78 FR 65306 - Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
... Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams AGENCY: Environmental... Monitoring of Temperature and Flow in Wadeable Streams'' (EPA/600/R-13/170). The EPA also is announcing that... Development. The report describes best practices for the deployment of continuous temperature and flow sensors...
40 CFR 63.1415 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a... an absorber is used, a scrubbing liquid temperature monitoring device and a specific gravity... condenser exit temperature (product side) monitoring device equipped with a continuous recorder is required...
40 CFR 63.1415 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a... an absorber is used, a scrubbing liquid temperature monitoring device and a specific gravity... condenser exit temperature (product side) monitoring device equipped with a continuous recorder is required...
40 CFR 63.1415 - Monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a...) Where an absorber is used, a scrubbing liquid temperature monitoring device and a specific gravity... condenser exit temperature (product side) monitoring device equipped with a continuous recorder is required...
40 CFR 63.1429 - Process vent monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a... used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in...
40 CFR 63.1429 - Process vent monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a... used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in...
40 CFR 63.1324 - Batch process vents-monitoring equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... beam sensor, or infrared sensor) capable of continuously detecting the presence of a pilot flame is...) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring...
40 CFR 63.1324 - Batch process vents-monitoring equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... beam sensor, or infrared sensor) capable of continuously detecting the presence of a pilot flame is...) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring...
40 CFR 63.1429 - Process vent monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a... used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in...
NASA Astrophysics Data System (ADS)
Lu, Zhiwei; Han, Li; Hu, Chengjun; Pan, Yong; Duan, Shengnan; Wang, Ningbo; Li, Shijian; Nuer, Maimaiti
2017-10-01
With the development of oil and gas fields, the accuracy and quantity requirements of real-time dynamic monitoring data needed for well dynamic analysis and regulation are increasing. Permanent, distributed downhole optical fiber temperature and pressure monitoring and other online real-time continuous data monitoring has become an important data acquisition and transmission technology in digital oil field and intelligent oil field construction. Considering the requirement of dynamic analysis of steam chamber developing state in SAGD horizontal wells in F oil reservoir in Xinjiang oilfield, it is necessary to carry out real-time and continuous temperature monitoring in horizontal section. Based on the study of the principle of optical fiber temperature measurement, the factors that cause the deviation of optical fiber temperature sensing are analyzed, and the method of fiber temperature calibration is proposed to solve the problem of temperature deviation. Field application in three wells showed that it could attain accurate measurement of downhole temperature by temperature correction. The real-time and continuous downhole distributed fiber temperature sensing technology has higher application value in the reservoir management of SAGD horizontal wells. It also has a reference for similar dynamic monitoring in reservoir production.
Code of Federal Regulations, 2011 CFR
2011-07-01
... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that..., install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct immediately... a gas temperature monitor according to paragraph (c)(2)(i) or (ii) of this section. (i) If you...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (ii) of this section for each gas temperature monitoring device. (i) Locate the temperature sensor in... oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct... oxidizer, install a gas temperature monitor according to paragraph (c)(2)(i) or (ii) of this section. (i...
Code of Federal Regulations, 2010 CFR
2010-07-01
... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that..., install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct immediately... a gas temperature monitor according to paragraph (c)(2)(i) or (ii) of this section. (i) If you...
Code of Federal Regulations, 2011 CFR
2011-07-01
... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that... oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct... oxidizer, install a gas temperature monitor in the gas stream immediately before the catalyst bed, and if...
Code of Federal Regulations, 2010 CFR
2010-07-01
... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that... oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct... oxidizer, install a gas temperature monitor in the gas stream immediately before the catalyst bed, and if...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (ii) of this section for each gas temperature monitoring device. (i) Locate the temperature sensor in... oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct... oxidizer, install a gas temperature monitor according to paragraph (c)(2)(i) or (ii) of this section. (i...
40 CFR 60.663 - Monitoring of emissions and operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the following equipment: (1) A temperature monitoring device equipped with a continuous recorder and having an accuracy of ±1 percent of the temperature being monitored expressed in degrees Celsius or ±0.5... temperature monitoring device shall be installed in the firebox. (ii) Where a catalytic incinerator is used...
40 CFR 60.663 - Monitoring of emissions and operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the following equipment: (1) A temperature monitoring device equipped with a continuous recorder and having an accuracy of ±1 percent of the temperature being monitored expressed in degrees Celsius or ±0.5... temperature monitoring device shall be installed in the firebox. (ii) Where a catalytic incinerator is used...
Device Would Monitor Body Parameters Continuously
NASA Technical Reports Server (NTRS)
Cook, Joseph S., Jr.
1995-01-01
Proposed miniature electronic circuit continuously measures temperature of human subject. Once mounted on subject's skin with medical adhesive tape, electronic thermometer remains in thermal equilibrium with subject's body; thereafter, no need to wait until thermometer reaches body temperature before taking reading. Design provides for switches used to set alarm alerting medical attendants if subject's temperature exceeds critical level. For use on very young child, electronic thermometer sewed into shirt or other suitable garment; device held in contact with skin, and child could not swallow it. Replacement of sensor and computing algorithm changes temperature monitor to cardiorespiratory monitor.
Methods for accurate cold-chain temperature monitoring using digital data-logger thermometers
NASA Astrophysics Data System (ADS)
Chojnacky, M. J.; Miller, W. M.; Strouse, G. F.
2013-09-01
Complete and accurate records of vaccine temperature history are vital to preserving drug potency and patient safety. However, previously published vaccine storage and handling guidelines have failed to indicate a need for continuous temperature monitoring in vaccine storage refrigerators. We evaluated the performance of seven digital data logger models as candidates for continuous temperature monitoring of refrigerated vaccines, based on the following criteria: out-of-box performance and compliance with manufacturer accuracy specifications over the range of use; measurement stability over extended, continuous use; proper setup in a vaccine storage refrigerator so that measurements reflect liquid vaccine temperatures; and practical methods for end-user validation and establishing metrological traceability. Data loggers were tested using ice melting point checks and by comparison to calibrated thermocouples to characterize performance over 0 °C to 10 °C. We also monitored logger performance in a study designed to replicate the range of vaccine storage and environmental conditions encountered at provider offices. Based on the results of this study, the Centers for Disease Control released new guidelines on proper methods for storage, handling, and temperature monitoring of vaccines for participants in its federally-funded Vaccines for Children Program. Improved temperature monitoring practices will ultimately decrease waste from damaged vaccines, improve consumer confidence, and increase effective inoculation rates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that... temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If a gas...) of this section. (1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... section for each gas temperature monitoring device. (i) Locate the temperature sensor in a position that... temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If a gas...) of this section. (1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the...
40 CFR 63.1350 - Monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., operate, calibrate, and maintain an instrument for continuously measuring and recording the exhaust gas... continuous monitor to record the temperature of the exhaust gases from the kiln, in-line kiln/raw mill, and... Administrator. (iii) The calibration of all thermocouples and other temperature sensors must be verified at...
Code of Federal Regulations, 2011 CFR
2011-07-01
... paragraphs (c)(1) through (3) of this section: (1) For a thermal oxidizer, install a gas temperature monitor... any substantial heat exchange occurs. (2) For a catalytic oxidizer, install a gas temperature monitor....3167(b)(1) through (3), you must also install a gas temperature monitor downstream of the catalyst bed...
Code of Federal Regulations, 2010 CFR
2010-07-01
... paragraphs (c)(1) through (3) of this section: (1) For a thermal oxidizer, install a gas temperature monitor... any substantial heat exchange occurs. (2) For a catalytic oxidizer, install a gas temperature monitor....3167(b)(1) through (3), you must also install a gas temperature monitor downstream of the catalyst bed...
40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes
Code of Federal Regulations, 2013 CFR
2013-07-01
... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...
40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes
Code of Federal Regulations, 2010 CFR
2010-07-01
... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...
40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes
Code of Federal Regulations, 2011 CFR
2011-07-01
... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...
40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes
Code of Federal Regulations, 2014 CFR
2014-07-01
... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...
40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes
Code of Federal Regulations, 2012 CFR
2012-07-01
... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of each...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of each...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I monitor the temperature of... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of each...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct immediately... gas temperature monitors upstream and/or downstream of the catalyst bed as required in § 63.3967(b... (a) and (c)(3)(i) through (v) of this section for each gas temperature monitoring device. (i) Locate...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct immediately... gas temperature monitors upstream and/or downstream of the catalyst bed as required in § 63.3967(b... (a) and (c)(3)(i) through (v) of this section for each gas temperature monitoring device. (i) Locate...
40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...
40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...
40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...
40 CFR 63.644 - Monitoring provisions for miscellaneous process vents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to a thermocouple, an ultraviolet beam sensor, or an infrared sensor) capable of continuously... the equipment will monitor accurately. (1) Where an incinerator is used, a temperature monitoring... incinerator is used, a temperature monitoring device shall be installed in the firebox or in the ductwork...
40 CFR 63.644 - Monitoring provisions for miscellaneous process vents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... to a thermocouple, an ultraviolet beam sensor, or an infrared sensor) capable of continuously... the equipment will monitor accurately. (1) Where an incinerator is used, a temperature monitoring... incinerator is used, a temperature monitoring device shall be installed in the firebox or in the ductwork...
40 CFR 63.644 - Monitoring provisions for miscellaneous process vents.
Code of Federal Regulations, 2014 CFR
2014-07-01
... to a thermocouple, an ultraviolet beam sensor, or an infrared sensor) capable of continuously... the equipment will monitor accurately. (1) Where an incinerator is used, a temperature monitoring... incinerator is used, a temperature monitoring device shall be installed in the firebox or in the ductwork...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I monitor the temperature of... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You must install, calibrate, maintain, and operate a device to continuously measure the temperature of the...
Continuous-flow free acid monitoring method and system
Strain, J.E.; Ross, H.H.
1980-01-11
A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.
Continuous-flow free acid monitoring method and system
Strain, James E.; Ross, Harley H.
1981-01-01
A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: (1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer...) For a catalytic oxidizer, install gas temperature monitors upstream and/or downstream of the catalyst... the requirements in paragraphs (a) and (c)(3)(i) through (v) of this section for each gas temperature...
Code of Federal Regulations, 2010 CFR
2010-07-01
...: (1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer...) For a catalytic oxidizer, install gas temperature monitors upstream and/or downstream of the catalyst... the requirements in paragraphs (a) and (c)(3)(i) through (v) of this section for each gas temperature...
The Utility of Continuous Temperature Monitoring of Refrigerators in a Long-Term Care Facility.
