHIs among consecutive 5-, 10-, 15-, and 20-year time increments for index stations. On the basis of this analysis, stream classes A and D were assigned a minimum of 20 years of continuous record as a baseline period and stream classes B and C, a minimum of 10 years. Baseline periods were calculated for 85 streamflow-gaging stations in New Jersey with 10 or more years of continuous daily streamflow data, and the values of 171 ERHIs also were calculated for these baseline periods for each station. Baseline periods were determined by using historical streamflow-gaging station data, estimated changes in impervious surface in the drainage basin, and statistically significant changes in annual base flow and runoff. Historical records were reviewed to identify years during which regulation, diversions, or withdrawals occurred in the drainage basins. Such years were not included in baseline periods of record. For some sites, the baseline period of record was shorter than the minimum period of record specified for the given stream class. In such cases, the baseline period was rated as 'poor'. Impervious surface was used as an indicator of urbanization and change in streamflow characteristics owing to increases in storm runoff and decreases in base flow. Percentages of impervious surface were estimated for 85 streamflow-gaging stations from available municipal population-density data by using a regression model. Where the period of record was sufficiently long, all years after the impervious surface exceeded 10 to 20 percent were excluded from the baseline period. The percentage of impervious surface also was used as a criterion in assigning qualitative ratings to baseline periods. Changes in trends of annual base fl

  12. Regionalization of harmonic-mean streamflows in Kentucky

    USGS Publications Warehouse

    Martin, Gary R.; Ruhl, Kevin J.

    1993-01-01

    Harmonic-mean streamflow (Qh), defined as the reciprocal of the arithmetic mean of the reciprocal daily streamflow values, was determined for selected stream sites in Kentucky. Daily mean discharges for the available period of record through the 1989 water year at 230 continuous record streamflow-gaging stations located in and adjacent to Kentucky were used in the analysis. Periods of record affected by regulation were identified and analyzed separately from periods of record unaffected by regulation. Record-extension procedures were applied to short-term stations to reducetime-sampling error and, thus, improve estimates of the long-term Qh. Techniques to estimate the Qh at ungaged stream sites in Kentucky were developed. A regression model relating Qh to total drainage area and streamflow-variability index was presented with example applications. The regression model has a standard error of estimate of 76 percent and a standard error of prediction of 78 percent.

  13. Low-flow characteristics of Indiana streams

    USGS Publications Warehouse

    Fowler, K.K.; Wilson, J.T.

    1996-01-01

    Knowledge of low-flow characteristics of streams is essential for management of water resources. Low-flow characteristics are presented for 229 continuous-record, streamflow-gaging stations and 285 partial-record stations in Indiana. Low- flow-frequency characteristics were computed for 210 continuous-record stations that had at least 10 years of record, and flow-duration curves were computed for all continuous-record stations. Low-flow-frequency and flow-duration analyses are based on available streamflow records through September 1993. Selected low-flow-frequency curves were computed for annual low flows and seasonal low flows. The four seasons are represented by the 3-month groups of March-May, June-August, September-November, and December- February. The 7-day, 10-year and the 7-day, 2 year low flows were estimated for 285 partial-record stations, which are ungaged sites where streamflow measurements were made at base flow. The same low-flow characteristics were estimated for 19 continuous-record stations where less than 10 years of record were available. Precipitation and geology directly influence the streams in Indiana. Streams in the northern, glaciated part of the State tend to have higher sustained base flows than those in the nonglaciated southern part. Flow at several of the continuous-record gaging stations is affected by some form of regulation or diversion. Low-flow characteristics for continuous-record stations at which flow is affected by regulation are determined using the period of record affected by regulation; natural flows prior to regulation are not used.

  14. Estimation of streamflow gains and losses in the lower San Antonio River watershed, south-central Texas, 2006-10

    USGS Publications Warehouse

    Lizarraga, Joy S.; Wehmeyer, Loren L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, the Evergreen Underground Water Conservation District, and the Goliad County Groundwater Conservation District, investigated streamflow gains and losses during 2006-10 in the lower San Antonio River watershed in south-central Texas. Streamflow gains and losses were estimated using 2006-10 continuous streamflow records from 11 continuous streamflow-gaging stations, and discrete streamflow measurements made at as many as 20 locations on the San Antonio River and selected tributaries during four synoptic surveys during 2006-7. From the continuous streamflow records, the greatest streamflow gain on the lower San Antonio River occurred in the reach from Falls City, Tex., to Goliad, Tex. The greatest streamflow gain on Cibolo Creek during 2006-10 occurred in the reach from near Saint Hedwig, Tex., to Sutherland Springs, Tex. The San Antonio River between Floresville, Tex., and Falls City was the only reach that had an estimated streamflow loss during 2006-10. During all four synoptic streamflow measurement surveys, the only substantially flowing tributary reach to the main stem of the lower San Antonio River was Cibolo Creek. Along the main stem of the lower San Antonio River, verifiable gains larger than the potential measurement error were estimated in two of the four synoptic streamflow measurement surveys. These gaining reaches occurred in the two most downstream reaches of the San Antonio River between Goliad and Farm Road (FM) 2506 near Fannin, Tex., and between FM 2506 near Fannin to near McFaddin. There were verifiable gains in streamflow in Cibolo Creek, between La Vernia, Tex., and the town of Sutherland Springs during all four surveys, estimated at between 4.8 and 14 ft3/s.

  15. Low-flow-frequency characteristics for continuous-record streamflow stations in Minnesota

    USGS Publications Warehouse

    Arntson, A.D.; Lorenz, D.L.

    1987-01-01

    Annual and summer (May 1 to September 30) low-flow frequency curves are presented for 175 continuous-record streamflow stations in Minnesota. The curves were developed for all stations with 10 or more years of continuous record. The 1-, 7-, and 30-day low-flow discharges at selected recurrence intervals obtained from these curves are listed. Low-flow characteristics can and will vary for a station depending upon the number of years of record and the period gaged. When comparing low-flow characteristics between two or more stations, it should be remembered that no provisions were made to use concurrent periods of record for stations along the same stream.

  16. Streamflow, water-temperature, and specific-conductance data for selected streams draining into Lake Fryxell, lower Taylor Valley, Victoria Land, Antarctica, 1990-92

    USGS Publications Warehouse

    Von Guerard, Paul; McKnight, Diane M.; Harnish, R.A.; Gartner, J.W.; Andrews, E.D.

    1995-01-01

    During the 1990-91 and 1991-92 field seasons in Antarctica, streamflow, water-temperature, and specific-conductance data were collected on the major streams draining into Lake Fryxell. Lake Fryxell is a permanently ice-covered, closed-basin lake with 13 tributary streams. Continuous streamflow data were collected at eight sites, and periodic streamflow measurements were made at three sites. Continuous water-temperature and specific- conductance data were collected at seven sites, and periodic water-temperature and specific-conductance data were collected at all sites. Streamflow for all streams measured ranged from 0 to 0.651 cubic meter per second. Water temperatures for all streams measured ranged from 0 to 14.3 degrees Celsius. Specific conductance for all streams measured ranged from 11 to 491 microsiemens per centimeter at 25 degrees Celsius. It is probable that stream- flow in the Lake Fryxell Basin during 1990-92 was greater than average. Examination of the 22-year streamflow record in the Onyx River in the Wright Valley revealed that in 1990 streamflow began earlier than for any previous year recorded and that the peak streamflow of record was exceeded. Similar high-flow conditions occurred during the 1991-92 field season. Thus, the data collected on streams draining into Lake Fryxell during 1990-92 are representative of greater than average stream- flow conditions.

  17. Methods used to compute low-flow frequency characteristics for continuous-record streamflow stations in Minnesota, 2006

    USGS Publications Warehouse

    Winterstein, Thomas A.; Arntson, Allan D.; Mitton, Gregory B.

    2007-01-01

    The 1-, 7-, and 30-day low-flow series were determined for 120 continuous-record streamflow stations in Minnesota having at least 20 years of continuous record. The 2-, 5-, 10-, 50-, and 100-year statistics were determined for each series by fitting a log Pearson type III distribution to the data. The methods used to determine the low-flow statistics and to construct the plots of the low-flow frequency curves are described. The low-flow series and the low-flow statistics are presented in tables and graphs.

  18. Exploring the Link Between Streamflow Trends and Climate Change in Indiana, USA

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Kam, J.; Thurner, K.; Merwade, V.

    2007-12-01

    Streamflow trends in Indiana are evaluated for 85 USGS streamflow gaging stations that have continuous unregulated streamflow records varying from 10 to 80 years. The trends are analyzed by using the non-parametric Mann-Kendall test with prior trend-free pre-whitening to remove serial correlation in the data. Bootstrap method is used to establish field significance of the results. Trends are computed for 12 streamflow statistics to include low-, medium- (median and mean flow), and high-flow conditions on annual and seasonal time step. The analysis is done for six study periods, ranging from 10 years to more than 65 years, all ending in 2003. The trends in annual average streamflow, for 50 years study period, are compared with annual average precipitation trends from 14 National Climatic Data Center (NCDC) stations in Indiana, that have 50 years of continuous daily record. The results show field significant positive trends in annual low and medium streamflow statistics at majority of gaging stations for study periods that include 40 or more years of records. In seasonal analysis, all flow statistics in summer and fall (low flow seasons), and only low flow statistics in winter and spring (high flow seasons) are showing positive trends. No field significant trends in annual and seasonal flow statistics are observed for study periods that include 25 or fewer years of records, except for northern Indiana where localized negative trends are observed in 10 and 15 years study periods. Further, stream flow trends are found to be highly correlated with precipitation trends on annual time step. No apparent climate change signal is observed in Indiana stream flow records.

  19. Determination of baseline periods of record for selected streamflow-gaging stations in and near Oklahoma for use in modeling applications

    USGS Publications Warehouse

    Esralew, Rachel A.

    2010-01-01

    Use of historical streamflow data from a least-altered period of record can be used in calibration of various modeling applications that are used to characterize least-altered flow and predict the effects of proposed streamflow alteration. This information can be used to enhance water-resources planning. A baseline period of record was determined for selected streamflow-gaging stations that can be used as a calibration dataset for modeling applications. The baseline period of record was defined as a period that is least-altered by anthropogenic activity and has sufficient streamflow record length to represent extreme climate variability. Streamflow data from 171 stations in and near Oklahoma with a minimum of 10 complete water years of daily streamflow record through water year 2007 and drainage areas that were less than 2,500 square miles were considered for use in the baseline period analysis. The first step to determine the least-altered period of record was to evaluate station information by using previous publications, historical station record notes, and information gathered from oral and written communication with hydrographers familiar with selected stations. The second step was to indentify stations that had substantial effects from upstream regulation by evaluating the location and extent of dams in the drainage basin. The third step was (a) the analysis of annual hydrographs and included visual hydrograph analysis for selected stations with 20 or more years of streamflow record, (b) analysis of covariance of double-mass curves, and (c) Kendall's tau trend analysis to detect statistically significant trends in base flow, runoff, total flow, and base-flow index related to anthropogenic activity for selected stations with 15 or more years of streamflow record. A preliminary least-altered period of record for each stream was identified by removing the period of streamflow record when streams were substantially affected by anthropogenic activity. After streamflow record was removed from designation as a least-altered period, stations that did not have at least 10 years of remaining continuous streamflow record were considered to have an insufficient baseline period for modeling applications. An optimum minimum period of record was determined for each of the least-altered periods for each station to ensure a sufficient streamflow record length to provide a representative sample of annual climate variability. An optimum minimum period of 10 years or more was evaluated by analyzing the variability of annual precipitation for selected 5-, 10-, 15-, 25-, and 35-year periods for each of 20 climate divisions that contained stations used in the baseline period analysis. The distribution of annual precipitation was compared for each consecutive overlapping 5-year period to the period 1925-2007 by using a Wilcoxon rank-sum test. The least-altered period of record for stations was also compared to the period 1925-2007 by using a Wilcoxon rank-sum test. The results of this analysis were used to determine how many years of annual precipitation data were needed for the selected period to be statistically similar to the distribution of annual precipitation data for a long-term period, 1925-2007. Minimum optimum periods ranged from 10 to 35 years and varied by climate division. A final baseline period was determined for 111 stations that had a baseline period of at least 10 years of continuous streamflow record after the record-elimination process. A suitable baseline period of record for use in modeling applications could not be identified for 58 of the initial 171 stations because of substantial anthropogenic alteration of the stream or drainage basin and for 2 stations because the least-altered period of record was not representative of annual climate variability. The baseline period for each station was rated ?excellent?, ?good?, ?fair?, ?poor?, or ?no baseline period.? This rating was based on a qualitative evaluation of t

  20. Streamflow measurements, basin characteristics, and streamflow statistics for low-flow partial-record stations operated in Massachusetts from 1989 through 1996

    USGS Publications Warehouse

    Ries, Kernell G.

    1999-01-01

    A network of 148 low-flow partial-record stations was operated on streams in Massachusetts during the summers of 1989 through 1996. Streamflow measurements (including historical measurements), measured basin characteristics, and estimated streamflow statistics are provided in the report for each low-flow partial-record station. Also included for each station are location information, streamflow-gaging stations for which flows were correlated to those at the low-flowpartial-record station, years of operation, and remarks indicating human influences of stream-flowsat the station. Three or four streamflow measurements were made each year for three years during times of low flow to obtain nine or ten measurements for each station. Measured flows at the low-flow partial-record stations were correlated with same-day mean flows at a nearby gaging station to estimate streamflow statistics for the low-flow partial-record stations. The estimated streamflow statistics include the 99-, 98-, 97-, 95-, 93-, 90-, 85-, 80-, 75-, 70-, 65-, 60-, 55-, and 50-percent duration flows; the 7-day, 10- and 2-year low flows; and the August median flow. Characteristics of the drainage basins for the stations that theoretically relate to the response of the station to climatic variations were measured from digital map data by use of an automated geographic information system procedure. Basin characteristics measured include drainage area; total stream length; mean basin slope; area of surficial stratified drift; area of wetlands; area of water bodies; and mean, maximum, and minimum basin elevation.Station descriptions and calculated streamflow statistics are also included in the report for the 50 continuous gaging stations used in correlations with the low-flow partial-record stations.

  1. Use and availability of continuous streamflow records in Wyoming

    USGS Publications Warehouse

    Schuetz, J.R.

    1986-01-01

    This report documents a survey that identifies local, State, and Federal uses of data from 139 continuous-record, surface-water stations, presently (1984) operated by the Wyoming District of the U. S. Geological Survey; identifies sources of funding pertaining to collections of streamflow data; and presents frequency of data availability. Uses of data from the 139 stations are categorized into seven classes: Regional Hydrology, Hydrology Systems, Legal Obligations, Planning and Design, Project Operation, Hydrologic Forecasts, and Water Quality Monitoring. Sufficient use of surface water data collected from the stations justifies the continued operation of all stations. (USGS)

  2. Water resources data for Pennsylvania, water year 1996. Volume 2. Susquehanna and Potomac River basins. Water-data report (Annual), 1 October 1995-30 September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durlin, R.R.; Schaffstall, W.P.

    1997-07-01

    This report, Volume, 2, contains (1) discharge records for 81 continuous-record streamflow-gaging stations, 16 partial-record stations, and 20 special study and miscellaneous streamflow sites; (2) elevation and contents records for 12 lakes and reservoirs; (3) water-quality records for 7 gaging stations and 46 ungaged stream sites; and (4) water-level records for 30 ground-water network observation wells. Site locations are shown in figures throughout the report.

  3. Statistical summaries of selected Iowa streamflow data through September 2013.

    DOT National Transportation Integrated Search

    2015-01-01

    Statistical summaries of streamflow data collected at : 184 streamgages in Iowa are presented in this report. All : streamgages included for analysis have at least 10 years of : continuous record collected before or through September : 2013. This rep...

  4. Uses, funding, and availability of continuous streamflow data in Montana

    USGS Publications Warehouse

    Shields, R.R.; White, M.K.

    1984-01-01

    This report documents the results of a study of the uses, funding, and availability of continuous streamflow data collected and published by the U.S. Geological Survey in Montana. Data uses and funding sources are identified for the 218 continuous streamflow gages currently (1984) being operated. These stations are supported by 18 different funding sources at a budget for the 1984 water year of $1,065,000. The streamflow-gaging program in Montana has evolved through the years as Federal, State, and local needs for surface-water data have increased. Continuous streamflow records for periods ranging from less than 1 year to more than 90 years have been collected. This report describes phase 1 of a cost-effectiveness study of the streamflow-gaging program in Montana. Evaluation of the program indicates that numerous agencies use the data for studies involving regional hydrology, hydrologic systems, and planning and design. They also use the data for operations of existing hydroelectric and irrigation dams, forecasting flood and seasonal flows, water-quality monitoring, research studies for fish habitat, and other uses such as recreational management. (USGS)

  5. Sustained winter streamflow from groundmelt

    Treesearch

    C. Anthony Federer

    1965-01-01

    The watersheds of the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire are among the few small gaged watersheds for which continuous winter streamflow records are obtained while deep snow covers the area. Records show that a remarkably steady flow of between 0.006 and 0.025 area-inch of water per day leaves the watershed in spite of snow depths...

  6. Low-flow characteristics of streams in Ohio through water year 1997

    USGS Publications Warehouse

    Straub, David E.

    2001-01-01

    This report presents selected low-flow and flow-duration characteristics for 386 sites throughout Ohio. These sites include 195 long-term continuous-record stations with streamflow data through water year 1997 (October 1 to September 30) and for 191 low-flow partial-record stations with measurements into water year 1999. The characteristics presented for the long-term continuous-record stations are minimum daily streamflow; average daily streamflow; harmonic mean flow; 1-, 7-, 30-, and 90-day minimum average low flow with 2-, 5-, 10-, 20-, and 50-year recurrence intervals; and 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 20-, and 10-percent daily duration flows. The characteristics presented for the low-flow partial-record stations are minimum observed streamflow; estimated 1-, 7-, 30-, and 90-day minimum average low flow with 2-, 10-, and 20-year recurrence intervals; and estimated 98-, 95-, 90-, 85- and 80-percent daily duration flows. The low-flow frequency and duration analyses were done for three seasonal periods (warm weather, May 1 to November 30; winter, December 1 to February 28/29; and autumn, September 1 to November 30), plus the annual period based on the climatic year (April 1 to March 31).

  7. Statistical summaries of streamflow data for selected gaging stations on and near the Idaho National Engineering Laboratory, Idaho, through September 1990

    USGS Publications Warehouse

    Stone, M.A.J.; Mann, Larry J.; Kjelstrom, L.C.

    1993-01-01

    Statistical summaries and graphs of streamflow data were prepared for 13 gaging stations with 5 or more years of continuous record on and near the Idaho National Engineering Laboratory. Statistical summaries of streamflow data for the Big and Little Lost Rivers and Birch Creek were analyzed as a requisite for a comprehensive evaluation of the potential for flooding of facilities at the Idaho National Engineering Laboratory. The type of statistical analyses performed depended on the length of streamflow record for a gaging station. Streamflow statistics generated for stations with 5 to 9 years of record were: (1) magnitudes of monthly and annual flows; (2) duration of daily mean flows; and (3) maximum, median, and minimum daily mean flows. Streamflow statistics generated for stations with 10 or more years of record were: (1) magnitudes of monthly and annual flows; (2) magnitudes and frequencies of daily low, high, instantaneous peak (flood frequency), and annual mean flows; (3) duration of daily mean flows; (4) exceedance probabilities of annual low, high, instantaneous peak, and mean annual flows; (5) maximum, median, and minimum daily mean flows; and (6) annual mean and mean annual flows.

  8. Use and availability of continuous streamflow records in Oklahoma

    USGS Publications Warehouse

    Blumer, S.P.; Hauth, L.D.

    1984-01-01

    This report documents the results of the data uses and funding portion of a study of the cost-effectiveness of the streamflow information program in Oklahoma. Presently, 123 continuous surface-water stations are operated in Oklahoma on a budget of $617,120. Data uses and funding sources are identified for each of the 123 stations. Data from most stations have multiple uses.

  9. Storm and flood of July 5, 1989, in northern New Castle County, Delaware

    USGS Publications Warehouse

    Paulachok, G.N.; Simmons, R.H.; Tallman, A.J.

    1995-01-01

    On July 5, 1989, intense rainfall from the remnants of Tropical Storm Allison caused severe flooding in northern New Castle County, Delaware. The flooding claimed three lives, and damage was estimated to be $5 million. Flood conditions were aggravated locally by rapid runoff from expansive urban areas. Record- breaking floods occurred on many streams in northern New Castle County. Peak discharges at three active, continuous-record streamflow-gaging stations, one active crest-stage station, and at two discontinued streamflow-gaging stations exceeded previously recorded maximums. Estimated recurrence intervals for peak flow at the three active, continuous-record streamflow stations exceeded 100 years. The U.S. Geological Survey conducted comprehensive post-flood surveys to determine peak water-surface elevations that occurred on affected streams and their tributaries during the flood of July 5, 1989. Detailed surveys were performed near bridge crossings to provide additional information on the extent and severity of the flooding and the effects of hydraulic constrictions on floodwaters.

  10. Trends and shifts in streamflow in Hawaii, 1913-2008

    USGS Publications Warehouse

    Bassiouni, Maoya; Oki, Delwyn S.

    2013-01-01

    This study addresses a need to document changes in streamflow and base flow (groundwater discharge to streams) in Hawai'i during the past century. Statistically significant long-term (1913-2008) downward trends were detected (using the nonparametric Mann-Kendall test) in low-streamflow and base-flow records. These long-term downward trends are likely related to a statistically significant downward shift around 1943 detected (using the nonparametric Pettitt test) in index records of streamflow and base flow. The downward shift corresponds to a decrease of 22% in median streamflow and a decrease of 23% in median base flow between the periods 1913-1943 and 1943-2008. The shift coincides with other local and regional factors, including a change from a positive to a negative phase in the Pacific Decadal Oscillation, shifts in the direction of the trade winds over Hawai'i, and a reforestation programme. The detected shift and long-term trends reflect region-wide changes in climatic and land-cover factors. A weak pattern of downward trends in base flows during the period 1943-2008 may indicate a continued decrease in base flows after the 1943 shift. Downward trends were detected more commonly in base-flow records than in high-streamflow, peak-flow, and rainfall records. The decrease in base flow is likely related to a decrease in groundwater storage and recharge and therefore is a valuable indicator of decreasing water availability and watershed vulnerability to hydrologic changes. Whether the downward trends will continue is largely uncertain given the uncertainty in climate-change projections and watershed responses to changes.

  11. Rainfall, streamflow, and peak stage data collected at the Murfreesboro, Tennessee, gaging network, March 1989 through July 1992

    USGS Publications Warehouse

    Outlaw, G.S.; Butner, D.E.; Kemp, R.L.; Oaks, A.T.; Adams, G.S.

    1992-01-01

    Rainfall, stage, and streamflow data in the Murfreesboro area, Middle Tennessee, were collected from March 1989 through July 1992 from a network of 68 gaging stations. The network consists of 10 tipping-bucket rain gages, 2 continuous-record streamflow gages, 4 partial-record flood hydrograph gages, and 72 crest-stage gages. Data collected by the gages includes 5minute time-step rainfall hyetographs, 15-minute time-step flood hydrographs, and peak-stage elevations. Data are stored in a computer data base and are available for many computer modeling and engineering applications.

  12. Use and availability of continuous streamflow records in Tennessee

    USGS Publications Warehouse

    Lowery, J.F.

    1988-01-01

    This report documents the results of the data uses and funding part of a study of the cost-effectiveness of the streamflow information program in Tennessee. Presently, 88 continuous surface water gaging stations are operated in Tennessee on a budget of $490,800. Data uses and funding sources are identified for each of the 88 stations. Data from most stations have multiple uses. (USGS)

  13. Hydrologic drought of water year 2011 compared to four major drought periods of the 20th century in Oklahoma

    USGS Publications Warehouse

    Shivers, Molly J.; Andrews, William J.

    2013-01-01

    Water year 2011 (October 1, 2010, through September 30, 2011) was a year of hydrologic drought (based on streamflow) in Oklahoma and the second-driest year to date (based on precipitation) since 1925. Drought conditions worsened substantially in the summer, with the highest monthly average temperature record for all States being broken by Oklahoma in July (89.1 degrees Fahrenheit), June being the second hottest and August being the hottest on record for those months for the State since 1895. Drought conditions continued into the fall, with all of the State continuing to be in severe to exceptional drought through the end of September. In addition to effects on streamflow and reservoirs, the 2011 drought increased damage from wildfires, led to declarations of states of emergency, water-use restrictions, and outdoor burning bans; caused at least $2 billion of losses in the agricultural sector and higher prices for food and other agricultural products; caused losses of tourism and wildlife; reduced hydropower generation; and lowered groundwater levels in State aquifers. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an investigation to compare the severity of the 2011 drought with four previous major hydrologic drought periods during the 20th century – water years 1929–41, 1952–56, 1961–72, and 1976–81. The period of water years 1925–2011 was selected as the period of record because few continuous record streamflow-gaging stations existed before 1925, and gaps in time existed where no streamflow-gaging stations were operated before 1925. In water year 2011, statewide annual precipitation was the 2d lowest, statewide annual streamflow was 16th lowest, and statewide annual runoff was 42d lowest of those 87 years of record. Annual area-averaged precipitation totals by the nine National Weather Service climate divisions from water year 2011 were compared to those during four previous major hydrologic drought periods to show how precipitation deficits in Oklahoma varied by region. The nine climate divisions in Oklahoma had precipitation in water year 2011 ranging from 43 to 76 percent of normal annual precipitation, with the Northeast Climate Division having the closest to normal precipitation and the Southwest Climate Division having the greatest percentage of annual deficit. Based on precipitation amounts, water year 2011 ranked as the second driest of the 1925–2011 period, being exceeded only in one year of the 1952 to 1956 drought period. Regional streamflow patterns for water year 2011 indicate that streamflow in the Arkansas-White-Red water resources region, which includes all of Oklahoma, was relatively large, being only the 26th lowest since 1930, primarily because of normal or above-normal streamflow in the northern part of the region. Twelve long-term streamflow-gaging stations with periods of record ranging from 67 to 83 years were selected to show how streamflow deficits varied by region in Oklahoma. Statewide, streamflow in water year 2011 was greater than streamflows measured in years during the drought periods of 1929–41, 1952–56, 1961–72, and 1976–81. The hydrologic drought worsened going from the northeast toward the southwest in Oklahoma, ranging from 140 percent (above normal streamflow) in the northeast, to 13 percent of normal streamflow in southwestern Oklahoma. The relatively low streamflow in 2011 resulted in 83.3 percent of the statewide conservation storage being available at the end of the water year in major reservoirs, similar to conservation storage in the preceding severe drought year of 2006. The ranking of streamflow as the 16th smallest for the 1925–2011 period, despite precipitation being ranked the 2d smallest, may have been caused, in part, by the relatively large streamflow in northeastern Oklahoma during water year 2011.

  14. Water resources data for Pennsylvania, water year 1995. Volume 2. Susquehanna and Potomac River basins. Water-data report (Annual), 1 October 1994-30 September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durlin, R.R.; Schaffstall, W.P.

    1997-02-01

    This report, Volume, 2, includes record from the Susquehanna and Potomac River Basins. Specifically, it contains: (1) discharge records for 90 continuous-record streamflow-gaging stations and 41 partial-record stations; (2) elevation and contents record for 12 lakes and reservoirs; (3) water-quality records for 13 streamflow-gaging stations and 189 partial-record and project stations; and (4) water-level records for 25 network observation wells. Site locations are shown in figures throughout the report. Additional water data collected at various sites not involved in the systematic data-collection program are also presented.

  15. Analysis of the streamflow-gaging station network in Ohio for effectiveness in providing regional streamflow information

    USGS Publications Warehouse

    Straub, D.E.

    1998-01-01

    The streamflow-gaging station network in Ohio was evaluated for its effectiveness in providing regional streamflow information. The analysis involved application of the principles of generalized least squares regression between streamflow and climatic and basin characteristics. Regression equations were developed for three flow characteristics: (1) the instantaneous peak flow with a 100-year recurrence interval (P100), (2) the mean annual flow (Qa), and (3) the 7-day, 10-year low flow (7Q10). All active and discontinued gaging stations with 5 or more years of unregulated-streamflow data with respect to each flow characteristic were used to develop the regression equations. The gaging-station network was evaluated for the current (1996) condition of the network and estimated conditions of various network strategies if an additional 5 and 20 years of streamflow data were collected. Any active or discontinued gaging station with (1) less than 5 years of unregulated-streamflow record, (2) previously defined basin and climatic characteristics, and (3) the potential for collection of more unregulated-streamflow record were included in the network strategies involving the additional 5 and 20 years of data. The network analysis involved use of the regression equations, in combination with location, period of record, and cost of operation, to determine the contribution of the data for each gaging station to regional streamflow information. The contribution of each gaging station was based on a cost-weighted reduction of the mean square error (average sampling-error variance) associated with each regional estimating equation. All gaging stations included in the network analysis were then ranked according to their contribution to the regional information for each flow characteristic. The predictive ability of the regression equations developed from the gaging station network could be improved for all three flow characteristics with the collection of additional streamflow data. The addition of new gaging stations to the network would result in an even greater improvement of the accuracy of the regional regression equations. Typically, continued data collection at stations with unregulated streamflow for all flow conditions that had less than 11 years of record with drainage areas smaller than 200 square miles contributed the largest cost-weighted reduction to the average sampling-error variance of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active gaging stations or the reactivation of discontinued gaging stations if the objective is to maximize the regional information content in the streamflow-gaging station network.

  16. Statistical summaries of selected Iowa streamflow data through September 2013

    USGS Publications Warehouse

    Eash, David A.; O'Shea, Padraic S.; Weber, Jared R.; Nguyen, Kevin T.; Montgomery, Nicholas L.; Simonson, Adrian J.

    2016-01-04

    Statistical summaries of streamflow data collected at 184 streamgages in Iowa are presented in this report. All streamgages included for analysis have at least 10 years of continuous record collected before or through September 2013. This report is an update to two previously published reports that presented statistical summaries of selected Iowa streamflow data through September 1988 and September 1996. The statistical summaries include (1) monthly and annual flow durations, (2) annual exceedance probabilities of instantaneous peak discharges (flood frequencies), (3) annual exceedance probabilities of high discharges, and (4) annual nonexceedance probabilities of low discharges and seasonal low discharges. Also presented for each streamgage are graphs of the annual mean discharges, mean annual mean discharges, 50-percent annual flow-duration discharges (median flows), harmonic mean flows, mean daily mean discharges, and flow-duration curves. Two sets of statistical summaries are presented for each streamgage, which include (1) long-term statistics for the entire period of streamflow record and (2) recent-term statistics for or during the 30-year period of record from 1984 to 2013. The recent-term statistics are only calculated for streamgages with streamflow records pre-dating the 1984 water year and with at least 10 years of record during 1984–2013. The streamflow statistics in this report are not adjusted for the effects of water use; although some of this water is used consumptively, most of it is returned to the streams.

  17. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.; ,

    2006-01-01

    The U.S. Geological Survey (USGS) network of 223 real-time monitoring stations, the 'Georgia HydroWatch,' provides real-time water-stage data, with streamflow computed at 198 locations, and rainfall recorded at 187 stations. These sites continuously record data on 15-minute intervals and transmit the data via satellite to be incorporated into the USGS National Water Information System database. These data are automatically posted to the USGS Web site for public dissemination (http://waterdata.usgs.gov/ga/nwis/nwis). The real-time capability of this network provides information to help emergency-management officials protect human life and property during floods, and mitigate the effects of prolonged drought. The map at right shows the USGS streamflow monitoring network for Georgia and major watersheds. Streamflow is monitored at 198 sites statewide, more than 80 percent of which include precipitation gages. Various Federal, State, and local agencies fund these streamflow monitoring stations.

  18. Trends in annual, seasonal, and monthly streamflow characteristics at 227 streamgages in the Missouri River watershed, water years 1960-2011

    USGS Publications Warehouse

    Norton, Parker A.; Anderson, Mark T.; Stamm, John F.

    2014-01-01

    The Missouri River and its tributaries are an important resource that serve multiple uses including agriculture, energy, recreation, and municipal water supply. Understanding historical streamflow characteristics provides relevant guidance to adaptive management of these water resources. Streamflow records in the Missouri River watershed were examined for trends in time series of annual, seasonal, and monthly streamflow. A total of 227 streamgages having continuous observational records for water years 1960–2011 were examined. Kendall’s tau nonparametric test was used to determine statistical significance of trends in annual, seasonal, and monthly streamflow. A trend was considered statistically significant for a probability value less than or equal to 0.10 that the Kendall’s tau value equals zero. Significant trends in annual streamflow were indicated for 101 out of a total of 227 streamgages. The Missouri River watershed was divided into six watershed regions and trends within regions were examined. The western and the southern parts of the Missouri River watershed had downward trends in annual streamflow (56 streamgages), whereas the eastern part of the watershed had upward trends in streamflow (45 streamgages). Seasonal and monthly streamflow trends reflected prevailing annual streamflow trends within each watershed region.

  19. Ordinary kriging as a tool to estimate historical daily streamflow records

    USGS Publications Warehouse

    Farmer, William H.

    2016-01-01

    Efficient and responsible management of water resources relies on accurate streamflow records. However, many watersheds are ungaged, limiting the ability to assess and understand local hydrology. Several tools have been developed to alleviate this data scarcity, but few provide continuous daily streamflow records at individual streamgages within an entire region. Building on the history of hydrologic mapping, ordinary kriging was extended to predict daily streamflow time series on a regional basis. Pooling parameters to estimate a single, time-invariant characterization of spatial semivariance structure is shown to produce accurate reproduction of streamflow. This approach is contrasted with a time-varying series of variograms, representing the temporal evolution and behavior of the spatial semivariance structure. Furthermore, the ordinary kriging approach is shown to produce more accurate time series than more common, single-index hydrologic transfers. A comparison between topological kriging and ordinary kriging is less definitive, showing the ordinary kriging approach to be significantly inferior in terms of Nash–Sutcliffe model efficiencies while maintaining significantly superior performance measured by root mean squared errors. Given the similarity of performance and the computational efficiency of ordinary kriging, it is concluded that ordinary kriging is useful for first-order approximation of daily streamflow time series in ungaged watersheds.

  20. Low-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly streamflow statistics computed on the individual daily mean streamflows of selected continuous-record streamgaging stations and curves describing flow-duration are presented. Text, figures, and lists are provided summarizing low-flow estimates, selected low-flow sites, delineated physiographic regions, basin characteristics, regression equations, error estimates, definitions, and data sources. This study supersedes previous studies of low flows in Virginia.

  1. Summary of annual mean and annual harmonic mean statistics of daily mean streamflow for 620 U.S. Geological Survey streamflow-gaging stations in Texas through water year 2007

    USGS Publications Warehouse

    Asquith, William H.; Heitmuller, Franklin T.

    2008-01-01

    Analysts and managers of surface-water resources have interest in annual mean and annual harmonic mean statistics of daily mean streamflow for U.S. Geological Survey (USGS) streamflow-gaging stations in Texas. The mean streamflow represents streamflow volume, whereas the harmonic mean streamflow represents an appropriate statistic for assessing constituent concentrations that might adversely affect human health. In 2008, the USGS, in cooperation with the Texas Commission on Environmental Quality, conducted a large-scale documentation of mean and harmonic mean streamflow for 620 active and inactive, continuous-record, streamflow-gaging stations using period of record data through water year 2007. About 99 stations within the Texas USGS streamflow-gaging network are part of the larger national Hydroclimatic Data Network and are identified. The graphical depictions of annual mean and annual harmonic mean statistics in this report provide a historical perspective of streamflow at each station. Each figure consists of three time-series plots, two flow-duration curves, and a statistical summary of the mean annual and annual harmonic mean streamflow statistics for available data for each station.The first time-series plot depicts daily mean streamflow for the period 1900-2007. Flow-duration curves follow and are a graphical depiction of streamflow variability. Next, the remaining two time-series plots depict annual mean and annual harmonic mean streamflow and are augmented with horizontal lines that depict mean and harmonic mean for the period of record. Monotonic trends for the annual mean streamflow and annual harmonic mean streamflow also are identified using Kendall's tau, and the slope of the trend is depicted using the nonparametric (linear) Theil-Sen line, which is only drawn for p-values less than .10 of tau. The history of annual mean and annual harmonic mean streamflow of one or more streamflow-gaging stations could be used in a watershed, river basin, or other regional context by analysts and managers of surface-water resources to guide scientific, regulatory, or other inquiries of streamflow conditions in Texas.

  2. Water resources data for Pennsylvania, water year 1992. Volume 2. Susquehanna and Potomac river basins. Water-data report (Annual), 1 October 1991-30 September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durlin, R.R.; Schaffstall, W.P.

    1993-08-01

    Water resources data for the 1992 water year for Pennsylvania consist of records of discharge and water quality of streams; contents and elevations of lakes and reservoirs; and water levels and water quality of ground-water wells. The report, Volume 2, includes records from the Susquehanna and Potomac River basins. Specifically, it contains discharge records for 85 continuous-record streamflow-gaging stations and 38 partial-record stations; elevation and contents records for 13 lakes and reservoirs; water-quality records for 12 streamflow-gaging stations and 48 ungaged streamsites; and water-level records for 25 observation wells.

  3. Flood of April and May 2008 in Northern Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2010-01-01

    Severe flooding occurred in Aroostook and Penobscot Counties in northern Maine between April 28 and May 1, 2008, and was most extreme in the town of Fort Kent. Peak streamflows in northern Aroostook County were the result of a persistent heavy snowpack that caused high streamflows when it quickly melted during the third week of April 2008. Snowmelt was followed by from two to four inches of rainfall over a 2-day period in northern Maine. Peak water-surface elevations resulting from the flood were obtained from 13 continuous-record streamgages and 63 surveyed high-water marks in Aroostook and Penobscot Counties. Peak streamflows were obtained from 20 sites on 15 streams through stage/discharge rating curves or hydraulic flow models. Peak water-surface elevations and streamflows were the highest ever recorded at seven continuous-record streamgages, which had between 25 and 84 years of record in northern Aroostook County. The annual exceedance probability (the percent chance of exceeding the streamflow recorded during the April/May 2008 flood during any given year) at six streamgages in northern Maine was equal to or less than 1 percent. Data from flood-insurance studies published by the Federal Emergency Management Agency were available for five of the locations analyzed for the April/May 2008 flood and were compared to streamflows and observed peak water-surface elevations from the 2008 flood. Water-surface elevations that would be expected given the observed flow as applied to the effective flood insurance studies ranged from between 1 and 4 feet from the water-surface elevations observed during the 2008 flood. Differences were likely the result of up to 30 years of additional data for the calculation of recurrence intervals and the fact that hydraulic models used for the models had not previously been calibrated to a flood of this magnitude.

  4. Summary of annual mean, maximum, minimum, and L-scale statistics of daily mean streamflow for 712 U.S. Geological Survey streamflow-gaging Stations in Texas Through 2003

    USGS Publications Warehouse

    Asquith, William H.; Vrabel, Joseph; Roussel, Meghan C.

    2007-01-01

    Analysts and managers of surface-water resources might have interest in selected statistics of daily mean streamflow for U.S. Geological Survey (USGS) streamflow-gaging stations in Texas. The selected statistics are the annual mean, maximum, minimum, and L-scale of daily meanstreamflow. Annual L-scale of streamflow is a robust measure of the variability of the daily mean streamflow for a given year. The USGS, in cooperation with the Texas Commission on Environmental Quality, initiated in 2006a data and reporting process to generate annual statistics for 712 USGS streamflow-gaging stations in Texas. A graphical depiction of the history of the annual statistics for most active and inactive, continuous-record gaging stations in Texas provides valuable information by conveying the historical perspective of streamflow for the watershed. Each figure consists off our time-series plots of the annual statistics of daily mean streamflow for each streamflow-gaging station. Each of the four plots is augmented with horizontal lines that depict the mean and median annual values of the corresponding statistic for the period of record. Monotonic trends for each of the four annual statistics also are identified using Kendall's T. The history of one or more streamflow-gaging stations could be used in a watershed, river basin, or other regional context by analysts and managers of surface-water resources to guide scientific, regulatory, or other inquiries of streamflow conditions in Texas.

  5. Droughts in Georgia

    USGS Publications Warehouse

    Barber, Nancy L.; Stamey, Timothy C.

    2000-01-01

    Droughts do not have the immediate effects of floods, but sustained droughts can cause economic stress throughout the State. The word 'drought' has various meanings, depending on a person's perspective. To a farmer, a drought is a period of moisture deficiency that affects the crops under cultivation - even two weeks without rainfall can stress many crops during certain periods of the growing cycle. To a meteorologist, a drought is a prolonged period when precipitation is less than normal. To a water manager, a drought is a deficiency in water supply that affects water availability and water quality. To a hydrologist, a drought is an extended period of decreased precipitation and streamflow. Droughts in Georgia have severely affected municipal and industrial water supplies, agriculture, stream water quality, recreation at major reservoirs, hydropower generation, navigation, and forest resources. In Georgia, droughts have been documented at U.S. Geological Survey (USGS) streamflow gaging stations since the 1890's. From 1910 to 1940, about 20 streamflow gaging stations were in operation. Since the early 1950's through the late 1980's, about 100 streamflow gaging stations were in operation. Currently (2000), the USGS streamflow gaging network consists of more than 135 continuous-recording gages. Ground-water levels are currently monitored at 165 wells equipped with continuous recorders.

  6. Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records-update

    USGS Publications Warehouse

    Rutledge, A.T.

    1998-01-01

    The computer programs included in this report can be used to develop a mathematical expression for recession of ground-water discharge and estimate mean ground-water recharge and discharge. The programs are intended for analysis of the daily streamflow record of a basin where one can reasonably assume that all, or nearly all, ground water discharges to the stream except for that which is lost to riparian evapotranspiration, and where regulation and diversion of flow can be considered to be negligible. The program RECESS determines the master reces-sion curve of streamflow recession during times when all flow can be considered to be ground-water discharge and when the profile of the ground-water-head distribution is nearly stable. The method uses a repetitive interactive procedure for selecting several periods of continuous recession, and it allows for nonlinearity in the relation between time and the logarithm of flow. The program RORA uses the recession-curve displacement method to estimate the recharge for each peak in the streamflow record. The method is based on the change in the total potential ground-water discharge that is caused by an event. Program RORA is applied to a long period of record to obtain an estimate of the mean rate of ground-water recharge. The program PART uses streamflow partitioning to estimate a daily record of base flow under the streamflow record. The method designates base flow to be equal to streamflow on days that fit a requirement of antecedent recession, linearly interpolates base flow for other days, and is applied to a long period of record to obtain an estimate of the mean rate of ground-water discharge. The results of programs RORA and PART correlate well with each other and compare reasonably with results of the corresponding manual method.

  7. Selected low-flow frequency statistics for continuous-record streamgage locations in Maryland, 2010

    USGS Publications Warehouse

    Doheny, Edward J.; Banks, William S.L.

    2010-01-01

    According to a 2008 report by the Governor's Advisory Committee on the Management and Protection of the State's Water Resources, Maryland's population grew by 35 percent between 1970 and 2000, and is expected to increase by an additional 27 percent between 2000 and 2030. Because domestic water demand generally increases in proportion to population growth, Maryland will be facing increased pressure on water resources over the next 20 years. Water-resources decisions should be based on sound, comprehensive, long-term data and low-flow frequency statistics from all available streamgage locations with unregulated streamflow and adequate record lengths. To provide the Maryland Department of the Environment with tools for making future water-resources decisions, the U.S. Geological Survey initiated a study in October 2009 to compute low-flow frequency statistics for selected streamgage locations in Maryland with 10 or more years of continuous streamflow records. This report presents low-flow frequency statistics for 114 continuous-record streamgage locations in Maryland. The computed statistics presented for each streamgage location include the mean 7-, 14-, and 30-consecutive day minimum daily low-flow dischages for recurrence intervals of 2, 10, and 20 years, and are based on approved streamflow records that include a minimum of 10 complete climatic years of record as of June 2010. Descriptive information for each of these streamgage locations, including the station number, station name, latitude, longitude, county, physiographic province, and drainage area, also is presented. The statistics are planned for incorporation into StreamStats, which is a U.S. Geological Survey Web application for obtaining stream information, and is being used by water-resource managers and decision makers in Maryland to address water-supply planning and management, water-use appropriation and permitting, wastewater and industrial discharge permitting, and setting minimum required streamflows to protect freshwater biota and ecosystems.

  8. Flow Durations, Low-Flow Frequencies, and Monthly Median Flows for Selected Streams in Connecticut through 2005

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2008-01-01

    Flow durations, low-flow frequencies, and monthly median streamflows were computed for 91 continuous-record, streamflow-gaging stations in Connecticut with 10 or more years of record. Flow durations include the 99-, 98-, 97-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 25-, 20-, 10-, 5-, and 1-percent exceedances. Low-flow frequencies include the 7-day, 10-year (7Q10) low flow; 7-day, 2-year (7Q2) low flow; and 30-day, 2-year (30Q2) low flow. Streamflow estimates were computed for each station using data for the period of record through water year 2005. Estimates of low-flow statistics for 7 short-term (operated between 3 and 10 years) streamflow-gaging stations and 31 partial-record sites were computed. Low-flow estimates were made on the basis of the relation between base flows at a short-term station or partial-record site and concurrent daily mean streamflows at a nearby index station. The relation is defined by the Maintenance of Variance Extension, type 3 (MOVE.3) method. Several short-term stations and partial-record sites had poorly defined relations with nearby index stations; therefore, no low-flow statistics were derived for these sites. The estimated low-flow statistics for the short-term stations and partial-record sites include the 99-, 98-, 97-, 95-, 90-, and 85-percent flow durations; the 7-day, 10-year (7Q10) low flow; 7-day, 2-year (7Q2) low flow; and 30-day, 2-year (30Q2) low-flow frequencies; and the August median flow. Descriptive information on location and record length, measured basin characteristics, index stations correlated to the short-term station and partial-record sites, and estimated flow statistics are provided in this report for each station. Streamflow estimates from this study are stored on USGS's World Wide Web application 'StreamStats' (http://water.usgs.gov/osw/streamstats/connecticut.html).

  9. Water Resources Data, Alabama, Water Year 2002

    USGS Publications Warehouse

    Pearman, J.L.; Stricklin, V.E.; Psinakis, W.L.

    2003-01-01

    Water resources data for the 2002 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations, for 41 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 47 stations; (3) water-quality records for 12 streamflow-gaging stations, for 17 ungaged streamsites, and for 2 precipitation stations; (4) water temperature at 14 surfacewater stations; (5) specific conductance and dissolved oxygen at 12 stations; (6) turbidity at 3 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observation wells; and (9) water-quality records for 21 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  10. Water Resources Data, Alabama, Water Year 2003

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2004-01-01

    Water resources data for the 2003 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 130 streamflow-gaging stations, for 29 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 46 stations; (3) water-quality records for 12 streamflow-gaging stations, for 29 ungaged streamsites, and for 1 precipitation stations; (4) water temperature at 12 surfacewater stations; (5) specific conductance and dissolved oxygen at 12 stations; (6) turbidity at 3 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observation wells; and (9) water-quality records for 9 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  11. Water Resources Data, Alabama, Water Year 2004

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2005-01-01

    Water resources data for the 2004 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations, for 19 partial-record or miscellaneous streamflow stations; (2) stage and content records for 16 lakes and reservoirs and stage at 44 stations; (3) water-quality records for 21 streamflow-gaging stations, for 11 ungaged streamsites, and for 1 precipitation stations; (4) water temperature at 20 surface-water stations; (5) specific conductance and dissolved oxygen at 20 stations; (6) turbidity at 5 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observa-tion wells; and (9) water-quality records for 6 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous sur-face-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  12. Water Resources Data, Alabama, Water Year 2005

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2006-01-01

    Water resources data for the 2005 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations and 23 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 44 stations; (3) water-quality records for 125 streamflow-gaging stations and 67 ungaged streamsites; (4) water temperature at 179 surface-water stations; (5) specific conductance at 180 stations; (6) dissolved oxygen at 17 stations; (7) turbidity at 52 stations; (8) sediment data at 2 stations; (9) water-level records for 2 recording observation wells; and (10) water-quality records for 6 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface- water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  13. Low-flow characteristics for streams on the Islands of Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi

    USGS Publications Warehouse

    Cheng, Chui Ling

    2016-08-03

    Statistical models were developed to estimate natural streamflow under low-flow conditions for streams with existing streamflow data at measurement sites on the Islands of Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi. Streamflow statistics used to describe the low-flow characteristics are flow-duration discharges that are equaled or exceeded between 50 and 95 percent of the time during the 30-year base period 1984–2013. Record-augmentation techniques were applied to develop statistical models relating concurrent streamflow data at the measurement sites and long-term data from nearby continuous-record streamflow-gaging stations that were in operation during the base period and were selected as index stations. Existing data and subsequent low-flow analyses of the available data help to identify streams in under-represented geographic areas and hydrogeologic settings where additional data collection is suggested.Low-flow duration discharges were estimated for 107 measurement sites (including long-term and short-term continuous-record streamflow-gaging stations, and partial-record stations) and 27 index stations. The adequacy of statistical models was evaluated with correlation coefficients and modified Nash-Sutcliff coefficients of efficiency, and a majority of the low-flow duration-discharge estimates are satisfactory based on these regression statistics.Molokaʻi and Hawaiʻi have the fewest number of measurement sites (that are not located on ephemeral stream reaches) at which flow-duration discharges were estimated, which can be partially explained by the limited number of index stations available on these islands that could be used for record augmentation. At measurement sites on some tributary streams, low-flow duration discharges could not be estimated because no adequate correlations could be developed with the index stations. These measurement sites are located on streams where duration-discharge estimates are available at long-term stations at other locations on the main stream channel to provide at least some definition of low-flow characteristics on that stream. In terms of general natural streamflow data availability, data are scarce in the leeward areas for all five islands as many leeward streams are dry or have minimal flow. Other under-represented areas include central Oʻahu, central Maui, and southeastern Maui.

  14. Water Resources Data, Georgia, 2002--Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2002

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2002-01-01

    Water resources data for the 2002 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2002, including: discharge records of 154 gaging stations; stage for 165 gaging stations; precipitation for 105 gaging stations; information for 20 lakes and reservoirs; continuous water-quality records for 27 stations; the annual peak stage and annual peak discharge for 72 crest-stage partial-record stations; and miscellaneous streamflow measurements at 50 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2002, including continuous water-level records of 155 ground-water wells and periodic records at 132 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  15. Computation of records of streamflow at control structures

    USGS Publications Warehouse

    Collins, Dannie L.

    1977-01-01

    Traditional methods of computing streamflow records on large, low-gradient streams require a continuous record of water-surface slope over a natural channel reach. This slope must be of sufficient magnitude to be accuratly measured with available stage measuring devices. On highly regulated streams, this slope approaches zero during periods of low flow and accurate measurement is difficult. Methods are described to calibrate multipurpose regulating control structures to more accurately compute streamflow records on highly-regulated streams. Hydraulic theory, assuming steady, uniform flow during a computational interval, is described for five different types of flow control. The controls are: Tainter gates, hydraulic turbines, fixed spillways, navigation locks, and crest gates. Detailed calibration procedures are described for the five different controls as well as for several flow regimes for some of the controls. The instrumentation package and computer programs necessary to collect and process the field data are discussed. Two typical calibration procedures and measurement data are presented to illustrate the accuracy of the methods. (Woodard-USGS)

  16. Return to normal streamflows and water levels: summary of hydrologic conditions in Georgia, 2013

    USGS Publications Warehouse

    Knaak, Andrew E.; Caslow, Kerry; Peck, Michael F.

    2015-01-01

    Drought conditions, persistent in the area since 2010, continued into the 2013 WY. In February 2013, Georgia was free of extreme (D3) drought conditions, as defined by the U.S. Drought Monitor, for the first time since August 2010 due to extended periods of heavy rainfall (U.S. Drought Monitor, 2013). According to the Office of the State Climatologist, the city of Savannah recorded 9.75 inches of rain in February 2013, the highest monthly total in February out of 143 years of record. Macon and Columbus also received record rainfalls in February 2013. Above-normal precipitation continued in June 2013, and the cities of Augusta and Savannah recorded the wettest June on record. In July, precipitation for the entire State of Georgia was 3.53 inches above normal (Dunkley, 2013). Above-normal rainfall from February to September 2013 increased streamflow and raised groundwater levels, and lakes and reservoirs were raised to full-pool elevations.

  17. Technical Brief for the final report presentation for Statistical summaries of selected Iowa streamflow data through September 2013, U.S. Geological Survey Open-File Report 2015-1214, Iowa DOT Research Project TR-669.

    DOT National Transportation Integrated Search

    2015-01-01

    Statistical summaries of streamflow data collected at 184 streamgages in Iowa are presented in this report. All streamgages included for analysis have at least 10 years of continuous record collected before or through September 2013. This report is a...

  18. Water Resources Data, Georgia, 2003, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2003

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2004-01-01

    Water resources data for the 2003 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2003, including: discharge records of 163 gaging stations; stage for 187 gaging stations; precipitation for 140 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 40 stations; the annual peak stage and annual peak discharge for 65 crest-stage partial-record stations; and miscellaneous streamflow measurements at 36 stations, and miscellaneous water-quality data at 162 stations in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2003, including continuous water-level records of 156 ground-water wells and periodic records at 130 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  19. Streamflow and Selected Precipitation Data for Yucca Mountain Region, Southern Nevada and Eastern California, Water Years 1986-90

    USGS Publications Warehouse

    Kane, Thomas G.; Bauer, David J.; Martinez, Clair M.

    1994-01-01

    Streamflow and precipitation data collected at and near Yucca Mountain, Nevada, during water years 1986-90 are presented in this report. The data were collected and compiled as part of the studies by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, to characterize surface-water hydrology in the Yucca Mountain area. Streamflow data include daily-mean discharges and peak discharges at 5 continuous-record gaging stations, and peak discharges at 10 crest-stage, partial-record stations and 2 miscellaneous sites. Precipitation data include cumulative totals at 20 stations maintained by the U.S. Geological Survey and daily totals at 15 stations maintained by the Weather Service Nuclear Support Office, National Oceanic and Atmospheric Administration.

  20. A Precipitation-Runoff Model for the Blackstone River Basin, Massachusetts and Rhode Island

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Zarriello, Phillip J.

    2007-01-01

    A Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model of the Blackstone River Basin was developed and calibrated to study the effects of changing land- and water-use patterns on water resources. The 474.5 mi2 Blackstone River Basin in southeastern Massachusetts and northern Rhode Island is experiencing rapid population and commercial growth throughout much of its area. This growth and the corresponding changes in land-use patterns are increasing stress on water resources and raising concerns about the future availability of water to meet residential and commercial needs. Increased withdrawals and wastewater-return flows also could adversely affect aquatic habitat, water quality, and the recreational value of the streams in the basin. The Blackstone River Basin was represented by 19 hydrologic response units (HRUs): 17 types of pervious areas (PERLNDs) established from combinations of surficial geology, land-use categories, and the distribution of public water and public sewer systems, and two types of impervious areas (IMPLNDs). Wetlands were combined with open water and simulated as stream reaches that receive runoff from surrounding pervious and impervious areas. This approach was taken to achieve greater flexibility in calibrating evapotranspiration losses from wetlands during the growing season. The basin was segmented into 50 reaches (RCHRES) to represent junctions at tributaries, major lakes and reservoirs, and drainage areas to streamflow-gaging stations. Climatological, streamflow, water-withdrawal, and wastewater-return data were collected during the study to develop the HSPF model. Climatological data collected at Worcester Regional Airport in Worcester, Massachusetts and T.F. Green Airport in Warwick, Rhode Island, were used for model calibration. A total of 15 streamflow-gaging stations were used in the calibration. Streamflow was measured at eight continuous-record streamflow-gaging stations that are part of the U.S. Geological Survey cooperative streamflow-gaging network, and at seven partial-record stations installed in 2004 for this study. Because the model-calibration period preceded data collection at the partial-record stations, a continuous streamflow record was estimated at these stations by correlation with flows at nearby continuous-record stations to provide additional streamflow data for model calibration. Water-use information was compiled for 1996-2001 and included municipal and commercial/industrial withdrawals, private residential withdrawals, golf-course withdrawals, municipal wastewater-return flows, and on-site septic effluent return flows. Streamflow depletion was computed for all time-varying ground-water withdrawals prior to simulation. Water-use data were included in the model to represent the net effect of water use on simulated hydrographs. Consequently, the calibrated values of the hydrologic parameters better represent the hydrologic response of the basin to precipitation. The model was calibrated for 1997-2001 to coincide with the land-use and water-use data compiled for the study. Four long-term stations (Nipmuc River near Harrisville, Rhode Island; Quinsigamond River at North Grafton, Massachusetts; Branch River at Forestdale, Rhode Island; and Blackstone River at Woonsocket, Rhode Island) that monitor flow at 3.3, 5.4, 19, and 88 percent of the total basin area, respectively, provided the primary model-calibration points. Hydrographs, scatter plots, and flow-duration curves of observed and simulated discharges, along with various model-fit statistics, indicated that the model performed well over a range of hydrologic conditions. For example, the total runoff volume for the calibration period simulated at the Nipmuc River near Harrisville, Rhode Island; Quinsigamond River at North Grafton, Massachusetts; Branch River at Forestdale, Rhode Island; and Blackstone River at Woonsocket, Rhode Island streamflow-gaging stations differed from the observed runoff v

  1. Analysis of the U.S. geological survey streamgaging network

    USGS Publications Warehouse

    Scott, A.G.

    1987-01-01

    This paper summarizes the results from the first 3 years of a 5-year cost-effectiveness study of the U.S. Geological Survey streamgaging network. The objective of the study is to define and document the most cost-effective means of furnishing streamflow information. In the first step of this study, data uses were identified for 3,493 continuous-record stations currently being operated in 32 States. In the second step, evaluation of alternative methods of providing streamflow information, flow-routing models, and regression models were developed for estimating daily flows at 251 stations of the 3,493 stations analyzed. In the third step of the analysis, relationships were developed between the accuracy of the streamflow records and the operating budget. The weighted standard error for all stations, with current operating procedures, was 19.9 percent. By altering field activities, as determined by the analyses, this could be reduced to 17.8 percent. The existing streamgaging networks in four Districts were further analyzed to determine the impacts that satellite telemetry would have on the cost effectiveness. Satellite telemetry was not found to be cost effective on the basis of hydrologic data collection alone, given present cost of equipment and operation.This paper summarizes the results from the first 3 years of a 5-year cost-effectiveness study of the U. S. Geological Survey streamgaging network. The objective of the study is to define and document the most cost-effective means of furnishing streamflow information. In the first step of this study, data uses were identified for 3,493 continuous-record stations currently being operated in 32 States. In the second step, evaluation of alternative methods of providing streamflow information, flow-routing models, and regression models were developed for estimating daily flows at 251 stations of the 3, 493 stations analyzed. In the third step of the analysis, relationships were developed between the accuracy of the streamflow records and the operating budget. The weighted standard error for all stations, with current operating procedures, was 19. 9 percent. By altering field activities, as determined by the analyses, this could be reduced to 17. 8 percent. Additional study results are discussed.

  2. Low-flow statistics of selected streams in Chester County, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.

    1998-01-01

    Low-flow statistics for many streams in Chester County, Pa., were determined on the basis of data from 14 continuous-record streamflow stations in Chester County and data from 1 station in Maryland and 1 station in Delaware. The stations in Maryland and Delaware are on streams that drain large areas within Chester County. Streamflow data through the 1994 water year were used in the analyses. The low-flow statistics summarized are the 1Q10, 7Q10, 30Q10, and harmonic mean. Low-flow statistics were estimated at 34 partial-record stream sites throughout Chester County.

  3. Index of stations: surface-water data-collection network of Texas, September 1998

    USGS Publications Warehouse

    Gandara, Susan C.; Barbie, Dana L.

    1999-01-01

    As of September 30, 1998, the surface-water data-collection network of Texas (table 1) included 313 continuous-recording streamflow stations (D), 22 gage-height record only stations (G), 23 crest-stage partial-record stations (C), 39 flood-hydrograph partial-record stations (H), 25 low-flow partial-record stations (L), 1 continuous-recording temperature station (M1), 25 continuous-recording temperature and conductivity stations (M2), 3 continuous-recording temperature, conductivity, and dissolved oxygen stations (M3), 13 continuous-recording temperature, conductivity, dissolved oxygen, and pH stations (M4), 5 daily chemical-quality stations (Qd), 133 periodic chemical-quality stations (Qp), 16 reservoir/lake surveys for water quality (Qs), and 70 continuous or daily reservoir-content stations (R). Plate 1 identifies the major river basins in Texas and shows the location of the stations listed in table 1.

  4. Water-resources investigations in Wisconsin

    USGS Publications Warehouse

    Maertz, D.E.

    1996-01-01

    OBJECTIVE: The objectives of this study are to provide continuous discharge records for selected rivers at specific sites to supply the needs for regulation, analytical studies, definition of statistical properties, trends analysis, determination of the occurrence, and distribution of water in streams for planning. The project is also LOCATION: Statewide PROJECT CHIEF: Barry K. Holmstrom PERIOD OF PROJECT: July 1913-Continuing designed to determine lake levels and to provide discharge for floods, low-flow conditions, and for waterquality investigations. Requests for streamflow data and information relating to streamflow in Wisconsin are answered. Basic data are published annually in the report "Water Resources Data-Wisconsin."

  5. Use and Availability of Continuous Streamflow Records in Tennessee

    DTIC Science & Technology

    1988-01-01

    which are operated for a water budget study of Reelfoot Lake and two stations for a base flow-groundwater study at the Department of Energy’s Oak...continuous lake stage; (3) 5 flood hydrograph; (4) 75 low-flow partial-record; (5) 84 crest-stage partial-record; and (6) 6 flood-profile partial...operated for planning or design purposes. There is one gage at each of three water-supply studies, five stations are used in a lake sedimentation

  6. Continuous Tidal Streamflow and Gage-Height Data for Bass and Cinder Creeks on Kiawah Island, South Carolina, September 2007

    USGS Publications Warehouse

    Conrads, Paul; Erbland, John W.

    2009-01-01

    A three-dimensional model of Bass and Cinder Creeks on Kiawah Island, South Carolina, was developed to evaluate methodologies for determining fecal coliform total maximum daily loads for shellfish waters. To calibrate the model, two index-velocity sites on the creeks were instrumented with continuous acoustic velocity meters and water-level sensors to compute a 21-day continuous record of tidal streamflows. In addition to monitoring tidal cycles, streamflow measurements were made at the index-velocity sites, and tidal-cycle streamflow measurements were made at the mouth of Bass Creek and on the Stono River to characterize the streamflow dynamics near the ocean boundary of the three-dimensional model at the beginning, September 6, 2007, and end, September 26, 2007, of the index-velocity meter deployment. The maximum floodtide and ebbtide measured on the Stono River by the mouth of Bass Creek for the two measurements were -155,000 and 170,000 cubic feet per second (ft3/s). At the mouth of Bass Creek, the maximum floodtide and ebbtide measurements during the 2 measurement days were +/-10,200 ft3/s. Tidal streamflows for the 21-day deployment on Bass Creek ranged from -2,510 ft3/s for an incoming tide to 4,360 ft3/s for an outgoing tide. On Cinder Creek, the incoming and outgoing tide varied from -2,180 to 2,400 ft3/s during the same period.

  7. Estimating 1970-99 average annual groundwater recharge in Wisconsin using streamflow data

    USGS Publications Warehouse

    Gebert, Warren A.; Walker, John F.; Kennedy, James L.

    2011-01-01

    Average annual recharge in Wisconsin for the period 1970-99 was estimated using streamflow data from U.S. Geological Survey continuous-record streamflow-gaging stations and partial-record sites. Partial-record sites have discharge measurements collected during low-flow conditions. The average annual base flow of a stream divided by the drainage area is a good approximation of the recharge rate; therefore, once average annual base flow is determined recharge can be calculated. Estimates of recharge for nearly 72 percent of the surface area of the State are provided. The results illustrate substantial spatial variability of recharge across the State, ranging from less than 1 inch to more than 12 inches per year. The average basin size for partial-record sites (50 square miles) was less than the average basin size for the gaging stations (305 square miles). Including results for smaller basins reveals a spatial variability that otherwise would be smoothed out using only estimates for larger basins. An error analysis indicates that the techniques used provide base flow estimates with standard errors ranging from 5.4 to 14 percent.

  8. Reconstructing pre-instrumental streamflow in Eastern Australia using a water balance approach

    NASA Astrophysics Data System (ADS)

    Tozer, C. R.; Kiem, A. S.; Vance, T. R.; Roberts, J. L.; Curran, M. A. J.; Moy, A. D.

    2018-03-01

    Streamflow reconstructions based on paleoclimate proxies provide much longer records than the short instrumental period records on which water resource management plans are currently based. In Australia there is a lack of in-situ high resolution paleoclimate proxy records, but remote proxies with teleconnections to Australian climate have utility in producing streamflow reconstructions. Here we investigate, via a case study for a catchment in eastern Australia, the novel use of an Antarctic ice-core based rainfall reconstruction within a Budyko-framework to reconstruct ∼1000 years of annual streamflow. The resulting streamflow reconstruction captures interannual to decadal variability in the instrumental streamflow, validating both the use of the ice core rainfall proxy record and the Budyko-framework method. In the preinstrumental era the streamflow reconstruction shows longer wet and dry epochs and periods of streamflow variability that are higher than observed in the instrumental era. Importantly, for both the instrumental record and preinstrumental reconstructions, the wet (dry) epochs in the rainfall record are shorter (longer) in the streamflow record and this non-linearity must be considered when inferring hydroclimatic risk or historical water availability directly from rainfall proxy records alone. These insights provide a better understanding of present infrastructure vulnerability in the context of past climate variability for eastern Australia. The streamflow reconstruction presented here also provides a better understanding of the range of hydroclimatic variability possible, and therefore represents a more realistic baseline on which to quantify the potential impacts of anthropogenic climate change on water security.

  9. Cost effectiveness of the U.S. Geological Survey's stream-gaging program in Illinois

    USGS Publications Warehouse

    Mades, D.M.; Oberg, K.A.

    1984-01-01

    Data uses and funding sources were identified for 138 continuous-record discharge-gaging stations currently (1983) operated as part of the stream-gaging program in Illinois. Streamflow data from five of those stations are used only for regional hydrology studies. Most streamflow data are used for defining regional hydrology, defining rainfall-runoff relations, flood forecasting, regulating navigation systems, and water-quality sampling. Based on the evaluations of data use and of alternative methods for determining streamflow in place of stream gaging, no stations in the 1983 stream-gaging program should be deactivated. The current budget (in 1983 dollars) for operating the 138-station program is $768,000 per year. The average standard error of instantaneous discharge for the current practice for visiting the gaging stations is 36.5 percent. Missing stage record accounts for one-third of the 36.5 percent average standard error. (USGS)

  10. Frequency of streamflow measurements required to determine forest treatment effects

    Treesearch

    Kenneth G. Reinhart

    1964-01-01

    Most of the stream-discharge records for our experimental watersheds are taken by continuous measurements. But the question arises: are continuous measurements necessary to determine effects of forest treatments? Or could treatment effects be determined by measurement of discharge at intervals, say, once a day or once a week?

  11. Cost effectiveness of the stream-gaging program in South Carolina

    USGS Publications Warehouse

    Barker, A.C.; Wright, B.C.; Bennett, C.S.

    1985-01-01

    The cost effectiveness of the stream-gaging program in South Carolina was documented for the 1983 water yr. Data uses and funding sources were identified for the 76 continuous stream gages currently being operated in South Carolina. The budget of $422,200 for collecting and analyzing streamflow data also includes the cost of operating stage-only and crest-stage stations. The streamflow records for one stream gage can be determined by alternate, less costly methods, and should be discontinued. The remaining 75 stations should be maintained in the program for the foreseeable future. The current policy for the operation of the 75 stations including the crest-stage and stage-only stations would require a budget of $417,200/yr. The average standard error of estimation of streamflow records is 16.9% for the present budget with missing record included. However, the standard error of estimation would decrease to 8.5% if complete streamflow records could be obtained. It was shown that the average standard error of estimation of 16.9% could be obtained at the 75 sites with a budget of approximately $395,000 if the gaging resources were redistributed among the gages. A minimum budget of $383,500 is required to operate the program; a budget less than this does not permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 18.6%. The maximum budget analyzed was $850,000, which resulted in an average standard error of 7.6 %. (Author 's abstract)

  12. Hydraulic Geometry Characteristics of Continuous-Record Streamflow-Gaging Stations on Four Urban Watersheds Along the Main Stem of Gwynns Falls, Baltimore County and Baltimore City, Maryland

    USGS Publications Warehouse

    Doheny, Edward J.; Fisher, Gary T.

    2007-01-01

    Four continuous-record streamflow-gaging stations are currently being operated by the U.S. Geological Survey on the main stem of Gwynns Falls in western Baltimore County and Baltimore City, Maryland. The four streamflow-gaging stations drain urban or suburban watersheds with significantly different drainage areas. In addition to providing continuous- record discharge data at these four locations, operation of these stations also provides a long-term record of channel geometry variables such as cross-sectional area, channel width, mean channel depth, and mean velocity that are obtained from physical measurement of the discharge at a variety of flow conditions. Hydraulic geometry analyses were performed using discharge-measurement data from four continuous-record streamflow-gaging stations on the main stem of Gwynns Falls. Simple linear regression was used to develop relations that (1) quantify changes in cross-sectional area, channel width, mean channel depth, and mean velocity with changes in discharge at each station, and (2) quantify changes in these variables in the Gwynns Falls watershed with changes in drainage area and annual mean discharge. Results of the hydraulic geometry analyses indicated that mean velocity is more responsive to changes in discharge than channel width and mean channel depth for all four streamflow-gaging stations on the main stem of Gwynns Falls. For the two largest and most developed watersheds, on Gwynns Falls at Villa Nova, and Gwynns Falls at Washington Boulevard at Baltimore, the slope of the regression lines, or hydraulic exponents, indicated that mean velocity was more responsive to changes in discharge than any of the other hydraulic variables that were analyzed. This was true even when considering changes in cross-sectional area with discharge, which incorporates the combined effects of channel width and mean channel depth. A comparison of hydraulic exponents for Gwynns Falls to average values from previous work indicated that the velocity exponents for all four stations on the Gwynns Falls are larger than the average value of 0.34. For stations 01589300 and 01589352, the exponents for mean velocity are about twice as large as the average value. Analyses of cross-sectional area, channel width, mean channel depth, and mean velocity in conjunction with changes in drainage area and annual mean discharge indicated that channel width is much more responsive to changes in drainage area and annual mean discharge than are mean channel depth or mean velocity. Cross-sectional area, which combines the effects of channel width and mean channel depth, was also found to be highly responsive to changes in drainage area and annual mean discharge.

  13. Hydrologic Drought of Water Year 2006 Compared with Four Major Drought Periods of the 20th Century in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.

    2008-01-01

    Water Year 2006 (October 1, 2005, to September 30, 2006) was a year of extreme hydrologic drought and the driest year in the recent 2002-2006 drought in Oklahoma. The severity of this recent drought can be evaluated by comparing it with four previous major hydrologic droughts, water years 1929-41, 1952-56, 1961-72, and 1976-81. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, completed an investigation to summarize the Water Year 2006 hydrologic drought and compare it to the four previous major hydrologic droughts in the 20th century. The period of water years 1925-2006 was selected as the period of record because before 1925 few continuous record streamflow-gaging sites existed and gaps existed where no streamflow-gaging sites were operated. Statewide annual precipitation in Water Year 2006 was second driest and statewide annual runoff in Water Year 2006 was sixth driest in the 82 years of record. Annual area-averaged precipitation totals by the nine National Weather Service Climate Divisions from Water Year 2006 are compared to those during four previous major hydrologic droughts to show how rainfall deficits in Oklahoma varied by region. Only two of the nine climate divisions, Climate Division 1 Panhandle and Climate Division 4 West Central, had minor rainfall deficits, while the rest of the climate divisions had severe rainfall deficits in Water Year 2006 ranging from only 65 to 73 percent of normal annual precipitation. Regional streamflow patterns for Water Year 2006 indicate that Oklahoma was part of the regionwide below-normal streamflow conditions for Arkansas-White-Red River Basin, the sixth driest since 1930. The percentage of long-term stations in Oklahoma (with at least 30 years of record) having below-normal streamflow reached 80 to 85 percent for some days in August and November 2006. Twelve long-term streamflow-gaging sites with periods of record ranging from 62 to 78 years were selected to show how streamflow deficits varied by region. The hydrologic drought worsened going from north to south in Oklahoma, ranging from 45 percent in the north, to just 14 percent in east-central Oklahoma, and 20 percent of normal annual streamflow in the southwest. The low streamflows resulted in only 86.3 percent of the statewide conservation storage available at the end of the water year in major reservoirs, and 7 to 47 percent of hydroelectric power generation at sites in Oklahoma in Calendar Year 2005.

  14. Summary of percentages of zero daily mean streamflow for 712 U.S. Geological Survey streamflow-gaging stations in Texas through 2003

    USGS Publications Warehouse

    Asquith, William H.; Vrabel, Joseph; Roussel, Meghan C.

    2007-01-01

    Analysts and managers of surface-water resources might have interest in the zero-flow potential for U.S.Geological Survey (USGS) streamflow-gaging stations in Texas. The USGS, in cooperation with the Texas Commission on Environmental Quality, initiated a data and reporting process to generate summaries of percentages of zero daily mean streamflow for 712 USGS streamflow-gaging stations in Texas. A summary of the percentages of zero daily mean streamflow for most active and inactive, continuous-record gaging stations in Texas provides valuable information by conveying the historical perspective for zero-flow potential for the watershed. The summaries of percentages of zero daily mean streamflow for each station are graphically depicted using two thematic perspectives: annual and monthly. The annual perspective consists of graphs of annual percentages of zero streamflow by year with the addition of lines depicting the mean and median annual percentage of zero streamflow. Monotonic trends in the percentages of zero streamflow also are identified using Kendall's T. The monthly perspective consists of graphs of the percentage of zero streamflow by month with lines added to indicate the mean and median monthly percentage of zero streamflow. One or more summaries could be used in a watershed, river basin, or other regional context by analysts and managers of surface-water resources to guide scientific, regulatory, or other inquiries of zero-flow or other low-flow conditions in Texas.

  15. Low-flow characteristics and flow-duration statistics for selected USGS continuous-record streamgaging stations in North Carolina through 2012

    USGS Publications Warehouse

    Weaver, J. Curtis

    2015-03-12

    In 2013, the U.S. Geological Survey, in cooperation with the North Carolina Division of Water Resources, compiled updated low-flow characteristics and flow-duration statistics for selected continuous-record streamgages in North Carolina. The compilation of updated streamflow statistics provides regulators and planners with relevant hydrologic information reflective of the recent droughts, which can be used to better manage the quantity and quality of streams in North Carolina. Streamflow records available through the 2012 water year1 were used to determine the annual (based on climatic year2) and winter 7-day, 10-year (7Q10, W7Q10) low-flow discharges, the 30-day, 2-year (30Q2) low-flow discharge, and the 7-day, 2-year (7Q2) low-flow discharge. Consequently, streamflow records available through March 31, 2012 (or the 2011 climatic year) were used to determine the updated low-flow characteristics. Low-flow characteristics were published for 177 unregulated sites, 56 regulated sites, and 33 sites known or considered to be affected by varying degrees of minor regulation and (or) diversions upstream from the streamgages (266 sites total). The updated 7Q10 discharges were compared for 63 streamgages across North Carolina where (1) long-term streamflow record consisted of 30 or more climatic years of data available as of the 1998 climatic year, and (2) streamflows were not known to be regulated. The 7Q10 discharges did not change for 3 sites, whereas increases and decreases were noted at 5 and 55 sites, respectively. Positive changes (increases) ranged from 4.3 percent (site 362) to 34.1 percent (site 112) with a median of 13.2 percent. Negative percentage changes (decreases) ranged from –3.3 percent (site 514) to –80.0 percent (site 308) with a median of –22.2 percent. The median percentage change for all 63 streamgages was –18.4 percent. Streamflow statistics determined as a part of this compilation included minimum, mean, maximum, and flow-duration statistics of daily mean discharges for categorical periods. Flow-duration statistics based on the daily mean discharge records were compiled in this study for the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles. Flow-duration statistics were determined for each complete water year of record at a streamgage as well as the available period of record (or selected periods if flows were regulated) and selected seasonal, monthly, and calendar day periods. In addition to the streamflow statistics compiled for each of the water years, the number of days the daily mean discharge was at or below the 10th percentile was summed for each water year as well as the number of events during the water year when streamflow was consistently at or below the 10th percentile. All low-flow characteristics for the streamgages were added into the StreamStatsDB, which is a database accessible to users through the recently released USGS StreamStats application for North Carolina. The minimum, mean, maximum, and flow-duration statistics of daily mean discharges based on the available (or selected if regulated flows) period of record were updated in the North Carolina StreamStatsDB. However, for the selected seasonal, monthly, calendar day, and annual water year periods, tab-delimited American Standard Code for Information Interchange (ASCII) tables of the streamflow statistics are available online to users from a link provided in the StreamStats application. 1The annual period from October 1 through September 30, designated by the year in which the period ends. 2The annual period from April 1 through March 31, designated by the year in which the period begins.

  16. Selected Streamflow Statistics and Regression Equations for Predicting Statistics at Stream Locations in Monroe County, Pennsylvania

    USGS Publications Warehouse

    Thompson, Ronald E.; Hoffman, Scott A.

    2006-01-01

    A suite of 28 streamflow statistics, ranging from extreme low to high flows, was computed for 17 continuous-record streamflow-gaging stations and predicted for 20 partial-record stations in Monroe County and contiguous counties in north-eastern Pennsylvania. The predicted statistics for the partial-record stations were based on regression analyses relating inter-mittent flow measurements made at the partial-record stations indexed to concurrent daily mean flows at continuous-record stations during base-flow conditions. The same statistics also were predicted for 134 ungaged stream locations in Monroe County on the basis of regression analyses relating the statistics to GIS-determined basin characteristics for the continuous-record station drainage areas. The prediction methodology for developing the regression equations used to estimate statistics was developed for estimating low-flow frequencies. This study and a companion study found that the methodology also has application potential for predicting intermediate- and high-flow statistics. The statistics included mean monthly flows, mean annual flow, 7-day low flows for three recurrence intervals, nine flow durations, mean annual base flow, and annual mean base flows for two recurrence intervals. Low standard errors of prediction and high coefficients of determination (R2) indicated good results in using the regression equations to predict the statistics. Regression equations for the larger flow statistics tended to have lower standard errors of prediction and higher coefficients of determination (R2) than equations for the smaller flow statistics. The report discusses the methodologies used in determining the statistics and the limitations of the statistics and the equations used to predict the statistics. Caution is indicated in using the predicted statistics for small drainage area situations. Study results constitute input needed by water-resource managers in Monroe County for planning purposes and evaluation of water-resources availability.

  17. Streamflow monitoring and statistics for development of water rights claims for Wild and Scenic Rivers, Owyhee Canyonlands Wilderness, Idaho, 2012

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Bureau of Land Management (BLM), collected streamflow data in 2012 and estimated streamflow statistics for stream segments designated "Wild," "Scenic," or "Recreational" under the National Wild and Scenic Rivers System in the Owyhee Canyonlands Wilderness in southwestern Idaho. The streamflow statistics were used by BLM to develop and file a draft, federal reserved water right claim in autumn 2012 to protect federally designated "outstanding remarkable values" in the stream segments. BLM determined that the daily mean streamflow equaled or exceeded 20 and 80 percent of the time during bimonthly periods (two periods per month) and the bankfull streamflow are important streamflow thresholds for maintaining outstanding remarkable values. Prior to this study, streamflow statistics estimated using available datasets and tools for the Owyhee Canyonlands Wilderness were inaccurate for use in the water rights claim. Streamflow measurements were made at varying intervals during February–September 2012 at 14 monitoring sites; 2 of the monitoring sites were equipped with telemetered streamgaging equipment. Synthetic streamflow records were created for 11 of the 14 monitoring sites using a partial‑record method or a drainage-area-ratio method. Streamflow records were obtained directly from an operating, long-term streamgage at one monitoring site, and from discontinued streamgages at two monitoring sites. For 10 sites analyzed using the partial-record method, discrete measurements were related to daily mean streamflow at a nearby, telemetered “index” streamgage. Resulting regression equations were used to estimate daily mean and annual peak streamflow at the monitoring sites during the full period of record for the index sites. A synthetic streamflow record for Sheep Creek was developed using a drainage-area-ratio method, because measured streamflows did not relate well to any index site to allow use of the partial-record method. The synthetic and actual daily mean streamflow records were used to estimate daily mean streamflow that was exceeded 80, 50, and 20 percent of the time (80-, 50-, and 20-percent exceedances) for bimonthly and annual periods. Bankfull streamflow statistics were calculated by fitting the synthetic and actual annual peak streamflow records to a log Pearson Type III distribution using Bulletin 17B guidelines in the U.S. Geological Survey PeakFQ program. The coefficients of determination (R2) for the regressions between the monitoring and index sites ranged from 0.74 for Wickahoney Creek to 0.98 for the West Fork Bruneau River and Deep Creek. Confidence in computed streamflow statistics is highest among other sites for the East Fork Owyhee River and the West Fork Bruneau River on the basis of regression statistics, visual fit of the related data, and the range and number of streamflow measurements. Streamflow statistics for sites with the greatest uncertainty included Big Jacks, Little Jacks, Cottonwood, Wickahoney, and Sheep Creeks. The uncertainty in computed streamflow statistics was due to a number of factors which included the distance of index sites relative to monitoring sites, relatively low streamflow conditions that occurred during the study, and the limited number and range of streamflow measurements. However, the computed streamflow statistics are considered the best possible estimates given available datasets in the remote study area. Streamflow measurements over a wider range of hydrologic and climatic conditions would improve the relations between streamflow characteristics at monitoring and index sites. Additionally, field surveys are needed to verify if the streamflows selected for the water rights claims are sufficient for maintaining outstanding remarkable values in the Wild and Scenic rivers included in the study.

  18. A historical perspective on precipitation, drought severity, and streamflow in Texas during 1951-56 and 2011

    USGS Publications Warehouse

    Winters, Karl E.

    2013-01-01

    Annual mean streamflow and streamflow-duration curves for the 1951–56 and 2011 water years were assessed for 19 unregulated U.S. Geological Survey (USGS) streamflow-gaging stations. At eight of these streamflow-gaging stations, the annual mean streamflow was lower in 2011 than for any year during 1951–56; many of these stations are located in eastern Texas. Annual mean streamflows for streamflow-gaging stations in the Guadalupe, Blanco, and upper Frio River Basins were lower in 1956 than in 2011. The streamflow-duration curves for many streamflow-gaging stations indicate a lack of (or diminished) storm runoff during 2011. Low streamflows (those exceeded 90 to 95 percent of days) were lower for 1956 than for 2011 at seven streamflow-gaging stations. For most of these stations, the lowest of the low streamflows during 1951–56 occurred in 1956. During March to September 2011, record daily lows were measured at USGS streamflow-gaging station 08041500 Village Creek near Kountze, Tex., which has more than 70 years of record. Many other USGS streamflow-gaging stations in Texas started the 2011 water year with normal streamflow but by the end of the water year were flowing at near-record lows.

  19. Basin characteristics, history of stream gaging, and statistical summary of selected streamflow records for the Rapid Creek basin, western South Dakota

    USGS Publications Warehouse

    Driscoll, Daniel G.; Zogorski, John S.

    1990-01-01

    The report presents a summary of basin characteristics affecting streamflow, a history of the U.S. Geological Survey 's stream-gaging program, and a compilation of discharge records and statistical summaries for selected sites within the Rapid Creek basin. It is the first in a series which will investigate surface-water/groundwater relations along Rapid Creek. The summary of basin characteristics includes descriptions of the geology and hydrogeology, physiography and climate, land use and vegetation, reservoirs, and water use within the basin. A recounting of the U.S. Geological Survey 's stream-gaging program and a tabulation of historic stream-gaging stations within the basin are furnished. A compilation of monthly and annual mean discharge values for nine currently operated, long-term, continuous-record, streamflow-gaging stations on Rapid Creek is presented. The statistical summary for each site includes summary statistics on monthly and annual mean values, correlation matrix for monthly values, serial correlation for 1 year lag for monthly values, percentile rankings for monthly and annual mean values, low and high value tables, duration curves, and peak-discharge tables. Records of monthend contents for two reservoirs within the basin also are presented. (USGS)

  20. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2005-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were estimated for each study site using regional regression equations. This report describes Physical Habitat Simulation System modeling results for bull trout, Chinook salmon, and steelhead trout during summer streamflows. Habitat/discharge relations were summarized for adult and spawning life stages at each study site. Adult fish passage and discharge relations were evaluated at specific transects identified as a potential low-streamflow passage barrier at each study site. Continuous summer water temperature data for selected study sites were summarized and compared with Idaho Water Quality Standards and various water temperature requirements of targeted fish species. Continuous summer water temperature data recorded in 2003 and streamflow relations were evaluated for Fourth of July Creek using the Stream Segment Temperature model that simulates mean and maximum daily water temperatures with changes in streamflow. Results of these habitat studies can be used to prioritize and direct cost-effective actions to improve fish habitat for ESA-listed anadromous and native fish species in the basin. These actions may include acquiring water during critical low-flow periods by leasing or modifying irrigation delivery systems to minimize out-of-stream diversions.