Worz, Chad; Postolski, Josh; Williams, Kevin
2017-04-01
It is the current practice in most long-term care facilities to use manual logs when documenting refrigerator temperatures. This process is commonly associated with poor or fabricated compliance, little oversight, and documentation errors, both because of overt omissions and unsubstantiated values. It is also well-established that medication storage requirements are mandated by the Centers for Medicare & Medicaid Services (CMS). This analysis demonstrates the potential risk of poor cold-chain management of medications and establishes the possible utility of digitally recorded continuous temperature monitoring over manual logs. This small case-oriented review of a large nursing facility's storage process attempts to expose the risk associated with improper medication storage. The primary outcome of the study was to determine if a difference existed between temperature logs completed manually compared with those done with a continuous monitor. American Thermal Instruments (ATI) thermometers were placed into each of the existing refrigerators in a 147-bed nursing facility. Through a mobile app, the data recorded in each refrigerator were compiled into daily reports. Data were collected from a total of 12 refrigerators, 3 of which were medication refrigerators. Logging intervals were done over a 263-minute period and compiled the lowest recorded temperature, highest recorded temperature, and the average temperature for each refrigerator. In addition, reports showing the real-time results were compiled using the ATI DataNow service. All of the refrigerators analyzed had highest temperature recorded readings exceeding the maximum allowable temperature (50°F for refrigerator). All of the refrigerators had lowest temperature recorded readings below the minimum allowable temperature (32°F for refrigerators). All of the refrigerators also reported average temperatures outside of the allowable temperature range. The results necessitated the replacement of a refrigerator and the evaluation of a dairy refrigerator in the food service area. This resulted in consistent measurements within the allowable range. Following this analysis, it can be concluded that the common assumptions about the effectiveness of manual temperature logs should be verified. It can also be concluded that continuous temperature monitoring improves temperature-reporting accuracy. Proper medication storage is mandated by CMS; risk does exist that an improperly stored vaccine, biologic, or medication could lose effectiveness. While it has not been proven, improved medication storage offered from continuous monitoring could result in improved medication viability and hence improved patient outcomes associated with those medications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sensor, or infrared sensor to continuously detect the presence of a pilot flame. 2. Option 2: percent... flame zone Continuous parameter monitoring systems to measure and record the combustion zone temperature...
Code of Federal Regulations, 2010 CFR
2010-07-01
... sensor, or infrared sensor to continuously detect the presence of a pilot flame. 2. Option 2: percent... flame zone Continuous parameter monitoring systems to measure and record the combustion zone temperature...
21 CFR 882.5500 - Lesion temperature monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lesion temperature monitor. 882.5500 Section 882.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5500 Lesion temperature...
40 CFR 63.1324 - Batch process vents-monitoring equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... device (including but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring device shall be installed in the...
40 CFR 63.489 - Batch front-end process vents-monitoring equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... device (including, but not limited to, a thermocouple, ultra-violet beam sensor, or infrared sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring device shall be installed in the...
40 CFR 63.127 - Transfer operations provisions-monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... device (including but not limited to a thermocouple, infrared sensor, or an ultra-violet beam sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in the firebox...
40 CFR 63.489 - Batch front-end process vents-monitoring equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... device (including, but not limited to, a thermocouple, ultra-violet beam sensor, or infrared sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring device shall be installed in the...
40 CFR 63.127 - Transfer operations provisions-monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... device (including but not limited to a thermocouple, infrared sensor, or an ultra-violet beam sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in the firebox...
40 CFR 63.489 - Batch front-end process vents-monitoring equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... device (including, but not limited to, a thermocouple, ultra-violet beam sensor, or infrared sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, the temperature monitoring device shall be installed in the...
40 CFR 63.127 - Transfer operations provisions-monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... device (including but not limited to a thermocouple, infrared sensor, or an ultra-violet beam sensor... temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in the firebox...
Johnsson, P.A.; Reddy, M.M.
1990-01-01
This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.
40 CFR 60.563 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... item as follows: (1) A temperature monitoring device to measure and record continuously the operating temperature to within 1 percent (relative to degrees Celsius) or ±0.5 °C (±0.9 °F), whichever is greater. (2) A flame monitoring device, such as a thermocouple, an ultraviolet sensor, an infrared beam sensor...
40 CFR 60.563 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... item as follows: (1) A temperature monitoring device to measure and record continuously the operating temperature to within 1 percent (relative to degrees Celsius) or ±0.5 °C (±0.9 °F), whichever is greater. (2) A flame monitoring device, such as a thermocouple, an ultraviolet sensor, an infrared beam sensor...
40 CFR 60.563 - Monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... item as follows: (1) A temperature monitoring device to measure and record continuously the operating temperature to within 1 percent (relative to degrees Celsius) or ±0.5 °C (±0.9 °F), whichever is greater. (2) A flame monitoring device, such as a thermocouple, an ultraviolet sensor, an infrared beam sensor...
40 CFR 60.563 - Monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... item as follows: (1) A temperature monitoring device to measure and record continuously the operating temperature to within 1 percent (relative to degrees Celsius) or ±0.5 °C (±0.9 °F), whichever is greater. (2) A flame monitoring device, such as a thermocouple, an ultraviolet sensor, an infrared beam sensor...
40 CFR 60.563 - Monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... item as follows: (1) A temperature monitoring device to measure and record continuously the operating temperature to within 1 percent (relative to degrees Celsius) or ±0.5 °C (±0.9 °F), whichever is greater. (2) A flame monitoring device, such as a thermocouple, an ultraviolet sensor, an infrared beam sensor...
40 CFR 63.364 - Monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... complying with § 63.363(b) or (d) through the use of an acid-water scrubber, the owner or operator shall... § 63.364(e) or continuously monitor and record the oxidation temperature at the outlet to the catalyst bed or at the exhaust point from the thermal combustion chamber using the temperature monitor...
40 CFR 63.364 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... complying with § 63.363(b) or (d) through the use of an acid-water scrubber, the owner or operator shall... § 63.364(e) or continuously monitor and record the oxidation temperature at the outlet to the catalyst bed or at the exhaust point from the thermal combustion chamber using the temperature monitor...
40 CFR 63.364 - Monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... with § 63.363(b) or (d) through the use of an acid-water scrubber, the owner or operator shall either... § 63.364(e) or continuously monitor and record the oxidation temperature at the outlet to the catalyst bed or at the exhaust point from the thermal combustion chamber using the temperature monitor...
40 CFR 63.364 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... complying with § 63.363(b) or (d) through the use of an acid-water scrubber, the owner or operator shall... § 63.364(e) or continuously monitor and record the oxidation temperature at the outlet to the catalyst bed or at the exhaust point from the thermal combustion chamber using the temperature monitor...
Noninvasive health condition monitoring device for workers at high altitudes conditions.
Aqueveque, Pablo; Gutierrez, Cristopher; Saavedra, Francisco; Pino, Esteban J
2016-08-01
This work presents the design and implementation of a continuous monitoring device to control the health state of workers, for instance miners, at high altitudes. The extreme ambient conditions are harmful for peoples' health; therefore a continuous control of the workers' vital signs is necessary. The developed system includes physiological variables: electrocardiogram (ECG), respiratory activity and body temperature (BT), and ambient variables: ambient temperature (AT) and relative humidity (RH). The noninvasive sensors are incorporated in a t-shirt to deliver a functional device, and maximum comfort to the users. The device is able to continuously calculate heart rate (HR) and respiration rate (RR), and establish a wireless data transmission to a central monitoring station.
Application of continuous monitoring of honeybee colonies
USDA-ARS?s Scientific Manuscript database
Monitoring physical variables associated with honey bee colonies, including weight, temperature, humidity, respiratory gases, vibration, acoustics and forager traffic, in a continuous manner is becoming feasible for most researchers as the cost and size of electronic sensors and dataloggers decrease...
Chapin, Thomas; Todd, Andrew S.; Zeigler, Matthew P.
2014-01-01
Water temperature and streamflow intermittency are critical parameters influencing aquatic ecosystem health. Low-cost temperature loggers have made continuous water temperature monitoring relatively simple but determining streamflow timing and intermittency using temperature data alone requires significant and subjective data interpretation. Electrical resistance (ER) sensors have recently been developed to overcome the major limitations of temperature-based methods for the assessment of streamflow intermittency. This technical note introduces the STIC (Stream Temperature, Intermittency, and Conductivity logger); a robust, low-cost, simple to build instrument that provides long-duration, high-resolution monitoring of both relative conductivity (RC) and temperature. Simultaneously collected temperature and RC data provide unambiguous water temperature and streamflow intermittency information that is crucial for monitoring aquatic ecosystem health and assessing regulatory compliance. With proper calibration, the STIC relative conductivity data can be used to monitor specific conductivity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a..., as appropriate. (1) Where an incinerator is used, a temperature monitoring device equipped with a... temperature monitoring device shall be installed in the firebox or in the ductwork immediately downstream of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a..., as appropriate. (1) Where an incinerator is used, a temperature monitoring device equipped with a... temperature monitoring device shall be installed in the firebox or in the ductwork immediately downstream of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... thermocouple, ultra-violet beam sensor, or infrared sensor) capable of continuously detecting the presence of a..., as appropriate. (1) Where an incinerator is used, a temperature monitoring device equipped with a... temperature monitoring device shall be installed in the firebox or in the ductwork immediately downstream of...
Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring.
Sun, Yiwei; Ren, Lei; Jiang, Lelun; Tang, Yong; Liu, Bin
2018-04-13
Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE) was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C) and forearm temperature (35.3 °C) are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.
Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring
Sun, Yiwei; Ren, Lei; Jiang, Lelun; Tang, Yong; Liu, Bin
2018-01-01
Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE) was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C) and forearm temperature (35.3 °C) are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals. PMID:29652837
Code of Federal Regulations, 2013 CFR
2013-07-01
... conductivity Continuous Every 15 minutes 3-hour block average. Regenerative Adsorber Regeneration stream flow. Minimum total flow per regeneration cycle Continuous N/A Total flow for each regeneration cycle. Adsorber bed temperature. Maximum temperature Continuously after regeneration and within 15 minutes of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... conductivity Continuous Every 15 minutes 3-hour block average. Regenerative Adsorber Regeneration stream flow. Minimum total flow per regeneration cycle Continuous N/A Total flow for each regeneration cycle. Adsorber bed temperature. Maximum temperature Continuously after regeneration and within 15 minutes of...
US EPA Base Study Standard Operating Procedure for Continuous Monitoring of Outdoor Air
The procedure described is intended for monitoring continuously and simultaneously outdoor air quality parameters that are most commonly associated with indoor air quality: the concentrations of carbon dioxide (CO2) and carbon monoxide (CO), temperature, nd relative humidity (RH).
40 CFR 63.8244 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... From Mercury Cell Chlor-Alkali Plants Continuous Compliance Requirements § 63.8244 How do I monitor and... temperature specified in § 63.8232(f)(1)(vii) during each heating phase of the regeneration cycle of your... determined according to § 63.8232(f)(2) for three consecutive regeneration cycles, your monitoring value is...
40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine... continuous emission monitoring system (CEMS) consisting of a NOX monitor and a diluent gas (oxygen (O2) or... rate, temperature, and pressure, to continuously measure the total thermal energy output in British...
40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?
Code of Federal Regulations, 2014 CFR
2014-07-01
... monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine... continuous emission monitoring system (CEMS) consisting of a NOX monitor and a diluent gas (oxygen (O2) or... rate, temperature, and pressure, to continuously measure the total thermal energy output in British...
40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine... continuous emission monitoring system (CEMS) consisting of a NOX monitor and a diluent gas (oxygen (O2) or... rate, temperature, and pressure, to continuously measure the total thermal energy output in British...
40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine... continuous emission monitoring system (CEMS) consisting of a NOX monitor and a diluent gas (oxygen (O2) or... rate, temperature, and pressure, to continuously measure the total thermal energy output in British...
40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?
Code of Federal Regulations, 2013 CFR
2013-07-01
... monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine... continuous emission monitoring system (CEMS) consisting of a NOX monitor and a diluent gas (oxygen (O2) or... rate, temperature, and pressure, to continuously measure the total thermal energy output in British...
40 CFR 63.114 - Process vent provisions-monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... accurately. (1) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature...
40 CFR 63.114 - Process vent provisions-monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... accurately. (1) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature...
40 CFR 63.114 - Process vent provisions-monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... accurately. (1) Where an incinerator is used, a temperature monitoring device equipped with a continuous recorder is required. (i) Where an incinerator other than a catalytic incinerator is used, a temperature...
Decoupled tracking and thermal monitoring of non-stationary targets.
Tan, Kok Kiong; Zhang, Yi; Huang, Sunan; Wong, Yoke San; Lee, Tong Heng
2009-10-01
Fault diagnosis and predictive maintenance address pertinent economic issues relating to production systems as an efficient technique can continuously monitor key health parameters and trigger alerts when critical changes in these variables are detected, before they lead to system failures and production shutdowns. In this paper, we present a decoupled tracking and thermal monitoring system which can be used on non-stationary targets of closed systems such as machine tools. There are three main contributions from the paper. First, a vision component is developed to track moving targets under a monitor. Image processing techniques are used to resolve the target location to be tracked. Thus, the system is decoupled and applicable to closed systems without the need for a physical integration. Second, an infrared temperature sensor with a built-in laser for locating the measurement spot is deployed for non-contact temperature measurement of the moving target. Third, a predictive motion control system holds the thermal sensor and follows the moving target efficiently to enable continuous temperature measurement and monitoring.
Korstanje, Ron; Ryan, Jennifer L; Savage, Holly S; Lyons, Bonnie L; Kane, Kevin G; Sukoff Rizzo, Stacey J
2017-09-01
Previous studies with continuous glucose monitoring in mice have been limited to several days or weeks, with the mouse's physical attachment to the equipment affecting behavior and measurements. In the current study, we measured blood glucose and body temperature at 10-second intervals for 12 weeks in a cohort of NOD/ShiLtJ female mice using wireless telemetry. This allowed us to obtain a high-resolution profile of the circadian rhythm of these two parameters and the onset of hyperglycemic development in real time. The most striking observations were the elevated nocturnal concentrations of glucose into the diabetic range days before elevations in diurnal glucose (when glucose concentrations are historically measured) and the strong, negative correlation between elevated blood glucose concentrations and body temperature with a steady decline of the body temperature with diabetes development. Taken together, this technological advancement provides improved resolution in the study of the disease trajectory of diabetes in mouse models, including relevant translatability to the current technologies of continuous glucose monitoring now regularly used in patients. Copyright © 2017 Endocrine Society.
Verdegaal, Elisabeth-Lidwien J M M; Delesalle, Catherine; Caraguel, Charles G B; Folwell, Louise E; McWhorter, Todd J; Howarth, Gordon S; Franklin, Samantha H
2017-07-01
OBJECTIVE To evaluate use of a telemetric gastrointestinal (GI) pill to continuously monitor GI temperature in horses at rest and during exercise and to compare time profiles of GI temperature and rectal temperature. ANIMALS 8 Standardbred horses. PROCEDURES Accuracy and precision of the GI pill and a rectal probe were determined in vitro by comparing temperature measurements with values obtained by a certified resistance temperature detector (RTD) in water baths at various temperatures (37°, 39°, and 41°C). Subsequently, both GI and rectal temperature were recorded in vivo in 8 horses over 3 consecutive days. The GI temperature was recorded continuously, and rectal temperature was recorded for 3.5 hours daily. Comparisons were made between GI temperature and rectal temperature for horses at rest, during exercise, and after exercise. RESULTS Water bath evaluation revealed good agreement between the rectal probe and RTD. However, the GI pill systematically underestimated temperature by 0.14°C. In vivo, GI temperature data were captured with minimal difficulties. Most data loss occurred during the first 16 hours, after which the mean ± SD data loss was 8.6 ± 3.7%. The GI temperature was consistently and significantly higher than rectal temperature with an overall mean temperature difference across time of 0.27°C (range, 0.22° to 0.32°C). Mean measurement cessation point for the GI pill was 5.1 ± 1.0 days after administration. CONCLUSIONS AND CLINICAL RELEVANCE This study revealed that the telemetric GI pill was a reliable and practical method for real-time monitoring of GI temperature in horses.
Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams (Final Report)
This final report is a technical "best practices" document describing sensor deployment for and collection of continuous temperature and flow data at ungaged sites in wadeable streams. This document addresses questions related to equipment needs; configuration, placement, and ins...
Accuracy of Zero-Heat-Flux Cutaneous Temperature in Intensive Care Adults.
Dahyot-Fizelier, Claire; Lamarche, Solène; Kerforne, Thomas; Bénard, Thierry; Giraud, Benoit; Bellier, Rémy; Carise, Elsa; Frasca, Denis; Mimoz, Olivier
2017-07-01
To compare accuracy of a continuous noninvasive cutaneous temperature using zero-heat-flux method to esophageal temperature and arterial temperature. Prospective study. ICU and NeuroICU, University Hospital. Fifty-two ICU patients over a 4-month period who required continuous temperature monitoring were included in the study, after informed consent. All patients had esophageal temperature probe and a noninvasive cutaneous device to monitor their core temperature continuously. In seven patients who required cardiac output monitoring, continuous iliac arterial temperature was collected. Simultaneous core temperatures were recorded from 1 to 5 days. Comparison to the esophageal temperature, considered as the reference in this study, used the Bland and Altman method with adjustment for multiple measurements per patient. The esophageal temperature ranged from 33°C to 39.7°C, 61,298 pairs of temperature using zero-heat-flux and esophageal temperature were collected and 1,850 triple of temperature using zero-heat-flux, esophageal temperature, and arterial temperature. Bias and limits of agreement for temperature using zero-heat-flux were 0.19°C ± 0.53°C compared with esophageal temperature with an absolute difference of temperature pairs equal to or lower than 0.5°C of 92.6% (95% CI, 91.9-93.4%) of cases and equal to or lower than 1°C for 99.9% (95% CI, 99.7-100.0%) of cases. Compared with arterial temperature, bias and limits of agreement were -0.00°C ± 0.36°C with an absolute difference of temperature pairs equal to or lower than 0.5°C of 99.8% (95% CI, 95.3-100%) of cases. All absolute difference of temperature pairs between temperature using zero-heat-flux and arterial temperature and between arterial temperature and esophageal temperature were equal to or lower than 1°C. No local or systemic serious complication was observed. These results suggest a comparable reliability of the cutaneous sensor using the zero-heat-flux method compared with esophageal or iliac arterial temperatures measurements.
US EPA Base Study Standard Operating Procedure for Continuous Monitoring of Indoor Air
The procedure described is intended for monitoring continuously and simultaneously, at selected work sites, parameters that are most commonly associated with the quality of indoor environments: the concentrations of carbon dioxide (CO2), carbon monoxide (CO), temperature, relative humidity (RH), illumination, and noise.
A Temperature-Monitoring Vaginal Ring for Measuring Adherence
Boyd, Peter; Desjardins, Delphine; Kumar, Sandeep; Fetherston, Susan M.; Le-Grand, Roger; Dereuddre-Bosquet, Nathalie; Helgadóttir, Berglind; Bjarnason, Ásgeir; Narasimhan, Manjula; Malcolm, R. Karl
2015-01-01
Background Product adherence is a pivotal issue in the development of effective vaginal microbicides to reduce sexual transmission of HIV. To date, the six Phase III studies of vaginal gel products have relied primarily on self-reporting of adherence. Accurate and reliable methods for monitoring user adherence to microbicide-releasing vaginal rings have yet to be established. Methods A silicone elastomer vaginal ring prototype containing an embedded, miniature temperature logger has been developed and tested in vitro and in cynomolgus macaques for its potential to continuously monitor environmental temperature and accurately determine episodes of ring insertion and removal. Results In vitro studies demonstrated that DST nano-T temperature loggers encapsulated in medical grade silicone elastomer were able to accurately and continuously measure environmental temperature. The devices responded quickly to temperature changes despite being embedded in different thickness of silicone elastomer. Prototype vaginal rings measured higher temperatures compared with a subcutaneously implanted device, showed high sensitivity to diurnal fluctuations in vaginal temperature, and accurately detected periods of ring removal when tested in macaques. Conclusions Vaginal rings containing embedded temperature loggers may be useful in the assessment of product adherence in late-stage clinical trials. PMID:25965956
This external review draft report is a technical "best practices" document describing sensor deployment for and data collection of continuous temperature and flow at ungaged sites in wadeable streams. This document addresses questions related to equipment needs; configuration, pl...
NASA Technical Reports Server (NTRS)
1994-01-01
The heavy, cumbersome body protection suits worn by members of hazardous materials response teams cause marked elevation of body temperatures, which can reduce effectiveness and lead to heat stress and injury. The CorTemp System, marketed by Human Technologies, Inc., provides the basis for a body temperature monitoring alarm system. Encased in a three-quarter-inch ingestible capsule, the system includes a mini-thermometer, miniature telemetry system, a microbattery and temperature sensor. It makes its way through the digestive system, continuously monitoring temperature. Findings are sent to the recorder by telemetry, and then displayed and stored for transfer to a computer.
Ricci, Francesco; Caprio, Felice; Poscia, Alessandro; Valgimigli, Francesco; Messeri, Dimitri; Lepori, Elena; Dall'Oglio, Giorgio; Palleschi, Giuseppe; Moscone, Danila
2007-04-15
Glucose biosensors based on the use of planar screen-printed electrodes modified with an electrochemical mediator and with glucose oxidase have been optimised for their application in the continuous glucose monitoring in diabetic patients. A full study of their operative stability and temperature dependence has been accomplished, thus giving useful information for in vivo applications. The effect of dissolved oxygen concentration in the working solution was also studied in order to evaluate its effect on the linearity of the sensors. Glucose monitoring performed with serum samples was performed to evaluate the effect of matrix components on operative stability and demonstrated an efficient behaviour for 72 h of continuous monitoring. Finally, these studies led to a sensor capable of detecting glucose at concentrations as low as 0.04 mM and with a good linearity up to 2.0 mM (at 37 degrees C) with an operative stability of ca. 72 h, thus demonstrating the possible application of these sensors for continuous glucose monitoring in conjunction with a microdialysis probe. Moreover, preliminary in vivo experiments for ca. 20 h have demonstrated the feasibility of this system.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., an organic monitoring device capable of providing a continuous record, or an integrating regeneration... regeneration stream mass or volumetric flow for each regeneration cycle, and a carbon-bed temperature monitoring device capable of recording the carbon-bed temperature after each regeneration and within 15...
Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in...
Unobtrusive Monitoring of Neonatal Brain Temperature Using a Zero-Heat-Flux Sensor Matrix.
Atallah, Louis; Bongers, Edwin; Lamichhane, Bishal; Bambang-Oetomo, Sidarto
2016-01-01
The temperature of preterm neonates must be maintained within a narrow window to ensure their survival. Continuously measuring their core temperature provides an optimal means of monitoring their thermoregulation and their response to environmental changes. However, existing methods of measuring core temperature can be very obtrusive, such as rectal probes, or inaccurate/lagging, such as skin temperature sensors and spot-checks using tympanic temperature sensors. This study investigates an unobtrusive method of measuring brain temperature continuously using an embedded zero-heat-flux (ZHF) sensor matrix placed under the head of the neonate. The measured temperature profile is used to segment areas of motion and incorrect positioning, where the neonate's head is not above the sensors. We compare our measurements during low motion/stable periods to esophageal temperatures for 12 preterm neonates, measured for an average of 5 h per neonate. The method we propose shows good correlation with the reference temperature for most of the neonates. The unobtrusive embedding of the matrix in the neonate's environment poses no harm or disturbance to the care work-flow, while measuring core temperature. To address the effect of motion on the ZHF measurements in the current embodiment, we recommend a more ergonomic embedding ensuring the sensors are continuously placed under the neonate's head.