  1. Water resources data for Pennsylvania, water year 1994. Volume 2. Susquehanna and Potomac River basins. Water-data report (Annual), 1 October 1993-30 September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durlin, R.R.; Schaffstall, W.P.

    1996-03-01

    Volume 2 contains: (1) discharge records for 94 continuous-record streamflow-gaging stations and 39 partial-record stations; (2) elevation and contents records for 12 lakes and reservoirs; (3) water-quality records for 17 gaging stations and 125 partial-record and project stations; and (4) water-level records for 25 observation wells. Additional water data collected at various sites not involved in the systematic data-collection program are also presented.

  2. Statistical summaries of streamflow in Oklahoma through 1999

    USGS Publications Warehouse

    Tortorelli, R.L.

    2002-01-01

    Statistical summaries of streamflow records through 1999 for gaging stations in Oklahoma and parts of adjacent states are presented for 188 stations with at least 10 years of streamflow record. Streamflow at 113 of the stations is regulated for specific periods. Data for these periods were analyzed separately to account for changes in streamflow due to regulation by dams or other human modification of streamflow. A brief description of the location, drainage area, and period of record is given for each gaging station. A brief regulation history also is given for stations with a regulated streamflow record. This descriptive information is followed by tables of mean annual discharges, magnitude and probability of exceedance of annual high flows, magnitude and probability of exceedance of annual instantaneous peak flows, durations of daily mean flow, magnitude and probability of non-exceedance of annual low flows, and magnitude and probability of non-exceedance of seasonal low flows.

  3. Water resources data for Oregon, water year 2004

    USGS Publications Warehouse

    Herrett, Thomas A.; Hess, Glenn W.; House, Jon G.; Ruppert, Gregory P.; Courts, Mary-Lorraine

    2005-01-01

    The annual Oregon water data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, Tribal, and Federal agencies and the private sector for developing and managing our Nation's land and water resources. This report contains water year 2004 data for both surface and ground water, including discharge records for 209 streamflow-gaging stations, 42 partial-record or miscellaneous streamflow stations, and 9 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 15 lakes and reservoirs; water-level records from 12 long-term observation wells; and water-quality records collected at 133 streamflow-gaging stations and 1 atmospheric deposition station.

  4. Streamflow and suspended-sediment transport in Garvin Brook, Winona County, southeastern Minnesota: Hydrologic data for 1982

    USGS Publications Warehouse

    Payne, G.A.

    1983-01-01

    Streamflow and suspended-sediment-transport data were collected in Garvin Brook watershed in Winona County, southeastern Minnesota, during 1982. The data collection was part of a study to determine the effectiveness of agricultural best-management practices designed to improve rural water quality. The study is part of a Rural Clean Water Program demonstration project undertaken by the U.S. Department of Agriculture. Continuous streamflow data were collected at three gaging stations during March through September 1982. Suspended-sediment samples were collected at two of the gaging stations. Samples were collected manually at weekly intervals. During periods of rapidly changing stage, samples were collected at 30-minute to 12-hour intervals by stage-activated automatic samplers. The samples were analyzed for suspendedsediment concentration and particle-size distribution. Particlesize distributions were also determined for one set of bedmaterial samples collected at each sediment-sampling site. The streamflow and suspended-sediment-concentration data were used to compute records of mean-daily flow, mean-daily suspended-sediment concentration, and daily suspended-sediment discharge. The daily records are documented and results of analyses for particle-size distribution and of vertical sampling in the stream cross sections are given.

  5. Streamflow and water-quality data for Little Clearfield Creek basin, Clearfield County, Pennsylvania, December 1987 - November 1988

    USGS Publications Warehouse

    Kostelnik, K.M.; Durlin, R.R.

    1989-01-01

    Streamflow and water quality data were collected throughout the Little Clearfield Creek basin, Clearfield County, Pennsylvania, from December 1987 through November 1988, to determine the existing quality of surface water over a range of hydrologic conditions. This data will assist the Pennsylvania Department of Environmental Resources during its review of coal mine permit applications. A water quality station near the mouth of Little Clearfield Creek provided continuous record of stream stage, pH, specific conductance, and water temperature. Monthly water quality samples collected at this station were analyzed for total and dissolved metals, nutrients, major cations, and suspended sediment concentrations. Seventeen partial record sites, located throughout the basin, were similarly sampled four times during the study. Streamflow and water quality data obtained at these sites during a winter base flow, a spring storm event, a low summer base flow, and a more moderate summer base flow also are presented. (Author 's abstract)

  6. Annual and average estimates of water-budget components based on hydrograph separation and PRISM precipitation for gaged basins in the Appalachian Plateaus Region, 1900-2011

    USGS Publications Warehouse

    Nelms, David L.; Messinger, Terence; McCoy, Kurt J.

    2015-07-14

    As part of the U.S. Geological Survey’s Groundwater Resources Program study of the Appalachian Plateaus aquifers, annual and average estimates of water-budget components based on hydrograph separation and precipitation data from parameter-elevation regressions on independent slopes model (PRISM) were determined at 849 continuous-record streamflow-gaging stations from Mississippi to New York and covered the period of 1900 to 2011. Only complete calendar years (January to December) of streamflow record at each gage were used to determine estimates of base flow, which is that part of streamflow attributed to groundwater discharge; such estimates can serve as a proxy for annual recharge. For each year, estimates of annual base flow, runoff, and base-flow index were determined using computer programs—PART, HYSEP, and BFI—that have automated the separation procedures. These streamflow-hydrograph analysis methods are provided with version 1.0 of the U.S. Geological Survey Groundwater Toolbox, which is a new program that provides graphing, mapping, and analysis capabilities in a Windows environment. Annual values of precipitation were estimated by calculating the average of cell values intercepted by basin boundaries where previously defined in the GAGES–II dataset. Estimates of annual evapotranspiration were then calculated from the difference between precipitation and streamflow.

  7. Water-resources investigations in Wisconsin, 1993

    USGS Publications Warehouse

    Maertz, D.E.

    1993-01-01

    OBJECTIVE: The objectives of this study are to provide continuous discharge records for selected rivers at specific sites to supply the needs for: regulation, analytical studies, definition of statistical properties, trends analysis, determination of the occurrence, and distribution of water in streams for planning. The project is also designed to determine lake levels and to provide discharge for floods, low-flow conditions, and for water-quality investigations. Requests for streamflow data and information relating to streamflow in Wisconsin are answered. Basic data are published annually in "Water Resources Data Wisconsin."

  8. Water Resources Data, Georgia, 2000, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2000

    USGS Publications Warehouse

    McCallum, Brian E.; Hickey, Andrew C.

    2000-01-01

    Water resources data for the 2000 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 125 gaging stations; stage for 20 gaging stations; information for 18 lakes and reservoirs; continuous water-quality records for 10 stations; the annual peak stage and annual peak discharge for 77 crest-stage partial-record stations; and miscellaneous streamflow measurements at 21 stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins.

  9. Treating pre-instrumental data as "missing" data: using a tree-ring-based paleoclimate record and imputations to reconstruct streamflow in the Missouri River Basin

    NASA Astrophysics Data System (ADS)

    Ho, M. W.; Lall, U.; Cook, E. R.

    2015-12-01

    Advances in paleoclimatology in the past few decades have provided opportunities to expand the temporal perspective of the hydrological and climatological variability across the world. The North American region is particularly fortunate in this respect where a relatively dense network of high resolution paleoclimate proxy records have been assembled. One such network is the annually-resolved Living Blended Drought Atlas (LBDA): a paleoclimate reconstruction of the Palmer Drought Severity Index (PDSI) that covers North America on a 0.5° × 0.5° grid based on tree-ring chronologies. However, the use of the LBDA to assess North American streamflow variability requires a model by which streamflow may be reconstructed. Paleoclimate reconstructions have typically used models that first seek to quantify the relationship between the paleoclimate variable and the environmental variable of interest before extrapolating the relationship back in time. In contrast, the pre-instrumental streamflow is here considered as "missing" data. A method of imputing the "missing" streamflow data, prior to the instrumental record, is applied through multiple imputation using chained equations for streamflow in the Missouri River Basin. In this method, the distribution of the instrumental streamflow and LBDA is used to estimate sets of plausible values for the "missing" streamflow data resulting in a ~600 year-long streamflow reconstruction. Past research into external climate forcings, oceanic-atmospheric variability and its teleconnections, and assessments of rare multi-centennial instrumental records demonstrate that large temporal oscillations in hydrological conditions are unlikely to be captured in most instrumental records. The reconstruction of multi-centennial records of streamflow will enable comprehensive assessments of current and future water resource infrastructure and operations under the existing scope of natural climate variability.

  10. Flooding in the Northeastern United States, 2011

    USGS Publications Warehouse

    Suro, Thomas P.; Roland, Mark A.; Kiah, Richard G.

    2015-12-31

    The annual exceedance probability (AEP) for 327 streamgages in the Northeastern United States were computed using annual peak streamflow data through 2011 and are included in this report. The 2011 peak streamflow for 129 of those streamgages was estimated to have an AEP of less than or equal to 1 percent. Almost 100 of these peak streamflows were a result of the flooding associated with Hurricane Irene in late August 2011. More extreme than the 1-percent AEP, is the 0.2-percent AEP. The USGS recorded peak streamflows at 31 streamgages that equaled or exceeded the estimated 0.2-percent AEP during 2011. Collectively, the USGS recorded peak streamflows having estimated AEPs of less than 1 percent in Connecticut, Delaware, Maine, Maryland, Massachusetts, Ohio, Pennsylvania, New Hampshire, New Jersey, New York, and Vermont and new period-of-record peak streamflows were recorded at more than 180 streamgages resulting from the floods of 2011.

  11. A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites

    NASA Astrophysics Data System (ADS)

    Wang, Q. J.; Robertson, D. E.; Chiew, F. H. S.

    2009-05-01

    Seasonal forecasting of streamflows can be highly valuable for water resources management. In this paper, a Bayesian joint probability (BJP) modeling approach for seasonal forecasting of streamflows at multiple sites is presented. A Box-Cox transformed multivariate normal distribution is proposed to model the joint distribution of future streamflows and their predictors such as antecedent streamflows and El Niño-Southern Oscillation indices and other climate indicators. Bayesian inference of model parameters and uncertainties is implemented using Markov chain Monte Carlo sampling, leading to joint probabilistic forecasts of streamflows at multiple sites. The model provides a parametric structure for quantifying relationships between variables, including intersite correlations. The Box-Cox transformed multivariate normal distribution has considerable flexibility for modeling a wide range of predictors and predictands. The Bayesian inference formulated allows the use of data that contain nonconcurrent and missing records. The model flexibility and data-handling ability means that the BJP modeling approach is potentially of wide practical application. The paper also presents a number of statistical measures and graphical methods for verification of probabilistic forecasts of continuous variables. Results for streamflows at three river gauges in the Murrumbidgee River catchment in southeast Australia show that the BJP modeling approach has good forecast quality and that the fitted model is consistent with observed data.

  12. Water resources data for California, water year 1995. Volume 1. Southern Great Basin from Mexican border to Mono Lake basin, and Pacific slope basins from Tijuana River to Santa Maria River. Water-data report (Annual), 1 October 1994-30 SeptembeR 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agajanian, J.A.; Rockwell, G.L.; Hayes, P.D.

    1996-04-01

    Volume 1 contains (1) discharge records for 141 streamflow-gaging stations, 6 crest-stage partial-record streamflow stations; (2) stage and contents records for 20 lakes and reservoirs; (3) water quality records for 21 streamflow-gaging stations and 3 partial-record stations; and (4) precipitation records for 1 station.

  13. Using the tracer-dilution discharge method to develop streamflow records for ice-affected streams in Colorado

    USGS Publications Warehouse

    Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.

    2005-01-01

    Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period, the pumps underdischarged the tracer by 5.8-15.9 percent as compared to the initial pumping rate setting, which may explain some of the error in the tracer-dilution streamflow record as compared to current-meter streamflow record.

  14. Overview of hydro-acoustic current-measurement applications by the U.S. geological survey in Indiana

    USGS Publications Warehouse

    Morlock, Scott E.; Stewart, James A.

    1999-01-01

    The U.S. Geological Survey (USGS) maintains a network of 170 streamflow-gaging stations in Indiana to collect data from which continuous records of river discharges are produced. Traditionally, the discharge record from a station is produced by recording river stage and making periodic discharge measurements through a range of stage, then developing a relation between stage and discharge. Techniques that promise to increase data collection accuracy and efficiency include the use of hydro-acoustic instrumentation to measure river velocities. The velocity measurements are used to compute river discharge. In-situ applications of hydro-acoustic instruments by the USGS in Indiana include acoustic velocity meters (AVM's) at six streamflow-gaging stations and newly developed Doppler velocity meters (DVM's) at two stations. AVM's use reciprocal travel times of acoustic signals to measure average water velocities along acoustic paths, whereas DVM's use the Doppler shift of backscattered acoustic signals to compute water velocities. In addition to the in-situ applications, three acoustic Doppler current profilers (ADCP's) are used to make river-discharge measurements from moving boats at streamflow-gaging stations in Indiana. The USGS has designed and is testing an innovative unmanned platform from which to make ADCP discharge measurements.

  15. Estimation of selected streamflow statistics for a network of low-flow partial-record stations in areas affected by Base Realignment and Closure (BRAC) in Maryland

    USGS Publications Warehouse

    Ries, Kernell G.; Eng, Ken

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment, operated a network of 20 low-flow partial-record stations during 2008 in a region that extends from southwest of Baltimore to the northeastern corner of Maryland to obtain estimates of selected streamflow statistics at the station locations. The study area is expected to face a substantial influx of new residents and businesses as a result of military and civilian personnel transfers associated with the Federal Base Realignment and Closure Act of 2005. The estimated streamflow statistics, which include monthly 85-percent duration flows, the 10-year recurrence-interval minimum base flow, and the 7-day, 10-year low flow, are needed to provide a better understanding of the availability of water resources in the area to be affected by base-realignment activities. Streamflow measurements collected for this study at the low-flow partial-record stations and measurements collected previously for 8 of the 20 stations were related to concurrent daily flows at nearby index streamgages to estimate the streamflow statistics. Three methods were used to estimate the streamflow statistics and two methods were used to select the index streamgages. Of the three methods used to estimate the streamflow statistics, two of them--the Moments and MOVE1 methods--rely on correlating the streamflow measurements at the low-flow partial-record stations with concurrent streamflows at nearby, hydrologically similar index streamgages to determine the estimates. These methods, recommended for use by the U.S. Geological Survey, generally require about 10 streamflow measurements at the low-flow partial-record station. The third method transfers the streamflow statistics from the index streamgage to the partial-record station based on the average of the ratios of the measured streamflows at the partial-record station to the concurrent streamflows at the index streamgage. This method can be used with as few as one pair of streamflow measurements made on a single streamflow recession at the low-flow partial-record station, although additional pairs of measurements will increase the accuracy of the estimates. Errors associated with the two correlation methods generally were lower than the errors associated with the flow-ratio method, but the advantages of the flow-ratio method are that it can produce reasonably accurate estimates from streamflow measurements much faster and at lower cost than estimates obtained using the correlation methods. The two index-streamgage selection methods were (1) selection based on the highest correlation coefficient between the low-flow partial-record station and the index streamgages, and (2) selection based on Euclidean distance, where the Euclidean distance was computed as a function of geographic proximity and the basin characteristics: drainage area, percentage of forested area, percentage of impervious area, and the base-flow recession time constant, t. Method 1 generally selected index streamgages that were significantly closer to the low-flow partial-record stations than method 2. The errors associated with the estimated streamflow statistics generally were lower for method 1 than for method 2, but the differences were not statistically significant. The flow-ratio method for estimating streamflow statistics at low-flow partial-record stations was shown to be independent from the two correlation-based estimation methods. As a result, final estimates were determined for eight low-flow partial-record stations by weighting estimates from the flow-ratio method with estimates from one of the two correlation methods according to the respective variances of the estimates. Average standard errors of estimate for the final estimates ranged from 90.0 to 7.0 percent, with an average value of 26.5 percent. Average standard errors of estimate for the weighted estimates were, on average, 4.3 percent less than the best average standard errors of estima

  16. Preliminary stage and streamflow data at selected U.S. Geological Survey streamgages in Maine and New Hampshire for the flood of October 30–31, 2017

    USGS Publications Warehouse

    Kiah, Richard G.; Stasulis, Nicholas W.

    2018-03-08

    Rainfall from a storm on October 24–27, 2017, and Tropical Storm Philippe on October 29–30, created conditions that led to flooding across portions of New Hampshire and western Maine. On the basis of streamflow data collected at 30 selected U.S. Geological Survey (USGS) streamgages in the Androscoggin River, Connecticut River, Merrimack River, and Saco River Basins, the storms caused minor to moderate flooding in those basins on October 30–31, 2017. During the storms, the USGS deployed hydrographers to take discrete measurements of streamflow. The measurements were used to confirm the stage-to-streamflow relation (rating curve) at the selected USGS streamgages. Following the storms, hydrographers documented high-water marks in support of indirect measurements of streamflow. Seven streamgages with greater than 50 years of streamflow data recorded preliminary streamflow peaks within the top five for the periods of record. Twelve streamgages recorded preliminary peak streamflows greater than an estimate of the 100-year streamflow based on drainage area.

  17. A Comparison of Turbidity-Based and Streamflow-Based Estimates of Suspended-Sediment Concentrations in Three Chesapeake Bay Tributaries

    USGS Publications Warehouse

    Jastram, John D.; Moyer, Douglas; Hyer, Kenneth

    2009-01-01

    Fluvial transport of sediment into the Chesapeake Bay estuary is a persistent water-quality issue with major implications for the overall health of the bay ecosystem. Accurately and precisely estimating the suspended-sediment concentrations (SSC) and loads that are delivered to the bay, however, remains challenging. Although manual sampling of SSC produces an accurate series of point-in-time measurements, robust extrapolation to unmeasured periods (especially highflow periods) has proven to be difficult. Sediment concentrations typically have been estimated using regression relations between individual SSC values and associated streamflow values; however, suspended-sediment transport during storm events is extremely variable, and it is often difficult to relate a unique SSC to a given streamflow. With this limitation for estimating SSC, innovative approaches for generating detailed records of suspended-sediment transport are needed. One effective method for improved suspended-sediment determination involves the continuous monitoring of turbidity as a surrogate for SSC. Turbidity measurements are theoretically well correlated to SSC because turbidity represents a measure of water clarity that is directly influenced by suspended sediments; thus, turbidity-based estimation models typically are effective tools for generating SSC data. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency Chesapeake Bay Program and Virginia Department of Environmental Quality, initiated continuous turbidity monitoring on three major tributaries of the bay - the James, Rappahannock, and North Fork Shenandoah Rivers - to evaluate the use of turbidity as a sediment surrogate in rivers that deliver sediment to the bay. Results of this surrogate approach were compared to the traditionally applied streamflow-based approach for estimating SSC. Additionally, evaluation and comparison of these two approaches were conducted for nutrient estimations. Results demonstrate that the application of turbidity-based estimation models provides an improved method for generating a continuous record of SSC, relative to the classical approach that uses streamflow as a surrogate for SSC. Turbidity-based estimates of SSC were found to be more accurate and precise than SSC estimates from streamflow-based approaches. The turbidity-based SSC estimation models explained 92 to 98 percent of the variability in SSC, while streamflow-based models explained 74 to 88 percent of the variability in SSC. Furthermore, the mean absolute error of turbidity-based SSC estimates was 50 to 87 percent less than the corresponding values from the streamflow-based models. Statistically significant differences were detected between the distributions of residual errors and estimates from the two approaches, indicating that the turbidity-based approach yields estimates of SSC with greater precision than the streamflow-based approach. Similar improvements were identified for turbidity-based estimates of total phosphorus, which is strongly related to turbidity because total phosphorus occurs predominantly in particulate form. Total nitrogen estimation models based on turbidity and streamflow generated estimates of similar quality, with the turbidity-based models providing slight improvements in the quality of estimations. This result is attributed to the understanding that nitrogen transport is dominated by dissolved forms that relate less directly to streamflow and turbidity. Improvements in concentration estimation resulted in improved estimates of load. Turbidity-based suspended-sediment loads estimated for the James River at Cartersville, VA, monitoring station exhibited tighter confidence interval bounds and a coefficient of variation of 12 percent, compared with a coefficient of variation of 38 percent for the streamflow-based load.

  18. Streamflow characteristics based on data through water year 2009 for selected streamflow-gaging stations in or near Montana: Chapter E in Montana StreamStats

    USGS Publications Warehouse

    McCarthy, Peter M.

    2016-04-05

    Chapter E of this Scientific Investigations Report documents results from a study by the U.S. Geological Survey, in cooperation with the Montana Department of Environmental Quality and the Montana Department of Natural Resources and Conservation, to provide an update of statewide streamflow characteristics based on data through water year 2009 for streamflow-gaging stations in or near Montana. Streamflow characteristics are presented for 408 streamflow-gaging stations in Montana and adjacent areas having 10 or more years of record. Data include the magnitude and probability of annual low and high streamflow, the magnitude and probability of low streamflow for three seasons (March–June, July–October, and November–February), streamflow duration statistics for monthly and annual periods, and mean streamflows for monthly and annual periods. Streamflow is considered to be regulated at streamflow-gaging stations where dams or other large-scale human modifications affect 20 percent or more of the contributing drainage basin. Separate streamflow characteristics are presented for the unregulated and regulated periods of record for streamflow-gaging stations with sufficient data.

  19. Characteristics and Classification of Least Altered Streamflows in Massachusetts

    USGS Publications Warehouse

    Armstrong, David S.; Parker, Gene W.; Richards, Todd A.

    2008-01-01

    Streamflow records from 85 streamflow-gaging stations at which streamflows were considered to be least altered were used to characterize natural streamflows within southern New England. Period-of-record streamflow data were used to determine annual hydrographs of median monthly flows. The shapes and magnitudes of annual hydrographs of median monthly flows, normalized by drainage area, differed among stations in different geographic areas of southern New England. These differences were gradational across southern New England and were attributed to differences in basin and climate characteristics. Period-of-record streamflow data were also used to analyze the statistical properties of daily streamflows at 61 stations across southern New England by using L-moment ratios. An L-moment ratio diagram of L-skewness and L-kurtosis showed a continuous gradation in these properties between stations and indicated differences between base-flow dominated and runoff-dominated rivers. Streamflow records from a concurrent period (1960-2004) for 61 stations were used in a multivariate statistical analysis to develop a hydrologic classification of rivers in southern New England. Missing records from 46 of these stations were extended by using a Maintenance of Variation Extension technique. The concurrent-period streamflows were used in the Indicators of Hydrologic Alteration and Hydrologic Index Tool programs to determine 224 hydrologic indices for the 61 stations. Principal-components analysis (PCA) was used to reduce the number of hydrologic indices to 20 that provided nonredundant information. The PCA also indicated that the major patterns of variability in the dataset are related to differences in flow variability and low-flow magnitude among the stations. Hierarchical cluster analysis was used to classify stations into groups with similar hydrologic properties. The cluster analysis classified rivers in southern New England into two broad groups: (1) base-flow dominated rivers, whose statistical properties indicated less flow variability and high magnitudes of low flow, and (2) runoff-dominated rivers, whose statistical properties indicated greater flow variability and lower magnitudes of low flow. A four-cluster classification further classified the runoff-dominated streams into three groups that varied in gradient, elevation, and differences in winter streamflow conditions: high-gradient runoff-dominated rivers, northern runoff-dominated rivers, and southern runoff-dominated rivers. A nine-cluster division indicated that basin size also becomes a distinguishing factor among basins at finer levels of classification. Smaller basins (less than 10 square miles) were classified into different groups than larger basins. A comparison of station classifications indicated that a classification based on multiple hydrologic indices that represent different aspects of the flow regime did not result in the same classification of stations as a classification based on a single type of statistic such as a monthly median. River basins identified by the cluster analysis as having similar hydrologic properties tended to have similar basin and climate characteristics and to be in close proximity to one another. Stations were not classified in the same cluster on the basis of geographic location alone; as a result, boundaries cannot be drawn between geographic regions with similar streamflow characteristics. Rivers with different basin and climate characteristics were classified in different clusters, even if they were in adjacent basins or upstream and downstream within the same basin.

  20. Old Growth Conifer Watersheds in the Western Cascades, Oregon: Sentinels of Climate Change

    NASA Astrophysics Data System (ADS)

    Miles, K. M.

    2011-12-01

    In the Pacific Northwest, where the majority of precipitation falls during the winter, mountain snowpacks provide an important source of streamflow during the dry summer months when water demands are frequently highest. Increasing temperatures associated with climate change are expected to result in a decline in winter snowpacks in western North America, earlier snowmelt, and subsequently a shift in the timing of streamflows, with an increasing fraction of streamflows occurring earlier in the water year and drier conditions during the summer. Long-term records from headwater watersheds in old growth conifer forest at the H. J. Andrews Experimental Forest (HJ Andrews), Oregon, provide the opportunity to examine changes in climate, vegetation, and streamflow. Continuous streamflow records have been collected since 1953, 1964, and 1969 from three small (8.5-60 ha) watersheds (WS2, WS8, and WS9). Over the 40- to 50-year period of study, late winter to early summer monthly average minimum temperatures have increased by 1-2°C, and spring snow water equivalent at a nearby Snotel site has declined, but monthly precipitation has remained unchanged. Spring runoff ratios have declined in by amounts equivalent to 0.59-2.45 mm day-1 at WS2, WS8, and WS9, which are comparable to estimated rates of stand-level transpiration from trees in these watersheds. However, winter runoff ratios have not changed significantly at either WS2 or WS9, and have actually decreased at WS8 by 2.43 mm day-1 over the period of record. Furthermore, summer runoff ratios have not changed significantly at either WS8 or WS9, and have increased at WS2 by 0.34 mm day-1 over the period of record. These findings suggest that warming temperatures have resulted in a reduction in spring snowpacks and an earlier onset of evapotranspiration in the spring when soil moisture is abundant, but physiological responses of these conifer forests to water stress and water surplus may mitigate or exceed the expression of a climate warming effect on winter or summer streamflow.

  1. Median and Low-Flow Characteristics for Streams under Natural and Diverted Conditions, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    2005-01-01

    Flow-duration statistics under natural (undiverted) and diverted flow conditions were estimated for gaged and ungaged sites on 21 streams in northeast Maui, Hawaii. The estimates were made using the optimal combination of continuous-record gaging-station data, low-flow measurements, and values determined from regression equations developed as part of this study. Estimated 50- and 95-percent flow duration statistics for streams are presented and the analyses done to develop and evaluate the methods used in estimating the statistics are described. Estimated streamflow statistics are presented for sites where various amounts of streamflow data are available as well as for locations where no data are available. Daily mean flows were used to determine flow-duration statistics for continuous-record stream-gaging stations in the study area following U.S. Geological Survey established standard methods. Duration discharges of 50- and 95-percent were determined from total flow and base flow for each continuous-record station. The index-station method was used to adjust all of the streamflow records to a common, long-term period. The gaging station on West Wailuaiki Stream (16518000) was chosen as the index station because of its record length (1914-2003) and favorable geographic location. Adjustments based on the index-station method resulted in decreases to the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow computed on the basis of short-term records that averaged 7, 3, 4, and 1 percent, respectively. For the drainage basin of each continuous-record gaged site and selected ungaged sites, morphometric, geologic, soil, and rainfall characteristics were quantified using Geographic Information System techniques. Regression equations relating the non-diverted streamflow statistics to basin characteristics of the gaged basins were developed using ordinary-least-squares regression analyses. Rainfall rate, maximum basin elevation, and the elongation ratio of the basin were the basin characteristics used in the final regression equations for 50-percent duration total flow and base flow. Rainfall rate and maximum basin elevation were used in the final regression equations for the 95-percent duration total flow and base flow. The relative errors between observed and estimated flows ranged from 10 to 20 percent for the 50-percent duration total flow and base flow, and from 29 to 56 percent for the 95-percent duration total flow and base flow. The regression equations developed for this study were used to determine the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow at selected ungaged diverted and undiverted sites. Estimated streamflow, prediction intervals, and standard errors were determined for 48 ungaged sites in the study area and for three gaged sites west of the study area. Relative errors were determined for sites where measured values of 95-percent duration discharge of total flow were available. East of Keanae Valley, the 95-percent duration discharge equation generally underestimated flow, and within and west of Keanae Valley, the equation generally overestimated flow. Reduction in 50- and 95-percent flow-duration values in stream reaches affected by diversions throughout the study area average 58 to 60 percent.

  2. Streamflow statistics for selected streams in North Dakota, Minnesota, Manitoba, and Saskatchewan

    USGS Publications Warehouse

    Williams-Sether, Tara

    2012-01-01

    Statistical summaries of streamflow data for the periods of record through water year 2009 for selected active and discontinued U.S. Geological Survey streamflow-gaging stations in North Dakota, Minnesota, Manitoba, and Saskatchewan were compiled. The summaries for each streamflow-gaging station include a brief station description, a graph of the annual peak and annual mean discharge for the period of record, statistics of monthly and annual mean discharges, monthly and annual flow durations, probability of occurrence of annual high discharges, annual peak discharge and corresponding gage height for the period of record, and monthly and annual mean discharges for the period of record.

  3. Methods for estimating selected low-flow statistics and development of annual flow-duration statistics for Ohio

    USGS Publications Warehouse

    Koltun, G.F.; Kula, Stephanie P.

    2013-01-01

    This report presents the results of a study to develop methods for estimating selected low-flow statistics and for determining annual flow-duration statistics for Ohio streams. Regression techniques were used to develop equations for estimating 10-year recurrence-interval (10-percent annual-nonexceedance probability) low-flow yields, in cubic feet per second per square mile, with averaging periods of 1, 7, 30, and 90-day(s), and for estimating the yield corresponding to the long-term 80-percent duration flow. These equations, which estimate low-flow yields as a function of a streamflow-variability index, are based on previously published low-flow statistics for 79 long-term continuous-record streamgages with at least 10 years of data collected through water year 1997. When applied to the calibration dataset, average absolute percent errors for the regression equations ranged from 15.8 to 42.0 percent. The regression results have been incorporated into the U.S. Geological Survey (USGS) StreamStats application for Ohio (http://water.usgs.gov/osw/streamstats/ohio.html) in the form of a yield grid to facilitate estimation of the corresponding streamflow statistics in cubic feet per second. Logistic-regression equations also were developed and incorporated into the USGS StreamStats application for Ohio for selected low-flow statistics to help identify occurrences of zero-valued statistics. Quantiles of daily and 7-day mean streamflows were determined for annual and annual-seasonal (September–November) periods for each complete climatic year of streamflow-gaging station record for 110 selected streamflow-gaging stations with 20 or more years of record. The quantiles determined for each climatic year were the 99-, 98-, 95-, 90-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 25-, 20-, 10-, 5-, 2-, and 1-percent exceedance streamflows. Selected exceedance percentiles of the annual-exceedance percentiles were subsequently computed and tabulated to help facilitate consideration of the annual risk of exceedance or nonexceedance of annual and annual-seasonal-period flow-duration values. The quantiles are based on streamflow data collected through climatic year 2008.

  4. Factors Affecting Firm Yield and the Estimation of Firm Yield for Selected Streamflow-Dominated Drinking-Water-Supply Reservoirs in Massachusetts

    USGS Publications Warehouse

    Waldron, Marcus C.; Archfield, Stacey A.

    2006-01-01

    Factors affecting reservoir firm yield, as determined by application of the Massachusetts Department of Environmental Protection's Firm Yield Estimator (FYE) model, were evaluated, modified, and tested on 46 streamflow-dominated reservoirs representing 15 Massachusetts drinking-water supplies. The model uses a mass-balance approach to determine the maximum average daily withdrawal rate that can be sustained during a period of record that includes the 1960s drought-of-record. The FYE methodology to estimate streamflow to the reservoir at an ungaged site was tested by simulating streamflow at two streamflow-gaging stations in Massachusetts and comparing the simulated streamflow to the observed streamflow. In general, the FYE-simulated flows agreed well with observed flows. There were substantial deviations from the measured values for extreme high and low flows. A sensitivity analysis determined that the model's streamflow estimates are most sensitive to input values for average annual precipitation, reservoir drainage area, and the soil-retention number-a term that describes the amount of precipitation retained by the soil in the basin. The FYE model currently provides the option of using a 1,000-year synthetic record constructed by randomly sampling 2-year blocks of concurrent streamflow and precipitation records 500 times; however, the synthetic record has the potential to generate records of precipitation and streamflow that do not reflect the worst historical drought in Massachusetts. For reservoirs that do not have periods of drawdown greater than 2 years, the bootstrap does not offer any additional information about the firm yield of a reservoir than the historical record does. For some reservoirs, the use of a synthetic record to determine firm yield resulted in as much as a 30-percent difference between firm-yield values from one simulation to the next. Furthermore, the assumption that the synthetic traces of streamflow are statistically equivalent to the historical record is not valid. For multiple-reservoir systems, the firm-yield estimate was dependent on the reservoir system's configuration. The firm yield of a system is sensitive to how the water is transferred from one reservoir to another, the capacity of the connection between the reservoirs, and how seasonal variations in demand are represented in the FYE model. Firm yields for 25 (14 single-reservoir systems and 11 multiple-reservoir systems) reservoir systems were determined by using the historical records of streamflow and precipitation. Current water-use data indicate that, on average, 20 of the 25 reservoir systems in the study were operating below their estimated firm yield; during months with peak demands, withdrawals exceeded the firm yield for 8 reservoir systems.

  5. Acoustic Doppler current profiler applications used in rivers and estuaries by the U.S. Geological Survey

    USGS Publications Warehouse

    Gotvald, Anthony J.; Oberg, Kevin A.

    2009-01-01

    The U.S. Geological Survey (USGS) has collected streamflow information for the Nation's streams since 1889. Streamflow information is used to predict floods, manage and allocate water resources, design engineering structures, compute water-quality loads, and operate water-control structures. The current (2007) size of the USGS streamgaging network is over 7,400 streamgages nationwide. The USGS has progressively improved the streamgaging program by incorporating new technologies and techniques that streamline data collection while increasing the quality of the streamflow data that are collected. The single greatest change in streamflow measurement technology during the last 100 years has been the development and application of high frequency acoustic instruments for measuring streamflow. One such instrument, the acoustic Doppler current profiler (ADCP), is rapidly replacing traditional mechanical current meters for streamflow measurement (Muste and others, 2007). For more information on how an ADCP works see Simpson (2001) or visit http://hydroacoustics.usgs.gov/. The USGS has used ADCPs attached to manned or tethered boats since the mid-1990s to measure streamflow in a wide variety of conditions (fig. 1). Recent analyses have shown that ADCP streamflow measurements can be made with similar or greater accuracy, efficiency, and resolution than measurements made using conventional current-meter methods (Oberg and Mueller, 2007). ADCPs also have the ability to measure streamflow in streams where traditional current-meter measurements previously were very difficult or costly to obtain, such as streams affected by backwater or tides. In addition to streamflow measurements, the USGS also uses ADCPs for other hydrologic measurements and applications, such as computing continuous records of streamflow for tidally or backwater affected streams, measuring velocity fields with high spatial and temporal resolution, and estimating suspended-sediment concentrations. An overview of these applications is provided in the fact sheet.

  6. Index of surface-water stations in Texas, January 1986

    USGS Publications Warehouse

    Carrillo, E.R.; Buckner, H.D.; Rawson, Jack

    1986-01-01

    As of January 1, 1986, the surface-water data-collection network in Texas operated by the U.S. Geological Survey included 386 streamflow, 87 reservoir-contents, 33 stage, 10 crest-stage partial-record, 8 periodic discharge through range, 38 flood-hydrograph partial-record, 11 flood-profile partial-record , 36 low-flow partial-record 2 tide-level, 45 daily chemical-quality, 23 continuous-recording water-quality, 97 periodic biological, 19 lake surveys, 174 periodic organic- and (or) nutrient, 4 periodic insecticide, 58 periodic pesticide, 22 automatic sampler, 157 periodic minor elements, 141 periodic chemical-quality, 108 periodic physical-organic, 14 continuous-recording three- or four-parameter water-quality, 3 sediment, 39 periodic sediment, 26 continuous-recording temperature, and 37 national stream-quality accounting network stations were in operation. Tables describing the station location, type of data collected, and place where data are available are included, as well as maps showing the location of most of the stations. (USGS)

  7. Water-resources investigations in Wisconsin: Programs and activities of the U.S. Geological Survey, 1991-92

    USGS Publications Warehouse

    Maertz, D.E.

    1992-01-01

    OBJECTIVE: The objectives of this study are to provide continuous discharge records for selected rivers at specific sites to supply the needs for: regulation, analytical studies, definition of statistical properties, trends analysis, determination of the occurrence, and distribution of water in streams for planning. The project is also designed to determine lake levels and to provide discharge for floods, low-flow conditions, and for water-quality investigations. Requests for streamflow data and information relating to streamflow in Wisconsin are answered. Basic data are published annually in "Water Resources Data Wisconsin."

  8. Water Resources Data for Oregon, Water Year 2002

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2003-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in the State and contains discharge records for 181 stream-gaging stations, 47 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records for 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  9. Water Resources Data for Oregon, Water Year 2003

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2004-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in Oregon and contains discharge records for 199 stream-gaging stations, 25 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records collected at 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  10. Streamflow Statistics for the Narraguagus River at Cherryfield, Maine

    USGS Publications Warehouse

    Dudley, Robert W.; Nielsen, Joseph P.

    2000-01-01

    Streamflow data have been collected for the Narraguagus River from 1948 to the present (2000) at the U.S. Geological Survey (USGS) streamgaging station at Cherryfield, Maine. This report describes a study done by the USGS to determine streamflow statistics using the streamflow record at the Narraguagus River station for use in total water use management plans implemented by State and Federal agencies. Because the effect of changes in irrigation practices from 1993 to the present on streamflow in the Narraguagus basin is unknown and potentially significant, streamflow data after December 1992 were not used in the determination of the streamflow statistics. For the period 1948- 92, monthly median streamflows range from 93.0 ft3/s (August) to 1,000 ft3/s (April). The median streamflow for the selected period of record for all days (1948-92) is 302 ft3/s.

  11. Human influences on streamflow drought characteristics in England and Wales

    NASA Astrophysics Data System (ADS)

    Tijdeman, Erik; Hannaford, Jamie; Stahl, Kerstin

    2018-02-01

    Human influences can affect streamflow drought characteristics and propagation. The question is where, when and why? To answer these questions, the impact of different human influences on streamflow droughts were assessed in England and Wales, across a broad range of climate and catchments conditions. We used a dataset consisting of catchments with near-natural flow as well as catchments for which different human influences have been indicated in the metadata (Factors Affecting Runoff) of the UK National River Flow Archive (NRFA). A screening approach was applied on the streamflow records to identify human-influenced records with drought characteristics that deviated from those found for catchments with near-natural flow. Three different deviations were considered, specifically deviations in (1) the relationship between streamflow drought duration and the base flow index, BFI (specifically, BFIHOST, the BFI predicted from the hydrological properties of soils), (2) the correlation between streamflow and precipitation and (3) the temporal occurrence of streamflow droughts compared to precipitation droughts, i.e. an increase or decrease in streamflow drought months relative to precipitation drought months over the period of record. The identified deviations were then related to the indicated human influences. Results showed that the majority of catchments for which human influences were indicated did not show streamflow drought characteristics that deviated from those expected under near-natural conditions. For the catchments that did show deviating streamflow drought characteristics, prolonged streamflow drought durations were found in some of the catchments affected by groundwater abstractions. Weaker correlations between streamflow and precipitation were found for some of the catchments with reservoirs, water transfers or groundwater augmentation schemes. An increase in streamflow drought occurrence towards the end of their records was found for some of the catchments affected by groundwater abstractions and a decrease in streamflow drought occurrence for some of the catchments with either reservoirs or groundwater abstractions. In conclusion, the proposed screening approaches were sometimes successful in identifying streamflow records with deviating drought characteristics that are likely related to different human influences. However, a quantitative attribution of the impact of human influences on streamflow drought characteristics requires more detailed case-by-case information about the type and degree of all different human influences. Given that, in many countries, such information is often not readily accessible, the approaches adopted here could provide useful in targeting future efforts. In England and Wales specifically, the catchments with deviating streamflow drought characteristics identified in this study could serve as the starting point of detailed case study research.

  12. Analysis of temperature profiles for investigating stream losses beneath ephemeral channels

    USGS Publications Warehouse

    Constantz, Jim; Stewart, Amy E.; Niswonger, Richard G.; Sarma, Lisa

    2002-01-01

    Continuous estimates of streamflow are challenging in ephemeral channels. The extremely transient nature of ephemeral streamflows results in shifting channel geometry and degradation in the calibration of streamflow stations. Earlier work suggests that analysis of streambed temperature profiles is a promising technique for estimating streamflow patterns in ephemeral channels. The present work provides a detailed examination of the basis for using heat as a tracer of stream/groundwater exchanges, followed by a description of an appropriate heat and water transport simulation code for ephemeral channels, as well as discussion of several types of temperature analysis techniques to determine streambed percolation rates. Temperature‐based percolation rates for three ephemeral stream sites are compared with available surface water estimates of channel loss for these sites. These results are combined with published results to develop conclusions regarding the accuracy of using vertical temperature profiles in estimating channel losses. Comparisons of temperature‐based streambed percolation rates with surface water‐based channel losses indicate that percolation rates represented 30% to 50% of the total channel loss. The difference is reasonable since channel losses include both vertical and nonvertical component of channel loss as well as potential evapotranspiration losses. The most significant advantage of the use of sediment‐temperature profiles is their robust and continuous nature, leading to a long‐term record of the timing and duration of channel losses and continuous estimates of streambed percolation. The primary disadvantage is that temperature profiles represent the continuous percolation rate at a single point in an ephemeral channel rather than an average seepage loss from the entire channel.

  13. Compilation of streamflow statistics calculated from daily mean streamflow data collected during water years 1901–2015 for selected U.S. Geological Survey streamgages

    USGS Publications Warehouse

    Granato, Gregory E.; Ries, Kernell G.; Steeves, Peter A.

    2017-10-16

    Streamflow statistics are needed by decision makers for many planning, management, and design activities. The U.S. Geological Survey (USGS) StreamStats Web application provides convenient access to streamflow statistics for many streamgages by accessing the underlying StreamStatsDB database. In 2016, non-interpretive streamflow statistics were compiled for streamgages located throughout the Nation and stored in StreamStatsDB for use with StreamStats and other applications. Two previously published USGS computer programs that were designed to help calculate streamflow statistics were updated to better support StreamStats as part of this effort. These programs are named “GNWISQ” (Get National Water Information System Streamflow (Q) files), updated to version 1.1.1, and “QSTATS” (Streamflow (Q) Statistics), updated to version 1.1.2.Statistics for 20,438 streamgages that had 1 or more complete years of record during water years 1901 through 2015 were calculated from daily mean streamflow data; 19,415 of these streamgages were within the conterminous United States. About 89 percent of the 20,438 streamgages had 3 or more years of record, and about 65 percent had 10 or more years of record. Drainage areas of the 20,438 streamgages ranged from 0.01 to 1,144,500 square miles. The magnitude of annual average streamflow yields (streamflow per square mile) for these streamgages varied by almost six orders of magnitude, from 0.000029 to 34 cubic feet per second per square mile. About 64 percent of these streamgages did not have any zero-flow days during their available period of record. The 18,122 streamgages with 3 or more years of record were included in the StreamStatsDB compilation so they would be available via the StreamStats interface for user-selected streamgages. All the statistics are available in a USGS ScienceBase data release.

  14. Storage requirements for Arkansas streams

    USGS Publications Warehouse

    Patterson, James Lee

    1968-01-01

    The supply of good-quality surface water in Arkansas is abundant. owing to seasonal and annual variability of streamflow, however, storage must be provided to insure dependable year-round supplies in most of the State. Storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 49 continuous-record gaging stations can be obtained from tabular data in this report. Through regional analyses of streamflow data, the State was divided into three regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, the mean annual flow, and the low-flow index are known. These data are tabulated for 53 gaging stations used in the analyses and for 132 partial-record sites where only base-flow measurements have been made. Mean annual flow can be determined for any stream whose drainage lies within the State by using the runoff map in this report. Low-flow indices can be estimated by correlating base flows, determined from several discharge measurements, with concurrent flows at nearby continuous-record gaging stations, whose low-flow indices have been determined.

  15. Streamflow record extension for selected streams in the Susitna River Basin, Alaska

    USGS Publications Warehouse

    Curran, Janet H.

    2012-01-01

    Daily streamflow records for water years 1950–2010 in the Susitna River Basin range in length from 4 to 57 years, and many are distributed within that period in a way that might not adequately represent long-term streamflow conditions. Streamflow in the basin is affected by the Pacific Decadal Oscillation (PDO), a multi-decadal climate pattern that shifted from a cool phase to a warm phase in 1976. Records for many streamgages in the basin fell mostly within one phase of the PDO, such that monthly and annual statistics from observed records might not reflect streamflow conditions over a longer period. Correlations between daily discharge values sufficed for extending streamflow records at 11 of the 14 streamgages in the basin on the basis of relatively long-term records for one or more of the streamgages within the basin, or one outside the basin, that were defined as index stations. Streamflow at the index stations was hydrologically responsive to glacier melt and snowmelt, and correlated well with flow from similar high-elevation, glaciated basins, but flow in low-elevation basins without glaciers could not be correlated to flow at any of the index stations. Kendall-Theil Robust Line multi-segment regression equations developed for one or more index stations were used to extend daily discharge values to the full 61-year period for all 11 streamgages. Monthly and annual statistics prepared for the extended records show shifts in timing of breakup and freeze-up and magnitude of snowmelt peaks largely predicted by the PDO phase.

  16. Streamflow characteristics at hydrologic bench-mark stations

    USGS Publications Warehouse

    Lawrence, C.L.

    1987-01-01

    The Hydrologic Bench-Mark Network was established in the 1960's. Its objectives were to document the hydrologic characteristics of representative undeveloped watersheds nationwide and to provide a comparative base for studying the effects of man on the hydrologic environment. The network, which consists of 57 streamflow gaging stations and one lake-stage station in 39 States, is planned for permanent operation. This interim report describes streamflow characteristics at each bench-mark site and identifies time trends in annual streamflow that have occurred during the data-collection period. The streamflow characteristics presented for each streamflow station are (1) flood and low-flow frequencies, (2) flow duration, (3) annual mean flow, and (4) the serial correlation coefficient for annual mean discharge. In addition, Kendall's tau is computed as an indicator of time trend in annual discharges. The period of record for most stations was 13 to 17 years, although several stations had longer periods of record. The longest period was 65 years for Merced River near Yosemite, Calif. Records of flow at 6 of 57 streamflow sites in the network showed a statistically significant change in annual mean discharge over the period of record, based on computations of Kendall's tau. The values of Kendall's tau ranged from -0.533 to 0.648. An examination of climatological records showed that changes in precipitation were most likely the cause for the change in annual mean discharge.

  17. Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.

    2009-01-01

    In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.

  18. Trends in selected streamflow statistics at 19 long-term streamflow-gaging stations indicative of outflows from Texas to Arkansas, Louisiana, Galveston Bay, and the Gulf of Mexico, 1922-2009

    USGS Publications Warehouse

    Barbie, Dana L.; Wehmeyer, Loren L.

    2012-01-01

    Trends in selected streamflow statistics during 1922-2009 were evaluated at 19 long-term streamflow-gaging stations considered indicative of outflows from Texas to Arkansas, Louisiana, Galveston Bay, and the Gulf of Mexico. The U.S. Geological Survey, in cooperation with the Texas Water Development Board, evaluated streamflow data from streamflow-gaging stations with more than 50 years of record that were active as of 2009. The outflows into Arkansas and Louisiana were represented by 3 streamflow-gaging stations, and outflows into the Gulf of Mexico, including Galveston Bay, were represented by 16 streamflow-gaging stations. Monotonic trend analyses were done using the following three streamflow statistics generated from daily mean values of streamflow: (1) annual mean daily discharge, (2) annual maximum daily discharge, and (3) annual minimum daily discharge. The trend analyses were based on the nonparametric Kendall's Tau test, which is useful for the detection of monotonic upward or downward trends with time. A total of 69 trend analyses by Kendall's Tau were computed - 19 periods of streamflow multiplied by the 3 streamflow statistics plus 12 additional trend analyses because the periods of record for 2 streamflow-gaging stations were divided into periods representing pre- and post-reservoir impoundment. Unless otherwise described, each trend analysis used the entire period of record for each streamflow-gaging station. The monotonic trend analysis detected 11 statistically significant downward trends, 37 instances of no trend, and 21 statistically significant upward trends. One general region studied, which seemingly has relatively more upward trends for many of the streamflow statistics analyzed, includes the rivers and associated creeks and bayous to Galveston Bay in the Houston metropolitan area. Lastly, the most western river basins considered (the Nueces and Rio Grande) had statistically significant downward trends for many of the streamflow statistics analyzed.

  19. Floods in Central Texas, September 7-14, 2010

    USGS Publications Warehouse

    Winters, Karl E.

    2012-01-01

    Severe flooding occurred near the Austin metropolitan area in central Texas September 7–14, 2010, because of heavy rainfall associated with Tropical Storm Hermine. The U.S. Geological Survey, in cooperation with the Upper Brushy Creek Water Control and Improvement District, determined rainfall amounts and annual exceedance probabilities for rainfall resulting in flooding in Bell, Williamson, and Travis counties in central Texas during September 2010. We documented peak streamflows and the annual exceedance probabilities for peak streamflows recorded at several streamflow-gaging stations in the study area. The 24-hour rainfall total exceeded 12 inches at some locations, with one report of 14.57 inches at Lake Georgetown. Rainfall probabilities were estimated using previously published depth-duration frequency maps for Texas. At 4 sites in Williamson County, the 24-hour rainfall had an annual exceedance probability of 0.002. Streamflow measurement data and flood-peak data from U.S. Geological Survey surface-water monitoring stations (streamflow and reservoir gaging stations) are presented, along with a comparison of September 2010 flood peaks to previous known maximums in the periods of record. Annual exceedance probabilities for peak streamflow were computed for 20 streamflow-gaging stations based on an analysis of streamflow-gaging station records. The annual exceedance probability was 0.03 for the September 2010 peak streamflow at the Geological Survey's streamflow-gaging stations 08104700 North Fork San Gabriel River near Georgetown, Texas, and 08154700 Bull Creek at Loop 360 near Austin, Texas. The annual exceedance probability was 0.02 for the peak streamflow for Geological Survey's streamflow-gaging station 08104500 Little River near Little River, Texas. The lack of similarity in the annual exceedance probabilities computed for precipitation and streamflow might be attributed to the small areal extent of the heaviest rainfall over these and the other gaged watersheds.

  20. Water resources data for California water year 1994. Volume 1. Southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria river. Water-data report (Annual), 1 October 1993-30 September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, P.D.; Agajanian, J.A.; Rockwell, G.L.

    1995-03-01

    Water resources data for the 1994 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 143 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations; (2) stage and contents records for 20 lakes and reservoirs; (3) water quality records for 19 streamflow-gaging stations and 2 partial-record stations; and (4) precipitation records for 8 stations.

  1. Using diurnal streamflow and conductivity data to monitor and forecast runoff in a snowmelt dominated watershed

    NASA Astrophysics Data System (ADS)

    Miller, S.; Miller, S. N.

    2016-12-01

    Natural diurnal fluctuations in streamflow are common in many types of streams and scales for different reasons (i.e. snowmelt, evapotranspiration, infiltration, precipitation). Scientific literature has placed little consideration on the role diurnal cycles as they may appear insignificant from a water management point of view; however, recent insights into the timing and shape of the diurnal cycle have led to new methods for eco-hydrologic characterization of a given watershed. The diurnal effect is usually not detectible from visual investigation of a stream, but requires a minimum of hourly continuous measurement. In the 1990s the United States Geological Survey began collecting hourly river stage measurements for thousands of stream gauge stations across the US, ushering in new methods of analysis and comparison. A nested watershed study with ten stream gauging stations recording sub-hourly river stage was deployed in a snowmelt-dominated region of the Medicine Bow National Forest in southeastern Wyoming in 2013. In addition, at each stream gauging station sub-hourly conductivity and temperature data was recorded to aid in eco-hydrologic characterization of the different watersheds. Early summer results show asymmetry in the diurnal cycle during snowmelt, with a steeper rising and a flatter falling limb. As snowmelt becomes a less contributing component of streamflow later in the season, the asymmetry shifts to a flatter rising limb and steeper falling limb. Stream conductivity is low during snowmelt and begins to gradually increase as baseflow becomes a larger portion of total streamflow. The study region is recovering from a mountain pine beetle epidemic that peaked in 2008. Prior research suggests the bark beetle epidemic has had little effect on annual streamflow patterns; however, several results show an earlier shift in the day of year in which peak annual streamflow is observed. The diurnal cycle is likely to comprise a larger percentage of daily streamflow during snowmelt in post-epidemic forests, as more solar radiation is available to penetrate to the ground surface and induce snowmelt, contributing to the effect of an earlier observed peak annual streamflow.

  2. Causes of systematic over- or underestimation of low streamflows by use of index-streamgage approaches in the United States

    USGS Publications Warehouse

    Eng, K.; Kiang, J.E.; Chen, Y.-Y.; Carlisle, D.M.; Granato, G.E.

    2011-01-01

    Low-flow characteristics can be estimated by multiple linear regressions or the index-streamgage approach. The latter transfers streamflow information from a hydrologically similar, continuously gaged basin ('index streamgage') to one with a very limited streamflow record, but often results in biased estimates. The application of the index-streamgage approach can be generalized into three steps: (1) selection of streamflow information of interest, (2) definition of hydrologic similarity and selection of index streamgage, and (3) application of an information-transfer approach. Here, we explore the effects of (1) the range of streamflow values, (2) the areal density of streamgages, and (3) index-streamgage selection criteria on the bias of three information-transfer approaches on estimates of the 7-day, 10-year minimum streamflow (Q7, 10). The three information-transfer approaches considered are maintenance of variance extension, base-flow correlation, and ratio of measured to concurrent gaged streamflow (Q-ratio invariance). Our results for 1120 streamgages throughout the United States suggest that only a small portion of the total bias in estimated streamflow values is explained by the areal density of the streamgages and the hydrologic similarity between the two basins. However, restricting the range of streamflow values used in the index-streamgage approach reduces the bias of estimated Q7, 10 values substantially. Importantly, estimated Q7, 10 values are heavily biased when the observed Q7, 10 values are near zero. Results of the analysis also showed that Q7, 10 estimates from two of the three index-streamgage approaches have lower root-mean-square error values than estimates derived from multiple regressions for the large regions considered in this study.

  3. Streamflow data

    USGS Publications Warehouse

    Holmes, Robert R.; Singh, Vijay P.

    2016-01-01

    The importance of streamflow data to the world’s economy, environmental health, and public safety continues to grow as the population increases. The collection of streamflow data is often an involved and complicated process. The quality of streamflow data hinges on such things as site selection, instrumentation selection, streamgage maintenance and quality assurance, proper discharge measurement techniques, and the development and continued verification of the streamflow rating. This chapter serves only as an overview of the streamflow data collection process as proper treatment of considerations, techniques, and quality assurance cannot be addressed adequately in the space limitations of this chapter. Readers with the need for the detailed information on the streamflow data collection process are referred to the many references noted in this chapter. 

  4. Hydrologic conditions in New Hampshire and Vermont, water year 2011

    USGS Publications Warehouse

    Kiah, Richard G.; Jarvis, Jason D.; Hegemann, Robert F.; Hilgendorf, Gregory S.; Ward, Sanborn L.

    2013-01-01

    Record-high hydrologic conditions in New Hampshire and Vermont occurred during water year 2011, according to data from 125 streamgages and lake gaging stations, 27 creststage gages, and 41 groundwater wells. Annual runoff for the 2011 water year was the sixth highest on record for New Hampshire and the highest on record for Vermont on the basis of a 111-year reference period (water years 1901–2011). Groundwater levels for the 2011 water year were generally normal in New Hampshire and normal to above normal in Vermont. Record flooding occurred in April, May, and August of water year 2011. Peak-of-record streamflows were recorded at 38 streamgages, 25 of which had more than 10 years of record. Flooding in April 2011 was widespread in parts of northern New Hampshire and Vermont; peak-of-record streamflows were recorded at nine streamgages. Flash flooding in May 2011 was isolated to central and northeastern Vermont; peakof- record streamflows were recorded at five streamgages. Devastating flooding in August 2011 occurred throughout most of Vermont and in parts of New Hampshire as a result of the heavy rains associated with Tropical Storm Irene. Peak-ofrecord streamflows were recorded at 24 streamgages.

  5. Scale effects on information theory-based measures applied to streamflow patterns in two rural watersheds

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Pachepsky, Yakov A.; Guber, Andrey K.; McPherson, Brian J.; Hill, Robert L.

    2012-01-01

    SummaryUnderstanding streamflow patterns in space and time is important for improving flood and drought forecasting, water resources management, and predictions of ecological changes. Objectives of this work include (a) to characterize the spatial and temporal patterns of streamflow using information theory-based measures at two thoroughly-monitored agricultural watersheds located in different hydroclimatic zones with similar land use, and (b) to elucidate and quantify temporal and spatial scale effects on those measures. We selected two USDA experimental watersheds to serve as case study examples, including the Little River experimental watershed (LREW) in Tifton, Georgia and the Sleepers River experimental watershed (SREW) in North Danville, Vermont. Both watersheds possess several nested sub-watersheds and more than 30 years of continuous data records of precipitation and streamflow. Information content measures (metric entropy and mean information gain) and complexity measures (effective measure complexity and fluctuation complexity) were computed based on the binary encoding of 5-year streamflow and precipitation time series data. We quantified patterns of streamflow using probabilities of joint or sequential appearances of the binary symbol sequences. Results of our analysis illustrate that information content measures of streamflow time series are much smaller than those for precipitation data, and the streamflow data also exhibit higher complexity, suggesting that the watersheds effectively act as filters of the precipitation information that leads to the observed additional complexity in streamflow measures. Correlation coefficients between the information-theory-based measures and time intervals are close to 0.9, demonstrating the significance of temporal scale effects on streamflow patterns. Moderate spatial scale effects on streamflow patterns are observed with absolute values of correlation coefficients between the measures and sub-watershed area varying from 0.2 to 0.6 in the two watersheds. We conclude that temporal effects must be evaluated and accounted for when the information theory-based methods are used for performance evaluation and comparison of hydrological models.

  6. Updating estimates of low streamflow statistics to account for possible trends

    NASA Astrophysics Data System (ADS)

    Blum, A. G.; Archfield, S. A.; Hirsch, R. M.; Vogel, R. M.; Kiang, J. E.; Dudley, R. W.

    2017-12-01

    Given evidence of both increasing and decreasing trends in low flows in many streams, methods are needed to update estimators of low flow statistics used in water resources management. One such metric is the 10-year annual low-flow statistic (7Q10) calculated as the annual minimum seven-day streamflow which is exceeded in nine out of ten years on average. Historical streamflow records may not be representative of current conditions at a site if environmental conditions are changing. We present a new approach to frequency estimation under nonstationary conditions that applies a stationary nonparametric quantile estimator to a subset of the annual minimum flow record. Monte Carlo simulation experiments were used to evaluate this approach across a range of trend and no trend scenarios. Relative to the standard practice of using the entire available streamflow record, use of a nonparametric quantile estimator combined with selection of the most recent 30 or 50 years for 7Q10 estimation were found to improve accuracy and reduce bias. Benefits of data subset selection approaches were greater for higher magnitude trends annual minimum flow records with lower coefficients of variation. A nonparametric trend test approach for subset selection did not significantly improve upon always selecting the last 30 years of record. At 174 stream gages in the Chesapeake Bay region, 7Q10 estimators based on the most recent 30 years of flow record were compared to estimators based on the entire period of record. Given the availability of long records of low streamflow, using only a subset of the flow record ( 30 years) can be used to update 7Q10 estimators to better reflect current streamflow conditions.

  7. Water resources data for california, water year 1992. Volume 1. Southern Great Basin from Mexican border to Mono lake basin, and pacific slope basins from Tijuana river to Santa Maria river. Water-data report (Annual), 1 October 1991-30 September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, E.B.; Bowers, J.C.; Mullen, J.R.

    1993-09-01

    Water resources data for the 1992 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 161 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 23 streamflow-gaging stations and 3 partial-record stations; and (4) precipitation records for 11 stations.

  8. Water resources data for California, water year 1993. Volume 1. Southern Great Basin from Mexican border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River. Water-data report (Annual), 1 October 1992-30 September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullen, J.R.; Hayes, P.D.; Agajanian, J.A.

    1994-06-01

    Water resources data for the 1993 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 156 streamflow-gaging stations, 12 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 17 streamflow-gaging stations and 6 partial-record stations; and (4) precipitation records for 10 stations.

  9. An investigation of the role of winter and spring precipitation as drivers of streamflow in the Missouri River Headwaters using tree-ring reconstructions

    NASA Astrophysics Data System (ADS)

    Frederick, S. E.; Woodhouse, C. A.; Martin, J. T.; Pederson, G. T.

    2017-12-01

    The Missouri River supplies water to over 3 million basin residents and is a driving force for the nation's agricultural and energy sectors. However, with changing climate and declining snowpack in western North America, seasonal water yields are becoming less predictable, revealing a gap in our understanding of regional hydroclimate and drivers of streamflow within the basin. By analyzing the relationship between seasonal precipitation and streamflow in the Missouri River Headwaters sub-basin, this study seeks to expand our knowledge based on the instrumental record alone. Here we present the first annually-resolved tree-ring reconstruction of spring precipitation for the Missouri River Headwaters. This reconstruction along with existing tree-ring reconstructions of April 1 snow-water equivalence (SWE) (Pederson et al. 2011) and natural streamflow (Martin, J.T. & Pederson, G.T., personal communication, June 2017) are used to test the feasibility of detecting a variable influence of winter and spring precipitation on streamflow over past centuries, and relative to the modern period. Initial analyses indicate that April 1 SWE is a significant control on streamflow, however, the April 1 SWE record does not fully account for anomalies observed in the streamflow record. This study therefore seeks to determine whether spring precipitation can account for some of this asynchronous variability observed between the April 1 SWE and streamflow records. Aside from improved understanding of the relationship between hydroclimate and streamflow in the headwaters of the Missouri River, our findings offer insights relating to changing contributions from snowmelt and spring precipitation, and long-term hydrologic variability and trends relevant to water resource management and planning efforts.

  10. A stream-gaging network analysis for the 7-day, 10-year annual low flow in New Hampshire streams

    USGS Publications Warehouse

    Flynn, Robert H.

    2003-01-01

    The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations.A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990.To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the network by application of GLS regression between streamflow and the climatic and basin characteristics of the drainage basin upstream from each stream-gaging station. Improvement to the predictive ability of the regression equations developed for the network analyses is measured by the reduction in the average sampling-error variance, and can be achieved by collecting additional streamflow data at existing stations. The predictive ability of the regression equations is enhanced even further with the addition of new stations to the network. Continued data collection at unregulated stream-gaging stations with less than 14 years of record resulted in the greatest cost-weighted reduction to the average sampling-error variance of the annual 7Q10 regional regression equation. The addition of new stations in basins with underrepresented values for the independent variables of the total drainage area, average mean annual basinwide temperature, or mean summer stream-gaging station precipitation in the annual 7Q10 regression equation yielded a much greater cost-weighted reduction to the average sampling-error variance than when more data were collected at existing unregulated stations. To maximize the regional information obtained from the stream-gaging network for the annual 7Q10, ranking of the streamflow data can be used to determine whether an active station should be continued or if a new or discontinued station should be activated for streamflow data collection. Thus, this network analysis can help determine the costs and benefits of continuing the operation of a particular station or activating a new station at another location to predict the 7Q10 at ungaged stream reaches. The decision to discontinue an existing station or activate a new station, however, must also consider its contribution to other water-resource analyses such as flood management, water quality, or trends in land use or climatic change.

  11. Cost effectiveness of the US Geological Survey's stream-gaging programs in New Hampshire and Vermont

    USGS Publications Warehouse

    Smath, J.A.; Blackey, F.E.

    1986-01-01

    Data uses and funding sources were identified for the 73 continuous stream gages currently (1984) being operated. Eight stream gages were identified as having insufficient reason to continue their operation. Parts of New Hampshire and Vermont were identified as needing additional hydrologic data. New gages should be established in these regions as funds become available. Alternative methods for providing hydrologic data at the stream gaging stations currently being operated were found to lack the accuracy that is required for their intended use. The current policy for operation of the stream gages requires a net budget of $297,000/yr. The average standard error of estimation of the streamflow records is 17.9%. This overall level of accuracy could be maintained with a budget of $285,000 if resources were redistributed among gages. Cost-effective analysis indicates that with the present budget, the average standard error could be reduced to 16.6%. A minimum budget of $278,000 is required to operate the present stream gaging program. Below this level, the gages and recorders would not receive the proper service and maintenance. At the minimum budget, the average standard error would be 20.4%. The loss of correlative data is a significant component of the error in streamflow records, especially at lower budgetary levels. (Author 's abstract)

  12. The index gage method to develop a flow duration curve from short-term streamflow records

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxing

    2017-10-01

    The flow duration curve (FDC) is one of the most commonly used graphical tools in hydrology and provides a comprehensive graphical view of streamflow variability at a particular site. For a gaged site, an FDC can be easily estimated with frequency analysis. When no streamflow records are available, regional FDCs are used to synthesize FDCs. However, studies on how to develop FDCs for sites with short-term records have been very limited. Deriving representative FDC when there are short-term hydrologic records is important. For instance, 43% of the 394 streamflow gages in Illinois have records of 20 years or fewer, and these short-term gages are often distributed in headwaters and contain valuable hydrologic information. In this study, the index gage method is proposed to develop FDCs using short-term hydrologic records via an information transfer technique from a nearby hydrologically similar index gage. There are three steps: (1) select an index gage; (2) determine changes of FDC; and (3) develop representative FDCs. The approach is tested using records from 92 U.S. Geological Survey streamflow gages in Illinois. A jackknife experiment is conducted to assess the performance. Bootstrap resampling is used to simulate various periods of records, i.e., 1, 2, 5, 10, 15, and 20 years of records. The results demonstrated that the index gage method is capable of developing a representative FDC using short-term records. Generally, the approach performance is improved when more hydrologic records are available, but the improvement appears to level off when the short-term gage has 10 years or more records.

  13. Bayesian Models for Streamflow and River Network Reconstruction using Tree Rings

    NASA Astrophysics Data System (ADS)

    Ravindranath, A.; Devineni, N.

    2016-12-01

    Water systems face non-stationary, dynamically shifting risks due to shifting societal conditions and systematic long-term variations in climate manifesting as quasi-periodic behavior on multi-decadal time scales. Water systems are thus vulnerable to long periods of wet or dry hydroclimatic conditions. Streamflow is a major component of water systems and a primary means by which water is transported to serve ecosystems' and human needs. Thus, our concern is in understanding streamflow variability. Climate variability and impacts on water resources are crucial factors affecting streamflow, and multi-scale variability increases risk to water sustainability and systems. Dam operations are necessary for collecting water brought by streamflow while maintaining downstream ecological health. Rules governing dam operations are based on streamflow records that are woefully short compared to periods of systematic variation present in the climatic factors driving streamflow variability and non-stationarity. We use hierarchical Bayesian regression methods in order to reconstruct paleo-streamflow records for dams within a basin using paleoclimate proxies (e.g. tree rings) to guide the reconstructions. The riverine flow network for the entire basin is subsequently modeled hierarchically using feeder stream and tributary flows. This is a starting point in analyzing streamflow variability and risks to water systems, and developing a scientifically-informed dynamic risk management framework for formulating dam operations and water policies to best hedge such risks. We will apply this work to the Missouri and Delaware River Basins (DRB). Preliminary results of streamflow reconstructions for eight dams in the upper DRB using standard Gaussian regression with regional tree ring chronologies give streamflow records that now span two to two and a half centuries, and modestly smoothed versions of these reconstructed flows indicate physically-justifiable trends in the time series.

  14. Streamflow Characteristics of Streams in the Helmand Basin, Afghanistan

    USGS Publications Warehouse

    Williams-Sether, Tara

    2008-01-01

    Statistical summaries of streamflow data for all historical streamflow-gaging stations for the Helmand Basin upstream from the Sistan Wetlands are presented in this report. The summaries for each streamflow-gaging station include (1) manuscript (station description), (2) graph of the annual mean discharge for the period of record, (3) statistics of monthly and annual mean discharges, (4) graph of the annual flow duration, (5) monthly and annual flow duration, (6) probability of occurrence of annual high discharges, (7) probability of occurrence of annual low discharges, (8) probability of occurrence of seasonal low discharges, (9) annual peak discharge and corresponding gage height for the period of record, and (10) monthly and annual mean discharges for the period of record.

  15. Estimates of monthly streamflow characteristics at selected sites in the upper Missouri River basin, Montana, base period water years 1937-86

    USGS Publications Warehouse

    Parrett, Charles; Johnson, D.R.; Hull, J.A.

    1989-01-01

    Estimates of streamflow characteristics (monthly mean flow that is exceeded 90, 80, 50, and 20 percent of the time for all years of record and mean monthly flow) were made and are presented in tabular form for 312 sites in the Missouri River basin in Montana. Short-term gaged records were extended to the base period of water years 1937-86, and were used to estimate monthly streamflow characteristics at 100 sites. Data from 47 gaged sites were used in regression analysis relating the streamflow characteristics to basin characteristics and to active-channel width. The basin-characteristics equations, with standard errors of 35% to 97%, were used to estimate streamflow characteristics at 179 ungaged sites. The channel-width equations, with standard errors of 36% to 103%, were used to estimate characteristics at 138 ungaged sites. Streamflow measurements were correlated with concurrent streamflows at nearby gaged sites to estimate streamflow characteristics at 139 ungaged sites. In a test using 20 pairs of gages, the standard errors ranged from 31% to 111%. At 139 ungaged sites, the estimates from two or more of the methods were weighted and combined in accordance with the variance of individual methods. When estimates from three methods were combined the standard errors ranged from 24% to 63 %. A drainage-area-ratio adjustment method was used to estimate monthly streamflow characteristics at seven ungaged sites. The reliability of the drainage-area-ratio adjustment method was estimated to be about equal to that of the basin-characteristics method. The estimate were checked for reliability. Estimates of monthly streamflow characteristics from gaged records were considered to be most reliable, and estimates at sites with actual flow record from 1937-86 were considered to be completely reliable (zero error). Weighted-average estimates were considered to be the most reliable estimates made at ungaged sites. (USGS)

  16. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2002

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2004-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2002.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 28 streamflow stations, 27 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 102 observation wells.

  17. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2001

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2001.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 23 streamflow stations, 20 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 103 observation wells.

  18. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2000

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.

    2001-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2000.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 85 streamflow gaging stations, daily sediment records for 26 streamflow stations, 21 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 108 observation wells.

  19. Water resources data, Puerto Rico and the U.S. Virgin Islands, Water Year 1998

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.

    1999-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 1998.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 76 streamflow gaging stations, daily sediment records for 27 streamflow stations, 99 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 97 observation wells.

  20. Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams

    USGS Publications Warehouse

    Stuckey, Marla H.

    2006-01-01

    Low-flow, base-flow, and mean-flow characteristics are an important part of assessing water resources in a watershed. These streamflow characteristics can be used by watershed planners and regulators to determine water availability, water-use allocations, assimilative capacities of streams, and aquatic-habitat needs. Streamflow characteristics are commonly predicted by use of regression equations when a nearby streamflow-gaging station is not available. Regression equations for predicting low-flow, base-flow, and mean-flow characteristics for Pennsylvania streams were developed from data collected at 293 continuous- and partial-record streamflow-gaging stations with flow unaffected by upstream regulation, diversion, or mining. Continuous-record stations used in the regression analysis had 9 years or more of data, and partial-record stations used had seven or more measurements collected during base-flow conditions. The state was divided into five low-flow regions and regional regression equations were developed for the 7-day, 10-year; 7-day, 2-year; 30-day, 10-year; 30-day, 2-year; and 90-day, 10-year low flows using generalized least-squares regression. Statewide regression equations were developed for the 10-year, 25-year, and 50-year base flows using generalized least-squares regression. Statewide regression equations were developed for harmonic mean and mean annual flow using weighted least-squares regression. Basin characteristics found to be significant explanatory variables at the 95-percent confidence level for one or more regression equations were drainage area, basin slope, thickness of soil, stream density, mean annual precipitation, mean elevation, and the percentage of glaciation, carbonate bedrock, forested area, and urban area within a basin. Standard errors of prediction ranged from 33 to 66 percent for the n-day, T-year low flows; 21 to 23 percent for the base flows; and 12 to 38 percent for the mean annual flow and harmonic mean, respectively. The regression equations are not valid in watersheds with upstream regulation, diversions, or mining activities. Watersheds with karst features need close examination as to the applicability of the regression-equation results.

  1. Analysis of surface-water data network in Kansas for effectiveness in providing regional streamflow information; with a section on theory and application of generalized least squares

    USGS Publications Warehouse

    Medina, K.D.; Tasker, Gary D.

    1987-01-01

    This report documents the results of an analysis of the surface-water data network in Kansas for its effectiveness in providing regional streamflow information. The network was analyzed using generalized least squares regression. The correlation and time-sampling error of the streamflow characteristic are considered in the generalized least squares method. Unregulated medium-, low-, and high-flow characteristics were selected to be representative of the regional information that can be obtained from streamflow-gaging-station records for use in evaluating the effectiveness of continuing the present network stations, discontinuing some stations, and (or) adding new stations. The analysis used streamflow records for all currently operated stations that were not affected by regulation and for discontinued stations for which unregulated flow characteristics, as well as physical and climatic characteristics, were available. The State was divided into three network areas, western, northeastern, and southeastern Kansas, and analysis was made for the three streamflow characteristics in each area, using three planning horizons. The analysis showed that the maximum reduction of sampling mean-square error for each cost level could be obtained by adding new stations and discontinuing some current network stations. Large reductions in sampling mean-square error for low-flow information could be achieved in all three network areas, the reduction in western Kansas being the most dramatic. The addition of new stations would be most beneficial for mean-flow information in western Kansas. The reduction of sampling mean-square error for high-flow information would benefit most from the addition of new stations in western Kansas. Southeastern Kansas showed the smallest error reduction in high-flow information. A comparison among all three network areas indicated that funding resources could be most effectively used by discontinuing more stations in northeastern and southeastern Kansas and establishing more new stations in western Kansas.

  2. Analysis of surface-water data network in Kansas for effectiveness in providing regional streamflow information

    USGS Publications Warehouse

    Medina, K.D.; Tasker, Gary D.

    1985-01-01

    The surface water data network in Kansas was analyzed using generalized least squares regression for its effectiveness in providing regional streamflow information. The correlation and time-sampling error of the streamflow characteristic are considered in the generalized least squares method. Unregulated medium-flow, low-flow and high-flow characteristics were selected to be representative of the regional information that can be obtained from streamflow gaging station records for use in evaluating the effectiveness of continuing the present network stations, discontinuing some stations; and/or adding new stations. The analysis used streamflow records for all currently operated stations that were not affected by regulation and discontinued stations for which unregulated flow characteristics , as well as physical and climatic characteristics, were available. The state was divided into three network areas, western, northeastern, and southeastern Kansas, and analysis was made for three streamflow characteristics in each area, using three planning horizons. The analysis showed that the maximum reduction of sampling mean square error for each cost level could be obtained by adding new stations and discontinuing some of the present network stations. Large reductions in sampling mean square error for low-flow information could be accomplished in all three network areas, with western Kansas having the most dramatic reduction. The addition of new stations would be most beneficial for man- flow information in western Kansas, and to lesser degrees in the other two areas. The reduction of sampling mean square error for high-flow information would benefit most from the addition of new stations in western Kansas, and the effect diminishes to lesser degrees in the other two areas. Southeastern Kansas showed the smallest error reduction in high-flow information. A comparison among all three network areas indicated that funding resources could be most effectively used by discontinuing more stations in northeastern and southeastern Kansas and establishing more new stations in western Kansas. (Author 's abstract)

  3. Water Resources Data, California, Water Year 1994. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Hayes, P.D.; Agajanian, J.A.; Rockwell, G.L.

    1995-01-01

    Water resources data for the 1994 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 143 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations; (2) stage and contents records for 20 lakes and reservoirs; (3) water quality records for 19 streamflow-gaging stations and 2 partial-record stations; and ( 4) precipitation records for 8 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  4. Water Resources Data, California, Water Year 1990. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin; and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Bowers, J.C.; Jensen, R.M.; Hoffman, E.B.

    1991-01-01

    Water resources data for the 1990 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains discharge records for 157 streamflow-gaging stations, 16 crest-stage partial-record streamflow stations, and 2miscellaneous measurement stations; stage and contents records for 16 lakes and reservoirs; water-quality records for 19 streamflow-gaging stations, 2 partial-record stations; and precipitation records for 13 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  5. Water Resources Data, California, Water Year 1995. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin; and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Agajanian, J.A.; Rockwell, G.L.; Hayes, P.D.

    1996-01-01

    Water resources data for the 1995 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 141 streamflow-gaging stations, 6 crest-stage partial-record streamflow stations; (2) stage and contents records for 20 lakes and reservoirs; (3) water quality records for 21 streamflow-gaging stations and 3 partial-record stations; and (4) precipitation records for 1 station. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  6. Water Resources Data, California, Water Year 1991. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin; and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Jensen, R.M.; Hoffman, E.B.; Bowers, J.C.; Mullen, J.R.

    1992-01-01

    Water resources data for the 1991 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains dischrage records for 171 streamflow-gaging stations, 16 crest-stage partial-record streamflow stations, and 3 miscellaneous measurement stations; stage and contents records for 24 lakes and reservoirs; water-quality records for 23 streamflow-gaging stations, 4 partial-record stations; and precipitation records for 16 stations. These data represent that part of the National Water Data System operated by the U,S. Geological Survey and cooperating State and Federal agencies in California.

  7. Evaluation of statistical and rainfall-runoff models for predicting historical daily streamflow time series in the Des Moines and Iowa River watersheds

    USGS Publications Warehouse

    Farmer, William H.; Knight, Rodney R.; Eash, David A.; Kasey J. Hutchinson,; Linhart, S. Mike; Christiansen, Daniel E.; Archfield, Stacey A.; Over, Thomas M.; Kiang, Julie E.

    2015-08-24

    Daily records of streamflow are essential to understanding hydrologic systems and managing the interactions between human and natural systems. Many watersheds and locations lack streamgages to provide accurate and reliable records of daily streamflow. In such ungaged watersheds, statistical tools and rainfall-runoff models are used to estimate daily streamflow. Previous work compared 19 different techniques for predicting daily streamflow records in the southeastern United States. Here, five of the better-performing methods are compared in a different hydroclimatic region of the United States, in Iowa. The methods fall into three classes: (1) drainage-area ratio methods, (2) nonlinear spatial interpolations using flow duration curves, and (3) mechanistic rainfall-runoff models. The first two classes are each applied with nearest-neighbor and map-correlated index streamgages. Using a threefold validation and robust rank-based evaluation, the methods are assessed for overall goodness of fit of the hydrograph of daily streamflow, the ability to reproduce a daily, no-fail storage-yield curve, and the ability to reproduce key streamflow statistics. As in the Southeast study, a nonlinear spatial interpolation of daily streamflow using flow duration curves is found to be a method with the best predictive accuracy. Comparisons with previous work in Iowa show that the accuracy of mechanistic models with at-site calibration is substantially degraded in the ungaged framework.

  8. Onset of snowmelt and streamflow in 2004 in the Western Unites States: How shading may affect spring streamflow timing in a warmer world

    USGS Publications Warehouse

    Lundquist, J.D.; Flint, A.L.

    2006-01-01

    Historic streamflow records show that the onset of snowfed streamflow in the western United States has shifted earlier over the past 50 yr, and March 2004 was one of the earliest onsets on record. Record high temperatures occurred throughout the western United States during the second week of March, and U.S. Geological Survey (USGS) stream gauges throughout the area recorded early onsets of streamflow at this time. However, a set of nested subbasins in Yosemite National Park, California, told a more complicated story. In spite of high air temperatures, many streams draining high-elevation basins did not start flowing until later in the spring. Temperatures during early March 2004 were as high as temperatures in late March 2002, when streams at all of the monitored Yosemite basins began flowing at the same time. However, the March 2004 onset occurred before the spring equinox, when the sun was lower in the sky. Thus, shading and solar radiation differences played a much more important role in 2004, leading to differences in streamflow timing. These results suggest that as temperatures warm and spring melt shifts earlier in the season, topographic effects will play an even more important role than at present in determining snowmelt timing. ?? 2006 American Meteorological Society.

  9. Accuracy of selected techniques for estimating ice-affected streamflow

    USGS Publications Warehouse

    Walker, John F.

    1991-01-01

    This paper compares the accuracy of selected techniques for estimating streamflow during ice-affected periods. The techniques are classified into two categories - subjective and analytical - depending on the degree of judgment required. Discharge measurements have been made at three streamflow-gauging sites in Iowa during the 1987-88 winter and used to established a baseline streamflow record for each site. Using data based on a simulated six-week field-tip schedule, selected techniques are used to estimate discharge during the ice-affected periods. For the subjective techniques, three hydrographers have independently compiled each record. Three measures of performance are used to compare the estimated streamflow records with the baseline streamflow records: the average discharge for the ice-affected period, and the mean and standard deviation of the daily errors. Based on average ranks for three performance measures and the three sites, the analytical and subjective techniques are essentially comparable. For two of the three sites, Kruskal-Wallis one-way analysis of variance detects significant differences among the three hydrographers for the subjective methods, indicating that the subjective techniques are less consistent than the analytical techniques. The results suggest analytical techniques may be viable tools for estimating discharge during periods of ice effect, and should be developed further and evaluated for sites across the United States.

  10. Estimating Low-Flow Frequency Statistics and Hydrologic Analysis of Selected Streamflow-Gaging Stations, Nooksack River Basin, Northwestern Washington and Canada

    USGS Publications Warehouse

    Curran, Christopher A.; Olsen, Theresa D.

    2009-01-01

    Low-flow frequency statistics were computed at 17 continuous-record streamflow-gaging stations and 8 miscellaneous measurement sites in and near the Nooksack River basin in northwestern Washington and Canada, including the 1, 3, 7, 15, 30, and 60 consecutive-day low flows with recurrence intervals of 2 and 10 years. Using these low-flow statistics, 12 regional regression equations were developed for estimating the same low-flow statistics at ungaged sites in the Nooksack River basin using a weighted-least-squares method. Adjusted R2 (coefficient of determination) values for the equations ranged from 0.79 to 0.93 and the root-mean-squared error (RMSE) expressed as a percentage ranged from 77 to 560 percent. Streamflow records from six gaging stations located in mountain-stream or lowland-stream subbasins of the Nooksack River basin were analyzed to determine if any of the gaging stations could be removed from the network without significant loss of information. Using methods of hydrograph comparison, daily-value correlation, variable space, and flow-duration ratios, and other factors relating to individual subbasins, the six gaging stations were prioritized from most to least important as follows: Skookum Creek (12209490), Anderson Creek (12210900), Warm Creek (12207750), Fishtrap Creek (12212050), Racehorse Creek (12206900), and Clearwater Creek (12207850). The optimum streamflow-gaging station network would contain all gaging stations except Clearwater Creek, and the minimum network would include Skookum Creek and Anderson Creek.

  11. 2011 Souris River flood—Will it happen again?

    USGS Publications Warehouse

    Nustad, Rochelle A.; Kolars, Kelsey A.; Vecchia, Aldo V.; Ryberg, Karen R.