A Remote Monitoring System for Voltage, Current, Power and Temperature Measurements
NASA Astrophysics Data System (ADS)
Barakat, E.; Sinno, N.; Keyrouz, C.
This paper presents a study and design of a monitoring system for the continuous measurement of electrical energy parameters such as voltage, current, power and temperature. This system is designed to monitor the data remotely over internet. The electronic power meter is based on a microcontroller from Microchip Technology Inc. PIC family. The design takes into consideration the correct operation in the event of an outage or brown out by recording the electrical values and the temperatures in EEPROM internally available in the microcontroller. Also a digital display is used to show the acquired measurements. A computer will remotely monitor the data over internet.
Design of components for the NASA OCEAN project
NASA Technical Reports Server (NTRS)
Wright, Jenna (Editor); Clift, James; Dumais, Bryan; Gardner, Shannon; Hernandez, Juan Carlos; Nolan, Laura; Park, Mia; Peoples, Don; Phillips, Elizabeth; Tillman, Mark
1993-01-01
The goal of the Fall 1993 semester of the EGM 4000 class was to design, fabricate, and test components for the 'Ocean CELSS Experimental Analog NASA' Project (OCEAN Project) and to aid in the future development of NASA's Controlled Ecological Life Support System (CELSS). The OCEAN project's specific aims are to place a human, Mr. Dennis Chamberland from NASA's Life Science Division of Research, into an underwater habitat off the shore of Key Largo, FL for three months. During his stay, he will monitor the hydroponic growth of food crops and evaluate the conditions necessary to have a successful harvest of edible food. The specific designs chosen to contribute to the OCEAN project by the EGM 4000 class are in the areas of hydroponic habitat monitoring, human health monitoring, and production of blue/green algae. The hydroponic monitoring system focused on monitoring the environment of the plants. This included the continuous sensing of the atmospheric and hydroponic nutrient solution temperatures. Methods for monitoring the continuous flow of the hydroponic nutrient solution across the plants and the continuous supply of power for these sensing devices were also incorporated into the design system. The human health monitoring system concentrated on continuously monitoring various concerns of the occupant in the underwater living habitat of the OCEAN project. These concerns included monitoring the enclosed environment for dangerous levels of carbon monoxide and smoke, high temperatures from fire, and the ceasing of the continuous airflow into the habitat. The blue/green algae project emphasized both the production and harvest of a future source of food. This project did not interact with any part of the OCEAN project. Rather, it was used to show the possibility of growing this kind of algae as a supplemental food source inside a controlled ecological life support system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... paragraphs (a) and (c)(1) through (3) of this section: (1) For a thermal oxidizer, install a gas temperature... any substantial heat exchange occurs. (2) For a catalytic oxidizer, install a gas temperature monitor in the gas stream immediately before the catalyst bed, and if you establish operating limits...
Code of Federal Regulations, 2011 CFR
2011-07-01
... paragraphs (a) and (c)(1) through (3) of this section: (1) For a thermal oxidizer, install a gas temperature... any substantial heat exchange occurs. (2) For a catalytic oxidizer, install a gas temperature monitor in the gas stream immediately before the catalyst bed, and if you establish operating limits...
Best practices for continuous monitoring of temperature and flow in wadeable streams
Jen Stamp; Anna Hamilton; Michelle Craddock; Laila Parker; Allison H. Roy; Daniel J. Isaak; Zach Holden; Margaret Passmore; Britta G. Bierwagen
2014-01-01
The United States Environmental Protection Agency (U.S. EPA) is working with its regional offices, states, tribes, river basin commissions and other entities to establish Regional Monitoring Networks (RMNs) for freshwater wadeable streams. To the extent possible, uninterrupted, biological, temperature and hydrologic data will be collected on an ongoing basis at RMN...
Implantable, Ingestible Electronic Thermometer
NASA Technical Reports Server (NTRS)
Kleinberg, Leonard
1987-01-01
Small quartz-crystal-controlled oscillator swallowed or surgically implanted provides continuous monitoring of patient's internal temperature. Receiver placed near patient measures oscillator frequency, and temperature inferred from previously determined variation of frequency with temperature. Frequency of crystal-controlled oscillator varies with temperature. Circuit made very small and implanted or ingested to measure internal body temperature.
Michelle Moorman; Tom Augspurger
2016-01-01
The U.S. Fish and Wildlife Service has partnered with U.S. Geological Survey to establish 2 continuous water-quality monitoring stations at Lake Mattamuskeet. Stations on the east and west side of the lake measure water level, clarity, dissolved oxygen, pH, temperature, salinity, and conductivity.
Near-continuous thermal monitoring of a diverse tropical forest canopy
NASA Astrophysics Data System (ADS)
Pau, S.; Still, C. J.; Kim, Y.; Detto, M.
2015-12-01
Tropical species may be highly sensitive to temperature increases associated with climate change because of their narrow thermal tolerances. Recent work has highlighted the importance of temperature in tropical forest function, however most studies use air temperature measurements from sparse meteorological stations even though surface temperatures are known to deviate from air temperatures. Tropical organisms exist in microclimates that are highly variable in space and time and not easily measured in natural environments. This is in part because of the complex structure of tropical forests and the potential for organisms themselves to modify their own environment. In the case of plants, leaf temperature is linked to the water and surface energy balance of their microenvironment. Here we present results from near-continuous thermal camera monitoring of the forest canopy in Barro Colorado Island, Panama (5-minute intervals for approximately 9 months). We compare daytime (maximum) vs. nighttime (minimum) differences between canopy temperature and air temperature, relative humidity, solar radiation, and precipitation. On average, canopy temperatures are consistently ~2 degrees Celsius higher than air temperatures. These data can paired with flux tower data on-site and used to advance understanding of temperature controls on the structure and function of tropical forests, such as carbon assimilation, phenology, and habitat monitoring, and can be integrated into models to improve predictions of tropical forest response to future climate change.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement sensitivity of 4 degrees Fahrenheit or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic interference...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement sensitivity of 4 degrees Fahrenheit or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic interference...
Design of a wearable bio-patch for monitoring patient's temperature.
Vicente, Jose M; Avila-Navarro, Ernesto; Juan, Carlos G; Garcia, Nicolas; Sabater-Navarro, Jose M
2016-08-01
New communication technologies allow us developing useful and more practical medical applications, in particular for ambulatory monitoring. NFC communication has the advantages of low powering and low influence range area, what makes this technology suitable for health applications. This work presents an explanation of the design process of planar NFC antennas in a wearable biopatch. The problem of optimizing the communication distance is addressed. Design of a biopatch for continuous temperature monitoring and experimental results obtained wearing this biopatch during daily activities are presented.
Sohns, C.W.; Nodine, R.N.; Wallace, S.A.
1999-05-04
A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.
Design and Development of Patient Monitoring System
NASA Astrophysics Data System (ADS)
Hazwanie Azizulkarim, Azra; Jamil, Muhammad Mahadi Abdul; Ambar, Radzi
2017-08-01
Patient monitoring system allows continuous monitoring of patient vital signs, support decision making among medical personnel and help enhance patient care. This system can consist of devices that measure, display and record human’s vital signs, including body temperature, heart rate, blood pressure and other health-related criteria. This paper proposes a system to monitor the patient’s conditions by monitoring the body temperature and pulse rate. The system consists of a pulse rate monitoring software and a wearable device that can measure a subject’s temperature and pulse rate only by using a fingertip. The device is able to record the measurement data and interface to PC via Arduino microcontroller. The recorded data can be viewed as a historical file or can be archived for further analysis. This work also describes the preliminary experimental results of the selected sensors to show the usefulness of the sensors for the proposed patient monitoring system.
40 CFR 63.2997 - What are the requirements for monitoring devices?
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuously the thermal oxidizer temperature at the exit of the combustion zone before any substantial heat exchange occurs or at the location consistent with the manufacturer's recommendations. (2) Continuously...
40 CFR 63.2997 - What are the requirements for monitoring devices?
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuously the thermal oxidizer temperature at the exit of the combustion zone before any substantial heat exchange occurs or at the location consistent with the manufacturer's recommendations. (2) Continuously...
Kelly, A L; Gough, T; Dhumal, R S; Halsey, S A; Paradkar, A
2012-04-15
The purpose of this work was to explore NIR spectroscopy as a PAT tool to monitor the formation of ibuprofen and nicotinamide cocrystals during extrusion based solvent free continuous cocrystallization (SFCC). Drug and co-former were gravimetrically fed into a heated co-rotating twin screw extruder to form cocrystals. Real-time process monitoring was performed using a high temperature NIR probe in the extruder die to assess cocrystal content and subsequently compared to off-line powder X-ray diffraction measurements. The effect of processing variables, such as temperature and mixing intensity, on the extent of cocrystal formation was investigated. NIR spectroscopy was sensitive to cocrystal formation with the appearance of new peaks and peak shifts, particularly in the 4800-5200 cm(-1) wave-number region. PXRD confirmed an increased conversion of the mixture into cocrystal with increase in barrel temperature and screw mixing intensity. A decrease in screw rotation speed also provided improved cocrystal yield due to the material experiencing longer residence times within the process. A partial least squares analysis in this region of NIR spectrum correlated well with PXRD data, providing a best fit with cocrystal conversion when a limited range of process conditions were considered, for example a single set temperature. The study suggests that NIR spectroscopy could be used to monitor cocrystal purity on an industrial scale using this continuous, solvent-free process. Copyright © 2011 Elsevier B.V. All rights reserved.
40 CFR 63.996 - General monitoring requirements for control and recovery devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... limits established under a referencing subpart. Where the regeneration stream flow and carbon bed temperature are monitored, the range shall be in terms of the total regeneration stream flow per regeneration... regeneration cooling cycle. (d) Alternatives to monitoring requirements—(1) Alternatives to the continuous...
40 CFR 63.996 - General monitoring requirements for control and recovery devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... limits established under a referencing subpart. Where the regeneration stream flow and carbon bed temperature are monitored, the range shall be in terms of the total regeneration stream flow per regeneration... regeneration cooling cycle. (d) Alternatives to monitoring requirements—(1) Alternatives to the continuous...
40 CFR 63.996 - General monitoring requirements for control and recovery devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... limits established under a referencing subpart. Where the regeneration stream flow and carbon bed temperature are monitored, the range shall be in terms of the total regeneration stream flow per regeneration... regeneration cooling cycle. (d) Alternatives to monitoring requirements—(1) Alternatives to the continuous...
40 CFR 63.996 - General monitoring requirements for control and recovery devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... limits established under a referencing subpart. Where the regeneration stream flow and carbon bed temperature are monitored, the range shall be in terms of the total regeneration stream flow per regeneration... regeneration cooling cycle. (d) Alternatives to monitoring requirements—(1) Alternatives to the continuous...
40 CFR 63.996 - General monitoring requirements for control and recovery devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... limits established under a referencing subpart. Where the regeneration stream flow and carbon bed temperature are monitored, the range shall be in terms of the total regeneration stream flow per regeneration... regeneration cooling cycle. (d) Alternatives to monitoring requirements—(1) Alternatives to the continuous...
40 CFR 63.114 - Process vent provisions-monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., temperature monitoring devices shall be installed in the gas stream immediately before and after the catalyst... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... monitoring device in the firebox equipped with a continuous recorder. This requirement does not apply to gas...
40 CFR 63.114 - Process vent provisions-monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., temperature monitoring devices shall be installed in the gas stream immediately before and after the catalyst... but not limited to a thermocouple, ultra-violet beam sensor, or infrared sensor) capable of... monitoring device in the firebox equipped with a continuous recorder. This requirement does not apply to gas...
40 CFR 63.6125 - What are my monitor installation, operation, and maintenance requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Stationary Combustion Turbines Testing and Initial Compliance Requirements § 63.6125 What are my monitor installation, operation, and maintenance requirements? (a) If you are operating a stationary combustion turbine... emission control device, you must monitor on a continuous basis your catalyst inlet temperature in order to...
Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei
2012-01-01
A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments.
Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei
2012-01-01
A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments. PMID:23012529
Health monitoring system for a tall building with Fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Li, D. S.; Li, H. N.; Ren, L.; Guo, D. S.; Song, G. B.
2009-03-01
Fiber Bragg grating (FBG) sensors demonstrate great potentials for structural health monitoring of civil structures to ensure their structural integrity, durability and reliability. The advantages of applying fiber optic sensors to a tall building include their immunity of electromagnetic interference and multiplexing ability to transfer optical signals over a long distance. In the work, FBG sensors, including strain and temperature sensors, are applied to the construction monitoring of an 18-floor tall building starting from its construction date. The main purposes of the project are: 1) monitoring the temperature evolution history within the concrete during the pouring process; 2) measuring the variations of the main column strains on the underground floor while upper 18 floors were subsequently added on; and 3) monitoring the relative displacements between two foundation blocks. The FBG sensors have been installed and interrogated continuously for more than five months. Monitoring results of temperature and strains during the period are presented in the paper. Furthermore, the lag behavior between the concrete temperature and its surrounding air temperature is investigated.
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements in paragraphs (c)(3)(i) through (vii) of this section. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement...) Shield the temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements in paragraphs (c)(3)(i) through (vii) of this section. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement...) Shield the temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If...
O'Donnell, Margaret A; Whitfield, Justin
The purpose of this study was to determine whether the temperature in medication storage compartments in air medical helicopters was within United States Pharmacopeia (USP)-defined limits for controlled room temperature. This was a prospective study using data obtained from a continuous temperature monitoring device. A total of 4 monitors were placed within 2 medication storage locations in 2 identical helicopters. The data collection period lasted 2 weeks during the summer and winter seasons. Data retrieved from monitors were compared against USP parameters for proper medication storage. Results documented temperatures outside the acceptable range a majority of the time with temperatures above the high limit during summer and below the low limit during winter. The study determined that compartments used for medication storage frequently fell outside of the range for USP-defined limits for medication storage. Flight programs should monitor storage areas, carefully taking actions to keep medication within defined ranges. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
Process monitoring and visualization solutions for hot-melt extrusion: a review.
Saerens, Lien; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas
2014-02-01
Hot-melt extrusion (HME) is applied as a continuous pharmaceutical manufacturing process for the production of a variety of dosage forms and formulations. To ensure the continuity of this process, the quality of the extrudates must be assessed continuously during manufacturing. The objective of this review is to provide an overview and evaluation of the available process analytical techniques which can be applied in hot-melt extrusion. Pharmaceutical extruders are equipped with traditional (univariate) process monitoring tools, observing barrel and die temperatures, throughput, screw speed, torque, drive amperage, melt pressure and melt temperature. The relevance of several spectroscopic process analytical techniques for monitoring and control of pharmaceutical HME has been explored recently. Nevertheless, many other sensors visualizing HME and measuring diverse critical product and process parameters with potential use in pharmaceutical extrusion are available, and were thoroughly studied in polymer extrusion. The implementation of process analytical tools in HME serves two purposes: (1) improving process understanding by monitoring and visualizing the material behaviour and (2) monitoring and analysing critical product and process parameters for process control, allowing to maintain a desired process state and guaranteeing the quality of the end product. This review is the first to provide an evaluation of the process analytical tools applied for pharmaceutical HME monitoring and control, and discusses techniques that have been used in polymer extrusion having potential for monitoring and control of pharmaceutical HME. © 2013 Royal Pharmaceutical Society.
Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A
2017-08-07
A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T 2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.
49 CFR 193.2507 - Monitoring operations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... watching or listening from an attended control center for warning alarms, such as gas, temperature...
Emerging Technologies for Real-Time Continuous Monitoring of Wellbore Integrity
NASA Astrophysics Data System (ADS)
Freifeld, B. M.
2017-12-01
Assessment of a well's integrity has traditionally been carried out through periodic wireline logging, often performed only when an operational problem was noted at the surface. There are several emerging technologies that can be installed permanently as part of the well completion and offer the ability to monitor operations while providing continuous indicators to evaluate the structural health of a well. Permanent behind casing instrumentation, such as pressure and temperature gauges can monitor for behind casing leakage. Similarly, fiber-optic distributed temperature and acoustic sensing provide additional information for assessing unwanted movement of fluid, which is indicative of problems either inside or outside of casing. Furthermore, these technologies offer the benefit of providing real-time continuous streams of information that serve as leading-indicators of wellbore problems to allow for early intervention. Additional research is still needed to develop best practices for the installation and operation of these technologies, as they increase cost and add additional risks that must be managed.
Digital hand-held temperature monitor
NASA Astrophysics Data System (ADS)
Allin, L. V.; Ferrari, I.
1980-09-01
A hand-held non-invasive monitoring instrument has been designed, constructed and tested to allow core temperature measurements to be obtained from human subjects who have swallowed a temperature-sensing radio transmitter (radio pill). This instrument uses a simple AM radio for a receiver, digital circuitry to decode the received signal and a four-digit LED module to display the temperature. The unit, which is battery-powered, can be held in one hand while an antenna probe is swept over the abdomen of the subject until a continuously audible signal is generated by a piezoelectric sound source, indicating reception. The digital display then presents the body core temperature in tenths of a degree Celsius.
Fluidized Bed Boiler Assessment for Navy Applications
1986-11-01
rather than removing it from the flue gas later with "scrubbing" devices. Intro- duction of limestone in the bed will reduce SO emissions; two...boiler in a satisfactory manner, the bed level, combustion temperature, and the flue gas composition and temperature should be continuously monitored...The flue gas composition should be c^-ɝely monitored for pollutants and combustion efficiency. EVOLUTION OF FBC BOILERS The performance of FBC
DOT National Transportation Integrated Search
1999-05-01
Sensors were installed in 18 test sections to continuously monitor temperature, moisture, and frost within the pavement structure, and 33 test sections were instrumented to monitor strain, deflection and pressure generated by environmental cycling an...
Lloyd, John; Lydon, Patrick; Ouhichi, Ramzi; Zaffran, Michel
2015-02-11
Accidental freezing of vaccines is a growing threat and a real risk for national immunization programs when the potency of many vaccines can be compromised if these are exposed to sub-zero temperatures in the cold chain. In Tunisia, this issue is compounded by using sub-standard domestic cold chain equipment instead of equipping the program with medical refrigerators designed specifically for storing vaccines and temperature sensitive pharmaceuticals. Against this backdrop, this paper presents the findings of a demonstration project conducted in Tunisia in 2012 that tested the impact of introducing several freeze prevention solutions to mitigate the risk of accidental freezing of vaccines. The main finding is that, despite the continued use of underperforming domestic refrigerators, continuous temperature monitoring using new technologies combined with other technological interventions significantly reduced the prevalence of accidental exposure to freezing temperatures. These improvements were noticed for cold chain storage at regional, district and health center levels, and during the transport legs that were part of the demonstration conducted in the regions of Kasserine in the South-Eastern part of Tunisia. Subsequent to introducing these freeze prevention solutions, the incidence of freeze alarms was reduced and the percent of time the temperatures dropped below the 2 °C recommended threshold. The incidence of freeze alarms at health center level was reduced by 40%. Lastly, the solutions implemented reduced risk of freezing during transport from 13.8% to 1.7%. Although the solution implemented is not optimal in the longer term because domestic refrigerators are used extensively in district stores and health centers, the risk of accidental freezing is significantly reduced by introducing the practice of continuous temperature monitoring as a standard. The management of the cold chain equipment was strengthened as a result which helps protect the potency of vaccines to the areas of most difficult access. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Monitoring the vaccine cold chain.
Cheriyan, E
1993-11-01
Maintaining the vaccine cold chain is an essential part of a successful immunisation programme. A continuous electronic temperature monitor helped to identify breaks in the cold chain in the community and the study led to the issue of proper guidelines and replacement of faulty equipment.
NASA Technical Reports Server (NTRS)
Kranbuehl, D. E.; Delos, S. E.; Hoff, M. S.; Weller, L. W.; Haverty, P. D.
1987-01-01
An in situ NDE dielectric impedance measurement method has been developed for ascertaining the cure processing properties of high temperature advanced thermoplastic and thermosetting resins, using continuous frequency-dependent measurements and analyses of complex permittivity over 9 orders of magnitude and 6 decades of frequency at temperatures up to 400 C. Both ionic and Debye-like dipolar relaxation processes are monitored. Attention is given to LARC-TPI, PEEK, and poly(arylene ether) resins' viscosity, glass transition temperature, recrystallization, and residual solvent content and evolution properties.
Code of Federal Regulations, 2014 CFR
2014-07-01
... add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling... regeneration desorbing gas mass flow monitor must be an integrating device having a measurement sensitivity of...
40 CFR 60.334 - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to...) On a ppm basis (for NOX) and a percent O2 basis for oxygen; or (ii) On a ppm at 15 percent O2 basis... temperature (Ta), and minimum combustor inlet absolute pressure (Po) into the ISO correction equation. (iii...
40 CFR 60.334 - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to...) On a ppm basis (for NOX) and a percent O2 basis for oxygen; or (ii) On a ppm at 15 percent O2 basis... temperature (Ta), and minimum combustor inlet absolute pressure (Po) into the ISO correction equation. (iii...
40 CFR 60.334 - Monitoring of operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to...) On a ppm basis (for NOX) and a percent O2 basis for oxygen; or (ii) On a ppm at 15 percent O2 basis... temperature (Ta), and minimum combustor inlet absolute pressure (Po) into the ISO correction equation. (iii...
40 CFR 60.334 - Monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to...) On a ppm basis (for NOX) and a percent O2 basis for oxygen; or (ii) On a ppm at 15 percent O2 basis... temperature (Ta), and minimum combustor inlet absolute pressure (Po) into the ISO correction equation. (iii...
40 CFR 60.334 - Monitoring of operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to...) On a ppm basis (for NOX) and a percent O2 basis for oxygen; or (ii) On a ppm at 15 percent O2 basis... temperature (Ta), and minimum combustor inlet absolute pressure (Po) into the ISO correction equation. (iii...
Tri-phasic fever in dengue fever.