    2016-09-29

    The Souris River Basin is a 61,000 square kilometer basin in the provinces of Saskatchewan and Manitoba and the state of North Dakota. Record setting rains in May and June of 2011 led to record flooding with peak annual streamflow values (762 cubic meters per second [m3/s]) more than twice that of any previously recorded peak streamflow and more than five times the estimated 100 year postregulation streamflow (142 m3/s) at the U.S. Geological Survey (USGS) streamflow-gaging station above Minot, North Dakota. Upstream from Minot, N. Dak., the Souris River is regulated by three reservoirs in Saskatchewan (Rafferty, Boundary, and Alameda) and Lake Darling in North Dakota. During the 2011 flood, the city of Minot, N. Dak., experienced devastating damages with more than 4,000 homes flooded and 11,000 evacuated. As a result, the Souris River Basin Task Force recommended the U.S. Geological Survey (in cooperation with the North Dakota State Water Commission) develop a model for estimating the probabilities of future flooding and drought. The model that was developed took on four parts: (1) looking at past climate, (2) predicting future climate, (3) developing a streamflow model in response to certain climatic variables, and (4) combining future climate estimates with the streamflow model to predict future streamflow events. By taking into consideration historical climate record and trends in basin response to various climatic conditions, it was determined flood risk will remain high in the Souris River Basin until the wet climate state ends.

  12. Methods for estimating drought streamflow probabilities for Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.

    2014-01-01

    Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.

  13. Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey

    USGS Publications Warehouse

    Watson, Kara M.; McHugh, Amy R.

    2014-01-01

    Regional regression equations were developed for estimating monthly flow-duration and monthly low-flow frequency statistics for ungaged streams in Coastal Plain and non-coastal regions of New Jersey for baseline and current land- and water-use conditions. The equations were developed to estimate 87 different streamflow statistics, which include the monthly 99-, 90-, 85-, 75-, 50-, and 25-percentile flow-durations of the minimum 1-day daily flow; the August–September 99-, 90-, and 75-percentile minimum 1-day daily flow; and the monthly 7-day, 10-year (M7D10Y) low-flow frequency. These 87 streamflow statistics were computed for 41 continuous-record streamflow-gaging stations (streamgages) with 20 or more years of record and 167 low-flow partial-record stations in New Jersey with 10 or more streamflow measurements. The regression analyses used to develop equations to estimate selected streamflow statistics were performed by testing the relation between flow-duration statistics and low-flow frequency statistics for 32 basin characteristics (physical characteristics, land use, surficial geology, and climate) at the 41 streamgages and 167 low-flow partial-record stations. The regression analyses determined drainage area, soil permeability, average April precipitation, average June precipitation, and percent storage (water bodies and wetlands) were the significant explanatory variables for estimating the selected flow-duration and low-flow frequency statistics. Streamflow estimates were computed for two land- and water-use conditions in New Jersey—land- and water-use during the baseline period of record (defined as the years a streamgage had little to no change in development and water use) and current land- and water-use conditions (1989–2008)—for each selected station using data collected through water year 2008. The baseline period of record is representative of a period when the basin was unaffected by change in development. The current period is representative of the increased development of the last 20 years (1989–2008). The two different land- and water-use conditions were used as surrogates for development to determine whether there have been changes in low-flow statistics as a result of changes in development over time. The State was divided into two low-flow regression regions, the Coastal Plain and the non-coastal region, in order to improve the accuracy of the regression equations. The left-censored parametric survival regression method was used for the analyses to account for streamgages and partial-record stations that had zero flow values for some of the statistics. The average standard error of estimate for the 348 regression equations ranged from 16 to 340 percent. These regression equations and basin characteristics are presented in the U.S. Geological Survey (USGS) StreamStats Web-based geographic information system application. This tool allows users to click on an ungaged site on a stream in New Jersey and get the estimated flow-duration and low-flow frequency statistics. Additionally, the user can click on a streamgage or partial-record station and get the “at-site” streamflow statistics. The low-flow characteristics of a stream ultimately affect the use of the stream by humans. Specific information on the low-flow characteristics of streams is essential to water managers who deal with problems related to municipal and industrial water supply, fish and wildlife conservation, and dilution of wastewater.

  14. Development and application of a comprehensive simulation model to evaluate impacts of watershed structures and irrigation water use on streamflow and groundwater: The case of Wet Walnut Creek Watershed, Kansas, USA

    USGS Publications Warehouse

    Ramireddygari, S.R.; Sophocleous, M.A.; Koelliker, J.K.; Perkins, S.P.; Govindaraju, R.S.

    2000-01-01

    This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard 'base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed. (C) 2000 Elsevier Science B.V.This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard `base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed.A comprehensive simulation model that combines the surface water flow model POTYLDR and the groundwater flow model MODFLOW was used to study the impacts of watershed structures (e.g., dams) and irrigation water use (including stream-aquifer interactions) on streamflow and groundwater. The model was revised, enhanced, calibrated, and verified, then applied to evaluate the hydrologic budget for Wet Wal

  15. Streamflow characteristics and trends along Soldier Creek, Northeast Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.

    2017-08-16

    Historical data for six selected U.S. Geological Survey streamgages along Soldier Creek in northeast Kansas were used in an assessment of streamflow characteristics and trends. This information is required by the Prairie Band Potawatomi Nation for the effective management of tribal water resources, including drought contingency planning. Streamflow data for the period of record at each streamgage were used to assess annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow.Annual mean streamflows along Soldier Creek were characterized by substantial year-to-year variability with no pronounced long-term trends. On average, annual mean base flow accounted for about 20 percent of annual mean streamflow. Mean monthly flows followed a general seasonal pattern that included peak values in spring and low values in winter. Annual peak flows, which were characterized by considerable year-to-year variability, were most likely to occur in May and June and least likely to occur during November through February. With the exception of a weak yet statistically significant increasing trend at the Soldier Creek near Topeka, Kansas, streamgage, there were no pronounced long-term trends in annual peak flows. Annual 1-day, 30-day, and 90-day mean minimum flows were characterized by considerable year-to-year variability with no pronounced long-term trend. During an extreme drought, as was the case in the mid-1950s, there may be zero flow in Soldier Creek continuously for a period of one to several months.

  16. Hydrologic and water-quality data, Honey Creek State Natural Area, Comal County, Texas, August 2001-September 2003

    USGS Publications Warehouse

    Slattery, Richard N.; Furlow, Allen L.; Ockerman, Darwin J.

    2006-01-01

    The U.S. Geological Survey collected rainfall, streamflow, evapotranspiration, and rainfall and stormflow water-quality data from seven sites in two adjacent watersheds in the Honey Creek State Natural Area, Comal County, Texas, during August 2001–September 2003, in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service, and the San Antonio Water System. Data collected during this period represent baseline hydrologic and water-quality conditions before proposed removal of ashe juniper (Juniperus ashei) from one of the two watersheds. Juniper removal is intended as a best-management practice to increase water quantity (aquifer recharge and streamflow) and to protect water quality. Continuous (5-minute interval) rainfall data are collected at four sites; continuous (5-minute interval) streamflow data are collected at three sites. Fifteen-minute averages of meteorological and solar-energy-related data recorded at two sites are used to compute moving 30-minute evapotranspiration values on the basis of the energy-balance Bowen ratio method. Periodic rainfall water-quality data are collected at one site and stormflow water-quality data at three sites. Daily rainfall, streamflow, and evapotranspiration totals are presented in tables; detailed data are listed in an appendix. Results of analyses of the periodic rainfall and stormflow water-quality samples collected during runoff events are summarized in the appendix; not all data types were collected at all sites nor were all data types collected during the entire 26-month period.

  17. Hydrologic monitoring of selected streams in coal fields of central and southern Utah; summary of data collected, August 1978-September 1984

    USGS Publications Warehouse

    Price, Don; Plantz, G.G.

    1987-01-01

    The U.S. Geological Survey conducted a coal-hydrology monitoring program in coal-field areas of central and southern Utah during August 1978-September 1984 to determine possible hydrologic impacts of future mining and to provide a better understanding of the hydrologic systems of the coal resource areas monitored. Data were collected at 19 gaging stations--18 stations in the Price, San Rafael, and Dirty Devil River basins, and 1 in the Kanab Creek Basin. Streamflow data were collected continuously at 11 stations and seasonally at 5 stations. At the other three stations streamflow data were collected continuously during the 1979 water year and then seasonally for the rest of their periods of record. Types of data collected at each station included quantity and quality of streamflow; suspended sediment concentrations; and descriptions of stream bottom sediments, benthic invertebrate, and phytoplankton samples. Also, base flow measurements were made annually upstream from 12 of the gaging stations. Stream bottom sediment sampled at nearly all the monitoring sites contained small to moderate quantities of coal, which may be attributed chiefly to pre-monitoring mining. Streamflow sampled at several sites contained large concentrations of sulfate and dissolved solids. Also, concentrations of various trace elements at 10 stations, and phenols at 18 stations, exceeded the criteria of the EPA for drinking water. This may be attributed to contemporary (water years 1979-84) mine drainage activities. The data collected during the complete water years (1979-84) of monitoring do provide a better understanding of the hydrologic systems of the coal field areas monitored. The data also provide a definite base by which to evaluate hydrologic impacts of continued or increased coal mining in those areas. (Author 's abstract)

  18. Water Resources Data, California, Water Year 1993. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin, and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Mullen, J.R.; Hayes, P.D.; Agajanian, J.A.

    1994-01-01

    Water resources data for the 1993 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 156 streamflow-gaging stations, 12 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 17 streamflow-gaging stations and 6 partial-record stations; and (4) precipitation records for 10 stations . These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  19. Climate change streamflow scenarios designed for critical period water resources planning studies

    NASA Astrophysics Data System (ADS)

    Hamlet, A. F.; Snover, A. K.; Lettenmaier, D. P.

    2003-04-01

    Long-range water planning in the United States is usually conducted by individual water management agencies using a critical period planning exercise based on a particular period of the observed streamflow record and a suite of internally-developed simulation tools representing the water system. In the context of planning for climate change, such an approach is flawed in that it assumes that the future climate will be like the historic record. Although more sophisticated planning methods will probably be required as time goes on, a short term strategy for incorporating climate uncertainty into long-range water planning as soon as possible is to create alternate inputs to existing planning methods that account for climate uncertainty as it affects both supply and demand. We describe a straight-forward technique for constructing streamflow scenarios based on the historic record that include the broad-based effects of changed regional climate simulated by several global climate models (GCMs). The streamflow scenarios are based on hydrologic simulations driven by historic climate data perturbed according to regional climate signals from four GCMs using the simple "delta" method. Further data processing then removes systematic hydrologic model bias using a quantile-based bias correction scheme, and lastly, the effects of random errors in the raw hydrologic simulations are removed. These techniques produce streamflow scenarios that are consistent in time and space with the historic streamflow record while incorporating fundamental changes in temperature and precipitation from the GCM scenarios. Planning model simulations based on these climate change streamflow scenarios can therefore be compared directly to planning model simulations based on the historic record of streamflows to help planners understand the potential impacts of climate uncertainty. The methods are currently being tested and refined in two large-scale planning exercises currently being conducted in the Pacific Northwest (PNW) region of the US, and the resulting streamflow scenarios will be made freely available on the internet for a large number of sites in the PNW to help defray the costs of including climate change information in other studies.

  20. Development of a Precipitation-Runoff Model to Simulate Unregulated Streamflow in the Salmon Creek Basin, Okanogan County, Washington

    USGS Publications Warehouse

    van Heeswijk, Marijke

    2006-01-01

    Surface water has been diverted from the Salmon Creek Basin for irrigation purposes since the early 1900s, when the Bureau of Reclamation built the Okanogan Project. Spring snowmelt runoff is stored in two reservoirs, Conconully Reservoir and Salmon Lake Reservoir, and gradually released during the growing season. As a result of the out-of-basin streamflow diversions, the lower 4.3 miles of Salmon Creek typically has been a dry creek bed for almost 100 years, except during the spring snowmelt season during years of high runoff. To continue meeting the water needs of irrigators but also leave water in lower Salmon Creek for fish passage and to help restore the natural ecosystem, changes are being considered in how the Okanogan Project is operated. This report documents development of a precipitation-runoff model for the Salmon Creek Basin that can be used to simulate daily unregulated streamflows. The precipitation-runoff model is a component of a Decision Support System (DSS) that includes a water-operations model the Bureau of Reclamation plans to develop to study the water resources of the Salmon Creek Basin. The DSS will be similar to the DSS that the Bureau of Reclamation and the U.S. Geological Survey developed previously for the Yakima River Basin in central southern Washington. The precipitation-runoff model was calibrated for water years 1950-89 and tested for water years 1990-96. The model was used to simulate daily streamflows that were aggregated on a monthly basis and calibrated against historical monthly streamflows for Salmon Creek at Conconully Dam. Additional calibration data were provided by the snowpack water-equivalent record for a SNOTEL station in the basin. Model input time series of daily precipitation and minimum and maximum air temperatures were based on data from climate stations in the study area. Historical records of unregulated streamflow for Salmon Creek at Conconully Dam do not exist for water years 1950-96. Instead, estimates of historical monthly mean unregulated streamflow based on reservoir outflows and storage changes were used as a surrogate for the missing data and to calibrate and test the model. The estimated unregulated streamflows were corrected for evaporative losses from Conconully Reservoir (about 1 ft3/s) and ground-water losses from the basin (about 2 ft3/s). The total of the corrections was about 9 percent of the mean uncorrected streamflow of 32.2 ft3/s (23,300 acre-ft/yr) for water years 1949-96. For the calibration period, the basinwide mean annual evapotranspiration was simulated to be 19.1 inches, or about 83 percent of the mean annual precipitation of 23.1 inches. Model calibration and testing indicated that the daily streamflows simulated using the precipitation-runoff model should be used only to analyze historical and forecasted annual mean and April-July mean streamflows for Salmon Creek at Conconully Dam. Because of the paucity of model input data and uncertainty in the estimated unregulated streamflows, the model is not adequately calibrated and tested to estimate monthly mean streamflows for individual months, such as during low-flow periods, or for shorter periods such as during peak flows. No data were available to test the accuracy of simulated streamflows for lower Salmon Creek. As a result, simulated streamflows for lower Salmon Creek should be used with caution. For the calibration period (water years 1950-89), both the simulated mean annual streamflow and the simulated mean April-July streamflow compared well with the estimated uncorrected unregulated streamflow (UUS) and corrected unregulated streamflow (CUS). The simulated mean annual streamflow exceeded UUS by 5.9 percent and was less than CUS by 2.7 percent. Similarly, the simulated mean April-July streamflow exceeded UUS by 1.8 percent and was less than CUS by 3.1 percent. However, streamflow was significantly undersimulated during the low-flow, baseflow-dominated months of November through F

  1. History of natural flows--Kansas River

    USGS Publications Warehouse

    Leeson, Elwood R.

    1958-01-01

    Through its Water Resources Division, the United States Geological Survey has become the major water-resources historian for the nation. The Geological Survey's collection of streamflow records in Kansas began on a very small scale in 1895 in response to some early irrigation interest, Since that time the program has grown, and we now have about 21 350 station-years of record accumulated. A station-year of record is defined as a continuous record of flow collected at a fixed point for a period of one year. Volume of data at hand, however, is not in itself an, adequate measure of its usefullness. An important element in historical streamflow data which enhances its value as a tool for the prediction of the future is the length of continuous records available in the area being studied. The records should be of sufficient length that they may be regarded as a reasonable sample of what has gone before and may be expected in the future. Table 1 gives a graphical inventory of the available streamflow records in Kansas. It shows that, in general, there is a fair coverage of stations with records of about thirty-seven years in length, This is not a long period as history goes but it does include considerable experience with floods and droughts.Although a large quantity of data on Kansas streamflow has been accumulated, hydrologists and planning engineers find that stream flow information for many areas of the State is considerably less than adequate. The problem of obtaining adequate coverage has been given careful study by the Kansas Water Resources Board in cooperation with the U. S. Geological Survey and a report entitled "Development of A Balanced Stream-Gaging Program For Kansas", has been published by the Board as Bulletin No. 4, That report presents an analysis of the existing stream-gaging program and recommendations for a program to meet the rapidly expanding needs for more comprehensive basic data.The Kansas River is formed near Junction City, Kansas, by the confluence of the Smoky Hill and Republican Rivers, From that point the river flows eastward about 175 miles to Kansas City where it empties into the Missouri River. The basic history of its natural flow can be depicted in general by the records from three gaging stations. The one at Bonner Springs, about 21 miles upstream from the mouth, may be considered as representing the total outflow from the basin; the one at Ogden, about 8 miles downstream from the confluence of the Smoky Hill and Republican Rivers, may be considered as representing the combined contribution of those streams to the Kansas River flow; and the one at Topeka, being only about 16 river miles nearer to Ogden than to Bonner Springs, may be considered as representing flows at the mid-point along the river.

  2. Influence of groundwater pumping on streamflow restoration following upstream dam removal

    USGS Publications Warehouse

    Constantz, J.; Essaid, H.

    2007-01-01

    We compared streamflow in basins under the combined impacts of an upland dam and groundwater pumping withdrawals, by examining streamflow in the presence and absence of each impact. As a qualitative analysis, inter-watersbed streamflow comparisons were performed for several rivers flowing into the east side of the Central Valley, CA. Results suggest that, in the absence of upland dams supporting large reservoirs, some reaches of these rivers might develop ephemeral streamflow in late summer. As a quantitative analysis, we conducted a series of streamflow/ groundwater simulations (using MODFLOW-2000 plus the streamflow routing package, SFR1) for a representative hypothetical watershed, with an upland dam and groundwater pumping in the downstream basin, under humid, semi-arid, and and conditions. As a result of including the impact of groundwater pumping, post-dam removal simulated streamflow was significantly less than natural streamflow. The model predicts extensive ephemeral conditions in the basin during September for both the arid and semi-arid cases. The model predicts continued perennial conditions in the humid case, but spatially weighted, average streamflow of only 71% of natural September streamflow, as a result of continued pumping after dam removal.

  3. Flow characteristics at U.S. Geological Survey streamgages in the conterminous United States

    USGS Publications Warehouse

    Wolock, David

    2003-01-01

    This dataset represents point locations and flow characteristics for current (as of November 20, 2001) and historical U.S. Geological Survey (USGS) streamgages in the conterminous United States. The flow characteristics were computed from the daily streamflow data recorded at each streamgage for the period of record. The attributes associated with each streamgage include: Station number Station name Station latitude (decimal degrees in North American Datum of 1983, NAD 83) Station longitude (decimal degrees in NAD 83) First date (year, month, day) of streamflow data Last date (year, month, day) of streamflow data Number of days of streamflow data Minimum and maximum daily flow for the period of record (cubic feet per second) Percentiles (1, 5, 10, 20, 25, 50, 75, 80, 90, 95, 99) of daily flow for the period of record (cubic feet per second) Average and standard deviation of daily flow for the period of record (cubic feet per second) Mean annual base-flow index (BFI: see supplemental information) computed for the period of record (fraction, ranging from 0 to 1) Year-to-year standard deviation of the annual base-flow index computed for the period of record (fraction) Number of years of data used to compute the base-flow index (years) Reported drainage area (square miles) Reported contributing drainage area (square miles) National Water Information System (NWIS)-Web page URL for streamgage Hydrologic Unit Code (HUC, 8 digit) Hydrologic landscape region (HLR) River Reach File 1 (RF1) segment identification number (E2RF1##) Station numbers, names, locations, and drainage areas were acquired through the National Water Information System (NWIS)-Web (http://water.usgs.gov/nwis) on November 20, 2001. The streamflow data used to compute flow characteristics were copied from the Water server (water.usgs.gov:/www/htdocs/nwisweb/data1/discharge/) on November 2, 2001. The missing value indicator for all attributes is -99. Some streamflow characteristics are missing for: (1) streamgages measuring flow subject to tidal effects, which cause flow to reverse directions, (2) streamgages with site information but no streamflow data at the time the data were retrieved, and (3) streamgages with record length too short to compute the base-flow index.

  4. Long-term Trends in Mean Annual Streamflow in the United States for the Period 1960 to 2012

    NASA Astrophysics Data System (ADS)

    Anderson, M. T.; Norton, P. A.

    2013-12-01

    Long-term trends in mean annual streamflow were examined in the United States for evidence of climate change. Streamflow serves as a useful integrator of many climate factors, such as precipitation, evapotranspiration, temperature and other hydrologic processes. The U.S. Geological Survey network of gaging stations with continuous record for the period 1960 through 2012 were considered and analyzed using the Kendall Tau statistical method looking for monotonic trends at a p-value greater than or equal to 0.1. Of the stations with 52 years of continuous record, 489 had upward trends while 260 stations had downward trends. Distinct geographic patterns of upward and downward trends emerged. Upward trends predominate in a band of stations extending from the eastern Dakotas through the Midwest to the New England states. Downward trends predominate in the southeastern United States and the Rocky Mountains of Wyoming, Montana and Idaho. Of those stations with upward trends, 56 stations had an increase in the annual mean that more than doubled from 1960 to 2012. The James River in South Dakota and the Red River of the North in North Dakota stand out for the magnitude of increase and the volume of water the increase represents. Of those stations with downward trends, 35 stations had a decrease that was more than half of the annual mean from 1960 to 2012. This presentation will provide details of these trends, the volumes of water represented, the associated precipitation trends and some evidence of land use change.

  5. A nonparametric stochastic method for generating daily climate-adjusted streamflows

    NASA Astrophysics Data System (ADS)

    Stagge, J. H.; Moglen, G. E.

    2013-10-01

    A daily stochastic streamflow generation model is presented, which successfully replicates statistics of the historical streamflow record and can produce climate-adjusted daily time series. A monthly climate model relates general circulation model (GCM)-scale climate indicators to discrete climate-streamflow states, which in turn control parameters in a daily streamflow generation model. Daily flow is generated by a two-state (increasing/decreasing) Markov chain, with rising limb increments randomly sampled from a Weibull distribution and the falling limb modeled as exponential recession. When applied to the Potomac River, a 38,000 km2 basin in the Mid-Atlantic United States, the model reproduces the daily, monthly, and annual distribution and dynamics of the historical streamflow record, including extreme low flows. This method can be used as part of water resources planning, vulnerability, and adaptation studies and offers the advantage of a parsimonious model, requiring only a sufficiently long historical streamflow record and large-scale climate data. Simulation of Potomac streamflows subject to the Special Report on Emissions Scenarios (SRES) A1b, A2, and B1 emission scenarios predict a slight increase in mean annual flows over the next century, with the majority of this increase occurring during the winter and early spring. Conversely, mean summer flows are projected to decrease due to climate change, caused by a shift to shorter, more sporadic rain events. Date of the minimum annual flow is projected to shift 2-5 days earlier by the 2070-2099 period.

  6. Streamflow characteristics of the Colorado River Basin in Utah through September 1981

    USGS Publications Warehouse

    Christensen, R.C.; Johnson, E.B.; Plantz, G.G.

    1987-01-01

     This report summarizes discharge data and other streamflow characteristics developed from gag ing-station records collected through September 1981 at 337 stations in the Colorado River Basin in Utah. Data also are included for 14 stations in adjacent areas of the bordering states of Arizona, Colorado, and Wyoming (fig. 1). The study leading to this report was done in cooperation with the U.S. Bureau of Land Management, which needs the streamflow data in order to evaluate impacts of mining on the hydrologic system. The report also will be beneficial to other Federal, State, and county agencies and to individuals concerned with water supply and water problems in the Colorado River Basin.The streamflow characteristics in the report could be useful in many water-related studies that involve the following:Definition of baseline-hydrologic conditions; studies of the effects of man's activities on streamflow; frequency analyses of low and high flows; regional analyses of streamflow characteristics; design of water-supply systems; water-power studies; forecasting of stream discharge; time-series analyses of streamflow; design of flood-control structures; stream-pollution studies; and water-chemistry transport studies.The basic data used to develop the summaries in this report are records of daily and peak discharge collected by the U.S. Geological Survey and other Federal agencies. Much of the work of the Geological Survey was done in cooperation with Federal, State, and county agencies. Discharge recordsincluded in the report generally were for stations with at least 1 complete water year of record and nearby stations that were on the same stream and had different streamflow characteristics. A water year is a 12-month period ending September 30, and it is designated by the calendar year in which it ends. For streams that have had significant changes in regulation by reservoirs or diversions, the records before and after those changes were used separately to provide streamflow characteristics for each period of homogeneous streamflow and to show the change in the characteristics. Summaries for annual peak discharge are included only for stations with 5 or more years of data. The summaries of annual lowest and highest mean-discharge frequency are reported for stations with 10 or more years of daily-discharge record and for which computer-generated frequency curves provided a reasonable fit of the plotted data.

  7. National Streamflow Information Program: Implementation Status Report

    USGS Publications Warehouse

    Norris, J. Michael

    2009-01-01

    The U.S. Geological Survey (USGS) operates and maintains a nationwide network of about 7,500 streamgages designed to provide and interpret long-term, accurate, and unbiased streamflow information to meet the multiple needs of many diverse national, regional, state, and local users. The National Streamflow Information Program (NSIP) was initiated in 2003 in response to Congressional and stakeholder concerns about (1) the decrease in the number of operating streamgages, including a disproportionate loss of streamgages with a long period of record; (2) the inability of the USGS to continue operating high-priority streamgages in an environment of reduced funding through partnerships; and (3) the increasing demand for streamflow information due to emerging resource-management issues and new data-delivery capabilities. The NSIP's mission is to provide the streamflow information and understanding required to meet national, regional, state, and local needs. Most of the existing streamgages are funded through partnerships with more than 850 other Federal, state, tribal, and local agencies. Currently, about 90 percent of the streamgages send data to the World Wide Web in near-real time (some information is transmitted within 15 minutes, whereas some lags by about 4 hours). The streamflow information collected at USGS streamgages is used for many purposes: *In water-resource appraisals and allocations - to determine how much water is available and how it is being allocated; *To provide streamflow information required by interstate agreements, compacts, and court decrees; *For engineering design of reservoirs, bridges, roads, culverts, and treatment plants; *For the operation of reservoirs, the operation of locks and dams for navigation purposes, and power production; *To identify changes in streamflow resulting from changes in land use, water use, and climate; *For streamflow forecasting, flood planning, and flood forecasting; *To support water-quality programs by allowing determination of constituent loads and fluxes; and *For characterizing and evaluating instream conditions for habitat assessments, instream-flow requirements, and recreation.

  8. Chemical concentrations and instantaneous loads, Green River to the Lower Duwamish Waterway near Seattle, Washington, 2013–15

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.; Vanderpool-Kimura, Ann M.; Foreman, James R.; Peterson, Norman T.; Senter, Craig A.; Sissel, Stephen K.

    2015-12-23

    Median chemical concentrations in suspended-sediment samples were greater than median chemical concentrations in fine bed sediment (less than 62.5 µm) samples, which were greater than median chemical concentrations in paired bulk bed sediment (less than 2 mm) samples. Suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters were measured concurrent with the chemistry sampling. From this discrete data, combined with the continuous streamflow record, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated. For most compounds, loads were higher during storms than during baseline conditions because of high streamflow and high chemical concentrations. The highest loads occurred during dam releases (periods when stored runoff from a prior storm is released from the Howard Hanson Dam into the upper Green River) because of the high river streamflow and high suspended-sediment concentration, even when chemical concentrations were lower than concentrations measured during storm events. 

  9. Cost-effectiveness of the streamflow-gaging program in Wyoming

    USGS Publications Warehouse

    Druse, S.A.; Wahl, K.L.

    1988-01-01

    This report documents the results of a cost-effectiveness study of the streamflow-gaging program in Wyoming. Regression analysis or hydrologic flow-routing techniques were considered for 24 combinations of stations from a 139-station network operated in 1984 to investigate suitability of techniques for simulating streamflow records. Only one station was determined to have sufficient accuracy in the regression analysis to consider discontinuance of the gage. The evaluation of the gaging-station network, which included the use of associated uncertainty in streamflow records, is limited to the nonwinter operation of the 47 stations operated by the Riverton Field Office of the U.S. Geological Survey. The current (1987) travel routes and measurement frequencies require a budget of $264,000 and result in an average standard error in streamflow records of 13.2%. Changes in routes and station visits using the same budget, could optimally reduce the standard error by 1.6%. Budgets evaluated ranged from $235,000 to $400,000. A $235,000 budget increased the optimal average standard error/station from 11.6 to 15.5%, and a $400,000 budget could reduce it to 6.6%. For all budgets considered, lost record accounts for about 40% of the average standard error. (USGS)

  10. Dendrohydrology and water resources management in south-central Chile: lessons from the Río Imperial streamflow reconstruction

    NASA Astrophysics Data System (ADS)

    Fernández, Alfonso; Muñoz, Ariel; González-Reyes, Álvaro; Aguilera-Betti, Isabella; Toledo, Isadora; Puchi, Paulina; Sauchyn, David; Crespo, Sebastián; Frene, Cristian; Mundo, Ignacio; González, Mauro; Vignola, Raffaele

    2018-05-01

    Streamflow in south-central Chile (SCC, ˜ 37-42° S) is vital for agriculture, forestry production, hydroelectricity, and human consumption. Recent drought episodes have generated hydrological deficits with damaging effects on these activities. This region is projected to undergo major reductions in water availability, concomitant with projected increases in water demand. However, the lack of long-term records hampers the development of accurate estimations of natural variability and trends. In order to provide more information on long-term streamflow variability and trends in SCC, here we report findings of an analysis of instrumental records and a tree-ring reconstruction of the summer streamflow of the Río Imperial ( ˜ 37° 40' S-38° 50' S). This is the first reconstruction in Chile targeted at this season. Results from the instrumental streamflow record ( ˜ 1940 onwards) indicated that the hydrological regime is fundamentally pluvial with a small snowmelt contribution during spring, and evidenced a decreasing trend, both for the summer and the full annual record. The reconstruction showed that streamflow below the average characterized the post-1980 period, with more frequent, but not more intense, drought episodes. We additionally found that the recent positive phase of the Southern Annular Mode has significantly influenced streamflow. These findings agree with previous studies, suggesting a robust regional signal and a shift to a new hydrological scenario. In this paper, we also discuss implications of these results for water managers and stakeholders; we provide rationale and examples that support the need for the incorporation of tree-ring reconstructions into water resources management.

  11. Water resources of the Tulalip Indian Reservation and adjacent area, Snohomish County, Washington, 2001-03

    USGS Publications Warehouse

    Frans, Lonna M.; Kresch, David L.

    2004-01-01

    This study was undertaken to improve the understanding of water resources of the Tulalip Plateau area, with a primary emphasis on the Tulalip Indian Reservation, in order to address concerns of the Tulalip Tribes about the effects of current and future development, both on and off the Reservation, on their water resources. The drinking-water supply for the Reservation comes almost entirely from ground water, so increasing population will continue to put more pressure on this resource. The study evaluated the current state of ground- and surface-water resources and comparing results with those of studies in the 1970s and 1980s. The study included updating descriptions of the hydrologic framework and ground-water system, determining if discharge and base flow in streams and lake stage have changed significantly since the 1970s, and preparing new estimates of the water budget. The hydrogeologic framework was described using data collected from 255 wells, including their location and lithology. Data collected for the Reservation water budget included continuous and periodic streamflow measurements, micrometeorological data including daily precipitation, temperature, and solar radiation, water-use data, and atmospheric chloride deposition collected under both wet- and dry-deposition conditions to estimate ground-water recharge. The Tulalip Plateau is composed of unconsolidated sediments of Quaternary age that are mostly of glacial origin. There are three aquifers and two confining units as well as two smaller units that are only localized in extent. The Vashon recessional outwash (Qvr) is the smallest of the three aquifers and lies in the Marysville Trough on the eastern part of the study area. The primary aquifer in terms of use is the Vashon advance outwash (Qva). The Vashon till (Qvt) and the transitional beds (Qtb) act as confining units. The Vashon till overlies Qva and the transitional beds underlie Qva and separate it from the undifferentiated sediments (Qu), which are also a principal aquifer of the plateau. The undifferentiated-sediments aquifer is present throughout the entire study area, but is not well defined because few wells penetrate it. Ground water flows radially outward from the center of the Plateau in the Vashon advance outwash aquifer. Water levels fluctuate seasonally in all hydrogeologic units in response to changes in precipitation over the course of the year. However, water levels do not appear to have changed significantly over the long term. There was no statistically significant change between water levels measured in 72 wells in the early 1990s and 2001. Additionally, when a rank sum test was used to compare monthly water levels measured in 18 wells for this study with monthly water levels from the 1970s and 1980s, water levels increased in some wells, decreased in some, and did not change significantly in others. Ground water in the study area is recharged from precipitation that percolates down from the land surface. Average annual recharge, estimated using the chloride-mass-balance method, was 10.4 inches per year. Current streamflow conditions on the Reservation were defined by four continuous-record streamflow-gaging stations operated from April 2001 through March 2003 and monthly measurements of discharge at 12 periodic-measurement sites. Two continuous-record gaging stations (12157250 and 12158040) near the mouths of Mission and Tulalip Creeks, respectively, also were operated during water years 1975-77. Correlations of streamflow for Mission and Tulalip Creeks with the long-term record of streamflow at Mercer Creek (station 12120000) indicate no significant change in streamflow between the mid-1970s and 2001?03 in Mission and Tulalip Creeks. However, comparisons between the percentage of change in precipitation at the Everett precipitation station and percentages of change in streamflow at the Mercer, Mission, and Tulalip Creek gaging stations from the mid-1970s through 2001

  12. Water Resources Data, California, Water Year 1992. Volume 1. Southern Great Basin from Mexican Border to Mono Lake Basin; and Pacific Slope Basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    Hoffman, E.B.; Bowers, J.C.; Mullen, J.R.; Hayes, P.D.

    1993-01-01

    Water resources data for the 1992 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 1 contains (1) discharge records for 161 streamflow-gaging stations, 15 crest-stage partial-record streamflow stations, and 5 miscellaneous measurement stations; (2) stage and contents records for 26 lakes and reservoirs; (3) water-quality records for 23 streamflow-gaging stations and 3 partialrecord stations; and ( 4) precipitation records for 11 stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  13. Stream Tracker: Crowd sourcing and remote sensing to monitor stream flow intermittence

    NASA Astrophysics Data System (ADS)

    Puntenney, K.; Kampf, S. K.; Newman, G.; Lefsky, M. A.; Weber, R.; Gerlich, J.

    2017-12-01

    Streams that do not flow continuously in time and space support diverse aquatic life and can be critical contributors to downstream water supply. However, these intermittent streams are rarely monitored and poorly mapped. Stream Tracker is a community powered stream monitoring project that pairs citizen contributed observations of streamflow presence or absence with a network of streamflow sensors and remotely sensed data from satellites to track when and where water is flowing in intermittent stream channels. Citizens can visit sites on roads and trails to track flow and contribute their observations to the project site hosted by CitSci.org. Data can be entered using either a mobile application with offline capabilities or an online data entry portal. The sensor network provides a consistent record of streamflow and flow presence/absence across a range of elevations and drainage areas. Capacitance, resistance, and laser sensors have been deployed to determine the most reliable, low cost sensor that could be mass distributed to track streamflow intermittence over a larger number of sites. Streamflow presence or absence observations from the citizen and sensor networks are then compared to satellite imagery to improve flow detection algorithms using remotely sensed data from Landsat. In the first two months of this project, 1,287 observations have been made at 241 sites by 24 project members across northern and western Colorado.

  14. A Statistical Weather-Driven Streamflow Model: Enabling future flow predictions in data-scarce headwater streams

    NASA Astrophysics Data System (ADS)

    Rosner, A.; Letcher, B. H.; Vogel, R. M.

    2014-12-01

    Predicting streamflow in headwaters and over a broad spatial scale pose unique challenges due to limited data availability. Flow observation gages for headwaters streams are less common than for larger rivers, and gages with records lengths of ten year or more are even more scarce. Thus, there is a great need for estimating streamflows in ungaged or sparsely-gaged headwaters. Further, there is often insufficient basin information to develop rainfall-runoff models that could be used to predict future flows under various climate scenarios. Headwaters in the northeastern U.S. are of particular concern to aquatic biologists, as these stream serve as essential habitat for native coldwater fish. In order to understand fish response to past or future environmental drivers, estimates of seasonal streamflow are needed. While there is limited flow data, there is a wealth of data for historic weather conditions. Observed data has been modeled to interpolate a spatially continuous historic weather dataset. (Mauer et al 2002). We present a statistical model developed by pairing streamflow observations with precipitation and temperature information for the same and preceding time-steps. We demonstrate this model's use to predict flow metrics at the seasonal time-step. While not a physical model, this statistical model represents the weather drivers. Since this model can predict flows not directly tied to reference gages, we can generate flow estimates for historic as well as potential future conditions.

  15. Water Resources Data, West Virginia, Water Year 2003

    USGS Publications Warehouse

    Ward, S.M.; Rosier, M.T.; Crosby, G.R.

    2004-01-01

    Water-resources data for the 2003 water year for West Virginia consists of records of stream discharge, reservoir and ground-water levels, and water quality of streams and ground-water wells. This report contains discharge records for 70 streamflow-gaging stations; discharge records provided by adjacent states for 8 streamflow-gaging stations; annual maximum discharge at 16 crest-stage partial-record stations; stage records for 6 detention reservoirs; water-quality records for 2 stations; and water-level records for 8 observation wells. Locations of streamflow, detention reservoir, and water-quality stations are shown on figure 4. Locations of ground-water observation wells are shown on figure 5. Additional water data were collected at various sites, not involved in the systematic data-collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  16. Water resources data-West Virginia, water year 2004

    USGS Publications Warehouse

    Ward, S.M.; Rosier, M.T.; Crosby, G.R.

    2005-01-01

    Water-resources data for the 2004 water year for West Virginia consist of records of stream discharge, reservoir and ground-water levels, and water quality of streams and ground-water wells. This report contains discharge records for 65 streamflow-gaging stations; discharge records provided by adjacent states for 8 streamflow-gaging stations; annual maximum discharge at 17 crest-stage partial-record stations; stage records for 14 detention reservoirs; water-quality records for 2 stations; and water-level records for 10 observation wells. Locations of streamflow, detention reservoir, and water-quality stations are shown on figure 4. Locations of ground-water observation wells are shown on figure 5. Additional water-quality data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  17. Computing daily mean streamflow at ungaged locations in Iowa by using the Flow Anywhere and Flow Duration Curve Transfer statistical methods

    USGS Publications Warehouse

    Linhart, S. Mike; Nania, Jon F.; Sanders, Curtis L.; Archfield, Stacey A.

    2012-01-01

    The U.S. Geological Survey (USGS) maintains approximately 148 real-time streamgages in Iowa for which daily mean streamflow information is available, but daily mean streamflow data commonly are needed at locations where no streamgages are present. Therefore, the USGS conducted a study as part of a larger project in cooperation with the Iowa Department of Natural Resources to develop methods to estimate daily mean streamflow at locations in ungaged watersheds in Iowa by using two regression-based statistical methods. The regression equations for the statistical methods were developed from historical daily mean streamflow and basin characteristics from streamgages within the study area, which includes the entire State of Iowa and adjacent areas within a 50-mile buffer of Iowa in neighboring states. Results of this study can be used with other techniques to determine the best method for application in Iowa and can be used to produce a Web-based geographic information system tool to compute streamflow estimates automatically. The Flow Anywhere statistical method is a variation of the drainage-area-ratio method, which transfers same-day streamflow information from a reference streamgage to another location by using the daily mean streamflow at the reference streamgage and the drainage-area ratio of the two locations. The Flow Anywhere method modifies the drainage-area-ratio method in order to regionalize the equations for Iowa and determine the best reference streamgage from which to transfer same-day streamflow information to an ungaged location. Data used for the Flow Anywhere method were retrieved for 123 continuous-record streamgages located in Iowa and within a 50-mile buffer of Iowa. The final regression equations were computed by using either left-censored regression techniques with a low limit threshold set at 0.1 cubic feet per second (ft3/s) and the daily mean streamflow for the 15th day of every other month, or by using an ordinary-least-squares multiple linear regression method and the daily mean streamflow for the 15th day of every other month. The Flow Duration Curve Transfer method was used to estimate unregulated daily mean streamflow from the physical and climatic characteristics of gaged basins. For the Flow Duration Curve Transfer method, daily mean streamflow quantiles at the ungaged site were estimated with the parameter-based regression model, which results in a continuous daily flow-duration curve (the relation between exceedance probability and streamflow for each day of observed streamflow) at the ungaged site. By the use of a reference streamgage, the Flow Duration Curve Transfer is converted to a time series. Data used in the Flow Duration Curve Transfer method were retrieved for 113 continuous-record streamgages in Iowa and within a 50-mile buffer of Iowa. The final statewide regression equations for Iowa were computed by using a weighted-least-squares multiple linear regression method and were computed for the 0.01-, 0.05-, 0.10-, 0.15-, 0.20-, 0.30-, 0.40-, 0.50-, 0.60-, 0.70-, 0.80-, 0.85-, 0.90-, and 0.95-exceedance probability statistics determined from the daily mean streamflow with a reporting limit set at 0.1 ft3/s. The final statewide regression equation for Iowa computed by using left-censored regression techniques was computed for the 0.99-exceedance probability statistic determined from the daily mean streamflow with a low limit threshold and a reporting limit set at 0.1 ft3/s. For the Flow Anywhere method, results of the validation study conducted by using six streamgages show that differences between the root-mean-square error and the mean absolute error ranged from 1,016 to 138 ft3/s, with the larger value signifying a greater occurrence of outliers between observed and estimated streamflows. Root-mean-square-error values ranged from 1,690 to 237 ft3/s. Values of the percent root-mean-square error ranged from 115 percent to 26.2 percent. The logarithm (base 10) streamflow percent root-mean-square error ranged from 13.0 to 5.3 percent. Root-mean-square-error observations standard-deviation-ratio values ranged from 0.80 to 0.40. Percent-bias values ranged from 25.4 to 4.0 percent. Untransformed streamflow Nash-Sutcliffe efficiency values ranged from 0.84 to 0.35. The logarithm (base 10) streamflow Nash-Sutcliffe efficiency values ranged from 0.86 to 0.56. For the streamgage with the best agreement between observed and estimated streamflow, higher streamflows appear to be underestimated. For the streamgage with the worst agreement between observed and estimated streamflow, low flows appear to be overestimated whereas higher flows seem to be underestimated. Estimated cumulative streamflows for the period October 1, 2004, to September 30, 2009, are underestimated by -25.8 and -7.4 percent for the closest and poorest comparisons, respectively. For the Flow Duration Curve Transfer method, results of the validation study conducted by using the same six streamgages show that differences between the root-mean-square error and the mean absolute error ranged from 437 to 93.9 ft3/s, with the larger value signifying a greater occurrence of outliers between observed and estimated streamflows. Root-mean-square-error values ranged from 906 to 169 ft3/s. Values of the percent root-mean-square-error ranged from 67.0 to 25.6 percent. The logarithm (base 10) streamflow percent root-mean-square error ranged from 12.5 to 4.4 percent. Root-mean-square-error observations standard-deviation-ratio values ranged from 0.79 to 0.40. Percent-bias values ranged from 22.7 to 0.94 percent. Untransformed streamflow Nash-Sutcliffe efficiency values ranged from 0.84 to 0.38. The logarithm (base 10) streamflow Nash-Sutcliffe efficiency values ranged from 0.89 to 0.48. For the streamgage with the closest agreement between observed and estimated streamflow, there is relatively good agreement between observed and estimated streamflows. For the streamgage with the poorest agreement between observed and estimated streamflow, streamflows appear to be substantially underestimated for much of the time period. Estimated cumulative streamflow for the period October 1, 2004, to September 30, 2009, are underestimated by -9.3 and -22.7 percent for the closest and poorest comparisons, respectively.

  18. Wavelet-based variability of Yellow River discharge at 500-, 100-, and 50-year timescales

    NASA Astrophysics Data System (ADS)

    Su, Lu; Miao, Chiyuan; Duan, Qingyun

    2017-04-01

    Water scarcity in the Yellow River, China, has become increasingly severe over the past half century. In this paper, wavelet transform analysis was used to detect the variability of observed and reconstructed streamflow in the Yellow River at 500-, 100-, and 50-year timescales. The periodicity of the streamflow series and the co-varying relationships between streamflow and atmospheric circulation indices / sunspot number were assessed via the continuous wavelet transform (CWT) and the wavelet coherence transform (WTC). The CWT results showed intermittent oscillations in streamflow with increasing periodicities of 1-6 years at all timescales. Significant multidecadal and century-scale periodicities were identified in the 500-year streamflow series. The WTC results showed intermittent interannual covariance of streamflow with atmospheric circulation indices and sunspots. At the 50-year timescale, there were significant decadal oscillations between streamflow and the Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO), and bidecadal oscillations with the PDO. At the 100-year timescale, there were significant decadal oscillations between streamflow and Niño 3.4, the AO, and sunspots. At the 500-year timescale, streamflow in the middle reaches of the Yellow River showed prominent covariance with the AO with an approximately 32-year periodicity, and with sunspots with an approximately 80-year periodicity. Atmospheric circulation indices modulate streamflow by affecting temperature and precipitation. Sunspots impact streamflow variability by influencing atmospheric circulation, resulting in abundant precipitation. In general, for both the CWT and the WTC results, the periodicities were spatially continuous, with a few gradual changes from upstream to downstream resulting from the varied topography and runoff. At the temporal scale, the periodicities were generally continuous over short timescales and discontinuous over longer timescales.

  19. Wavelet-based Variability of Yellow River Discharge at 500-, 100-, and 50-Year Timescales

    NASA Astrophysics Data System (ADS)

    Su, L.

    2017-12-01

    Water scarcity in the Yellow River, China, has become increasingly severe over the past half century. In this paper, wavelet transform analysis was used to detect the variability of natural, observed, and reconstructed streamflow in the Yellow River at 500-, 100-, and 50-year timescales. The periodicity of the streamflow series and the co-varying relationships between streamflow and atmospheric circulation indices/sunspot number were assessed by means of continuous wavelet transform (CWT) and wavelet transform coherence (WTC) analyses. The CWT results showed intermittent oscillations in streamflow with increasing periodicities of 1-6 years at all timescales. Significant multidecadal and century-scale periodicities were identified in the 500-year streamflow series. The WTC results showed intermittent interannual covariance of streamflow with atmospheric circulation indices and sunspots. At the 50-year timescale, there were significant decadal oscillations between streamflow and the Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO), and bidecadal oscillations with the PDO. At the 100-year timescale, there were significant decadal oscillations between streamflow and Niño 3.4, the AO, and sunspots. At the 500-year timescale, streamflow in the middle reaches of the Yellow River showed prominent covariance with the AO with an approximately 32-year periodicity, and with sunspots with an approximately 80-year periodicity. Atmospheric circulation indices modulate streamflow by affecting temperature and precipitation. Sunspots impact streamflow variability by influencing atmospheric circulation, resulting in abundant precipitation. In general, for both the CWT and the WTC results, the periodicities were spatially continuous, with a few gradual changes from upstream to downstream resulting from the varied topography and runoff. At the temporal scale, the periodicities were generally continuous over short timescales and discontinuous over longer timescales.

  20. StreamStats: A water resources web application

    USGS Publications Warehouse

    Ries, Kernell G.; Guthrie, John G.; Rea, Alan H.; Steeves, Peter A.; Stewart, David W.

    2008-01-01

    Streamflow statistics, such as the 1-percent flood, the mean flow, and the 7-day 10-year low flow, are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. For example, estimates of the 1-percent flood (the flow that is exceeded, on average, once in 100 years and has a 1-percent chance of being exceeded in any year, sometimes referred to as the 100-year flood) are used to create flood-plain maps that form the basis for setting insurance rates and land-use zoning. This and other streamflow statistics also are used for dam, bridge, and culvert design; water-supply planning and management; water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower facility design and regulation; and the setting of minimum required streamflows to protect freshwater ecosystems. In addition, researchers, planners, regulators, and others often need to know the physical and climatic characteristics of the drainage basins (basin characteristics) and the influence of human activities, such as dams and water withdrawals, on streamflow upstream from locations of interest to understand the mechanisms that control water availability and quality at those locations. Knowledge of the streamflow network and downstream human activities also is necessary to adequately determine whether an upstream activity, such as a water withdrawal, can be allowed without adversely affecting downstream activities.Streamflow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no streamflow data are available to compute the statistics. At U.S. Geological Survey (USGS) streamflow data-collection stations, which include streamgaging stations, partial-record stations, and miscellaneous-measurement stations, streamflow statistics can be computed from available data for the stations. Streamflow data are collected continuously at streamgaging stations. Streamflow measurements are collected systematically over a period of years at partial-record stations to estimate peak-flow or low-flow statistics. Streamflow measurements usually are collected at miscellaneous-measurement stations for specific hydrologic studies with various objectives.StreamStats is a Web-based Geographic Information System (GIS) application that was created by the USGS, in cooperation with Environmental Systems Research Institute, Inc. (ESRI)1, to provide users with access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats functionality is based on ESRI’s ArcHydro Data Model and Tools, described on the Web at http://resources.arcgis.com/en/communities/hydro/01vn0000000s000000.htm. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection stations and user-selected ungaged sites. It also allows users to identify stream reaches that are upstream and downstream from user-selected sites, and to identify and obtain information for locations along the streams where activities that may affect streamflow conditions are occurring. This functionality can be accessed through a map-based user interface that appears in the user’s Web browser, or individual functions can be requested remotely as Web services by other Web or desktop computer applications. StreamStats can perform these analyses much faster than historically used manual techniques.StreamStats was designed so that each state would be implemented as a separate application, with a reliance on local partnerships to fund the individual applications, and a goal of eventual full national implementation. Idaho became the first state to implement StreamStats in 2003. By mid-2008, 14 states had applications available to the public, and 18 other states were in various stages of implementation.

  1. Cost effectiveness of the stream-gaging program in Pennsylvania

    USGS Publications Warehouse

    Flippo, H.N.; Behrendt, T.E.

    1985-01-01

    This report documents a cost-effectiveness study of the stream-gaging program in Pennsylvania. Data uses and funding were identified for 223 continuous-record stream gages operated in 1983; four are planned for discontinuance at the close of water-year 1985; two are suggested for conversion, at the beginning of the 1985 water year, for the collection of only continuous stage records. Two of 11 special-purpose short-term gages are recommended for continuation when the supporting project ends; eight of these gages are to be discontinued and the other will be converted to a partial-record type. Current operation costs for the 212 stations recommended for continued operation is $1,199,000 per year in 1983. The average standard error of estimation for instantaneous streamflow is 15.2%. An overall average standard error of 9.8% could be attained on a budget of $1,271,000, which is 6% greater than the 1983 budget, by adopted cost-effective stream-gaging operations. (USGS)

  2. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir Drainage Area, Rhode Island, water year 2015

    USGS Publications Warehouse

    Smith, Kirk P.

    2018-05-11

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2015 (October 1, 2014, through September 30, 2015) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 36 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2015 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2015.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 25 cubic feet per second to the reservoir during WY 2015. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.38 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,500,000 kilograms of sodium and 2,400,000 kilograms of chloride to the Scituate Reservoir during WY 2015; sodium and chloride yields for the tributaries ranged from 8,000 to 54,000 kilograms per square mile and from 12,000 to 91,000 kilograms per square mile, respectively.At the stations where water-quality samples were collected by the Providence Water Supply Board, the medians of the median concentrations were the following: for chloride, 29.5 milligrams per liter; for nitrite, 0.002 milligrams per liter as nitrogen; for nitrate, 0.05 milligrams per liter as nitrogen; for orthophosphate, 0.08 milligrams per liter as phosphate; and for total coliform bacteria and Escherichia coli, 440 and 20 colony forming units per 100 milliliters, respectively. The medians of the median daily loads (and yields) of chloride, nitrite, nitrate, orthophosphate, and total coliform and Escherichia coli bacteria were 170 kilograms per day (79 kilograms per day per square mile), 14 grams per day (5.2 grams per day per square mile), 670 grams per day (190 grams per day per square mile), 640 grams per day (210 grams per day per square mile), 18,000 million colony forming units per day (7,600 million colony forming units per day per square mile), and 1,200 million colony forming units per day (810 million colony forming units per day per square mile), respectively.

  3. Streamflow, water quality and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2014

    USGS Publications Warehouse

    Smith, Kirk P.

    2016-05-03

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2014 (October 1, 2013, through September 30, 2014) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board in the cooperative study. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2014 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2014.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 23 cubic feet per second to the reservoir during WY 2014. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.35 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms of sodium and 2,100,000 kilograms of chloride to the Scituate Reservoir during WY 2014; sodium and chloride yields for the tributaries ranged from 7,700 to 45,000 kilograms per year per square mile and from 12,000 to 75,000 kilograms per year per square mile, respectively.At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24 milligrams per liter, median nitrite concentration was 0.002 milligrams per liter as nitrogen (N), median nitrate concentration was 0.01 milligrams per liter as N, median orthophosphate concentration was 0.07 milligrams per liter as phosphate, and median concentrations of total coliform bacteria and Escherichia coli were 320 and 20 colony forming units per 100 milliliters, respectively. The medians of the median daily loads (and yields) of chloride, nitrite, nitrate, orthophosphate, and total coliform and Escherichia coli bacteria were 62 kilograms per day (42 kilograms per day per square mile), 19 grams per day (6.1 grams per day per square mile), 79 grams per day (36 grams per day per square mile), 380 grams per day (150 grams per day per square mile), 13,000 million colony forming units per day (8,300 million colony forming units per day per square mile), and 1,000 million colony forming units per day (470 million colony forming units per day per square mile), respectively.

  4. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2012

    USGS Publications Warehouse

    Smith, Kirk P.

    2014-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2012 (October 1, 2011, through September 30, 2012), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2012 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB were summarized by using values of central tendency and used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2012. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 26 cubic feet per second (ft3/s) to the reservoir during WY 2012. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.40 to about 17 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2012; sodium and chloride yields for the tributaries ranged from 8,700 to 51,000 kilograms per square mile (kg/mi2) and from 14,000 to 87,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the PWSB, the median of the median chloride concentrations was 19 milligrams per liter (mg/L), median nitrite concentration was 0.002 mg/L as nitrogen (N), median nitrate concentration was less than 0.01 mg/L as N, median orthophosphate concentration was 0.06 mg/L as phosphorus, and median concentrations of total coliform and Escherichia coli (E. coli) bacteria were 43 and 16 colony forming units per 100 milliliters (CFU/100mL), respectively. The medians of the median daily loads (and yields) of chloride, nitrite, nitrate, orthophosphate, and total coliform and E. coli bacteria were 200 kilograms per day (kg/d) (71 kilograms per day per square mile (kg/d/mi2)); 15 grams per day (g/d) (5.4 grams per day per square mile (g/d/mi2)); 100 g/d (38 g/d/mi2); 500 g/d (260 g/d/mi2); 4,300 million colony forming units per day (CFUx106/d) (1,500 CFUx106/d/mi2); and 1,000 CFUx106/d (360 CFUx106/d/mi2), respectively.

  5. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2011

    USGS Publications Warehouse

    Smith, Kirk P.

    2013-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2011 (October 1, 2010, to September 30, 2011), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were also equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2011 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2011. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 37 cubic feet per second (ft3/s) to the reservoir during WY 2011. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.5 to about 21 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kg (kilograms) of sodium and 2,600,000 kg of chloride to the Scituate Reservoir during WY 2011; sodium and chloride yields for the tributaries ranged from 9,800 to 53,000 kilograms per square mile (kg/mi2) and from 15,000 to 90,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the PWSB, the median of the median chloride concentrations was 20.0 milligrams per liter (mg/L), median nitrite concentration was 0.002 mg/L as nitrogen (N), median nitrate concentration was 0.01 mg/L as N, median orthophosphate concentration was 0.07 mg/L as phosphorus, and median concentrations of total coliform and Escherichia coli (E. coli) bacteria were 33 and 23 colony forming units per 100 milliliters (CFU/100mL), respectively. The medians of the median daily loads (and yields) of chloride, nitrite, nitrate, orthophosphate, and total coliform and E. coli bacteria were 230 kilograms per day (kg/d) (80 kilograms per day per square mile (kg/d/mi2)); 10 grams per day (g/d) (6.3 grams per day per square mile (g/d/mi2)); 110 g/d (29 g/d/mi2); 610 g/d (270 g/d/mi2); 4,600 million colony forming units per day (CFUx106/d) (2,500 CFUx106/d/mi2); and 1,800 CFUx106/d (810 CFUx106/d/mi2), respectively.

  6. Selected low-flow frequency statistics for continuous-record streamgages in Georgia, 2013

    USGS Publications Warehouse

    Gotvald, Anthony J.

    2016-04-13

    This report presents the annual and monthly minimum 1- and 7-day average streamflows with the 10-year recurrence interval (1Q10 and 7Q10) for 197 continuous-record streamgages in Georgia. Streamgages used in the study included active and discontinued stations having a minimum of 10 complete climatic years of record as of September 30, 2013. The 1Q10 and 7Q10 flow statistics were computed for 85 streamgages on unregulated streams with minimal diversions upstream, 43 streamgages on regulated streams, and 69 streamgages known, or considered, to be affected by varying degrees of diversions upstream. Descriptive information for each of these streamgages, including the U.S. Geological Survey (USGS) station number, station name, latitude, longitude, county, drainage area, and period of record analyzed also is presented.Kendall’s tau nonparametric test was used to determine the statistical significance of trends in annual and monthly minimum 1-day and 7-day average flows for the 197 streamgages. Significant negative trends in the minimum annual 1-day and 7-day average streamflow were indicated for 77 of the 197 streamgages. Many of these significant negative trends are due to the period of record ending during one of the recent droughts in Georgia, particularly those streamgages with record through the 2013 water year. Long-term unregulated streamgages with 70 or more years of record indicate significant negative trends in the annual minimum 7-day average flow for central and southern Georgia. Watersheds for some of these streamgages have experienced minimal human impact, thus indicating that the significant negative trends observed in flows at the long-term streamgages may be influenced by changing climatological conditions. A Kendall-tau trend analysis of the annual air temperature and precipitation totals for Georgia indicated no significant trends. A comprehensive analysis of causes of the trends in annual and monthly minimum 1-day and 7-day average flows in central and southern Georgia is outside the scope of this study. Further study is needed to determine some of the causes, including both climatological and human impacts, of the significant negative trends in annual minimum 1-day and 7-day average flows in central and southern Georgia.To assess the changes in the annual 1Q10 and 7Q10 statistics over time for long-term continuous streamgages with significant trends in record, the annual 1Q10 and 7Q10 statistics were computed on a decadal accumulated basis for 39 streamgages having 40 or more years of record that indicated a significant trend. Records from most of the streamgages showed a decline in 7Q10 statistics for the decades of 1980–89, 1990–99, and 2000–09 because of the recent droughts in Georgia. Twenty four of the 39 streamgages had complete records from 1980 to 2010, and records from 23 of these gages exhibited a decline in the 7Q10 statistics during this period, ranging from –6.3 to –76.2 percent with a mean of –27.3 percent. No attempts were made during this study to adjust streamflow records or statistical analyses on the basis of trends.The monthly and annual 1Q10 and 7Q10 flow statistics for the entire period of record analyzed in the study are incorporated into the USGS StreamStatsDB, which is a database accessible to users through the recently released USGS StreamStats application for Georgia. StreamStats is a Web-based geographic information system that provides users with access to an assortment of analytical tools that are useful for water-resources planning and management, and for engineering design applications, such as the design of bridges. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected streamgages.

  7. IMPERVIOUS SURFACES AND STREAMFLOW DISCHARGE: A HISTORICAL REMOTE SENSING PERSPECTIVE IN A MID-ATLANTIC SUB-WATERSHED

    EPA Science Inventory



    Aerial photography provides a historical vehicle for determining long term urban landscape change and, with concurrent daily streamflow and precipitation records, allows the historical relationship of impervious surfaces and streamflow to be explored. Impervious surface a...

  8. CHANGES IN ANTHROPOGENIC INPERVIOUS SURFACES, PRECIPITATION AND DAILY STREAMFLOW DISCHARGE: A HISTORICAL PERSPECTIVE IN A MID-ATLANTIC SUBWATERSHED

    EPA Science Inventory

    Aerial photography provides a historical vehicle for determining long term urban landscape change and, with concurrent daily streamflow and precipitation records, allows the historical relationship of impervious surfaces and streamflow to be explored. Impervious surface area in ...

  9. Base-flow characteristics of streams in the Valley and Ridge, Blue Ridge, and Piedmont physiographic provinces of Virginia

    USGS Publications Warehouse

    Nelms, D.L.; Harlow, G.E.; Hayes, Donald C.

    1995-01-01

    Growth within the Valley and Ridge, Blue Ridge, and Piedmont Physiographic Provinces of Virginia has focussed concern about allocation of surface-water flow and increased demands on the ground-water resources. The purpose of this report is to (1) describe the base-flow characteristics of streams, (2) identify regional differences in these flow characteristics, and (3) describe, if possible, the potential surface-water and ground-water yields of basins on the basis of the base-flow character- istics. Base-flow characteristics are presented for streams in the Valley and Ridge, Blue Ridge, and Piedmont Physiographic Provinces of Virginia. The provinces are separated into five regions: (1) Valley and Ridge, (2) Blue Ridge, (3) Piedmont/Blue Ridge transition, (4) Piedmont northern, and (5) Piedmont southern. Different flow statistics, which represent streamflows predominantly comprised of base flow, were determined for 217 continuous-record streamflow-gaging stations from historical mean daily discharge and for 192 partial-record streamflow-gaging stations by means of correlation of discharge measurements. Variability of base flow is represented by a duration ratio developed during this investigation. Effective recharge rates were also calculated. Median values for the different flow statistics range from 0.05 cubic foot per second per square mile for the 90-percent discharge on the streamflow-duration curve to 0.61 cubic foot per second per square mile for mean base flow. An excellent estimator of mean base flow for the Piedmont/Blue Ridge transition region and Piedmont southern region is the 50-percent discharge on the streamflow-duration curve, but tends to under- estimate mean base flow for the remaining regions. The base-flow variability index ranges from 0.07 to 2.27, with a median value of 0.55. Effective recharge rates range from 0.07 to 33.07 inches per year, with a median value of 8.32 inches per year. Differences in the base-flow characteristics exist between regions. The median discharges for the Valley and Ridge, Blue Ridge, and Piedmont/Blue Ridge transition regions are higher than those for the Piedmont regions. Results from statistical analysis indicate that the regions can be ranked in terms of base-flow characteristics from highest to lowest as follows: (1) Piedmont/Blue Ridge transition, (2) Valley and Ridge and Blue Ridge, (3) Piedmont southern, and (4) Piedmont northern. The flow statistics are consistently higher and the values for base-flow variability are lower for basins within the Piedmont/Blue Ridge transition region relative to those from the other regions, whereas the basins within the Piedmont northern region show the opposite pattern. The group rankings of the base-flow characteristics were used to designate the potential surface-water yield for the regions. In addition, an approach developed for this investigation assigns a rank for potential surface- water yield to a basin according to the quartiles in which the values for the base-flow character- istics are located. Both procedures indicate that the Valley and Ridge, Blue Ridge, and Piedmont/Blue Ridge transition regions have moderate-to-high potential surface-water yield and the Piedmont regions have low-to-moderate potential surface- water yield. In order to indicate potential ground-water yield from base-flow characteristics, aquifer properties for 51 streamflow-gaging stations with continuous record of streamflow data were determined by methods that use streamflow records and basin characteristics. Areal diffusivity ranges from 17,100 to 88,400 feet squared per day, with a median value of 38,400 feet squared per day. Areal transmissivity ranges from 63 to 830 feet squared per day, with a median value of 270 feet squared per day. Storage coefficients, which were estimated by dividing areal transmissivity by areal diffusivity, range from approximately 0.001 to 0.019 (dimensionless), with a median value of 0.007. The median value for areal diffus

  10. Storage requirements for Georgia streams

    USGS Publications Warehouse

    Carter, Robert F.

    1983-01-01

    The suitability of a stream as a source of water supply or for waste disposal may be severely limited by low flow during certain periods. A water user may be forced to provide storage facilities to supplement the natural flow if the low flow is insufficient for his needs. This report provides data for evaluating the feasibility of augmenting low streamflow by means of storage facilities. It contains tabular data on storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 99 continuous-record gaging stations, and draft-storage diagrams for estimating storage requirements at many additional sites. Through analyses of streamflow data, the State was divided into four regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, mean annual flow, and the 7-day, 10-year low flow are known or can be estimated. These data are tabulated for the 99 gaging stations used in the analyses and for 102 partial-record sites where only base-flow measurements have been made. The draft-storage diagrams are useful not only for estimating in-channel storage required for low-flow augmentation, but also can be used for estimating the volume of off-channel storage required to retain wastewater during low-flow periods for later release. In addition, these relationships can be helpful in estimating the volume of wastewater to be disposed of by spraying on land, provided that the water disposed of in this manner is only that for which streamflow dilution water is not currently available. Mean annual flow can be determined for any stream within the State by using the runoff map in this report. Low-flow indices can be estimated by several methods, including correlation of base-flow measurements with concurrent flow at nearby continuous-record gaging stations where low-flow indices have been determined.

  11. Climate model assessment of changes in winter-spring streamflow timing over North America

    USGS Publications Warehouse

    Kam, Jonghun; Knutson, Thomas R.; Milly, Paul C. D.

    2018-01-01

    Over regions where snow-melt runoff substantially contributes to winter-spring streamflows, warming can accelerate snow melt and reduce dry-season streamflows. However, conclusive detection of changes and attribution to anthropogenic forcing is hindered by brevity of observational records, model uncertainty, and uncertainty concerning internal variability. In this study, a detection/attribution of changes in mid-latitude North American winter-spring streamflow timing is examined using nine global climate models under multiple forcing scenarios. In this study, robustness across models, start/end dates for trends, and assumptions about internal variability is evaluated. Marginal evidence for an emerging detectable anthropogenic influence (according to four or five of nine models) is found in the north-central U.S., where winter-spring streamflows have been coming earlier. Weaker indications of detectable anthropogenic influence (three of nine models) are found in the mountainous western U.S./southwestern Canada and in extreme northeastern U.S./Canadian Maritimes. In the former region, a recent shift toward later streamflows has rendered the full-record trend toward earlier streamflows only marginally significant, with possible implications for previously published climate change detection findings for streamflow timing in this region. In the latter region, no forced model shows as large a shift toward earlier streamflow timing as the detectable observed shift. In other (including warm, snow-free) regions, observed trends are typically not detectable, although in the U.S. central plains we find detectable delays in streamflow, which are inconsistent with forced model experiments.

  12. Hydrologic Droughts in Kansas - Are They Becoming Worse?

    USGS Publications Warehouse

    Putnam, James E.; Perry, Charles A.; Wolock, David M.

    2008-01-01

    Multi-year droughts have been a recurrent feature of the climate and hydrology of Kansas since at least the 1930s. Streamflow records collected by the U.S. Geological Survey (USGS) indicate that water years 2000 to 2006 (October 1, 1999, through September 30, 2006) represent the sixth hydrologic drought during the past eight decades, and that corresponding streamflow levels in some parts of Kansas were lower than those during historic droughts of the 1930s and 1950s, even though the precipitation deficit was not as severe. Record-low streamflows in water year 2006 were recorded at USGS streamgages on the Republican, Smoky Hill, Solomon, Saline, upper Kansas, middle Arkansas, and Little Arkansas Rivers, as well as many tributary sites, and one tributary site of the Neosho River (fig. 1, table 1). Low streamflows during the hydrologic drought also resulted in record low levels at three Federal reservoirs in Kansas (fig. 1, table 2). An unprecedented number of administrative decisions were made by the Division of Water Resources, Kansas Department of Agriculture to curtail water diversions from rivers to maintain minimum desirable streamflows, and low flows on the lower Republican River in Kansas created concerns that Colorado and Nebraska were not complying with the terms of the 1943 Republican River Compact.

  13. CHANGES IN ANTHROPOGENIC IMPERVIOUS SURFACES, PRECIPITATION AND DAILY STREAMFLOW DISCHARGE: A HISTORICAL PERSPECTIVE IN A MID-ATLANTIC SUB-WATERSHED

    EPA Science Inventory



    Aerial photography provides a historical vehicle for determining long term urban landscape change and, with concurrent daily streamflow and precipitation records, allows the historical relationship of impervious surfaces and streamflow to be explored. Impervious surfac...

  14. United States streamflow probabilities based on forecasted La Nina, winter-spring 2000

    USGS Publications Warehouse

    Dettinger, M.D.; Cayan, D.R.; Redmond, K.T.

    1999-01-01

    Although for the last 5 months the TahitiDarwin Southern Oscillation Index (SOI) has hovered close to normal, the “equatorial” SOI has remained in the La Niña category and predictions are calling for La Niña conditions this winter. In view of these predictions of continuing La Niña and as a direct extension of previous studies of the relations between El NiñoSouthern Oscil-lation (ENSO) conditions and streamflow in the United States (e.g., Redmond and Koch, 1991; Cayan and Webb, 1992; Redmond and Cayan, 1994; Dettinger et al., 1998; Garen, 1998; Cayan et al., 1999; Dettinger et al., in press), the probabilities that United States streamflows from December 1999 through July 2000 will be in upper and lower thirds (terciles) of the historical records are estimated here. The processes that link ENSO to North American streamflow are discussed in detail in these diagnostics studies. Our justification for generating this forecast is threefold: (1) Cayan et al. (1999) recently have shown that ENSO influences on streamflow variations and extremes are proportionately larger than the corresponding precipitation teleconnections. (2) Redmond and Cayan (1994) and Dettinger et al. (in press) also have shown that the low-frequency evolution of ENSO conditions support long-lead correlations between ENSO and streamflow in many rivers of the conterminous United States. (3) In many rivers, significant (weeks-to-months) delays between precipitation and the release to streams of snowmelt or ground-water discharge can support even longer term forecasts of streamflow than is possible for precipitation. The relatively slow, orderly evolution of El Niño-Southern Oscillation episodes, the accentuated dependence of streamflow upon ENSO, and the long lags between precipitation and flow encourage us to provide the following analysis as a simple prediction of this year’s river flows.

  15. Flood of April 2007 in Southern Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2009-01-01

    Up to 8.5 inches of rain fell from April 15 through 18, 2007, in southern Maine. The rain - in combination with up to an inch of water from snowmelt - resulted in extensive flooding. York County, Maine, was declared a presidential disaster area following the event. The U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency (FEMA), determined peak streamflows and recurrence intervals at 24 locations and peak water-surface elevations at 63 sites following the April 2007 flood. Peak streamflows were determined with data from continuous-record streamflow-gaging stations where available and through hydraulic models where station data were not available. The flood resulted in peak streamflows with recurrence intervals greater than 100 years throughout most of York County, and recurrence intervals up to 50 years in Cumberland County. Peak flows for selected recurrence intervals varied from less than 10 percent to greater than 100 percent different than those in the current FEMA flood-insurance studies due to additional data or newer regression equations. Water-surface elevations observed during the April 2007 flood were bracketed by elevation profiles in FEMA flood-insurance studies with the same recurrence intervals as the recurrence intervals bracketing the observed peak streamflows at seven sites, with higher elevation-profile recurrence intervals than streamflow recurrence intervals at six sites, and with lower elevation-profile recurrence intervals than streamflow recurrence intervals at one site. The April 2007 flood resulted in higher peak flows and water-surface elevations than the flood of May 2006 in coastal locations in York County, and lower peak flows and water-surface elevations than the May 2006 flood further from the coast and in Cumberland County. The Mousam River watershed with over 13 dams and reservoirs was severely impacted by both events. Analyses indicate that the April 2007 peak streamflows in the Mousam River watershed occurred despite the fact that up to 287 million ft3 of runoff was stored by 13 dams and reservoirs.

  16. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2006-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In addition, natural summer streamflows were estimated for each study site using regional regression equations. This report describes PHABSIM modeling results for bull trout, Chinook salmon, and steelhead trout during summer streamflows. Habitat/discharge relations were summarized for adult and spawning life stages at each study site. In addition, streamflow needs for riffle dwelling invertebrate taxa (Ephemeroptera, Plecoptera, and Trichoptera) are presented. Adult fish passage and discharge relations were evaluated at specific transects that were identified as potential low-streamflow passage barriers at each study site. Continuous summer water temperature data for selected study sites were summarized and compared with Idaho Water Quality Standards and various water temperature requirements of targeted fish species. Results of these habitat studies can be used to prioritize and direct cost-effective actions to improve fish habitat for ESA-listed anadromous and native fish species in the basin. These actions may include acquiring water during critical low-flow periods by leasing or modifying irrigation delivery systems to minimize out-of-stream diversions.

  17. Trends in streamflow of the San Pedro River, southeastern Arizona, and regional trends in precipitation and streamflow in southeastern Arizona and southwestern New Mexico

    USGS Publications Warehouse

    Thomas, Blakemore E.; Pool, Don R.

    2006-01-01

    This study was done to improve the understanding of trends in streamflow of the San Pedro River in southeastern Arizona. Annual streamflow of the river at Charleston, Arizona, has decreased by more than 50 percent during the 20th century. The San Pedro River is one of the few remaining free-flowing perennial streams in the arid Southwestern United States, and the riparian forest along the river supports several endangered species and is an important habitat for migratory birds. Trends in seasonal and annual precipitation and streamflow were evaluated for surrounding areas in southeastern Arizona and southwestern New Mexico to provide a regional perspective for the trends of the San Pedro River. Seasonal and annual streamflow trends and the relation between precipitation and streamflow in the San Pedro River Basin were evaluated to improve the understanding of the causes of trends. There were few significant trends in seasonal and annual precipitation or streamflow for the regional study area. Precipitation and streamflow records were analyzed for 11 time periods ranging from 1930 to 2002; no significant trends were found in 92 percent of the trend tests for precipitation, and no significant trends were found in 79 percent of the trend tests for streamflow. For the trends in precipitation that were significant, 90 percent were positive and most of those positive trends were in records of winter, spring, or annual precipitation that started during the mid-century drought in 1945-60. For the trends in streamflow that were significant, about half were positive and half were negative. Trends in precipitation in the San Pedro River Basin were similar to regional precipitation trends for spring and fall values and were different for summer and annual values. The largest difference was in annual precipitation, for which no trend tests were significant in the San Pedro River Basin, and 23 percent of the trend tests were significantly positive in the rest of the study area. Streamflow trends for the San Pedro River were different from regional streamflow trends. All seasonal flows for the San Pedro River, except winter flows, had significant decreasing trends, and seasonal flows for most streams in the rest of the study area had either no trend or a significant increasing trend. Two streams adjacent to the San Pedro River Basin (Whitewater Draw and Santa Cruz River), however, had significant decreasing trends in summer streamflow. Factors that caused the decreasing trends in streamflow of the San Pedro River at Charleston were investigated. Possible factors were fluctuations in precipitation and air temperature, changes in watershed characteristics, human activities, or changes in seasonal distribution of bank storage. This study statistically removed or accounted for the variation in streamflow caused by fluctuations in precipitation. Thus, the remaining variation or trend in streamflow was caused by factors other than precipitation. Two methods were used to partition the variation in streamflow and to determine trends in the partitioned variation: (1) regression analysis between precipitation and streamflow using all years in the record and evaluation of time trends in regression residuals, and (2) development of regression equations between precipitation and streamflow for three time periods (early, middle, and late parts of the record) and testing to determine if the three regression equations were significantly different. The methods were applied to monthly values of total flow (average flow) and storm runoff (maximum daily mean flow) for 1913-2002, and to monthly values of low flow (3-day low flow) for 1931-2002. Statistical tests provide strong evidence that factors other than precipitation caused a decrease in streamflow of the San Pedro River. Factors other than precipitation caused significant decreasing trends in streamflows for late spring through early winter and did not cause significant trends f

  18. Hydro-Climatic Data Network (HCDN) Streamflow Data Set, 1874-1988

    USGS Publications Warehouse

    Slack, James Richard; Lumb, Alan M.; Landwehr, Jurate Maciunas

    1993-01-01

    The potential consequences of climate change to continental water resources are of great concern in the management of those resources. Critically important to society is what effect fluctuations in the prevailing climate may have on hydrologic conditions, such as the occurrence and magnitude of floods or droughts and the seasonal distribution of water supplies within a region. Records of streamflow that are unaffected by artificial diversions, storage, or other works of man in or on the natural stream channels or in the watershed can provide an account of hydrologic responses to fluctuations in climate. By examining such records given known past meteorologic conditions, we can better understand hydrologic responses to those conditions and anticipate the effects of postulated changes in current climate regimes. Furthermore, patterns in streamflow records can indicate when a change in the prevailing climate regime may have occurred in the past, even in the absence of concurrent meteorologic records. A streamflow data set, which is specifically suitable for the study of surface-water conditions throughout the United States under fluctuations in the prevailing climatic conditions, has been developed. This data set, called the Hydro-Climatic Data Network, or HCDN, consists of streamflow records for 1,659 sites throughout United States and its Territories. Records cumulatively span the period 1874 through 1988, inclusive, and represent a total of 73,231 water years of information. Development of the HCDN Data Set: Records for the HCDN were obtained through a comprehensive search of the extensive surface- water data holdings of the U.S. Geological Survey (USGS), which are contained in the USGS National Water Storage and Retrieval System (WATSTORE). All streamflow discharge records in WATSTORE through September 30, 1988, were examined for inclusion in the HCDN in accordance with strictly defined criteria of measurement accuracy and natural conditions. No reconstructed records of 'natural flow' were permitted, nor was any record extended or had missing values 'filled in' using computational algorithms. If the streamflow at a station was judged to be free of controls for only a part of the entire period of record that is available for the station, then only that part was included in the HCDN, but only if it was of sufficient length (generally 20 years) to warrant inclusion. In addition to the daily mean discharge values, complete station identification information and basin characteristics were retrieved from WATSTORE for inclusion in the HCDN. Statistical characteristics, including the monthly mean discharge, as well as the annual mean, minimum and maximum discharge values, were derived for the records in the HCDN data set. For a full description of the development and content of the Hydro-Climatic Data Network, please take a look at the HCDN Report.

  19. Normal streamflows and water levels continue—Summary of hydrologic conditions in Georgia, 2014

    USGS Publications Warehouse

    Knaak, Andrew E.; Ankcorn, Paul D.; Peck, Michael F.

    2016-03-31

    The U.S. Geological Survey (USGS) South Atlantic Water Science Center (SAWSC) Georgia office, in cooperation with local, State, and other Federal agencies, maintains a long-term hydrologic monitoring network of more than 350 real-time, continuous-record, streamflow-gaging stations (streamgages). The network includes 14 real-time lake-level monitoring stations, 72 real-time surface-water-quality monitors, and several water-quality sampling programs. Additionally, the SAWSC Georgia office operates more than 204 groundwater monitoring wells, 39 of which are real-time. The wide-ranging coverage of streamflow, reservoir, and groundwater monitoring sites allows for a comprehensive view of hydrologic conditions across the State. One of the many benefits this monitoring network provides is a spatially distributed overview of the hydrologic conditions of creeks, rivers, reservoirs, and aquifers in Georgia.Streamflow and groundwater data are verified throughout the year by USGS hydrographers and made available to water-resource managers, recreationists, and Federal, State, and local agencies. Hydrologic conditions are determined by comparing the statistical analyses of data collected during the current water year to historical data. Changing hydrologic conditions underscore the need for accurate, timely data to allow informed decisions about the management and conservation of Georgia’s water resources for agricultural, recreational, ecological, and water-supply needs and in protecting life and property.

  20. Anomalous Streamflow and Groundwater-Level Changes Before the 1999 M7.6 Chi-Chi Earthquake in Taiwan: Possible Mechanisms

    NASA Astrophysics Data System (ADS)

    King, Chi-Yu; Chia, Yeeping

    2017-12-01

    Streamflow recorded by a stream gauge located 4 km from the epicenter of the 1999 M7.6 Chi-Chi earthquake in central Taiwan showed a large and rapid anomalous increase of 124 m3/s starting 4 days before the earthquake. This increase was followed by a comparable co-seismic drop to below the background level for 8 months. In addition, groundwater-levels recorded at a well 1.5 km east of the seismogenic fault showed an anomalous rise 2 days before the earthquake, and then a unique 4-cm drop beginning 3 h before the earthquake. The anomalous streamflow increase is attributed to gravity-driven groundwater discharge into the creek through the openings of existing fractures in the steep creek banks crossed by the upstream Shueilikun fault zone, as a result of pre-earthquake crustal buckling. The continued tectonic movement and buckling, together with the downward flow of water in the crust, may have triggered the occurrence of some shallow slow-slip events in the Shueilikun and other nearby fault zones. When these events propagate down-dip to decollement, where the faults merges with the seismogenic Chelungpu fault, they may have triggered other slow-slip events propagating toward the asperity at the hypocenter and the Chelungpu fault. These events may then have caused the observed groundwater-level anomaly and helped to trigger the earthquake.

  1. Reconstructed streamflow for Citarum River, Java, Indonesia: linkages to tropical climate dynamics

    NASA Astrophysics Data System (ADS)

    D'Arrigo, Rosanne; Abram, Nerilie; Ummenhofer, Caroline; Palmer, Jonathan; Mudelsee, Manfred

    2011-02-01

    The Citarum river basin of western Java, Indonesia, which supplies water to 10 million residents in Jakarta, has become increasingly vulnerable to anthropogenic change. Citarum's streamflow record, only ~45 years in length (1963-present), is too short for understanding the full range of hydrometeorological variability in this important region. Here we present a tree-ring based reconstruction of September-November Citarum streamflow (AD 1759-2006), one of the first such records available for monsoon Asia. Close coupling is observed between decreased tree growth and low streamflow levels, which in turn are associated with drought caused by ENSO warm events in the tropical Pacific and Indian Ocean positive dipole-type variability. Over the full length of record, reconstructed variance was at its weakest during the interval from ~1905-1960, overlapping with a period of unusually-low variability (1920-1960) in the ENSO-Indian Ocean dipole systems. In subsequent decades, increased variance in both the streamflow anomalies and a coral-based SST reconstruction of the Indian Ocean Dipole Mode signal the potential for intensified drought activity and related consequences for water supply and crop productivity in western Java, where much of the country's rice is grown.

  2. Impact of rain gauge quality control and interpolation on streamflow simulation: an application to the Warwick catchment, Australia

    NASA Astrophysics Data System (ADS)

    Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.

    2017-12-01

    Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method performed second best according to streamflow predictions at the five gauges in the calibration period (01/01/2007–31/12/2011) and four gauges during the validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction at the outlet of the catchment in the validation period, indicating a low robustness. While the IDW exhibited the best performance in the study catchment in terms of accuracy, robustness and efficiency, more general recommendations on the selection of rainfall interpolation methods need to be further explored.

  3. Impact of rain gauge quality control and interpolation on streamflow simulation: an application to the Warwick catchment, Australia

    NASA Astrophysics Data System (ADS)

    Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.

    2018-01-01

    Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method performed second best according to streamflow predictions at the five gauges in the calibration period (01/01/2007–31/12/2011) and four gauges during the validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction at the outlet of the catchment in the validation period, indicating a low robustness. While the IDW exhibited the best performance in the study catchment in terms of accuracy, robustness and efficiency, more general recommendations on the selection of rainfall interpolation methods need to be further explored.

  4. Streamflow Changes Induced by the 1999 MW 7.6 Chi-Chi Earthquake

    NASA Astrophysics Data System (ADS)

    Chia, Yeeping; Liu, Ching-Yi; Chuang, Po-Yu

    2016-04-01

    Anomalous streamflow changes have often been observed after strong earthquakes. These changes have been used to study crustal deformation induced by earthquakes. Previous studies indicated that co-seismic groundwater-level changes, ranging from a fall of 11.1 m to a rise of 7.42 m, were recorded in 152 monitoring wells near the seismogenic fault during the 1999 MW 7.6 Chi-Chi earthquake. Here we report anomalous streamflow changes due to the earthquake in central Taiwan. There are 32 stream gauges in the vicinity of the fault, mostly in the mountainous hanging wall area. Of those, 22 recorded anomalous streamflow increases, ranging from 60% to 732%, one to four days after the earthquake. Unlike a rapid decrease in discharge after heavy rainfall, the post-seismic increase is followed by a slow decline which may last for several months. Only one gauge recorded a sudden decrease in discharge immediately after the earthquake. Besides, the decrease was preceded by a large and abrupt streamflow increase over the four days before the earthquake. We attribute the post-seismic increase to fracturing in the mountainous area due to seismic shaking, while the decrease to co-seismic pore pressure drop induced by crustal extension. However, more evidence is needed to consider the pre-seismic streamflow changes as a potential precursory indicator of earthquakes.

  5. Cost-effectiveness of the stream-gaging program in Missouri

    USGS Publications Warehouse

    Waite, L.A.