D, Pradeepa H; Rao, Sathish B; B, Ganaraj; Bhat, Gopalakrishna; M, Chakrapani
2018-04-01
Dengue fever is an acute febrile illness with a duration of 2-12 days. Our observational study observed the 24-h continuous tympanic temperature pattern of 15 patients with dengue fever and compared this with 26 others with fever due to a non-dengue aetiology. A tri-phasic fever pattern was seen among two-thirds of dengue fever patients, but in only one with an inflammatory disease. One-third of dengue fever patients exhibited a single peak temperature. Continuous temperature monitoring and temperature pattern analysis in clinical settings can aid in the early differentiation of dengue fever from non-dengue aetiology.
Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Dawson, Cian B.; Nelms, David L.; Miller, Cheryl; Wheeler, Jerrod D.; Harvey, Charles F.; Karam, Hanan N.
2008-01-01
Fiber‐optic distributed temperature sensing (FO DTS) is an emerging technology for characterizing and monitoring a wide range of important earth processes. FO DTS utilizes laser light to measure temperature along the entire length of standard telecommunications optical fibers. The technology can measure temperature every meter over FO cables up to 30 kilometers (km) long. Commercially available systems can measure fiber temperature as often as 4 times per minute, with thermal precision ranging from 0.1 to 0.01 °C depending on measurement integration time. In 2006, the U.S. Geological Survey initiated a project to demonstrate and evaluate DTS as a technology to support hydrologic studies. This paper demonstrates the potential of the technology to assess and monitor hydrologic processes through case‐study examples of FO DTS monitoring of stream‐aquifer interaction on the Shenandoah River near Locke's Mill, Virginia, and on Fish Creek, near Jackson Hole, Wyoming, and estuary‐aquifer interaction on Waquoit Bay, Falmouth, Massachusetts. The ability to continuously observe temperature over large spatial scales with high spatial and temporal resolution provides a new opportunity to observe and monitor a wide range of hydrologic processes with application to other disciplines including hazards, climate‐change, and ecosystem monitoring.
Boulant, Nicolas; Bottlaender, Michel; Uhrig, Lynn; Giacomini, Eric; Luong, Michel; Amadon, Alexis; Massire, Aurélien; Larrat, Benoît; Vignaud, Alexandre
2015-01-01
An MR thermometry method is proposed for measuring in vivo small temperature changes engendered by external RF heat sources. The method relies on reproducible and stable respiration and therefore currently applies to ventilated animals whose breathing is carefully controlled. It first consists in characterizing the stability of the main magnetic field as well as the variations induced by breathing during a first monitoring stage. Second, RF heating is applied while the phase and thus temperature evolutions are continuously measured, the corrections due to breathing and field drift being made thanks to the data accumulated during the first period. The RF heat source is finally stopped and the temperature rise likewise is continuously monitored during a third and last stage to observe the animal cooling down and to validate the assumptions made for correcting for the main field variation and the physiological noise. Experiments were performed with a clinical 7 T scanner on an anesthetized baboon and with a dedicated RF heating setup. Analysis of the data reveals a precision around 0.1°C, which allows us to reliably measure sub-degree temperature rises in the muscle and in the brain of the animal. Copyright © 2014 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougan, P.M.
During the year, design, construction and installation of all project equipment was completed, and continuous steam injection began on September 18, 1979 and continued until February 29, 1980. In the five-month period of steam injection, 235,060 barrels of water as steam at an average wellhead pressure of 1199 psig and an average wellhead temperature of 456/sup 0/F were injected into the eight project injection wells. Operation of the project at design temperature and pressure (1000/sup 0/F and 1500 psig) was not possible due to continuing problems with surface equipment. Environmental monitoring at the project site continued during startup and operation.
Laffont, Guillaume; Cotillard, Romain; Roussel, Nicolas; Desmarchelier, Rudy; Rougeault, Stéphane
2018-06-02
The harsh environment associated with the next generation of nuclear reactors is a great challenge facing all new sensing technologies to be deployed for on-line monitoring purposes and for the implantation of SHM methods. Sensors able to resist sustained periods at very high temperatures continuously as is the case within sodium-cooled fast reactors require specific developments and evaluations. Among the diversity of optical fiber sensing technologies, temperature resistant fiber Bragg gratings are increasingly being considered for the instrumentation of future nuclear power plants, especially for components exposed to high temperature and high radiation levels. Research programs are supporting the developments of optical fiber sensors under mixed high temperature and radiative environments leading to significant increase in term of maturity. This paper details the development of temperature-resistant wavelength-multiplexed fiber Bragg gratings for temperature and strain measurements and their characterization for on-line monitoring into the liquid sodium used as a coolant for the next generation of fast reactors.
Tunc, Burcu; Gulsoy, Murat
2013-01-01
The thermal damage of the surrounding tissue can be an unwanted result of continuous-wave laser irradiations. In order to propose an effective alternative to conventional surgical techniques, photothermal damage must be taken under control by a detailed dose study. Real-time temperature monitoring can be also an effective way to get rid of these negative effects. The aim of the present study is to investigate the potential of a new laser-thermoprobe, which consists of a continuous-wave 1,940-nm Tm:fiber laser and a thermocouple measurement system for brain surgery in an ex vivo study. A laser-thermoprobe was designed for using the near-by tissue temperature as a real-time reference for the applicator. Fresh lamb brain tissues were used for experiments. 320 laser shots were performed on both cortical and subcortical tissue. The relationship between laser parameters, temperature changes, and ablation (removal of tissue) efficiency was determined. The correlation between rate of temperature change and ablation efficiency was calculated. Laser-thermoprobe leads us to understand the basic laser-tissue interaction mechanism in a very cheap and easy way, without making a change in the experimental design. It was also shown that the ablation and coagulation (thermally irreversible damage) diameters could be predicted, and carbonization can be avoided by temperature monitoring. Copyright © 2013 Wiley Periodicals, Inc.
Preliminary design of high temperature ultrasonic transducers for liquid sodium environments
NASA Astrophysics Data System (ADS)
Prowant, M. S.; Dib, G.; Qiao, H.; Good, M. S.; Larche, M. R.; Sexton, S. S.; Ramuhalli, P.
2018-04-01
Advanced reactor concepts include fast reactors (including sodium-cooled fast reactors), gas-cooled reactors, and molten-salt reactors. Common to these concepts is a higher operating temperature (when compared to light-water-cooled reactors), and the proposed use of new alloys with which there is limited operational experience. Concerns about new degradation mechanisms, such as high-temperature creep and creep fatigue, that are not encountered in the light-water fleet and longer operating cycles between refueling intervals indicate the need for condition monitoring technology. Specific needs in this context include periodic in-service inspection technology for the detection and sizing of cracking, as well as technologies for continuous monitoring of components using in situ probes. This paper will discuss research on the development and evaluation of high temperature (>550°C; >1022°F) ultrasonic probes that can be used for continuous monitoring of components. The focus of this work is on probes that are compatible with a liquid sodium-cooled reactor environment, where the core outlet temperatures can reach 550°C (1022°F). Modeling to assess sensitivity of various sensor configurations and experimental evaluation have pointed to a preferred design and concept of operations for these probes. This paper will describe these studies and ongoing work to fabricate and fully evaluate survivability and sensor performance over extended periods at operational temperatures.
Using time lapse cameras to monitor shoreline changes due to sea level rise.
DOT National Transportation Integrated Search
2017-01-01
Shoreline habitats and infrastructure are currently being affected by sea level rise (SLR) and as : global temperatures continue to rise, will continue to get worse for millennia. Governments : and individuals decisions to adapt to SLR could ha...
40 CFR 60.613 - Monitoring of emissions and operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., photoionization, or thermal conductivity, each equipped with a continuous recorder. (2) Where a condenser is the final recovery device in a recovery system: (i) A condenser exit (product side) temperature monitoring... incinerator, boiler, process heater, or flare; or recovery devices other than an absorber, condenser, or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silvers, Kurt
Program Manager Kurt Silvers helped protect the safety of U.S. troops who fought in Iraq and Afghanistan. PNNL researchers developed technology that monitored the battle-readiness of Hellfire II missiles onboard Army Apache helicopters. The technology continually monitors factors like vibration and temperature, providing key data when making decisions to deploy or retire weapons.
Method and apparatus for monitoring mercury emissions
Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.
1997-01-01
A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.
Code of Federal Regulations, 2012 CFR
2012-07-01
... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...
Code of Federal Regulations, 2013 CFR
2013-07-01
... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...
Code of Federal Regulations, 2014 CFR
2014-07-01
... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...
Method and apparatus for monitoring mercury emissions
Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.
1997-10-21
A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.
NASA Astrophysics Data System (ADS)
Bednarski, Ł.; Sieńko, R.; Howiacki, T.
2017-10-01
This article presents the possibility of using structural health monitoring system data for the analysis of structure’s operation during its life cycle. Within the specific case study it was proved, that continuous, automatic and long term monitoring of selected physical quantities such as strains and temperatures, can significantly improve the assessment of technical condition by identifying hazardous phenomena. In this work the analysis of structural behaviour of post-tensioned girders within the roofing of sport halls in Cracow, Poland, was performed based on measurement results and verified by numerical model carried out in SOFiSTiK software. Thanks to the possibility of performing calculations in real time and informing the manager of the object about abnormalities it is possible to manage the structure in effective way by, inter alia, planning the renovations or supporting decisions about snow removal.
Application of FBG sensors in strengthening and maintenance monitoring of old bridges
NASA Astrophysics Data System (ADS)
Yue, Li-na; Huang, Jun; Yang, Yan
2009-10-01
The various fiber Bragg grating(FBG)sensors such as FBG force rings, differential FBG displacement cells, FBG strain sensors and FBG temperature sensors had been used to monitor the strengthening and maintenance process of the continuous concrete beam bridges and the continuous concrete rigid frame bridges which are the part of Wuhan Second Yangtze River Bridge. In the strengthening and maintenance process, the tension force of the external prestressed tendons, the cracks change and intensity of cross sections had been monitored to insure the instruction safety, study the effect of strengthening and maintenance, and verify the design theories of strengthening and maintenance. Also the reference state criterion for long-term bridge health monitoring had been provided according to the monitoring results.
A strong and flexible electronic vessel for real-time monitoring of temperature, motions and flow.
Zhang, Wei; Hou, Chengyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi
2017-11-23
Flexible and multifunctional sensors that continuously detect physical information are urgently required to fabricate wearable materials for health monitoring. This study describes the fabrication and performance of a strong and flexible vessel-like sensor. This electronic vessel consists of a self-supported braided cotton hose substrate, single-walled carbon nanotubes (SWCNTs)/ZnO@polyvinylidene fluoride (PVDF) function arrays and a flexible PVDF function fibrous membrane, and it possesses high mechanical property and accurate physical sensing. The rationally designed tubular structure facilities the detection of the applied temperature and strain and the frequency, pressure, and temperature of pulsed fluids. Therefore, the flexible electronic vessel holds promising potential for applications in wearable or implantable materials for the monitoring of health.