    1987-01-01

    This report documents the results of an evaluation of the cost effectiveness of the 1986 stream-gaging program in Missouri. Alternative methods of developing streamflow information and cost-effective resource allocation were used to evaluate the Missouri program. Alternative methods were considered statewide, but the cost effective resource allocation study was restricted to the area covered by the Rolla field headquarters. The average standard error of estimate for records of instantaneous discharge was 17 percent; assuming the 1986 budget and operating schedule, it was shown that this overall degree of accuracy could be improved to 16 percent by altering the 1986 schedule of station visitations. A minimum budget of $203,870, with a corresponding average standard error of estimate 17 percent, is required to operate the 1986 program for the Rolla field headquarters; a budget of less than this would not permit proper service and maintenance of the stations or adequate definition of stage-discharge relations. The maximum budget analyzed was $418,870, which resulted in an average standard error of estimate of 14 percent. Improved instrumentation can have a positive effect on streamflow uncertainties by decreasing lost records. An earlier study of data uses found that data uses were sufficient to justify continued operation of all stations. One of the stations investigated, Current River at Doniphan (07068000) was suitable for the application of alternative methods for simulating discharge records. However, the station was continued because of data use requirements. (Author 's abstract)

  6. Development of regression equations to revise estimates of historical streamflows for the St. Croix River at Stillwater, Minnesota (water years 1910-2011), and Prescott, Wisconsin (water years 1910-2007)

    USGS Publications Warehouse

    Ziegeweid, Jeffrey R.; Magdalene, Suzanne

    2015-01-01

    The new regression equations were used to calculate revised estimates of historical streamflows for Stillwater and Prescott starting in 1910 and ending when index-velocity streamgages were installed. Monthly, annual, 30-year, and period of record statistics were examined between previous and revised estimates of historical streamflows. The abilities of the new regression equations to estimate historical streamflows were evaluated by using percent differences to compare new estimates of historical daily streamflows to discrete streamflow measurements made at Stillwater and Prescott before the installation of index-velocity streamgages. Although less variability was observed between estimated and measured streamflows at Stillwater compared to Prescott, the percent difference data indicated that the new estimates closely approximated measured streamflows at both locations.

  7. Techniques for estimating monthly mean streamflow at gaged sites and monthly streamflow duration characteristics at ungaged sites in central Nevada

    USGS Publications Warehouse

    Hess, G.W.; Bohman, L.R.

    1996-01-01

    Techniques for estimating monthly mean streamflow at gaged sites and monthly streamflow duration characteristics at ungaged sites in central Nevada were developed using streamflow records at six gaged sites and basin physical and climatic characteristics. Streamflow data at gaged sites were related by regression techniques to concurrent flows at nearby gaging stations so that monthly mean streamflows for periods of missing or no record can be estimated for gaged sites in central Nevada. The standard error of estimate for relations at these sites ranged from 12 to 196 percent. Also, monthly streamflow data for selected percent exceedence levels were used in regression analyses with basin and climatic variables to determine relations for ungaged basins for annual and monthly percent exceedence levels. Analyses indicate that the drainage area and percent of drainage area at altitudes greater than 10,000 feet are the most significant variables. For the annual percent exceedence, the standard error of estimate of the relations for ungaged sites ranged from 51 to 96 percent and standard error of prediction for ungaged sites ranged from 96 to 249 percent. For the monthly percent exceedence values, the standard error of estimate of the relations ranged from 31 to 168 percent, and the standard error of prediction ranged from 115 to 3,124 percent. Reliability and limitations of the estimating methods are described.

  8. Suspended- and bedload-sediment transport in the Snake and Clearwater rivers in the vicinity of Lewiston, Idaho, August 1976 through July 1978

    USGS Publications Warehouse

    Jones, Michael L.; Seitz, Harold R.

    1979-01-01

    correct for sampler efficiency. An analysis of the middle Snake River streamflow record was made during 1977. The streamflow rating for the Snake River near Anatone, Washington, gage was found to be in error at high stages. The streamflow record for water years 1974 and 1975 was revised and published with 1976 water-year data (Water Resources Data for Idaho, Water Year 1976). The revised Snake River near Anatone streamflow rating was used to recompute the sediment-discharge rating curve (fig. 3). This study program is funded by the USACE through a cooperative agreement with the USGS. All field work, laboratory analysis, and compilation of data are being conducted by the USGS. Data collection is scheduled to terminate at the end of the 1979 runoff season. A reanalysis of all data collected since the start of the program will correct all provisional records since 1972, including the 1974, 1975, and 1976 years for the Snake River near Anatone station.

  9. Use of digital land-cover data from the Landsat satellite in estimating streamflow characteristics in the Cumberland Plateau of Tennessee

    USGS Publications Warehouse

    Hollyday, E.F.; Hansen, G.R.

    1983-01-01

    Streamflow may be estimated with regression equations that relate streamflow characteristics to characteristics of the drainage basin. A statistical experiment was performed to compare the accuracy of equations using basin characteristics derived from maps and climatological records (control group equations) with the accuracy of equations using basin characteristics derived from Landsat data as well as maps and climatological records (experimental group equations). Results show that when the equations in both groups are arranged into six flow categories, there is no substantial difference in accuracy between control group equations and experimental group equations for this particular site where drainage area accounts for more than 90 percent of the variance in all streamflow characteristics (except low flows and most annual peak logarithms). (USGS)

  10. Estimation of streamflow for selected sites on the Carson and Truckee rivers in California and Nevada, 1944-80

    USGS Publications Warehouse

    Blodgett, J.C.; Oltmann, R.N.; Poeschel, K.R.

    1984-01-01

    Daily mean and monthly discharges were estimated for 10 sites on the Carson and Truckee Rivers for periods of incomplete records and for tributary sites affected by reservoir regulation. On the basis of the hydrologic characteristics, stream-flow data for a water year were grouped by month or season for subsequent regression analysis. In most cases, simple linear regressions adequately defined a relation of streamflow between gaging stations, but in some instances a nonlinear relation for several months of the water year was derived. Statistical data are presented to indicate the reliability of the estimated streamflow data. Records of discharges including historical and estimated data for the gaging stations for the water years 1944-80 are presented. (USGS)

  11. Cost effectiveness of the US Geological Survey's stream-gaging program in New York

    USGS Publications Warehouse

    Wolcott, S.W.; Gannon, W.B.; Johnston, W.H.

    1986-01-01

    The U.S. Geological Survey conducted a 5-year nationwide analysis to define and document the most cost effective means of obtaining streamflow data. This report describes the stream gaging network in New York and documents the cost effectiveness of its operation; it also identifies data uses and funding sources for the 174 continuous-record stream gages currently operated (1983). Those gages as well as 189 crest-stage, stage-only, and groundwater gages are operated with a budget of $1.068 million. One gaging station was identified as having insufficient reason for continuous operation and was converted to a crest-stage gage. Current operation of the 363-station program requires a budget of $1.068 million/yr. The average standard error of estimation of continuous streamflow data is 13.4%. Results indicate that this degree of accuracy could be maintained with a budget of approximately $1.006 million if the gaging resources were redistributed among the gages. The average standard error for 174 stations was calculated for five hypothetical budgets. A minimum budget of $970,000 would be needed to operated the 363-gage program; a budget less than this does not permit proper servicing and maintenance of the gages and recorders. Under the restrictions of a minimum budget, the average standard error would be 16.0%. The maximum budget analyzed was $1.2 million, which would decrease the average standard error to 9.4%. (Author 's abstract)

  12. Water resources data for Pennsylvania, water year 1993. Volume 2. Susquehanna and Potomac river basins. Water-data report (Annual), 1 October 1992-30 September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durlin, R.R.; Schaffstall, W.P.

    1994-01-01

    Water resources data for the 1993 water year for Pennsylvania consist of records of discharge and water quality of streams; contents and elevations of lakes and reservoirs; and water levels and water quality of ground-water wells. The report, Volume 2, includes records from the Susquehanna and Potomac River Basins. Specifically, Volume 2 contains (1) discharge records for 97 continuous-record streamflow-gaging stations and 39 partial-record stations; (2) elevation and contents records for 13 lakes and reservoirs; and (3) water-level records for 25 observation wells. The location of these sites is shown in figures 6-8. Additional waste data collected at various sitesmore » not involved in the systematic data-collection program are also presented.« less

  13. Regime Behavior in Paleo-Reconstructed Streamflow: Attributions to Atmospheric Dynamics, Synoptic Circulation and Large-Scale Climate Teleconnection Patterns

    NASA Astrophysics Data System (ADS)

    Ravindranath, A.; Devineni, N.

    2017-12-01

    Studies have shown that streamflow behavior and dynamics have a significant link with climate and climate variability. Patterns of persistent regime behavior from extended streamflow records in many watersheds justify investigating large-scale climate mechanisms as potential drivers of hydrologic regime behavior and streamflow variability. Understanding such streamflow-climate relationships is crucial to forecasting/simulation systems and the planning and management of water resources. In this study, hidden Markov models are used with reconstructed streamflow to detect regime-like behaviors - the hidden states - and state transition phenomena. Individual extreme events and their spatial variability across the basin are then verified with the identified states. Wavelet analysis is performed to examine the signals over time in the streamflow records. Joint analyses of the climatic data in the 20th century and the identified states are undertaken to better understand the hydroclimatic connections within the basin as well as important teleconnections that influence water supply. Compositing techniques are used to identify atmospheric circulation patterns associated with identified states of streamflow. The grouping of such synoptic patterns and their frequency are then examined. Sliding time-window correlation analysis and cross-wavelet spectral analysis are performed to establish the synchronicity of basin flows to the identified synoptic and teleconnection patterns. The Missouri River Basin (MRB) is examined in this study, both as a means of better understanding the synoptic climate controls in this important watershed and as a case study for the techniques developed here. Initial wavelet analyses of reconstructed streamflow at major gauges in the MRB show multidecadal cycles in regime behavior.

  14. Suspended sediment and bedload in the First Broad River Basin in Cleveland County, North Carolina, 2008-2009

    USGS Publications Warehouse

    Hazell, William F.; Huffman, Brad A.

    2011-01-01

    A study was conducted to characterize sediment transport upstream and downstream from a proposed dam on the First Broad River near the town of Lawndale in Cleveland County, North Carolina. Streamflow was measured continuously, and 381 suspended-sediment samples were collected between late March 2008 and September 2009 at two monitoring stations on the First Broad River to determine the suspended-sediment load at each site for the period April 2008-September 2009. In addition, 22 bedload samples were collected at the two sites to describe the relative contribution of bedload to total sediment load during selected events. Instantaneous streamflow, suspended-sediment, and bedload samples were collected at Knob Creek near Lawndale, North Carolina, to describe general suspended-sediment and bedload characteristics at this tributary to the First Broad River. Suspended- and bedload-sediment samples were collected at all three sites during a variety of flow conditions. Streamflow and suspended-sediment measurements were compared with historical data from a long-term (1959-2009) streamflow station located upstream from Lawndale. The mean streamflow at the long-term streamflow station was approximately 60 percent less during the study period than the long-term annual mean streamflow for the site. Suspended-sediment concentrations and continuous records of streamflow were used to estimate suspended-sediment loads and yields at the two monitoring stations on the First Broad River for the period April 2008-September 2009 and for a complete annual cycle (October 2008-September 2009), also known as a water year. Total suspended-sediment loads during water year 2009 were 18,700 and 36,500 tons at the two sites. High-flow events accounted for a large percentage of the total load, suggesting that the bulk of the total suspended-sediment load was transported during these events. Suspended-sediment yields during water year 2009 were 145 and 192 tons per square mile at the two monitoring stations. Historically, the estimated mean annual suspended-sediment yield at the long-term streamflow station during the period 1970-1979 was 250 tons per square mile, with an estimated mean annual suspended-sediment load of 15,000 tons. Drought conditions throughout most of the study period were a potential factor in the smaller yields at the monitoring stations compared to the yields estimated at the long-term streamflow station in the 1970s. During an extreme runoff event on January 7, 2009, bedload was 0.4 percent, 0.8 percent, and 0.1 percent of the total load at the three study sites, which indicates that during extreme runoff conditions the percentage of the total load that is bedload is not significant. The percentages of the total load that is bedload during low-flow conditions ranged from 0.1 to 90.8, which indicate that the bedload is variable both spatially and temporally.

  15. Accuracy in streamflow measurements on the Fernow Experimental Forest

    Treesearch

    James W. Hornbeck

    1965-01-01

    Measurement of streamflow from small watersheds on the Fernow Experimental Forest at Parsons, West Virginia was begun in 1951. Stream-gaging stations are now being operated on 9 watersheds ranging from 29 to 96 acres in size; and 91 watershed-years of record have been collected. To determine how accurately streamflow is being measured at these stations, several of the...

  16. A time-corrector device for adjusting streamflow records

    Treesearch

    Raymond W. Lavigne

    1960-01-01

    The first job in compiling streamflow data from streamflow charts is to mark storm rises and storm peaks, make corrections as necessary for time and stage height, and account for irregularities on the chart. Errors in the time scale can result from faulty clock operation, irregularities in chart take-up by the drum, or expansion of the paper. This note suggests a...

  17. Relation of nitrate concentrations to baseflow in the Raccoon River, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Lutz, D.S.

    2004-01-01

    Excessive nitrate-nitrogen (nitrate) export from the Raccoon River in west central Iowa is an environmental concern to downstream receptors. The 1972 to 2000 record of daily streamflow and the results from 981 nitrate measurements were examined to describe the relation of nitrate to streamflow in the Raccoon River. No long term trends in streamflow and nitrate concentrations were noted in the 28-year record. Strong seasonal patterns were evident in nitrate concentrations, with higher concentrations occurring in spring and fall. Nitrate concentrations were linearly related to streamflow at daily, monthly, seasonal, and annual time scales. At all time scales evaluated, the relation was improved when baseflow was used as the discharge variable instead of total streamflow. Nitrate concentrations were found to be highly stratified according to flow, but there was little relation of nitrate to streamflow within each flow range. Simple linear regression models developed to predict monthly mean nitrate concentrations explained as much as 76 percent of the variability in the monthly nitrate concentration data for 2001. Extrapolation of current nitrate baseflow relations to historical conditions in the Raccoon River revealed that increasing baseflow over the 20th century could account for a measurable increase in nitrate concentrations.

  18. Evaluation of Measurements Collected with Multi-Parameter Continuous Water-Quality Monitors in Selected Illinois Streams, 2001-03

    USGS Publications Warehouse

    Groschen, George E.; King, Robin B.

    2005-01-01

    Eight streams, representing a wide range of environmental and water-quality conditions across Illinois, were monitored from July 2001 to October 2003 for five water-quality parameters as part of a pilot study by the U.S. Geological Survey (USGS) in cooperation with the Illinois Environmental Protection Agency (IEPA). Continuous recording multi-parameter water-quality monitors were installed to collect data on water temperature, dissolved-oxygen concentrations, specific conductivity, pH, and turbidity. The monitors were near USGS streamflow-gaging stations where stage and streamflow are continuously recorded. During the study period, the data collected for these five parameters generally met the data-quality objectives established by the USGS and IEPA at all eight stations. A similar pilot study during this period for measurement of chlorophyll concentrations failed to achieve the data-quality objectives. Of all the sensors used, the temperature sensors provided the most accurate and reliable measurements (generally within ?5 percent of a calibrated thermometer reading). Signal adjustments and calibration of all other sensors are dependent upon an accurate and precise temperature measurement. The dissolved-oxygen sensors were the next most reliable during the study and were responsive to changing conditions and accurate at all eight stations. Specific conductivity was the third most accurate and reliable measurement collected from the multi-parameter monitors. Specific conductivity at the eight stations varied widely-from less than 40 microsiemens (?S) at Rayse Creek near Waltonville to greater than 3,500 ?S at Salt Creek at Western Springs. In individual streams, specific conductivity often changed quickly (greater than 25 percent in less than 3 hours) and the sensors generally provided good to excellent record of these variations at all stations. The widest range of specific-conductivity measurements was in Salt Creek at Western Springs in the Greater Chicago metropolitan area. Unlike temperature, dissolved oxygen, and specific conductivity that have been typically measured over a wide range of historical streamflow conditions in many streams, there are few historical turbidity data and the full range of turbidity values is not well known for many streams. Because proposed regional criteria for turbidity in regional streams are based on upper 25th percentiles of concentration in reference streams, accurate determination of the distribution of turbidity in monitored streams is important. Digital data from all five sensors were recorded within each of the eight sondes deployed in the streams and in automated data recorders in the nearby streamflow-gaging houses at each station. The data recorded on each sonde were retrieved to a field laptop computer at each station visit. The feasibility of transmitting these data in near-real time to a central processing point for dissemination on the World-Wide Web was tested successfully. Data collected at all eight stations indicate that a number of factors affect the dissolved-oxygen concentration in the streams and rivers monitored. These factors include: temperature, biological activity, nutrient runoff, and weather (storm runoff). During brief periods usually in late summer, dissolved-oxygen concentrations in half or more of the eight streams and rivers monitored were below the 5 milligrams per liter minimum established by the Illinois Pollution Control Board to protect aquatic life. Because the streams monitored represent a wide range in water-quality and environmental conditions, including diffuse (non-point) runoff and wastewater-effluent contributions, this result indicates that deleterious low dissolved-oxygen concentrations during late summer may be widespread in Illinois streams.

  19. Preliminary flood-duration frequency estimates using naturalized streamflow records for the Willamette River Basin, Oregon

    USGS Publications Warehouse

    Lind, Greg D.; Stonewall, Adam J.

    2018-02-13

    In this study, “naturalized” daily streamflow records, created by the U.S. Army Corps of Engineers and the Bureau of Reclamation, were used to compute 1-, 3-, 7-, 10-, 15-, 30-, and 60-day annual maximum streamflow durations, which are running averages of daily streamflow for the number of days in each duration. Once the annual maximum durations were computed, the floodduration frequencies could be estimated. The estimated flood-duration frequencies correspond to the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent probabilities of their occurring or being exceeded each year. For this report, the focus was on the Willamette River Basin in Oregon, which is a subbasin of the Columbia River Basin. This study is part of a larger one encompassing the entire Columbia Basin.

  20. Simulation of streamflow in small drainage basins in the southern Yampa River basin, Colorado

    USGS Publications Warehouse

    Parker, R.S.; Norris, J.M.

    1989-01-01

    Coal mining operations in northwestern Colorado commonly are located in areas that have minimal available water-resource information. Drainage-basin models can be a method for extending water-resource information to include periods for which there are no records or to transfer the information to areas that have no streamflow-gaging stations. To evaluate the magnitude and variability of the components of the water balance in the small drainage basins monitored, and to provide some method for transfer of hydrologic data, the U.S. Geological Survey 's Precipitation-Runoff Modeling System was used for small drainage basins in the southern Yampa River basin to simulate daily mean streamflow using daily precipitation and air-temperature data. The study area was divided into three hydrologic regions, and in each of these regions, three drainage basins were monitored. Two of the drainage basins in each region were used to calibrate the Precipitation-Runoff Modeling System. The model was not calibrated for the third drainage basin in each region; instead, parameter values were transferred from the model that was calibrated for the two drainage basins. For all of the drainage basins except one, period of record used for calibration and verification included water years 1976-81. Simulated annual volumes of streamflow for drainage basins used in calibration compared well with observed values; individual hydrographs indicated timing differences between the observed and simulated daily mean streamflow. Observed and simulated annual average streamflows compared well for the periods of record, but values of simulated high and low streamflows were different than observed values. Similar results were obtained when calibrated model parameter values were transferred to drainage basins that were uncalibrated. (USGS)

  1. Water resources management: Hydrologic characterization through hydrograph simulation may bias streamflow statistics

    NASA Astrophysics Data System (ADS)

    Farmer, W. H.; Kiang, J. E.

    2017-12-01

    The development, deployment and maintenance of water resources management infrastructure and practices rely on hydrologic characterization, which requires an understanding of local hydrology. With regards to streamflow, this understanding is typically quantified with statistics derived from long-term streamgage records. However, a fundamental problem is how to characterize local hydrology without the luxury of streamgage records, a problem that complicates water resources management at ungaged locations and for long-term future projections. This problem has typically been addressed through the development of point estimators, such as regression equations, to estimate particular statistics. Physically-based precipitation-runoff models, which are capable of producing simulated hydrographs, offer an alternative to point estimators. The advantage of simulated hydrographs is that they can be used to compute any number of streamflow statistics from a single source (the simulated hydrograph) rather than relying on a diverse set of point estimators. However, the use of simulated hydrographs introduces a degree of model uncertainty that is propagated through to estimated streamflow statistics and may have drastic effects on management decisions. We compare the accuracy and precision of streamflow statistics (e.g. the mean annual streamflow, the annual maximum streamflow exceeded in 10% of years, and the minimum seven-day average streamflow exceeded in 90% of years, among others) derived from point estimators (e.g. regressions, kriging, machine learning) to that of statistics derived from simulated hydrographs across the continental United States. Initial results suggest that the error introduced through hydrograph simulation may substantially bias the resulting hydrologic characterization.

  2. Proposed hydrologic analyses of streamflow for Brazil

    USGS Publications Warehouse

    Riggs, Henry Chiles

    1974-01-01

    Streamflow records are evaluated for the Rio Jacui basin in the state of Rio Grande Sul, Brazil, in reference to data reliability, length of record, and density of areal coverage. Availability of water is a factor in the development of a country, and surface water is of especial importance in Brazil. This report is intended as a reference for further investigation of the flow characteristic of the basin to provide (1) information for utilization of streamflow and (2) information to improve the data collection and analytic procedures. In addition the evaluation study can serve as a pilot for other developing river basins in Brazil. (Woodard-USGS)

  3. Intra-to multidecadel variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30 degrees and 37 degrees S.

    USDA-ARS?s Scientific Manuscript database

    Regional composites of winter snowpack (1951-2008) and mean annual river discharges (1906-2007) are used to evaluate the main intra- to multi-decadal hydrologic variations in the Andes of Chile and Argentina between 30° and 37°S. The streamflow record shows a non-significant negative trend but two s...

  4. Characterization of peak streamflows and flood inundation of selected areas in Louisiana, Texas, Arkansas, and Mississippi from flood of March 2016

    USGS Publications Warehouse

    Breaker, Brian K.; Watson, Kara M.; Ensminger, Paul A.; Storm, John B.; Rose, Claire E.

    2016-11-29

    Heavy rainfall occurred across Louisiana, Texas, Arkansas, and Mississippi in March 2016 as a result of a slow-moving southward dip in the jetstream, funneling tropical moisture into parts of the Gulf Coast States and the Mississippi River Valley. The storm caused major flooding in the northwestern and southeastern parts of Louisiana and in eastern Texas. Flooding also occurred in the Mississippi River Valley in Arkansas and Mississippi. Over 26 inches of rain were reported near Monroe, Louisiana, over the duration of the storm. In March 2016, U.S. Geological Survey (USGS) hydrographers made more than 500 streamflow measurements in Louisiana, Texas, Arkansas, and Mississippi. Many of those streamflow measurements were made to verify the accuracy of stage-streamflow relations at gaging stations operated by the USGS. Peak streamflows were the highest on record at 14 locations, and streamflows at 29 locations ranked in the top five for the period of record at USGS streamflow-gaging stations analyzed for this report. Following the storm, USGS hydrographers documented 451 high-water marks in Louisiana and on the western side of the Sabine River in Texas. Many of these high-water marks were used to create 19 flood-inundation maps for selected areas of Louisiana and Texas that experienced flooding in March 2016.

  5. Floods of Selected Streams in Arkansas, Spring 2008

    USGS Publications Warehouse

    Funkhouser, Jaysson E.; Eng, Ken

    2009-01-01

    Floods can cause loss of life and extensive destruction to property. Monitoring floods and understanding the reasons for their occurrence are the responsibility of many Federal agencies. The National Weather Service, the U.S. Army Corps of Engineers, and the U.S. Geological Survey are among the most visible of these agencies. Together, these three agencies collect and analyze floodflow information to better understand the variety of mechanisms that cause floods, and how the characteristics and frequencies of floods vary with time and location. The U.S. Geological Survey (USGS) has monitored and assessed the quantity of streamflow in our Nation's streams since the agency's inception in 1879. Because of ongoing collection and assessment of streamflow data, the USGS can provide information about a range of surface-water issues including the suitability of water for public supply and irrigation and the effects of agriculture and urbanization on streamflow. As part of its streamflow-data collection activities, the USGS measured streamflow in multiple streams during extreme flood events in Arkansas in the spring of 2008. The analysis of streamflow information collected during flood events such as these provides a scientific basis for decision making related to resource management and restoration. Additionally, this information can be used by water-resource managers to better define flood-hazard areas and to design bridges, culverts, dams, levees, and other structures. Water levels (stage) and streamflow (discharge) currently are being monitored in near real-time at approximately 150 locations in Arkansas. The streamflow-gaging stations measure and record hydrologic data at 15-minute or hourly intervals; the data then are transmitted through satellites to the USGS database and displayed on the internet every 1 to 4 hours. Streamflow-gaging stations in Arkansas are part of a network of over 7,500 active streamflow-gaging stations operated by the USGS throughout the United States in cooperation with other Federal, State, and local government agencies. In Arkansas, the major supporters of the streamflow-gaging network are the U.S. Army Corps of Engineers, Arkansas Natural Resources Commission, Arkansas Department of Environmental Quality, and Arkansas Geological Survey. Many other Federal, State, and local government entities provide additional support for streamflow-gaging stations. It is the combined support of the USGS and all funding partners that make it possible to maintain an adequate streamflow-gaging network in Arkansas. Data collected over the years at streamflow-gaging stations can be used to characterize the relative magnitude of flood events and their statistical frequency of occurrence. These analyses provide water-resource managers with accurate and reliable hydrologic information based on present and historical flow conditions. Continued collection of streamflow data, with consideration of changes in land use, agricultural practices, and climate change, will help scientists to more accurately characterize the magnitude of extreme floods in the future.

  6. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 1999

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.

    2000-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 1999.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 76 streamflow gaging stations, daily sediment records for 25 streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 107 observation wells.

  7. Evaluation of the streamflow-gaging network of Texas and a proposed core network

    USGS Publications Warehouse

    Slade, Raymond M.; Howard, Teresa; Anaya, Roberto

    2001-01-01

    The U.S. Geological Survey streamflowgaging network in Texas is operated as part of the National Streamgaging Program and is jointly funded by the Geological Survey and Federal, State, and local agencies. This report documents an evaluation of the existing (as of October 1, 1999) network with regard to four major objectives of streamflow data; and on the basis of that evaluation, proposes a core network of streamflowgaging stations that best meets those objectives. The objectives are (1) regionalization (estimate flows or flow characteristics at ungaged sites in 11 hydrologically similar regions), (2) major flow (obtain flow rates and volumes in large streams), (3) outflow from the State (account for streamflow leaving the State), and (4) streamflow conditions assessment (assess current conditions with regard to long-term data, and define temporal trends in flow). The network analysis resulted in a proposed core network of 263 stations. Of those 263 stations, 43 were discontinued as of October 1, 1999, and 15 were partial-record stations. Fifty-five of the proposed core-network stations meet two of the four major objectives, 16 stations meet three objectives, and 1 station meets all four. One-hundred eighty-five stations with a median record length of 33 years were selected to meet the regionalization objective. Ninety-two stations with a median record length of about 62 years were selected to meet the major-flow objective. Twenty-six stations with a median record length of 59 years were selected to meet the outflow from the State objective. Fifty stations with a median record length of 53 years were selected to meet the streamflow conditions assessment objective.

  8. Data uses and funding for the stream-gaging program in Utah

    USGS Publications Warehouse

    Cruff, R.W.

    1986-01-01

    This report documents the results of the first phase of a study of the cost effectiveness of the streamflow-information program in Utah. Data use, funding, and data availability are described for the streamflow stations operated by the U.S. Geological Survey; and a history of the stream-gaging program is given. During the 1984 water year, 214 continuous streamflow stations were operated on a budget of $854,000. Data from most stations have multiple uses and all stations presently have sufficient justification for continuation.

  9. Flood of March 1997 in southern Ohio

    USGS Publications Warehouse

    Jackson, K.S.; Vivian, S.A.; Diam, F.J.; Crecelius, C.J.

    1997-01-01

    Rainfall amounts of up to 12 inches produced by thunderstorms during March 1-2, 1997 resulted in severe flooding throughout much of southern Ohio. Eighteen counties were declared Federal and State disaster areas. Cost estimates of damage in Ohio from the flooding are nearly $180 million. About 6,500 residences and more than 800 businesses were affected by flooding. Nearly 20,000 persons were evacuated, and 5 deaths were attributed to the flooding. Record peak stage and streamflow were recorded at U.S. Geological Survey (USGS) streamflow-gaging stations on Ohio Brush Creek near West Union and Shade River near Chester. The peak streamflow at these two locations exceeded the estimate of the 100-year-recurrence- interval peak streamflow. The recurrence intervals of peak stream flow at selected USGS streamflow gaging stations throughout southern Ohio ranged from less than 2 years to greater than 100 years. The most severe flooding in the State was generally confined to areas within 50 to 70 miles of the Ohio River. Many communities along the Ohio River experienced the worst flooding in more than 30 years.

  10. Preliminary peak stage and streamflow data at selected USGS streamgaging stations for the South Carolina flood of October 2015

    USGS Publications Warehouse

    Feaster, Toby D.; Shelton, John M.; Robbins, Jeanne C.

    2015-10-20

    Heavy rainfall occurred across South Carolina during October 1–5, 2015, as a result of an upper atmospheric low-pressure system that funneled tropical moisture from Hurricane Joaquin into the State. The storm caused major flooding from the central to the coastal areas of South Carolina. Almost 27 inches of rain fell near Mount Pleasant in Charleston County during this period. U.S. Geological Survey streamgages recorded peaks of record at 17 locations, and 15 other locations had peaks that ranked in the top 5 for the period of record. During the October 2015 flood event, U.S. Geological Survey personnel made about 140 streamflow measurements at 86 locations to verify, update, or extend existing rating curves, which are used to compute streamflow from monitored river stage.

  11. Impact of Deforestation and Recovery on Streamflow Recession Statistics

    NASA Astrophysics Data System (ADS)

    Krapu, C.; Kumar, M.

    2016-12-01

    Deforestation is known to influence streamflow and baseflow in particular in sub-humid environments. Baseflow contributions to the recession limb of a flood hydrograph convey information about subsurface stores from which trees also draw water. Recent works based on the assumptions outlined by Brutsaert and Nieber (1977) have proposed analyzing streamflow recession curves on a per-event basis. In this framework, each event's recession curve is governed by a power law relation with per-event scale and shape coefficients. As streamflow recession depends in part upon evapotranspiration demand from trees, these coefficients are hypothesized to contain useful information about catchment vegetation. Analysis was conducted of 13 small experimental catchments in the eastern United States with known forest treatment histories to determine whether or not streamflow recession behavior as observed from daily discharge records could serve as an indicator of deforestation in the drainage basin. Power-law scale coefficients were calculated for each major stormflow event at each test site and a statistical comparison of distribution of fitted coefficients was made between pre-treatment and post-treatment events as well as between pre-treatment and post-recovery events. A second method using these fitted coefficients in conjunction with Gaussian process regression was employed to track the change in the scale coefficient in the 13 catchments described previously as well as two medium-sized catchments in the North Carolina portion of the American Piedmont which did not have extensive records of forest cover. A linear trend analysis of precipitation was performed to determine whether nonstationarity in rainfall could be a confounding cause of changes in event scale coefficients. These results show a statistically significant difference in scale coefficient values in 5/8 treatment catchments and 0/5 control catchments. This suggests that lesser alterations to forest cover may not be detectable but that this method is robust against changes in precipitation. Additionally, we found clear evidence that forest regrowth in the Piedmont sites continued from 1940-1970. As a proof-of-concept, this work suggests that major alterations to forest cover can be inferred from daily data of stream discharge.

  12. Estimated monthly streamflows for selected locations on the Kabul and Logar Rivers, Aynak copper, cobalt, and chromium area of interest, Afghanistan, 1951-2010

    USGS Publications Warehouse

    Vining, Kevin C.; Vecchia, Aldo V.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, used the stochastic monthly water-balance model and existing climate data to estimate monthly streamflows for 1951–2010 for selected streamgaging stations located within the Aynak copper, cobalt, and chromium area of interest in Afghanistan. The model used physically based, nondeterministic methods to estimate the monthly volumetric water-balance components of a watershed. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Kabul River at Maidan and Kabul River at Tangi-Saidan indicated that the stochastic water-balance model was able to provide satisfactory estimates of monthly streamflows for high-flow months and low-flow months even though withdrawals for irrigation likely occurred. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Logar River at Shekhabad and Logar River at Sangi-Naweshta also indicated that the stochastic water-balance model was able to provide reasonable estimates of monthly streamflows for the high-flow months; however, for the upstream streamgaging station, the model overestimated monthly streamflows during periods when summer irrigation withdrawals likely occurred. Results from the stochastic water-balance model indicate that the model should be able to produce satisfactory estimates of monthly streamflows for locations along the Kabul and Logar Rivers. This information could be used by Afghanistan authorities to make decisions about surface-water resources for the Aynak copper, cobalt, and chromium area of interest.

  13. Multiscale temporal variability and regional patterns in 555 years of conterminous U.S. streamflow

    NASA Astrophysics Data System (ADS)

    Ho, Michelle; Lall, Upmanu; Sun, Xun; Cook, Edward R.

    2017-04-01

    The development of paleoclimate streamflow reconstructions in the conterminous United States (CONUS) has provided water resource managers with improved insights into multidecadal and centennial scale variability that cannot be reliably detected using shorter instrumental records. Paleoclimate streamflow reconstructions have largely focused on individual catchments limiting the ability to quantify variability across the CONUS. The Living Blended Drought Atlas (LBDA), a spatially and temporally complete 555 year long paleoclimate record of summer drought across the CONUS, provides an opportunity to reconstruct and characterize streamflow variability at a continental scale. We explore the validity of the first paleoreconstructions of streamflow that span the CONUS informed by the LBDA targeting a set of U.S. Geological Survey streamflow sites. The reconstructions are skillful under cross validation across most of the country, but the variance explained is generally low. Spatial and temporal structures of streamflow variability are analyzed using hierarchical clustering, principal component analysis, and wavelet analyses. Nine spatially coherent clusters are identified. The reconstructions show signals of contemporary droughts such as the Dust Bowl (1930s) and 1950s droughts. Decadal-scale variability was detected in the late 1900s in the western U.S., however, similar modes of temporal variability were rarely present prior to the 1950s. The twentieth century featured longer wet spells and shorter dry spells compared with the preceding 450 years. Streamflows in the Pacific Northwest and Northeast are negatively correlated with the central U.S. suggesting the potential to mitigate some drought impacts by balancing economic activities and insurance pools across these regions during major droughts.

  14. Hydrologic change in a coast redwood forest, Caspar Creek Experimental Watersheds: implications for salmonid survival

    Treesearch

    Elizabeth Keppeler

    2016-01-01

    The 52-year record of streamflow from the Caspar Creek Experimental Watersheds shows a trend toward decreasing rainfall and streamflow during the fall season when coho salmon (Oncorhynchus kisutch) migrate upstream to spawn. Rainfall records show a slight declining trend in fall totals and a slight increasing trend in spring totals since 1962, but only November shows a...

  15. Cost-effectiveness of the stream-gaging program in North Carolina

    USGS Publications Warehouse

    Mason, R.R.; Jackson, N.M.

    1985-01-01

    This report documents the results of a study of the cost-effectiveness of the stream-gaging program in North Carolina. Data uses and funding sources are identified for the 146 gaging stations currently operated in North Carolina with a budget of $777,600 (1984). As a result of the study, eleven stations are nominated for discontinuance and five for conversion from recording to partial-record status. Large parts of North Carolina 's Coastal Plain are identified as having sparse streamflow data. This sparsity should be remedied as funds become available. Efforts should also be directed toward defining the efforts of drainage improvements on local hydrology and streamflow characteristics. The average standard error of streamflow records in North Carolina is 18.6 percent. This level of accuracy could be improved without increasing cost by increasing the frequency of field visits and streamflow measurements at stations with high standard errors and reducing the frequency at stations with low standard errors. A minimum budget of $762,000 is required to operate the 146-gage program. A budget less than this does not permit proper service and maintenance of the gages and recorders. At the minimum budget, and with the optimum allocation of field visits, the average standard error is 17.6 percent.

  16. Cost effectiveness of the stream-gaging program in North Dakota

    USGS Publications Warehouse

    Ryan, Gerald L.

    1989-01-01

    This report documents results of a cost-effectiveness study of the stream-gaging program In North Dakota. It is part of a nationwide evaluation of the stream-gaging program of the U.S. Geological Survey.One phase of evaluating cost effectiveness is to identify less costly alternative methods of simulating streamflow records. Statistical or hydro logic flow-routing methods were used as alternative methods to simulate streamflow records for 21 combinations of gaging stations from the 94-gaging-station network. Accuracy of the alternative methods was sufficient to consider discontinuing only one gaging station.Operation of the gaging-station network was evaluated by using associated uncertainty in streamflow records. The evaluation was limited to the nonwinter operation of 29 gaging stations in eastern North Dakota. The current (1987) travel routes and measurement frequencies require a budget of about $248/000 and result in an average equivalent Gaussian spread in streamflow records of 16.5 percent. Changes in routes and measurement frequencies optimally could reduce the average equivalent Gaussian spread to 14.7 percent.Budgets evaluated ranged from $235,000 to $400,000. A $235,000 budget would increase the optimal average equivalent Gaussian spread from 14.7 to 20.4 percent, and a $400,000 budget could decrease it to 5.8 percent.

  17. Cost-effectiveness of the stream-gaging program in New Jersey

    USGS Publications Warehouse

    Schopp, R.D.; Ulery, R.L.

    1984-01-01

    The results of a study of the cost-effectiveness of the stream-gaging program in New Jersey are documented. This study is part of a 5-year nationwide analysis undertaken by the U.S. Geological Survey to define and document the most cost-effective means of furnishing streamflow information. This report identifies the principal uses of the data and relates those uses to funding sources, applies, at selected stations, alternative less costly methods (that is flow routing, regression analysis) for furnishing the data, and defines a strategy for operating the program which minimizes uncertainty in the streamflow data for specific operating budgets. Uncertainty in streamflow data is primarily a function of the percentage of missing record and the frequency of discharge measurements. In this report, 101 continuous stream gages and 73 crest-stage or stage-only gages are analyzed. A minimum budget of $548,000 is required to operate the present stream-gaging program in New Jersey with an average standard error of 27.6 percent. The maximum budget analyzed was $650,000, which resulted in an average standard error of 17.8 percent. The 1983 budget of $569,000 resulted in a standard error of 24.9 percent under present operating policy. (USGS)

  18. Synthesis of monthly and annual streamflow records (water years 1950-2003) for Big Sandy, Clear, Peoples, and Beaver Creeks in the Milk River basin, Montana

    USGS Publications Warehouse

    Parrett, Charles

    2006-01-01

    To address concerns expressed by the State of Montana about the apportionment of water in the St. Mary and Milk River basins between Canada and the United States, the International Joint Commission requested information from the United States government about water that originates in the United States but does not cross the border into Canada. In response to this request, the U.S. Geological Survey synthesized monthly and annual streamflow records for Big Sandy, Clear, Peoples, and Beaver Creeks, all of which are in the Milk River basin in Montana, for water years 1950-2003. This report presents the synthesized values of monthly and annual streamflow for Big Sandy, Clear, Peoples, and Beaver Creeks in Montana. Synthesized values were derived from recorded and estimated streamflows. Statistics, including long-term medians and averages and flows for various exceedance probabilities, were computed from the synthesized data. Beaver Creek had the largest median annual discharge (19,490 acre-feet), and Clear Creek had the smallest median annual discharge (6,680 acre-feet). Big Sandy Creek, the stream with the largest drainage area, had the second smallest median annual discharge (9,640 acre-feet), whereas Peoples Creek, the stream with the second smallest drainage area, had the second largest median annual discharge (11,700 acre-feet). The combined median annual discharge for the four streams was 45,400 acre-feet. The largest combined median monthly discharge for the four creeks was 6,930 acre-feet in March, and the smallest combined median monthly discharge was 48 acre-feet in January. The combined median monthly values were substantially smaller than the average monthly values. Overall, synthesized flow records for the four creeks are considered to be reasonable given the prevailing climatic conditions in the region during the 1950-2003 base period. Individual estimates of monthly streamflow may have large errors, however. Linear regression was used to relate logarithms of combined annual streamflow to water years 1950-2003. The results of the regression analysis indicated a significant downward trend (regression line slope was -0.00977) for combined annual streamflow. A regression analysis using data from 1956-2003 indicated a slight, but not significant, downward trend for combined annual streamflow.

  19. Historical groundwater trends in northern New England and relations with streamflow and climatic variables

    USGS Publications Warehouse

    Dudley, Robert W.; Hodgkins, Glenn A.

    2013-01-01

    Water-level trends spanning 20, 30, 40, and 50 years were tested using month-end groundwater levels in 26, 12, 10, and 3 wells in northern New England (Maine, New Hampshire, and Vermont), respectively. Groundwater levels for 77 wells were used in interannual correlations with meteorological and hydrologic variables related to groundwater. Trends in the contemporary groundwater record (20 and 30 years) indicate increases (rises) or no substantial change in groundwater levels in all months for most wells throughout northern New England. The highest percentage of increasing 20-year trends was in February through March, May through August, and October through November. Forty-year trend results were mixed, whereas 50-year trends indicated increasing groundwater levels. Whereas most monthly groundwater levels correlate strongly with the previous month's level, monthly levels also correlate strongly with monthly streamflows in the same month; correlations of levels with monthly precipitation are less frequent and weaker than those with streamflow. Groundwater levels in May through August correlate strongly with annual (water year) streamflow. Correlations of groundwater levels with streamflow data and the relative richness of 50- to 100-year historical streamflow data suggest useful proxies for quantifying historical groundwater levels in light of the relatively short and fragmented groundwater data records presently available.

  20. Flooding in the South Platte River and Fountain Creek Basins in eastern Colorado, September 9–18, 2013

    USGS Publications Warehouse

    Kimbrough, Robert A.; Holmes, Robert R.

    2015-11-25

    Flooding in the Fountain Creek Basin was primarily contained to Fountain Creek from southern Colorado Springs to its confluence with the Arkansas River in Pueblo, in lower Monument Creek, and in several mountain tributaries. New record peak streamflows occurred at four mountain tributary streamgages having at least 10 years of record; Bear Creek, Cheyenne Creek, Rock Creek, and Little Fountain Creek. Five streamgages with at least 10 years of record in a 32-mile reach of Fountain Creek extending from Colorado Springs to Piñon had peak streamflows in the top five for the period of record. A peak of 15,300 ft3/s at Fountain Creek near Fountain was the highest streamflow recorded in the Fountain Creek Basin during the September 2013 event and ranks the third highest peak in 46 years. Near the mouth of the basin, a peak of 11,800 ft3/s in Pueblo was only the thirteenth highest annual peak in 74 years. A new Colorado record for daily rainfall of 11.85 inches was recorded at a USGS rain gage in the Little Fountain Creek Basin on September 12, 2013.

  1. Water-resources activities in New York, 1987-88

    USGS Publications Warehouse

    Marshall, Mary P.; Finch, Anne J.

    1988-01-01

    The U.S. Geological Survey conducted more than 35 water resources projects in New York in 1987-88. These studies, done largely through cooperative joint-funding programs with the state, County, and local agencies, encompass statewide networks of measurement stations that provide continuous records of streamflow, groundwater levels, and water quality; they also address regional and local problems as well as critical problems of national scope. Some of the questions addressed by these studies are the effect of sewers on groundwater levels and streamflow on Long Island; the occurrence and transport of PCB residues within the upper Hudson River basin; the effect of acid rain on streams in the Catskill Mountains; the frequency and magnitude of floods statewide; the role of wetlands in improving the chemical quality of landfill leachate; the direction of groundwater movement from waste disposal sites near the Niagara River; and the location and potential well yields of stratified-drift aquifers in upstate New York. (USGS)

  2. Index of stations: surface-water data-collection network of Texas, September 1999

    USGS Publications Warehouse

    Gandara, Susan C.; Barbie, Dana L.

    2001-01-01

    As of September 30, 1999, the surface-water data-collection network of Texas (table 1) included 321 continuous-record streamflow stations (D), 20 continuous-record gage-height only stations (G), 24 crest-stage partial-record stations (C), 40 floodhydrograph partial-record stations (H), 25 low-flow partial-record stations (L), 1 continuous-record temperature station (M1), 25 continuous-record temperature and specific conductance stations (M2), 17 continuous-record temperature, specific conductance, dissolved oxygen, and pH stations (M4), 4 daily water-quality stations (Qd), 115 periodic water-quality stations (Qp), 17 reservoir/lake surveys for water quality stations (Qs), 85 continuous or daily reservoircontent stations (R), and 10 daily precipitation stations (Pd). Plate 1 identifies the major river basins in Texas and shows the location of the stations listed in table 1. Table 1 shows the station number and name, latitude and longitude, type of station, and office responsible for the collection of the data and maintenance of the record. An 8-digit permanent numerical designation for all gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering between two main-stem stations are listed between these two stations. A similar order is followed in listing stations by first rank, second rank, and other ranks of tributaries. The rank of any tributary, with respect to the stream to which it is an immediate tributary, is indicated by an indention in the table. Each indention represents one rank. This downstream order and system of indention shows which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated.

  3. Updated computations and estimates of streamflows tributary to Carson Valley, Douglas County, Nevada, and Alpine County, California, 1990-2002

    USGS Publications Warehouse

    Maurer, Douglas K.; Watkins, Sharon A.; Burrowws, Robert L.

    2004-01-01

    Rapid population growth in Carson Valley has caused concern over the continued availability of water resources to sustain future growth. The U.S. Geological Survey, in cooperation with Douglas County, began a study to update estimates of water-budget components in Carson Valley for current climatic conditions. Data collected at 19 sites included 9 continuous records of tributary streamflows, 1 continuous record of outflow from the valley, and 408 measurements of 10 perennially flowing but ungaged drainages. These data were compiled and analyzed to provide updated computations and estimates of streamflows tributary to Carson Valley, 1990-2002. Mean monthly and annual flows were computed from continuous records for the period 1990-2002 for five streams, and for the period available, 1990-97, for four streams. Daily mean flow from ungaged drainages was estimated using multi-variate regressions of individual discharge measurements against measured flow at selected continuous gages. From the estimated daily mean flows, monthly and annual mean flows were calculated from 1990 to 2002. These values were used to compute estimates of mean monthly and annual flows for the ungaged perennial drainages. Using the computed and estimated mean annual flows, annual unit-area runoff was computed for the perennial drainages, which ranged from 0.30 to 2.02 feet. For the period 1990-2002, estimated inflow of perennial streams tributary to Carson Valley totaled about 25,900 acre-feet per year. Inflow computed from gaged perennial drainages totaled 10,300 acre-feet per year, and estimated inflow from ungaged perennial drainages totaled 15,600 acre-feet per year. The annual flow of perennial streams ranges from 4,210 acre-feet at Clear Creek to 450 acre-feet at Stutler Canyon Creek. Differences in unit-area runoff and in the seasonal timing of flow likely are caused by differences in geologic setting, altitude, slope, or aspect of the individual drainages. The remaining drainages are ephemeral and supply inflow to the valley floor only during spring runoff in wet years or during large precipitation events. Annual unit-area runoff for the perennial drainages was used to estimate inflow from ephemeral drainages totaling 11,700 acre-feet per year. The totaled estimate of perennial and ephemeral tributary inflows to Carson Valley is 37,600 acre-feet per year. Gaged perennial inflow is 27 percent of the total, ungaged perennial inflow is 42 percent, and ephemeral inflow is 31 percent. The estimate is from 50 to 60 percent greater than three previous estimates, one made for a larger area and similar to two other estimates made for larger areas. The combined uncertainty of the estimates totaled about 33 percent of the total inflow or about 12,000 acre-feet per year.

  4. Low-flow characteristics for selected streams in Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Wilson, John T.

    2015-01-01

    The management and availability of Indiana’s water resources increase in importance every year. Specifically, information on low-flow characteristics of streams is essential to State water-management agencies. These agencies need low-flow information when working with issues related to irrigation, municipal and industrial water supplies, fish and wildlife protection, and the dilution of waste. Industrial, municipal, and other facilities must obtain National Pollutant Discharge Elimination System (NPDES) permits if their discharges go directly to surface waters. The Indiana Department of Environmental Management (IDEM) requires low-flow statistics in order to administer the NPDES permit program. Low-flow-frequency characteristics were computed for 272 continuous-record stations. The information includes low-flow-frequency analysis, flow-duration analysis, and harmonic mean for the continuous-record stations. For those stations affected by some form of regulation, low-flow frequency curves are based on the longest period of homogeneous record under current conditions. Low-flow-frequency values and harmonic mean flow (if sufficient data were available) were estimated for the 166 partial-record stations. Partial-record stations are ungaged sites where streamflow measurements were made at base flow.

  5. Streamflow gain-loss characteristics of Elkhead Creek downstream from Elkhead Reservoir near Craig, Colorado, 2009

    USGS Publications Warehouse

    Ruddy, Barbara C.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board, the Upper Colorado River Endangered Fish Recovery Program (UCREFRP), Colorado Division of Water Resources, and City of Craig studied the gain-loss characteristics of Elkhead Creek downstream from Elkhead Reservoir to the confluence with the Yampa River during August through October 2009. Earlier qualitative interpretation of streamflow data downstream from the reservoir indicated that there could be a transit loss of nearly 10 percent. This potential loss could be a significant portion of the releases from Elkhead Reservoir requested by UCREFRP during late summer and early fall for improving critical habitat for endangered fish downstream in the Yampa River. Information on the gain-loss characteristics was needed for the effective management of the reservoir releases. In order to determine streamflow gain-loss characteristics for Elkhead Creek, eight measurement sets were made at four strategic instream sites and at one diversion from August to early October 2009. An additional measurement set was made after the study period during low-flow conditions in November 2009. Streamflow measurements were made using an Acoustic Doppler Velocimeter to provide high accuracy and consistency, especially at low flows. During this study, streamflow ranged from about 5 cubic feet per second up to more than 90 cubic feet per second with step increments in between. Measurements were made at least 24 hours after a change in reservoir release (streamflow) during steady-state conditions. The instantaneous streamflow measurements and the streamflow volume comparisons show the reach of Elkhead Creek immediately downstream from Elkhead Reservoir to the streamflow-gaging station 09246500, Elkhead Creek near Craig, CO, is neither a gaining nor losing reach. The instantaneous measurements immediately downstream from the dam and the combined measurements of Norvell ditch plus streamflow-gaging station 09246500 are mostly within the plus or minus 5-percent measurement error of each other. The variability of data is such that sometimes the streamflow is greater upstream than downstream and sometimes the streamflow is greater downstream than upstream. Streamflow volumes were calculated for multiple time periods as determined by a change in release from the reservoir. Streamflow volumes were greater downstream than upstream for all but one time period. The predominance of greater streamflows downstream is due to the difference between the USGS instantaneous measurements and record computation with the Supervisory Control and Data Acquisition (SCADA) record at the dam. Immediately following an increase in streamflow from the reservoir, the downstream volume was smaller than the upstream volume, but this was an artifact of the traveltime between the two sites and possibly small amounts of water entering the streambank. Traveltimes were shorter at higher streamflows and when streamflow was increasing.

  6. Reliability of reservoir firm yield determined from the historical drought of record

    USGS Publications Warehouse

    Archfield, S.A.; Vogel, R.M.

    2005-01-01

    The firm yield of a reservoir is typically defined as the maximum yield that could have been delivered without failure during the historical drought of record. In the future, reservoirs will experience droughts that are either more or less severe than the historical drought of record. The question addressed here is what the reliability of such systems will be when operated at the firm yield. To address this question, we examine the reliability of 25 hypothetical reservoirs sited across five locations in the central and western United States. These locations provided a continuous 756-month streamflow record spanning the same time interval. The firm yield of each reservoir was estimated from the historical drought of record at each location. To determine the steady-state monthly reliability of each firm-yield estimate, 12,000-month synthetic records were generated using the moving-blocks bootstrap method. Bootstrapping was repeated 100 times for each reservoir to obtain an average steady-state monthly reliability R, the number of months the reservoir did not fail divided by the total months. Values of R were greater than 0.99 for 60 percent of the study reservoirs; the other 40 percent ranged from 0.95 to 0.98. Estimates of R were highly correlated with both the level of development (ratio of firm yield to average streamflow) and average lag-1 monthly autocorrelation. Together these two predictors explained 92 percent of the variability in R, with the level of development alone explaining 85 percent of the variability. Copyright ASCE 2005.

  7. Reconciling Streamflow Uncertainty Estimation and River Bed Morphology Dynamics. Insights from a Probabilistic Assessment of Streamflow Uncertainties Using a Reliability Diagram

    NASA Astrophysics Data System (ADS)

    Morlot, T.; Mathevet, T.; Perret, C.; Favre Pugin, A. C.

    2014-12-01

    Streamflow uncertainty estimation has recently received a large attention in the literature. A dynamic rating curve assessment method has been introduced (Morlot et al., 2014). This dynamic method allows to compute a rating curve for each gauging and a continuous streamflow time-series, while calculating streamflow uncertainties. Streamflow uncertainty takes into account many sources of uncertainty (water level, rating curve interpolation and extrapolation, gauging aging, etc.) and produces an estimated distribution of streamflow for each days. In order to caracterise streamflow uncertainty, a probabilistic framework has been applied on a large sample of hydrometric stations of the Division Technique Générale (DTG) of Électricité de France (EDF) hydrometric network (>250 stations) in France. A reliability diagram (Wilks, 1995) has been constructed for some stations, based on the streamflow distribution estimated for a given day and compared to a real streamflow observation estimated via a gauging. To build a reliability diagram, we computed the probability of an observed streamflow (gauging), given the streamflow distribution. Then, the reliability diagram allows to check that the distribution of probabilities of non-exceedance of the gaugings follows a uniform law (i.e., quantiles should be equipropables). Given the shape of the reliability diagram, the probabilistic calibration is caracterised (underdispersion, overdispersion, bias) (Thyer et al., 2009). In this paper, we present case studies where reliability diagrams have different statistical properties for different periods. Compared to our knowledge of river bed morphology dynamic of these hydrometric stations, we show how reliability diagram gives us invaluable information on river bed movements, like a continuous digging or backfilling of the hydraulic control due to erosion or sedimentation processes. Hence, the careful analysis of reliability diagrams allows to reconcile statistics and long-term river bed morphology processes. This knowledge improves our real-time management of hydrometric stations, given a better caracterisation of erosion/sedimentation processes and the stability of hydrometric station hydraulic control.

  8. Techniques for estimating selected streamflow characteristics of rural unregulated streams in Ohio

    USGS Publications Warehouse

    Koltun, G.F.; Whitehead, Matthew T.

    2002-01-01

    This report provides equations for estimating mean annual streamflow, mean monthly streamflows, harmonic mean streamflow, and streamflow quartiles (the 25th-, 50th-, and 75th-percentile streamflows) as a function of selected basin characteristics for rural, unregulated streams in Ohio. The equations were developed from streamflow statistics and basin-characteristics data for as many as 219 active or discontinued streamflow-gaging stations on rural, unregulated streams in Ohio with 10 or more years of homogenous daily streamflow record. Streamflow statistics and basin-characteristics data for the 219 stations are presented in this report. Simple equations (based on drainage area only) and best-fit equations (based on drainage area and at least two other basin characteristics) were developed by means of ordinary least-squares regression techniques. Application of the best-fit equations generally involves quantification of basin characteristics that require or are facilitated by use of a geographic information system. In contrast, the simple equations can be used with information that can be obtained without use of a geographic information system; however, the simple equations have larger prediction errors than the best-fit equations and exhibit geographic biases for most streamflow statistics. The best-fit equations should be used instead of the simple equations whenever possible.

  9. Historical perspective of statewide streamflows during the 2002 and 1977 droughts in Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard

    2005-01-01

    Since 1890, Colorado has experienced a number of widespread drought periods; the most recent statewide drought began during 1999 and includes 2002, a year characterized by precipitation, snowpack accumulation, and streamflows that were much lower than normal. Because the drought of 2002 had a substantial effect on streamflows in Colorado, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began a study in 2004 to analyze statewide streamflows during 2002 and develop a historical perspective of those streamflows. The purpose of this report is to describe an analysis of streamflows recorded throughout Colorado during the drought of 2002, as well as other drought years such as 1977, and to provide some historical perspective of drought-diminished streamflows in Colorado. Because most streamflows in Colorado are derived from melting of mountain snowpacks during April through July, streamflows primarily were analyzed for the snowmelt (high-flow) period, but streamflows also were analyzed for the winter (low-flow) period. The snowmelt period is defined as April 1 through September 30 and the winter period is defined as October 1 through March 31. Historical daily average streamflows were analyzed on the basis of 7, 30, 90, and 180 consecutive-day periods (N-day) for 154 selected stations in Colorado. Methods used for analysis of the N-day snowmelt and winter streamflows include evaluation of trends in the historical streamflow records, computation of the rank of each annual N-day streamflow value for each station, analysis for years other than 2002 and 1977 with drought-diminished streamflows, and frequency analysis (on the basis of nonexceedance probability) of the 180-day streamflows. Ranking analyses for the N-day snowmelt streamflows indicated that streamflows during 2002 were ranked as the lowest or second lowest historical values at 114-123 stations, or about 74-80 percent of the stations; by comparison, the N-day snowmelt streamflows during 1977 were ranked as the lowest or second lowest historical values at 69-87 stations, or about 47-59 percent of the stations. Many of the stations in the mountainous headwaters where snowmelt streamflows were ranked lowest during 2002 were ranked second lowest during 1977. These results indicate that snowmelt streamflows during 2002 were considerably more diminished than those during 1977. The 180-day snowmelt streamflows were ranked among the five lowest historical values at about 90 percent of the stations during 2002 and were ranked among the five lowest historical values at about 77 percent of the stations during 1977. Other years during which the 180-day snowmelt streamflows were ranked among the five lowest values at a substantial percentage of stations include 1934, 1954, 1963, and 1981, but the percentages of stations with 180-day snowmelt streamflows ranked among the five lowest values were smaller during those years than during 2002 and 1977. Frequency analysis of snowmelt streamflows indicated that recurrence intervals for the 180-day snowmelt streamflows during 2002 were greater than 50 years for about 57 percent of the stations and were more than 100 years for about 14 percent of the stations. By comparison, recurrence intervals for the 180-day snowmelt streamflows during 1977 were greater than 50 years only for about 15 percent of the stations and were more than 100 years only for about 1 percent of the stations. Generally, snowmelt streamflows during 2002 were more diminished and have higher recurrence intervals than snowmelt streamflows during 1977. The N-day winter streamflows during 2002 and 1977 were not ranked among the five lowest historical values at about 86-103 stations, or about 58-70 percent of the stations, compared to about 10-27 percent of the stations for the N-day snowmelt streamflows. These results indicate that winter streamflows during the 2002 and 1977 droughts were diminished to a lesser extent than t

  10. Monthly paleostreamflow reconstruction from annual tree-ring chronologies

    NASA Astrophysics Data System (ADS)

    Stagge, J. H.; Rosenberg, D. E.; DeRose, R. J.; Rittenour, T. M.

    2018-02-01

    Paleoclimate reconstructions are increasingly used to characterize annual climate variability prior to the instrumental record, to improve estimates of climate extremes, and to provide a baseline for climate-change projections. To date, paleoclimate records have seen limited engineering use to estimate hydrologic risks because water systems models and managers usually require streamflow input at the monthly scale. This study explores the hypothesis that monthly streamflows can be adequately modeled by statistically decomposing annual flow reconstructions. To test this hypothesis, a multiple linear regression model for monthly streamflow reconstruction is presented that expands the set of predictors to include annual streamflow reconstructions, reconstructions of global circulation, and potential differences among regional tree-ring chronologies related to tree species and geographic location. This approach is used to reconstruct 600 years of monthly streamflows at two sites on the Bear and Logan rivers in northern Utah. Nash-Sutcliffe Efficiencies remain above zero (0.26-0.60) for all months except April and Pearson's correlation coefficients (R) are 0.94 and 0.88 for the Bear and Logan rivers, respectively, confirming that the model can adequately reproduce monthly flows during the reference period (10/1942 to 9/2015). Incorporating a flexible transition between the previous and concurrent annual reconstructed flows was the most important factor for model skill. Expanding the model to include global climate indices and regional tree-ring chronologies produced smaller, but still significant improvements in model fit. The model presented here is the only approach currently available to reconstruct monthly streamflows directly from tree-ring chronologies and climate reconstructions, rather than using resampling of the observed record. With reasonable estimates of monthly flow that extend back in time many centuries, water managers can challenge systems models with a larger range of natural variability in drought and pluvial events and better evaluate extreme events with recurrence intervals longer than the observed record. Establishing this natural baseline is critical when estimating future hydrologic risks under conditions of a non-stationary climate.

  11. Calculation of streamflow statistics for Ontario and the Great Lakes states

    USGS Publications Warehouse

    Piggott, Andrew R.; Neff, Brian P.

    2005-01-01

    Basic, flow-duration, and n-day frequency statistics were calculated for 779 current and historical streamflow gages in Ontario and 3,157 streamflow gages in the Great Lakes states with length-of-record daily mean streamflow data ending on December 31, 2000 and September 30, 2001, respectively. The statistics were determined using the U.S. Geological Survey’s SWSTAT and IOWDM, ANNIE, and LIBANNE software and Linux shell and PERL programming that enabled the mass processing of the data and calculation of the statistics. Verification exercises were performed to assess the accuracy of the processing and calculations. The statistics and descriptions, longitudes and latitudes, and drainage areas for each of the streamflow gages are summarized in ASCII text files and ESRI shapefiles.

  12. Water resources data, Puerto Rico and the U.S. Virgin Islands, water year 2004

    USGS Publications Warehouse

    Figueroa-Alamo, Carlos; Aquino, Zaida; Guzman-Rios, Senen; Sanchez, Ana V.

    2006-01-01

    The Caribbean Water Science Center of the U.S. Geological Survey (USGS), in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 89 streamflow-gaging stations, daily sediment records for 13 sediment stations, stage records for 18 reservoirs, and (2) water-quality records for 20 streamflow-gaging stations, and for 38 ungaged stream sites, 13 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 72 observation wells. Water-resources data for Puerto Rico for calendar years 1958-67 were released in a series of reports entitled 'Water Records of Puerto Rico.' Water-resources data for the U.S. Virgin Islands for the calendar years 1962-69 were released in a report entitled 'Water Records of U.S. Virgin Islands.' Included were records of streamflow, ground-water levels, and water-quality data for both surface and ground water. Beginning with the 1968 calendar year, surface-water records for Puerto Rico were released separately on an annual basis. Ground-water level records and water-quality data for surface and ground water were released in companion reports covering periods of several years. Data for the 1973-74 reports were published under separate covers. Water-resources data reports for 1975 to 2003 water years consist of one volume each and contain data for streamflow, water quality, and ground water.

  13. Reconstructing streamflow variation of the Baker River from tree-rings in Northern Patagonia since 1765

    NASA Astrophysics Data System (ADS)

    Lara, Antonio; Bahamondez, Alejandra; González-Reyes, Alvaro; Muñoz, Ariel A.; Cuq, Emilio; Ruiz-Gómez, Carolina

    2015-10-01

    The understanding of the long-term variation of large rivers streamflow with a high economic and social relevance is necessary in order to improve the planning and management of water resources in different regions of the world. The Baker River has the highest mean discharge of those draining both slopes of the Andes South of 20°S and it is among the six rivers with the highest mean streamflow in the Pacific domain of South America (1100 m3 s-1 at its outlet). It drains an international basin of 29,000 km2 shared by Chile and Argentina and has a high ecologic and economic value including conservation, tourism, recreational fishing, and projected hydropower. This study reconstructs the austral summer - early fall (January-April) streamflow for the Baker River from Nothofagus pumilio tree-rings for the period 1765-2004. Summer streamflow represents 45.2% of the annual discharge. The regression model for the period (1961-2004) explains 54% of the variance of the Baker River streamflow (R2adj = 0.54). The most significant temporal pattern in the record is the sustained decline since the 1980s (τ = -0.633, p = 1.0144 ∗ 10-5 for the 1985-2004 period), which is unprecedented since 1765. The Correlation of the Baker streamflow with the November-April observed Southern Annular Mode (SAM) is significant (1961-2004, r = -0.55, p < 0.001). The Baker record is also correlated with the available SAM tree-ring reconstruction based on other species when both series are filtered with a 25-year spline and detrended (1765-2004, r = -0.41, p < 0.01), emphasizing SAM as the main climatic forcing of the Baker streamflow. Three of the five summers with the highest streamflow in the entire reconstructed record occurred after the 1950s (1977, 1958 and 1959). The causes of this high streamflow events are not yet clear and cannot be associated with the reported recent increase in the frequency of glacial-lake outburst floods (GLOFs). The decreasing trend in the observed and reconstructed streamflow of the Baker River documented here for the 1980-2004 period is consistent with precipitation decrease associated with the SAM. Conversely, other studies have reported an increase of summer streamflow for a portion of the Baker River for the 1994-2008 period, explained by ice melt associated with temperature increase and glacier retreat and thinning. Future research should consider the development of new tree-ring reconstructions to increase the geographic range and to cover the last 1000 or more years using long-lived species (e.g. Fitzroya cupressoides and Pilgerodendron uviferum). Expanding the network and quality of instrumental weather, streamflow and other monitoring stations as well as the study and modeling of the complex hydrological processes in the Baker basin are necessary. This should be the basis for planning, policy design and decision making regarding water resources in the Baker basin.

  14. Hydrograph separation techniques in snowmelt-dominated watersheds

    NASA Astrophysics Data System (ADS)

    Miller, S.; Miller, S. N.

    2017-12-01

    This study integrates hydrological, geochemical, and isotopic data for a better understanding of different streamflow generation pathways and residence times in a snowmelt-dominated region. A nested watershed design with ten stream gauging sites recording sub-hourly stream stage has been deployed in a snowmelt-dominated region in southeastern Wyoming, heavily impacted by the recent bark beetle epidemic. LiDAR-derived digital elevation models help elucidate effects from topography and watershed metrics. At each stream gauging site, sub-hourly stream water conductivity and temperature data are also recorded. Hydrograph separation is a useful technique for determining different sources of runoff and how volumes from each source vary over time. Following previous methods, diurnal cycles from sub-hourly recorded streamflow and specific conductance data are analyzed and used to separate hydrographs into overland flow and baseflow components, respectively. A final component, vadose-zone flow, is assumed to be the remaining water from the total hydrograph. With access to snowmelt and precipitation data from nearby instruments, runoff coefficients are calculated for the different mechanisms, providing information on watershed response. Catchments are compared to understand how different watershed characteristics translate snowmelt or precipitation events into runoff. Portable autosamplers were deployed at two of the gauging sites for high-frequency analysis of stream water isotopic composition during peak flow to compare methods of hydrograph separation. Sampling rates of one or two hours can detect the diurnal streamflow cycle common during peak snowmelt. Prior research suggests the bark beetle epidemic has had little effect on annual streamflow patterns; however, several results show an earlier shift in the day of year in which peak annual streamflow is observed. The diurnal cycle is likely to comprise a larger percentage of daily streamflow during snowmelt in post-epidemic forests, as more solar radiation is available to penetrate to the ground surface and induce snowmelt, contributing to the effect of an earlier observed peak annual streamflow.

  15. Water-quality variability and constituent transport and processes in streams of Johnson County, Kansas, using continuous monitoring and regression models, 2003-11

    USGS Publications Warehouse

    Rasmussen, Teresa; Gatotho, Jackline

    2014-01-01

    The population of Johnson County, Kansas increased by about 24 percent between 2000 and 2012, making it one of the most rapidly developing areas of Kansas. The U.S. Geological Survey, in cooperation with the Johnson County Stormwater Management Program, began a comprehensive study of Johnson County streams in 2002 to evaluate and monitor changes in stream quality. The purpose of this report is to describe water-quality variability and constituent transport for streams representing the five largest watersheds in Johnson County, Kansas during 2003 through 2011. The watersheds ranged in urban development from 98.3 percent urban (Indian Creek) to 16.7 percent urban (Kill Creek). Water-quality conditions are quantified among the watersheds of similar size (50.1 square miles to 65.7 square miles) using continuous, in-stream measurements, and using regression models developed from continuous and discrete data. These data are used to quantify variability in concentrations and loads during changing streamflow and seasonal conditions, describe differences among sites, and assess water quality relative to water-quality standards and stream management goals. Water quality varied relative to streamflow conditions, urbanization in the upstream watershed, and contributions from wastewater treatment facilities and storm runoff. Generally, as percent impervious surface (a measure of urbanization) increased, streamflow yield increased. Water temperature of Indian Creek, the most urban site which is also downstream from wastewater facility discharges, was higher than the other sites about 50 percent of the time, particularly during winter months. Dissolved oxygen concentrations were less than the Kansas Department of Health and Environment minimum criterion of 5 milligrams per liter about 15 percent of the time at the Indian Creek site. Dissolved oxygen concentrations were less than the criterion about 10 percent of the time at the rural Blue River and Kill Creek sites, and less than 5 percent of the time at the other sites. Low dissolved oxygen at all sites generally coincided with lowest streamflow and warmer water temperatures. Hourly dissolved oxygen concentrations less than 5 milligrams per liter were measured at all sites every year, indicating that even under normal climate conditions in non-urban watersheds such as Kill Creek, dissolved oxygen concentrations may not meet State aquatic-life criterion. Specific conductance was nearly always highest in Indian and Mill Creeks, which were the most urban streams with the largest upstream discharges from wastewater treatment facilities. The largest chloride concentrations and variability were recorded at urban sites and during winter. Each winter during the study period, chloride concentrations in the most urban site, Indian Creek, exceeded the U.S. Environmental Protection Agency-recommended criterion of 230 milligrams per liter for at least 10 consecutive days. The U.S. Environmental Protection Agency-recommended ecoregion criterion for turbidity was exceeded 30 (Indian Creek) to 50 (Blue River) percent of the time. The highest average annual streamflow-weighted suspendedsediment concentration during the study period was in Mill Creek, which has undergone rapid development that likely contributed to higher sediment concentrations. One of the largest suspended-sediment load events in Indian Creek was recorded in early May 2007 when about 25 percent of the total annual sediment load was transported during a period of about 2.25 days. A simultaneous load event was recorded in Kill Creek, when about 75 percent of the total annual sediment load was transported. Sediment yields generally increased as percent impervious surface increased. Computed hourly total nitrogen and total phosphorus concentrations and yields and streamflow-weighted concentrations generally were largest in Indian and Mill Creeks. Annual percent contribution of total nitrogen in the Blue River from wastewater treatment facility discharges ranged from 19 percent in 2010 to 60 percent in 2006. Annual percent contribution of total nitrogen in Indian Creek from wastewater treatment facility discharges ranged from 35 percent in 2010 to 93 percent in 2006. The largest percent nutrient contributions from wastewater discharges coincided with the smallest annual precipitation and streamflow volume, resulting in less contribution originating from runoff. Fecal indicator bacteria Escherichia coli density at the urban Indian Creek site was usually the largest of the five monitoring sites, with an annual median density that consistently exceeded the State primary contact criterion value but was less than the secondary contact criterion. Less than 1 percent of the total annual bacteria load in the Blue River and Indian Creek originated from wastewater discharges, except during 2006 when about 6 percent of the Indian Creek load originated from wastewater. Continuous water-quality monitoring provides a foundation for comprehensive evaluation and understanding of variability and loading characteristics in streams in Johnson County. Because several directly measured parameters are strongly correlated with particular constituents of interest, regression models provide a valuable tool for evaluating variability and loading on the basis of computed continuous data. Continuous data are particularly useful for characterizing nonpoint-source contributions from stormwater runoff. Transmission of continuous data in real-time makes it possible to rapidly detect and respond to potential environmental concerns. As monitoring technologies continue to improve, so does the ability to monitor additional constituents of interest, with smaller measurement error, and at lower operational cost. Continuous water-quality data including model information and computed concentrations and loads during the study period are available at http://nrtwq.usgs.gov/ks/.

  16. Computer model of Raritan River Basin water-supply system in central New Jersey

    USGS Publications Warehouse

    Dunne, Paul; Tasker, Gary D.

    1996-01-01

    This report describes a computer model of the Raritan River Basin water-supply system in central New Jersey. The computer model provides a technical basis for evaluating the effects of alternative patterns of operation of the Raritan River Basin water-supply system during extended periods of below-average precipitation. The computer model is a continuity-accounting model consisting of a series of interconnected nodes. At each node, the inflow volume, outflow volume, and change in storage are determined and recorded for each month. The model runs with a given set of operating rules and water-use requirements including releases, pumpages, and diversions. The model can be used to assess the hypothetical performance of the Raritan River Basin water- supply system in past years under alternative sets of operating rules. It also can be used to forecast the likelihood of specified outcomes, such as the depletion of reservoir contents below a specified threshold or of streamflows below statutory minimum passing flows, for a period of up to 12 months. The model was constructed on the basis of current reservoir capacities and the natural, unregulated monthly runoff values recorded at U.S. Geological Survey streamflow- gaging stations in the basin.

  17. Adjusting Wavelet-based Multiresolution Analysis Boundary Conditions for Robust Long-term Streamflow Forecasting Model

    NASA Astrophysics Data System (ADS)

    Maslova, I.; Ticlavilca, A. M.; McKee, M.

    2012-12-01

    There has been an increased interest in wavelet-based streamflow forecasting models in recent years. Often overlooked in this approach are the circularity assumptions of the wavelet transform. We propose a novel technique for minimizing the wavelet decomposition boundary condition effect to produce long-term, up to 12 months ahead, forecasts of streamflow. A simulation study is performed to evaluate the effects of different wavelet boundary rules using synthetic and real streamflow data. A hybrid wavelet-multivariate relevance vector machine model is developed for forecasting the streamflow in real-time for Yellowstone River, Uinta Basin, Utah, USA. The inputs of the model utilize only the past monthly streamflow records. They are decomposed into components formulated in terms of wavelet multiresolution analysis. It is shown that the model model accuracy can be increased by using the wavelet boundary rule introduced in this study. This long-term streamflow modeling and forecasting methodology would enable better decision-making and managing water availability risk.

  18. Regression method for estimating long-term mean annual ground-water recharge rates from base flow in Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.

    2008-01-01

    A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370 hydrologic units in Pennsylvania predicted a range of ground-water recharge from about 6.0 to 22 inches per year. A map of the predicted recharge illustrates the general magnitude and variability of recharge throughout Pennsylvania.

  19. Testing an automated method to estimate ground-water recharge from streamflow records

    USGS Publications Warehouse

    Rutledge, A.T.; Daniel, C.C.

    1994-01-01

    The computer program, RORA, allows automated analysis of streamflow hydrographs to estimate ground-water recharge. Output from the program, which is based on the recession-curve-displacement method (often referred to as the Rorabaugh method, for whom the program is named), was compared to estimates of recharge obtained from a manual analysis of 156 years of streamflow record from 15 streamflow-gaging stations in the eastern United States. Statistical tests showed that there was no significant difference between paired estimates of annual recharge by the two methods. Tests of results produced by the four workers who performed the manual method showed that results can differ significantly between workers. Twenty-two percent of the variation between manual and automated estimates could be attributed to having different workers perform the manual method. The program RORA will produce estimates of recharge equivalent to estimates produced manually, greatly increase the speed od analysis, and reduce the subjectivity inherent in manual analysis.

  20. Stream gage descriptions and streamflow statistics for sites in the Tigris River and Euphrates River Basins, Iraq

    USGS Publications Warehouse

    Saleh, Dina K.

    2010-01-01

    Statistical summaries of streamflow data for all long-term streamflow-gaging stations in the Tigris River and Euphrates River Basins in Iraq are presented in this report. The summaries for each streamflow-gaging station include (1) a station description, (2) a graph showing annual mean discharge for the period of record, (3) a table of extremes and statistics for monthly and annual mean discharge, (4) a graph showing monthly maximum, minimum, and mean discharge, (5) a table of monthly and annual mean discharges for the period of record, (6) a graph showing annual flow duration, (7) a table of monthly and annual flow duration, (8) a table of high-flow frequency data (maximum mean discharge for 3-, 7-, 15-, and 30-day periods for selected exceedance probabilities), and (9) a table of low-flow frequency data (minimum mean discharge for 3-, 7-, 15-, 30-, 60-, 90-, and 183-day periods for selected non-exceedance probabilities).

  1. Cost effectiveness of the stream-gaging program in Louisiana

    USGS Publications Warehouse

    Herbert, R.A.; Carlson, D.D.

    1985-01-01

    This report documents the results of a study of the cost effectiveness of the stream-gaging program in Louisiana. Data uses and funding sources were identified for the 68 continuous-record stream gages currently (1984) in operation with a budget of $408,700. Three stream gages have uses specific to a short-term study with no need for continued data collection beyond the study. The remaining 65 stations should be maintained in the program for the foreseeable future. In addition to the current operation of continuous-record stations, a number of wells, flood-profile gages, crest-stage gages, and stage stations, are serviced on the continuous-record station routes; thus, increasing the current budget to $423,000. The average standard error of estimate for data collected at the stations is 34.6%. Standard errors computed in this study are one measure of streamflow errors, and can be used as guidelines in comparing the effectiveness of alternative networks. By using the routes and number of measurements prescribed by the ' Traveling Hydrographer Program, ' the standard error could be reduced to 31.5% with the current budget of $423,000. If the gaging resources are redistributed, the 34.6% overall level of accuracy at the 68 continuous-record sites and the servicing of the additional wells or gages could be maintained with a budget of approximately $410,000. (USGS)

  2. Characterization of peak streamflows and flood inundation of selected areas in Louisiana from the August 2016 flood

    USGS Publications Warehouse

    Watson, Kara M.; Storm, John B.; Breaker, Brian K.; Rose, Claire E.

    2017-02-06

    Heavy rainfall occurred across Louisiana and southwestern Mississippi in August 2016 as a result of a slow-moving area of low pressure and a high amount of atmospheric moisture. The storm caused major flooding in the southern portions of Louisiana including areas surrounding Baton Rouge and Lafayette. Flooding occurred along the rivers such as the Amite, Comite, Tangipahoa, Tickfaw, Vermilion, and Mermentau Rivers. Over 31 inches of rain was reported in the city of Watson, 20 miles northeast of Baton Rouge, La., over the duration of the event. Streamflow-gaging stations operated by the U.S. Geological Survey (USGS) recorded peak streamflows of record at 10 locations, and 7 other locations experienced peak streamflows ranking in the top five for the duration of the period of record. In August 2016, USGS hydrographers made 50 discharge measurements at 21 locations on streams in Louisiana. Many of those discharge measurements were made for the purpose of verifying the accuracy of stage-streamflow relations at gaging stations operated by the USGS. Following the storm event, USGS hydrographers recovered and documented 590 high-water marks, noting location and height of the water above land surface. Many of these high-water marks were used to create 12 flood-inundation maps for selected communities of Louisiana that experienced flooding in August 2016. Digital datasets of the inundation area, modeling boundary, water depth rasters, and final map products are available online.

  3. Cool-Season Moisture Delivery and Multi-Basin Streamflow Anomalies in the Western United States

    NASA Astrophysics Data System (ADS)

    Malevich, Steven B.

    Widespread droughts can have a significant impact on western United States streamflow, but the causes of these events are not fully understood. This dissertation examines streamflow from multiple western US basins and establishes the robust, leading modes of variability in interannual streamflow throughout the past century. I show that approximately 50% of this variability is associated with spatially widespread streamflow anomalies that are statistically independent from streamflow's response to the El Nino-Southern Oscillation (ENSO). The ENSO-teleconnection accounts for approximately 25% of the interannual variability in streamflow, across this network. These atmospheric circulation anomalies associated with the most spatially widespread variability are associated with the Aleutian low and the persistent coastal atmospheric ridge in the Pacific Northwest. I use a watershed segmentation algorithm to explicitly track the position and intensity of these features and compare their variability to the multi-basin streamflow variability. Results show that latitudinal shifts in the coastal atmospheric ridge are more strongly associated with streamflow's north-south dipole response to ENSO variability while more spatially widespread anomalies in streamflow most strongly relate to seasonal changes in the coastal ridge intensity. This likely reflects persistent coastal ridge blocking of cool-season precipitation into western US river basins. I utilize the 35 model runs of the Community Earth System Model Large Ensemble (CESMLE) to determine whether the model ensemble simulates the anomalously strong coastal ridges and extreme widespread wintertime precipitation anomalies found in the observation record. Though there is considerable bias in the CESMLE, the CESMLE runs simulate extremely widespread dry precipitation anomalies with a frequency of approximately one extreme event per century during the historical simulations (1920 - 2005). These extremely widespread dry events correspond significantly with anomalously intense coastal atmospheric ridges. The results from these three papers connect widespread interannual streamflow anomalies in the western US--and especially extremely widespread streamflow droughts--with semi-permanent atmospheric ridge anomalies near the coastal Pacific Northwest. This is important to western US water managers because these widespread events appear to have been a robust feature of the past century. The semi-permanent atmospheric features associated with these widespread dry streamflow anomalies are projected to change position significantly in the next century as a response to global climate change. This may change widespread streamflow anomaly characteristic in the western US, though my results do not show evidence of these changes within the instrument record of last century.

  4. Mitigating the Impacts of Climate Nonstationarity on Seasonal Streamflow Predictability in the U.S. Southwest

    NASA Astrophysics Data System (ADS)

    Lehner, Flavio; Wood, Andrew W.; Llewellyn, Dagmar; Blatchford, Douglas B.; Goodbody, Angus G.; Pappenberger, Florian

    2017-12-01

    Seasonal streamflow predictions provide a critical management tool for water managers in the American Southwest. In recent decades, persistent prediction errors for spring and summer runoff volumes have been observed in a number of watersheds in the American Southwest. While mostly driven by decadal precipitation trends, these errors also relate to the influence of increasing temperature on streamflow in these basins. Here we show that incorporating seasonal temperature forecasts from operational global climate prediction models into streamflow forecasting models adds prediction skill for watersheds in the headwaters of the Colorado and Rio Grande River basins. Current dynamical seasonal temperature forecasts now show sufficient skill to reduce streamflow forecast errors in snowmelt-driven regions. Such predictions can increase the resilience of streamflow forecasting and water management systems in the face of continuing warming as well as decadal-scale temperature variability and thus help to mitigate the impacts of climate nonstationarity on streamflow predictability.

  5. Using water-quality profiles to characterize seasonal water quality and loading in the upper Animas River basin, southwestern Colorado

    USGS Publications Warehouse

    Leib, Kenneth J.; Mast, M. Alisa; Wright, Winfield G.

    2003-01-01

    One of the important types of information needed to characterize water quality in streams affected by historical mining is the seasonal pattern of toxic trace-metal concentrations and loads. Seasonal patterns in water quality are estimated in this report using a technique called water-quality profiling. Water-quality profiling allows land managers and scientists to assess priority areas to be targeted for characterization and(or) remediation by quantifying the timing and magnitude of contaminant occurrence. Streamflow and water-quality data collected at 15 sites in the upper Animas River Basin during water years 1991?99 were used to develop water-quality profiles. Data collected at each sampling site were used to develop ordinary least-squares regression models for streamflow and constituent concentrations. Streamflow was estimated by correlating instantaneous streamflow measured at ungaged sites with continuous streamflow records from streamflow-gaging stations in the subbasin. Water-quality regression models were developed to estimate hardness and dissolved cadmium, copper, and zinc concentrations based on streamflow and seasonal terms. Results from the regression models were used to calculate water-quality profiles for streamflow, constituent concentrations, and loads. Quantification of cadmium, copper, and zinc loads in a stream segment in Mineral Creek (sites M27 to M34) was presented as an example application of water-quality profiling. The application used a method of mass accounting to quantify the portion of metal loading in the segment derived from uncharacterized sources during different seasonal periods. During May, uncharacterized sources contributed nearly 95 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 85 percent of the zinc load at M34. During September, uncharacterized sources contributed about 86 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 52 percent of the zinc load at M34. Characterized sources accounted for more of the loading gains estimated in the example reach during September, possibly indicating the presence of diffuse inputs during snowmelt runoff. The results indicate that metal sources in the upper Animas River Basin may change substantially with season, regardless of the source.

  6. The Massachusetts Sustainable-Yield Estimator: A decision-support tool to assess water availability at ungaged stream locations in Massachusetts

    USGS Publications Warehouse

    Archfield, Stacey A.; Vogel, Richard M.; Steeves, Peter A.; Brandt, Sara L.; Weiskel, Peter K.; Garabedian, Stephen P.

    2010-01-01

    Federal, State and local water-resource managers require a variety of data and modeling tools to better understand water resources. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a statewide, interactive decision-support tool to meet this need. The decision-support tool, referred to as the Massachusetts Sustainable-Yield Estimator (MA SYE) provides screening-level estimates of the sustainable yield of a basin, defined as the difference between the unregulated streamflow and some user-specified quantity of water that must remain in the stream to support such functions as recreational activities or aquatic habitat. The MA SYE tool was designed, in part, because the quantity of surface water available in a basin is a time-varying quantity subject to competing demands for water. To compute sustainable yield, the MA SYE tool estimates a daily time series of unregulated, daily mean streamflow for a 44-year period of record spanning October 1, 1960, through September 30, 2004. Selected streamflow quantiles from an unregulated, daily flow-duration curve are estimated by solving six regression equations that are a function of physical and climate basin characteristics at an ungaged site on a stream of interest. Streamflow is then interpolated between the estimated quantiles to obtain a continuous daily flow-duration curve. A time series of unregulated daily streamflow subsequently is created by transferring the timing of the daily streamflow at a reference streamgage to the ungaged site by equating exceedence probabilities of contemporaneous flow at the two locations. One of 66 reference streamgages is selected by kriging, a geostatistical method, which is used to map the spatial relation among correlations between the time series of the logarithm of daily streamflows at each reference streamgage and the ungaged site. Estimated unregulated, daily mean streamflows show good agreement with observed unregulated, daily mean streamflow at 18 streamgages located across southern New England. Nash-Sutcliffe efficiency goodness-of-fit values are between 0.69 and 0.98, and percent root-mean-square-error values are between 19 and 283 percent. The MA SYE tool provides an estimate of streamflow adjusted for current (2000-04) water withdrawals and discharges using a spatially referenced database of permitted groundwater and surface-water withdrawal and discharge volumes. For a user-selected basin, the database is queried to obtain the locations of water withdrawal or discharge volumes within the basin. Groundwater and surface-water withdrawals and discharges are subtracted and added, respectively, from the unregulated, daily streamflow at an ungaged site to obtain a streamflow time series that includes the effects of these withdrawals and discharges. Users also have the option of applying an analytical solution to the time-varying, groundwater withdrawal and discharge volumes that take into account the effects of the aquifer properties on the timing and magnitude of streamflow alteration. For the MA SYE tool, it is assumed that groundwater and surface-water divides are coincident. For areas of southeastern Massachusetts and Cape Cod where this assumption is known to be violated, groundwater-flow models are used to estimate average monthly streamflows at fixed locations. There are several limitations to the quality and quantity of the spatially referenced database of groundwater and surface-water withdrawals and discharges. The adjusted streamflow values do not account for the effects on streamflow of climate change, septic-system discharge, impervious area, non-public water-supply withdrawals less than 100,000 gallons per day, and impounded surface-water bodies.

  7. Low-flow frequency analyses for streams in west-central Florida

    USGS Publications Warehouse

    Hammett, K.M.

    1985-01-01

    The log-Pearson type III distribution was used for defining low-flow frequency at 116 continuous-record streamflow stations in west-central Florida. Frequency distributions were calculated for 1, 3, 7, 14, 30, 60, 90, 120, and 183 consecutive-day periods for recurrence intervals of 2, 5, 10, and 20 years. Discharge measurements at more than 100 low-flow partial-record stations and miscellaneous discharge-measurement stations were correlated with concurrent daily mean discharge at continuous-record stations. Estimates of the 7-day, 2-year; 7-day, 10-year; 30-day, 2-year; and 30-day, 10-year discharges were made for most of the low-flow partial-record and miscellaneous discharge-measurement stations based on those correlations. Multiple linear-regression analysis was used in an attempt to mathematically relate low-flow frequency data to basin characteristics. The resulting equations showed an apparent bias and were considered unsatisfactory for use in estimating low-flow characteristics. Maps of the 7-day, 10-year and 30-day, 10-year low flows are presented. Techniques that can be used to estimate low-flow characteristics at an ungaged site are also provided. (USGS)

  8. Assessment of Regional Variation in Streamflow Responses to Urbanization and the Persistence of Physiography

    EPA Science Inventory

    Aquatic ecosystems are sensitive to the modification of hydrologic regimes, experiencing declines in stream health as the streamflow regime is altered during urbanization. This study uses streamflow records to quantify the type and magnitude of hydrologic changes across urbanizat...

  9. Disentangling the response of streamflow to forest management and climate

    NASA Astrophysics Data System (ADS)

    Dymond, S.; Miniat, C.; Bladon, K. D.; Keppeler, E.; Caldwell, P. V.

    2016-12-01

    Paired watershed studies have showcased the relationships between forests, management, and streamflow. However, classical analyses of paired-watershed studies have done little to disentangle the effects of management from overarching climatic signals, potentially masking the interaction between management and climate. Such approaches may confound our understanding of how forest management impacts streamflow. Here we use a 50-year record of streamflow and climate data from the Caspar Creek Experimental Watersheds (CCEW), California, USA to separate the effects of forest management and climate on streamflow. CCEW has two treatment watersheds that have been harvested in the past 50 years. We used a nonlinear mixed model to combine the pre-treatment relationship between streamflow and climate and the post-treatment relationship via an interaction between climate and management into one equation. Our results show that precipitation and potential evapotranspiration alone can account for >95% of the variability in pre-treatment streamflow. Including management scenarios into the model explained most of the variability in streamflow (R2 > 0.98). While forest harvesting altered streamflow in both of our modeled watersheds, removing 66% of the vegetation via selection logging using a tractor yarding system over the entire watershed had a more substantial impact on streamflow than clearcutting small portions of a watershed using cable-yarding. These results suggest that forest harvesting may result in differing impacts on streamflow and highlights the need to incorporate climate into streamflow analyses of paired-watershed studies.

  10. Water resources data West Virginia water wear 2001

    USGS Publications Warehouse

    Ward, S.M.; Taylor, B.C.; Crosby, G.R.

    2002-01-01

    Water-resources data for the 2001 water year for West Virginia consist of records of discharge and water quality of streams and water levels of observation wells. This report contains discharge records for 65 streamflow-gaging stations; discharge records provided by adjacent states for 7 streamflow-gaging stations; annual maximum discharge at 18 crest-stage partial-record stations; water-quality records for 4 stations; and water-level records for 10 observation wells. Locations of these sites are shown on figures 4 and 5. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  11. Regression Equations for Estimating Flood Flows at Selected Recurrence Intervals for Ungaged Streams in Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Stuckey, Marla H.

    2008-01-01

    Regression equations were developed for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania with drainage areas less than 2,000 square miles. These equations were developed utilizing peak-flow data from 322 streamflow-gaging stations within Pennsylvania and surrounding states. All stations used in the development of the equations had 10 or more years of record and included active and discontinued continuous-record as well as crest-stage partial-record stations. The state was divided into four regions, and regional regression equations were developed to estimate the 2-, 5-, 10-, 50-, 100-, and 500-year recurrence-interval flood flows. The equations were developed by means of a regression analysis that utilized basin characteristics and flow data associated with the stations. Significant explanatory variables at the 95-percent confidence level for one or more regression equations included the following basin characteristics: drainage area; mean basin elevation; and the percentages of carbonate bedrock, urban area, and storage within a basin. The regression equations can be used to predict the magnitude of flood flows for specified recurrence intervals for most streams in the state; however, they are not valid for streams with drainage areas generally greater than 2,000 square miles or with substantial regulation, diversion, or mining activity within the basin. Estimates of flood-flow magnitude and frequency for streamflow-gaging stations substantially affected by upstream regulation are also presented.

  12. The 7Q10 in South Carolina water-quality regulation: Nearly fifty years later

    USGS Publications Warehouse

    Feaster, Toby D.; Cantrell, Wade M.

    2010-01-01

    The annual minimum 7-day average streamflow with a 10-year recurrence interval, often referred to as the 7Q10, has a long history of being an important low-flow statistic used in water-quality management in South Carolina as evidenced by its adoption into South Carolina law in 1967. State agencies, such as the South Carolina Department of Health and Environmental Control and the South Carolina Department of Natural Resources, use such lowflow statistics to determine Wasteload Allocations for National Pollutant Discharge Elimination System discharges, develop Total Maximum Daily Loads for streams, prepare the State Water Plan, and restrict the quantity of water that can be transferred out of basin. The U.S. Geological Survey, working cooperatively with the South Carolina Department of Health and Environmental Control, is updating low-flow statistics at continuous-record streamflow gages in South Carolina on a basin-by-basin approach. Such statistics are influenced by length of record and hydrologic conditions under which the record was collected. Statewide low-flow statistics in South Carolina were last updated in 1987. Since that time several droughts have occurred with the most severe occurring from 1998-2002 and the most recent occurring from 2006-2009. The low-flow statistics for the Pee Dee River basin were the first to be completed in this ongoing investigation.

  13. Evaluation and trends of land cover, streamflow, and water quality in the North Canadian River Basin near Oklahoma City, Oklahoma, 1968–2009

    USGS Publications Warehouse

    Esralew, Rachel A.; Andrews, William J.; Smith, S. Jerrod

    2011-01-01

    The U.S. Geological Survey, in cooperation with the city of Oklahoma City, collected water-quality samples from the North Canadian River at the streamflow-gaging station near Harrah, Oklahoma (Harrah station), since 1968, and at an upstream streamflow-gaging station at Britton Road at Oklahoma City, Oklahoma (Britton Road station), since 1988. Statistical summaries and frequencies of detection of water-quality constituent data from water samples, and summaries of water-quality constituent data from continuous water-quality monitors are described from the start of monitoring at those stations through 2009. Differences in concentrations between stations and time trends for selected constituents were evaluated to determine the effects of: (1) wastewater effluent discharges, (2) changes in land-cover, (3) changes in streamflow, (4) increases in urban development, and (5) other anthropogenic sources of contamination on water quality in the North Canadian River downstream from Oklahoma City. Land-cover changes between 1992 and 2001 in the basin between the Harrah station and Lake Overholser upstream included an increase in developed/barren land-cover and a decrease in pasture/hay land cover. There were no significant trends in median and greater streamflows at either streamflow-gaging station, but there were significant downward trends in lesser streamflows, especially after 1999, which may have been associated with decreases in precipitation between 1999 and 2009 or construction of low-water dams on the river upstream from Oklahoma City in 1999. Concentrations of dissolved chloride, lead, cadmium, and chlordane most frequently exceeded the Criterion Continuous Concentration (a water-quality standard for protection of aquatic life) in water-quality samples collected at both streamflow-gaging stations. Visual trends in annual frequencies of detection were investigated for selected pesticides with frequencies of detection greater than 10 percent in all water samples collected at both streamflow-gaging stations. Annual frequencies of detection of 2,4-dichlorophenoxyacetic acid and bromacil increased with time. Annual frequencies of detection of atrazine, chlorpyrifos, diazinon, dichlorprop, and lindane decreased with time. Dissolved nitrogen and phosphorus concentrations were significantly greater in water samples collected at the Harrah station than at the Britton Road station, whereas specific conductance was greater at the Britton Road station. Concentrations of dissolved oxygen, biochemical oxygen demand, and fecal coliform bacteria were not significantly different between stations. Daily minimum, mean, and maximum specific conductance collected from continuous water-quality monitors were significantly greater at the Britton Road station than in water samples collected at the Harrah station. Daily minimum, maximum, and diurnal fluctuations of water temperature collected from continuous water-quality monitors were significantly greater at the Harrah station than at the Britton Road station. The daily maximums and diurnal range of dissolved oxygen concentrations were significantly greater in water samples collected at the Britton Road station than at the Harrah station, but daily mean dissolved oxygen concentrations in water at those streamflow-gaging stations were not significantly different. Daily mean and diurnal water temperature ranges increased with time at the Britton Road and Harrah streamflow-gaging stations, whereas daily mean and diurnal specific conductance ranges decreased with time at both streamflow-gaging stations from 1988–2009. Daily minimum dissolved oxygen concentrations collected from continuous water-quality monitors more frequently indicated hypoxic conditions at the Harrah station than at the Britton Road station after 1999. Fecal coliform bacteria counts in water decreased slightly from 1988–2009 at the Britton Road station. The Seasonal Kendall's tau test indicated significant downward trends in

  14. Preliminary peak stage and streamflow data at selected streamgaging stations in North Carolina and South Carolina for flooding following Hurricane Matthew, October 2016

    USGS Publications Warehouse

    Weaver, J. Curtis; Feaster, Toby D.; Robbins, Jeanne C.

    2016-12-19

    The passage of Hurricane Matthew across the central and eastern regions of North Carolina and South Carolina during October 7–9, 2016, resulted in heavy rainfall that caused major flooding in parts of the eastern Piedmont in North Carolina and coastal regions of both States. Rainfall totals of 3 to 8 inches and 8 to more than 15 inches were widespread throughout the central and eastern regions, respectively. U.S. Geological Survey streamgages recorded peaks of record at 26 locations, including 11 sites with long-term periods of 30 or more years of record. A total of 44 additional locations had peak streamflows that ranked in the top 5 for the period of record. Additionally, among 23 U.S. Geological Survey streamgages within the affected basins in North Carolina where stage-only data are collected, new peak stages were recorded at 5 locations during the flooding. U.S. Geological Survey personnel made 102 streamflow measurements at 60 locations in both States to verify, update, or extend existing rating curves (which are used to determine stage-discharge relations) during the October 2016 flood event.

  15. Hydrology and water quality of lakes and streams in Orange County, Florida

    USGS Publications Warehouse

    German, Edward R.; Adamski, James C.

    2005-01-01

    Orange County, Florida, is continuing to experience a large growth in population. In 1920, the population of Orange County was less than 20,000; in 2000, the population was about 896,000. The amount of urban area around Orlando has increased considerably, especially in the northwest part of the County. The eastern one-third of the County, however, had relatively little increase in urbanization from 1977-97. The increase of population, tourism, and industry in Orange County and nearby areas changed land use; land that was once agricultural has become urban, industrial, and major recreation areas. These changes could impact surface-water resources that are important for wildlife habitat, for esthetic reasons, and potentially for public supply. Streamflow characteristics and water quality could be affected in various ways. As a result of changing land use, changes in the hydrology and water quality of Orange County's lakes and streams could occur. Median runoff in 10 selected Orange County streams ranges from about 20 inches per year (in/yr) in the Wekiva River to about 1.1 in/yr in Cypress Creek. The runoff for the Wekiva River is significantly higher than other river basins because of the relatively constant spring discharge that sustains streamflow, even during drought conditions. The low runoff for the Cypress Creek basin results from a lack of sustained inflow from ground water and a relatively large area of lakes within the drainage basin. Streamflow characteristics for 13 stations were computed on an annual basis and examined for temporal trends. Results of the trend testing indicate changes in annual mean streamflow, 1-day high streamflow, or 7-day low streamflow at 8 of the 13 stations. However, changes in 7-day low streamflow are more common than changes in annual mean or 1-day high streamflow. There is probably no single reason for the changes in 7-day low streamflows, and for most streams, it is difficult to determine definite reasons for the flow increases. Low flows in the Econlockhatchee River at Chuluota have increased because of discharge of treated wastewater since 1982. However, trends in increasing 7-day low streamflow are evident before 1982, which cannot be attributed to wastewater discharge. Some of the increases in 7-day low flows may be related to drainage changes resulting from increased development in Orange County. Development for most purposes, including those as diverse as cattle grazing and residential construction, may involve modification of surface drainage through stream channelization and construction of canals. These changes in land drainage can lower the water table, resulting in reductions of regional evapotranspiration rates and increased streamflow. Another possible cause of increasing low flows in streams is use of water from the Floridan aquifer system for irrigation. Runoff of irrigation water or increased seepage from irrigated areas to streams could increase base streamflow compared to natural conditions. Water-level data were analyzed to determine temporal trends from 83 lakes that had more than 15 years of record. There were significant temporal trends in 33 of the 83 lakes (40 percent) over the entire period of record. Of these 33 lakes, 14 had increasing water levels and 19 lakes had decreasing water levels. The downward trends in long-term lake levels could in part be due to high rainfall accumulation in 1960-1961, which included precipitation from Hurricane Donna (September 1960). The high rainfall resulted in historical high-water levels in many lakes in 1960 or 1961. A large range of water-quality conditions exists in lakes and streams of Orange County (2000-01). Specific conductance in lake samples ranged from 57 to 1,185 microsiemens per centimeter. Values of pH ranged from 3.2 to 8.7 in stream samples and 4.6 to 9.6 in lake samples. Total nitrogen concentrations ranged from less than 0.2 to 7.1 milligrams per liter (mg/L) as nitrogen in stream samples, and

  16. Hydrogeologic controls on streamflow sensitivity to climate variation

    Treesearch

    Anne Jefferson; Anne Nolin; Sarah Lewis; Christina Tague

    2008-01-01

    Climate models project warmer temperatures for the north-west USA, which will result in reduced snowpacks and decreased summer streamflow. This paper examines how groundwater, snowmelt, and regional climate patterns control discharge at multiple time scales, using historical records from two watersheds with contrasting geological properties and drainage efficiencies....

  17. Hydro-climatic data network (HCDN); a U.S. Geological Survey streamflow data set for the United States for the study of climate variations, 1874-1988

    USGS Publications Warehouse

    Slack, J.R.; Landwehr, Jurate Maciunas

    1992-01-01

    Records of streamflow can provide an account of climatic variation over a hydrologic basin. The ability to do so is conditioned on the absence of confounding factors that diminish the climate signal. A national data set of streamflow records that are relatively free of confounding anthropogenic influences has been developed for the purpose of studying the variation in surface-water conditions throughout the United States. Records in the U.S. Geological Survey (USGS) National Water Storage and Retrieval System (WATSTORE) data base for active and discontinued streamflow gaging stations through water year 1988 (that is, through September 30, 1988) were reviewed jointly with data specialists in each USGS District office. The resulting collection of stations, each with its respective period of record satisfying the qualifying criteria, is called the Hydro-Climatic Data Network, or HCDN. The HCDN consists of 1,659 sites throughout the United States and its territories, totaling 73,231 water years of daily mean discharge values. For each station in the HCDN, information necessary for its identification, along with any qualifying comments about the available record and a set of descriptive watershed characteristics are provided in tabular format in this report, both on paper and on computer disk (enclosed). For each station in the HCDN, the appropriate daily mean discharge values were compiled, and statistical characteristics, including monthly mean discharges and annual mean, minimum and maximum discharges, were derived. The discharge data values are provided in a companion report.

  18. Preliminary assessment of streamflow characteristics for selected streams at Fort Gordon, Georgia, 1999-2000

    USGS Publications Warehouse

    Stamey, Timothy C.

    2001-01-01

    In 1999, the U.S. Geological Survey, in cooperation with the U.S. Army Signal Center and Fort Gordon, began collection of periodic streamflow data at four streams on the military base to assess and estimate streamflow characteristics of those streams for potential water-supply sources. Simple and reliable methods of determining streamflow characteristics of selected streams on the military base are needed for the initial implementation of the Fort Gordon Integrated Natural Resources Management Plan. Long-term streamflow data from the Butler Creek streamflow gaging station were used along with several concurrent discharge measurements made at three selected partial-record streamflow stations on Fort Gordon to determine selected low-flow streamflow characteristics. Streamflow data were collected and analyzed using standard U.S. Geological Survey methods and computer application programs to verify the use of simple drainage area to discharge ratios, which were used to estimate the low-flow characteristics for the selected streams. Low-flow data computed based on daily mean streamflow include: mean discharges for consecutive 1-, 3-, 7-, 14-, and 30-day period and low-flow estimates of 7Q10, 30Q2, 60Q2, and 90Q2 recurrence intervals. Flow-duration data also were determined for the 10-, 30-, 50-, 70-, and 90-percent exceedence flows. Preliminary analyses of the streamflow indicate that the flow duration and selected low-flow statistics for the selected streams averages from about 0.15 to 2.27 cubic feet per square mile. The long-term gaged streamflow data indicate that the streamflow conditions for the period analyzed were in the 50- to 90-percent flow range, or in which streamflow would be exceeded about 50 to 90 percent of the time.

  19. Feasibility of Acoustic Doppler Velocity Meters for the Production of Discharge Records from U.S. Geological Survey Streamflow-Gaging Stations

    USGS Publications Warehouse

    Morlock, Scott E.; Nguyen, Hieu T.; Ross, Jerry H.

    2002-01-01

    It is feasible to use acoustic Doppler velocity meters (ADVM's) installed at U.S. Geological Survey (USGS) streamflow-gaging stations to compute records of river discharge. ADVM's are small acoustic current meters that use the Doppler principle to measure water velocities in a two-dimensional plane. Records of river discharge can be computed from stage and ADVM velocity data using the 'index velocity' method. The ADVM-measured velocities are used as an estimator or 'index' of the mean velocity in the channel. In evaluations of ADVM's for the computation of records of river discharge, the USGS installed ADVM's at three streamflow-gaging stations in Indiana: Kankakee River at Davis, Fall Creek at Millersville, and Iroquois River near Foresman. The ADVM evaluation study period was from June 1999 to February 2001. Discharge records were computed, using ADVM data from each station. Discharge records also were computed using conventional stage-discharge methods of the USGS. The records produced from ADVM and conventional methods were compared with discharge record hydrographs and statistics. Overall, the records compared closely from the Kankakee River and Fall Creek stations. For the Iroquois River station, variable backwater was present and affected the comparison; because the ADVM record compensates for backwater, the ADVM record may be superior to the conventional record. For the three stations, the ADVM records were judged to be of a quality acceptable to USGS standards for publications and near realtime ADVM-computed discharges are served on USGS real-time data World Wide Web pages.

  20. Application of the Streamflow Prediction Tool to Estimate Sediment Dredging Volumes in Texas Coastal Waterways

    NASA Astrophysics Data System (ADS)

    Yeates, E.; Dreaper, G.; Afshari, S.; Tavakoly, A. A.

    2017-12-01

    Over the past six fiscal years, the United States Army Corps of Engineers (USACE) has contracted an average of about a billion dollars per year for navigation channel dredging. To execute these funds effectively, USACE Districts must determine which navigation channels need to be dredged in a given year. Improving this prioritization process results in more efficient waterway maintenance. This study uses the Streamflow Prediction Tool, a runoff routing model based on global weather forecast ensembles, to estimate dredged volumes. This study establishes regional linear relationships between cumulative flow and dredged volumes over a long-term simulation covering 30 years (1985-2015), using drainage area and shoaling parameters. The study framework integrates the National Hydrography Dataset (NHDPlus Dataset) with parameters from the Corps Shoaling Analysis Tool (CSAT) and dredging record data from USACE District records. Results in the test cases of the Houston Ship Channel and the Sabine and Port Arthur Harbor waterways in Texas indicate positive correlation between the simulated streamflows and actual dredging records.

  1. Streamflow conditions along Soldier Creek, Northeast Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.

    2017-11-14

    The availability of adequate water to meet the present (2017) and future needs of humans, fish, and wildlife is a fundamental issue for the Prairie Band Potawatomi Nation in northeast Kansas. Because Soldier Creek flows through the Prairie Band Potawatomi Nation Reservation, it is an important tribal resource. An understanding of historical Soldier Creek streamflow conditions is required for the effective management of tribal water resources, including drought contingency planning. Historical data for six selected U.S. Geological Survey (USGS) streamgages along Soldier Creek were used in an assessment of streamflow characteristics and trends by Juracek (2017). Streamflow data for the period of record at each streamgage were used to compute annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow. Results of the assessment are summarized in this fact sheet.

  2. Model simulation of the Manasquan water-supply system in Monmouth County, New Jersey

    USGS Publications Warehouse

    Chang, Ming; Tasker, Gary D.; Nieswand, Steven

    2001-01-01

    Model simulation of the Manasquan Water Supply System in Monmouth County, New Jersey, was completed using historic hydrologic data to evaluate the effects of operational and withdrawal alternatives on the Manasquan reservoir and pumping system. Changes in the system operations can be simulated with the model using precipitation forecasts. The Manasquan Reservoir system model operates by using daily streamflow values, which were reconstructed from historical U.S. Geological Survey streamflow-gaging station records. The model is able to run in two modes--General Risk analysis Model (GRAM) and Position Analysis Model (POSA). The GRAM simulation procedure uses reconstructed historical streamflow records to provide probability estimates of certain events, such as reservoir storage levels declining below a specific level, when given an assumed set of operating rules and withdrawal rates. POSA can be used to forecast the likelihood of specified outcomes, such as streamflows falling below statutory passing flows, associated with a specific working plan for the water-supply system over a period of months. The user can manipulate the model and generate graphs and tables of streamflows and storage, for example. This model can be used as a management tool to facilitate the development of drought warning and drought emergency rule curves and safe yield values for the water-supply system.

  3. Flooding in the southern Midwestern United States, April–May 2017

    USGS Publications Warehouse

    Heimann, David C.; Holmes, Robert R.; Harris, Thomas E.

    2018-03-09

    Excessive rainfall resulted in flooding on numerous rivers throughout the southern Midwestern United States (southern Midwest) in late April and early May of 2017. The heaviest rainfall, between April 28 and 30, resulted in extensive flooding from eastern Oklahoma to southern Indiana including parts of Missouri, Arkansas, and Illinois.Peak-of-record streamflows were set at 21 U.S. Geological Survey (USGS) streamgages in the southern Midwest during the resulting April–May 2017 flooding and each of the five States included in the study area had at least one streamgage with a peak of record during the flood. The annual exceedance probability (AEP) estimates for the April–May 2017 peak streamflows indicate that peaks at 5 USGS streamgages had AEPs of 0.2 percent or less (500-year recurrence interval or greater), and peak streamflows at 15 USGS streamgages had AEPs in the range from greater than 0.2 to 1 percent (500- to 100-year recurrence intervals).Examination of the magnitude of the temporal changes in median annual peak streamflows indicated positive increases, in general, throughout the study area for each of the 1930–2017, 1956–2017, 1975–2017, and 1989–2017 analysis periods. The median increase in peak streamflows was greatest in 1975–2017 and 1989–2017 with maximum increases of 8 to 10 percent per year. No stations in the 1975–2017 or 1989–2017 analysis period had median negative changes in peak streamflows.

  4. Flow characteristics of the Clearwater River and tributaries from Clearbrook to Plummer, northwestern Minnesota

    USGS Publications Warehouse

    Payne, G.A.

    1989-01-01

    During March through October 1986, 52,560 acre-feet of water passed the continuous-record stream gaging station on the Clearwater River near Clearbrook, Minnesota, 4.8 river miles upstream from the Red Lake Indian Reservation. Flow at the downstream boundary of the Reservation totaled 93,770 acre-feet. The increase in Clearwater River flow in the reach bordering the Reservation equaled 32,950 acre-feet; 60 percent of the increase occurred during March, April, and May. During those months, flow in the Clearwater River was augmented by flow from Kiwosay Reservoir and Butcher Knife Creek, which are located on the Reservation. Daily streamflow records showed that flow in the river increased in the Reservation reach throughout the study except for 13 days during October when losses occurred. At the downstream Reservation boundary, all daily mean flows exceeded the 36 cubic feet per second minimum flow required by the Minnesota Department of Natural Resources for the gaging station at Plummer, Minnesota located 29.9 miles downstream from the Reservation boundary. Monthly flows generally followed expected seasonal trends, with the highest monthly totals occurring in April and May and the lowest monthly totals occurring during August, September, and October. Seasonal trends were modified by reservoir releases, withdrawals for irrigation, and return flows that resulted from drainage of adjacent wild-rice fields. A series of flow measurements showed that localized withdrawals and return flows at times exceeded 20 percent of total streamflow. Discharge measurements made during low flow indicated higher rates of groundwater discharge in the vicinity of the Kiwosay Reservoir than in other parts of the study reach. Measurements made during August indicated that groundwater discharge in the reach of the river bordering the Reservation resulted in a flow gain of about 20 percent. Analysis of long-term streamflow records showed that near-average hydrologic conditions prevailed during the study period.

  5. Techniques for estimating magnitude and frequency of peak flows for Pennsylvania streams

    USGS Publications Warehouse

    Stuckey, Marla H.; Reed, Lloyd A.

    2000-01-01

    Regression equations for estimating the magnitude and frequency of floods on ungaged streams in Pennsylvania with drainage areas less that 2,000 square miles were developed on the basis of peak-flow data collected at 313 streamflow-gaging stations. All streamflow-gaging stations used in the development of the equations had 10 or more years of record and include active and discontinued continuous-record and crest-stage partial-record streamflow-gaging stations. Regional regression equations were developed for flood flows expected every 10, 25, 50, 100, and 500 years by the use of a weighted multiple linear regression model.The State was divided into two regions. The largest region, Region A, encompasses about 78 percent of Pennsylvania. The smaller region, Region B, includes only the northwestern part of the State. Basin characteristics used in the regression equations for Region A are drainage area, percentage of forest cover, percentage of urban development, percentage of basin underlain by carbonate bedrock, and percentage of basin controlled by lakes, swamps, and reservoirs. Basin characteristics used in the regression equations for Region B are drainage area and percentage of basin controlled by lakes, swamps, and reservoirs. The coefficient of determination (R2) values for the five flood-frequency equations for Region A range from 0.93 to 0.82, and for Region B, the range is from 0.96 to 0.89.While the regression equations can be used to predict the magnitude and frequency of peak flows for most streams in the State, they should not be used for streams with drainage areas greater than 2,000 square miles or less than 1.5 square miles, for streams that drain extensively mined areas, or for stream reaches immediately below flood-control reservoirs. In addition, the equations presented for Region B should not be used if the stream drains a basin with more than 5 percent urban development.

  6. Streamflow characteristics at streamgages in northern Afghanistan and selected locations

    USGS Publications Warehouse

    Olson, Scott A.; Williams-Sether, Tara

    2010-01-01

    Statistical summaries of streamflow data for 79 historical streamgages in Northern Afghanistan and other selected historical streamgages are presented in this report. The summaries for each streamgage include (1) station description, (2) graph of the annual mean discharge for the period of record, (3) statistics of monthly and annual mean discharges, (4) monthly and annual flow duration, (5) probability of occurrence of annual high discharges, (6) probability of occurrence of annual low discharges, (7) probability of occurrence of seasonal low discharges, (8) annual peak discharges for the period of record, and (9) monthly and annual mean discharges for the period of record.

  7. Base-flow measurements at partial-record sites on small streams in South Carolina

    USGS Publications Warehouse

    Barker, Carroll

    1986-01-01

    This report contains site descriptions and base-flow data collected at 362 partial-record sites in South Carolina. These data include site name, site description, latitude, longitude, drainage area, instantaneous streamflow, and date of the streamflow measurement. The base-flow data can be used as an aid to estimate low flow characteristics at ungaged locations on streams in South Carolina. Partial record data collection sites were established in all physiographic provinces except the lower Coastal Plain. Data collection sites were not established in the lower Coastal Plain because of the widespread occurrence of zero during drought periods in all but the larger streams. (USGS)

  8. Evaluation of selected methods for determining streamflow during periods of ice effect

    USGS Publications Warehouse

    Melcher, Norwood B.; Walker, J.F.

    1992-01-01

    Seventeen methods for estimating ice-affected streamflow are evaluated for potential use with the U.S. Geological Survey streamflow-gaging station network. The methods evaluated were identified by written responses from U.S. Geological Survey field offices and by a comprehensive literature search. The methods selected and techniques used for applying the methods are described in this report. The methods are evaluated by comparing estimated results with data collected at three streamflow-gaging stations in Iowa during the winter of 1987-88. Discharge measurements were obtained at 1- to 5-day intervals during the ice-affected periods at the three stations to define an accurate baseline record. Discharge records were compiled for each method based on data available, assuming a 6-week field schedule. The methods are classified into two general categories-subjective and analytical--depending on whether individual judgment is necessary for method application. On the basis of results of the evaluation for the three Iowa stations, two of the subjective methods (discharge ratio and hydrographic-and-climatic comparison) were more accurate than the other subjective methods and approximately as accurate as the best analytical method. Three of the analytical methods (index velocity, adjusted rating curve, and uniform flow) could potentially be used at streamflow-gaging stations, where the need for accurate ice-affected discharge estimates justifies the expense of collecting additional field data. One analytical method (ice-adjustment factor) may be appropriate for use at stations with extremely stable stage-discharge ratings and measuring sections. Further research is needed to refine the analytical methods. The discharge-ratio and multiple-regression methods produce estimates of streamflow for varying ice conditions using information obtained from the existing U.S. Geological Survey streamflow-gaging network.

  9. Flood frequency estimates and documented and potential extreme peak discharges in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.; McCabe, Lan P.

    2001-01-01

    Knowledge of the magnitude and frequency of floods is required for the safe and economical design of highway bridges, culverts, dams, levees, and other structures on or near streams; and for flood plain management programs. Flood frequency estimates for gaged streamflow sites were updated, documented extreme peak discharges for gaged and miscellaneous measurement sites were tabulated, and potential extreme peak discharges for Oklahoma streamflow sites were estimated. Potential extreme peak discharges, derived from the relation between documented extreme peak discharges and contributing drainage areas, can provide valuable information concerning the maximum peak discharge that could be expected at a stream site. Potential extreme peak discharge is useful in conjunction with flood frequency analysis to give the best evaluation of flood risk at a site. Peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years were estimated for 352 gaged streamflow sites. Data through 1999 water year were used from streamflow-gaging stations with at least 8 years of record within Oklahoma or about 25 kilometers into the bordering states of Arkansas, Kansas, Missouri, New Mexico, and Texas. These sites were in unregulated basins, and basins affected by regulation, urbanization, and irrigation. Documented extreme peak discharges and associated data were compiled for 514 sites in and near Oklahoma, 352 with streamflow-gaging stations and 162 at miscellaneous measurements sites or streamflow-gaging stations with short record, with a total of 671 measurements.The sites are fairly well distributed statewide, however many streams, large and small, have never been monitored. Potential extreme peak-discharge curves were developed for streamflow sites in hydrologic regions of the state based on documented extreme peak discharges and the contributing drainage areas. Two hydrologic regions, east and west, were defined using 98 degrees 15 minutes longitude as the dividing line.

  10. Sediment transport and evaluation of sediment surrogate ratings in the Kootenai River near Bonners Ferry, Idaho, Water Years 2011–14

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Etheridge, Alexandra B.

    2015-12-14

    Acoustic surrogate ratings were developed between backscatter data collected using acoustic Doppler velocity meters (ADVMs) and results of suspended-sediment samples. Ratings were successfully fit to various sediment size classes (total, fines, and sands) using ADVMs of different frequencies (1.5 and 3 megahertz). Surrogate ratings also were developed using variations of streamflow and seasonal explanatory variables. The streamflow surrogate ratings produced average annual sediment load estimates that were 8–32 percent higher, depending on site and sediment type, than estimates produced using the acoustic surrogate ratings. The streamflow surrogate ratings tended to overestimate suspended-sediment concentrations and loads during periods of elevated releases from Libby Dam as well as on the falling limb of the streamflow hydrograph. Estimates from the acoustic surrogate ratings more closely matched suspended-sediment sample results than did estimates from the streamflow surrogate ratings during these periods as well as for rating validation samples collected in water year 2014. Acoustic surrogate technologies are an effective means to obtain continuous, accurate estimates of suspended-sediment concentrations and loads for general monitoring and sediment-transport modeling. In the Kootenai River, continued operation of the acoustic surrogate sites and use of the acoustic surrogate ratings to calculate continuous suspended-sediment concentrations and loads will allow for tracking changes in sediment transport over time.

  11. Stochastic model for simulating Souris River Basin precipitation, evapotranspiration, and natural streamflow

    USGS Publications Warehouse

    Kolars, Kelsey A.; Vecchia, Aldo V.; Ryberg, Karen R.

    2016-02-24

    The Souris River Basin is a 61,000-square-kilometer basin in the Provinces of Saskatchewan and Manitoba and the State of North Dakota. In May and June of 2011, record-setting rains were seen in the headwater areas of the basin. Emergency spillways of major reservoirs were discharging at full or nearly full capacity, and extensive flooding was seen in numerous downstream communities. To determine the probability of future extreme floods and droughts, the U.S. Geological Survey, in cooperation with the North Dakota State Water Commission, developed a stochastic model for simulating Souris River Basin precipitation, evapotranspiration, and natural (unregulated) streamflow. Simulations from the model can be used in future studies to simulate regulated streamflow, design levees, and other structures; and to complete economic cost/benefit analyses.Long-term climatic variability was analyzed using tree-ring chronologies to hindcast precipitation to the early 1700s and compare recent wet and dry conditions to earlier extreme conditions. The extended precipitation record was consistent with findings from the Devils Lake and Red River of the North Basins (southeast of the Souris River Basin), supporting the idea that regional climatic patterns for many centuries have consisted of alternating wet and dry climate states.A stochastic climate simulation model for precipitation, temperature, and potential evapotranspiration for the Souris River Basin was developed using recorded meteorological data and extended precipitation records provided through tree-ring analysis. A significant climate transition was seen around1970, with 1912–69 representing a dry climate state and 1970–2011 representing a wet climate state. Although there were some distinct subpatterns within the basin, the predominant differences between the two states were higher spring through early fall precipitation and higher spring potential evapotranspiration for the wet compared to the dry state.A water-balance model was developed for simulating monthly natural (unregulated) mean streamflow based on precipitation, temperature, and potential evapotranspiration at select streamflow-gaging stations. The model was calibrated using streamflow data from the U.S. Geological Survey and Environment Canada, along with natural (unregulated) streamflow data from the U.S. Army Corps of Engineers. Correlation coefficients between simulated and natural (unregulated) flows generally were high (greater than 0.8), and the seasonal means and standard deviations of the simulated flows closely matched the means and standard deviations of the natural (unregulated) flows. After calibrating the model for a monthly time step, monthly streamflow for each subbasin was disaggregated into three values per month, or an approximately 10-day time step, and a separate routing model was developed for simulating 10-day streamflow for downstream gages.The stochastic climate simulation model for precipitation, temperature, and potential evapotranspiration was combined with the water-balance model to simulate potential future sequences of 10-day mean streamflow for each of the streamflow-gaging station locations. Flood risk, as determined by equilibrium flow-frequency distributions for the dry (1912–69) and wet (1970–2011) climate states, was considerably higher for the wet state compared to the dry state. Future flood risk will remain high until the wet climate state ends, and for several years after that, because there may be a long lag-time between the return of drier conditions and the onset of a lower soil-moisture storage equilibrium.

  12. Examination of flood characteristics at selected streamgages in the Meramec River Basin, eastern Missouri, December 2015–January 2016

    USGS Publications Warehouse

    Holmes, Robert R.; Koenig, Todd A.; Rydlund, Jr., Paul H.; Heimann, David C.

    2016-09-13

    OverviewHeavy rainfall resulted in major flooding in the Meramec River Basin in eastern Missouri during late December 2015 through early January 2016. Cumulative rainfall from December 14 to 29, 2015, ranged from 7.6 to 12.3 inches at selected precipitation stations in the basin with flooding driven by the heaviest precipitation (3.9–9.7 inches) between December 27 and 29, 2015. Financial losses from flooding included damage to homes and other structures, damage to roads, and debris removal. Eight of 11 counties in the basin were declared a Federal Disaster Area.The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers and St. Louis Metropolitan Sewer District, operates multiple streamgages along the Meramec River and its primary tributaries including the Bourbeuse River and Big River. The period of record for streamflow at streamgages in the basin included in this report ranges from 24 to 102 years. Instrumentation in a streamgage shelter automatically makes observations of stage using a variety of methods (submersible pressure transducer, non-submersible pressure transducer, or non-contact radar). These observations are recorded autonomously at a predetermined programmed frequency (typically either 15 or 30 minutes) dependent on drainage-area size and concomitant flashiness of the stream. Although stage data are important, streamflow data are equally or more important for streamflow forecasting, water-quality constituent loads computation, flood-frequency analysis, and flood mitigation planning. Streamflows are computed from recorded stage data using an empirically determined relation between stage and streamflow termed a “rating.” Development and verification of the rating requires periodic onsite discrete measurements of streamflow throughout time and over the range of stages to define local hydraulic conditions.The purpose of this report is to examine characteristics of flooding that occurred in the Meramec River Basin in December 2015–January 2016 including peak stages, peak streamflows, and the flood-frequency statistics associated with the peak flows. A comparison between the December 2015–January 2016 flood and a similar flood in December 1982 in the Meramec River Basin also is included.

  13. Early effects of forest fire on streamflow characteristics.

    Treesearch

    H.W. Berndt

    1971-01-01

    A comparison of streamflow records from three small mountain streams in north-central Washington before, during, and after a severe forest fire showed three immediate effects of destructive burning. These were: 1. Flow rate was greatly reduced while the fire was actively burning. 2. Destruction of vegetation in the riparian zone reduced...

  14. Controlling suspended samplers by programmable calculator and interface circuitry

    Treesearch

    Rand E. Eads; Mark R. Boolootian

    1985-01-01

    A programmable calculator connected to an interface circuit can control automatic samplers and record streamflow data. The circuit converts a voltage representing water stage to a digital signal. The sampling program logs streamflow data when there is a predefined deviation from a linear trend in the water elevation. The calculator estimates suspended sediment...

  15. Controlling suspended sediment samplers by programmable calculator and interface circuitry

    Treesearch

    Rand E. Eads; Mark R. Boolootian

    1985-01-01

    A programmable calculator connected to an interface circuit can control automatic samplers and record streamflow data. The circuit converts a voltage representing water stage to a digital signal. The sampling program logs streamflow data when there is a predefined deviation from a linear trend in the water elevation. The calculator estimates suspended sediment...

  16. Characteristics of peak streamflows and extent of inundation in areas of West Virginia and southwestern Virginia affected by flooding, June 2016

    USGS Publications Warehouse

    Austin, Samuel H.; Watson, Kara M.; Lotspeich, R. Russell; Cauller, Stephen J.; White , Jeremy S.; Wicklein, Shaun M.

    2017-11-17

    Heavy rainfall occurred across central and southern West Virginia in June 2016 as a result of repeated rounds of torrential thunderstorms. The storms caused major flooding and flash flooding in central and southern West Virginia with Kanawha, Fayette, Nicholas, and Greenbrier Counties among the hardest hit. Over the duration of the storms, from 8 to 9.37 inches of rain was reported in areas in Greenbrier County. Peak streamflows were the highest on record at 7 locations, and streamflows at 18 locations ranked in the top five for the period of record at U.S. Geological Survey streamflow-gaging stations used in this study. Following the storms, U.S. Geological Survey hydrographers identified and documented 422 high-water marks in West Virginia, noting location and height of the water above land surface. Many of these high-water marks were used to create flood-inundation maps for selected communities of West Virginia that experienced flooding in June 2016. Digital datasets of the inundation areas, mapping boundaries, and water depth rasters are available online.

  17. Streamflow characterization using functional data analysis of the Potomac River

    NASA Astrophysics Data System (ADS)

    Zelmanow, A.; Maslova, I.; Ticlavilca, A. M.; McKee, M.

    2013-12-01

    Flooding and droughts are extreme hydrological events that affect the United States economically and socially. The severity and unpredictability of flooding has caused billions of dollars in damage and the loss of lives in the eastern United States. In this context, there is an urgent need to build a firm scientific basis for adaptation by developing and applying new modeling techniques for accurate streamflow characterization and reliable hydrological forecasting. The goal of this analysis is to use numerical streamflow characteristics in order to classify, model, and estimate the likelihood of extreme events in the eastern United States, mainly the Potomac River. Functional data analysis techniques are used to study yearly streamflow patterns, with the extreme streamflow events characterized via functional principal component analysis. These methods are merged with more classical techniques such as cluster analysis, classification analysis, and time series modeling. The developed functional data analysis approach is used to model continuous streamflow hydrographs. The forecasting potential of this technique is explored by incorporating climate factors to produce a yearly streamflow outlook.

  18. Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015

    USGS Publications Warehouse

    Kohn, Michael S.; Stevens, Michael R.; Harden, Tessa M.; Godaire, Jeanne E.; Klinger, Ralph E.; Mommandi, Amanullah

    2016-09-09

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Department of Transportation, developed regional-regression equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, 0.2-percent annual exceedance-probability discharge (AEPD) for natural streamflow in eastern Colorado. A total of 188 streamgages, consisting of 6,536 years of record and a mean of approximately 35 years of record per streamgage, were used to develop the peak-streamflow regional-regression equations. The estimated AEPDs for each streamgage were computed using the USGS software program PeakFQ. The AEPDs were determined using systematic data through water year 2013. Based on previous studies conducted in Colorado and neighboring States and on the availability of data, 72 characteristics (57 basin and 15 climatic characteristics) were evaluated as candidate explanatory variables in the regression analysis. Paleoflood and non-exceedance bound ages were established based on reconnaissance-level methods. Multiple lines of evidence were used at each streamgage to arrive at a conclusion (age estimate) to add a higher degree of certainty to reconnaissance-level estimates. Paleoflood or nonexceedance bound evidence was documented at 41 streamgages, and 3 streamgages had previously collected paleoflood data.To determine the peak discharge of a paleoflood or non-exceedanc bound, two different hydraulic models were used.The mean standard error of prediction (SEP) for all 8 AEPDs was reduced approximately 25 percent compared to the previous flood-frequency study. For paleoflood data to be effective in reducing the SEP in eastern Colorado, a larger ratio than 44 of 188 (23 percent) streamgages would need paleoflood data and that paleoflood data would need to increase the record length by more than 25 years for the 1-percent AEPD. The greatest reduction in SEP for the peak-streamflow regional-regression equations was observed when additional new basin characteristics were included in the peak-streamflow regional-regression equations and when eastern Colorado was divided into two separate hydrologic regions. To make further reductions in the uncertainties of the peak-streamflow regional-regression equations in the Foothills and Plains hydrologic regions, additional streamgages or crest-stage gages are needed to collect peak-streamflow data on natural streams in eastern Colorado.Generalized-Least Squares regression was used to compute the final peak-streamflow regional-regression equations for peak-streamflow. Dividing eastern Colorado into two new individual regions at –104° longitude resulted in peak-streamflow regional-regression equations with the smallest SEP. The new hydrologic region located between –104° longitude and the Kansas-Nebraska State line will be designated the Plains hydrologic region and the hydrologic region comprising the rest of eastern Colorado located west of the –104° longitude and east of the Rocky Mountains and below 7,500 feet in the South Platte River Basin and below 9,000 feet in the Arkansas River Basin will be designated the Foothills hydrologic region.

  19. Ensuring the consistancy of Flow Direction Curve reconstructions: the 'quantile solidarity' approach

    NASA Astrophysics Data System (ADS)

    Poncelet, Carine; Andreassian, Vazken; Oudin, Ludovic

    2015-04-01

    Flow Duration Curves (FDCs) are a hydrologic tool describing the distribution of streamflows at a catchment outlet. FDCs are usually used for calibration of hydrological models, managing water quality and classifying catchments, among others. For gauged catchments, empirical FDCs can be computed from streamflow records. For ungauged catchments, on the other hand, FDCs cannot be obtained from streamflow records and must therefore be obtained in another manner, for example through reconstructions. Regression-based reconstructions are methods relying on the evaluation of quantiles separately from catchments' attributes (climatic or physical features).The advantage of this category of methods is that it is informative about the processes and it is non-parametric. However, the large number of parameters required can cause unwanted artifacts, typically reconstructions that do not always produce increasing quantiles. In this paper we propose a new approach named Quantile Solidarity (QS), which is applied under strict proxy-basin test conditions (Klemes, 1986) to a set of 600 French catchments. Half of the catchments are considered as gauged and used to calibrate the regression and compute residuals of the regression. The QS approach consists in a three-step regionalization scheme, which first links quantile values to physical descriptors, then reduces the number of regression parameters and finally exploits the spatial correlation of the residuals. The innovation is the utilisation of the parameters continuity across the quantiles to dramatically reduce the number of parameters. The second half of catchment is used as an independent validation set over which we show that the QS approach ensures strictly growing FDC reconstructions in ungauged conditions. Reference: V. KLEMEŠ (1986) Operational testing of hydrological simulation models, Hydrological Sciences Journal, 31:1, 13-24

  20. USGS Streamgages Linked to the Medium Resolution NHD

    USGS Publications Warehouse

    Stewart, David W.; Rea, Alan; Wolock, David M.

    2006-01-01

    The locations of approximately 23,000 current and historical U.S. Geological Survey (USGS) streamgages in the United States and Puerto Rico (with the exception of Alaska) have been snapped to the medium resolution National Hydrography Dataset (NHD). The NHD contains geospatial information about mapped surface-water features, such as streams, lakes, and reservoirs, etc., creating a hydrologic network that can be used to determine what is upstream or downstream from a point of interest on the NHD network. An automated snapping process made the initial determination of the NHD location of each streamgage. These initial NHD locations were comprehensively reviewed by local USGS personnel to ensure that streamgages were snapped to the correct NHD reaches. About 75 percent of the streamgages snapped to the appropriate NHD reach location initially and 25 percent required adjustment and relocation. This process resulted in approximately 23,000 gages being successfully snapped to the NHD. This dataset contains the latitude and longitude coordinates of the point on the NHD to which the streamgage is snapped and the location of the gage house for each streamgage. A process known as indexing may be used to create reference points (event tables) to the NHD reaches, expressed as a reach code and measure (distance along the reach). Indexing is dependent on the version of NHD to which the indexing is referenced. These data are well suited for use in indexing because nearly all the streamgage NHD locations have been reviewed and adjusted if necessary, to ensure they will index to the appropriate NHD reach. Flow characteristics were computed from the daily streamflow data recorded at each streamgage for the period of record. The flow characteristics associated with each streamgage include: *First date (year, month, day) of streamflow data *Last date (year, month, day) of streamflow data *Number of days of streamflow data *Number of days of non-zero streamflow data *Minimum and maximum daily flow for the period of record (cubic feet per second) *Percentiles (1, 5, 10, 20, 25, 50, 75, 80, 90, 95, 99) of daily flow for the period of record (cubic feet per second) *Average and standard deviation of daily flow for the period of record (cubic feet per second) *Mean annual base-flow index (BFI) computed for the period of record (fraction, ranging from 0 to 1) *Year-to-year standard deviation of the annual base-flow index computed for the period of record (fraction) *Number of years of data used to compute the base-flow index (years) The streamflow data used to compute flow characteristics were copied from the NWIS-Web historical daily discharge archive (nadww01.er.usgs.gov:/www/htdocs/nwisweb/data/discharge) on June 15, 2005.

  1. Arkansas StreamStats: a U.S. Geological Survey web map application for basin characteristics and streamflow statistics

    USGS Publications Warehouse

    Pugh, Aaron L.

    2014-01-01

    Users of streamflow information often require streamflow statistics and basin characteristics at various locations along a stream. The USGS periodically calculates and publishes streamflow statistics and basin characteristics for streamflowgaging stations and partial-record stations, but these data commonly are scattered among many reports that may or may not be readily available to the public. The USGS also provides and periodically updates regional analyses of streamflow statistics that include regression equations and other prediction methods for estimating statistics for ungaged and unregulated streams across the State. Use of these regional predictions for a stream can be complex and often requires the user to determine a number of basin characteristics that may require interpretation. Basin characteristics may include drainage area, classifiers for physical properties, climatic characteristics, and other inputs. Obtaining these input values for gaged and ungaged locations traditionally has been time consuming, subjective, and can lead to inconsistent results.

  2. Continuous tidal streamflow, water level, and specific conductance data for Union Creek and the Little Back, Middle, and Front Rivers, Savannah River Estuary, November 2008 to March 2009

    USGS Publications Warehouse

    Lanier, Timothy H.; Conrads, Paul

    2010-01-01

    In the Water Resource Development Act of 1999, the U.S. Congress authorized the deepening of the Savannah Harbor. Additional studies were then identified by the Georgia Ports Authority and other local and regional stakeholders to determine and fully describe the potential environmental effects of deepening the channel. One need that was identified was the validation of a three-dimensional hydrodynamic model developed to evaluate mitigation scenarios for a potential harbor deepening and the effects on the Savannah River estuary. The streamflow in the estuary is very complex due to reversing tidal flows, interconnections of streams and tidal creeks, and the daily flooding and draining of the marshes. The model was calibrated using very limited streamflow data and no continuous streamflow measurements. To better characterize the streamflow dynamics and mass transport of the estuary, two index-velocity sites were instrumented with continuous acoustic velocity, water level, and specific conductance sensors on the Little Back and Middle Rivers for the 5-month period of November 2008 through March 2009. During the same period, a third acoustic velocity meter was installed on the Front River just downstream from U.S. Geological Survey streamgaging station 02198920 (Savannah River at GA 25, at Port Wentworth, Georgia) where water level and specific conductance data were being collected. A fourth index-velocity site was instrumented with continuous acoustic velocity, water level, and specific conductance sensors on Union Creek for a 2-month period starting in November 2008. In addition to monitoring the tidal cycles, streamflow measurements were made at the four index-velocity sites to develop ratings to compute continuous discharge for each site. The maximum flood (incoming) and ebb (outgoing) tides measured on Little Back River were –4,570 and 7,990 cubic feet per second, respectively. On Middle River, the maximum flood and ebb tides measured were –9,630 and 13,600 cubic feet per second, respectively. On Front River, the maximum flood and ebb tides were –34,500 and 43,700 cubic feet per second, respectively; and on Union Creek, the maximum flood and ebb tides were –2,390 and 4,610 cubic feet per second, respectively. During the 5-month instrumentation deployment, computed tidal streamflows on Little Back River ranged from –7,820 to 9,600 cubic feet per second for the flood and ebb tides, respectively. On Middle River, the computed tidal streamflows ranged from –17,500 to 22,500 cubic feet per second for the flood and ebb tides, respectively. The computed tidal streamflows on Front River ranged from –78,900 to 87,200 cubic feet per second, and from –3,850 to 6,130 cubic feet per second on Union Creek for the flood and ebb tides, respectively. The streamgages on the Little Back, Middle, and Front Rivers have continued in operation following the initial 5-month deployment.

  3. Macroinvertebrate community change associated with the severity of streamflow alteration

    USGS Publications Warehouse

    Carlisle, Daren M.; Eng, Kenny; Nelson, S.M.

    2014-01-01

    Natural streamflows play a critical role in stream ecosystems, yet quantitative relations between streamflow alteration and stream health have been elusive. One reason for this difficulty is that neither streamflow alteration nor ecological responses are measured relative to their natural expectations. We assessed macroinvertebrate community condition in 25 mountain streams representing a large gradient of streamflow alteration, which we quantified as the departure of observed flows from natural expectations. Observed flows were obtained from US Geological Survey streamgaging stations and discharge records from dams and diversion structures. During low-flow conditions in September, samples of macroinvertebrate communities were collected at each site, in addition to measures of physical habitat, water chemistry and organic matter. In general, streamflows were artificially high during summer and artificially low throughout the rest of the year. Biological condition, as measured by richness of sensitive taxa (Ephemeroptera, Plecoptera and Trichoptera) and taxonomic completeness (O/E), was strongly and negatively related to the severity of depleted flows in winter. Analyses of macroinvertebrate traits suggest that taxa losses may have been caused by thermal modification associated with streamflow alteration. Our study yielded quantitative relations between the severity of streamflow alteration and the degree of biological impairment and suggests that water management that reduces streamflows during winter months is likely to have negative effects on downstream benthic communities in Utah mountain streams. 

  4. Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada

    USGS Publications Warehouse

    Curran, Janet H.; Meyer, David F.; Tasker, Gary D.

    2003-01-01

    Estimates of the magnitude and frequency of peak streamflow are needed across Alaska for floodplain management, cost-effective design of floodway structures such as bridges and culverts, and other water-resource management issues. Peak-streamflow magnitudes for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows were computed for 301 streamflow-gaging and partial-record stations in Alaska and 60 stations in conterminous basins of Canada. Flows were analyzed from data through the 1999 water year using a log-Pearson Type III analysis. The State was divided into seven hydrologically distinct streamflow analysis regions for this analysis, in conjunction with a concurrent study of low and high flows. New generalized skew coefficients were developed for each region using station skew coefficients for stations with at least 25 years of systematic peak-streamflow data. Equations for estimating peak streamflows at ungaged locations were developed for Alaska and conterminous basins in Canada using a generalized least-squares regression model. A set of predictive equations for estimating the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak streamflows was developed for each streamflow analysis region from peak-streamflow magnitudes and physical and climatic basin characteristics. These equations may be used for unregulated streams without flow diversions, dams, periodically releasing glacial impoundments, or other streamflow conditions not correlated to basin characteristics. Basin characteristics should be obtained using methods similar to those used in this report to preserve the statistical integrity of the equations.

  5. Estimating current and future streamflow characteristics at ungaged sites, central and eastern Montana, with application to evaluating effects of climate change on fish populations

    USGS Publications Warehouse

    Sando, Roy; Chase, Katherine J.

    2017-03-23

    A common statistical procedure for estimating streamflow statistics at ungaged locations is to develop a relational model between streamflow and drainage basin characteristics at gaged locations using least squares regression analysis; however, least squares regression methods are parametric and make constraining assumptions about the data distribution. The random forest regression method provides an alternative nonparametric method for estimating streamflow characteristics at ungaged sites and requires that the data meet fewer statistical conditions than least squares regression methods.Random forest regression analysis was used to develop predictive models for 89 streamflow characteristics using Precipitation-Runoff Modeling System simulated streamflow data and drainage basin characteristics at 179 sites in central and eastern Montana. The predictive models were developed from streamflow data simulated for current (baseline, water years 1982–99) conditions and three future periods (water years 2021–38, 2046–63, and 2071–88) under three different climate-change scenarios. These predictive models were then used to predict streamflow characteristics for baseline conditions and three future periods at 1,707 fish sampling sites in central and eastern Montana. The average root mean square error for all predictive models was about 50 percent. When streamflow predictions at 23 fish sampling sites were compared to nearby locations with simulated data, the mean relative percent difference was about 43 percent. When predictions were compared to streamflow data recorded at 21 U.S. Geological Survey streamflow-gaging stations outside of the calibration basins, the average mean absolute percent error was about 73 percent.

  6. Cost-effectiveness of the stream-gaging program in Maine; a prototype for nationwide implementation

    USGS Publications Warehouse

    Fontaine, Richard A.; Moss, M.E.; Smath, J.A.; Thomas, W.O.

    1984-01-01

    This report documents the results of a cost-effectiveness study of the stream-gaging program in Maine. Data uses and funding sources were identified for the 51 continuous stream gages currently being operated in Maine with a budget of $211,000. Three stream gages were identified as producing data no longer sufficiently needed to warrant continuing their operation. Operation of these stations should be discontinued. Data collected at three other stations were identified as having uses specific only to short-term studies; it is recommended that these stations be discontinued at the end of the data-collection phases of the studies. The remaining 45 stations should be maintained in the program for the foreseeable future. The current policy for operation of the 45-station program would require a budget of $180,300 per year. The average standard error of estimation of streamflow records is 17.7 percent. It was shown that this overall level of accuracy at the 45 sites could be maintained with a budget of approximately $170,000 if resources were redistributed among the gages. A minimum budget of $155,000 is required to operate the 45-gage program; a smaller budget would not permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 25.1 percent. The maximum budget analyzed was $350,000, which resulted in an average standard error of 8.7 percent. Large parts of Maine's interior were identified as having sparse streamflow data. It was determined that this sparsity be remedied as funds become available.

  7. Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River basins, Sierra Nevada, California, 1900-2099 *

    USGS Publications Warehouse

    Dettinger, M.D.; Cayan, D.R.; Meyer, M.K.; Jeton, A.

    2004-01-01

    Hydrologic responses of river basins in the Sierra Nevada of California to historical and future climate variations and changes are assessed by simulating daily streamflow and water-balance responses to simulated climate variations over a continuous 200-yr period. The coupled atmosphere-ocean-ice-land Parallel Climate Model provides the simulated climate histories, and existing hydrologic models of the Merced, Carson, and American Rivers are used to simulate the basin responses. The historical simulations yield stationary climate and hydrologic variations through the first part of the 20th century until about 1975 when temperatures begin to warm noticeably and when snowmelt and streamflow peaks begin to occur progressively earlier within the seasonal cycle. A future climate simulated with business-as-usual increases in greenhouse-gas and aerosol radiative forcings continues those recent trends through the 21st century with an attendant +2.5??C warming and a hastening of snowmelt and streamflow within the seasonal cycle by almost a month. The various projected trends in the business-as-usual simulations become readily visible despite realistic simulated natural climatic and hydrologic variability by about 2025. In contrast to these changes that are mostly associated with streamflow timing, long-term average totals of streamflow and other hydrologic fluxes remain similar to the historical mean in all three simulations. A control simulation in which radiative forcings are held constant at 1995 levels for the 50 years following 1995 yields climate and streamflow timing conditions much like the 1980s and 1990s throughout its duration. The availability of continuous climate-change projection outputs and careful design of initial conditions and control experiments, like those utilized here, promise to improve the quality and usability of future climate-change impact assessments.

  8. Evaluation of the cost effectiveness of the 1983 stream-gaging program in Kansas

    USGS Publications Warehouse

    Medina, K.D.; Geiger, C.O.

    1984-01-01

    The results of an evaluation of the cost effectiveness of the 1983 stream-gaging program in Kansas are documented. Data uses and funding sources were identified for the 140 complete record streamflow-gaging stations operated in Kansas during 1983 with a budget of $793,780. As a result of the evaluation of the needs and uses of data from the stream-gaging program, it was found that the 140 gaging stations were needed to meet these data requirements. The average standard error of estimation of streamflow records was 20.8 percent, assuming the 1983 budget and operating schedule of 6-week interval visitations and based on 85 of the 140 stations. It was shown that this overall level of accuracy could be improved to 18.9 percent by altering the 1983 schedule of station visitations. A minimum budget of $760 ,000, with a corresponding average error of estimation of 24.9 percent, is required to operate the 1983 program. None of the stations investigated were suitable for the application of alternative methods for simulating discharge records. Improved instrumentation can have a very positive impact on streamflow uncertainties by decreasing lost record. (USGS)

  9. Characterization and evaluation of controls on post-fire streamflow response across western US watersheds

    NASA Astrophysics Data System (ADS)

    Saxe, Samuel; Hogue, Terri S.; Hay, Lauren

    2018-02-01

    This research investigates the impact of wildfires on watershed flow regimes, specifically focusing on evaluation of fire events within specified hydroclimatic regions in the western United States, and evaluating the impact of climate and geophysical variables on response. Eighty-two watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. Percent change in annual runoff ratio, low flows, high flows, peak flows, number of zero flow days, baseflow index, and Richards-Baker flashiness index were calculated for each watershed using pre- and post-fire periods. Independent variables were identified for each watershed and fire event, including topographic, vegetation, climate, burn severity, percent area burned, and soils data. Results show that low flows, high flows, and peak flows increase in the first 2 years following a wildfire and decrease over time. Relative response was used to scale response variables with the respective percent area of watershed burned in order to compare regional differences in watershed response. To account for variability in precipitation events, runoff ratio was used to compare runoff directly to PRISM precipitation estimates. To account for regional differences in climate patterns, watersheds were divided into nine regions, or clusters, through k-means clustering using climate data, and regression models were produced for watersheds grouped by total area burned. Watersheds in Cluster 9 (eastern California, western Nevada, Oregon) demonstrate a small negative response to observed flow regimes after fire. Cluster 8 watersheds (coastal California) display the greatest flow responses, typically within the first year following wildfire. Most other watersheds show a positive mean relative response. In addition, simple regression models show low correlation between percent watershed burned and streamflow response, implying that other watershed factors strongly influence response. Spearman correlation identified NDVI, aridity index, percent of a watershed's precipitation that falls as rain, and slope as being positively correlated with post-fire streamflow response. This metric also suggested a negative correlation between response and the soil erodibility factor, watershed area, and percent low burn severity. Regression models identified only moderate burn severity and watershed area as being consistently positively/negatively correlated, respectively, with response. The random forest model identified only slope and percent area burned as significant watershed parameters controlling response. Results will help inform post-fire runoff management decisions by helping to identify expected changes to flow regimes, as well as facilitate parameterization for model application in burned watersheds.

  10. Water Resources Data, Montana, 2002

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2003-01-01

    Water resources data for Montana for the 2002 water year consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This report contains discharge records for 244 streamflow-gaging stations; stage or content records for 9 lakes and large reservoirs and content for 31 smaller reservoirs; water-quality records for 142 streamflow stations (42 ungaged), 9 ground-water wells, and 3 lakes; precipitation records for 2 atmospheric-deposition stations; and water-level records for 53 observation wells. Additional water year 2002 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  11. Estimated monthly percentile discharges at ungaged sites in the Upper Yellowstone River Basin in Montana

    USGS Publications Warehouse

    Parrett, Charles; Hull, J.A.

    1986-01-01

    Once-monthly streamflow measurements were used to estimate selected percentile discharges on flow-duration curves of monthly mean discharge for 40 ungaged stream sites in the upper Yellowstone River basin in Montana. The estimation technique was a modification of the concurrent-discharge method previously described and used by H.C. Riggs to estimate annual mean discharge. The modified technique is based on the relationship of various mean seasonal discharges to the required discharges on the flow-duration curves. The mean seasonal discharges are estimated from the monthly streamflow measurements, and the percentile discharges are calculated from regression equations. The regression equations, developed from streamflow record at nine gaging stations, indicated a significant log-linear relationship between mean seasonal discharge and various percentile discharges. The technique was tested at two discontinued streamflow-gaging stations; the differences between estimated monthly discharges and those determined from the discharge record ranged from -31 to +27 percent at one site and from -14 to +85 percent at the other. The estimates at one site were unbiased, and the estimates at the other site were consistently larger than the recorded values. Based on the test results, the probable average error of the technique was + or - 30 percent for the 21 sites measured during the first year of the program and + or - 50 percent for the 19 sites measured during the second year. (USGS)

  12. A proposed streamflow-data program for Wisconsin

    USGS Publications Warehouse

    Campbell, Roy E.; Dreher, Frederick C.

    1970-01-01

    The historical data acquired and the new data to be collected form the basis for analytical and interpretive reports. Recommendations were made as to expanding or initiating such studies. Streamflow data collection should be a continuing effort, reoriented as necessary to meet the changing needs.

  13. Flood of June 7-9, 2008, in Central and Southern Indiana

    USGS Publications Warehouse

    Morlock, Scott E.; Menke, Chad D.; Arvin, Donald V.; Kim, Moon H.

    2008-01-01

    On June 6-7, 2008, heavy rainfall of 2 to more than 10 inches fell upon saturated soils and added to already high streamflows from a wetter than normal spring in central and southern Indiana. The heavy rainfall resulted in severe flooding on many streams within the White River Basin during June 7-9, causing three deaths, evacuation of thousands of residents, and hundreds of millions of dollars of damage to residences, businesses, infrastructure, and agricultural lands. In all, 39 Indiana counties were declared Federal disaster areas. U.S. Geological Survey (USGS) streamgages at nine locations recorded new record peak streamflows for the respective periods of record as a result of the heavy rainfall. Recurrence intervals of flood-peak streamflows were estimated to be greater than 100 years at five streamgages and 50-100 years at two streamgages. Peak-gage-height data, peak-streamflow data, and recurrence intervals are tabulated for 19 USGS streamgages in central and southern Indiana. Peak-streamflow estimates are tabulated for four ungaged locations, and estimated recurrence intervals are tabulated for three ungaged locations. The estimated recurrence interval for an ungaged location on Haw Creek in Columbus was greater than 100 years and for an ungaged location on Hurricane Creek in Franklin was 50-100 years. Because flooding was particularly severe in the communities of Columbus, Edinburgh, Franklin, Paragon, Seymour, Spencer, Martinsville, Newberry, and Worthington, high-water-mark data collected after the flood were tabulated for those communities. Flood peak inundation maps and water-surface profiles for selected streams were made in a geographic information system by combining the high-water-mark data with the highest-resolution digital elevation model data available.

  14. Surface-Water Data, Georgia, Water Year 1999

    USGS Publications Warehouse

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records. Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as 'U.S. Geological Survey Water-Data Report GA-99-1.' These water-data reports are for sale in various formats, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

  15. Multi-year encoding of daily rainfall and streamflow via the fractal-multifractal method

    NASA Astrophysics Data System (ADS)

    Puente, C. E.; Maskey, M.; Sivakumar, B.

    2017-12-01

    A deterministic geometric approach, the fractal-multifractal (FM) method, which has been proven to be faithful in encoding daily geophysical sets over a year, is used to describe records over multiple years at a time. Looking for FM parameter trends over longer periods, the present study shows FM descriptions of daily rainfall and streamflow gathered over five consecutive years optimizing deviations on accumulated sets. The results for 100 and 60 sets of five years for rainfall streamflow, respectively, near Sacramento, California illustrate that: (a) encoding of both types of data sets may be accomplished with relatively small errors; and (b) predicting the geometry of both variables appears to be possible, even five years ahead, training neural networks on the respective FM parameters. It is emphasized that the FM approach not only captures the accumulated sets over successive pentades but also preserves other statistical attributes including the overall "texture" of the records.

  16. Evaluation of streamflow records in Rogue River basin, Oregon

    USGS Publications Warehouse

    Richardson, Donald

    1952-01-01

    This report presents data which are, in general, supplementary to those the surface-water investigations made in the past by the U. S. Geological Survey. Those have been essentially investigations of the operation of the many gaging stations on the Rogue River and tributaries. The data presented were obtained from a detailed field investigation of the various #actors resulting from man-made structures that influence the quantity or regimen of the flow at the gaging stations. These factors include diversions from the stream, bypass channels carrying water around the gaging stations, return flow from irrigation or other projects, storage and release of flood waters, and other similar factors. Where feasible, the location, size, effect upon the streamflow periods of use, method of operation,, and similar information are. given. The information is divided into sections corresponding to areas determined by the location of gaging stations. An index of streamflow records is included. A section dealing with the adequacy of available water-resources data and containing location and period of record also is included. This information is given in general terms only, and is portrayed mainly by maps and graphs.

  17. Trends in precipitation and streamflow and changes in stream morphology in the Fountain Creek watershed, Colorado, 1939-99

    USGS Publications Warehouse

    Stogner, Sr., Robert W.

    2000-01-01

    The Fountain Creek watershed, located in and along the eastern slope of the Front Range section of the southern Rocky Mountains, drains approximately 930 square miles of parts of Teller, El Paso, and Pueblo Counties in eastern Colorado. Streamflow in the watershed is dominated by spring snowmelt runoff and storm runoff during the summer monsoon season. Flooding during the 1990?s has resulted in increased streambank erosion. Property loss and damage associated with flooding and bank erosion has cost area residents, businesses, utilities, municipalities, and State and Federal agencies millions of dollars. Precipitation (4 stations) and streamflow (6 stations) data, aerial photographs, and channel reconnaissance were used to evaluate trends in precipitation and streamflow and changes in channel morphology. Trends were evaluated for pre-1977, post-1976, and period-of-record time periods. Analysis revealed the lack of trend in total annual and seasonal precipitation during the pre-1977 time period. In general, the analysis also revealed the lack of trend in seasonal precipitation for all except the spring season during the post-1976 time period. Trend analysis revealed a significant upward trend in long-term (period of record) total annual and spring precipitation data, apparently due to a change in total annual precipitation throughout the Fountain Creek watershed. During the pre-1977 time period, precipitation was generally below average; during the post- 1976 time period, total annual precipitation was generally above average. During the post- 1976 time period, an upward trend in total annual and spring precipitation was indicated at two stations. Because two of four stations evaluated had upward trends for the post-1976 period and storms that produce the most precipitation are isolated convection storms, it is plausible that other parts of the watershed had upward precipitation trends that could affect trends in streamflow. Also, because of the isolated nature of convection storms that hit some areas of the watershed and not others, it is difficult to draw strong conclusions on relations between streamflow and precipitation. Trends in annual instantaneous peak streamflow, 70th percentile, 90th percentile, maximum daily-mean streamflow (100th percentile), 7-, 14-, and 30-day high daily-mean stream- flow duration, minimum daily-mean streamflow (0th percentile), 10th percentile, 30th percentile, and 7-, 14-, 30-day low daily-mean streamflow duration were evaluated. In general, instantaneous peak streamflow has not changed significantly at most of the stations evaluated. Trend analysis revealed the lack of a significant upward trend in streamflow at all stations for the pre-1977 time period. Trend tests indicated a significant upward trend in high and low daily-mean streamflow statistics for the post-1976 period. Upward trends in high daily-mean streamflow statistics may be an indication that changes in land use within the watershed have increased the rate and magnitude of runoff. Upward trends in low daily-mean 2 Trends in Precipitation and Streamflow and Changes in Stream Morphology in the Fountain Creek Watershed, Colorado, 1939-99 streamflow statistics may be related to changes in water use and management. An analysis of the relation between streamflow and precipitation indicated that changes in water management have had a marked effect on streamflow. Observable change in channel morphology and changes in distribution and density of vegetation varied with magnitude, duration, and frequency of large streamflow events, and increases in the magnitude and duration of low streamflows. Although more subtle, low stream- flows were an important component of day-to-day channel erosion. Substantial changes in channel morphology were most often associated with infrequent large or catastrophic streamflow events that erode streambed and banks, alter stream course, and deposit large amounts of sediment in the flood plain.

  18. Evaluation of streamflow traveltime and streamflow gains and losses along the lower Purgatoire River, southeastern Colorado, 1984-92

    USGS Publications Warehouse

    Dash, R.G.; Edelmann, P.R.

    1997-01-01

    Traveltime and gains and losses within a stream are important basic characteristics of streamflow. The lower Purgatoire River flows more than 160 river miles from Trinidad to the Arkansas River near Las Animas. A better knowledge of streamflow traveltime and streamflow gains and losses along the lower Purgatoire River would enable more informed management decisions about the availability of water supplies for irrigation use in southeastern Colorado. In 1994-95, the U.S.\\x11Geological Survey, in cooperation with the Purgatoire River Water Conservancy District and the Arkansas River Compact Administration, evaluated streamflow traveltime and estimated streamflow gains and losses using historical surface-water records. Traveltime analyses were used along the lower Purgatoire River to determine when streamflows would arrive at selected downstream sites. The substantial effects of diversions for irrigation and unmeasured return flows in the most upstream reach of the river prevented the tracking of streamflow through reach\\x111. Therefore, the estimation of streamflow traveltime for the 60.6 miles of river downstream from Trinidad could not be made.Hourly streamflow data from 1990 through 1994 were used to estimate traveltimes of more than 30 streamflow events for about 100 miles of the lower Purgatoire River. In the middle reach of the river, the traveltime of streamflow for the 40.1\\x11miles ranged from about 11 to about 47\\x11hours, and in the lower reach of the river, traveltime for the 58.5 miles ranged from about 6 to about 61 hours.Traveltime in the river reaches generally increased as streamflow decreased, but also varied for a specific streamflow in both reaches. Streamflow gains and losses were estimated using daily streamflow data at the upstream and downstream sites, available tributary inflow data, and daily diversion data. Differences between surface-water inflows and surface-water outflows in a reach determined the quantity of water gained or lost. In the most upstream reach of the river near Trinidad, difficulties in establishing streamflow traveltimes prevented the estimation of streamflow gains or losses. From 1984 through 1992, more than 2,900 daily estimates of streamflow gains or losses were made for the last 100\\x11miles of the lower Purgatoire River that indicated daily gains and losses in streamflow were common during all four seasons of the year. Although some large daily streamflow gains and losses were computed, most daily estimates indicated small gains and losses in streamflow. The daily median streamflow gain or loss for the middle reach of the river was close to zero during every season, whereas median values for the lower most reach of the river indicated a daily gain in streamflow during every season.

  19. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island,Water Year 2002

    USGS Publications Warehouse

    Breault, Robert F.

    2009-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamflow-gaging stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2002 (October 1, 2001 to September 30, 2002). Water-quality samples were also collected at 35 of 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2002 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2002. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 12.6 cubic feet per second (ft3/s) to the reservoir during WY 2002. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.14 to 8.1 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 534,000 kilograms (kg) of sodium and 851,000 kg of chloride to the Scituate Reservoir during WY 2002; sodium and chloride yields for the tributaries ranged from 2,900 to 40,200 kilograms per square mile (kg/mi2) and from 4,200 to 68,200 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 16.8 milligrams per liter (mg/L), median nitrate concentration was 0.02 mg/L as N, median nitrite concentration was 0.002 mg/L as N, median orthophosphate concentration was 0.03 mg/L as P, and median concentrations of total coliform and Escherichia coli (E. coli) bacteria were 22 and 14 colony forming units per 100 milliliters (CFU/100 mL), respectively. The medians of the median daily loads (and yields) of chloride, nitrate, nitrite, orthophosphate and total coliform and E. coli bacteria were 21 kg/d (12 kg/d/mi2), 0.04 kg/d (0.014 kg/d/mi2), 0.005 kg/d (0.002 kg/d/mi2), 0.08 kg/d (0.035 kg/d/mi2), and 370 million colony forming units per day (CFUx106/d) (120 CFUx106/d/ mi2) and 300 CFUx106/d (75 CFUx106/d/mi2), respectively.

  20. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2010

    USGS Publications Warehouse

    Smith, Kirk P.; Breault, Robert F.

    2011-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB), Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance and water temperature. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2010 (October 1, 2009, to September 30, 2010). Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 monitoring stations by the USGS during WY 2010 as part of a long sampling program; all stations are in the Scituate Reservoir drainage area. Waterquality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2010. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 39 cubic feet per second (ft3/s) to the reservoir during WY 2010. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.7 to 27 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,500,000 kilograms (kg) of sodium and 2,500,000 kg of chloride to the Scituate Reservoir during WY 2010; sodium and chloride yields for the tributaries ranged from 11,000 to 66,000 kilograms per square mile (kg/mi2) and from 18,000 to 110,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the PWSB, the median of the median chloride concentrations was 20.2 milligrams per liter (mg/L), median nitrite concentration was 0.002 mg/L as nitrogen (N), median nitrate concentration was 0.01 mg/L as N, median orthophosphate concentration was 0.06 mg/L as phosphorus, and median concentrations of total coliform and Escherichia coli (E. coli) bacteria were 93 and 16 colony forming units per 100 milliliters (CFU/100mL), respectively. The medians of the median daily loads (and yields) of chloride, nitrite, nitrate, orthophosphate, and total coliform and E. coli bacteria were 170 kg/d (73 kg/d/mi2), 11 g/d (5.3 g/d/mi2), 74 g/d (39 g/d/mi2), 340 g/d (170 g/d/mi2), 5,700 million colony forming units per day (CFUx106/d) (2,300 CFUx106/d/mi2), and 620 CFUx106/d (440 CFUx106/d/mi2), respectively.

  1. Effects of streamflows on stream-channel morphology in the eastern Niobrara National Scenic River, Nebraska, 1988–2010

    USGS Publications Warehouse

    Schaepe, Nathaniel J.; Alexander, Jason S.; Folz-Donahue, Kiernan

    2016-03-09

    Changes in channel metrics generally corresponded to changes in streamflow conditions, but other than changes in incipient flood-plain area, these changes were small and were not measured in all three segments simultaneously. Increases in total channel width (except in segment 1) and incipient flood-plain area between 1993 and 1999 corresponded to increases in streamflow. Channel narrowing (except in segment 1) between 1999 and 2003 corresponded to lower summer streamflows and extended durations of very low summer streamflow. Although the pattern of low summer streamflow and extended durations of very low summer streamflow continued during the 2004–6 period and at the beginning of the 2007–10 period, no further narrowing was measured. Consistent tributary summer inflows help to explain the resistance of segments 2 and 3 to further narrowing. Because segment 1 is already much narrower than segments 2 and 3, its average current velocity is likely to be swifter and, therefore, competent to offset further effects of the processes that led to its narrowness.

  2. Regression equations for estimating flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-Year recurrence intervals in Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2004-01-01

    Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual maximum flows at the gaging station, and the other estimate from the regression equation?are weighted together based on the years of record at the gaging station and the equivalent years of record value determined from the regression. Weighted averages of flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are tabulated for the 70 streamflow-gaging stations used in the regression analysis. Generally, weighted averages give the most accurate estimate of flood flows at gaging stations. An evaluation of the Connecticut's streamflow-gaging network was performed to determine whether the spatial coverage and range of geographic and hydrologic conditions are adequately represented for transferring flood characteristics from gaged to ungaged sites. Fifty-one of 54 stations in the current (2004) network support one or more flood needs of federal, state, and local agencies. Twenty-five of 54 stations in the current network are considered high-priority stations by the U.S. Geological Survey because of their contribution to the longterm understanding of floods, and their application for regionalflood analysis. Enhancements to the network to improve overall effectiveness for regionalization can be made by increasing the spatial coverage of gaging stations, establishing stations in regions of the state that are not well-represented, and adding stations in basins with drainage area sizes not represented. Additionally, the usefulness of the network for characterizing floods can be maintained and improved by continuing operation at the current stations because flood flows can be more accurately estimated at stations with continuous, long-term record.

  3. Hydrologic data, Colorado River and major tributaries, Glen Canyon Dam to Diamond Creek, Arizona, water years 1990-95

    USGS Publications Warehouse

    Rote, John J.; Flynn, Marilyn E.; Bills, D.J.

    1997-01-01

    The U.S. Geological Survey collected hydrologic data at 12 continuous-record stations along the Colorado River and its major tributaries between Glen Canyon Dam and Diamond Creek. The data were collected from October 1989 through September 1995 as part of the Bureau of Reclamation's Glen Canyon Environmental Studies. The data include daily values for streamflow discharge, suspended-sediment discharge, temperature, specific conductance, pH, and dissolved-oxygen concentrations, and discrete values for physical properties and chemical constituents of water. All data are presented in tabular form.

  4. Surface waters of the Washita River basin in Oklahoma--magnitude, distribution, and quality of streamflow

    USGS Publications Warehouse

    Laine, L.L.

    1958-01-01

    Analysis of streamflow data shows that water supply in the Washita River basin is variable, ranging from substantial amounts and almost continuous flow in the Washita River in the lower end of the basin to somewhat limited and intermittent flow in the upper part of the basin. The total yield of the basin averages 1,557,000 acre-ft per year, of which somewhat less than 1.3 percent is contributed by headwater areas in Texas. The surface waters are generally of acceptable quality for drinking purposes, excellent for irrigation uses, and suitable for many industrial purposes. In Oklahoma the high amounts of runoff tend to occur in the spring months. High runoff may occur during any month in the year but, in general, the available streamflow is relatively small in the summer. Most tributary streams have little sustained base flow and many are dry at times each year. Because of the high variability in flow, development of storage will be necessary to attain maximum utilization of the available water supplies. This report gives the average discharge at most gaging stations and at several additional sites for the 16-year period October 1938 to September 1954, used as a standard period in this report. Data are also shown on water available at several gaging stations and other sites for a given percentage of the time during the 16-year standard period. For several gaging stations data are given on minimum discharges for periods of various length during the most critical periods of record. For all gaging stations a summary of available basic data on streamflow is presented on a monthly annual basis. For other sites at which discharge measurements have been made, a tabulation of observed discharge is given. (available as photostat copy only)

  5. Annual exceedance probabilities and trends for peak streamflows and annual runoff volumes for the Central United States during the 2011 floods

    USGS Publications Warehouse

    Driscoll, Daniel G.; Southard, Rodney E.; Koenig, Todd A.; Bender, David A.; Holmes, Robert R.

    2014-01-01

    During 2011, excess precipitation resulted in widespread flooding in the Central United States with 33 fatalities and approximately $4.2 billion in damages reported in the Red River of the North, Souris, and Mississippi River Basins. At different times from late February 2011 through September 2011, various rivers in these basins had major flooding, with some locations having multiple rounds of flooding. This report provides broadscale characterizations of annual exceedance probabilities and trends for peak streamflows and annual runoff volumes for selected streamgages in the Central United States in areas affected by 2011 flooding. Annual exceedance probabilities (AEPs) were analyzed for 321 streamgages for annual peak streamflow and for 211 streamgages for annual runoff volume. Some of the most exceptional flooding was for the Souris River Basin, where of 11 streamgages considered for AEP analysis of peak streamflow, flood peaks in 2011 exceeded the next largest peak of record by at least double for 6 of the longest-term streamgages (75 to 108 years of peak-flow record). AEPs for these six streamgages were less than 1 percent. AEPs for 2011 runoff volumes were less than 1 percent for all seven Souris River streamgages considered for AEP analysis. Magnitudes of 2011 runoff volumes exceeded previous maxima by double or more for 5 of the 7 streamgages (record lengths 52 to 108 years). For the Red River of the North Basin, AEPs for 2011 runoff volumes were exceptional, with two streamgages having AEPs less than 0.2 percent, five streamgages in the range of 0.2 to 1 percent, and four streamgages in the range of 1 to 2 percent. Magnitudes of 2011 runoff volumes also were exceptional, with all 11 of the aforementioned streamgages eclipsing previous long-term (62 to 110 years) annual maxima by about one-third or more. AEPs for peak streamflows in the upper Mississippi River Basin were not exceptional, with no AEPs less than 1 percent. AEPs for annual runoff volumes indicated less frequent recurrence, with 11 streamgages having AEPs of less than 1 percent. The 2011 runoff volume for streamgage 05331000 (at Saint Paul, Minnesota) exceeded the previous record (112 years of record) by about 24 percent. An especially newsworthy feature was prolonged flooding along the main stem of the Missouri River downstream from Garrison Dam (located upstream from Bismarck, North Dakota) and extending downstream throughout the length of the Missouri River. The 2011 runoff volume for streamgage 06342500 (at Bismarck) exceeded the previous (1975) maximum by about 50 percent, with an associated AEP in the range of 0.2 to 1 percent. In the Ohio River Basin, peak-streamflow AEPs were less than 2 percent for only four streamgages. Runoff-volume AEPs were less than 2 percent for only three streamgages. Along the lower Mississippi River, the largest streamflow peak in 91 years was recorded for streamgage 07289000 (at Vicksburg, Mississippi), with an associated AEP of 0.8 percent. Trends in peak streamflow were analyzed for 98 streamgages, with 67 streamgages having upward trends, 31 with downward trends, and zero with no trend. Trends in annual runoff volume were analyzed for 182 streamgages, with 145 streamgages having upward trends, 36 with downward trends, and 1 with no trend. The trend analyses used descriptive methods that did not include measures of statistical significance. A dichotomous spatial distribution in trends was apparent for both peak streamflow and annual runoff volume, with a small number of streamgages in the northwestern part of the study area having downward trends and most streamgages in the eastern part of the study area having upward trends.