Kibe, Taiga; Nagata, Hajime
2017-01-01
Continuous ultrasonic in-situ monitoring for industrial applications is difficult owing to the high operating temperatures in industrial fields. It is expected that ultrasonic transducers consisting of a CaBi4Ti4O15(CBT)/Pb(Zr,Ti)O3(PZT) sol-gel composite could be one solution for ultrasonic nondestructive testing (NDT) above 500 °C because no couplant is required and CBT has a high Curie temperature. To verify the high temperature durability, CBT/PZT sol-gel composite films were fabricated on titanium substrates by spray coating, and the CBT/PZT samples were tested in a furnace at various temperatures. Reflected echoes with a high signal-to-noise ratio were observed up to 600 °C. A thermal cycle test was conducted from room temperature to 600 °C, and no significant deterioration was found after the second thermal cycle. To investigate the long-term high-temperature durability, a CBT/PZT ultrasonic transducer was tested in the furnace at 600 °C for 36 h. Ultrasonic responses were recorded every 3 h, and the sensitivity and signal-to-noise ratio were stable throughout the experiment. PMID:29186910
Military Performance and Health Monitoring in Extreme Environments
2009-10-01
radiation and wind to give a true temperature reading . At high ambient temperatures, in particular in combination with solar radiation, objects may...Equivital multi-sensor unit enabling the real-time, parallel and continuous assessment of EKG (and heart rate), respiration (and respiration rate), skin
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...
Continuous Hypergolic Monitor Network for Shipboard Applications
2005-08-30
PEI Oxidizers MON-25 Polyamines and Polycarbonyls Ethanol SXFA Acetone PEO Octane Poly(ethylene-co-vinyl acetate) ( PEVA ), Polyisobutylene...polyvinylacetate ( PEVA ). These tests were performed under variable humidity and temperature (Figure 13) and under low humidity at ambient temperature...Test of Chemoselective Polymers Against Interferents with Variable Temperature and Humidity. Key: PEVA black; PEI red; SXFA blue; NmA yellow
NASA Technical Reports Server (NTRS)
1992-01-01
An ingestible mini-thermometer capable of measuring and relaying internal body temperatures is marketed by Human Technologies, Inc. The CorTemp system, developed by Goddard Space Flight Center and Applied Physics Lab, incorporates space technologies, among them telemetry and microminiaturized circuit, sensor and battery technologies. The capsule is ingested and continually monitors temperature with a vibrating quartz crystal sensor, which telemeters signals to a recorder, where data is displayed and stored. The system is very accurate, and because it does not require wires, allows patients to be monitored in everyday situations. The industrial variant (CSC-100) has wide utility in commercial applications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Continuous 1×hour ✔ ✔ ✔ Maximum fabric filter inlet temperature Continuous 1×minute...
Code of Federal Regulations, 2013 CFR
2013-07-01
... filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Continuous 1×hour ✔ ✔ ✔ Maximum fabric filter inlet temperature Continuous 1×minute...
NASA Astrophysics Data System (ADS)
Bakhtiari, S.; Wang, K.; Elmer, T. W.; Koehl, E.; Raptis, A. C.
2013-01-01
With the recent cancellation of the Yucca Mountain repository and the limited availability of wet storage utilities for spent nuclear fuel (SNF), more attention has been directed toward dry cask storage systems (DCSSs) for long-term storage of SNF. Consequently, more stringent guidelines have been issued for the aging management of dry storage facilities that necessitate monitoring of the conditions of DCSSs. Continuous health monitoring of DCSSs based on temperature variations is one viable method for assessing the integrity of the system. In the present work, a novel ultrasonic temperature probe (UTP) is being tested for long-term online temperature monitoring of DCSSs. Its performance was evaluated and compared with type N thermocouple (NTC) and resistance temperature detector (RTD) using a small-scale dry storage canister mockup. Our preliminary results demonstrate that the UTP system developed at Argonne is able to achieve better than 0.8 °C accuracy, tested at temperatures of up to 400 °C. The temperature resolution is limited only by the sampling rate of the current system. The flexibility of the probe allows conforming to complex geometries thus making the sensor particularly suited to measurement scenarios where access is limited.
Telemetric measurement of body core temperature in exercising unconditioned Labrador retrievers.
Angle, T Craig; Gillette, Robert L
2011-04-01
This project evaluated the use of an ingestible temperature sensor to measure body core temperature (Tc) in exercising dogs. Twenty-five healthy, unconditioned Labrador retrievers participated in an outdoor 3.5-km run, completed in 20 min on a level, 400-m grass track. Core temperature was measured continuously with a telemetric monitoring system before, during, and after the run. Data were successfully collected with no missing data points during the exercise. Core temperature elevated in the dogs from 38.7 ± 0.3°C at pre-exercise to 40.4 ± 0.6°C post-exercise. While rectal temperatures are still the standard of measurement, telemetric core temperature monitors may offer an easier and more comfortable means of sampling core temperature with minimal human and mechanical interference with the exercising dog.
Telemetric measurement of body core temperature in exercising unconditioned Labrador retrievers
Angle, T. Craig; Gillette, Robert L.
2011-01-01
This project evaluated the use of an ingestible temperature sensor to measure body core temperature (Tc) in exercising dogs. Twenty-five healthy, unconditioned Labrador retrievers participated in an outdoor 3.5-km run, completed in 20 min on a level, 400-m grass track. Core temperature was measured continuously with a telemetric monitoring system before, during, and after the run. Data were successfully collected with no missing data points during the exercise. Core temperature elevated in the dogs from 38.7 ± 0.3°C at pre-exercise to 40.4 ± 0.6°C post-exercise. While rectal temperatures are still the standard of measurement, telemetric core temperature monitors may offer an easier and more comfortable means of sampling core temperature with minimal human and mechanical interference with the exercising dog. PMID:21731189
Telemetry experiments with a hibernating black bear
NASA Technical Reports Server (NTRS)
Craighead, J. J.; Varney, J. R.; Sumner, J. S.; Craighead, F. C., Jr.
1972-01-01
The objectives of this research were to develop and test telemetry equipment suitable for monitoring physiological parameters and activity of a hibernating bear in its den, to monitor this data and other environmental information with the Nimbus 3 IRLS data collection system, and to refine immobilizing, handling, and other techniques required in future work with wild bears under natural conditions. A temperature-telemetering transmitter was implanted in the abdominal cavity of a captive black bear and body temperature data was recorded continuously during a 3 month hibernation period. Body temperatures ranging between 37.5 and 31.8 C were observed. Body temperature and overall activity were influenced by disturbances and ambient den temperature. Nychthemeral temperature changes were not noticable. A load cell weight recording device was tested for determining weight loss during hibernation. Monitoring of data by satellite was not attempted. The implanted transmitter was removed and the bear was released with a radiolocation collar at the conclusion of the experiment.
Frisby, June; Raftery, Declan; Kerry, Joe P; Diamond, Dermot
2005-06-01
This paper focuses on the development of a unique wireless pH and temperature monitoring system to assess pig meat quality. Pale, soft and exudative (PSE) pig meat continues to be a major problem in the pig meat industry today. The PSE condition in pork is related to a number of factors including genetics, pre-slaughter stress and insufficient chilling of pig carcasses, which cause a rapid rate of glycolysis post-mortem (<1h). As a result the pH drops to low levels while the muscle temperature is still high. A wireless dual channel system that monitors pH and temperature simultaneously has been developed to provide pH and temperature data of the carcass during the first 24h after slaughter. We have demonstrated that this approach can distinguish in real time, pH and temperature profiles that are 'non-normal', and identify carcasses that are PSE positive quickly and easily.
Tokamak plasma current disruption infrared control system
Kugel, Henry W.; Ulrickson, Michael
1987-01-01
In a magnetic plasma confinment device having an inner toroidal limiter mounted on an inner wall of a plasma containment vessel, an arrangement is provided for monitoring vertical temperature profiles of the limiter. The temperature profiles are taken at brief time intervals, in a time scan fashion. The time scans of the vertical temperature profile are continuously monitored to detect the presence of a peaked temperature excursion, which, according to the present invention, is a precursor of a subsequent major plasma disruption. A fast scan of the temperature profile is made so as to provide a time interval in real time prior to the major plasma disruption, such that corrective action can be taken to reduce the harmful effects of the plasma disruption.
Soil variability effects on canopy temperature in a limited irrigation experiment
USDA-ARS?s Scientific Manuscript database
Canopy temperature was monitored on a continuous basis in a limited irrigation maize experiment, with 12 separate irrigation treatments and 4 replicates of each treatment. Soil electroconductivity (EC) was measured and mapped to quantify variation in soil texture throughout the plots, and was correl...
Monitoring inflammation (including fever) in acute brain injury.
Provencio, J Javier; Badjatia, Neeraj
2014-12-01
Inflammation is an important part of the normal physiologic response to acute brain injury (ABI). How inflammation is manifest determines if it augments or hinders the resolution of ABI. Monitoring body temperature, the cellular arm of the inflammatory cascade, and inflammatory proteins may help guide therapy. This summary will address the utility of inflammation monitoring in brain-injured adults. An electronic literature search was conducted for English language articles describing the testing, utility, and optimal methods to measure inflammation in ABI. Ninety-four articles were included in this review. Current evidence suggests that control of inflammation after ABI may hold promise for advances in good outcomes. However, our understanding of how much inflammation is good and how much is deleterious is not yet clear. Several important concepts emerge form our review. First, while continuous temperature monitoring of core body temperature is recommended, temperature pattern alone is not useful in distinguishing infectious from noninfectious fever. Second, when targeted temperature management is used, shivering should be monitored at least hourly. Finally, white blood cell levels and protein markers of inflammation may have a limited role in distinguishing infectious from noninfectious fever. Our understanding of optimal use of inflammation monitoring after ABI is limited currently but is an area of active investigation.
Kartoğlu, Umit; Nelaj, Erida; Maire, Denis
2010-05-28
This intervention study was conducted in Albania to establish the superiority of the Fridge-tag (30-day electronic refrigerator temperature logger) against thermometers. Intervention sites used Fridge-tag and a modified temperature control record sheet, while control sites continued with their routine operation with thermometers. All refrigerators in both groups were equipped with downloadable electronic data loggers to record temperatures for reference. Focus group sessions were conducted with involved staff to discuss temperature monitoring, Fridge-tag use and its user-friendliness. Significant discrepancies were observed between thermometer readings and the electronic data loggers in control sites, while all alarms from Fridge-tag were confirmed in the intervention group. Thermometers are not sufficient to monitor temperatures in refrigerators since they miss the great majority of low and high alarms. Fridge-tag has proven to be an effective tool in providing health workers with the information they need to take the necessary actions when there are refrigerator temperature variations. (c) 2010 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... thermocouple, an ultraviolet beam sensor, or infrared sensor to continuously detect the presence of a pilot... record the combustion zone temperature. [67 FR 17773, Apr. 11, 2002, as amended at 70 FR 6942 and 6952...
Code of Federal Regulations, 2012 CFR
2012-07-01
... thermocouple, an ultraviolet beam sensor, or infrared sensor to continuously detect the presence of a pilot... record the combustion zone temperature. [67 FR 17773, Apr. 11, 2002, as amended at 70 FR 6942 and 6952...
Code of Federal Regulations, 2014 CFR
2014-07-01
... thermocouple, an ultraviolet beam sensor, or infrared sensor to continuously detect the presence of a pilot... record the combustion zone temperature. [67 FR 17773, Apr. 11, 2002, as amended at 70 FR 6942, 6952, Feb...
NASA Technical Reports Server (NTRS)
Roth, Timothy E.