  6. Hydrologic data for the Great and Denbow heaths in eastern Maine, October 1980 through September 1981

    USGS Publications Warehouse

    Nichols, Wallace J.; Smath, J.A.; Adamik, J.T.

    1983-01-01

    Hydrologic data collected on the Great and Denbow Heaths, Maine, include precipitation, pan evaporation, air temperatures, streamflow, groundwater levels, and water quality constituents. These data were collected for a peat bog hydrology study conducted in cooperation with the Maine Geological Survey. The data network consisted of climate information from three rain gages, an evaporation pan, and two maximum-minimum thermometers; surface water information from two continuous gaging stations and 19 partial record sites; groundwater information from an observation well equipped with a continuous recorder and 106 piezometers; and water quality information from 13 wells and seven surface water sites. Water quality constituents include: field determinations of pH, specific conductance, and temperature, and laboratory determinations of common inorganic cations and anions, trace elements, and selected organic compounds. Methods used for the collection and analyses of data included standard Survey techniques modified for the unique hydrologic environment of the study area. (Author 's abstract)

  7. Synthesis of natural flows at selected sites in the upper Missouri River basin, Montana, 1928-89

    USGS Publications Warehouse

    Cary, L.E.; Parrett, Charles

    1996-01-01

    Natural monthly streamflows were synthesized for the years 1928-89 for 43 sites in the upper Missouri River Basin upstream from Fort Peck Lake in Montana. The sites are represented as nodes in a streamflow accounting model being developed by the Bureau of Reclamation. Recorded and historical flows at most sites have been affected by human activities including reservoir storage, diversions for irrigation, and municipal use. Natural flows at the sites were synthesized by eliminating the effects of these activities. Recorded data at some sites do not include the entire study period. The missing flows at these sites were estimated using a statistical procedure. The methods of synthesis varied, depending on upstream activities and information available. Recorded flows were transferred to nodes that did not have streamflow-gaging stations from the nearest station with a sufficient length of record. The flows at one node were computed as the sum of flows from three upstream tributaries. Monthly changes in reservoir storage were computed from monthend contents. The changes in storage were corrected for the effects of evaporation and precipitation using pan-evaporation and precipitation data from climate stations. Irrigation depletions and consumptive use by the three largest municipalities were computed. Synthesized natural flow at most nodes was computed by adding algebraically the upstream depletions and changes in reservoir storage to recorded or historical flow at the nodes.

  8. Intensified pluvial conditions during the twentieth century in the inland Heihe River Basin in arid northwestern China over the past millennium

    NASA Astrophysics Data System (ADS)

    Qin, Chun; Yang, Bao; Burchardt, Iris; Hu, Xiaoli; Kang, Xingcheng

    2010-06-01

    Past streamflow variability is of special significance in the inland river basin, i.e., the Heihe River Basin in arid northwestern China, where water shortage is a serious environmental and social problem. However, the current knowledge of issues related to regional water resources management and long-term planning and management is limited by the lack of long-term hydro-meteorological records. Here we present a 1009-year annual streamflow (August-July) reconstruction for the upstream of the Heihe River in the arid northwestern China based on a well-replicated Qilian juniper ( Sabina przewalskii Kom.) ring-width chronology. This reconstruction accounts for 46.9% of the observed instrumental streamflow variance during the period 1958-2006. Considerable multidecadal to centennial flow variations below and above the long-term average are displayed in the millennium streamflow reconstruction. These periods 1012-1053, 1104-1212, 1259-1352, 1442-1499, 1593-1739 and 1789-1884 are noteworthy for the persistence of low-level river flow, and for the fact that these low streamflow events are not found in the observed instrumental hydrological record during the recent 50 years. The 20th century witnessed intensified pluvial conditions in the upstream of the Heihe River in the arid northwestern China in the context of the last millennium. Comparison with other long-term hydrological reconstructions indicates that the intensification of the hydrological cycle in the twentieth century from different regions could be attributable to regional to large-scale temperature increase during this time. Furthermore, from a practical perspective, the streamflow reconstruction can serve as a robust database for the government to work out more scientific and more reasonable water allocation alternatives for the Heihe River Basin in arid northwestern China.

  9. Monthly streamflow forecasting using continuous wavelet and multi-gene genetic programming combination

    NASA Astrophysics Data System (ADS)

    Hadi, Sinan Jasim; Tombul, Mustafa

    2018-06-01

    Streamflow is an essential component of the hydrologic cycle in the regional and global scale and the main source of fresh water supply. It is highly associated with natural disasters, such as droughts and floods. Therefore, accurate streamflow forecasting is essential. Forecasting streamflow in general and monthly streamflow in particular is a complex process that cannot be handled by data-driven models (DDMs) only and requires pre-processing. Wavelet transformation is a pre-processing technique; however, application of continuous wavelet transformation (CWT) produces many scales that cause deterioration in the performance of any DDM because of the high number of redundant variables. This study proposes multigene genetic programming (MGGP) as a selection tool. After the CWT analysis, it selects important scales to be imposed into the artificial neural network (ANN). A basin located in the southeast of Turkey is selected as case study to prove the forecasting ability of the proposed model. One month ahead downstream flow is used as output, and downstream flow, upstream, rainfall, temperature, and potential evapotranspiration with associated lags are used as inputs. Before modeling, wavelet coherence transformation (WCT) analysis was conducted to analyze the relationship between variables in the time-frequency domain. Several combinations were developed to investigate the effect of the variables on streamflow forecasting. The results indicated a high localized correlation between the streamflow and other variables, especially the upstream. In the models of the standalone layout where the data were entered to ANN and MGGP without CWT, the performance is found poor. In the best-scale layout, where the best scale of the CWT identified as the highest correlated scale is chosen and enters to ANN and MGGP, the performance increased slightly. Using the proposed model, the performance improved dramatically particularly in forecasting the peak values because of the inclusion of several scales in which seasonality and irregularity can be captured. Using hydrological and meteorological variables also improved the ability to forecast the streamflow.

  10. Trends in precipitation, streamflow, reservoir pool elevations, and reservoir releases in Arkansas and selected sites in Louisiana, Missouri, and Oklahoma, 1951–2011

    USGS Publications Warehouse

    Wagner, Daniel M.; Krieger, Joshua D.; Merriman, Katherine R.

    2014-01-01

    The U.S. Geological Survey (USGS) and the U.S. Army Corps of Engineers (USACE) conducted a statistical analysis of trends in precipitation, streamflow, reservoir pool elevations, and reservoir releases in Arkansas and selected sites in Louisiana, Missouri, and Oklahoma for the period 1951–2011. The Mann-Kendall test was used to test for trends in annual and seasonal precipitation, annual and seasonal streamflows of 42 continuous-record USGS streamflow-gaging stations, annual pool elevations and releases from 16 USACE reservoirs, and annual releases from 11 dams on the Arkansas River. A statistically significant (p≤0.10) upward trend was observed in annual precipitation for the State, with a Sen slope of approximately 0.10 inch per year. Autumn and winter were the only seasons that had statistically significant trends in precipitation. Five of six physiographic sections and six of seven 4-digit hydrologic unit code (HUC) regions in Arkansas had statistically significant upward trends in autumn precipitation, with Sen slopes of approximately 0.06 to 0.10 inch per year. Sixteen sites had statistically significant upward trends in the annual mean daily streamflow and were located on streams that drained regions with statistically significant upward trends in annual precipitation. Expected annual rates of change corresponding to statistically significant trends in annual mean daily streamflows, which ranged from 0.32 to 0.88 percent, were greater than those corresponding to regions with statistically significant upward trends in annual precipitation, which ranged from 0.19 to 0.28 percent, suggesting that the observed trends in regional annual precipitation do not fully account for the observed trends in annual mean daily streamflows. Trends in annual maximum daily streamflows were similar to trends in the annual mean daily streamflows but were only statistically significant at seven sites. There were more statistically significant trends (28 of 42 sites) in the annual minimum daily streamflows than in the annual means or maximums. Statistically significant trends in the annual minimum daily streamflows were upward at 18 sites and downward at 10 sites. Despite autumn being the only season that had statistically significant upward trends in seasonal precipitation, statistically significant upward trends in seasonal mean streamflows occurred in every season but spring. Trends in the annual mean, maximum, and minimum daily pool elevations of USACE reservoirs were consistent between metrics for reservoirs in the White, Arkansas, and Ouachita River watersheds, while trends varied between metrics at DeQueen Lake, Millwood Lake, and Lake Chicot. Most of the statistically significant trends in pool elevation metrics were upward and gradual—Sen slopes were less than 0.37 foot per year—and were likely the result of changes in reservoir regulation plans. Trends in the annual mean and maximum daily releases from USACE reservoirs were generally upward in all HUC regions. There were few statistically significant trends in the annual mean daily releases because the reservoirs are operated to maintain a regulation stage at a downstream site according to guidelines set forth in the regulation plans of the reservoirs. The annual number of low-flow days was both increasing and decreasing for reservoirs in northern Arkansas and southern Missouri and generally increasing for reservoirs in southern Arkansas.

  11. Linear genetic programming application for successive-station monthly streamflow prediction

    NASA Astrophysics Data System (ADS)

    Danandeh Mehr, Ali; Kahya, Ercan; Yerdelen, Cahit

    2014-09-01

    In recent decades, artificial intelligence (AI) techniques have been pronounced as a branch of computer science to model wide range of hydrological phenomena. A number of researches have been still comparing these techniques in order to find more effective approaches in terms of accuracy and applicability. In this study, we examined the ability of linear genetic programming (LGP) technique to model successive-station monthly streamflow process, as an applied alternative for streamflow prediction. A comparative efficiency study between LGP and three different artificial neural network algorithms, namely feed forward back propagation (FFBP), generalized regression neural networks (GRNN), and radial basis function (RBF), has also been presented in this study. For this aim, firstly, we put forward six different successive-station monthly streamflow prediction scenarios subjected to training by LGP and FFBP using the field data recorded at two gauging stations on Çoruh River, Turkey. Based on Nash-Sutcliffe and root mean squared error measures, we then compared the efficiency of these techniques and selected the best prediction scenario. Eventually, GRNN and RBF algorithms were utilized to restructure the selected scenario and to compare with corresponding FFBP and LGP. Our results indicated the promising role of LGP for successive-station monthly streamflow prediction providing more accurate results than those of all the ANN algorithms. We found an explicit LGP-based expression evolved by only the basic arithmetic functions as the best prediction model for the river, which uses the records of the both target and upstream stations.

  12. Effects of sediment transport on survival of salmonid embryos in a natural stream: A simulation approach

    Treesearch

    Thomas E. Lisle; Jack Lewis

    1992-01-01

    A model is presented that simulates the effects of streamflow and sediment transport on survival of salmonid embryos incubating in spawning gravels in a natural channel. Components of the model include a 6-yr streamflow record, an empirical bed load-transport function, a relation between transport and infiltration of sandy bedload into a gravel bed, effects of fine-...

  13. Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites

    Treesearch

    Julia A. Jones; Irena F. Creed; Kendra L. Hatcher; Robert J. Warren; Mary Beth Adams; Melinda H. Benson; Emery Boose; Warren A. Brown; John L. Campbell; Alan Covich; David W. Clow; Clifford N. Dahm; Kelly Elder; Chelcy R. Ford; Nancy B. Grimm; Donald L Henshaw; Kelli L. Larson; Evan S. Miles; Kathleen M. Miles; Stephen D. Sebestyen; Adam T. Spargo; Asa B. Stone; James M. Vose; Mark W. Williams

    2012-01-01

    Analyses of long-term records at 35 headwater basins in the United States and Canada indicate that climate change effects on streamflow are not as clear as might be expected, perhaps because of ecosystem processes and human influences. Evapotranspiration was higher than was predicted by temperature in water-surplus ecosystems and lower than was predicted in water-...

  14. Seeing the climate through the trees: observing climate and forestry impacts on streamflow using a 60-year record

    Treesearch

    T. P. Burt; N. J. K. Howden; J. J. McDonnell; J. A. Jones; G. R. Hancock

    2014-01-01

    Paired watershed experiments involving the removal or manipulation of forest cover in one of the watersheds have been conducted for more than a century to quantify the impact of forestry operations on streamflow. Because climate variability is expected to be large, forestry treatment effects would be undetectable without the treatment–control comparison. New...

  15. Spatiotemporal patterns of precipitation inferred from streamflow observations across the Sierra Nevada mountain range

    NASA Astrophysics Data System (ADS)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Newman, Andrew J.; Hughes, Mimi; McGurk, Bruce; Lundquist, Jessica D.

    2018-01-01

    Given uncertainty in precipitation gauge-based gridded datasets over complex terrain, we use multiple streamflow observations as an additional source of information about precipitation, in order to identify spatial and temporal differences between a gridded precipitation dataset and precipitation inferred from streamflow. We test whether gridded datasets capture across-crest and regional spatial patterns of variability, as well as year-to-year variability and trends in precipitation, in comparison to precipitation inferred from streamflow. We use a Bayesian model calibration routine with multiple lumped hydrologic model structures to infer the most likely basin-mean, water-year total precipitation for 56 basins with long-term (>30 year) streamflow records in the Sierra Nevada mountain range of California. We compare basin-mean precipitation derived from this approach with basin-mean precipitation from a precipitation gauge-based, 1/16° gridded dataset that has been used to simulate and evaluate trends in Western United States streamflow and snowpack over the 20th century. We find that the long-term average spatial patterns differ: in particular, there is less precipitation in the gridded dataset in higher-elevation basins whose aspect faces prevailing cool-season winds, as compared to precipitation inferred from streamflow. In a few years and basins, there is less gridded precipitation than there is observed streamflow. Lower-elevation, southern, and east-of-crest basins show better agreement between gridded and inferred precipitation. Implied actual evapotranspiration (calculated as precipitation minus streamflow) then also varies between the streamflow-based estimates and the gridded dataset. Absolute uncertainty in precipitation inferred from streamflow is substantial, but the signal of basin-to-basin and year-to-year differences are likely more robust. The findings suggest that considering streamflow when spatially distributing precipitation in complex terrain may improve its representation, particularly for basins whose orientations (e.g., windward-facing) are favored for orographic precipitation enhancement.

  16. The origin and evolution of safe-yield policies in the Kansas groundwater management districts

    USGS Publications Warehouse

    Sophocleous, M.

    2000-01-01

    The management of groundwater resources in Kansas continues to evolve. Declines in the High Plains aquifer led to the establishment of groundwater management districts in the mid-1970s and reduced streamflows prompted the enactment of minimum desirable streamflow standards in the mid-1980s. Nonetheless, groundwater levels and streamflows continued to decline, although at reduced rates compared to premid-1980s rates. As a result, "safe-yield" policies were revised to take into account natural groundwater discharge in the form of stream baseflow. These policies, although a step in the right direction, are deficient in several ways. In addition to the need for more accurate recharge data, pumping-induced streamflow depletion, natural stream losses, and groundwater evapotranspiration need to be accounted for in the revised safe-yield policies. Furthermore, the choice of the 90% flow-duration statistic as a measure of baseflow needs to be reevaluated, as it significantly underestimates mean baseflow estimated from baseflow separation computer programs; moreover, baseflow estimation needs to be refined and validated. ?? 2000 International Association for Mathematical Geology.

  17. The U.S. Geological Survey streamflow and observation-well network in Massachusetts and Rhode Island

    USGS Publications Warehouse

    Zarriello, Phillip J.; Socolow, Roy S.

    2003-01-01

    The U.S. Geological Survey began systematic streamflow monitoring in Massachusetts nearly 100 years ago (1904) on the Connecticut River at Montague City. Since that time, hydrologic data collection has evolved into a monitoring network of 103 streamgage stations and 200 ground-water observation wells in Massachusetts and Rhode Island (2000 water year). Data from this network provide critical information for a variety of purposes to Federal, State, and local government agencies, engineering consultants, and the public. The uses of this information have been enhanced by the fact that about 70 percent of the streamgage stations and a small but increasing number of observation wells in Massachusetts and Rhode Island have been equipped with digital collection platforms that transmit data by satellite every 4 hours. Twenty-one of the telemetered streamgage stations are also equipped with precipitation recorders. The near real-time data provided by these stations, along with historical data collected at all stations, are available over the Internet at no charge. The monitoring network operated during the 2000 water year was summarized and evaluated with respect to spatial distribution, the current uses of the data, and the physical characteristics associated with the monitoring sites. This report provides maps that show locations and summary tables for active continuous record streamgage stations, discontinued streamgage stations, and observation wells in each of the 28 major basins identified by the Massachusetts Executive Office of Environmental Affairs and five of the major Rhode Island basins. Metrics of record length, regulation, physiographic region and physical and land-cover characteristics indicate that the streamflow-monitoring network represents a wide range of drainage-area sizes, physiographic regions, and basin characteristics. Most streamgage stations are affected by regulation, which provides information for specific water-management purposes, but diminishes the usefulness of these stations for many types of hydrologic analysis. Only 26 of the 103 active streamgage stations operated by the U.S. Geological Survey in Massachusetts and Rhode Island are unaffected by regulation; of these, 17 are in Massachusetts and 9 are in Rhode Island. The paucity of unregulated stations is particularly evident when the stations are grouped into five drainage-area size classes; the fact that about half of these size classes have no representative unregulated stations underscores the importance of establishing and maintaining stations that are unaffected by regulation. The observation-well network comprises 200 wells; 80 percent of these wells are finished in sand and gravel, 19 percent are finished in till, and 1 percent are finished in bedrock. About 6 percent of the wells are equipped with continuous data recorders, and about half of these are capable of transmitting data in near real time.

  18. Linear Modeling and Evaluation of Controls on Flow Response in Western Post-Fire Watersheds

    NASA Astrophysics Data System (ADS)

    Saxe, S.; Hogue, T. S.; Hay, L.

    2015-12-01

    This research investigates the impact of wildfires on watershed flow regimes throughout the western United States, specifically focusing on evaluation of fire events within specified subregions and determination of the impact of climate and geophysical variables in post-fire flow response. Fire events were collected through federal and state-level databases and streamflow data were collected from U.S. Geological Survey stream gages. 263 watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. For each watershed, percent changes in runoff ratio (RO), annual seven day low-flows (7Q2) and annual seven day high-flows (7Q10) were calculated from pre- to post-fire. Numerous independent variables were identified for each watershed and fire event, including topographic, land cover, climate, burn severity, and soils data. The national watersheds were divided into five regions through K-clustering and a lasso linear regression model, applying the Leave-One-Out calibration method, was calculated for each region. Nash-Sutcliffe Efficiency (NSE) was used to determine the accuracy of the resulting models. The regions encompassing the United States along and west of the Rocky Mountains, excluding the coastal watersheds, produced the most accurate linear models. The Pacific coast region models produced poor and inconsistent results, indicating that the regions need to be further subdivided. Presently, RO and HF response variables appear to be more easily modeled than LF. Results of linear regression modeling showed varying importance of watershed and fire event variables, with conflicting correlation between land cover types and soil types by region. The addition of further independent variables and constriction of current variables based on correlation indicators is ongoing and should allow for more accurate linear regression modeling.

  19. Cost-effectiveness of the Federal stream-gaging program in Virginia

    USGS Publications Warehouse

    Carpenter, D.H.

    1985-01-01

    Data uses and funding sources were identified for the 77 continuous stream gages currently being operated in Virginia by the U.S. Geological Survey with a budget of $446,000. Two stream gages were identified as not being used sufficiently to warrant continuing their operation. Operation of these stations should be considered for discontinuation. Data collected at two other stations were identified as having uses primarily related to short-term studies; these stations should also be considered for discontinuation at the end of the data collection phases of the studies. The remaining 73 stations should be kept in the program for the foreseeable future. The current policy for operation of the 77-station program requires a budget of $446,000/yr. The average standard error of estimation of streamflow records is 10.1%. It was shown that this overall level of accuracy at the 77 sites could be maintained with a budget of $430,500 if resources were redistributed among the gages. A minimum budget of $428,500 is required to operate the 77-gage program; a smaller budget would not permit proper service and maintenance of the gages and recorders. At the minimum budget, with optimized operation, the average standard error would be 10.4%. The maximum budget analyzed was $650,000, which resulted in an average standard error of 5.5%. The study indicates that a major component of error is caused by lost or missing data. If perfect equipment were available, the standard error for the current program and budget could be reduced to 7.6%. This also can be interpreted to mean that the streamflow data have a standard error of this magnitude during times when the equipment is operating properly. (Author 's abstract)

  20. Estimating Selected Streamflow Statistics Representative of 1930-2002 in West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.

    2008-01-01

    Regional equations and procedures were developed for estimating 1-, 3-, 7-, 14-, and 30-day 2-year; 1-, 3-, 7-, 14-, and 30-day 5-year; and 1-, 3-, 7-, 14-, and 30-day 10-year hydrologically based low-flow frequency values for unregulated streams in West Virginia. Regional equations and procedures also were developed for estimating the 1-day, 3-year and 4-day, 3-year biologically based low-flow frequency values; the U.S. Environmental Protection Agency harmonic-mean flows; and the 10-, 25-, 50-, 75-, and 90-percent flow-duration values. Regional equations were developed using ordinary least-squares regression using statistics from 117 U.S. Geological Survey continuous streamflow-gaging stations as dependent variables and basin characteristics as independent variables. Equations for three regions in West Virginia - North, South-Central, and Eastern Panhandle - were determined. Drainage area, precipitation, and longitude of the basin centroid are significant independent variables in one or more of the equations. Estimating procedures are presented for determining statistics at a gaging station, a partial-record station, and an ungaged location. Examples of some estimating procedures are presented.

  1. Montana Water Resources Data - 2003, Volume 2. Yellowstone and Upper Columbia River Basins and Ground-Water Levels

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2004-01-01

    Water resources data for Montana for the 2003 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 114 streamflow-gaging stations; stage or content records for 4 lakes and large reservoirs and content for 26 smaller reservoirs; water-quality records for 76 streamflow stations (11 ungaged), and 3 lakes; water-level records for 53 observation wells; and precipitation and water-quality records for 2 atmospheric-deposition stations. Additional water year 2003 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  2. Water resources data, Montana, water year 2005: Volume 2. Yellowstone and upper Columbia River basins and ground-water levels

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2006-01-01

    Water resources data for Montana for the 2005 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 120 streamflow-gaging stations; stage or content records for 22 lakes and reservoirs; water-quality records for 86 streamflow stations (32 ungaged), and 25 ground-water wells; water-level records for 25 observation wells; and precipitation records for 2 atmospheric-deposition stations. Additional water year 2005 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  3. Water resources data, Montana, water year 2005: Volume 2. Yellowstone and upper Columbia River basins and ground-water levels

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2005-01-01

    Water resources data for Montana for the 2004 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 119 streamflow-gaging stations; stage or content records for 21 lakes and reservoirs; and water-quality records for 69 streamflow stations (17 ungaged), and 3 lake sites; water-level records for 51 observation wells; and precipitation and water-quality records for 2 atmospheric-deposition stations. Additional water year 2004 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  4. Water resources data for California, water year 1975; Volume 1: Colorado River basin, southern Great Basin from Mexican border to Mono Lake basin, and Pacific Slope basins from Tijuana River to Santa Maria River

    USGS Publications Warehouse

    ,

    1977-01-01

    Water-resources data for the 1975 water year for California consist of records of streamflow and contents of reservoirs at gaging stations, partial-record stations, and miscellaneous sites; records of water quality including the physical, chemical, and biological characteristics of surface and ground water; and records of water levels in selected observation wells. Records for a few pertinent streamflow and water-quality stations in bordering States are also included. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of Lee R. Peterson, district chief; Winchell Smith, assistant district chief for hydrologic data; and Leonard N. Jorgensen, chief of the basic data section. These data represent that part of the National Water Data System collected by the Geological Survey and cooperating local, State, and Federal agencies in California.

  5. Climate, water use, and land surface transformation in an irrigation intensive watershed - streamflow responses from 1950 through 2010

    USGS Publications Warehouse

    Dale, Joseph; Zou, Chris B.; Andrews, William J.; Long, James M.; Liang, Ye; Qiao, Lei

    2015-01-01

    Climatic variability and land surface change have a wide range of effects on streamflow and are often difficult to separate. We analyzed long-term records of climate, land use and land cover, and re-constructed the water budget based on precipitation, groundwater levels, and water use from 1950 through 2010 in the Cimarron–Skeleton watershed and a portion of the Cimarron–Eagle Chief watershed in Oklahoma, an irrigation-intensive agricultural watershed in the Southern Great Plains, USA. Our results show that intensive irrigation through alluvial aquifer withdrawal modifies climatic feedback and alters streamflow response to precipitation. Increase in consumptive water use was associated with decreases in annual streamflow, while returning croplands to non-irrigated grasslands was associated with increases in streamflow. Along with groundwater withdrawal, anthropogenic-induced factors and activities contributed nearly half to the observed variability of annual streamflow. Streamflow was more responsive to precipitation during the period of intensive irrigation between 1965 and 1984 than the period of relatively lower water use between 1985 and 2010. The Cimarron River is transitioning from a historically flashy river to one that is more stable with a lower frequency of both high and low flow pulses, a higher baseflow, and an increased median flow due in part to the return of cropland to grassland. These results demonstrated the interrelationship among climate, land use, groundwater withdrawal and streamflow regime and the potential to design agricultural production systems and adjust irrigation to mitigate impact of increasing climate variability on streamflow in irrigation intensive agricultural watershed.

  6. Peak flow regression equations For small, ungaged streams in Maine: Comparing map-based to field-based variables

    USGS Publications Warehouse

    Lombard, Pamela J.; Hodgkins, Glenn A.

    2015-01-01

    Regression equations to estimate peak streamflows with 1- to 500-year recurrence intervals (annual exceedance probabilities from 99 to 0.2 percent, respectively) were developed for small, ungaged streams in Maine. Equations presented here are the best available equations for estimating peak flows at ungaged basins in Maine with drainage areas from 0.3 to 12 square miles (mi2). Previously developed equations continue to be the best available equations for estimating peak flows for basin areas greater than 12 mi2. New equations presented here are based on streamflow records at 40 U.S. Geological Survey streamgages with a minimum of 10 years of recorded peak flows between 1963 and 2012. Ordinary least-squares regression techniques were used to determine the best explanatory variables for the regression equations. Traditional map-based explanatory variables were compared to variables requiring field measurements. Two field-based variables—culvert rust lines and bankfull channel widths—either were not commonly found or did not explain enough of the variability in the peak flows to warrant inclusion in the equations. The best explanatory variables were drainage area and percent basin wetlands; values for these variables were determined with a geographic information system. Generalized least-squares regression was used with these two variables to determine the equation coefficients and estimates of accuracy for the final equations.

  7. Streamflow characteristics of streams in southeastern Afghanistan

    USGS Publications Warehouse

    Vining, Kevin C.

    2010-01-01

    Statistical summaries of streamflow data for all historical streamgaging stations that have available data in the southeastern Afghanistan provinces of Ghazni, Khost, Logar, Paktya, and Wardak, and a portion of Kabul Province are presented in this report. The summaries for each streamgaging station include a station desciption, table of statistics of monthly and annual mean discharges, table of monthly and annual flow duration, table of probability of occurrence of annual high discharges, table of probability of occurrence of annual low discharges, table of annual peak discharge and corresponding gage height for the period of record, and table of monthly and annual mean discharges for the period of record.

  8. Improving estimates of streamflow characteristics using LANDSAT-1 (ERTS-1) imagery. [Delmarva Peninsula

    NASA Technical Reports Server (NTRS)

    Hollyday, E. F. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Streamflow characteristics in the Delmarva Peninsula derived from the records of daily discharge of 20 gaged basins are representative of the full range in flow conditions and include all of those commonly used for design or planning purposes. They include annual flood peaks with recurrence intervals of 2, 5, 10, 25, and 50 years, mean annual discharge, standard deviation of the mean annual discharge, mean monthly discharges, standard deviation of the mean monthly discharges, low-flow characteristics, flood volume characteristics, and the discharge equalled or exceeded 50 percent of the time. Streamflow and basin characteristics were related by a technique of multiple regression using a digital computer. A control group of equations was computed using basin characteristics derived from maps and climatological records. An experimental group of equations was computed using basin characteristics derived from LANDSAT imagery as well as from maps and climatological records. Based on a reduction in standard error of estimate equal to or greater than 10 percent, the equations for 12 stream flow characteristics were substantially improved by adding to the analyses basin characteristics derived from LANDSAT imagery.

  9. Temporal Differences in the Hydrologic Regime of the Lower Platte River, Nebraska, 1895-2006

    USGS Publications Warehouse

    Ginting, Daniel; Zelt, Ronald B.; Linard, Joshua I.

    2008-01-01

    In cooperation with the Lower Platte South Natural Resources District for a collaborative study of the cumulative effects of water and channel management practices on stream and riparian ecology, the U.S. Geological Survey (USGS) compiled, analyzed, and summarized hydrologic information from long-term gaging stations on the lower Platte River to determine any significant temporal differences among six discrete periods during 1895-2006 and to interpret any significant changes in relation to changes in climatic conditions or other factors. A subset of 171 examined hydrologic indices (HIs) were selected for use as indices that (1) included most of the variance in the larger set of indices, (2) retained utility as indicators of the streamflow regime, and (3) provided information at spatial and temporal scale(s) that were most indicative of streamflow regime(s). The study included the most downstream station within the central Platte River segment that flowed to the confluence with the Loup River and all four active streamflow-gaging stations (2006) on the lower Platte River main stem extending from the confluence of the Loup River and Platte River to the confluence of the Platte River and Missouri River south of Omaha. The drainage areas of the five streamflow-gaging stations covered four (of eight) climate divisions in Nebraska?division 2 (north central), 3 (northeast), 5 (central), and 6 (east central). Historical climate data and daily streamflow records from 1895 through 2006 at the five streamflow-gaging stations were divided into six 11-water-year periods: 1895?1905, 1934?44, 1951?61, 1966?76, 1985?95, and 1996?2006. Analysis of monthly climate variables?precipitation and Palmer Hydrological Drought Index?was used to determine the degree of hydroclimatic association between streamflow and climate. Except for the 1895?1905 period, data gaps in the streamflow record were filled by data estimation techniques, and 171 hydrologic indices were calculated using the Hydroecological Integrity Assessment Process software developed by the U.S. Geological Survey. A subset of 27 nonredundant indices (of the 171 indices) was selected using principal component analysis. Indices that described monthly streamflow?mean, maximum, minimum, skewness, and coefficients of variation?also were used. Comparison of these selected indices allowed determination of temporal differences among the six 11-water-year periods for each gaging station. The lower Platte River basin was affected by moderate to severe drought conditions in the 1934?44 period. The widespread drought was preceded by mildly to moderately wet conditions in the 1895?1906 period, followed by incipient drought to incipiently wet conditions in the 1951?61 periods and mildly wet conditions in 1966?76 period, moderately wet conditions in the 1985?1995 period, and incipient drought to mildly wet conditions in the 1996?2006 period. Monthly streamflow of the Platte River from Duncan through Louisville, Nebraska, correlated significantly with the monthly Palmer Hydrological Drought Index. Temporal differences in median values of monthly-mean and monthly-maximum streamflow measured at Duncan, North Bend, and Ashland stations between the two moderately wet periods (1895?1905 and 1985?95) indicated that streamflow storage reservoirs and regulation some time after 1906 significantly reduced monthly streamflow magnitude and amplitude?the difference between the highest and lowest median values of monthly mean streamflow. Effects of storage reservoirs on the median values of monthly-minimum streamflow were less obvious. Temporal differences among the other five periods, from 1934 through 2006 when streamflow was affected by storage and regulation, indicated the predominant effects of contrasting climate conditions on median values of monthly mean, maximum, and minimum streamflow. Significant temporal differences in monthly streamflow values were evident mainly between the two periods of greatly

  10. Evaluation of Streamflow Gain-Loss Characteristics of Hubbard Creek, in the Vicinity of a Mine-Permit Area, Delta County, Colorado, 2007

    USGS Publications Warehouse

    Ruddy, Barbara C.; Williams, Cory A.

    2007-01-01

    In 2007, the U.S. Geological Survey, in cooperation with Bowie Mining Company, initiated a study to characterize the streamflow and streamflow gain-loss in a reach of Hubbard Creek in Delta County, Colorado, in the vicinity of a mine-permit area planned for future coal mining. Premining streamflow characteristics and streamflow gain-loss variation were determined so that pre- and postmining gain-loss characteristics could be compared. This report describes the methods used in this study and the results of two streamflow-measurement sets collected during low-flow conditions. Streamflow gain-loss measurements were collected using rhodamine WT and sodium bromide tracers at four sites spanning the mine-permit area on June 26-28, 2007. Streamflows were estimated and compared between four measurement sites within three stream subreaches of the study reach. Data from two streamflow-gaging stations on Hubbard Creek upstream and downstream from the mine-permit area were evaluated. Streamflows at the stations were continuous, and flow at the upstream station nearly always exceeded the streamflow at the downstream station. Furthermore, streamflow at both stations showed similar diurnal patterns with traveltime offsets. On June 26, streamflow from the gain-loss measurements was greater at site 1 (most upstream site) than at site 4 (most downstream site); on June 27, streamflow was greater at site 4 than at site 2; and on June 27, there was no difference in streamflow between sites 2 and 3. Data from streamflow-gaging stations 09132940 and 09132960 showed diurnal variations and overall decreasing streamflow over time. The data indicate a dynamic system, and streamflow can increase or decrease depending on hydrologic conditions. The streamflow within the study reach was greater than the streamflows at either the upstream or downstream stations. A second set of gain-loss measurements was collected at sites 2 and 4 on November 8-9, 2007. On November 8, streamflow was greater at site 4 than at site 2, and on the following day, November 9, streamflow was greater at site 2 than at site 4. Data collection on November 8 occurred while the streamflow was increasing due to contributions from stream ice melting throughout different parts of the basin. Data collection on November 9 occurred earlier in the day with less stream ice melting and more steady-state conditions, so the indication that streamflow decreased between sites 2 and 4 may be more accurate. Diurnal variations in streamflow are common at both the upper and the lower streamflow-gaging stations. The upper streamflow-gaging station shows a melt-freeze influence from tributaries to Hubbard Creek during the winter season. Downstream from the study reach, observed diurnal variation is likely due to evapotranspiration associated with dense flood-plain vegetation, which consumes water from the creek during the middle of the day. Varying diurnal patterns in streamflow, combined with possible variations in tributary inflows to Hubbard Creek in the study reach, probably account for the observed variations in streamflow at the tracer measurement sites. During both sampling periods in June and November 2007, conditions were less than ideal and not steady state. The June 27 sampling indicates that the streamflow was increasing between measurement sites 2 and 4, and the November 9 sampling indicates that the streamflow was decreasing between measurement sites 2 and 4. The data collected during the diurnal and day-to-day variations in streamflow indicated that the streamflow reach is dynamic and can be gaining, losing, or constant.

  11. Towards an Australian ensemble streamflow forecasting system for flood prediction and water management

    NASA Astrophysics Data System (ADS)

    Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.

    2016-12-01

    Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.

  12. Processes Controlling Baseflow and Climatic Warming Effects in Merced River, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Liu, F.; Conklin, M. H.; Shaw, G.; Bales, R. C.; Conrad, M. E.; Rice, R.

    2006-12-01

    Sources of streamflow in Merced River were determined using stable isotopes and chemical tracers in order to improve our understanding of hydrologic controls on streamflow and their relationship with climatic warming in the region. Samples were collected from streamflow, groundwater, and natural springs from 2003 to 2006. Both stable isotopes and specific conductivity in streamflow showed a strong seasonality, with lower values from April to July during the snowmelt season, higher values from August to October during dry season, and intermediate values from November to March during winter rainfall and snowfall. Two components controlling baseflow (streamflow from August to October) in the Upper Merced River were identified: shallow subsurface runoff from snowmelt infiltration and groundwater from fractured bedrock. Conductivity in baseflow increased rapidly with discharge, following a power law (R2 > 0.96, p < 0.05), and peaked in October, indicating that the contribution of shallow subsurface runoff to baseflow was significant but decreased rapidly from August to October. Baseflow appears to be very sensitive to the snowmelt timing and regime. From 1976 to 2005, during a period of increasing temperature in the region, streamflow tended to decrease significantly during October (p < 0.05) and increase during March (p < 0.05). However, total annual precipitation did not change significantly, indicating that the shift in baseflow discharge is a result of the early onset of snowmelt due to climatic warming. If climatic warming continues in the region, baseflow in the Sierra Nevada may continue decreasing and water supply may suffer increased stress during the late summer, high water-demand period.

  13. Statistical summaries of New Jersey streamflow records

    USGS Publications Warehouse

    Laskowski, Stanley L.

    1970-01-01

    In 1961 the U.S. Geological Survey prepared a report which was published by the State of New Jersey as Water Resources Circular 6, "New Jersey Streamflow Records analyzed with Electronic Computer" by Miller and McCall. Basic discharge data for periods of record through 1958 were analyzed for 59 stream-gaging stations in New Jersey and flow-duration, low-flow, and high-flow tables were presented.The purpose of the current report is to update and expand Circular 6 by presenting, with a few meaningful statistics and tables, the bulk of the information that may be obtained from the mass of streamflow records available. The records for 79 of approximately 110 stream-gaging stations presently or previously operated in New Jersey, plus records for three stations in Pennsylvania, and one in New York are presented in summarized form. In addition to inclusing a great number of stations in this report, more years of record and more tables are listed for each station. A description of the station, three arrangements of data summarizing the daily flow records and one table listing statistics of the monthly mean flows are provided. No data representing instantaneous extreme flows are given. Plotting positions for the three types of curves describing the characteristics of daily discharge are listed for each station. Statistical parameters are also presented so that alternate curves may be drawn.All stations included in this report have 5 or more years of record. The data presented herein are based on observed flow past the gaging station. For any station where the observed flow is affected by regulation or diversion, a "Remarks" paragraph, explaining the possible effect on the data, is included in the station description.Since any streamflow record is a sample in time, the data derived from these records can provide only a guide to expected future flows. For this reason the flow records are analyzed by statistical techniques, and the magnitude of sampling errors should be recognized.These analyzed data will be useful to a large number of municipal, state, and federal agencies, industries, utilities, engineers, and hydrologists concerned with the availability, conservation, control, and use of surface waters. The tabulated data and curves illustrated herein can be used to select sites for water supplies, to determine flood or drought storage requirements, and to appraise the adequacy of flows for dilution of wastes or generation of power. The statistical values presented herein can be used in computer programs available in many universities, Federal and State agencies, and engineering firms for a broad spectrum of research and other studies.

  14. Tributary Reservoir Regulation Activities (August 1994 - July 1995)

    DTIC Science & Technology

    1995-12-01

    several counties in the Black Hills region. Between March and May 1995, thirty-two USGS streamflow gages throughout South Dakota experienced record...moisture and streamflow in the James River and Pipestem Creek basins were above normal and any snowmelt or spring runoff would result in high inflow...HQUSACE have requested that the potential loss of life (LOL) analysis for existing and modified conditions be refined. This work will be completed in

  15. Rating curve uncertainty: A comparison of estimation methods

    USGS Publications Warehouse

    Mason, Jr., Robert R.; Kiang, Julie E.; Cohn, Timothy A.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan

    2016-01-01

    The USGS is engaged in both internal development and collaborative efforts to evaluate existing methods for characterizing the uncertainty of streamflow measurements (gaugings), stage-discharge relations (ratings), and, ultimately, the streamflow records derived from them. This paper provides a brief overview of two candidate methods that may be used to characterize the uncertainty of ratings, and illustrates the results of their application to the ratings of the two USGS streamgages.

  16. Experimental Marvin Windshield Effects on Precipitation Records in Leadville, Colorado

    USGS Publications Warehouse

    Jarrett, Robert D.; Crow, Loren W.

    1988-01-01

    An evaluation of the Leadville, Colorado, precipitation records that include a reported record-breaking storm (and flood) at higher elevations in the Rocky Mountains has indicated that the use of an experimental Marvin windshield (designed to decrease the effects of wind on precipitation-gage catchment of snow during winter) resulted in substantially overregistered summer precipitation for 1919 to 1938. The July monthly precipitation for these years was over-registered by an average of 157 percent of the long-term July monthly precipitation at Leadville. The cause of the overregistration of precipitation was the almost 4-foot-top-diameter cone-shaped windshield that had the effect of 'funneling' hail and rain splash into the rain gage. Other nearby precipitation gages, which did not use this Marvin windshield, did not have this trend of increased precipitation for the same period. Streamflow records from the Leadville area also do not indicate an increase in streamflow from 1919 to 1938.

  17. Water resources data, Montana, water year 2005: Volume 1. Hudson Bay and upper Missouri River basins

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2005-01-01

    Water resources data for Montana for the 2004 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 134 streamflow-gaging stations; stage or content records for 18 lakes and reservoirs; and water-quality records for 66 streamflow stations (34 ungaged), and 13 ground-water wells. Additional water year 2004 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  18. Water Resources Data, Montana, 2003; Volume 1. Hudson Bay and Upper Missouri River Basins

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2004-01-01

    Water resources data for Montana for the 2003 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 132 streamflow-gaging stations; stage or content records for 5 lakes and large reservoirs and content for 5 smaller reservoirs; and water-quality records for 66 streamflow stations (34 ungaged), and 7 ground-water wells. Additional water year 2003 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  19. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2009

    USGS Publications Warehouse

    Breault, Robert F.; Smith, Kirk P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB), Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 13 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance and water temperature. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2009 (October 1, 2008, to September 30, 2009). Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 monitoring stations by the USGS during WY 2009 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2009. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 27 cubic feet per second (ft3/s) to the reservoir during WY 2009. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.50 to 17 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,400,000 kilograms (kg) of sodium and 2,200,000 kg of chloride to the Scituate Reservoir during WY 2009; sodium and chloride yields for the tributaries ranged from 10,000 to 64,000 kilograms per square mile (kg/mi2) and from 15,000 to 110,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the PWSB, the median of the median chloride concentrations was 21.7 milligrams per liter (mg/L), median nitrite concentration was 0.001 mg/L as N, median nitrate concentration was 0.02 mg/L as N, median orthophosphate concentration was 0.09 mg/L as P, and median concentrations of total coliform and Escherichia coli (E. coli) bacteria were 61 and 16 colony forming units per 100 milliliters (CFU/100 mL), respectively. The medians of the median daily loads (and yields) of chloride, nitrite, nitrate, orthophosphate, and total coliform and E. coli bacteria were 190 kg/d (61 kg/d/mi2), 12 g/d (4.5 g/d/mi2), 93 g/d (32 g/d/mi2), 420 g/d (290 g/d/mi2), 6,200 million colony forming units per day (CFU?106/d) (2,600 CFU?106/d/mi2), and 1,100 CFU?106/d (340 CFU?106/d/mi2), respectively. 1The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period.

  20. A proposed streamflow-data program for Utah

    USGS Publications Warehouse

    Whitaker, G.L.

    1970-01-01

    An evaluation of the streamflow data available in Utah was made to provide guidelines for planning future programs. The basic steps in the evaluation procedure were (1) definition of the long- term goals of the streamflow-data program in quantitative form, (2) examination and analysis of all available data to determine which goals have already been met, and (3) consideration of alternate programs and techniques to meet the remaining objectives. The principal goals are (1) to provide current streamflow data where needed for water management and (2) to define streamflow characteristics at any point on any stream within a specified accuracy. It was found that the first goal generally is being satisfied but that flow characteristics at ungaged sites cannot be estimated within the specified accuracy by regression analysis with the existing data and model now available. This latter finding indicates the need for some changes in the present data program so that the accuracy goals can be approached by alternate methods. The regression method may be more successful at a future time if a more suitable model can be developed, and if an adequate sample of streamflow records can be obtained in all areas. In the meantime, methods of transferring flow characteristics which require some information at the ungaged site may be used. A modified streamflow-data program based on this study is proposed.

  1. Analysis of streambed temperatures in ephemeral channels to determine streamflow frequency and duration

    USGS Publications Warehouse

    Constantz, James E.; Stonestrom, David A.; Stewart, Amy E.; Niswonger, Richard G.; Smith, Tyson R.

    2001-01-01

    Spatial and temporal patterns in streamflow are rarely monitored for ephemeral streams. Flashy, erosive streamflows common in ephemeral channels create a series of operational and maintenance problems, which makes it impractical to deploy a series of gaging stations along ephemeral channels. Streambed temperature is a robust and inexpensive parameter to monitor remotely, leading to the possibility of analyzing temperature patterns to estimate streamflow frequency and duration along ephemeral channels. A simulation model was utilized to examine various atmospheric and hydrological upper boundary conditions compared with a series of hypothetical temperature‐monitoring depths within the streambed. Simulation results indicate that streamflow events were distinguished from changing atmospheric conditions with greater certainty using temperatures at shallow depths (e.g., 10–20 cm) as opposed to the streambed surface. Three ephemeral streams in the American Southwest were instrumented to monitor streambed temperature for determining the accuracy of using this approach to ascertain the long‐term temporal and spatial extent of streamflow along each stream channel. Streambed temperature data were collected at the surface or at shallow depth along each stream channel, using thermistors encased in waterproof, single‐channel data loggers tethered to anchors in the channel. On the basis of comparisons with site information, such as direct field observations and upstream flow records, diurnal temperature variations successfully detected the presence and duration of streamflow for all sites.

  2. Evaluation of the streamgage network for estimating streamflow statistics at ungaged sites in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York

    USGS Publications Warehouse

    Sloto, Ronald A.; Stuckey, Marla H.; Hoffman, Scott A.

    2017-05-10

    The current (2015) streamgage network in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York was evaluated in order to design a network that would meet the hydrologic needs of many partners and serve a variety of purposes and interests, including estimation of streamflow statistics at ungaged sites. This study was done by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection and the Susquehanna River Basin Commission. The study area includes the Commonwealth of Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York. For this study, 229 streamgages were identified as reference streamgages that could be used to represent ungaged watersheds. Criteria for a reference streamgage are a minimum of 10 years of continuous record, minimally altered streamflow, and a drainage area less than 1,500 square miles. Some of the reference streamgages have been discontinued but provide historical hydrologic information valuable in the determination of streamflow characteristics of ungaged watersheds. Watersheds in the study area not adequately represented by a reference streamgage were identified by examining a range of basin characteristics, the extent of geographic coverage, and the strength of estimated streamflow correlations between gaged and ungaged sites.Basin characteristics were determined for the reference streamgage watersheds and the 1,662 12-digit hydrologic unit code (HUC12) subwatersheds in Pennsylvania and the Susquehanna River Basin using a geographic information system (GIS) spatial analysis and nationally available GIS datasets. Basin characteristics selected for this study include drainage area, mean basin elevation, mean basin slope, percentage of urbanized area, percentage of forested area, percentage of carbonate bedrock, mean annual precipitation, and soil thickness. A GIS spatial analysis was used to identify HUC12 subwatersheds outside the range of basin characteristics of the reference streamgages. There were 320 HUC12 subwatersheds, or 19 percent of the study area, with basin characteristics outside the range represented by the reference streamgage watersheds.A GIS spatial analysis was used to identify geographic gaps in the streamgage network. For each streamgage, a watershed area, called the gage statistical area (GSA), was delineated. The GSA shows the drainage area within a specific drainage-area ratio of the streamgage for transfer of streamflow statistics from that streamgage to ungaged sites on the valid statistical reach of the GSA for a streamgage. In Pennsylvania, a drainage-area ratio of 0.33–3 times the drainage area of the ungaged site was found to perform as well as, if not better than, more traditional ratios such as 0.5–1.5 (or 2) for transfer of selected streamflow statistics. A total of 1,102 HUC12 subwatersheds, or 66 percent of the study area, are outside the GSA for a reference streamgage.The USGS Baseline Streamflow Estimator (BaSE) program was used to determine how well HUC12 subwatersheds outside the streamgage GSAs are represented by the reference streamgage network in Pennsylvania, based on estimated streamflow correlation. The centroid of each HUC12 subwatershed was run through the BaSE program to determine the reference streamgage with the highest estimated streamflow correlation. There were 929 HUC12 subwatersheds in Pennsylvania, or 56 percent of the State, with an estimated correlation coefficient less than 0.96.The results from the basin characteristic, geographic, and streamflow correlation analyses were combined to identify 1,405 HUC12 subwatersheds in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York that lack a representative reference, based on at least one identified gap. Of the 1,405 HUC12 subwatersheds, 139 exhibited all three gaps, indicating a 8-percent gap in the reference streamgage network.Streamgages in areas with similar hydrologic characteristics and in close proximity to one another can potentially provide similar information (termed streamgages with high substitution potential). Streamgages were considered to have a high substitution potential with a nearby streamgage(s) if (1) the streamflow correlation coefficient was equal to or greater than 0.96, (2) the streamgages had 10 years of concurrent record, and (3) the streamgages are in the same watershed within the GSA of the streamgage. Seventy-four current (2015) streamgages with high substitution potential with at least one other streamgage were identified in the study area. Although these identified streamgages have a high substitution potential, they provide valuable streamflow information to a stakeholder. Selected primary uses of these streamgages were identified to determine the overall need for an individual streamgage.

  3. Cost-effectiveness of the stream-gaging program in Maryland, Delaware, and the District of Columbia

    USGS Publications Warehouse

    Carpenter, David H.; James, R.W.; Gillen, D.F.

    1987-01-01

    This report documents the results of a cost-effectiveness study of the stream-gaging program in Maryland, Delaware, and the District of Columbia. Data uses and funding sources were identified for 99 continuously operated stream gages in Maryland , Delaware, and the District of Columbia. The current operation of the program requires a budget of $465,260/year. The average standard error of estimation of streamflow records is 11.8%. It is shown that this overall level of accuracy at the 99 sites could be maintained with a budget of $461,000, if resources were redistributed among the gages. (USGS)

  4. Estimating rainfall time series and model parameter distributions using model data reduction and inversion techniques

    NASA Astrophysics Data System (ADS)

    Wright, Ashley J.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.

    2017-08-01

    Floods are devastating natural hazards. To provide accurate, precise, and timely flood forecasts, there is a need to understand the uncertainties associated within an entire rainfall time series, even when rainfall was not observed. The estimation of an entire rainfall time series and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of entire rainfall input time series to be considered when estimating model parameters, and provides the ability to improve rainfall estimates from poorly gauged catchments. Current methods to estimate entire rainfall time series from streamflow records are unable to adequately invert complex nonlinear hydrologic systems. This study aims to explore the use of wavelets in the estimation of rainfall time series from streamflow records. Using the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia, it is shown that model parameter distributions and an entire rainfall time series can be estimated. Including rainfall in the estimation process improves streamflow simulations by a factor of up to 1.78. This is achieved while estimating an entire rainfall time series, inclusive of days when none was observed. It is shown that the choice of wavelet can have a considerable impact on the robustness of the inversion. Combining the use of a likelihood function that considers rainfall and streamflow errors with the use of the DWT as a model data reduction technique allows the joint inference of hydrologic model parameters along with rainfall.

  5. On the probability distribution of daily streamflow in the United States

    USGS Publications Warehouse

    Blum, Annalise G.; Archfield, Stacey A.; Vogel, Richard M.

    2017-01-01

    Daily streamflows are often represented by flow duration curves (FDCs), which illustrate the frequency with which flows are equaled or exceeded. FDCs have had broad applications across both operational and research hydrology for decades; however, modeling FDCs has proven elusive. Daily streamflow is a complex time series with flow values ranging over many orders of magnitude. The identification of a probability distribution that can approximate daily streamflow would improve understanding of the behavior of daily flows and the ability to estimate FDCs at ungaged river locations. Comparisons of modeled and empirical FDCs at nearly 400 unregulated, perennial streams illustrate that the four-parameter kappa distribution provides a very good representation of daily streamflow across the majority of physiographic regions in the conterminous United States (US). Further, for some regions of the US, the three-parameter generalized Pareto and lognormal distributions also provide a good approximation to FDCs. Similar results are found for the period of record FDCs, representing the long-term hydrologic regime at a site, and median annual FDCs, representing the behavior of flows in a typical year.

  6. Disentangling the driving mechanism of streamflow trends using runoff senstivity to land use and climate change.

    NASA Astrophysics Data System (ADS)

    Silverman, N. L.; Moore, J. N.; Maneta, M. P.

    2014-12-01

    The majority of watersheds within the United States have been disturbed by anthropogenic land use change. On top of this, there is strong evidence of (historic and projected) climatic changes that affect earth's hydrologic cycle. Streamflow measurements integrate the effects of land use and climate change on watershed hydrology. Therefore, when temporal trends are present, teasing out the cause is challenging due to the overlying climate and land use signals. In this study, we develop an analytical framework for distinguishing trends in streamflow that are driven by climate change from those that are driven by land use change. This framework is based on the theory that during wetter years runoff is affected more by changes in climate than during drier years. Whereas, the inverse is true for land use change. During wetter years runoff is affected less by land use change than during drier years. This difference can be seen in the quantile regression of the 75th and 25th percentile annual stream flows which represent wetter and drier years, respectively. This creates a defining characteristic in how these two forcing mechanisms manifest within the streamflow record. We empirically test this framework and show that the sensitivity of runoff to climate and land use change is uniquely dependent on the spatiotemporal water and energy limitations of a catchment. Finally we apply the framework using 1,566 watersheds across the contiguous United States. We use gages from the United States Geological Survey (USGS) National Water Information System (NWIS) network. The gages are selected because they have continuous and complete data from the years 1950 to 2009 and represent watersheds which are characterized by a range of disturbances. Our results show that the driving mechanisms of streamflow change across the U.S. are regionally coherent and correspond with land management activities and climate zones. This methodology provides a simple means of classifying watershed to regional scale hydroclimatic change without relying on reference stream gages, complex models, or observational climate networks.

  7. GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow

    USGS Publications Warehouse

    Falcone, James A.

    2011-01-01

    This dataset, termed "GAGES II", an acronym for Geospatial Attributes of Gages for Evaluating Streamflow, version II, provides geospatial data and classifications for 9,322 stream gages maintained by the U.S. Geological Survey (USGS). It is an update to the original GAGES, which was published as a Data Paper on the journal Ecology's website (Falcone and others, 2010b) in 2010. The GAGES II dataset consists of gages which have had either 20+ complete years (not necessarily continuous) of discharge record since 1950, or are currently active, as of water year 2009, and whose watersheds lie within the United States, including Alaska, Hawaii, and Puerto Rico. Reference gages were identified based on indicators that they were the least-disturbed watersheds within the framework of broad regions, based on 12 major ecoregions across the United States. Of the 9,322 total sites, 2,057 are classified as reference, and 7,265 as non-reference. Of the 2,057 reference sites, 1,633 have (through 2009) 20+ years of record since 1950. Some sites have very long flow records: a number of gages have been in continuous service since 1900 (at least), and have 110 years of complete record (1900-2009) to date. The geospatial data include several hundred watershed characteristics compiled from national data sources, including environmental features (e.g. climate – including historical precipitation, geology, soils, topography) and anthropogenic influences (e.g. land use, road density, presence of dams, canals, or power plants). The dataset also includes comments from local USGS Water Science Centers, based on Annual Data Reports, pertinent to hydrologic modifications and influences. The data posted also include watershed boundaries in GIS format. This overall dataset is different in nature to the USGS Hydro-Climatic Data Network (HCDN; Slack and Landwehr 1992), whose data evaluation ended with water year 1988. The HCDN identifies stream gages which at some point in their history had periods which represented natural flow, and the years in which those natural flows occurred were identified (i.e. not all HCDN sites were in reference condition even in 1988, for example, 02353500). The HCDN remains a valuable indication of historic natural streamflow data. However, the goal of this dataset was to identify watersheds which currently have near-natural flow conditions, and the 2,057 reference sites identified here were derived independently of the HCDN. A subset, however, noted in the BasinID worksheet as “HCDN-2009”, has been identified as an updated list of 743 sites for potential hydro-climatic study. The HCDN-2009 sites fulfill all of the following criteria: (a) have 20 years of complete and continuous flow record in the last 20 years (water years 1990-2009), and were thus also currently active as of 2009, (b) are identified as being in current reference condition according to the GAGES-II classification, (c) have less than 5 percent imperviousness as measured from the NLCD 2006, and (d) were not eliminated by a review from participating state Water Science Center evaluators. The data posted here consist of the following items:- This point shapefile, with summary data for the 9,322 gages.- A zip file containing basin characteristics, variable definitions, and a more detailed report.- A zip file containing shapefiles of basin boundaries, organized by classification and aggregated ecoregion.- A zip file containing mainstem stream lines (Arc line coverages) for each gage.

  8. Temporal and spatial changes of rainfall and streamflow in the Upper Tekezē-Atbara river basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Gebremicael, Tesfay G.; Mohamed, Yasir A.; Zaag, Pieter v.; Hagos, Eyasu Y.

    2017-04-01

    The Upper Tekezē-Atbara river sub-basin, part of the Nile Basin, is characterized by high temporal and spatial variability of rainfall and streamflow. In spite of its importance for sustainable water use and food security, the changing patterns of streamflow and its association with climate change is not well understood. This study aims to improve the understanding of the linkages between rainfall and streamflow trends and identify possible drivers of streamflow variabilities in the basin. Trend analyses and change-point detections of rainfall and streamflow were analysed using Mann-Kendall and Pettitt tests, respectively, using data records for 21 rainfall and 9 streamflow stations. The nature of changes and linkages between rainfall and streamflow were carefully examined for monthly, seasonal and annual flows, as well as indicators of hydrologic alteration (IHA). The trend and change-point analyses found that 19 of the tested 21 rainfall stations did not show statistically significant changes. In contrast, trend analyses on the streamflow showed both significant increasing and decreasing patterns. A decreasing trend in the dry season (October to February), short season (March to May), main rainy season (June to September) and annual totals is dominant in six out of the nine stations. Only one out of nine gauging stations experienced significant increasing flow in the dry and short rainy seasons, attributed to the construction of Tekezē hydropower dam upstream this station in 2009. Overall, streamflow trends and change-point timings were found to be inconsistent among the stations. Changes in streamflow without significant change in rainfall suggests factors other than rainfall drive the change. Most likely the observed changes in streamflow regimes could be due to changes in catchment characteristics of the basin. Further studies are needed to verify and quantify the hydrological changes shown in statistical tests by identifying the physical mechanisms behind those changes. The findings from this study are useful as a prerequisite for studying the effects of catchment management dynamics on the hydrological variabilities in the basin.

  9. Changes in seasonal streamflow extremes experienced in rivers of Northwestern South America (Colombia)

    NASA Astrophysics Data System (ADS)

    Pierini, J. O.; Restrepo, J. C.; Aguirre, J.; Bustamante, A. M.; Velásquez, G. J.

    2017-04-01

    A measure of the variability in seasonal extreme streamflow was estimated for the Colombian Caribbean coast, using monthly time series of freshwater discharge from ten watersheds. The aim was to detect modifications in the streamflow monthly distribution, seasonal trends, variance and extreme monthly values. A 20-year length time moving window, with 1-year successive shiftments, was applied to the monthly series to analyze the seasonal variability of streamflow. The seasonal-windowed data were statistically fitted through the Gamma distribution function. Scale and shape parameters were computed using the Maximum Likelihood Estimation (MLE) and the bootstrap method for 1000 resample. A trend analysis was performed for each windowed-serie, allowing to detect the window of maximum absolute values for trends. Significant temporal shifts in seasonal streamflow distribution and quantiles (QT), were obtained for different frequencies. Wet and dry extremes periods increased significantly in the last decades. Such increase did not occur simultaneously through the region. Some locations exhibited continuous increases only at minimum QT.

  10. Road construction on Caspar Creek watersheds --- 10-year report on impact

    Treesearch

    J. S. Krammes; David M. Burns

    1973-01-01

    In 1960, Federal and State agencies jointly started a long-term study of the effects of logging and road building on streamflow, sedimentation, aquatic habitat, and fish populations on two watersheds of Caspar Creek, in northern California. The experimental watersheds are the North and South Forks of the Creek. The data being collected consist of continuous streamflow...

  11. Groundwater/surface-water interactions in the Tunk, Bonaparte, Antoine, and Tonasket Creek Subbasins, Okanogan River Basin, North-Central Washington, 2008

    USGS Publications Warehouse

    Sumioka, S.S.; Dinicola, R.S.

    2009-01-01

    An investigation into groundwater/surface-water interactions in four tributary subbasins of the Okanogan River determined that streamflows and shallow groundwater levels beneath the streams varied seasonally and by location. Streamflows measured in June 2008 indicated net losses of streamflow along 10 of 17 reaches, and hydraulic gradients measured between streams and shallow groundwater indicated potential recharge of surface water to groundwater at 11 of 21 measurement sites. In September 2008, net losses of streamflow were indicated along 9 of 17 reaches, and potential recharge of surface water to groundwater was indicated at 18 of 21 measurement sites. The greatest losses of streamflow occurred near the confluences with the Okanogan River, likely due to the presence of thick layers of unconsolidated deposits in the flood plain of the Okanogan River. Based on available geologic information compiled from drillers' logs, a surficial geologic map, and streamflow records, the extensive and thick deposits of unconsolidated material in the Tunk and Bonaparte Creek subbasins are factors in sustaining the almost perennial streamflow in those creeks. The less extensive and generally thinner unconsolidated deposits in the Tonasket and Antoine subbasins are contributing factors to the occasional extended periods of zero flow (a dry stream channel) in those creeks. Even though groundwater withdrawals would affect streamflows, relatively low precipitation in the area, along with limited groundwater storage capacity and the presence of permeable, unconsolidated deposits underlying the stream channels, would likely lead to loss of surface water to the groundwater system without any withdrawals.

  12. Contradictory hydrological impacts of afforestation in the humid tropics evidenced by long-term field monitoring and simulation modelling

    NASA Astrophysics Data System (ADS)

    Lacombe, Guillaume; Ribolzi, Olivier; de Rouw, Anneke; Pierret, Alain; Latsachak, Keoudone; Silvera, Norbert; Pham Dinh, Rinh; Orange, Didier; Janeau, Jean-Louis; Soulileuth, Bounsamai; Robain, Henri; Taccoen, Adrien; Sengphaathith, Phouthamaly; Mouche, Emmanuel; Sengtaheuanghoung, Oloth; Tran Duc, Toan; Valentin, Christian

    2016-07-01

    The humid tropics are exposed to an unprecedented modernisation of agriculture involving rapid and mixed land-use changes with contrasted environmental impacts. Afforestation is often mentioned as an unambiguous solution for restoring ecosystem services and enhancing biodiversity. One consequence of afforestation is the alteration of streamflow variability which controls habitats, water resources, and flood risks. We demonstrate that afforestation by tree planting or by natural forest regeneration can induce opposite hydrological changes. An observatory including long-term field measurements of fine-scale land-use mosaics and of hydrometeorological variables has been operating in several headwater catchments in tropical southeast Asia since 2000. The GR2M water balance model, repeatedly calibrated over successive 1-year periods and used in simulation mode with the same year of rainfall input, allowed the hydrological effect of land-use change to be isolated from that of rainfall variability in two of these catchments in Laos and Vietnam. Visual inspection of hydrographs, correlation analyses, and trend detection tests allowed causality between land-use changes and changes in seasonal streamflow to be ascertained. In Laos, the combination of shifting cultivation system (alternation of rice and fallow) and the gradual increase of teak tree plantations replacing fallow led to intricate streamflow patterns: pluri-annual streamflow cycles induced by the shifting system, on top of a gradual streamflow increase over years caused by the spread of the plantations. In Vietnam, the abandonment of continuously cropped areas combined with patches of mix-trees plantations led to the natural re-growth of forest communities followed by a gradual drop in streamflow. Soil infiltrability controlled by surface crusting is the predominant process explaining why two modes of afforestation (natural regeneration vs. planting) led to opposite changes in streamflow regime. Given that commercial tree plantations will continue to expand in the humid tropics, careful consideration is needed before attributing to them positive effects on water and soil conservation.

  13. Analysis of streamflow-gaging network for monitoring stormwater in small streams in the Puget Sound Basin, Washington

    USGS Publications Warehouse

    Konrad, Christopher P.; Voss, Frank D.

    2012-01-01

    The streamflow-gaging network in the Puget Sound basin was analyzed for its capacity to monitor stormwater in small streams. The analysis consisted of an inventory of active and inactive gages and an evaluation of the coverage and resolution of the gaging network with an emphasis on lowland areas. The active gaging network covers much of the Puget Lowland largely by gages located at sites on larger streams and rivers. Assessments of stormwater impacts and management will likely require streamflow information with higher spatial resolution than provided by the current gaging network. Monitoring that emphasizes small streams in combination with approaches for estimating streamflow at ungaged sites provides an alternative to expanding the current gaging network that can improve the spatial resolution of streamflow information in the region. The highest priority gaps in the gaging network are low elevation basins close to the Puget Sound shoreline and sites that share less than 10 percent of the drainage area of an active gage. Although small, lowland sites with long records of streamflow are particularly valuable to maintain in the region, other criteria for prioritizing sites in the gaging network should be based on the specific questions that stormwater managers need to answer.

  14. Regional variability in the accuracy of statistical reproductions of historical time series of daily streamflow at ungaged locations

    NASA Astrophysics Data System (ADS)

    Farmer, W. H.; Archfield, S. A.; Over, T. M.; Kiang, J. E.

    2015-12-01

    In the United States and across the globe, the majority of stream reaches and rivers are substantially impacted by water use or remain ungaged. The result is large gaps in the availability of natural streamflow records from which to infer hydrologic understanding and inform water resources management. From basin-specific to continent-wide scales, many efforts have been undertaken to develop methods to estimate ungaged streamflow. This work applies and contrasts several statistical models of daily streamflow to more than 1,700 reference-quality streamgages across the conterminous United States using a cross-validation methodology. The variability of streamflow simulation performance across the country exhibits a pattern familiar to other continental scale modeling efforts performed for the United States. For portions of the West Coast and the dense, relatively homogeneous and humid regions of the eastern United States models produce reliable estimates of daily streamflow using many different prediction methods. Model performance for the middle portion of the United States, marked by more heterogeneous and arid conditions, and with larger contributing areas and sparser networks of streamgages, is consistently poor. A discussion of the difficulty of statistical interpolation and regionalization in these regions raises additional questions of data availability and quality, hydrologic process representation and dominance, and intrinsic variability.

  15. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2006

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2006 (October 1, 2005, to September 30, 2006). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2006 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2006. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 42 cubic feet per second (ft3/s) to the reservoir during WY 2006. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.60 to 26 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kilograms (kg) of sodium and 2,500,000 kg of chloride to the Scituate Reservoir during WY 2006; sodium and chloride yields for the tributaries ranged from 15,000 to 100,000 kilograms per square mile (kg/mi2) and from 22,000 to 180,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.6 milligrams per liter (mg/L), median nitrite concentration was 0.001 mg/L as N, median nitrate concentration was 0.02 mg/L as N, median orthophosphate concentration was 0.07 mg/L as P, and median concentrations of total coliform and Escherichia coli (E. coli) bacteria were 43 and 23 colony forming units per 100 milliliters (CFU/100 mL), respectively. The medians of the median daily loads (and yields) of chloride, nitrite, nitrate, orthophosphate, and total coliform and E. coli bacteria were 230 kg/d (81 kg/d/mi2), 17 g/d (4.4 g/d/mi2), 130 g/d (50 g/d/mi2), 470 g/d (210 g/d/mi2), and 2,100 million colony forming units per day (CFU?106/d) (1,300 CFU?106/d/mi2) and 670 CFU?106/d (420 CFU?106/d/mi2), respectively. 1The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period.

  16. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2005

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island’s largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2005 (October 1, 2004, to September 30, 2005). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2005 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2005. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 30 cubic feet per second (ft3/s) to the reservoir during WY 2005. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,300,000 kilograms (kg) of sodium and 2,000,000 kg of chloride to the Scituate Reservoir during WY 2005; sodium and chloride yields for the tributaries ranged from 13,000 to 77,000 kilograms per square mile (kg/mi2) and from 19,000 to 130,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 25.3 milligrams per liter (mg/L), median nitrite concentration was 0.002 mg/L as N, median nitrate concentration was 0.02 mg/L as N, median orthophosphate concentration was 0.07 mg/L as P, and median concentrations of total coliform and Escherichia coli (E. coli) bacteria were 23 and 15 colony forming units per 100 milliliters (CFU/100 mL), respectively. The medians of the median daily loads (and yields) of chloride, nitrite, nitrate, orthophosphate, and total coliform and E. coli bacteria were 230 kg/d (93 kg/d/mi2), 16 g/d (6.1 g/d/mi2), 150 g/d (71 g/d/mi2), 530 g/d (250 g/d/mi2), and 1,500 million colony forming units per day (CFU×106/d) (630 CFU×106/d/mi2) and 420 CFU×106/d (290 CFU×106/d/mi2), respectively. 1The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period.

  17. U.S. Geological Survey Real-Time River Data Applications

    USGS Publications Warehouse

    Morlock, Scott E.

    1998-01-01

    Real-time river data provided by the USGS originate from streamflow-gaging stations. The USGS operates and maintains a network of more than 7,000 such stations across the nation (Mason and Wieger, 1995). These gaging stations, used to produce records of stage and streamflow data, are operated in cooperation with local, state, and other federal agencies. The USGS office in Indianapolis operates a statewide network of more than 170 gaging stations. The instrumentation at USGS gaging stations monitors and records river information, primarily river stage (fig. 1). As technological advances are made, many USGS gaging stations are being retrofitted with electronic instrumentation to monitor and record river data. Electronic instrumentation facilitates transmission of real-time or near real-time river data for use by government agencies in such flood-related tasks as operating flood-control structures and ordering evacuations.

  18. Joint pattern of seasonal hydrological droughts and floods alternation in China's Huai River Basin using the multivariate L-moments

    NASA Astrophysics Data System (ADS)

    Wu, ShaoFei; Zhang, Xiang; She, DunXian

    2017-06-01

    Under the current condition of climate change, droughts and floods occur more frequently, and events in which flooding occurs after a prolonged drought or a drought occurs after an extreme flood may have a more severe impact on natural systems and human lives. This challenges the traditional approach wherein droughts and floods are considered separately, which may largely underestimate the risk of the disasters. In our study, the sudden alternation of droughts and flood events (ADFEs) between adjacent seasons is studied using the multivariate L-moments theory and the bivariate copula functions in the Huai River Basin (HRB) of China with monthly streamflow data at 32 hydrological stations from 1956 to 2012. The dry and wet conditions are characterized by the standardized streamflow index (SSI) at a 3-month time scale. The results show that: (1) The summer streamflow makes the largest contribution to the annual streamflow, followed by the autumn streamflow and spring streamflow. (2) The entire study area can be divided into five homogeneous sub-regions using the multivariate regional homogeneity test. The generalized logistic distribution (GLO) and log-normal distribution (LN3) are acceptable to be the optimal marginal distributions under most conditions, and the Frank copula is more appropriate for spring-summer and summer-autumn SSI series. Continuous flood events dominate at most sites both in spring-summer and summer-autumn (with an average frequency of 13.78% and 17.06%, respectively), while continuous drought events come second (with an average frequency of 11.27% and 13.79%, respectively). Moreover, seasonal ADFEs most probably occurred near the mainstream of HRB, and drought and flood events are more likely to occur in summer-autumn than in spring-summer.

  19. Trends in Streamflow Characteristics of Selected Sites in the Elkhorn River, Salt Creek, and Lower Platte River Basins, Eastern Nebraska, 1928-2004, and Evaluation of Streamflows in Relation to Instream-Flow Criteria, 1953-2004

    USGS Publications Warehouse

    Dietsch, Benjamin J.; Godberson, Julie A.; Steele, Gregory V.

    2009-01-01

    The Nebraska Department of Natural Resources approved instream-flow appropriations on the Platte River to maintain fish communities, whooping crane roost habitat, and wet meadows used by several wild bird species. In the lower Platte River region, the Nebraska Game and Parks Commission owns an appropriation filed to maintain streamflow for fish communities between the Platte River confluence with the Elkhorn River and the mouth of the Platte River. Because Elkhorn River flow is an integral part of the flow in the reach addressed by this appropriation, the Upper Elkhorn and Lower Elkhorn Natural Resources Districts are involved in overall management of anthropogenic effects on the availability of surface water for instream requirements. The Physical Habitat Simulation System (PHABSIM) and other estimation methodologies were used previously to determine instream requirements for Platte River biota, which led to the filing of five water appropriations applications with the Nebraska Department of Natural Resources in 1993 by the Nebraska Game and Parks Commission. One of these requested instream-flow appropriations of 3,700 cubic feet per second was for the reach from the Elkhorn River to the mouth of the Platte River. Four appropriations were granted with modifications in 1998, by the Nebraska Department of Natural Resources. Daily streamflow data for the periods of record were summarized for 17 streamflow-gaging stations in Nebraska to evaluate streamflow characteristics, including low-flow intervals for consecutive durations of 1, 3, 7, 14, 30, 60, and 183 days. Temporal trends in selected streamflow statistics were not adjusted for variability in precipitation. Results indicated significant positive temporal trends in annual flow for the period of record at eight streamflow-gaging stations - Platte River near Duncan (06774000), Platte River at North Bend (06796000), Elkhorn River at Neligh (06798500), Logan Creek near Uehling (06799500), Maple Creek near Nickerson (06800000), Elkhorn River at Waterloo (06800500), Salt Creek at Greenwood (06803555), and Platte River at Louisville (06805500). In general, sites in the Elkhorn River Basin upstream from Norfolk showed fewer significant trends than did sites downstream from Norfolk and sites in the Platte River and Salt Creek basins, where trends in low flows also were positive. Historical Platte River streamflow records for the streamflow-gaging station at Louisville, Nebraska, were used to determine the number of days per water year (Sept. 30 to Oct. 1) when flows failed to satisfy the minimum criteria of the instream-flow appropriation prior to its filing in 1993. Before 1993, the median number of days the criteria were not satisfied was about 120 days per water year. During 1993 through 2004, daily mean flows at Louisville, Nebraska, have failed to satisfy the criteria for 638 days total (median value equals 21.5 days per year). Most of these low-flow intervals occurred in summer through early fall. For water years 1953 through 2004, of the discrete intervals when flow was less that the criteria levels, 61 percent were 3 days or greater in duration, and 38 percent were 7 days or greater in duration. The median duration of intervals of flow less than the criteria levels was 4 consecutive days during 1953 through 2004.

  20. Calculated hydrographs for unsteady research flows at selected sites along the Colorado River downstream from Glen Canyon Dam, Arizona, 1990 and 1991

    USGS Publications Warehouse

    Griffin, Eleanor R.; Wiele, Stephen M.

    1996-01-01

    A one-dimensional model of unsteady discharge waves was applied to research flowr that were released from Glen Canyon Dam in support of the Glen Canyon Environmental Studies. These research flows extended over periods of 11 days during which the discharge followed specific, regular patterns repeated on a daily cycle that were similar to the daily releases for power generation. The model was used to produce discharge hydrographs at 38 selected sites in Marble and Grand Canyons for each of nine unsteady flows released from the dam in 1990 and 1991. In each case, the discharge computed from stage measurements and the associated stage-discharge relation at the streamflow-gaging station just below the dam (09379910 Colorado River Hlow Glen Canyon Dam) was routed to Diamond Creek, which is 386 kilometers downstream. Steady and unsteady tributary inflows downstream from the dam were included in the model calculations. Steady inflow to the river from tributaries downstream from the dam was determined for each case by comparing the steady base flow preceding and following the unsteady flow measured at six streamflow-gaging stations between Glen Canyon Dam and Diamond Creek. During three flow periods, significant unsteady inflow was received from the Paria River, or the Little Colorado River, or both. The amount and timing of unsteady inflow was determined using the discharge computed from records of streamflow-gaging stations on the tributaries. Unsteady flow then was added to the flow calculated by the model at the appropriate location. Hydrographs were calculated using the model at 5 streamflow-gaging stations downstream from the dam and at 33 beach study sites. Accuracy of model results was evaluated by comparing the results to discharge hydrographs computed from the records of the five streamflow-gaging stations between Lees Ferry and Lake Mead. Results show that model predictions of wave speed and shape agree well with data from the five streamflow-gaging stations.

  1. Traveltime of the Rio Grande in the Middle Rio Grande Basin, New Mexico, Water Years 2003-05

    USGS Publications Warehouse

    Langman, Jeff B.

    2008-01-01

    The quality of water in the Rio Grande is becoming increasingly important as more surface water is proposed for diversion from the river for potable and nonpotable uses. In cooperation with the Albuquerque Bernalillo County Water Utility Authority, the U.S. Geological Survey examined traveltime of the Rio Grande in the Middle Rio Grande Basin to evaluate the potential travel of a conservative solute entrained in the river's streamflow. A flow-pulse analysis was performed to determine traveltimes of a wide range of streamflows in the Rio Grande, to develop traveltime curves for estimating the possible traveltime of a conservative solute in the Rio Grande between Cochiti Dam and Albuquerque, and to evaluate streamflow velocities and dispersion and storage characteristics of the Rio Grande in the entire Middle Rio Grande Basin. A flow-pulse analysis was applied to 12 pulse events recorded during the 2003-05 water years for streamflow-gaging stations between Cochiti Dam and the city of San Acacia. Pulse streamflows ranged from 495 to 5,190 cubic feet per second (ft3/s). Three points of each pulse were tracked as the pulse passed a station - rising-limb leading edge, plateau leading edge, and plateau trailing edge. Most pulses indicated longer traveltimes for each successive point in the pulse. Dispersion and spreading of the pulses decreased with increased streamflow. Decreasing traveltimes were not always consistent with increasing streamflow, particularly for flows less than 1,750 ft3/s, and the relation of traveltime and original pulse streamflow at Cochiti indicated a nonlinear component. Average streamflow velocities decreased by greater than 30 percent from San Felipe to San Acacia. The expected trend of increasing dispersion with downstream travel was not always visible because of other influences on streamflow. With downstream flow, distributions of the pulses became more skewed to the descending limbs, indicating possible short-term storage of a part of the pulses.

  2. Multi-site Stochastic Simulation of Daily Streamflow with Markov Chain and KNN Algorithm

    NASA Astrophysics Data System (ADS)

    Mathai, J.; Mujumdar, P.

    2017-12-01

    A key focus of this study is to develop a method which is physically consistent with the hydrologic processes that can capture short-term characteristics of daily hydrograph as well as the correlation of streamflow in temporal and spatial domains. In complex water resource systems, flow fluctuations at small time intervals require that discretisation be done at small time scales such as daily scales. Also, simultaneous generation of synthetic flows at different sites in the same basin are required. We propose a method to equip water managers with a streamflow generator within a stochastic streamflow simulation framework. The motivation for the proposed method is to generate sequences that extend beyond the variability represented in the historical record of streamflow time series. The method has two steps: In step 1, daily flow is generated independently at each station by a two-state Markov chain, with rising limb increments randomly sampled from a Gamma distribution and the falling limb modelled as exponential recession and in step 2, the streamflow generated in step 1 is input to a nonparametric K-nearest neighbor (KNN) time series bootstrap resampler. The KNN model, being data driven, does not require assumptions on the dependence structure of the time series. A major limitation of KNN based streamflow generators is that they do not produce new values, but merely reshuffle the historical data to generate realistic streamflow sequences. However, daily flow generated using the Markov chain approach is capable of generating a rich variety of streamflow sequences. Furthermore, the rising and falling limbs of daily hydrograph represent different physical processes, and hence they need to be modelled individually. Thus, our method combines the strengths of the two approaches. We show the utility of the method and improvement over the traditional KNN by simulating daily streamflow sequences at 7 locations in the Godavari River basin in India.

  3. Methods for estimating low-flow statistics for Massachusetts streams

    USGS Publications Warehouse

    Ries, Kernell G.; Friesz, Paul J.

    2000-01-01

    Methods and computer software are described in this report for determining flow duration, low-flow frequency statistics, and August median flows. These low-flow statistics can be estimated for unregulated streams in Massachusetts using different methods depending on whether the location of interest is at a streamgaging station, a low-flow partial-record station, or an ungaged site where no data are available. Low-flow statistics for streamgaging stations can be estimated using standard U.S. Geological Survey methods described in the report. The MOVE.1 mathematical method and a graphical correlation method can be used to estimate low-flow statistics for low-flow partial-record stations. The MOVE.1 method is recommended when the relation between measured flows at a partial-record station and daily mean flows at a nearby, hydrologically similar streamgaging station is linear, and the graphical method is recommended when the relation is curved. Equations are presented for computing the variance and equivalent years of record for estimates of low-flow statistics for low-flow partial-record stations when either a single or multiple index stations are used to determine the estimates. The drainage-area ratio method or regression equations can be used to estimate low-flow statistics for ungaged sites where no data are available. The drainage-area ratio method is generally as accurate as or more accurate than regression estimates when the drainage-area ratio for an ungaged site is between 0.3 and 1.5 times the drainage area of the index data-collection site. Regression equations were developed to estimate the natural, long-term 99-, 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, and 50-percent duration flows; the 7-day, 2-year and the 7-day, 10-year low flows; and the August median flow for ungaged sites in Massachusetts. Streamflow statistics and basin characteristics for 87 to 133 streamgaging stations and low-flow partial-record stations were used to develop the equations. The streamgaging stations had from 2 to 81 years of record, with a mean record length of 37 years. The low-flow partial-record stations had from 8 to 36 streamflow measurements, with a median of 14 measurements. All basin characteristics were determined from digital map data. The basin characteristics that were statistically significant in most of the final regression equations were drainage area, the area of stratified-drift deposits per unit of stream length plus 0.1, mean basin slope, and an indicator variable that was 0 in the eastern region and 1 in the western region of Massachusetts. The equations were developed by use of weighted-least-squares regression analyses, with weights assigned proportional to the years of record and inversely proportional to the variances of the streamflow statistics for the stations. Standard errors of prediction ranged from 70.7 to 17.5 percent for the equations to predict the 7-day, 10-year low flow and 50-percent duration flow, respectively. The equations are not applicable for use in the Southeast Coastal region of the State, or where basin characteristics for the selected ungaged site are outside the ranges of those for the stations used in the regression analyses. A World Wide Web application was developed that provides streamflow statistics for data collection stations from a data base and for ungaged sites by measuring the necessary basin characteristics for the site and solving the regression equations. Output provided by the Web application for ungaged sites includes a map of the drainage-basin boundary determined for the site, the measured basin characteristics, the estimated streamflow statistics, and 90-percent prediction intervals for the estimates. An equation is provided for combining regression and correlation estimates to obtain improved estimates of the streamflow statistics for low-flow partial-record stations. An equation is also provided for combining regression and drainage-area ratio estimates to obtain improved e

  4. FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015

    NASA Astrophysics Data System (ADS)

    Barbarossa, Valerio; Huijbregts, Mark A. J.; Beusen, Arthur H. W.; Beck, Hylke E.; King, Henry; Schipper, Aafke M.

    2018-03-01

    Streamflow data is highly relevant for a variety of socio-economic as well as ecological analyses or applications, but a high-resolution global streamflow dataset is yet lacking. We created FLO1K, a consistent streamflow dataset at a resolution of 30 arc seconds (~1 km) and global coverage. FLO1K comprises mean, maximum and minimum annual flow for each year in the period 1960-2015, provided as spatially continuous gridded layers. We mapped streamflow by means of artificial neural networks (ANNs) regression. An ensemble of ANNs were fitted on monthly streamflow observations from 6600 monitoring stations worldwide, i.e., minimum and maximum annual flows represent the lowest and highest mean monthly flows for a given year. As covariates we used the upstream-catchment physiography (area, surface slope, elevation) and year-specific climatic variables (precipitation, temperature, potential evapotranspiration, aridity index and seasonality indices). Confronting the maps with independent data indicated good agreement (R2 values up to 91%). FLO1K delivers essential data for freshwater ecology and water resources analyses at a global scale and yet high spatial resolution.

  5. Effects of past and future groundwater development on the hydrologic system of Verde Valley, Arizona

    USGS Publications Warehouse

    Garner, Bradley D.; Pool, D.R.

    2013-01-01

    Communities in central Arizona’s Verde Valley must manage limited water supplies in the face of rapidly growing populations. Developing groundwater resources to meet human needs has raised questions about the effects of groundwater withdrawals by pumping on the area’s rivers and streams, particularly the Verde River. U.S. Geological Survey hydrologists used a regional groundwater flow model to simulate the effects of groundwater pumping on streamflow in the Verde River. The study found that streamflow in the Verde River between 1910 and 2005 had been reduced as the result of streamflow depletion by groundwater pumping, also known as capture. Additionally, using three hypothetical scenarios for a period from 2005 to 2110, the study’s findings suggest that streamflow reductions will continue and may increase in the future.

  6. Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau

    DOE PAGES

    Liu, Xiaomang; Yang, Tiantian; Hsu, Koulin; ...

    2017-01-10

    On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks $-$ Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basinsmore » on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. Finally, the evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.« less

  7. Estimates of ground-water recharge based on streamflow-hydrograph methods: Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Conger, Randall W.; Ulrich, James E.; Asmussen, Michael P.

    2005-01-01

    This study, completed by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey (T&GS), provides estimates of ground-water recharge for watersheds throughout Pennsylvania computed by use of two automated streamflow-hydrograph-analysis methods--PART and RORA. The PART computer program uses a hydrograph-separation technique to divide the streamflow hydrograph into components of direct runoff and base flow. Base flow can be a useful approximation of recharge if losses and interbasin transfers of ground water are minimal. The RORA computer program uses a recession-curve displacement technique to estimate ground-water recharge from each storm period indicated on the streamflow hydrograph. Recharge estimates were made using streamflow records collected during 1885-2001 from 197 active and inactive streamflow-gaging stations in Pennsylvania where streamflow is relatively unaffected by regulation. Estimates of mean-annual recharge in Pennsylvania computed by the use of PART ranged from 5.8 to 26.6 inches; estimates from RORA ranged from 7.7 to 29.3 inches. Estimates from the RORA program were about 2 inches greater than those derived from the PART program. Mean-monthly recharge was computed from the RORA program and was reported as a percentage of mean-annual recharge. On the basis of this analysis, the major ground-water recharge period in Pennsylvania typically is November through May; the greatest monthly recharge typically occurs in March.

  8. Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaomang; Yang, Tiantian; Hsu, Koulin

    On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks $-$ Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basinsmore » on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. Finally, the evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.« less

  9. Simulated Hydrologic Responses to Climate Variations and Change in the Merced, Carson, and American River Basins, Sierra Nevada, California, 1900-2099

    NASA Astrophysics Data System (ADS)

    Dettinger, M. D.; Cayan, D. R.; Cayan, D. R.; Meyer, M. K.

    2001-12-01

    Sensitivities of river basins in the Sierra Nevada of California to historical and future climate variations and changes are analyzed by simulating daily streamflow and water-balance responses to simulated climate variations over a continuous 200-year period. The coupled atmosphere-ocean-ice-land Parallel Climate Model provides the simulated climate histories, and existing hydrologic models of the Merced, Carson, and American Rivers are used to simulate the basin responses. The historical simulations yield stationary climate and hydrologic variations through the first part of the 20th Century until about 1975, when temperatures begin to warm noticeably and when snowmelt and streamflow peaks begin to occur progressively earlier within the seasonal cycle. A future climate simulated with business-as-usual increases in greenhouse-gas and aerosol radiative forcings continues those recent trends through the 21st Century with an attendant +2.5ºC warming and a hastening of snowmelt and streamflow within the seasonal cycle by almost a month. In contrast, a control simulation in which radiative forcings are held constant at 1995 levels for the 50 years following 1995, yields climate and streamflow-timing conditions much like the 1980s and 1990s throughout its duration. Long-term average totals of streamflow and other hydrologic fluxes remain similar to the historical mean in all three simulations. The various projected trends in the business-as-usual simulations become readily visible above simulated natural climatic and hydrologic variability by about 2020.

  10. Reconstructions of Columbia River streamflow from tree-ring chronologies in the Pacific Northwest, USA

    USGS Publications Warehouse

    Littell, Jeremy; Pederson, Gregory T.; Gray, Stephen T.; Tjoelker, Michael; Hamlet, Alan F.; Woodhouse, Connie A.

    2016-01-01

    We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree-ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree-ring chronologies where high snowpack limits growth, which better represent the contribution of cool-season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high-intensity, long-duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s-1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm-season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late-19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands

  11. Annually resolved late Holocene paleohydrology of the southern Sierra Nevada and Tulare Lake, California

    NASA Astrophysics Data System (ADS)

    Adams, Kenneth D.; Negrini, Robert M.; Cook, Edward R.; Rajagopal, Seshadri

    2015-12-01

    Here we present 2000 year long, annually resolved records of streamflow for the Kings, Kaweah, Tule, and Kern Rivers in the southwestern Sierra Nevada of California and consequent lake-level fluctuations at Tulare Lake in the southern San Joaquin Valley. The integrated approach of using moisture-sensitive tree ring records from the Living Blended Drought Atlas to reconstruct annual discharge and then routing this discharge to an annual Tulare Lake water balance model highlights the differences between these two types of paleoclimate records, even when subject to the same forcing factors. The reconstructed streamflow in the southern Sierra responded to yearly changes in precipitation and expressed a strong periodicity in the 2-8 year range over most of the reconstruction. The storage capacity of Tulare Lake caused it to fluctuate more slowly, masking the 2-8 year streamflow periodicity and instead expressing a strong periodicity in the 32-64 year range over much of the record. Although there have been longer droughts, the 2015 water year represents the driest in the last 2015 years and the 2012-2015 drought represents the driest 4 year period in the record. Under natural conditions, simulated Tulare Lake levels would now be at about 60 m, which is not as low as what occurred multiple times over the last 2000 years. This long-term perspective of fluctuations in climate and water supply suggests that different drought scenarios that vary in terms of severity and duration can produce similar lake-level responses in closed lake basins.

  12. Climatic controls on the snowmelt hydrology of the northern Rocky Mountains

    USGS Publications Warehouse

    Pederson, G.T.; Gray, S.T.; Ault, T.; Marsh, W.; Fagre, D.B.; Bunn, A.G.; Woodhouse, C.A.; Graumlich, L.J.

    2011-01-01

    The northern Rocky Mountains (NRMs) are a critical headwaters region with the majority of water resources originating from mountain snowpack. Observations showing declines in western U.S. snowpack have implications for water resources and biophysical processes in high-mountain environments. This study investigates oceanic and atmospheric controls underlying changes in timing, variability, and trends documented across the entire hydroclimatic-monitoring system within critical NRM watersheds. Analyses were conducted using records from 25 snow telemetry (SNOTEL) stations, 148 1 April snow course records, stream gauge records from 14 relatively unimpaired rivers, and 37 valley meteorological stations. Over the past four decades, midelevation SNOTEL records show a tendency toward decreased snowpack with peak snow water equivalent (SWE) arriving and melting out earlier. Temperature records show significant seasonal and annual decreases in the number of frost days (days ???0??C) and changes in spring minimum temperatures that correspond with atmospheric circulation changes and surface-albedo feedbacks in March and April. Warmer spring temperatures coupled with increases in mean and variance of spring precipitation correspond strongly to earlier snowmeltout, an increased number of snow-free days, and observed changes in streamflow timing and discharge. The majority of the variability in peak and total annual snowpack and streamflow, however, is explained by season-dependent interannual-to-interdecadal changes in atmospheric circulation associated with Pacific Ocean sea surface temperatures. Over recent decades, increased spring precipitation appears to be buffering NRM total annual streamflow from what would otherwise be greater snow-related declines in hydrologic yield. Results have important implications for ecosystems, water resources, and long-lead-forecasting capabilities. ?? 2011 American Meteorological Society.

  13. Surface-water hydrologic data for the Houston metropolitan area, Texas, water years 1990-95

    USGS Publications Warehouse

    Sneck-Fahrer, Debra A.; Liscum, Fred; East, Jeffery W.

    2003-01-01

    During water years 1990–95, data were collected at 24 U.S. Geological Survey streamflow-gaging stations, 21 rain gages, and 6 water-quality stations in the Houston metropolitan area, Texas. The data were collected as part of the Houston Urban Runoff Program, which began in water year 1964. Annual peaks were defined for the 24 streamflow-gaging stations in the study area. All stations had 10 or more years of record. Precipitation data from the 21 rain gages and discharge or stage data from 23 streamflow-gaging stations are available to develop storm hydrographs. One-hundred thirty-four samples were collected at six water-quality stations. The samples were analyzed for about 80 water-quality properties and constituents.

  14. Water chemistry, seepage investigation, streamflow, reservoir storage, and annual availability of water for the San Juan-Chama Project, northern New Mexico, 1942-2010

    USGS Publications Warehouse

    McKean, Sarah E.; Anderholm, Scott K.

    2014-01-01

    The Albuquerque Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with surface water diverted from the Rio Grande. The U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, undertook this study in which water-chemistry data and historical streamflow were compiled and new water-chemistry data were collected to characterize the water chemistry and streamflow of the San Juan-Chama Project (SJCP). Characterization of streamflow included analysis of the variability of annual streamflow and comparison of the theoretical amount of water that could have been diverted into the SJCP to the actual amount of water that was diverted for the SJCP. Additionally, a seepage investigation was conducted along the channel between Azotea Tunnel Outlet and the streamflow-gaging station at Willow Creek above Heron Reservoir to estimate the magnitude of the gain or loss in streamflow resulting from groundwater interaction over the approximately 10-mile reach. Generally, surface-water chemistry varied with streamflow throughout the year. Streamflow ranged from high flow to low flow on the basis of the quantity of water diverted from the Rio Blanco, Little Navajo River, and Navajo River for the SJCP. Vertical profiles of the water temperature over the depth of the water column at Heron Reservoir indicated that the reservoir is seasonally stratified. The results from the seepage investigations indicated a small amount of loss of streamflow along the channel. Annual variability in streamflow for the SJCP was an indication of the variation in the climate parameters that interact to contribute to streamflow in the Rio Blanco, Little Navajo River, Navajo River, and Willow Creek watersheds. For most years, streamflow at Azotea Tunnel Outlet started in March and continued for approximately 3 months until the middle of July. The majority of annual streamflow at Azotea Tunnel Outlet occurred from May through June, with a median duration of slightly longer than a month. Years with higher maximum daily streamflow generally are associated with higher annual streamflow than years with lower maximum daily streamflow. The amount of water that can be diverted for the SJCP is controlled by the availability of streamflow and is limited by several factors including legal limits for diversion, limits from the SJCP infrastructure including the size of the diversion dams and tunnels, the capacity of Heron Reservoir, and operational constraints that limit when water can be diverted. The average annual streamflow at Azotea Tunnel Outlet was 94,710 acre-feet, and the annual streamflow at Azotea Tunnel Outlet was approximately 75 percent of the annual streamflow available for the SJCP. The average annual percentage of available streamflow not diverted for the SJCP was 14 percent because of structural limitations of the capacity of infrastructure, 1 percent because of limitations of the reservoir storage capacity, and 29 percent because of the limitations from operations. For most years, the annual available streamflow not diverted for unknown reasons exceeded the sum of the water not diverted because of structural, capacity, and operational limitations.

  15. Applying A Multi-Objective Based Procedure to SWAT Modelling in Alpine Catchments

    NASA Astrophysics Data System (ADS)

    Tuo, Y.; Disse, M.; Chiogna, G.

    2017-12-01

    In alpine catchments, water management practices can lead to conflicts between upstream and downstream stakeholders, like in the Adige river basin (Italy). A correct prediction of available water resources plays an important part, for example, in defining how much water can be stored for hydropower production in upstream reservoirs without affecting agricultural activities downstream. Snow is a crucial hydrological component that highly affects seasonal behavior of streamflow. Therefore, a realistic representation of snow dynamics is fundamental for water management operations in alpine catchments. The Soil and Water Assessment Tool (SWAT) model has been applied in alpine catchments worldwide. However, during model calibration of catchment scale applications, snow parameters were generally estimated based on streamflow records rather than on snow measurements. This may lead to streamflow predictions with wrong snow melt contribution. This work highlights the importance of considering snow measurements in the calibration of the SWAT model for alpine hydrology and compares various calibration methodologies. In addition to discharge records, snow water equivalent time series of both subbasin scale and monitoring station were also utilized to evaluate the model performance by comparing with the SWAT subbasin and elevation band snow outputs. Comparing model results obtained calibrating the model using discharge data only and discharge data along with snow water equivalent data, we show that the latter approach allows us to improve the reliability of snow simulations while maintaining good estimations of streamflow. With a more reliable representation of snow dynamics, the hydrological model can provide more accurate references for proposing adequate water management solutions. This study offers to the wide SWAT user community an effective approach to improve streamflow predictions in alpine catchments and hence support decision makers in water allocation.

  16. Characteristics and trends of streamflow and dissolved solids in the upper Colorado River Basin, Arizona, Colorado, New Mexico, Utah, and Wyoming

    USGS Publications Warehouse

    Liebermann, Timothy D.; Mueller, David K.; Kircher, James E.; Choquette, Anne F.

    1989-01-01

    Annual and monthly concentrations and loads of dissolved solids and major constituents were estimated for 70 streamflow-gaging stations in the Upper Colorado River Basin. Trends in streamflow, dissolved-solids concentrations, and dissolved-solids loads were identified. Nonparametric trend-analysis techniques were used to determine step trends resulting from human activities upstream and long-term monotonic trends. Results were compared with physical characteristics of the basin and historical water-resource development in the basin to determine source areas of dissolved solids and possible cause of trends. Mean annual dissolved-solids concentration increases from less than 100 milligrams per liter in the headwater streams to more than 500 milligrams per liter in the outflow from the Upper Colorado River Basin. All the major tributaries that have high concentrations of dissolved solids are downstream from extensive areas of irrigated agriculture. However, irrigation predated the period of record for most sites and was not a factor in many identified trends. Significant annual trends were identified for 30 sites. Most of these trends were related to transbasin exports, changes in land use, salinity-control practices, or reservoir development. The primary factor affecting streamflow and dissolved-solids concentration and load has been the construction of large reservoirs. Reservoirs have decreased the seasonal and annual variability of streamflow and dissolved solids in streams that drain the Gunnison and San Juan River basins. Fontenelle and Flaming Gorge Reservoirs have increased the dissolved-solids load in the Green River because of dissolution of mineral salts from the bank material. The largest trends occurred downstream from Lake Powell. However, the period of record since the completion of filling was too short to estimate the long-term effects of that reservoir.

  17. Construction of estimated flow- and load-duration curves for Kentucky using the Water Availability Tool for Environmental Resources (WATER)

    USGS Publications Warehouse

    Unthank, Michael D.; Newson, Jeremy K.; Williamson, Tanja N.; Nelson, Hugh L.

    2012-01-01

    Flow- and load-duration curves were constructed from the model outputs of the U.S. Geological Survey's Water Availability Tool for Environmental Resources (WATER) application for streams in Kentucky. The WATER application was designed to access multiple geospatial datasets to generate more than 60 years of statistically based streamflow data for Kentucky. The WATER application enables a user to graphically select a site on a stream and generate an estimated hydrograph and flow-duration curve for the watershed upstream of that point. The flow-duration curves are constructed by calculating the exceedance probability of the modeled daily streamflows. User-defined water-quality criteria and (or) sampling results can be loaded into the WATER application to construct load-duration curves that are based on the modeled streamflow results. Estimates of flow and streamflow statistics were derived from TOPographically Based Hydrological MODEL (TOPMODEL) simulations in the WATER application. A modified TOPMODEL code, SDP-TOPMODEL (Sinkhole Drainage Process-TOPMODEL) was used to simulate daily mean discharges over the period of record for 5 karst and 5 non-karst watersheds in Kentucky in order to verify the calibrated model. A statistical evaluation of the model's verification simulations show that calibration criteria, established by previous WATER application reports, were met thus insuring the model's ability to provide acceptably accurate estimates of discharge at gaged and ungaged sites throughout Kentucky. Flow-duration curves are constructed in the WATER application by calculating the exceedence probability of the modeled daily flow values. The flow-duration intervals are expressed as a percentage, with zero corresponding to the highest stream discharge in the streamflow record. Load-duration curves are constructed by applying the loading equation (Load = Flow*Water-quality criterion) at each flow interval.

  18. Changes in precipitation-streamflow transformation around the world: interdecadal variability and trends.

    NASA Astrophysics Data System (ADS)

    Saft, M.; Peel, M. C.; Andreassian, V.; Parajka, J.; Coxon, G.; Freer, J. E.; Woods, R. A.

    2017-12-01

    Accurate prediction of hydrologic response to potentially changing climatic forcing is a key current challenge in hydrology. Recent studies exploring decadal to multidecadal climate drying in the African Sahel and south-eastern and south-western Australia demonstrated that long dry periods also had an indirect cumulative impact on streamflow via altered catchment biophysical properties. As a result, hydrologic response to persisting change in climatic conditions, i.e. precipitation, cannot be confidently inferred from the hydrologic response to short-term interannual climate fluctuations of similar magnitude. This study aims to characterise interdecadal changes in precipitation-runoff conversion processes globally. The analysis is based on long continuous records from near-natural baseline catchments in North America, Europe, and Australia. We used several complimentary metrics characterising precipitation-runoff relationship to assess how partitioning changed over recent decades. First, we explore the hypothesis that during particularly dry or wet decades the precipitation elasticity of streamflow increases over what can be expected from inter-annual variability. We found this hypothesis holds for both wet and dry periods in some regions, but not everywhere. Interestingly, trend-like behaviour in the precipitation-runoff partitioning, unrelated to precipitation changes, offset the impact of persisting precipitation change in some regions. Therefore, in the second part of this study we explored longer-term trends in precipitation-runoff partitioning, and related them to climate and streamflow changes. We found significant changes in precipitation-runoff relationship around the world, which implies that runoff response to a given precipitation can vary over decades even in near-natural catchments. When significant changes occur, typically less runoff is generated for a given precipitation over time - even when precipitation is increasing. We discuss the consistency of the results and how the likely drivers differ between regions, and between water-limited and energy limited environments. We argue that when considering the impact of climatic change on hydrological systems we need to consider potential cumulative impacts of climatic shifts.

  19. Review of the hydrologic data-collection network in the St Joseph River basin, Indiana

    USGS Publications Warehouse

    Crompton, E.J.; Peters, J.G.; Miller, R.L.; Stewart, J.A.; Banaszak, K.J.; Shedlock, R.J.

    1986-01-01

    The St. Joseph River Basin data-collection network in the St. Joseph River for streamflow, lake, ground water, and climatic stations was reviewed. The network review included only the 1700 sq mi part of the basin in Indiana. The streamflow network includes 11 continuous-record gaging stations and one partial-record station. Based on areal distribution, lake effect , contributing drainage area, and flow-record ratio, six of these stations can be used to describe regional hydrology. Gaging stations on lakes are used to collect long-term lake-level data on which to base legal lake levels, and to monitor lake-level fluctuations after legal levels are established. More hydrogeologic data are needed for determining the degree to which grouhd water affects lake levels. The current groundwater network comprises 15 observation wells and has four purposes: (1) to determine the interaction between groundwater and lakes; (2) to measure changes in groundwater levels near irrigation wells; (3) to measure water levels in wells at special purpose sites; and (4) to measure long-term changes in water levels in areas not affected by pumping. Seven wells near three lakes have provided sufficient information for correlating water levels in wells and lakes but are not adequate to quantify the effect of groundwater on lake levels. Water levels in five observation wells located in the vicinity of intensive irrigation are not noticeably affected by seasonal withdrawals. The National Weather Sevice operates eight climatic stations in the basin primarily to characterize regional climatic conditions and to aid in flood forecasting. The network meets network-density guidelines established by the World Meterological Organization for collection of precipitation and evaporation data but not guidelines suggested by the National Weather Service for density of precipitation gages in areas of significant convective rainfalls. (Author 's abstract)

  20. Low-flow characteristics of streams in South Carolina

    USGS Publications Warehouse

    Feaster, Toby D.; Guimaraes, Wladmir B.

    2017-09-22

    An ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina is important for the protection and preservation of the State’s water resources. Information concerning the low-flow characteristics of streams is especially important during critical flow periods, such as during the historic droughts that South Carolina has experienced in the past few decades.Between 2008 and 2016, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, updated low-flow statistics at 106 continuous-record streamgages operated by the U.S. Geological Survey for the eight major river basins in South Carolina. The low-flow frequency statistics included the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day mean flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamflow-gaging station. Computations of daily mean flow durations for the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance also were included.This report summarizes the findings from publications generated during the 2008 to 2016 investigations. Trend analyses for the annual minimum 7-day average flows are provided as well as trend assessments of long-term annual precipitation data. Statewide variability in the annual minimum 7-day average flow is assessed at eight long-term (record lengths from 55 to 78 years) streamgages. If previous low-flow statistics were available, comparisons with the updated annual minimum 7-day average flow, having a 10-year recurrence interval, were made. In addition, methods for estimating low-flow statistics at ungaged locations near a gaged location are described.

  1. Wet trend continues for lakes

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    About 20% of the United States, including the regions of the Great Lakes and the Great Salt Lake, has entered a fourth year of record and near-record streamflow and lake levels, according to the U.S. Geological Survey (USGS). From June 3 until June 8, 1986, the Great Salt Lake stood at 1283.77 m above sea level, 0.076 m above the previous record, which was set in 1873. (Records have been kept for the lake since 1847.) On June 8, a dike south of the lake gave way during a windstorm, causing flooding of evaporation ponds used for mineral recovery.As a result of the breach, the lake's level dropped to 1283.65 m above sea level by June 10 but rose to 1283.68 m by June 20. The latest official reading, made on June 30, showed that the lake's level had dropped to 1283.63 m above sea level. According to Tom Ross, chief of the Current Water Conditions Group at the USGS National Center in Reston, Va., this drop represents “a normal seasonal decline brought on by evaporation.”

  2. Timing and Duration of Flow in Ephemeral Streams of the Sierra Vista Subwatershed of the Upper San Pedro Basin, Cochise County, Southeastern Arizona

    USGS Publications Warehouse

    Gungle, Bruce

    2006-01-01

    Frequency, timing, and duration of streamflow were monitored in 20 ephemeral-stream channels across the Sierra Vista Subwatershed of the Upper San Pedro Basin, southeastern Arizona, during an 18-month period. One channel (Walnut Gulch) had Agricultural Research Service streamflow-gaging stations in place. The sediments of the remaining 19 ephemeral-stream channels were instrumented with multiple temperature loggers along the channel lengths. A thermograph-interpretation technique was developed in order to determine frequency, timing, and duration of streamflow in these channels. Streamflow onset was characterized by exceedance of a critical minimum drop in temperature within the channel sediments during any 15-minute interval, whereas streamflow cessation was identified by the local temperature minimum that immediately followed the critical temperature drop. All data for the 18-month period from December 1, 2000, to May 31, 2002, were analyzed in terms of monsoon (June 1 to September 19) and nonmonsoon (September 20 to May 31) periods. Nonmonsoon precipitation during the 2000-2002 study period (excludes October and November 2000) was 82 percent and 39 percent of the 30-year average, respectively, whereas monsoon precipitation during 2001 was 99 percent of the 30-year average. Ephemeral streamflow was detected at least once during the monitoring period at 87 percent of the monitoring sites (45 of the 52 sites that returned useful data; includes 4 streamflow-gaging stations). The summer monsoon period accounted for 82 percent of all streamflow events by number and 71 percent of all events by total streamflow duration. Nonmonsoon streamflow events peaked in number, total streamflow duration, and mean streamflow duration midway between the Huachuca Mountains and the San Pedro River on the west side of the subwatershed. These three streamflow parameters dropped off sharply about 10 kilometers from the mountain front. The number and total duration of nonmonsoon streamflows on the east side of the subwatershed trended downward with increased distance from the mountain fronts. Monsoon streamflow events were more evenly distributed across the subwatershed than nonmonsoon events, and the number and duration of streamflows generally trended upward with distance from the mountain fronts. Additional years of data are needed to determine whether these patterns are consistent year to year, or were due to randomness in the spatial distribution of precipitation. Streamflows in three ephemeral-stream channels were analyzed in detail. More than two-thirds of the streamflow events detected in each of these channels occurred at no more than one monitoring site along the channel length. In only one of the three channels-Garden Canyon-was a streamflow event detected at all logger sites along its length. Five temperature loggers provided data from urbanized areas, and these loggers detected streamflow more than 50 percent more often and of a duration nearly three times greater than did temperature loggers across the rural parts of the subwatershed. Because historical records do not indicate that more precipitation occurs in the urbanized area than in the rural areas, the increased frequency of flow detection in the urban area is attributed to an increase in runoff from the impervious surfaces throughout the urbanized area.

  3. Classification Scheme for Centuries of Reconstructed Streamflow Droughts in Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Stagge, J.; Rosenberg, D. E.

    2017-12-01

    New advances in reconstructing streamflow from tree rings have permitted the reconstruction of flows back to the 1400s or earlier at a monthly, rather than annual, time scale. This is a critical step for incorporating centuries of streamflow reconstructions into water resources planning. Expanding the historical record is particularly important where the observed record contains few of these rare, but potentially disastrous extreme events. We present how a paleo-drought clustering approach was incorporated alongside more traditional water management planning in the Weber River basin, northern Utah. This study used newly developed monthly reconstructions of flow since 1430 CE and defined drought events as flow less than the 50th percentile during at least three contiguous months. Characteristics for each drought event included measures of drought duration, severity, cumulative loss, onset, seasonality, recession rate, and recovery rate. Reconstructed drought events were then clustered by hierarchical clustering to determine distinct drought "types" and the historical event that best represents the centroid of each cluster. The resulting 144 reconstructed drought events in the Weber basin clustered into nine distinct types, of which four were severe enough to potentially require drought management. Using the characteristic drought event for each of the severe drought clusters, water managers were able to estimate system reliability and the historical return frequency for each drought type. Plotting drought duration and severity from centuries of historical reconstructed events alongside observed events and climate change projections further placed recent events into a historical context. For example, the drought of record for the Weber River remains the most severe event in the record with regard to minimum flow percentile (1930, 7 years), but is far from the longest event in the longer historical record, where events beginning in 1658 and 1705 both lasted longer than 13 years. The proposed drought clustering approach provides a powerful tool for merging historical reconstructions, observations, and climate change projections in water resources planning, while also providing a framework to make use of valuable and increasingly available tree-ring reconstructions of monthly streamflow.

  4. Characteristics of the April 2007 Flood at 10 Streamflow-Gaging Stations in Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.; Carlson, Carl S.

    2009-01-01

    A large 'nor'easter' storm on April 15-18, 2007, brought heavy rains to the southern New England region that, coupled with normal seasonal high flows and associated wet soil-moisture conditions, caused extensive flooding in many parts of Massachusetts and neighboring states. To characterize the magnitude of the April 2007 flood, a peak-flow frequency analysis was undertaken at 10 selected streamflow-gaging stations in Massachusetts to determine the magnitude of flood flows at 5-, 10-, 25-, 50-, 100-, 200-, and 500-year return intervals. The magnitude of flood flows at various return intervals were determined from the logarithms of the annual peaks fit to a Pearson Type III probability distribution. Analysis included augmenting the station record with longer-term records from one or more nearby stations to provide a common period of comparison that includes notable floods in 1936, 1938, and 1955. The April 2007 peak flow was among the highest recorded or estimated since 1936, often ranking between the 3d and 5th highest peak for that period. In general, the peak-flow frequency analysis indicates the April 2007 peak flow has an estimated return interval between 25 and 50 years; at stations in the northeastern and central areas of the state, the storm was less severe resulting in flows with return intervals of about 5 and 10 years, respectively. At Merrimack River at Lowell, the April 2007 peak flow approached a 100-year return interval that was computed from post-flood control records and the 1936 and 1938 peak flows adjusted for flood control. In general, the magnitude of flood flow for a given return interval computed from the streamflow-gaging station period-of-record was greater than those used to calculate flood profiles in various community flood-insurance studies. In addition, the magnitude of the updated flood flow and current (2008) stage-discharge relation at a given streamflow-gaging station often produced a flood stage that was considerably different than the flood stage indicated in the flood-insurance study flood profile at that station. Equations for estimating the flow magnitudes for 5-, 10-, 25-, 50-, 100-, 200-, and 500-year floods were developed from the relation of the magnitude of flood flows to drainage area calculated from the six streamflow-gaging stations with the longest unaltered record. These equations produced a more conservative estimate of flood flows (higher discharges) than the existing regional equations for estimating flood flows at ungaged rivers in Massachusetts. Large differences in the magnitude of flood flows for various return intervals determined in this study compared to results from existing regional equations and flood insurance studies indicate a need for updating regional analyses and equations for estimating the expected magnitude of flood flows in Massachusetts.

  5. Scaling characteristics of mountainous river flow fluctuations determined using a shallow-water acoustic tomography system

    NASA Astrophysics Data System (ADS)

    Al Sawaf, Mohamad Basel; Kawanisi, Kiyosi; Kagami, Junya; Bahreinimotlagh, Masoud; Danial, Mochammad Meddy

    2017-10-01

    The aim of this study is to investigate the scaling exponent properties of mountainous river flow fluctuations by detrended fluctuation analysis (DFA). Streamflow data were collected continuously using Fluvial Acoustic Tomography System (FATS), which is a novel system for measuring continuous streamflow at high-frequency scales. The results revealed that river discharge fluctuations have two scaling regimes and scaling break. In contrast to the Ranting Curve method (RC), the small-scale exponent detected by the FATS is estimated to be 1.02 ± 0.42% less than that estimated by RC. More importantly, the crossover times evaluated from the FATS delayed approximately by 42 ± 21 hr ≈2-3 days than their counterparts estimated by RC. The power spectral density analysis assists our findings. We found that scaling characteristics information evaluated for a river using flux data obtained by RC approach might not be accurately detected, because this classical method assumes that flow in river is steady and depends on constructing a relationship between discharge and water level, while the discharge obtained by the FATS decomposes velocity and depth into two ratings according to the continuity equation. Generally, this work highlights the performance of FATS as a powerful and effective approach for continuous streamflow measurements at high-frequency levels.

  6. User's manual for computer program BASEPLOT

    USGS Publications Warehouse

    Sanders, Curtis L.

    2002-01-01

    The checking and reviewing of daily records of streamflow within the U.S. Geological Survey is traditionally accomplished by hand-plotting and mentally collating tables of data. The process is time consuming, difficult to standardize, and subject to errors in computation, data entry, and logic. In addition, the presentation of flow data on the internet requires more timely and accurate computation of daily flow records. BASEPLOT was developed for checking and review of primary streamflow records within the U.S. Geological Survey. Use of BASEPLOT enables users to (1) provide efficiencies during the record checking and review process, (2) improve quality control, (3) achieve uniformity of checking and review techniques of simple stage-discharge relations, and (4) provide a tool for teaching streamflow computation techniques. The BASEPLOT program produces tables of quality control checks and produces plots of rating curves and discharge measurements; variable shift (V-shift) diagrams; and V-shifts converted to stage-discharge plots, using data stored in the U.S. Geological Survey Automatic Data Processing System database. In addition, the program plots unit-value hydrographs that show unit-value stages, shifts, and datum corrections; input shifts, datum corrections, and effective dates; discharge measurements; effective dates for rating tables; and numeric quality control checks. Checklist/tutorial forms are provided for reviewers to ensure completeness of review and standardize the review process. The program was written for the U.S. Geological Survey SUN computer using the Statistical Analysis System (SAS) software produced by SAS Institute, Incorporated.

  7. Quantity and sources of base flow in the San Pedro River near Tombstone, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Gungle, Bruce

    2010-01-01

    Base flow in the upper San Pedro River at the gaging station (USGS station 09471550) near Tombstone, Arizona, is an important factor in the long-term sustainability of the river's riparian ecosystem. Most base flow occurs during the non-summer months (typically, from November to May), because evapotranspiration (ET) is greater than groundwater discharge to the riparian zone during the growing season and typically causes periods of zero flow in the spring and fall. Streamflow during the summer months occurs only as a result of rainfall and runoff. Using a hydrograph separation technique that partitions streamflow into stormflow and base flow, based on the change in runoff from the previous day, median base flow at the Tombstone gage from 1968 to 2009 (1987 to 1996 data absent) is 4,890 acre-ft/yr. Median base flow for the earlier period of record, 1968 to 1986, is 5,830 acre-ft/yr and for the later period, 1997 to 2009, is 2,880 acre-ft/yr. Base flow in the upper San Pedro River is derived from groundwater discharge to the river from the regional and alluvial aquifer. The regional aquifer is defined as having recharge zones away from the river, primarily at mountain fronts and along ephemeral channels. The alluvial aquifer is recharged mainly from stormflow. Based on environmental isotope data, the composition of base flow in the upper San Pedro River at the gaging station near Tombstone is 74 +/- 10 percent regional groundwater and 26 +/- 10 percent summer storm runoff stored as alluvial groundwater for the 2000 to 2009 period. The volume of base flow in a given year is well explained, using multiple regression, by mean daily flow during the previous October and by rainfall during the months of December and January (R2 = 0.9). This does not suggest that streamflow is composed only of these two sources; rather, these two sources control the degree of saturation of the near-stream alluvial aquifer and, therefore, the amount of winter base-flow infiltration that is possible upstream of the Tombstone gaging station. Because of losing conditions upstream of the Tombstone gage, there is no minimum amount of base flow that would be expected in any given year. The regression equation was used to adjust the measured base flow to account for year-to-year variation in precipitation. Adjusted base flows decreased, independent of climate, from the early period of record to the late period of record. In addition to total base flow, other metrics were considered, including the start and end dates of base flow, the number of days of base flow, the 25th percentile mean daily flow, and the number of days of zero flow. Each of these showed a decline in base flow between the early period of record and the late period. The available evidence to evaluate this decrease - hydraulic gradients in the alluvial and regional aquifers and a 10-yr record of streamflow environmental isotope samples - indicates that no reduction in groundwater discharge has occurred over this period of record. Continued regional groundwater pumping will, however, eventually lead to a decline in the contribution of regional groundwater to base flow.

  8. Missouri StreamStats—A water-resources web application

    USGS Publications Warehouse

    Ellis, Jarrett T.

    2018-01-31

    The U.S. Geological Survey (USGS) maintains and operates more than 8,200 continuous streamgages nationwide. Types of data that may be collected, computed, and stored for streamgages include streamgage height (water-surface elevation), streamflow, and water quality. The streamflow data allow scientists and engineers to calculate streamflow statistics, such as the 1-percent annual exceedance probability flood (also known as the 100-year flood), the mean flow, and the 7-day, 10-year low flow, which are used by managers to make informed water resource management decisions, at each streamgage location. Researchers, regulators, and managers also commonly need physical characteristics (basin characteristics) that describe the unique properties of a basin. Common uses for streamflow statistics and basin characteristics include hydraulic design, water-supply management, water-use appropriations, and flood-plain mapping for establishing flood-insurance rates and land-use zones. The USGS periodically publishes reports that update the values of basin characteristics and streamflow statistics at selected gaged locations (locations with streamgages), but these studies usually only update a subset of streamgages, making data retrieval difficult. Additionally, streamflow statistics and basin characteristics are most often needed at ungaged locations (locations without streamgages) for which published streamflow statistics and basin characteristics do not exist. Missouri StreamStats is a web-based geographic information system that was created by the USGS in cooperation with the Missouri Department of Natural Resources to provide users with access to an assortment of tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain the most recent published streamflow statistics and basin characteristics for streamgage locations and to automatically calculate selected basin characteristics and estimate streamflow statistics at ungaged locations.

  9. Effects of uncertainties in hydrological modelling. A case study of a mountainous catchment in Southern Norway

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjørn; Steinsland, Ingelin; Johansen, Stian Solvang; Petersen-Øverleir, Asgeir; Kolberg, Sjur

    2016-05-01

    In this study, we explore the effect of uncertainty and poor observation quality on hydrological model calibration and predictions. The Osali catchment in Western Norway was selected as case study and an elevation distributed HBV-model was used. We systematically evaluated the effect of accounting for uncertainty in parameters, precipitation input, temperature input and streamflow observations. For precipitation and temperature we accounted for the interpolation uncertainty, and for streamflow we accounted for rating curve uncertainty. Further, the effects of poorer quality of precipitation input and streamflow observations were explored. Less information about precipitation was obtained by excluding the nearest precipitation station from the analysis, while reduced information about the streamflow was obtained by omitting the highest and lowest streamflow observations when estimating the rating curve. The results showed that including uncertainty in the precipitation and temperature inputs has a negligible effect on the posterior distribution of parameters and for the Nash-Sutcliffe (NS) efficiency for the predicted flows, while the reliability and the continuous rank probability score (CRPS) improves. Less information in precipitation input resulted in a shift in the water balance parameter Pcorr, a model producing smoother streamflow predictions, giving poorer NS and CRPS, but higher reliability. The effect of calibrating the hydrological model using streamflow observations based on different rating curves is mainly seen as variability in the water balance parameter Pcorr. When evaluating predictions, the best evaluation scores were not achieved for the rating curve used for calibration, but for rating curves giving smoother streamflow observations. Less information in streamflow influenced the water balance parameter Pcorr, and increased the spread in evaluation scores by giving both better and worse scores.

  10. Problems with indirect determinations of peak streamflows in steep, desert stream channels

    USGS Publications Warehouse

    Glancy, Patrick A.; Williams, Rhea P.

    1994-01-01

    Many peak streamflow values used in flood analyses for desert areas are derived using the Manning equation. Data used in the equation are collected after the flow has subsided, and peak flow is thereby determined indirectly. Most measurement problems and associated errors in peak-flow determinations result from (1) channel erosion or deposition that cannot be discerned or properly evaluated after the fact, (2) unsteady and non-uniform flow that rapidly changes in magnitude, and (3) appreciable sediment transport that has unknown effects on energy dissipation. High calculated velocities and Froude numbers are unacceptable to some investigators. Measurement results could be improved by recording flows with a video camera, installing a recording stream gage and recording rain gages, measuring channel scour with buried chains, analyzing measured data by multiple techniques, and supplementing indirect measurements with direct measurements of stream velocities in similar ephemeral streams.

  11. Estimating monthly streamflow values by cokriging

    USGS Publications Warehouse

    Solow, A.R.; Gorelick, S.M.

    1986-01-01

    Cokriging is applied to estimation of missing monthly streamflow values in three records from gaging stations in west central Virginia. Missing values are estimated from optimal consideration of the pattern of auto- and cross-correlation among standardized residual log-flow records. Investigation of the sensitivity of estimation to data configuration showed that when observations are available within two months of a missing value, estimation is improved by accounting for correlation. Concurrent and lag-one observations tend to screen the influence of other available observations. Three models of covariance structure in residual log-flow records are compared using cross-validation. Models differ in how much monthly variation they allow in covariance. Precision of estimation, reflected in mean squared error (MSE), proved to be insensitive to this choice. Cross-validation is suggested as a tool for choosing an inverse transformation when an initial nonlinear transformation is applied to flow values. ?? 1986 Plenum Publishing Corporation.

  12. Recent Improvements to the U.S. Geological Survey Streamgaging Program...from the National Streamflow Information Program

    USGS Publications Warehouse

    Blanchard, Stephen F.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) established its first streamgage in 1889 on the Rio Grande River at Embudo, N.M. As the need for streamflow information increased, the USGS streamgaging network expanded to its current (2007) size of approximately 7,400 streamgages nationwide. The USGS streamgaging network, for most of its history, required mechanical measuring and recording devices to collect station data. Time-consuming and labor-intensive site visits were required to gather the recorded data for processing in the office. Eventually the data were published in paper reports. The USGS has progressively improved the streamgaging program by incorporating new technologies and techniques that streamline data collection, data delivery, and records processing while increasing the number and quality of product types that can be derived from the data. Improvements in recent decades that have expanded and broadened the streamgaging program are included the fact sheet.

  13. Cost effectiveness of the stream-gaging program in northeastern California

    USGS Publications Warehouse

    Hoffard, S.H.; Pearce, V.F.; Tasker, Gary D.; Doyle, W.H.

    1984-01-01

    Results are documented of a study of the cost effectiveness of the stream-gaging program in northeastern California. Data uses and funding sources were identified for the 127 continuous stream gages currently being operated in the study area. One stream gage was found to have insufficient data use to warrant cooperative Federal funding. Flow-routing and multiple-regression models were used to simulate flows at selected gaging stations. The models may be sufficiently accurate to replace two of the stations. The average standard error of estimate of streamflow records is 12.9 percent. This overall level of accuracy could be reduced to 12.0 percent using computer-recommended service routes and visit frequencies. (USGS)

  14. In Brief: Online database for instantaneous streamflow data

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-11-01

    Access to U.S. Geological Survey (USGS) historical instantaneous streamflow discharge data, dating from around 1990, is now available online through the Instantaneous Data Archive (IDA), the USGS announced on 14 November. In this new system, users can find streamflow information reported at the time intervals at which it is collected, typically 15-minute to hourly intervals. Although instantaneous data have been available for many years, they were not accessible through the Internet. Robert Hirsch, USGS Associate Director of Water, said, ``A user-friendly archive of historical instantaneous streamflow data is important to many different users for such things as floodplain mapping, flood modeling, and estimating pollutant transport.''The site currently has about 1.5 billion instantaneous data values from 5500 stream gages in 26 states. The number of states and stream gages with data will continue to increase, according to the USGS. For more information, visit the Web site: http://ida.water.usgs.gov/ida/.

  15. Robust, low-cost data loggers for stream temperature, flow intermittency, and relative conductivity monitoring

    USGS Publications Warehouse

    Chapin, Thomas; Todd, Andrew S.; Zeigler, Matthew P.

    2014-01-01

    Water temperature and streamflow intermittency are critical parameters influencing aquatic ecosystem health. Low-cost temperature loggers have made continuous water temperature monitoring relatively simple but determining streamflow timing and intermittency using temperature data alone requires significant and subjective data interpretation. Electrical resistance (ER) sensors have recently been developed to overcome the major limitations of temperature-based methods for the assessment of streamflow intermittency. This technical note introduces the STIC (Stream Temperature, Intermittency, and Conductivity logger); a robust, low-cost, simple to build instrument that provides long-duration, high-resolution monitoring of both relative conductivity (RC) and temperature. Simultaneously collected temperature and RC data provide unambiguous water temperature and streamflow intermittency information that is crucial for monitoring aquatic ecosystem health and assessing regulatory compliance. With proper calibration, the STIC relative conductivity data can be used to monitor specific conductivity.

  16. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2006 to June 30, 2007

    USGS Publications Warehouse

    Young, Stacie T.M.; Jamison, Marcael T.J.

    2007-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two stations, continuous streamflow data at three stations, and water-quality data at five stations, which include the two continuous streamflow stations. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2006 and June 30, 2007. A total of 13 samples was collected over two storms during July 1, 2006 to June 30, 2007. The goal was to collect grab samples nearly simultaneously at all five stations and flow-weighted time-composite samples at the three stations equipped with automatic samplers. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). Additionally, grab samples were analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples were also collected during storms and during routine maintenance to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.

  17. Global Climate Model Simulated Hydrologic Droughts and Floods in the Nelson-Churchill Watershed

    NASA Astrophysics Data System (ADS)

    Vieira, M. J. F.; Stadnyk, T. A.; Koenig, K. A.

    2014-12-01

    There is uncertainty surrounding the duration, magnitude and frequency of historical hydroclimatic extremes such as hydrologic droughts and floods prior to the observed record. In regions where paleoclimatic studies are less reliable, Global Climate Models (GCMs) can provide useful information about past hydroclimatic conditions. This study evaluates the use of Coupled Model Intercomparison Project 5 (CMIP5) GCMs to enhance the understanding of historical droughts and floods across the Canadian Prairie region in the Nelson-Churchill Watershed (NCW). The NCW is approximately 1.4 million km2 in size and drains into Hudson Bay in Northern Manitoba, Canada. One hundred years of observed hydrologic records show extended dry and wet periods in this region; however paleoclimatic studies suggest that longer, more severe droughts have occurred in the past. In Manitoba, where hydropower is the primary source of electricity, droughts are of particular interest as they are important for future resource planning. Twenty-three GCMs with daily runoff are evaluated using 16 metrics for skill in reproducing historic annual runoff patterns. A common 56-year historic period of 1950-2005 is used for this evaluation to capture wet and dry periods. GCM runoff is then routed at a grid resolution of 0.25° using the WATFLOOD hydrological model storage-routing algorithm to develop streamflow scenarios. Reservoir operation is naturalized and a consistent temperature scenario is used to determine ice-on and ice-off conditions. These streamflow simulations are compared with the historic record to remove bias using quantile mapping of empirical distribution functions. GCM runoff data from pre-industrial and future projection experiments are also bias corrected to obtain extended streamflow simulations. GCM streamflow simulations of more than 650 years include a stationary (pre-industrial) period and future periods forced by radiative forcing scenarios. Quantile mapping adjusts for magnitude only while maintaining the GCM's sequencing of events, allowing for the examination of differences in historic and future hydroclimatic extremes. These bias corrected streamflow scenarios provide an alternative to stochastic simulations for hydrologic data analysis and can aid future resource planning and environmental studies.

  18. Index of surface-water records to December 31, 1963: Part 10. - The Great Basin

    USGS Publications Warehouse

    Eisenhuth, H.P.

    1965-01-01

    This report lists the streamflow and reservoir stations in The Great Basin·for which records have been or are to be published in reports of the Geological Survey for periods through December 31, 1963. It supersedes Geological Survey Circular 390.

  19. Index of surface-water records to September 30, 1967: Part 10. - The Great Basin

    USGS Publications Warehouse

    Eisenhuth, H.P.

    1968-01-01

    This report lists the streamflow and reservoir stations in The Great Basin for which records have been or are to be published in reports of the Geological Survey for periods through September 30, 1967. It supersedes Geological Survey Circular 510.

  20. Continuous automated sensing of streamflow density as a surrogate for suspended-sediment concentration sampling

    USGS Publications Warehouse

    Larsen, Matthew C.; Figueroa Alamo, Carlos; Gray, John R.; Fletcher, William

    2001-01-01

    A newly refined technique for continuously and automatically sensing the density of a water-sediment mixture is being tested at a U.S. Geological Survey streamflow-gaging station in Puerto Rico. Originally developed to measure crude oil density, the double bubbler instrument measures fluid density by means of pressure transducers at two elevations in a vertical water column. By subtracting the density of water from the value measured for the density of the water-sediment mixture, the concentration of suspended sediment can be estimated. Preliminary tests of the double bubbler instrument show promise but are not yet conclusive.

  1. Physically Based Mountain Hydrological Modelling using Reanalysis Data in Patagonia

    NASA Astrophysics Data System (ADS)

    Krogh, S.; Pomeroy, J. W.; McPhee, J. P.

    2013-05-01

    Remote regions in South America are often characterized by insufficient observations of meteorology for robust hydrological model operation. Yet water resources must be quantified, understood and predicted in order to develop effective water management policies. Here, we developed a physically based hydrological model for a major river in Patagonia using the modular Cold Regions Hydrological Modelling Platform (CRHM) in order to better understand hydrological processes leading to streamflow generation in this remote region. The Baker River -with the largest mean annual streamflow in Chile-, drains snowy mountains, glaciers, wet forests, peat and semi-arid pampas into a large lake. Meteorology over the basin is poorly monitored in that there are no high elevation weather stations and stations at low elevations are sparsely distributed, only measure temperature and rainfall and are poorly maintained. Streamflow in the basin is gauged at several points where there are high quality hydrometric stations. In order to quantify the impact of meteorological data scarcity on prediction, two additional data sources were used: the ERA-Interim (ECMWF Re-analyses) and CFSR (Climate Forecast System Reanalysis) atmospheric reanalyses. Precipitation temporal distribution and magnitude from the models and observations were compared and the reanalysis data was found to have about three times the number of days with precipitation than the observations did. Better synchronization between measured peak streamflows and modeled precipitation was found compared to observed precipitation. These differences are attributed to: (i) lack of any snowfall observations (so precipitation records does not consider snowfall events) and (ii) available rainfall observations are all located at low altitude (<500 m a.s.l), and miss the occurrence of high altitude precipitation events. CRHM parameterization was undertaken by using local physiographic and vegetation characteristics where available and transferring locally unknown hydrological process parameters from cold regions mountain environments in Canada. Some soil moisture parameters were calibrated from streamflow observations. Model performance was estimated through comparison with observed streamflow records. Simulations using observed precipitation had negligible representativeness of streamflow (Nash-Sutcliffe coefficient, NS ≈ 0.2), while those using any of the two reanalyses as forcing data had reasonable model performance (NS ≈ 0.7). In spite of the better spatial resolution of the CFSR, the ability to simulate streamflow were not significantly different using either CFSR or ERA-Interim. The modeled water balance shows that snowfall is about 30% of the total precipitation input, but snowmelt superficial runoff comprises about 10% of total runoff. About 75% of all precipitation is infiltrated, and approximately 15% of the losses are attributed to evapotranspiration from soil and lake evaporation.

  2. Streamflow variability and classification using false nearest neighbor method

    NASA Astrophysics Data System (ADS)

    Vignesh, R.; Jothiprakash, V.; Sivakumar, B.

    2015-12-01

    Understanding regional streamflow dynamics and patterns continues to be a challenging problem. The present study introduces the false nearest neighbor (FNN) algorithm, a nonlinear dynamic-based method, to examine the spatial variability of streamflow over a region. The FNN method is a dimensionality-based approach, where the dimension of the time series represents its variability. The method uses phase space reconstruction and nearest neighbor concepts, and identifies false neighbors in the reconstructed phase space. The FNN method is applied to monthly streamflow data monitored over a period of 53 years (1950-2002) in an extensive network of 639 stations in the contiguous United States (US). Since selection of delay time in phase space reconstruction may influence the FNN outcomes, analysis is carried out for five different delay time values: monthly, seasonal, and annual separation of data as well as delay time values obtained using autocorrelation function (ACF) and average mutual information (AMI) methods. The FNN dimensions for the 639 streamflow series are generally identified to range from 4 to 12 (with very few exceptional cases), indicating a wide range of variability in the dynamics of streamflow across the contiguous US. However, the FNN dimensions for a majority of the streamflow series are found to be low (less than or equal to 6), suggesting low level of complexity in streamflow dynamics in most of the individual stations and over many sub-regions. The FNN dimension estimates also reveal that streamflow dynamics in the western parts of the US (including far west, northwestern, and southwestern parts) generally exhibit much greater variability compared to that in the eastern parts of the US (including far east, northeastern, and southeastern parts), although there are also differences among 'pockets' within these regions. These results are useful for identification of appropriate model complexity at individual stations, patterns across regions and sub-regions, interpolation and extrapolation of data, and catchment classification. An attempt is also made to relate the FNN dimensions with catchment characteristics and streamflow statistical properties.

  3. Variability and predictability of the streamflows in Coastal and Andean Ecuador

    NASA Astrophysics Data System (ADS)

    Quishpe-Vásquez, César; Córdoba-Machado, Samir; Palomino-Lemus, Reiner; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    The main objective of this study is to examine the variability and the predictability in available water resources in Coastal and Andean Ecuador. For this aim, we use the streamflow data from a network of hydrological stations, provided by the National Institute of Meteorology and Hydrology of Ecuador (IHNAMI), distributed over the Ecuadorian territory and strategically located in the watersheds of its main rivers. A number of 20 stations with a continuous period of daily data covering a period of 42 years (1973-2015) were selected. To analyze the spatio-temporal variability of streamflow in Ecuador, principal component analysis (PCA) along with a study of trends have been applied to the streamflow data at monthly time scales. The significance and magnitude of trends have been analyzed using Man-Kendall test and Sen slope. Moreover, to analyze the predictability of the streamflow, the spatio-temporal effects of the ENSO phenomenon on the country have been evaluated through a correlation analysis using different lags between different El Niño indices (Niño 1+2, Niño Modoki, Trans-Niño and Niño 3.4) and the seasonal streamflow. The results show two main regions that differ in terms of variability. We found that the variations in water resources have a close relationship between the magnitude and the seasonal distribution of the streamflow and the ENSO. However, each index shows a different impact on the streamflow depending on the season and the region. In general, the higher correlations between the ENSO indices and the streamflow are observed in the stations closer to the coast. KEY WORDS: Ecuador streamflow; trends; PCA; variability; predictability; ENSO. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  4. Long-term variation analysis of a tropical river's annual streamflow regime over a 50-year period

    NASA Astrophysics Data System (ADS)

    Seyam, Mohammed; Othman, Faridah

    2015-07-01

    Studying the long-term changes of streamflow is an important tool for enhancing water resource and river system planning, design, and management. The aim of this work is to identify the long-term variations in annual streamflow regime over a 50-year period from 1961 to 2010 in the Selangor River, which is one of the main tropical rivers in Malaysia. Initially, the data underwent preliminary independence, normality, and homogeneity testing using the Pearson correlation coefficient and Shapiro-Wilk and Pettitt's tests, respectively. The work includes a study and analysis of the changes through nine variables describing the annual streamflow and variations in the yearly duration of high and low streamflows. The analyses were conducted via two time scales: yearly and sub-periodic. The sub-periods were obtained by segmenting the 50 years into seven sub-periods by two techniques, namely the change-point test and direct method. Even though analysis revealed nearly negligible changes in mean annual flow over the study period, the maximum annual flow generally increased while the minimum annual flow significantly decreased with respect to time. It was also observed that the variables describing the dispersion in streamflow continually increased with respect to time. An obvious increase was detected in the yearly duration of danger level of streamflow, a slight increase was noted in the yearly duration of warning and alert levels, and a slight decrease in the yearly duration of low streamflow was found. The perceived changes validate the existence of long-term changes in annual streamflow regime, which increase the probability of floods and droughts occurring in future. In light of the results, attention should be drawn to developing water resource management and flood protection plans in order to avert the harmful effects potentially resulting from the expected changes in annual streamflow regime.

  5. Groundwater and surface-water interaction and effects of pumping in a complex glacial-sediment aquifer, phase 2, east-central Massachusetts

    USGS Publications Warehouse

    Eggleston, Jack R.; Zarriello, Phillip J.; Carlson, Carl S.

    2015-12-31

    Model simulations indicate that under average base-flow conditions, the Birch Road wells have a small effect on flow in the Sudbury River during most months, even at the maximum pumping rate of 4.9 ft3/s (3.17 Mgal/d). Maximum percent streamflow depletion in the Sudbury River caused by simulated pumping takes place during simulated drought conditions, when streamflow decreased by as much as 21 percent under maximum continuous pumping. Simulations also indicate that groundwater withdrawals at the Birch Road site could be managed so that adverse streamflow impacts are substantially ameliorated. Under the most ecologically conservative simulated drought conditions, simulated streamflow depletion was reduced from 21 percent to 3 percent by pumping at the maximum rate for 6 months rather than for 12 months. Simulations that return 10 percent of the Birch Road well withdrawals to Pod Meadow Pond indicate a modest reduction in the Sudbury River streamflow depletion and provide a larger percentage increase to streamflow just downstream of the pond. The groundwater model also indicates that well locations can have a large effect on the sustainable pumping rate and so should be chosen carefully. The model provides a tool for evaluating alternative pumping rates and schedules not included in this analysis.

  6. Deriving Global Discharge Records from SWOT Observations

    NASA Astrophysics Data System (ADS)

    Pan, M.; Fisher, C. K.; Wood, E. F.

    2017-12-01

    River flows are poorly monitored in many regions of the world, hindering our ability to accurately estimate water global water usage, and thus estimate global water and energy budgets or the variability in the global water cycle. Recent developments in satellite remote sensing, such as water surface elevations from radar altimetry or surface water extents from visible/infrared imagery, aim to fill this void; however, the streamflow estimates derived from these are inherently intermittent in both space and time. There is then a need for new methods that are able to derive spatially and temporally continuous records of discharge from the many available data sources. One particular application of this will be the Surface Water and Ocean Topography (SWOT) mission, which is designed to provide global observations of water surface elevation and slope from which river discharge can be estimated. Within the 21-day repeat cycle, a river reach will be observed 2-4 times on average. Due to the relationship between the basin orientation and the orbit, these observations are not evenly distributed in time or space. In this study, we investigate how SWOT will observe global river basins and how the temporal and spatial sampling impacts our ability to reconstruct discharge records.River flows can be estimated throughout a basin by assimilating SWOT observations using the Inverse Streamflow Routing (ISR) model of Pan and Wood [2013]. This method is applied to 32 global basins with different geometries and crossing patterns for the future orbit, assimilating theoretical SWOT-retrieved "gauges". Results show that the model is able to reconstruct basin-wide discharge from SWOT observations alone; however, the performance varies significantly across basins and is driven by the orientation, flow distance, and travel time in each, as well as the sensitivity of the reconstruction method to errors in the satellite retrieval. These properties are combined to estimate the "observability" of each basin. We then apply this metric globally and relate it to the discharge reconstruction performance to gain a better understanding of the impact that spatially and temporally sparse observations, such as those from SWOT, may have in basins with limited in-situ observations. Pan, M; Wood, E F 2013 Inverse streamflow routing, HESS 17(11):4577-4588

  7. History of irrigation and characteristics of streamflow in Nebraska, part of the North and South Platte River basins

    USGS Publications Warehouse

    Shaffer, F. Butler

    1976-01-01

    Statistics on streamflow for selected periods of time are presented for 28 gaging sites in the Nebraska part of the North and South Platte River basins. Monthly mean discharges, monthly means in percent of annual runoff, standard deviations, coefficients of variation, and monthly extremes are given. Also tabulated are probabilities of high discharges for 1 day and for 3, 7, 15, 30, and 60 consecutive days and of low discharges for 1 day and for 3, 7, 14, 30, and 60 consecutive days. All statistics are based on records that are representative of 1973 conditions of streamflow. Brief historical data are given for 27 of the principal irrigation canals diverting from the North and South Platte Rivers. (Woodard-USGS)

  8. Methodology for Estimation of Flood Magnitude and Frequency for New Jersey Streams

    USGS Publications Warehouse

    Watson, Kara M.; Schopp, Robert D.

    2009-01-01

    Methodologies were developed for estimating flood magnitudes at the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated or slightly regulated streams in New Jersey. Regression equations that incorporate basin characteristics were developed to estimate flood magnitude and frequency for streams throughout the State by use of a generalized least squares regression analysis. Relations between flood-frequency estimates based on streamflow-gaging-station discharge and basin characteristics were determined by multiple regression analysis, and weighted by effective years of record. The State was divided into five hydrologically similar regions to refine the regression equations. The regression analysis indicated that flood discharge, as determined by the streamflow-gaging-station annual peak flows, is related to the drainage area, main channel slope, percentage of lake and wetland areas in the basin, population density, and the flood-frequency region, at the 95-percent confidence level. The standard errors of estimate for the various recurrence-interval floods ranged from 48.1 to 62.7 percent. Annual-maximum peak flows observed at streamflow-gaging stations through water year 2007 and basin characteristics determined using geographic information system techniques for 254 streamflow-gaging stations were used for the regression analysis. Drainage areas of the streamflow-gaging stations range from 0.18 to 779 mi2. Peak-flow data and basin characteristics for 191 streamflow-gaging stations located in New Jersey were used, along with peak-flow data for stations located in adjoining States, including 25 stations in Pennsylvania, 17 stations in New York, 16 stations in Delaware, and 5 stations in Maryland. Streamflow records for selected stations outside of New Jersey were included in the present study because hydrologic, physiographic, and geologic boundaries commonly extend beyond political boundaries. The StreamStats web application was developed cooperatively by the U.S. Geological Survey and the Environmental Systems Research Institute, Inc., and was designed for national implementation. This web application has been recently implemented for use in New Jersey. This program used in conjunction with a geographic information system provides the computation of values for selected basin characteristics, estimates of flood magnitudes and frequencies, and statistics for stream locations in New Jersey chosen by the user, whether the site is gaged or ungaged.

  9. Cost effectiveness of stream-gaging program in Michigan

    USGS Publications Warehouse

    Holtschlag, D.J.

    1985-01-01

    This report documents the results of a study of the cost effectiveness of the stream-gaging program in Michigan. Data uses and funding sources were identified for the 129 continuous gaging stations being operated in Michigan as of 1984. One gaging station was identified as having insufficient reason to continue its operation. Several stations were identified for reactivation, should funds become available, because of insufficiencies in the data network. Alternative methods of developing streamflow information based on routing and regression analyses were investigated for 10 stations. However, no station records were reproduced with sufficient accuracy to replace conventional gaging practices. A cost-effectiveness analysis of the data-collection procedure for the ice-free season was conducted using a Kalman-filter analysis. To define missing-record characteristics, cross-correlation coefficients and coefficients of variation were computed at stations on the basis of daily mean discharge. Discharge-measurement data were used to describe the gage/discharge rating stability at each station. The results of the cost-effectiveness analysis for a 9-month ice-free season show that the current policy of visiting most stations on a fixed servicing schedule once every 6 weeks results in an average standard error of 12.1 percent for the current $718,100 budget. By adopting a flexible servicing schedule, the average standard error could be reduced to 11.1 percent. Alternatively, the budget could be reduced to $700,200 while maintaining the current level of accuracy. A minimum budget of $680,200 is needed to operate the 129-gaging-station program; a budget less than this would not permit proper service and maintenance of stations. At the minimum budget, the average standard error would be 14.4 percent. A budget of $789,900 (the maximum analyzed) would result in a decrease in the average standard error to 9.07 percent. Owing to continual changes in the composition of the network and the changes in the uncertainties of streamflow accuracy at individual stations, the cost-effectiveness analysis will need to be updated regularly if it is to be used as a management tool. Cost of these updates need to be considered in decisions concerning the feasibility of flexible servicing schedules.

  10. Temporal analysis of the frequency and duration of low and high streamflow: Years of record needed to characterize streamflow variability

    USGS Publications Warehouse

    Huh, S.; Dickey, D.A.; Meador, M.R.; Ruhl, K.E.

    2005-01-01

    A temporal analysis of the number and duration of exceedences of high- and low-flow thresholds was conducted to determine the number of years required to detect a level shift using data from Virginia, North Carolina, and South Carolina. Two methods were used - ordinary least squares assuming a known error variance and generalized least squares without a known error variance. Using ordinary least squares, the mean number of years required to detect a one standard deviation level shift in measures of low-flow variability was 57.2 (28.6 on either side of the break), compared to 40.0 years for measures of high-flow variability. These means become 57.6 and 41.6 when generalized least squares is used. No significant relations between years and elevation or drainage area were detected (P>0.05). Cluster analysis did not suggest geographic patterns in years related to physiography or major hydrologic regions. Referring to the number of observations required to detect a one standard deviation shift as 'characterizing' the variability, it appears that at least 20 years of record on either side of a shift may be necessary to adequately characterize high-flow variability. A longer streamflow record (about 30 years on either side) may be required to characterize low-flow variability. ?? 2005 Elsevier B.V. All rights reserved.

  11. A simple-harmonic model for depicting the annual cycle of seasonal temperatures of streams

    USGS Publications Warehouse

    Steele, Timothy Doak

    1978-01-01

    Due to economic or operational constraints, stream-temperature records cannot always be collected at all sites where information is desired or at frequencies dictated by continuous or near-continuous surveillance requirements. For streams where only periodic measurements are made during the year, and that are not appreciably affected by regulation or by thermal loading , a simple harmonic function may adequately depict the annual seasonal cycle of stream temperature at any given site. Resultant harmonic coefficients obtained from available stream-temperature records may be used in the following ways: (1) To interpolate between discrete measurements by solving the harmonic function at specified times, thereby filling in estimates of stream-temperature values; (2) to characterize areal or regional patterns of natural stream-temperature values; (2) to characterize areal or regional patterns of natural stream-temperature conditions; and (3) to detect and to assess any significant at a site brought about by streamflow regulation or basin development. Moreover, less-than-daily or sampling frequencies at a given site may give estimates of annual variation of stream temperatures that are statistically comparable to estimates obtained from a daily or continuous sampling scheme. The latter procedure may result in potential savings of resources in network operations, with negligible loss in information on annual stream-temperature variations. (Woodard -USGS)

  12. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2005 to June 30, 2006

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.; Young-Smith, Stacie T. M.

    2006-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two stations, continuous discharge data at one station, continuous streamflow data at two stations, and water-quality data at five stations, which include the continuous discharge and streamflow stations. This report summarizes rainfall, discharge, streamflow, and water-quality data collected between July 1, 2005 and June 30, 2006. A total of 23 samples was collected over five storms during July 1, 2005 to June 30, 2006. The goal was to collect grab samples nearly simultaneously at all five stations, and flow-weighted time-composite samples at the three stations equipped with automatic samplers; however, all five storms were partially sampled owing to lack of flow at the time of sampling at some sites, or because some samples collected by the automatic sampler did not represent water from the storm. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). Additionally, grab samples were analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples were also collected during storms and during routine maintenance to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.

  13. Relations between continuous real-time turbidity data and discrete suspended-sediment concentration samples in the Neosho and Cottonwood Rivers, east-central Kansas, 2009-2012

    USGS Publications Warehouse

    Foster, Guy M.

    2014-01-01

    The Neosho River and its primary tributary, the Cottonwood River, are the primary sources of inflow to the John Redmond Reservoir in east-central Kansas. Sedimentation rate in the John Redmond Reservoir was estimated as 743 acre-feet per year for 1964–2006. This estimated sedimentation rate is more than 80 percent larger than the projected design sedimentation rate of 404 acre-feet per year, and resulted in a loss of 40 percent of the conservation pool since its construction in 1964. To reduce sediment input into the reservoir, the Kansas Water Office implemented stream bank stabilization techniques along an 8.3 mile reach of the Neosho River during 2010 through 2011. The U.S. Geological Survey, in cooperation with the Kansas Water Office and funded in part through the Kansas State Water Plan Fund, operated continuous real-time water-quality monitors upstream and downstream from stream bank stabilization efforts before, during, and after construction. Continuously measured water-quality properties include streamflow, specific conductance, water temperature, and turbidity. Discrete sediment samples were collected from June 2009 through September 2012 and analyzed for suspended-sediment concentration (SSC), percentage of sediments less than 63 micrometers (sand-fine break), and loss of material on ignition (analogous to amount of organic matter). Regression models were developed to establish relations between discretely measured SSC samples, and turbidity or streamflow to estimate continuously SSC. Continuous water-quality monitors represented between 96 and 99 percent of the cross-sectional variability for turbidity, and had slopes between 0.91 and 0.98. Because consistent bias was not observed, values from continuous water-quality monitors were considered representative of stream conditions. On average, turbidity-based SSC models explained 96 percent of the variance in SSC. Streamflow-based regressions explained 53 to 60 percent of the variance. Mean squared prediction error for turbidity-based regression relations ranged from -32 to 48 percent, whereas mean square prediction error for streamflow-based regressions ranged from -69 to 218 percent. These models are useful for evaluating the variability of SSC during rapidly changing conditions, computing loads and yields to assess SSC transport through the watershed, and for providing more accurate load estimates compared to streamflow-only based estimation methods used in the past. These models can be used to evaluate the efficacy of streambank stabilization efforts.

  14. Base flow (1966-2009) and streamflow gain and loss (2010) of the Brazos River from the New Mexico-Texas State line to Waco, Texas

    USGS Publications Warehouse

    Baldys, Stanley; Schalla, Frank E.

    2012-01-01

    Streamflow was measured at 66 sites from June 6–9, 2010, and at 68 sites from October 16–19, 2010, to identify reaches in the upper Brazos River Basin that were gaining or losing streamflow. Gaining reaches were identified in each of the five subbasins. The gaining reach in the Salt Fork Brazos River Basin began at USGS streamflow-gaging station 08080940 Salt Fork Brazos River at State Highway 208 near Clairemont, Tex. (site SF–6), upstream from where Duck Creek flows into the Salt Fork Brazos River and continued downstream past USGS streamflow-gaging station 08082000 Salt Fork Brazos River near Aspermont, Tex. (site SF–9), to the outlet of the basin. In the Double Mountain Fork Brazos River Basin, a gaining reach from near Post, Tex., downstream to the outlet of the basin was identified. Two gaining reaches were identified in the Clear Fork Brazos River Basin—one from near Roby, Tex., downstream to near Noodle, Tex., and second from Hawley, Tex., downstream to Nugent, Tex. Most of the North Bosque River was characterized as gaining streamflow. Streamflow gains were identified in the main stem of the Brazos River from where the Brazos River main stem forms at the confluence of the Salt Fork Brazos River and Double Mountain Fork Brazos River near Knox City, Tex., downstream to near Seymour, Tex.

  15. Hydroecology of Intermittent and Ephemeral Streams: Will Landscape Connectivity Sustain Aquatic Organisms in a Changing Climate?

    DTIC Science & Technology

    2015-07-24

    Huachuca. ........... 16 Table 2.1 Number of samples collected per year , season, and hydrological category from each of the 7 streams...reaches are reaches with streamflow during all times of the year . Ephemeral reaches are characterized by short duration streamflow events occurring...continuously for only certain times of the year and are supported by sources such as bedrock springs, melting snow or repeated monsoon events

  16. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2003

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2003 (October 1, 2002, to September 30, 2003). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2003 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2003. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 31 cubic feet per second (ft3/s) to the reservoir during WY 2003. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.44 to 20 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2003; sodium and chloride yields for the tributaries ranged from 10,000 to 61,000 kilograms per square mile (kg/mi2) and from 15,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 21.3 milligrams per liter (mg/L), median nitrite concentration was 0.002 mg/L as N, median nitrate concentration was 0.02 mg/L as N, median orthophosphate concentration was 0.06 mg/L as P, and median concentrations of total coliform and Escherichia coli (E. coli) bacteria were 38 and 9 CFU/100 mL (colony forming units per 100 milliliters), respectively. The medians of the median daily loads (and yields) of chloride, nitrite, nitrate, orthophosphate, and total coliform and E. coli bacteria were 140 kg/d (67 kg/d/mi2), 15 g/d (6.5 g/d/mi2), 140 g/d (62 g/d/mi2), 340 g/d (180 g/d/mi2), and 2,200 million colony forming units per day (CFU x 106/d) (1,200 CFU x 106/d/mi2) and 940 CFU x 106/d (490 CFU x 106/d/mi2), respectively. 1The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period.

  17. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2004

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2004 (October 1, 2003, to September 30, 2004). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2004 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2004. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 27 cubic feet per second (ft3/s) to the reservoir during WY 2004. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,700,000 kg of chloride to the Scituate Reservoir during WY 2004; sodium and chloride yields for the tributaries ranged from 12,000 to 61,000 kilograms per square mile (kg/mi2) and from 17,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.8 milligrams per liter (mg/L), median nitrite concentration was 0.001 mg/L as N, median nitrate concentration was 0.03 mg/L as N, median orthophosphate concentration was 0.07 mg/L as P, and median concentrations of total coliform and Escherichia coli (E. coli) bacteria were 33 and 23 colony forming units per 100 milliliters (CFU/100 mL), respectively. The medians of the median daily loads (and yields) of chloride, nitrite, nitrate, orthophosphate, and total coliform and E. coli bacteria were 160 kg/d (81 kg/d/mi2), 9.1 g/d (5.2 g/d/mi2), 280 g/d (110 g/d/mi2), 760 g/d (340 g/d/mi2), and 4,700 million colony forming units per day (CFU x 106/d) (1,700 CFU x 106/d/mi2) and 1,900 CFU x 106/d (520 CFU x 106/d/mi2), respectively. 1The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period

  18. Assessing recent declines in Upper Rio Grande runoff efficiency from a paleoclimate perspective

    NASA Astrophysics Data System (ADS)

    Lehner, Flavio; Wahl, Eugene R.; Wood, Andrew W.; Blatchford, Douglas B.; Llewellyn, Dagmar

    2017-05-01

    Recent decades have seen strong trends in hydroclimate over the American Southwest, with major river basins such as the Rio Grande exhibiting intermittent drought and declining runoff efficiencies. The extent to which these observed trends are exceptional has implications for current water management and seasonal streamflow forecasting practices. We present a new reconstruction of runoff ratio for the Upper Rio Grande basin back to 1571 C.E., which provides evidence that the declining trend in runoff ratio from the 1980s to present day is unprecedented in context of the last 445 years. Though runoff ratio is found to vary primarily in proportion to precipitation, the reconstructions suggest a secondary influence of temperature. In years of low precipitation, very low runoff ratios are made 2.5-3 times more likely by high temperatures. This temperature sensitivity appears to have strengthened in recent decades, implying future water management vulnerability should recent warming trends in the region continue.Plain Language SummarySince the 1980s, major river basins in the American Southwest such as the Rio Grande have experienced droughts, declining streamflow, and increasing temperatures. More importantly, runoff ratio—the portion of precipitation that ends up in the river each year, rather than evaporating—has been decreasing as well. For water managers, it is important to know whether these trends are exceptional or are merely patterns that have occurred throughout history. We use long reconstructions of historical climate based on tree rings to estimate, for the first time, the paleo runoff ratio of the Upper Rio Grande. This new record indicates that the recently observed trends in runoff ratio are unprecedented in the 445 year record. Together with precipitation, high temperatures have an important influence, making very low runoff ratios 2.5-3 times more likely. These findings suggest that runoff ratio could decrease further if warming in the region continues, which may present challenges for water management in the river basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020861','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020861"><span>Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Constantz, James E.</p> <p>1998-01-01</p> <p>Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following dam releases. Direct coupling may have occurred between streamflow and stream temperature for losing stream reaches, such that reduced streamflows facilitated increased afternoon stream temperatures and increased afternoon stream temperatures induced increased streambed losses, leading to even greater increases in both stream temperature and streamflow losses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/66867','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/66867"><span>Map showing selected surface-water data for the Manti 30 x 60-minute Quadrangle, Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Price, Don</p> <p>1984-01-01</p> <p>This is one of a series of maps that describe the geology and related natural resources of the Manti 30 x 60 minute quadrangle. Streamflow records used to compile this map were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing areas shown on the map were delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Sources of information about recorded floods resulting from cloudbursts included Woolley (1946) and Butler and Marsell (1972); sources of information about the chemical quality of streamflow included Hahl and Cabell (1965) and Mundorff and Thompson (1982).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/66866','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/66866"><span>Map showing selected surface-water data for the Huntington 30 x 60-minute quadrangle, Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Price, Don</p> <p>1984-01-01</p> <p>This is one of a series of maps that describe the geology and related natural resources of the Huntington 30 x 60-minute quadrangle, Utah. Streamflow records used to compile this map were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing area shown on the map was delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Sources of information about recorded floods resulting from cloudbursts included Woolley (1946) and Butler and Marsell (1972); sources of information about the chemical quality of streamflow included Mundorff (1972) and Mundorff and Thompson (1982).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/66869','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/66869"><span>Map showing selected surface-water data for the Price 30 x 60-minute Quadrangle, Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Price, Don</p> <p>1984-01-01</p> <p>This is one of a series of maps that describe the geology and related natural resources of the Price 30 x 60-minute quadrangle, Utah. Streamflow records used to compile this map were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing areas shown on the map were delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Sources of information about recorded floods resulting from cloudbursts included Woolley (1946) and Butler and Marsell (1972); sources of information about the chemical quality of streamflow included Mundorff (1972; 1977), and Waddell and others (1982).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.4273C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.4273C"><span>Skill of a global seasonal ensemble streamflow forecasting system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Candogan Yossef, Naze; Winsemius, Hessel; Weerts, Albrecht; van Beek, Rens; Bierkens, Marc</p> <p>2013-04-01</p> <p>Forecasting of water availability and scarcity is a prerequisite for managing the risks and opportunities caused by the inter-annual variability of streamflow. Reliable seasonal streamflow forecasts are necessary to prepare for an appropriate response in disaster relief, management of hydropower reservoirs, water supply, agriculture and navigation. Seasonal hydrological forecasting on a global scale could be valuable especially for developing regions of the world, where effective hydrological forecasting systems are scarce. In this study, we investigate the forecasting skill of the global seasonal streamflow forecasting system FEWS-World, using the global hydrological model PCR-GLOBWB. FEWS-World has been setup within the European Commission 7th Framework Programme project Global Water Scarcity Information Service (GLOWASIS). Skill is assessed in historical simulation mode as well as retroactive forecasting mode. The assessment in historical simulation mode used a meteorological forcing based on observations from the Climate Research Unit of the University of East Anglia and the ERA-40 reanalysis of the European Center for Medium-Range Weather Forecasts (ECMWF). We assessed the skill of the global hydrological model PCR-GLOBWB in reproducing past discharge extremes in 20 large rivers of the world. This preliminary assessment concluded that the prospects for seasonal forecasting with PCR-GLOBWB or comparable models are positive. However this assessment did not include actual meteorological forecasts. Thus the meteorological forcing errors were not assessed. Yet, in a forecasting setup, the predictive skill of a hydrological forecasting system is affected by errors due to uncertainty from numerical weather prediction models. For the assessment in retroactive forecasting mode, the model is forced with actual ensemble forecasts from the seasonal forecast archives of ECMWF. Skill is assessed at 78 stations on large river basins across the globe, for all the months of the year and for lead times up to 6 months. The forecasted discharges are compared with observed monthly streamflow records using the ensemble verification measures Brier Skill Score (BSS) and Continuous Ranked Probability Score (CRPS). The eventual goal is to transfer FEWS-World to operational forecasting mode, where the system will use operational seasonal forecasts from ECMWF. The results will be disseminated on the internet, and hopefully provide information that is valuable for users in data and model-poor regions of the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2009/5231/pdf/sir2009-5231.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2009/5231/pdf/sir2009-5231.pdf"><span>Regression models to estimate real-time concentrations of selected constituents in two tributaries to Lake Houston near Houston, Texas, 2005-07</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Oden, Timothy D.; Asquith, William H.; Milburn, Matthew S.</p> <p>2009-01-01</p> <p>In December 2005, the U.S. Geological Survey in cooperation with the City of Houston, Texas, began collecting discrete water-quality samples for nutrients, total organic carbon, bacteria (total coliform and Escherichia coli), atrazine, and suspended sediment at two U.S. Geological Survey streamflow-gaging stations upstream from Lake Houston near Houston (08068500 Spring Creek near Spring, Texas, and 08070200 East Fork San Jacinto River near New Caney, Texas). The data from the discrete water-quality samples collected during 2005-07, in conjunction with monitored real-time data already being collected - physical properties (specific conductance, pH, water temperature, turbidity, and dissolved oxygen), streamflow, and rainfall - were used to develop regression models for predicting water-quality constituent concentrations for inflows to Lake Houston. Rainfall data were obtained from a rain gage monitored by Harris County Homeland Security and Emergency Management and colocated with the Spring Creek station. The leaps and bounds algorithm was used to find the best subsets of possible regression models (minimum residual sum of squares for a given number of variables). The potential explanatory or predictive variables included discharge (streamflow), specific conductance, pH, water temperature, turbidity, dissolved oxygen, rainfall, and time (to account for seasonal variations inherent in some water-quality data). The response variables at each site were nitrite plus nitrate nitrogen, total phosphorus, organic carbon, Escherichia coli, atrazine, and suspended sediment. The explanatory variables provide easily measured quantities as a means to estimate concentrations of the various constituents under investigation, with accompanying estimates of measurement uncertainty. Each regression equation can be used to estimate concentrations of a given constituent in real time. In conjunction with estimated concentrations, constituent loads were estimated by multiplying the estimated concentration by the corresponding streamflow and applying the appropriate conversion factor. By computing loads from estimated constituent concentrations, a continuous record of estimated loads can be available for comparison to total maximum daily loads. The regression equations presented in this report are site specific to the Spring Creek and East Fork San Jacinto River streamflow-gaging stations; however, the methods that were developed and documented could be applied to other tributaries to Lake Houston for estimating real-time water-quality data for streams entering Lake Houston.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri034041/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri034041/"><span>Effectiveness of the New Hampshire stream-gaging network in providing regional streamflow information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Olson, Scott A.</p> <p>2003-01-01</p> <p>The stream-gaging network in New Hampshire was analyzed for its effectiveness in providing regional information on peak-flood flow, mean-flow, and low-flow frequency. The data available for analysis were from stream-gaging stations in New Hampshire and selected stations in adjacent States. The principles of generalized-least-squares regression analysis were applied to develop regional regression equations that relate streamflow-frequency characteristics to watershed characteristics. Regression equations were developed for (1) the instantaneous peak flow with a 100-year recurrence interval, (2) the mean-annual flow, and (3) the 7-day, 10-year low flow. Active and discontinued stream-gaging stations with 10 or more years of flow data were used to develop the regression equations. Each stream-gaging station in the network was evaluated and ranked on the basis of how much the data from that station contributed to the cost-weighted sampling-error component of the regression equation. The potential effect of data from proposed and new stream-gaging stations on the sampling error also was evaluated. The stream-gaging network was evaluated for conditions in water year 2000 and for estimated conditions under various network strategies if an additional 5 years and 20 years of streamflow data were collected. The effectiveness of the stream-gaging network in providing regional streamflow information could be improved for all three flow characteristics with the collection of additional flow data, both temporally and spatially. With additional years of data collection, the greatest reduction in the average sampling error of the regional regression equations was found for the peak- and low-flow characteristics. In general, additional data collection at stream-gaging stations with unregulated flow, relatively short-term record (less than 20 years), and drainage areas smaller than 45 square miles contributed the largest cost-weighted reduction to the average sampling error of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active stations, the reactivation of discontinued stations, or the activation of new stations to maximize the regional information content provided by the stream-gaging network. Final decisions regarding altering the New Hampshire stream-gaging network would require the consideration of the many uses of the streamflow data serving local, State, and Federal interests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13a4010W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13a4010W"><span>In ecoregions across western USA streamflow increases during post-wildfire recovery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wine, Michael L.; Cadol, Daniel; Makhnin, Oleg</p> <p>2018-01-01</p> <p>Continued growth of the human population on Earth will increase pressure on already stressed terrestrial water resources required for drinking water, agriculture, and industry. This stress demands improved understanding of critical controls on water resource availability, particularly in water-limited regions. Mechanistic predictions of future water resource availability are needed because non-stationary conditions exist in the form of changing climatic conditions, land management paradigms, and ecological disturbance regimes. While historically ecological disturbances have been small and could be neglected relative to climatic effects, evidence is accumulating that ecological disturbances, particularly wildfire, can increase regional water availability. However, wildfire hydrologic impacts are typically estimated locally and at small spatial scales, via disparate measurement methods and analysis techniques, and outside the context of climate change projections. Consequently, the relative importance of climate change driven versus wildfire driven impacts on streamflow remains unknown across the western USA. Here we show that considering wildfire in modeling streamflow significantly improves model predictions. Mixed effects modeling attributed 2%-14% of long-term annual streamflow to wildfire effects. The importance of this wildfire-linked streamflow relative to predicted climate change-induced streamflow reductions ranged from 20%-370% of the streamflow decrease predicted to occur by 2050. The rate of post-wildfire vegetation recovery and the proportion of watershed area burned controlled the wildfire effect. Our results demonstrate that in large areas of the western USA affected by wildfire, regional predictions of future water availability are subject to greater structural uncertainty than previously thought. These results suggest that future streamflows may be underestimated in areas affected by increased prevalence of hydrologically relevant ecological disturbances such as wildfire.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JHyd..501...73V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JHyd..501...73V"><span>Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verkade, J. S.; Brown, J. D.; Reggiani, P.; Weerts, A. H.</p> <p>2013-09-01</p> <p>The ECMWF temperature and precipitation ensemble reforecasts are evaluated for biases in the mean, spread and forecast probabilities, and how these biases propagate to streamflow ensemble forecasts. The forcing ensembles are subsequently post-processed to reduce bias and increase skill, and to investigate whether this leads to improved streamflow ensemble forecasts. Multiple post-processing techniques are used: quantile-to-quantile transform, linear regression with an assumption of bivariate normality and logistic regression. Both the raw and post-processed ensembles are run through a hydrologic model of the river Rhine to create streamflow ensembles. The results are compared using multiple verification metrics and skill scores: relative mean error, Brier skill score and its decompositions, mean continuous ranked probability skill score and its decomposition, and the ROC score. Verification of the streamflow ensembles is performed at multiple spatial scales: relatively small headwater basins, large tributaries and the Rhine outlet at Lobith. The streamflow ensembles are verified against simulated streamflow, in order to isolate the effects of biases in the forcing ensembles and any improvements therein. The results indicate that the forcing ensembles contain significant biases, and that these cascade to the streamflow ensembles. Some of the bias in the forcing ensembles is unconditional in nature; this was resolved by a simple quantile-to-quantile transform. Improvements in conditional bias and skill of the forcing ensembles vary with forecast lead time, amount, and spatial scale, but are generally moderate. The translation to streamflow forecast skill is further muted, and several explanations are considered, including limitations in the modelling of the space-time covariability of the forcing ensembles and the presence of storages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1098/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1098/"><span>Flood of September 2008 in Northwestern Indiana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fowler, Kathleen K.; Kim, Moon H.; Menke, Chad D.; Arvin, Donald V.</p> <p>2010-01-01</p> <p>During September 12-15, 2008, rainfall ranging from 2 to more than 11 inches fell on northwestern Indiana. The rainfall resulted in extensive flooding on many streams within the Lake Michigan and Kankakee River Basins during September 12-18, causing two deaths, evacuation of hundreds of residents, and millions of dollars of damage to residences, businesses, and infrastructure. In all, six counties in northwestern Indiana were declared Federal disaster areas. U.S. Geological Survey (USGS) streamgages at four locations recorded new record peak streamflows as a result of the heavy rainfall. Peak-gage-height data, peak-streamflow data, annual exceedance probabilities, and recurrence intervals are tabulated in this report for 10 USGS streamgages in northwestern Indiana. Recurrence intervals of flood-peak streamflows were estimated to be greater than 100 years at six streamgages. Because flooding was particularly severe in the communities of Munster, Dyer, Hammond, Highland, Gary, Lake Station, Hobart, Schererville, Merrillville, Michiana Shores, and Portage, high-water-park data collected after the flood were tabulated for those communities. Flood peak inundation maps and water-surface profiles for selected streams were made in a geographic information system by combining high-water-mark data with the highest resolution digital elevation model data available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1996/4025/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1996/4025/report.pdf"><span>Geographic, geologic, and hydrologic summaries of intermontane basins of the northern Rocky Mountains, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kendy, Eloise; Tresch, R.E.</p> <p>1996-01-01</p> <p>This report combines a literature review with new information to provide summaries of the geography, geology, and hydrology of each of 32 intermontane basins in western Montana. The summary of each intermontane basin includes concise descriptions of topography, areal extent, altitude, climate, 1990 population, land and water use, geology, surface water, aquifer hydraulic characteristics, ground-water flow, and ground-water quality. If present, geothermal features are described. Average annual and monthly temperature and precipitation are reported from one National Weather Service station in each basin. Streamflow data, including the drainage area, period of record, and average, minimum, and maximum historical streamflow, are reported for all active and discontinued USGS streamflow-gaging stations in each basin. Monitoring-well data, including the well depth, aquifer, period of record, and minimum and maximum historical water levels, are reported for all long-term USGS monitoring wells in each basin. Brief descriptions of geologic, geophysical, and potentiometric- surface maps available for each basin also are included. The summary for each basin also includes a bibliography of hydrogeologic literature. When used alone or in conjunction with regional RASA reports, this report provides a practical starting point for site-specific hydrogeologic investigations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/ofr02471/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/ofr02471/"><span>Streamflow characteristics for selected stations in and near the Grand Mesa, Uncompahgre, and Gunnison National Forests, southwestern Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kuhn, Gerhard</p> <p>2002-01-01</p> <p>The U.S Geological Survey, in cooperation with the Grand Mesa, Uncompahgre, and Gunnison National Forests, began a study in 2000 to develop selected streamflow characteristics for 60 streamflow-gaging stations in and near the Grand Mesa, Uncompahgre, and Gunnison National Forests. The study area is located in southwestern Colorado within the Gunnison River, Dolores River, and Plateau Creek Basins, which are tributaries of the Colorado River. In addition to presenting the compiled daily, monthly, and annual discharge data for the 60 stations, the report presents tabular and graphical results for the following computed streamflow characteristics: (1) Instantaneous peak-flow frequency; (2) flow duration for daily mean discharges on an annual (water year) basis and on a monthly basis, and flow duration for the annual and monthly mean discharges; (3) low-flow and high-flow frequency of daily mean discharges for periods of 1, 3, 7, 15, 30, 60, 120, and 183 consecutive days; and (4) annual and monthly mean and median discharges for each year and month of record, and frequency of the annual and monthly mean and median discharges. All discharge data and results from the streamflow-characteristics analyses are presented in Microsoft Excel workbooks on the enclosed CD-ROM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH23E2890A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH23E2890A"><span>How do extreme streamflow due to hurricane IRMA compare during 1938-2017 in South Eastern US?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anandhi, A.</p> <p>2017-12-01</p> <p>The question related to Irma, Harvey, Maria, and other hurricanes is: are hurricane more frequent and intense than they have been in the past. Recent hurricanes were unusually strong hitting the US Coastline or territories as a category 4 or 5, dropping unusually large amounts of precipitation on the affected areas creating extreme high-flow events in rivers and streams in affected areas. The objective of the study is to determine how extreme are streamflows from recent hurricanes (e.g. IRMA) when compared to streamflow's during 1938-2017 time-period. Additionally, in this study, the extreme precipitations are also compared during IRMA. Extreme high flows are selected from Indicators of Hydrologic Alteration (IHA). They are distributions, timing, duration, frequency, magnitude, pulses, and days of extreme events in rivers of the southeastern United States and Gulf of Mexico Hydrologic Region—03. Streamflow data from 30 stations in the region with at least 79 years of record (1938-2017) are used. Historical precipitation changes is obtained from meta-analysis of published literature. Our preliminary results indicate the extremeness of streamflow from recent hurricanes vary with the IHA indicator selected. Some potential implications of these extreme events on the region's ecosystem are also discussed using causal chains and loops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70175056','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70175056"><span>Regional flow duration curves: Geostatistical techniques versus multivariate regression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pugliese, Alessio; Farmer, William H.; Castellarin, Attilio; Archfield, Stacey A.; Vogel, Richard M.</p> <p>2016-01-01</p> <p>A period-of-record flow duration curve (FDC) represents the relationship between the magnitude and frequency of daily streamflows. Prediction of FDCs is of great importance for locations characterized by sparse or missing streamflow observations. We present a detailed comparison of two methods which are capable of predicting an FDC at ungauged basins: (1) an adaptation of the geostatistical method, Top-kriging, employing a linear weighted average of dimensionless empirical FDCs, standardised with a reference streamflow value; and (2) regional multiple linear regression of streamflow quantiles, perhaps the most common method for the prediction of FDCs at ungauged sites. In particular, Top-kriging relies on a metric for expressing the similarity between catchments computed as the negative deviation of the FDC from a reference streamflow value, which we termed total negative deviation (TND). Comparisons of these two methods are made in 182 largely unregulated river catchments in the southeastern U.S. using a three-fold cross-validation algorithm. Our results reveal that the two methods perform similarly throughout flow-regimes, with average Nash-Sutcliffe Efficiencies 0.566 and 0.662, (0.883 and 0.829 on log-transformed quantiles) for the geostatistical and the linear regression models, respectively. The differences between the reproduction of FDC's occurred mostly for low flows with exceedance probability (i.e. duration) above 0.98.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H52E..01Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H52E..01Z"><span>Shallow and Deep Groundwater Contributions to Ephemeral Streamflow Generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zimmer, M. A.; McGlynn, B. L.</p> <p>2016-12-01</p> <p>Our understanding of streamflow generation processes in low relief, humid landscapes is limited. To address this, we utilized an ephemeral-to-intermittent drainage network in the Piedmont region of the United States to gain new understanding about the drivers of ephemeral streamflow generation, stream-groundwater interactions, and longitudinal expansion and contraction of the stream network. We used hydrometric and chemical data collected within zero through second order catchments to characterize streamflow and overland, shallow soil, and deep subsurface flow across landscape positions. Results showed bi-directionality in stream-groundwater gradients that were dependent on catchment storage state. This led to annual groundwater recharge magnitudes that were similar to annual streamflow. Perched shallow and deep water table contributions shifted dominance with changes in catchment storage state, producing distinct stream hydrograph recession constants. Active channel length versus runoff followed a consistent relationship independent of storage state, but exhibited varying discharge-solute hysteresis directions. Together, our results suggest that temporary streams can act as both important groundwater recharge and discharge locations across the landscape, especially in this region where ephemeral drainage densities are among the highest recorded. Our results also highlight that the internal catchment dynamics that generate temporary streams play an important role in dictating biogeochemical fluxes at the landscape scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1426/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1426/"><span>Qualitative Comparison of Streamflow Information Programs of the U.S. Geological Survey and Three Non-Federal Agencies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Norris, J. Michael; Lewis, Michael; Dorsey, Michael; Kimbrough, Robert; Holmes, Robert R.; Staubitz, Ward</p> <p>2008-01-01</p> <p>A qualitative comparison was made of the streamgaging programs of the U.S. Geological Survey (USGS) and three non-Federal agencies in terms of approximate costs and streamflow-information products produced. The three non-Federal agencies provided the USGS with detailed information on their streamgaging program and related costs, and the USGS explored, through publicly available Web sites and one-on-one discussions, the comparability of the streamflow information produced. The type and purpose of streamgages operated, the quality of streamflow record produced, and cost-accounting methods have a great effect on streamgaging costs. There are many uses of streamflow information, and the information requirements for streamgaging programs differ greatly across this range of purposes. A premise of the USGS streamgaging program is that the network must produce consistent data of sufficient quality to support the broadest range of possible uses. Other networks may have a narrower range of purposes; as a consequence, the method of operation, data-quality objectives, and information delivery may be different from those for a multipurpose network. As a result, direct comparison of the overall cost (or of the cost per streamgage) among these programs is not possible. The analysis is, nonetheless, very instructive and provides USGS program managers, agency leadership, and other agency streamgaging program managers useful insight to influence future decisions. Even though the comparison of streamgaging costs and streamflow information products was qualitative, this analysis does offer useful insights on longstanding questions of USGS streamgaging costs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/sir20045139/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/sir20045139/"><span>A precipitation-runoff model for the analysis of the effects of water withdrawals and land-use change on streamflow in the Usquepaug-Queen River Basin, Rhode Island</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zarriello, Phillip J.; Bent, Gardner C.</p> <p>2004-01-01</p> <p>The 36.1-square-mile UsquepaugQueen River Basin in south-central Rhode Island is an important water resource. Streamflow records indicate that withdrawals may have diminished flows enough to affect aquatic habitat. Concern over the effect of withdrawals on streamflow and aquatic habitat prompted the development of a Hydrologic Simulation ProgramFORTRAN (HSPF) model to evaluate the water-management alternatives and land-use change in the basin. Climate, streamflow, and water-use data were collected to support the model development. A logistic-regression equation was developed for long-term simulations to predict the likelihood of irrigation, the primary water use in the basin, from antecedent potential evapotranspiration and precipitation for generating irrigation demands. The HSPF model represented the basin by 13 pervious-area and 2 impervious-area land-use segments and 20 stream reaches. The model was calibrated to the period January 1, 2000 to September 30, 2001, at three continuous streamflow-gaging stations that monitor flow from 10, 54, and 100 percent of the basin drainage area. Hydrographs and flow-duration curves of observed and simulated discharges, along with statistics compiled for various model-fit metrics, indicate a satisfactory model performance. The calibrated HSPF model was modified to evaluate streamflow (1) under no withdrawals to streamflow under current (200001) withdrawal conditions under long-term (19602001) climatic conditions, (2) under withdrawals by the former Ladd School water-supply wells, and (3) under fully developed land use. The effects of converting from direct-stream withdrawals to ground-water withdrawals were evaluated outside of the HSPF model by use of the STRMDEPL program, which calculates the time delayed response of ground-water withdrawals on streamflow depletion. Simulated effects of current withdrawals relative to no withdrawals indicate about a 20-percent decrease in the lowest mean daily streamflows at the basin outlet, but withdrawals have little effect on flows that are exceeded less than about 90 percent of the time. Tests of alternative model structures to evaluate model uncertainty indicate that the lowest mean daily flows ranged between 3 and 5 cubic feet per second (ft3/s) without withdrawals and 2.2 to 4 ft3/s with withdrawals. Changes in the minimum daily streamflows are more pronounced, however; at the upstream streamflow-gaging station, a minimum daily flow of 0.2 ft3/s was sustained without withdrawals, but simulations with withdrawals indicate that the reach would stop flowing part of a day about 5 percent of the time. The effect on streamflow of potential ground-water withdrawals of 0.20, 0.90, and 1.78 million gallons per day (Mgal/d) at the former Ladd School near the central part of the basin were evaluated. The lowest daily mean flows in model reach 3, the main stem of the Queen River closest to the pumped wells, decreased by about 50 percent for withdrawals of 0.20 Mgal/d (from about 0.4 to 0.2 ft3/s) in comparison to current withdrawals. Reach 3 would occasionally stop flowing during part of the day at the 0.20-Mgal/d withdrawal rate because of diurnal fluctuation in streamflow. The higher withdrawal rates (0.90 and 1.78 Mgal/d) would cause reach 3 to stop flowing about 10 to 20 percent of the time, but the effects of pumping rapidly diminished downstream because of tributary inflows. Simulation results indicate little change in the annual 1-, 7-, and 30-day low flows at the 0.20 Mgal/d pumping rate, but at the 1.78 Mgal/d pumping rate, reach 3 stopped flowing for nearly a 7-day period every year and for a 30-day period about every other year. At the 0.90 Mgal/d pumping rate, reach 3 stopped flowing about every other year for a 7-day period and about once every 5 years for a 30-day period. Land-use change was simulated by converting model hydrologic-response units (HRUs) representing undeveloped areas to HRUs representing developed areas o</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ESSD...10..787G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ESSD...10..787G"><span>The Global Streamflow Indices and Metadata Archive (GSIM) - Part 2: Quality control, time-series indices and homogeneity assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gudmundsson, Lukas; Do, Hong Xuan; Leonard, Michael; Westra, Seth</p> <p>2018-04-01</p> <p>This is Part 2 of a two-paper series presenting the Global Streamflow Indices and Metadata Archive (GSIM), which is a collection of daily streamflow observations at more than 30 000 stations around the world. While Part 1 (Do et al., 2018a) describes the data collection process as well as the generation of auxiliary catchment data (e.g. catchment boundary, land cover, mean climate), Part 2 introduces a set of quality controlled time-series indices representing (i) the water balance, (ii) the seasonal cycle, (iii) low flows and (iv) floods. To this end we first consider the quality of individual daily records using a combination of quality flags from data providers and automated screening methods. Subsequently, streamflow time-series indices are computed for yearly, seasonal and monthly resolution. The paper provides a generalized assessment of the homogeneity of all generated streamflow time-series indices, which can be used to select time series that are suitable for a specific task. The newly generated global set of streamflow time-series indices is made freely available with an digital object identifier at <a href="https://doi.pangaea.de/10.1594/PANGAEA.887470" target="_blank">https://doi.pangaea.de/10.1594/PANGAEA.887470</a> and is expected to foster global freshwater research, by acting as a ground truth for model validation or as a basis for assessing the role of human impacts on the terrestrial water cycle. It is hoped that a renewed interest in streamflow data at the global scale will foster efforts in the systematic assessment of data quality and provide momentum to overcome administrative barriers that lead to inconsistencies in global collections of relevant hydrological observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1080/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1080/"><span>Streamflow and Nutrient Fluxes of the Mississippi-Atchafalaya River Basin and Subbasins for the Period of Record Through 2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Aulenbach, Brent T.; Buxton, Herbert T.; Battaglin, William A.; Coupe, Richard H.</p> <p>2007-01-01</p> <p>U.S. Geological Survey has monitored streamflow and water quality systematically in the Mississippi-Atchafalaya River Basin (MARB) for more than five decades. This report provides streamflow and estimates of nutrient delivery (flux) to the Gulf of Mexico from both the Atchafalaya River and the main stem of the Mississippi River. This report provides streamflow and nutrient flux estimates for nine major subbasins of the Mississippi River. This report also provides streamflow and flux estimates for 21 selected subbasins of various sizes, hydrology, land use, and geographic location within the Basin. The information is provided at each station for the period for which sufficient water-quality data are available to make statistically based flux estimates (starting as early as water year1 1960 and going through water year 2005). Nutrient fluxes are estimated using the adjusted maximum likelihood estimate, a type of regression-model method; nutrient fluxes to the Gulf of Mexico also are estimated using the composite method. Regression models were calibrated using a 5-year moving calibration period; the model was used to estimate the last year of the calibration period. Nutrient flux estimates are provided for six water-quality constituents: dissolved nitrite plus nitrate, total organic nitrogen plus ammonia nitrogen (total Kjeldahl nitrogen), dissolved ammonia, total phosphorous, dissolved orthophosphate, and dissolved silica. Additionally, the contribution of streamflow and net nutrient flux for five large subbasins comprising the MARB were determined from streamflow and nutrient fluxes from seven of the aforementioned major subbasins. These five large subbasins are: 1. Lower Mississippi, 2. Upper Mississippi, 3. Ohio/Tennessee, 4. Missouri, and 5. Arkansas/Red.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015WRR....51.5318B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015WRR....51.5318B"><span>Use of a forest sapwood area index to explain long-term variability in mean annual evapotranspiration and streamflow in moist eucalypt forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benyon, Richard G.; Lane, Patrick N. J.; Jaskierniak, Dominik; Kuczera, George; Haydon, Shane R.</p> <p>2015-07-01</p> <p>Mean sapwood thickness, measured in fifteen 73 year old Eucalyptus regnans and E. delegatensis stands, correlated strongly with forest overstorey stocking density (R2 0.72). This curvilinear relationship was used with routine forest stocking density and basal area measurements to estimate sapwood area of the forest overstorey at various times in 15 research catchments in undisturbed and disturbed forests located in the Great Dividing Range, Victoria, Australia. Up to 45 years of annual precipitation and streamflow data available from the 15 catchments were used to examine relationships between mean annual loss (evapotranspiration estimated as mean annual precipitation minus mean annual streamflow), and sapwood area. Catchment mean sapwood area correlated strongly (R2 0.88) with catchment mean annual loss. Variation in sapwood area accounted for 68% more variation in mean annual streamflow than precipitation alone (R2 0.90 compared with R2 0.22). Changes in sapwood area accounted for 96% of the changes in mean annual loss observed after forest thinning or clear-cutting and regeneration. We conclude that forest inventory data can be used reliably to predict spatial and temporal variation in catchment annual losses and streamflow in response to natural and imposed disturbances in even-aged forests. Consequently, recent advances in mapping of sapwood area using airborne light detection and ranging will enable high resolution spatial and temporal mapping of mean annual loss and mean annual streamflow over large areas of forested catchment. This will be particularly beneficial in management of water resources from forested catchments subject to disturbance but lacking reliable long-term (years to decades) streamflow records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70181841','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70181841"><span>Water quality monitoring and data collection in the Mississippi sound</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Runner, Michael S.; Creswell, R.</p> <p>2002-01-01</p> <p>The United States Geological Survey and the Mississippi Department of Marine Resources are collecting data on the quality of the water in the Mississippi Sound of the Gulf of Mexico, and streamflow data for its tributaries. The U.S. Geological Survey is collecting continuous water-level data, continuous and discrete water-temperature data, continuous and discrete specific-conductance data, as well as chloride and salinity samples at two locations in the Mississippi Sound and three Corps of Engineers tidal gages. Continuous-discharge data are also being collected at two additional stations on tributaries. The Mississippi Department of Marine Resources collects water samples at 169 locations in the Gulf of Mexico. Between 1800 and 2000 samples are collected annually which are analyzed for turbidity and fecal coliform bacteria. The continuous data are made available real-time through the internet and are being used in conjunction with streamflow data, weather data, and sampling data for the monitoring and management of the oyster reefs, the shrimp fishery and other marine species and their habitats.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H42D..06P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H42D..06P"><span>Hydrologic Interpretations of Long-Term Gravity Records at Tucson, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pool, D. R.; Kennedy, J.; MacQueen, P.; Niebauer, T. M.</p> <p>2016-12-01</p> <p>The USGS Arizona Water Science Center monitors groundwater storage using gravity methods at sites across the western United States. A site at the USGS office in Tucson serves as a test station that has been monitored since 1997 using several types of gravity meters. Prior to 2007, the site was observed twice each year by the National Geodetic Survey using an FG5 absolute gravity meter for the purpose of establishing control for local relative gravity surveys of aquifer storage change. Beginning in 2003 the site has also served as a reference to verify the accuracy of an A10 absolute gravity meter that is used for field surveys. The site is in an alluvial basin where gravity can vary with aquifer storage change caused by variable groundwater withdrawals, elevation change caused by aquifer compaction or expansion, and occasional recharge. In addition, continuous gravity records were collected for periods of several months using a super-conducting meter during 2010-2011 and using a spring-based gPhone meter during 2015-2016. The purpose of the continuous records was to provide more precise information about monthly and shorter period variations that could be related to variations in nearby groundwater withdrawals. The record of absolute gravity observations displays variations of as much as 35 microGal that correspond with local hydrologic variations documented from precipitation, streamflow, elevation, depths to water, and well pumping records. Depth to water in nearby wells display variations related to occasional local heavy precipitation events, runoff, recharge, and groundwater withdrawals. Increases in gravity that occur over periods of several months or longer correspond with occasional heavy precipitation and recharge. Periods of gravity decline occur during extended periods between recharge events and periods of increased local groundwater withdrawals. Analysis of the continuous records from both instruments indicate that groundwater drains slowly from storage in response to pumping variations, requiring several days or longer for the aquifer to drain, which is consistent with other hydrologic records.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wdrga01/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wdrga01/"><span>Water Resources Data, Georgia, 2001, Volume 2: Continuous ground-water level data, and periodic surface-water- and ground-water-quality data, Calendar Year 2001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Coffin, Robert; Grams, Susan C.; Cressler, Alan M.; Leeth, David C.</p> <p>2001-01-01</p> <p>Water resources data for the 2001 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2001, including: discharge records of 133 gaging stations; stage for 144 gaging stations; precipitation for 58 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 17 stations; the annual peak stage and annual peak discharge for 76 crest-stage partial-record stations; and miscellaneous streamflow measurements at 27 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2001, including continuous water-level records of 159 ground-water wells and periodic records at 138 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins. To obtain a copy of the CD version of this report, you may call the U.S. Geological Survey office in Atlanta at (770) 903-9100, or send e-mail to request the publication. Please include your name and mailing address in your e-mail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47721','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47721"><span>Climate, snowpack, and streamflow of Priest River Experimental Forest, revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Wade T. Tinkham; Robert Denner; Russell T. Graham</p> <p>2015-01-01</p> <p>The climate record of Priest River Experimental Forest has the potential to provide a century-long history of northern Rocky Mountain forest ecosystems. The record, which began in 1911 with the Benton Flat Nursery control weather station, included observations of temperature, precipitation, humidity, and wind. Later, other observations stations were added to the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC41G..05R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC41G..05R"><span>Five Centuries of Tree Ring Reconstructed Streamflow and Projections for Future Water Risk over the Upper Indus Watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rao, M. P.; Cook, E. R.; Cook, B.; Palmer, J. G.; Uriarte, M.; Devineni, N.; Lall, U.; D'Arrigo, R.; Woodhouse, C. A.; Ahmed, M.</p> <p>2017-12-01</p> <p>We present tree-ring reconstructions of streamflow at seven gauges in the Upper Indus River watershed over the past five centuries (1452-2008 C.E.) using Hierarchical Bayesian Regression (HBR) with partial pooling of information across gauges. Using HBR with partial pooling we can develop reconstructions for short gauge records with interspersed missing data. This overcomes a common limitation faced when using conventional tree-ring reconstruction methods such as point-by-point regression (PPR) in remote regions in developing countries. Six of these streamflow gauge reconstructions are produced for the first time while a reconstruction at one streamflow gauge has been previously produced using PPR. These new reconstructions are used to characterize long-term flow variability and drought risk in the region. For the one gauge where a prior reconstruction exists, the reconstruction of streamflow by HBR and the more traditional PPR are nearly identical and yield comparable uncertainty estimates and reconstruction skill statistics. These results highlight that tree-ring reconstructions of streamflow are not dependent on the choice of statistical method. We find that streamflow in the region peaks between May-September, and is primarily driven by a combination of winter (January-March) precipitation and summer (May-September) temperature, with summer temperature likely guiding the rate of snow and glacial melt. Our reconstructions indicate that current flow since the 1980s are higher than mean flow for the past five centuries at five out of seven gauges in the watershed. The increased flow is likely driven by enhanced rates of snow and glacial melt and regional wetting over recent decades. These results suggest that while in the near-term streamflow is expected to increase, future water risk in the region will be dependent on changes in snowfall and glacial mass balance due to projected warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2012/5059/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2012/5059/"><span>Determination of streamflow of the Arkansas River near Bentley in south-central Kansas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Perry, Charles A.</p> <p>2012-01-01</p> <p>The Kansas Department of Agriculture, Division of Water Resources, requires that the streamflow of the Arkansas River just upstream from Bentley in south-central Kansas be measured or calculated before groundwater can be pumped from the well field. When the daily streamflow of the Arkansas River near Bentley is less than 165 cubic feet per second (ft3/s), pumping must be curtailed. Daily streamflow near Bentley was calculated by determining the relations between streamflow data from two reference streamgages with a concurrent record of 24 years, one located 17.2 miles (mi) upstream and one located 10.9 mi downstream, and streamflow at a temporary gage located just upstream from Bentley (Arkansas River near Bentley, Kansas). Flow-duration curves for the two reference streamgages indicate that during 1988?2011, the mean daily streamflow was less than 165 ft3/s 30 to 35 percent of the time. During extreme low-flow (drought) conditions, the reach of the Arkansas River between Hutchinson and Maize can lose flow to the adjacent alluvial aquifer, with streamflow losses as much as 1.6 cubic feet per second per mile. Three models were developed to calculate the streamflow of the Arkansas River near Bentley, Kansas. The model chosen depends on the data available and on whether the reach of the Arkansas River between Hutchinson and Maize is gaining or losing groundwater from or to the adjacent alluvial aquifer. The first model was a pair of equations developed from linear regressions of the relation between daily streamflow data from the Bentley streamgage and daily streamflow data from either the Arkansas River near Hutchinson, Kansas, station (station number 07143330) or the Arkansas River near Maize, Kansas, station (station number 07143375). The standard error of the Hutchinson-only equation was 22.8 ft3/s, and the standard error of the Maize-only equation was 22.3 ft3/s. The single-station model would be used if only one streamgage was available. In the second model, the flow gradient between the streamflow near Hutchinson and the streamflow near Maize was used to calculate the streamflow at the Bentley streamgage. This equation resulted in a standard error of 26.7 ft3/s. In the third model, a multiple regression analysis between both the daily streamflow of the Arkansas River near Hutchinson, Kansas, and the daily streamflow of the Arkansas River near Maize, Kansas, was used to calculate the streamflow at the Bentley streamgage. The multiple regression equation had a standard error of 21.2 ft3/s, which was the smallest of the standard errors for all the models. An analysis of the number of low-flow days and the number of days when the reach between Hutchinson and Maize loses flow to the adjacent alluvial aquifer indicates that the long-term trend is toward fewer days of losing conditions. This trend may indicate a long-term increase in water levels in the alluvial aquifer, which could be caused by one or more of several conditions, including an increase in rainfall, a decrease in pumping, a decrease in temperature, and an increase in streamflow upstream from the Hutchinson-to-Maize reach of the Arkansas River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2014/1003/pdf/ofr2014-1003.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2014/1003/pdf/ofr2014-1003.pdf"><span>Hydrologic Drought Decision Support System (HyDroDSS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Granato, Gregory E.</p> <p>2014-01-01</p> <p>The hydrologic drought decision support system (HyDroDSS) was developed by the U.S. Geological Survey (USGS) in cooperation with the Rhode Island Water Resources Board (RIWRB) for use in the analysis of hydrologic variables that may indicate the risk for streamflows to be below user-defined flow targets at a designated site of interest, which is defined herein as data-collection site on a stream that may be adversely affected by pumping. Hydrologic drought is defined for this study as a period of lower than normal streamflows caused by precipitation deficits and (or) water withdrawals. The HyDroDSS is designed to provide water managers with risk-based information for balancing water-supply needs and aquatic-habitat protection goals to mitigate potential effects of hydrologic drought. This report describes the theory and methods for retrospective streamflow-depletion analysis, rank correlation analysis, and drought-projection analysis. All three methods are designed to inform decisions made by drought steering committees and decisionmakers on the basis of quantitative risk assessment. All three methods use estimates of unaltered streamflow, which is the measured or modeled flow without major withdrawals or discharges, to approximate a natural low-flow regime. Retrospective streamflow-depletion analysis can be used by water-resource managers to evaluate relations between withdrawal plans and the potential effects of withdrawal plans on streams at one or more sites of interest in an area. Retrospective streamflow-depletion analysis indicates the historical risk of being below user-defined flow targets if different pumping plans were implemented for the period of record. Retrospective streamflow-depletion analysis also indicates the risk for creating hydrologic drought conditions caused by use of a pumping plan. Retrospective streamflow-depletion analysis is done by calculating the net streamflow depletions from withdrawals and discharges and applying these depletions to a simulated record of unaltered streamflow. Rank correlation analysis in the HyDroDSS indicates the persistence of hydrologic measurements from month to month for the prediction of developing hydrologic drought conditions and quantitatively indicates which hydrologic variables may be used to indicate the onset of hydrologic drought conditions. Rank correlation analysis also indicates the potential use of each variable for estimating the monthly minimum unaltered flow at a site of interest for use in the drought-projection analysis. Rank correlation analysis in the HyDroDSS is done by calculating Spearman’s rho for paired samples and the 95-percent confidence limits of this rho value. Rank correlation analysis can be done by using precipitation, groundwater levels, measured streamflows, and estimated unaltered streamflows. Serial correlation analysis, which indicates relations between current and future values, can be done for a single site. Cross correlation analysis, which indicates relations among current values at one site and current and future values at a second site, also can be done. Drought-projection analysis in the HyDroDSS indicates the risk for being in a hydrologic drought condition during the current month and the five following months with and without pumping. Drought-projection analysis also indicates the potential effectiveness of water-conservation methods for mitigating the effect of withdrawals in the coming months on the basis of the amount of depletion caused by different pumping plans and on the risk of unaltered flows being below streamflow targets. Drought-projection analysis in the HyDroDSS is done with Monte Carlo methods by using the position analysis method. In this method the initial value of estimated unaltered streamflows is calculated by correlation to a measured hydrologic variable (monthly precipitation, groundwater levels, or streamflows from an index station identified with the rank correlation analysis). Then a pseudorandom number generator is used to create 251 six-month-long flow traces by using a bootstrap method. Serial correlation of the estimated unaltered monthly minimum streamflows determined from the rank correlation analysis is preserved within each flow trace. The sample of unaltered streamflows indicates the risk of being below flow targets in the coming months under simulated natural conditions (without historic withdrawals). The streamflow-depletion algorithms are then used to estimate risks of flow being below targets if selected pumping plans are used. This report also describes the implementation of the HyDroDSS. The HyDroDSS was developed as a Microsoft Access® database application to facilitate storage, handling, and use of hydrologic datasets with a simple graphical user interface. The program is implemented in the database by using the Visual Basic for Applications® (VBA) programming language. Program source code for the analytical techniques is provided in the HyDroDSS and in electronic text files accompanying this report. Program source code for the graphical user interface and for data-handling code, which is specific to Microsoft Access® and the HyDroDSS, is provided in the database. An installation package with a run-time version of the software is available with this report for potential users who do not have a compatible copy of Microsoft Access®. Administrative rights are needed to install this version of the HyDroDSS. A case study, to demonstrate the use of HyDroDSS and interpretation of results for a site of interest, is detailed for the USGS streamgage on the Hunt River (station 01117000) near East Greenwich in central Rhode Island. The Hunt River streamgage was used because it has a long record of streamflow and is in a well-studied basin with a substantial amount of hydrologic and water-use data including groundwater pumping for municipal water supply.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28766121','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28766121"><span>Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arenas Amado, A; Schilling, K E; Jones, C S; Thomas, N; Weber, L J</p> <p>2017-09-01</p> <p>Nitrogen losses from artificially drained watersheds degrade water quality at local and regional scales. In this study, we used an end-member mixing analysis (EMMA) together with high temporal resolution water quality and streamflow data collected in the 122 km 2 Otter Creek watershed located in northeast Iowa. We estimated the contribution of three end-members (groundwater, tile drainage, and quick flow) to streamflow and nitrogen loads and tested several combinations of possible nitrate concentrations for the end-members. Results indicated that subsurface tile drainage is responsible for at least 50% of the watershed nitrogen load between April 15 and November 1, 2015. Tiles delivered up to 80% of the stream N load while providing only 15-43% of the streamflow, whereas quick flows only marginally contributed to N loading. Data collected offer guidance about areas of the watershed that should be targeted for nitrogen export mitigation strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/circ1295/+','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/circ1295/+"><span>Drought of 1998-2002: impacts on Florida's hydrology and landscape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Verdi, Richard Jay; Tomlinson, Stewart A.; Marella, Richard L.</p> <p>2006-01-01</p> <p>Lower than normal precipitation caused a severe statewide drought in Florida from 1998 to 2002. Based on precipitation and streamflow records dating to the early 1900s, the drought was one of the worst ever to affect the State. In terms of severity, this drought was comparable to the drought of 1949-1957 in duration and had record-setting low flows in several basins. The drought was particularly severe over the 5-year period in the northwest, northeast, and southwest regions of Florida, where rainfall deficits ranged from 9-10 in. below normal (southwest Florida) to 38-40 in. below normal (northwest Florida). Within these regions, the drought caused record-low streamflows in several river basins, increased freshwater withdrawals, and created hazardous conditions ripe for wildfires, sinkhole development, and even the draining of lakes. South Florida was affected primarily in 2001, when the region experienced below-average streamflow conditions; however, cumulative rainfall in south Florida never fell below the 30-year normal. The four regions of Florida, as referred to throughout this report, are defined based upon U.S. Geological Survey (USGS) data collection regions in Florida. Record-low flows were reported at several streamflow-gaging stations throughout the State, including the Withlacoochee River at Trilby, which reached zero flow on June 10-11, 2000, for the first time during the period of record (1928-2004). Streamflow conditions varied across the State from 31 percent of average flow in 2000 in southwest Florida, to 100 percent of average in 1999 in south Florida. Low-flow recurrence intervals during the drought ranged from less than 2 years at three locations to greater than 50 years at many locations. During the 1998-2002 drought, ground-water levels at many wells across the State declined to elevations not seen in many years. At some wells, ground-water levels reached record lows for their period of record. Florida Water Management Districts responded by issuing water-shortage mandates to curb water use during the spring months of 2000. Generally, freshwater withdrawals increased 13 percent between 1995 and 2000 as a result of the dry conditions. Hundreds of new sinkholes developed across the State. Lake Jackson, in northwest Florida near Tallahassee, experienced its eighth and ninth drawdowns of the past 100 years, and became nearly dry. Numerous other lakes in northern and central Florida experienced similar events. Water restrictions were put into effect in urban areas of the northeast, southwest, and south Florida regions. Wildfires periodically raged over parts of Florida throughout the period, when tinder-dry undergrowth caught fire from lightning strikes or manmade causes. Smoke from these fires caused traffic delays as sections of major highways and interstate lanes forced traffic to slow to a crawl or were closed. Wildfire statistics (Florida Division of Forestry) show that 25,137 fires burned 1.5 million acres between 1998 and 2002. Finally, rainfall that occurred in late 2002, in 2003, and from a tropical storm and four hurricanes in 2004 ended this drought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2012/1253/pdf/ofr2012-1253.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2012/1253/pdf/ofr2012-1253.pdf"><span>Low-flow frequency and flow duration of selected South Carolina streams in the Saluda, Congaree, and Edisto River basins through March 2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Feaster, Toby D.; Guimaraes, Wladmir B.</p> <p>2012-01-01</p> <p>Part of the mission of the South Carolina Department of Health and Environmental Control and the South Carolina Department of Natural Resources is to protect and preserve South Carolina's water resources. Doing so requires an ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina. A particular need is information concerning the low-flow characteristics of streams, which is especially important for effectively managing the State's water resources during critical flow periods, such as during periods of severe drought like South Carolina has experienced in the last decade or so. The U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, initiated a study in 2008 to update low-flow statistics at continuous-record streamgaging stations operated by the U.S. Geological Survey in South Carolina. This report presents the low-flow statistics for 25 selected streamgaging stations in the Saluda, Congaree, and Edisto River basins in South Carolina, and includes flow durations for the 5-, 10-, 25-, 50-,75-, 90-, and 95-percent exceedances and the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day average flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamgaging station. The low-flow statistics were computed from records available through March 31, 2009. Of the 25 streamgaging stations for which recurrence interval computations were made, 20 were compared to low-flow statistics that were published in previous U.S. Geological Survey reports. A comparison of the low-flow statistics for the annual minimum 7-day average streamflow with a 10-year recurrence interval (7Q10) from this study with the most recently published values indicates that 18 of the 20 streamgaging stations have values lower than the previous published values. The low-flow statistics are influenced by length of record, hydrologic regime under which the record was collected, analytical techniques used, and other changes, such as urbanization, diversions, droughts, and so on, that may have occurred in the basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70137275','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70137275"><span>Multiple regression and inverse moments improve the characterization of the spatial scaling behavior of daily streamflows in the Southeast United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Farmer, William H.; Over, Thomas M.; Vogel, Richard M.</p> <p>2015-01-01</p> <p>Understanding the spatial structure of daily streamflow is essential for managing freshwater resources, especially in poorly-gaged regions. Spatial scaling assumptions are common in flood frequency prediction (e.g., index-flood method) and the prediction of continuous streamflow at ungaged sites (e.g. drainage-area ratio), with simple scaling by drainage area being the most common assumption. In this study, scaling analyses of daily streamflow from 173 streamgages in the southeastern US resulted in three important findings. First, the use of only positive integer moment orders, as has been done in most previous studies, captures only the probabilistic and spatial scaling behavior of flows above an exceedance probability near the median; negative moment orders (inverse moments) are needed for lower streamflows. Second, assessing scaling by using drainage area alone is shown to result in a high degree of omitted-variable bias, masking the true spatial scaling behavior. Multiple regression is shown to mitigate this bias, controlling for regional heterogeneity of basin attributes, especially those correlated with drainage area. Previous univariate scaling analyses have neglected the scaling of low-flow events and may have produced biased estimates of the spatial scaling exponent. Third, the multiple regression results show that mean flows scale with an exponent of one, low flows scale with spatial scaling exponents greater than one, and high flows scale with exponents less than one. The relationship between scaling exponents and exceedance probabilities may be a fundamental signature of regional streamflow. This signature may improve our understanding of the physical processes generating streamflow at different exceedance probabilities. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2008/1362/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2008/1362/"><span>Computer Programs for Obtaining and Analyzing Daily Mean Steamflow Data from the U.S. Geological Survey National Water Information System Web Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Granato, Gregory E.</p> <p>2009-01-01</p> <p>Streamflow information is important for many planning and design activities including water-supply analysis, habitat protection, bridge and culvert design, calibration of surface and ground-water models, and water-quality assessments. Streamflow information is especially critical for water-quality assessments (Warn and Brew, 1980; Di Toro, 1984; Driscoll and others, 1989; Driscoll and others, 1990, a,b). Calculation of streamflow statistics for receiving waters is necessary to estimate the potential effects of point sources such as wastewater-treatment plants and nonpoint sources such as highway and urban-runoff discharges on receiving water. Streamflow statistics indicate the amount of flow that may be available for dilution and transport of contaminants (U.S. Environmental Protection Agency, 1986; Driscoll and others, 1990, a,b). Streamflow statistics also may be used to indicate receiving-water quality because concentrations of water-quality constituents commonly vary naturally with streamflow. For example, concentrations of suspended sediment and sediment-associated constituents (such as nutrients, trace elements, and many organic compounds) commonly increase with increasing flows, and concentrations of many dissolved constituents commonly decrease with increasing flows in streams and rivers (O'Connor, 1976; Glysson, 1987; Vogel and others, 2003, 2005). Reliable, efficient and repeatable methods are needed to access and process streamflow information and data. For example, the Nation's highway infrastructure includes an innumerable number of stream crossings and stormwater-outfall points for which estimates of stream-discharge statistics may be needed. The U.S. Geological Survey (USGS) streamflow data-collection program is designed to provide streamflow data at gaged sites and to provide information that can be used to estimate streamflows at almost any point along any stream in the United States (Benson and Carter, 1973; Wahl and others, 1995; National Research Council, 2004). The USGS maintains the National Water Information System (NWIS), a distributed network of computers and file servers used to store and retrieve hydrologic data (Mathey, 1998; U.S. Geological Survey, 2008). NWISWeb is an online version of this database that includes water data from more than 24,000 streamflow-gaging stations throughout the United States (U.S. Geological Survey, 2002, 2008). Information from NWISWeb is commonly used to characterize streamflows at gaged sites and to help predict streamflows at ungaged sites. Five computer programs were developed for obtaining and analyzing streamflow from the National Water Information System (NWISWeb). The programs were developed as part of a study by the U.S. Geological Survey, in cooperation with the Federal Highway Administration, to develop a stochastic empirical loading and dilution model. The programs were developed because reliable, efficient, and repeatable methods are needed to access and process streamflow information and data. The first program is designed to facilitate the downloading and reformatting of NWISWeb streamflow data. The second program is designed to facilitate graphical analysis of streamflow data. The third program is designed to facilitate streamflow-record extension and augmentation to help develop long-term statistical estimates for sites with limited data. The fourth program is designed to facilitate statistical analysis of streamflow data. The fifth program is a preprocessor to create batch input files for the U.S. Environmental Protection Agency DFLOW3 program for calculating low-flow statistics. These computer programs were developed to facilitate the analysis of daily mean streamflow data for planning-level water-quality analyses but also are useful for many other applications pertaining to streamflow data and statistics. These programs and the associated documentation are included on the CD-ROM accompanying this report. This report and the appendixes on the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://in.water.usgs.gov/newreports/wilson.pdf','USGSPUBS'); return false;" href="http://in.water.usgs.gov/newreports/wilson.pdf"><span>Evaluation of a method of estimating low-flow frequencies from base-flow measurements at Indiana streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wilson, John Thomas</p> <p>2000-01-01</p> <p>A mathematical technique of estimating low-flow frequencies from base-flow measurements was evaluated by using data for streams in Indiana. Low-flow frequencies at low- flow partial-record stations were estimated by relating base-flow measurements to concurrent daily flows at nearby streamflow-gaging stations (index stations) for which low-flowfrequency curves had been developed. A network of long-term streamflow-gaging stations in Indiana provided a sample of sites with observed low-flow frequencies. Observed values of 7-day, 10-year low flow and 7-day, 2-year low flow were compared to predicted values to evaluate the accuracy of the method. Five test cases were used to evaluate the method under a variety of conditions in which the location of the index station and its drainage area varied relative to the partial-record station. A total of 141 pairs of streamflow-gaging stations were used in the five test cases. Four of the test cases used one index station, the fifth test case used two index stations. The number of base-flow measurements was varied for each test case to see if the accuracy of the method was affected by the number of measurements used. The most accurate and least variable results were produced when two index stations on the same stream or tributaries of the partial-record station were used. All but one value of the predicted 7-day, 10-year low flow were within 15 percent of the values observed for the long-term continuous record, and all of the predicted values of the 7-day, 2-year lowflow were within 15 percent of the observed values. This apparent accuracy, to some extent, may be a result of the small sample set of 15. Of the four test cases that used one index station, the most accurate and least variable results were produced in the test case where the index station and partial-record station were on the same stream or on streams tributary to each other and where the index station had a larger drainage area than the partial-record station. In that test case, the method tended to over predict, based on the median relative error. In 23 of 28 test pairs, the predicted 7-day, 10-year low flow was within 15 percent of the observed value; in 26 of 28 test pairs, the predicted 7-day, 2-year low flow was within 15 percent of the observed value. When the index station and partial-record station were on the same stream or streams tributary to each other and the index station had a smaller drainage area than the partial-record station, the method tended to under predict the low-flow frequencies. Nineteen of 28 predicted values of the 7-day, 10-year low flow were within 15 percent of the observed values. Twenty-five of 28 predicted values of the 7-day, 2-year low flow were within 15 percent of the observed values. When the index station and the partial-record station were on different streams, the method tended to under predict regardless of whether the index station had a larger or smaller drainage area than that of the partial-record station. Also, the variability of the relative error of estimate was greatest for the test cases that used index stations and partial-record stations from different streams. This variability, in part, may be caused by using more streamflow-gaging stations with small low-flow frequencies in these test cases. A small difference in the predicted and observed values can equate to a large relative error when dealing with stations that have small low-flow frequencies. In the test cases that used one index station, the method tended to predict smaller low-flow frequencies as the number of base-flow measurements was reduced from 20 to 5. Overall, the average relative error of estimate and the variability of the predicted values increased as the number of base-flow measurements was reduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2004/5173/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2004/5173/report.pdf"><span>Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.</p> <p>2004-01-01</p> <p>Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression equations. PHABSIM results are presented for bull trout, chinook salmon, and steelhead trout over a range of summer streamflows. Habitat/discharge relations are summarized for juvenile, adult, and spawning life stages at each study site. Adult fish passage and discharge relations are evaluated at specific transects identified as a potential low-streamflow passage barrier at each study site. Continuous summer water temperature data for selected study sites also are summarized and compared with Idaho Water Quality Standards and various temperature requirements of targeted fish species. Results of these habitat studies can be used to prioritize and direct cost-effective actions to improve fish habitat for ESA-listed anadromous and native fish species in the basin. These actions may include acquiring water during critical low-flow periods by leasing or modifying irrigation delivery systems to minimize out-of-stream diversions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/66868','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/66868"><span>Map showing selected surface-water data for the Nephi 30 x 60-minute quadrangle, Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Price, Don</p> <p>1984-01-01</p> <p>This is one of a series of maps that describe the geology and related natural resources of the Nephi 30 x 60 minute quadrangle, Utah. Streamflow records used to compile this map were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing areas shown on the map were delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Sources of information about recorded floods resulting from cloudbursts included Woolley (1946) and Butler and Marsell (1972); sources of information about the chemical quality of streamflow included Hahl and Cabell (1965) Mundorff (1972 and 1974), and Waddell and others (1982).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1688F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1688F"><span>Influence of landscape mosaic on streamflow of a peri-urban catchment under Mediterranean climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferreira, Carla; Walsh, Rory; Ferreira, António</p> <p>2017-04-01</p> <p>Peri-urban areas tend to be characterized by patchy landscape mosaics of different land-uses. Although the impact of land-use changes on catchment hydrology have been widely investigated, the impact of mixed land-use patterns on the streamflow of peri-urban areas is still poorly understood. This study aims to (i) explore and quantify streamflow delivery from sub-catchments characterized by distinct landscape mosaics; (ii) assess the impact of different urbanization styles on hydrograph properties; and (iii) explore the influence of urbanization type on flow connectivity and stream discharge. The study was carried out in Ribeira dos Covões, a small (6.2km2) peri-urban catchment in central Portugal. The climate is Mediterranean, with a mean annual rainfall of 892mm. Catchment geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils developed on sandstone are generally deep (>3m) Fluvisols and Podsols, whereas on limestone the Leptic Cambisols are typically shallow (<0.4m). Forest is the dominant land-use (56%), but urban areas cover an extensive area (40%), whereas agricultural land has declined to a very small area (4%). The urban area comprises contrasting urban styles, notably older discontinuous urban areas with buildings separated by gardens of low population density (<25 inhabitants km-2), and recent well-defined continuous urban cores dominated by apartment blocks and of high population density (9900 inhabitants km-2). The study uses hydrological data recorded over three hydrological years, starting in November 2010, in a monitoring network comprising eight streamflow gauging stations (instrumented with water level recorders) and five rainfall gauges. The gauging stations provide information on the discharge response to rainstorms of the catchment outlet and upstream sub-catchments of different size, urban pattern (in terms of percentage urban land-use and impervious area, distance to the stream network, and storm water management), and lithology (either sandstone or limestone). Annual storm runoff coefficients were lowest (13.7%) in catchments dominated by forest (>80%) and greatest (17.3-17.6%) in the most urbanized sub-catchments (49-53% urban). Impervious area seems to control streamflow particularly during dry periods. Winter runoff (streamflow per unit area) was 2-4 times higher than summer runoff in highly urbanized areas, but was 21-fold higher in winter than in summer in the least urbanized sub-catchment, indicating greater flow connectivity in winter, enhanced by increased soil moisture. Lithology also played an important role on hydrology, with sandstone sub-catchments exhibiting greater annual baseflow index values (23-46%) than found in limestone ones (<5%). For sub-catchments underlain by both lithologies, linear relationships were found between storm runoff coefficients and percentage urban and percentage impervious area, but with greater runoff responses in the sandstone ones. Nevertheless, linear regression lines for both lithologies get close to each other when the extent of urban areas reached about 50%. The proximity of urban areas to the stream network and whether urban storm runoff is directly piped to the stream network were important parameters influencing peak flows and response time. Landscape mosaics that include land-use patches of high soil permeability tend to provide locations of surface water retention and enhanced infiltration, thereby breaking flow connectivity between hillslope urban surfaces and the stream network. This kind of spatial pattern should be considered for urban planning, in order to minimize flood hazards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...47.4051M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...47.4051M"><span>Streamflow variability in the Chilean Temperate-Mediterranean climate transition (35°S-42°S) during the last 400 years inferred from tree-ring records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muñoz, Ariel A.; González-Reyes, Alvaro; Lara, Antonio; Sauchyn, David; Christie, Duncan; Puchi, Paulina; Urrutia-Jalabert, Rocío; Toledo-Guerrero, Isadora; Aguilera-Betti, Isabella; Mundo, Ignacio; Sheppard, Paul R.; Stahle, Daniel; Villalba, Ricardo; Szejner, Paul; LeQuesne, Carlos; Vanstone, Jessica</p> <p>2016-12-01</p> <p>As rainfall in South-Central Chile has decreased in recent decades, local communities and industries have developed an understandable concern about their threatened water supply. Reconstructing streamflows from tree-ring data has been recognized as a useful paleoclimatic tool in providing long-term perspectives on the temporal characteristics of hydroclimate systems. Multi-century long streamflow reconstructions can be compared to relatively short instrumental observations in order to analyze the frequency of low and high water availability through time. In this work, we have developed a Biobío River streamflow reconstruction to explore the long-term hydroclimate variability at the confluence of the Mediterranean-subtropical and the Temperate-humid climate zones, two regions represented by previous reconstructions of the Maule and Puelo Rivers, respectively. In a suite of analyses, the Biobío River reconstruction proves to be more similar to the Puelo River than the Maule River, despite its closer geographic proximity to the latter. This finding corroborates other studies with instrumental data that identify 37.5°S as a latitudinal confluence of two climate zones. The analyzed rivers are affected by climate forcings on interannual and interdecadal time-scales, Tropical (El Niño Southern Oscillation) and Antarctic (Southern Annular Mode; SAM). Longer cycles found, around 80-years, are well correlated only with SAM variation, which explains most of the variance in the Biobío and Puelo rivers. This cycle also has been attributed to orbital forcing by other authors. All three rivers showed an increase in the frequency of extreme high and low flow events in the twentieth century. The most extreme dry and wet years in the instrumental record (1943-2000) were not the most extreme of the past 400-years reconstructed for the three rivers (1600-2000), yet both instrumental record years did rank in the five most extreme of the streamflow reconstructions as a whole. These findings suggest a high level of natural variability in the hydro-climatic conditions of the region, where extremes characterized the twentieth century. This information is particularly useful when evaluating and improving a wide variety of water management models that apply to water resources that are sensitive to agricultural and hydropower industries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2013/5090/sir13-5090.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2013/5090/sir13-5090.pdf"><span>Computed statistics at streamgages, and methods for estimating low-flow frequency statistics and development of regional regression equations for estimating low-flow frequency statistics at ungaged locations in Missouri</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Southard, Rodney E.</p> <p>2013-01-01</p> <p>The weather and precipitation patterns in Missouri vary considerably from year to year. In 2008, the statewide average rainfall was 57.34 inches and in 2012, the statewide average rainfall was 30.64 inches. This variability in precipitation and resulting streamflow in Missouri underlies the necessity for water managers and users to have reliable streamflow statistics and a means to compute select statistics at ungaged locations for a better understanding of water availability. Knowledge of surface-water availability is dependent on the streamflow data that have been collected and analyzed by the U.S. Geological Survey for more than 100 years at approximately 350 streamgages throughout Missouri. The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, computed streamflow statistics at streamgages through the 2010 water year, defined periods of drought and defined methods to estimate streamflow statistics at ungaged locations, and developed regional regression equations to compute selected streamflow statistics at ungaged locations. Streamflow statistics and flow durations were computed for 532 streamgages in Missouri and in neighboring States of Missouri. For streamgages with more than 10 years of record, Kendall’s tau was computed to evaluate for trends in streamflow data. If trends were detected, the variable length method was used to define the period of no trend. Water years were removed from the dataset from the beginning of the record for a streamgage until no trend was detected. Low-flow frequency statistics were then computed for the entire period of record and for the period of no trend if 10 or more years of record were available for each analysis. Three methods are presented for computing selected streamflow statistics at ungaged locations. The first method uses power curve equations developed for 28 selected streams in Missouri and neighboring States that have multiple streamgages on the same streams. Statistical estimates on one of these streams can be calculated at an ungaged location that has a drainage area that is between 40 percent of the drainage area of the farthest upstream streamgage and within 150 percent of the drainage area of the farthest downstream streamgage along the stream of interest. The second method may be used on any stream with a streamgage that has operated for 10 years or longer and for which anthropogenic effects have not changed the low-flow characteristics at the ungaged location since collection of the streamflow data. A ratio of drainage area of the stream at the ungaged location to the drainage area of the stream at the streamgage was computed to estimate the statistic at the ungaged location. The range of applicability is between 40- and 150-percent of the drainage area of the streamgage, and the ungaged location must be located on the same stream as the streamgage. The third method uses regional regression equations to estimate selected low-flow frequency statistics for unregulated streams in Missouri. This report presents regression equations to estimate frequency statistics for the 10-year recurrence interval and for the N-day durations of 1, 2, 3, 7, 10, 30, and 60 days. Basin and climatic characteristics were computed using geographic information system software and digital geospatial data. A total of 35 characteristics were computed for use in preliminary statewide and regional regression analyses based on existing digital geospatial data and previous studies. Spatial analyses for geographical bias in the predictive accuracy of the regional regression equations defined three low-flow regions with the State representing the three major physiographic provinces in Missouri. Region 1 includes the Central Lowlands, Region 2 includes the Ozark Plateaus, and Region 3 includes the Mississippi Alluvial Plain. A total of 207 streamgages were used in the regression analyses for the regional equations. Of the 207 U.S. Geological Survey streamgages, 77 were located in Region 1, 120 were located in Region 2, and 10 were located in Region 3. Streamgages located outside of Missouri were selected to extend the range of data used for the independent variables in the regression analyses. Streamgages included in the regression analyses had 10 or more years of record and were considered to be affected minimally by anthropogenic activities or trends. Regional regression analyses identified three characteristics as statistically significant for the development of regional equations. For Region 1, drainage area, longest flow path, and streamflow-variability index were statistically significant. The range in the standard error of estimate for Region 1 is 79.6 to 94.2 percent. For Region 2, drainage area and streamflow variability index were statistically significant, and the range in the standard error of estimate is 48.2 to 72.1 percent. For Region 3, drainage area and streamflow-variability index also were statistically significant with a range in the standard error of estimate of 48.1 to 96.2 percent. Limitations on the use of estimating low-flow frequency statistics at ungaged locations are dependent on the method used. The first method outlined for use in Missouri, power curve equations, were developed to estimate the selected statistics for ungaged locations on 28 selected streams with multiple streamgages located on the same stream. A second method uses a drainage-area ratio to compute statistics at an ungaged location using data from a single streamgage on the same stream with 10 or more years of record. Ungaged locations on these streams may use the ratio of the drainage area at an ungaged location to the drainage area at a streamgage location to scale the selected statistic value from the streamgage location to the ungaged location. This method can be used if the drainage area of the ungaged location is within 40 to 150 percent of the streamgage drainage area. The third method is the use of the regional regression equations. The limits for the use of these equations are based on the ranges of the characteristics used as independent variables and that streams must be affected minimally by anthropogenic activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1991/4194/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1991/4194/report.pdf"><span>Statistical models for estimating daily streamflow in Michigan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Holtschlag, D.J.; Salehi, Habib</p> <p>1992-01-01</p> <p>Statistical models for estimating daily streamflow were analyzed for 25 pairs of streamflow-gaging stations in Michigan. Stations were paired by randomly choosing a station operated in 1989 at which 10 or more years of continuous flow data had been collected and at which flow is virtually unregulated; a nearby station was chosen where flow characteristics are similar. Streamflow data from the 25 randomly selected stations were used as the response variables; streamflow data at the nearby stations were used to generate a set of explanatory variables. Ordinary-least squares regression (OLSR) equations, autoregressive integrated moving-average (ARIMA) equations, and transfer function-noise (TFN) equations were developed to estimate the log transform of flow for the 25 randomly selected stations. The precision of each type of equation was evaluated on the basis of the standard deviation of the estimation errors. OLSR equations produce one set of estimation errors; ARIMA and TFN models each produce l sets of estimation errors corresponding to the forecast lead. The lead-l forecast is the estimate of flow l days ahead of the most recent streamflow used as a response variable in the estimation. In this analysis, the standard deviation of lead l ARIMA and TFN forecast errors were generally lower than the standard deviation of OLSR errors for l < 2 days and l < 9 days, respectively. Composite estimates were computed as a weighted average of forecasts based on TFN equations and backcasts (forecasts of the reverse-ordered series) based on ARIMA equations. The standard deviation of composite errors varied throughout the length of the estimation interval and generally was at maximum near the center of the interval. For comparison with OLSR errors, the mean standard deviation of composite errors were computed for intervals of length 1 to 40 days. The mean standard deviation of length-l composite errors were generally less than the standard deviation of the OLSR errors for l < 32 days. In addition, the composite estimates ensure a gradual transition between periods of estimated and measured flows. Model performance among stations of differing model error magnitudes were compared by computing ratios of the mean standard deviation of the length l composite errors to the standard deviation of OLSR errors. The mean error ratio for the set of 25 selected stations was less than 1 for intervals l < 32 days. Considering the frequency characteristics of the length of intervals of estimated record in Michigan, the effective mean error ratio for intervals < 30 days was 0.52. Thus, for intervals of estimation of 1 month or less, the error of the composite estimate is substantially lower than error of the OLSR estimate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.8064F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.8064F"><span>Full-flow-regime storage-streamflow correlation patterns provide insights into hydrologic functioning over the continental US</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fang, Kuai; Shen, Chaopeng</p> <p>2017-09-01</p> <p>Interannual changes in low, median, and high regimes of streamflow have important implications for flood control, irrigation, and ecologic and human health. The Gravity Recovery and Climate Experiment (GRACE) satellites record global terrestrial water storage anomalies (TWSA), providing an opportunity to observe, interpret, and potentially utilize the complex relationships between storage and full-flow-regime streamflow. Here we show that utilizable storage-streamflow correlations exist throughout vastly different climates in the continental US (CONUS) across low- to high-flow regimes. A panoramic framework, the storage-streamflow correlation spectrum (SSCS), is proposed to examine macroscopic gradients in these relationships. SSCS helps form, corroborate or reject hypotheses about basin hydrologic behaviors. SSCS patterns vary greatly over CONUS with climate, land surface, and geologic conditions. Data mining analysis suggests that for catchments with hydrologic settings that favor storage over runoff, e.g., a large fraction of precipitation as snow, thick and highly-permeable permeable soil, SSCS values tend to be high. Based on our results, we form the hypotheses that groundwater flow dominates streamflows in Southeastern CONUS and Great Plains, while thin soils in a belt along the Appalachian Plateau impose alimit on water storage. SSCS also suggests shallow water table caused by high-bulk density soil and flat terrain induces rapid runoff in several regions. Our results highlight the importance of subsurface properties and groundwater flow in capturing flood and drought. We propose that SSCS can be used as a fundamental hydrologic signature to constrain models and to provide insights thatlead usto better understand hydrologic functioning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H41H1549R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H41H1549R"><span>Hydrologic response across a snow persistence gradient on the west and east slopes of the Rocky Mountains in Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richard, G. A.; Hammond, J. C.; Kampf, S. K.; Moore, C. D.; Eurich, A.</p> <p>2017-12-01</p> <p>Snowpack trend analyses and modeling studies suggest that lower elevation snowpacks in mountain regions are most sensitive to drought and warming temperatures, however, in Colorado, most snow monitoring occurs in the high elevations where snow lasts throughout the winter and most streamflow monitoring occurs at lower elevations. The lack of combined snow and streamflow monitoring in watersheds along the transition from intermittent to persistent snow creates a gap in our understanding of snowmelt and runoff within the intermittent-persistent snow transition. Expanded hydrologic monitoring that spans the gradient of snow conditions in Colorado can help improve streamflow prediction and inform land and water managers. This study established hydrologic monitoring watersheds in intermittent, transitional, and persistent snow zones on the east slope and west slope of the Rocky Mountains in Colorado, and uses this monitoring network to improve understanding of how snow accumulation and melt affect soil moisture and streamflow generation under different snow conditions. We monitored six small watersheds (three west slope, three east slope) (0.8 to 3.9 km2) that drain intermittent, transitional, and persistent snow zones. At each site, we measured: streamflow, snow depth, soil moisture, precipitation, air temperature, and snow water equivalent (SWE). In our first season of monitoring, the west slope persistent and transitional sites had more mid-winter melt and infiltration, shorter snowpack duration, and lower peak SWE than the east slope sites. Snow cover remained at the east slope persistent site into June, whereas much of the snow at the persistent site on the west slope had already melted by early June. The difference in soil water input likely has consequences for streamflow response that we will continue to examine in future years. At the west slope intermittent site, the stream did not flow during the entire first year of monitoring, while at the east slope intermittent site, the streams flowed intermittently during winter and spring, likely a result of different subsurface geology. With our ongoing watershed monitoring across a broad range of snow conditions in Colorado, we continue to learn about the factors that increase or decrease streamflow in the headwater streams that supply the state's major rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.tmp....8C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.tmp....8C"><span>A Winter Precipitation Reconstruction (CE 1810-2012) in the Southeastern Tibetan Plateau and Its Relationship to Salween River Streamflow Variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Feng; Yuan, Yujiang; Fan, Zexin; Yu, Shulong</p> <p>2018-01-01</p> <p>We established a tree-ring width series from one Yunnan Douglas fir (Pseudotsuga forrestii) stand near the Mingyong glacier terminus of Meili Snow Mountain, southeastern Tibetan Plateau. Correlation analyses indicated that radial growth of Yunnan Douglas firs is largely controlled by variations in winter (November-March) precipitation. The precipitation reconstruction model accounts for 37% of the actual precipitation variance during the common period 1954-2012. Spatial correlations with the gridded precipitation data reveal that the winter precipitation reconstruction represents regional precipitation changes over the southeastern Tibetan Plateau. By comparing our results with other regional tree-ring records, a distinctive amount of common dry and humid periods were found. Our winter precipitation reconstruction shows profound similarities with Salween river streamflow signals as well as regional glacial activity. Cross-wavelet analysis reveals solar and ENSO influences on precipitation and streamflow variations in the southeastern Tibetan Plateau.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri98-4178/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri98-4178/"><span>Peak-discharge frequency and potential extreme peak discharge for natural streams in the Brazos River basin, Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Raines, Timothy H.</p> <p>1998-01-01</p> <p>The potential extreme peak-discharge curves as related to contributing drainage area were estimated for each of the three hydrologic regions from measured extreme peaks of record at 186 sites with streamflow-gaging stations and from measured extreme peaks at 37 sites without streamflow-gaging stations in and near the Brazos River Basin. The potential extreme peak-discharge curves generally are similar for hydrologic regions 1 and 2, and the curve for region 3 consistently is below the curves for regions 1 and 2, which indicates smaller peak discharges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1842b0006J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1842b0006J"><span>Streamflow profile classification using functional data analysis: A case study on the Kelantan River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jamaludin, Suhaila</p> <p>2017-05-01</p> <p>Extreme rainfall events such as floods and prolonged dry spells have become common phenomena in tropical countries like Malaysia. Floods are regular natural disasters in Malaysia, and happen nearly every year during the monsoon season. Recently, the magnitude of streamflow seems to have altered frequently, both spatially and temporally. Therefore, in order to have effective planning and an efficient water management system, it is advisable that streamflow data are analysed continuously over a period of time. If the data are treated as a set of functions rather than as a set of discrete values, then this ensures that they are not restricted by physical time. In addition, the derivatives of the functions may themselves be treated as functional data, which provides new information. The objective of this study is to develop a functional framework for hydrological applications using streamflow as the functional data. The daily flow series from the Kelantan River Basin were used as the main input in this study. Seven streamflow stations were employed in the analysis. Classification between the stations was done using the functional principal component, which was based on the results of the factor scores. The results indicated that two stations, namely the Kelantan River (Guillemard Bridge) and the Galas River, have a different flow pattern from the other streamflow stations. The flow curves of these two rivers are considered as the extreme curves because of their different magnitude and shape.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1164/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1164/"><span>Flood of July 27-31, 2006, on the Grand River near Painesville, Ohio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ebner, Andrew D.; Sherwood, James M.; Astifan, Brian; Lombardy, Kirk</p> <p>2007-01-01</p> <p>Two separate weather systems produced storms resulting in more than 11 inches of rain in parts of Lake County, Ohio, on July 27-28, 2006. As a result of the storms and ensuing flooding caused by the weather systems, the counties of Lake, Geauga, and Ashtabula were declared Federal and State disaster areas, with damages estimated at $30 million and one fatality in Lake County. About 600 people were evacuated in Lake County. The U.S. Geological Survey streamflow-gaging station at Grand River near Painesville, Ohio (station 04212100), had a record peak stage of 19.35 feet (elevation, 614.94 feet), with a record peak streamflow of 35,000 cubic feet per second, and an estimated recurrence interval of approximately 500 years. This report describes the meteorological factors that resulted in severe flooding on the Grand River near Painesville from July 27 to July 31, 2006, and addresses the damages caused by the storms and flooding. Peak-stage, peak-streamflow, and recurrence-interval data are reported for the Grand River near Painesville. A plot of high-water marks is also presented for the Grand River in a reach that includes the City of Painesville, Painesville Township, the Village of Fairport Harbor, and the Village of Grand River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/ofr2005-1280/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/ofr2005-1280/"><span>Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2004 to June 30, 2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Young, Stacie T.M.; Ball, Marcael T.J.</p> <p>2005-01-01</p> <p>Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two stations, continuous streamflow data at two stations, and water-quality data at five stations, which include the two continuous streamflow stations. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2004 and June 30, 2005. A total of 15 samples was collected over three storms during July 1, 2004 to June 30, 2005. In general, an attempt was made to collect grab samples nearly simultaneously at all five stations and flow-weighted time-composite samples at the three stations equipped with automatic samplers. However, all three storms were partially sampled because either not all stations were sampled or not all composite samples were collected. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). Chromium and nickel were added to the analysis starting October 1, 2004. Grab samples were additionally analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples were also collected during storms and during routine maintenance to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H43M..03F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H43M..03F"><span>Computing Real-time Streamflow Using Emerging Technologies: Non-contact Radars and the Probability Concept</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fulton, J. W.; Bjerklie, D. M.; Jones, J. W.; Minear, J. T.</p> <p>2015-12-01</p> <p>Measuring streamflow, developing, and maintaining rating curves at new streamgaging stations is both time-consuming and problematic. Hydro 21 was an initiative by the U.S. Geological Survey to provide vision and leadership to identify and evaluate new technologies and methods that had the potential to change the way in which streamgaging is conducted. Since 2014, additional trials have been conducted to evaluate some of the methods promoted by the Hydro 21 Committee. Emerging technologies such as continuous-wave radars and computationally-efficient methods such as the Probability Concept require significantly less field time, promote real-time velocity and streamflow measurements, and apply to unsteady flow conditions such as looped ratings and unsteady-flood flows. Portable and fixed-mount radars have advanced beyond the development phase, are cost effective, and readily available in the marketplace. The Probability Concept is based on an alternative velocity-distribution equation developed by C.-L. Chiu, who pioneered the concept. By measuring the surface-water velocity and correcting for environmental influences such as wind drift, radars offer a reliable alternative for measuring and computing real-time streamflow for a variety of hydraulic conditions. If successful, these tools may allow us to establish ratings more efficiently, assess unsteady flow conditions, and report real-time streamflow at new streamgaging stations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1972/0382/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1972/0382/report.pdf"><span>Hydrograph simulation models of the Hillsborough and Alafia Rivers, Florida: a preliminary report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Turner, James F.</p> <p>1972-01-01</p> <p>Mathematical (digital) models that simulate flood hydrographs from rainfall records have been developed for the following gaging stations in the Hillsborough and Alafia River basins of west-central Florida: Hillsborough River near Tampa, Alafia River at Lithia, and north Prong Alafia River near Keysville. These models, which were developed from historical streamflow and and rainfall records, are based on rainfall-runoff and unit-hydrograph procedures involving an arbitrary separation of the flood hydrograph. These models assume the flood hydrograph to be composed of only two flow components, direct (storm) runoff, and base flow. Expressions describing these two flow components are derived from streamflow and rainfall records and are combined analytically to form algorithms (models), which are programmed for processing on a digital computing system. Most Hillsborough and Alafia River flood discharges can be simulated with expected relative errors less than or equal to 30 percent and flood peaks can be simulated with average relative errors less than 15 percent. Because of the inadequate rainfall network that is used in obtaining input data for the North Prong Alafia River model, simulated peaks are frequently in error by more than 40 percent, particularly for storms having highly variable areal rainfall distribution. Simulation errors are the result of rainfall sample errors and, to a lesser extent, model inadequacy. Data errors associated with the determination of mean basin precipitation are the result of the small number and poor areal distribution of rainfall stations available for use in the study. Model inadequacy, however, is attributed to the basic underlying theory, particularly the rainfall-runoff relation. These models broaden and enhance existing water-management capabilities within these basins by allowing the establishment and implementation of programs providing for continued development in these areas. Specifically, the models serve not only as a basis for forecasting floods, but also for simulating hydrologic information needed in flood-plain mapping and delineating and evaluating alternative flood control and abatement plans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSAES..78..101O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSAES..78..101O"><span>Temporal variability in the suspended sediment load and streamflow of the Doce River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oliveira, Kyssyanne Samihra Santos; Quaresma, Valéria da Silva</p> <p>2017-10-01</p> <p>Long-term records of streamflow and suspended sediment load provide a better understanding of the evolution of a river mouth, and its adjacent waters and a support for mitigation programs associated with extreme events and engineering projects. The aim of this study is to investigate the temporal variability in the suspended sediment load and streamflow of the Doce River to the Atlantic Ocean, between 1990 and 2013. Streamflow and suspended sediment load were analyzed at the daily, seasonal, and interannual scales. The results showed that at the daily scale, Doce River flood events are due to high intensity and short duration rainfalls, which means that there is a flashy response to rainfall. At the monthly and season scales, approximately 94% of the suspended sediment supply occurs during the wet season. Extreme hydrological events are important for the interannual scale for Doce River sediment supply to the Atlantic Ocean. The results suggest that a summation of anthropogenic interferences (deforestation, urbanization and soil degradation) led to an increase of extreme hydrological events. The findings of this study shows the importance of understanding the typical behavior of the Doce River, allowing the detection of extreme hydrological conditions, its causes and possible environmental and social consequences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1187/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1187/"><span>Connecticut Highlands Technical Report - Documentation of the Regional Rainfall-Runoff Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ahearn, Elizabeth A.; Bjerklie, David M.</p> <p>2010-01-01</p> <p>This report provides the supporting data and describes the data sources, methodologies, and assumptions used in the assessment of existing and potential water resources of the Highlands of Connecticut and Pennsylvania (referred to herein as the “Highlands”). Included in this report are Highlands groundwater and surface-water use data and the methods of data compilation. Annual mean streamflow and annual mean base-flow estimates from selected U.S. Geological Survey (USGS) gaging stations were computed using data for the period of record through water year 2005. The methods of watershed modeling are discussed and regional and sub-regional water budgets are provided. Information on Highlands surface-water-quality trends is presented. USGS web sites are provided as sources for additional information on groundwater levels, streamflow records, and ground- and surface-water-quality data. Interpretation of these data and the findings are summarized in the Highlands study report.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/WDR-ND-02-1/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/WDR-ND-02-1/"><span>Water Resources Data North Dakota Water Year 2002 Volume 1. Surface Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harkness, R.E.; Lundgren, R.F.; Norbeck, S.W.; Robinson, S.M.; Sether, B.A.</p> <p>2003-01-01</p> <p>Water-resources data for the 2002 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 106 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 96 streamflow-gaging stations, 3 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/WDR-ND-03-1/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/WDR-ND-03-1/"><span>Water Resources Data North Dakota Water Year 2003, Volume 1. Surface Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.</p> <p>2004-01-01</p> <p>Water-resources data for the 2003 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 108 streamflow-gaging stations; stage only for 24 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 32 crest-stage stations; and water-quality for 99 streamflow-gaging stations, 5 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wdr/2005/wdr-nd-05-1/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wdr/2005/wdr-nd-05-1/"><span>Water resources data--North Dakota water year 2005, Volume 1. Surface water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.</p> <p>2006-01-01</p> <p>Water-resources data for the 2005 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 107 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 31 crest-stage stations; and water quality for 93 streamflow-gaging stations, 6 river-stage stations, 15 lake or reservoir stations, and about 50 miscellaneous sample sites on lakes and wetlands. Data are included for 8 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43H1752W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43H1752W"><span>Regional Patterns and Spatial Clusters of Nonstationarities in Annual Peak Instantaneous Streamflow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>White, K. D.; Baker, B.; Mueller, C.; Villarini, G.; Foley, P.; Friedman, D.</p> <p>2017-12-01</p> <p>Information about hydrologic changes resulting from changes in climate, land use, and land cover is a necessity planning and design or water resources infrastructure. The United States Army Corps of Engineers (USACE) evaluated and selected 12 methods to detect abrupt and slowly varying nonstationarities in records of maximum peak annual flows. They deployed a publicly available tool[1]in 2016 and a guidance document in 2017 to support identification of nonstationarities in a reproducible manner using a robust statistical framework. This statistical framework has now been applied to streamflow records across the continental United States to explore the presence of regional patterns and spatial clusters of nonstationarities in peak annual flow. Incorporating this geographic dimension into the detection of nonstationarities provides valuable insight for the process of attribution of these significant changes. This poster summarizes the methods used and provides the results of the regional analysis. [1] Available here - http://www.corpsclimate.us/ptcih.cfm</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wdr-nd-01-1/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wdr-nd-01-1/"><span>Water Resources Data North Dakota Water Year 2001, Volume 1. Surface Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harkness, R.E.; Berkas, W.R.; Norbeck, S.W.; Robinson, S.M.</p> <p>2002-01-01</p> <p>Water-resources data for the 2001 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 103 streamflow-gaging stations; stage only for 20 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 94 streamflow-gaging stations, 2 river-stage stations, 9 lake or reservoir stations, 7 miscellaneous sample sites on rivers, and 58 miscellaneous sample sites on lakes and wetlands. Data are included for 9 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031110','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031110"><span>Updated streamflow reconstructions for the Upper Colorado River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Woodhouse, Connie A.; Gray, Stephen T.; Meko, David M.</p> <p>2006-01-01</p> <p>Updated proxy reconstructions of water year (October–September) streamflow for four key gauges in the Upper Colorado River Basin were generated using an expanded tree ring network and longer calibration records than in previous efforts. Reconstructed gauges include the Green River at Green River, Utah; Colorado near Cisco, Utah; San Juan near Bluff, Utah; and Colorado at Lees Ferry, Arizona. The reconstructions explain 72–81% of the variance in the gauge records, and results are robust across several reconstruction approaches. Time series plots as well as results of cross‐spectral analysis indicate strong spatial coherence in runoff variations across the subbasins. The Lees Ferry reconstruction suggests a higher long‐term mean than previous reconstructions but strongly supports earlier findings that Colorado River allocations were based on one of the wettest periods in the past 5 centuries and that droughts more severe than any 20th to 21st century event occurred in the past.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006WRR....42.5415W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006WRR....42.5415W"><span>Updated streamflow reconstructions for the Upper Colorado River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woodhouse, Connie A.; Gray, Stephen T.; Meko, David M.</p> <p>2006-05-01</p> <p>Updated proxy reconstructions of water year (October-September) streamflow for four key gauges in the Upper Colorado River Basin were generated using an expanded tree ring network and longer calibration records than in previous efforts. Reconstructed gauges include the Green River at Green River, Utah; Colorado near Cisco, Utah; San Juan near Bluff, Utah; and Colorado at Lees Ferry, Arizona. The reconstructions explain 72-81% of the variance in the gauge records, and results are robust across several reconstruction approaches. Time series plots as well as results of cross-spectral analysis indicate strong spatial coherence in runoff variations across the subbasins. The Lees Ferry reconstruction suggests a higher long-term mean than previous reconstructions but strongly supports earlier findings that Colorado River allocations were based on one of the wettest periods in the past 5 centuries and that droughts more severe than any 20th to 21st century event occurred in the past.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011408','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011408"><span>A comparison of four streamflow record extension techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hirsch, Robert M.</p> <p>1982-01-01</p> <p>One approach to developing time series of streamflow, which may be used for simulation and optimization studies of water resources development activities, is to extend an existing gage record in time by exploiting the interstation correlation between the station of interest and some nearby (long-term) base station. Four methods of extension are described, and their properties are explored. The methods are regression (REG), regression plus noise (RPN), and two new methods, maintenance of variance extension types 1 and 2 (MOVE.l, MOVE.2). MOVE.l is equivalent to a method which is widely used in psychology, biometrics, and geomorphology and which has been called by various names, e.g., ‘line of organic correlation,’ ‘reduced major axis,’ ‘unique solution,’ and ‘equivalence line.’ The methods are examined for bias and standard error of estimate of moments and order statistics, and an empirical examination is made of the preservation of historic low-flow characteristics using 50-year-long monthly records from seven streams. The REG and RPN methods are shown to have serious deficiencies as record extension techniques. MOVE.2 is shown to be marginally better than MOVE.l, according to the various comparisons of bias and accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982WRR....18.1081H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982WRR....18.1081H"><span>A Comparison of Four Streamflow Record Extension Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirsch, Robert M.</p> <p>1982-08-01</p> <p>One approach to developing time series of streamflow, which may be used for simulation and optimization studies of water resources development activities, is to extend an existing gage record in time by exploiting the interstation correlation between the station of interest and some nearby (long-term) base station. Four methods of extension are described, and their properties are explored. The methods are regression (REG), regression plus noise (RPN), and two new methods, maintenance of variance extension types 1 and 2 (MOVE.l, MOVE.2). MOVE.l is equivalent to a method which is widely used in psychology, biometrics, and geomorphology and which has been called by various names, e.g., `line of organic correlation,' `reduced major axis,' `unique solution,' and `equivalence line.' The methods are examined for bias and standard error of estimate of moments and order statistics, and an empirical examination is made of the preservation of historic low-flow characteristics using 50-year-long monthly records from seven streams. The REG and RPN methods are shown to have serious deficiencies as record extension techniques. MOVE.2 is shown to be marginally better than MOVE.l, according to the various comparisons of bias and accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2014/5231/pdf/sir2014-5231.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2014/5231/pdf/sir2014-5231.pdf"><span>A comparison of methods to predict historical daily streamflow time series in the southeastern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Farmer, William H.; Archfield, Stacey A.; Over, Thomas M.; Hay, Lauren E.; LaFontaine, Jacob H.; Kiang, Julie E.</p> <p>2015-01-01</p> <p>Effective and responsible management of water resources relies on a thorough understanding of the quantity and quality of available water. Streamgages cannot be installed at every location where streamflow information is needed. As part of its National Water Census, the U.S. Geological Survey is planning to provide streamflow predictions for ungaged locations. In order to predict streamflow at a useful spatial and temporal resolution throughout the Nation, efficient methods need to be selected. This report examines several methods used for streamflow prediction in ungaged basins to determine the best methods for regional and national implementation. A pilot area in the southeastern United States was selected to apply 19 different streamflow prediction methods and evaluate each method by a wide set of performance metrics. Through these comparisons, two methods emerged as the most generally accurate streamflow prediction methods: the nearest-neighbor implementations of nonlinear spatial interpolation using flow duration curves (NN-QPPQ) and standardizing logarithms of streamflow by monthly means and standard deviations (NN-SMS12L). It was nearly impossible to distinguish between these two methods in terms of performance. Furthermore, neither of these methods requires significantly more parameterization in order to be applied: NN-SMS12L requires 24 regional regressions—12 for monthly means and 12 for monthly standard deviations. NN-QPPQ, in the application described in this study, required 27 regressions of particular quantiles along the flow duration curve. Despite this finding, the results suggest that an optimal streamflow prediction method depends on the intended application. Some methods are stronger overall, while some methods may be better at predicting particular statistics. The methods of analysis presented here reflect a possible framework for continued analysis and comprehensive multiple comparisons of methods of prediction in ungaged basins (PUB). Additional metrics of comparison can easily be incorporated into this type of analysis. By considering such a multifaceted approach, the top-performing models can easily be identified and considered for further research. The top-performing models can then provide a basis for future applications and explorations by scientists, engineers, managers, and practitioners to suit their own needs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2014/1039/pdf/ofr2014-1039.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2014/1039/pdf/ofr2014-1039.pdf"><span>Precipitation and streamflow data from the Fort Carson Military Reservation and precipitation, streamflow, and suspended-sediment data from the Piñon Canyon Maneuver Site, Southeastern Colorado, 2008-2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brown, Christopher R.</p> <p>2014-01-01</p> <p>In 2013, the U.S. Geological Survey (USGS), in cooperation with the U. S. Department of the Army, compiled available precipitation and streamflow data for the years of 2008–2012 from the Fort Carson Military Reservation (Fort Carson) near Colorado Springs, Colo., and precipitation, streamflow, and suspended-sediment loads from the Piñon Canyon Maneuver Site (PCMS) near Trinidad, Colo. Graphical representations of the data presented herein are a continuation of work completed by the USGS in 2008 to gain a better understanding of spatial and temporal trends within the hydrologic data. Precipitation stations at Fort Carson and the PCMS were divided into groups based on their land-surface altitude (LSA) to determine if there is a spatial difference in precipitation amounts based on LSA for either military facility. Two-sample t-tests and Wilcoxon rank-sum tests indicated statistically significant differences exist between precipitation values at different groups for Fort Carson but not for the PCMS. All five precipitation stations at Fort Carson exhibit a decrease in median daily total precipitation from years 2002–2007 to 2008–2012. For the PCMS, median precipitation values decreased from the first study period to the second for the 13 stations monitored year-round except for Burson and Big Hills. Mean streamflow for 2008–2012 is less than mean streamflow for 1983–2007 for all stream-gaging stations at Fort Carson and at the PCMS. During the study period, each of the stream-gaging stations within the tributary channels at the PCMS accounted for less than three percent of the total streamflow at the Purgatoire River at Rock Crossing gage. Peak streamflow for 2008–2012 is less than peak streamflow for 2002–2007 at both Fort Carson and the PCMS. At the PCMS, mean suspended-sediment yield for 2008–2012 increased by 54 percent in comparison to the mean yield for 2002–2007. This increase is likely related to the destruction of groundcover by a series of wildfires within the PCMS in 2008 and 2011.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPA14A..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPA14A..03L"><span>Using Temperature Forecasts to Improve Seasonal Streamflow Forecasts in the Colorado and Rio Grande Basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehner, F.; Wood, A.; Llewellyn, D.; Blatchford, D. B.; Goodbody, A. G.; Pappenberger, F.</p> <p>2017-12-01</p> <p>Recent studies have documented the influence of increasing temperature on streamflow across the American West, including snow-melt driven rivers such as the Colorado or Rio Grande. At the same time, some basins are reporting decreasing skill in seasonal streamflow forecasts, termed water supply forecasts (WSFs), over the recent decade. While the skill in seasonal precipitation forecasts from dynamical models remains low, their skill in predicting seasonal temperature variations could potentially be harvested for WSFs to account for non-stationarity in regional temperatures. Here, we investigate whether WSF skill can be improved by incorporating seasonal temperature forecasts from dynamical forecasting models (from the North American Multi Model Ensemble and the European Centre for Medium-Range Weather Forecast System 4) into traditional statistical forecast models. We find improved streamflow forecast skill relative to traditional WSF approaches in a majority of headwater locations in the Colorado and Rio Grande basins. Incorporation of temperature into WSFs thus provides a promising avenue to increase the robustness of current forecasting techniques in the face of continued regional warming.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>