1995-01-01
Infrared transmitter and receiver designed for wireless transmission of information on measured physical quantity (for example, temperature) from transducer device to remote-acquisition system. In transmitter, output of transducer amplified and shifted with respect to bias or reference level, then fed to voltage-to-frequency converter to control frequency of repetition of current pulses applied to infrared-light-emitting diode. In receiver, frequency of repetition of pulses converted back into voltage indicative of temperature or other measured quantity. Potential applications include logging data while drilling for oil, transmitting measurements from rotors in machines without using slip rings, remote monitoring of temperatures and pressures in hazardous locations, and remote continuous monitoring of temperatures and blood pressures in medical patients, who thus remain mobile.
Comparison of an in-helmet temperature monitor system to rectal temperature during exercise.
Wickwire, P Jason; Buresh, Robert J; Tis, Laurie L; Collins, Mitchell A; Jacobs, Robert D; Bell, Marla M
2012-01-01
Body temperature monitoring is crucial in helping to decrease the amount and severity of heat illnesses; however, a practical method of monitoring temperature is lacking. In response to the lack of a practical method of monitoring the temperature of athletes, Hothead Technologies developed a device (HOT), which continuously monitors an athlete's fluctuations in body temperature. HOT measures forehead temperature inside helmets. The purpose of this study was to compare HOT against rectal temperature (Trec). Male volunteers (n = 29, age = 23.5 ± 4.5 years, weight = 83.8 ± 10.4 kg, height = 180.1 ± 5.8 cm, body fat = 12.3 ± 4.5%) exercised on a treadmill at an intensity of 60-75% heart rate reserve (HRR) (wet bulb globe temperature [WBGT] = 28.7° C) until Trec reached 38.7° C. The correlation between Trec and HOT was 0.801 (R = 0.64, standard error of the estimate (SEE) = 0.25, p = 0.00). One reason for this relatively high correlation is the microclimate that HOT is monitoring. HOT is not affected by the external climate greatly because of its location in the helmet. Therefore, factors such as evaporation do not alter HOT temperature to a great degree. HOT was compared with Trec in a controlled setting, and the exercise used in this study was moderate aerobic exercise, very unlike that used in football. In a controlled laboratory setting, the relationship between HOT and Trec showed favorable correlations. However, in applied settings, helmets are repeatedly removed and replaced forcing HOT to equilibrate to forehead temperature every time the helmet is replaced. Therefore, future studies are needed to mimic how HOT will be used in field situations.
Sensor fabrication method for in situ temperature and humidity monitoring of light emitting diodes.
Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Chan, Pin-Cheng; Lin, Chia-Hung
2010-01-01
In this work micro temperature and humidity sensors are fabricated to measure the junction temperature and humidity of light emitting diodes (LED). The junction temperature is frequently measured using thermal resistance measurement technology. The weakness of this method is that the timing of data capture is not regulated by any standard. This investigation develops a device that can stably and continually measure temperature and humidity. The device is light-weight and can monitor junction temperature and humidity in real time. Using micro-electro-mechanical systems (MEMS), this study minimizes the size of the micro temperature and humidity sensors, which are constructed on a stainless steel foil substrate (40 μm-thick SS-304). The micro temperature and humidity sensors can be fixed between the LED chip and frame. The sensitivities of the micro temperature and humidity sensors are 0.06±0.005 (Ω/°C) and 0.033 pF/%RH, respectively.
Lavesson, Tony; Amer-Wåhlin, Isis; Hansson, Stefan; Ley, David; Marsál, Karel; Olofsson, Per
2010-06-01
To evaluate a new technical equipment for continuous recording of human fetal scalp temperature in labor. Experimental animal study. Two temperature sensors were placed subcutaneously and intracranially on the forehead of 10 fetal lambs and connected to a temperature monitoring system. The system records temperatures simultaneously on-line and stores data to be analyzed off-line. Throughout the experiment, the fetus was oxygenated via the umbilical cord circulation. Asphyxia was induced by intermittent cord compression, as assessed by pH in jugular vein blood. The intracranial (ICT) and subcutaneous (SCT) temperatures were compared with simple and polynomial regression analyses. Absolute and delta ICT and SCT changes. ICT and SCT were both successfully recorded in all 10 cases. With increasing acidosis, the temperatures decreased. The correlation coefficient between ICT and SCT had a range of 0.76-0.97 (median 0.88) by simple linear regression and 0.80-0.99 (median 0.89) by second grade polynomial regression. After an initial system stabilization period of 10 minutes, the delta temperature values (ICT minus SCT) were less than 1.5 degrees C throughout the experiment in all but one case. The fetal forehead SCT mirrored the ICT closely, with the ICT being higher.
The United States Army Medical Department Journal. October - December 2012
2012-12-01
assess effect on weight change following injury. Nutritional programs aimed at smaller meal consumption , inclusion of breakfast, making healthier...electrocardiography, blood pres- sure, oxygen saturation, end-tidal carbon dioxide, and rectal temperatures were continuously monitored for the...blood pressure, oxygen saturation, end-tidal carbon dioxide, and rectal temperatures . Body temperature was maintained greater than 36.0°C. When
Forward voltage short-pulse technique for measuring high power laser array junction temperature
NASA Technical Reports Server (NTRS)
Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)
2012-01-01
The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.
Code of Federal Regulations, 2014 CFR
2014-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
Code of Federal Regulations, 2010 CFR
2010-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
Code of Federal Regulations, 2011 CFR
2011-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
Code of Federal Regulations, 2012 CFR
2012-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
Code of Federal Regulations, 2013 CFR
2013-07-01
... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...
Brandes, Ivo F; Perl, Thorsten; Bauer, Martin; Bräuer, Anselm
2015-02-01
Reliable continuous perioperative core temperature measurement is of major importance. The pulmonary artery catheter is currently the gold standard for measuring core temperature but is invasive and expensive. Using a manikin, we evaluated the new, noninvasive SpotOn™ temperature monitoring system (SOT). With a sensor placed on the lateral forehead, SOT uses zero heat flux technology to noninvasively measure core temperature; and because the forehead is devoid of thermoregulatory arteriovenous shunts, a piece of bone cement served as a model of the frontal bone in this study. Bias, limits of agreements, long-term measurement stability, and the lowest measurable temperature of the device were investigated. Bias and limits of agreement of the temperature data of two SOTs and of the thermistor placed on the manikin's surface were calculated. Measurements obtained from SOTs were similar to thermistor values. The bias and limits of agreement lay within a predefined clinically acceptable range. Repeat measurements differed only slightly, and stayed stable for hours. Because of its temperature range, the SOT cannot be used to monitor temperatures below 28°C. In conclusion, the new SOT could provide a reliable, less invasive and cheaper alternative for measuring perioperative core temperature in routine clinical practice. Further clinical trials are needed to evaluate these results.
Long-Term Monitoring of Global Climate Forcings and Feedbacks
NASA Technical Reports Server (NTRS)
Hansen, J. (Editor); Rossow, W. (Editor); Fung, I. (Editor)
1993-01-01
A workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks was held February 3-4, 1992, at NASA's Goddard Institute for Space Studies to discuss the measurements required to interpret long-term global temperature changes, to critique the proposed contributions of a series of small satellites (Climsat), and to identify needed complementary monitoring. The workshop concluded that long-term (several decades) of continuous monitoring of the major climate forcings and feedbacks is essential for understanding long-term climate change.
Monte Carlo Uncertainty Quantification for an Unattended Enrichment Monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarman, Kenneth D.; Smith, Leon E.; Wittman, Richard S.
As a case study for uncertainty analysis, we consider a model flow monitor for measuring enrichment in gas centrifuge enrichment plants (GCEPs) that could provide continuous monitoring of all declared gas flow and provide high-accuracy gas enrichment estimates as a function of time. The monitor system could include NaI(Tl) gamma-ray spectrometers, a pressure signal-sharing device to be installed on an operator\\rq{}s pressure gauge or a dedicated inspector pressure sensor, and temperature sensors attached to the outside of the header pipe, to provide pressure, temperature, and gamma-ray spectra measurements of UFmore » $$_6$$ gas flow through unit header pipes. Our study builds on previous modeling and analysis methods development for enrichment monitor concepts and a software tool that was developed at Oak Ridge National Laboratory to generate and analyze synthetic data.« less
Unmanned Aerial Vehicles for Environmental Monitoring with Special Reference to Heat Loss
NASA Astrophysics Data System (ADS)
Anweiler, Stanisław; Piwowarski, Dawid; Ulbrich, Roman
2017-10-01
This paper presents the design and implementation of device for remote and automatic monitoring of temperature field of large objects. The project aimed to create a quadcopter flying platform equipped with a thermal imaging camera. The object of the research was district heating installations above ground and underground. The results of the work on the implementation of low-cost (below 750 EUR) and efficient heat loss monitoring system. The system consists of a small (<2kg) multirotor platform. To perform thermal images micro camera FlirOne with microcomputer Raspberry Pi3 was used. Exploitation of UAVs in temperature field monitoring reveals only a fraction of their capabilities. The fast-growing multirotor platform market continues to deliver new solutions and improvements. Their use in monitoring the environment is limited only by the imagination of the user.
[Application of self-developed moxibustion thermometer in experiment teaching].
Zhang, Jing; Sun, Yan; Zhang, Yongchen; Lu, Yan
2017-04-12
In order to improve the teaching quality of moxibustion experiment, a moxibustion thermometer was self-developed to monitor the real-time and continuous data of moxibustion temperature at different time points during the experiment. After teacher's explanation and demonstration of experiment process, the students used the moxibustion thermometer to monitor the change of temperature data and extended the experiment design. In the process of experiment class, the students found the temperature of the object tested increased rapidly, arrived at the highest temperature and slowly reduced. In addition, with learned knowledge, the students were able to design the feasible experiment scheme. The self-developed moxibustion thermometer operates smoothly in actual teaching, with stable experiment data and less experiment error, which obtained satisfactory teaching effect.
SNAP 19 Viking Program. Bimonthly technical progress report, October 1979-November 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-12-01
Monitoring and evaluation of Viking 1 Lander power system data continued. The RTG series power range as measured at the PCDA was 65 to 68 watts at fin root temperatures between 280/sup 0/F and 310/sup 0/F. The Mars landed performance history of Viking 1 include both the minimum and maximum data for each of the SOL days. Monitoring and evaluation of Viking 2 Lander power system data continued. The RTG series power range as measured at the PCDA was 71 to 72 watts at fin root temperatures between 230/sup 0/F and 260/sup 0/F. The Mars landed performance history of Vikingmore » 2 include both the minimum and maximum data for each of the SOL days. The performance of both power systems continues to be very satisfactory. Power system performance data for Pioneer 10 and Pioneer 11 spacecraft were monitored through the reporting period. The estimated RTG system net power was 116 watts for Pioneer 10 and 118 watts for Pioneer Saturn. The September 1 encounter with Saturn appears to have had no deleterious effect on the RTG's of the spacecraft power system. The telemetry signals from both spacecrafts remain satisfactory.« less
40 CFR 63.8248 - What other requirements must I meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell... the reference temperature during the first regeneration cycle following the period that the monitoring...
Real-time indoor monitoring system based on wireless sensor networks
NASA Astrophysics Data System (ADS)
Wu, Zhengzhong; Liu, Zilin; Huang, Xiaowei; Liu, Jun
2008-10-01
Wireless sensor networks (WSN) greatly extend our ability to monitor and control the physical world. It can collaborate and aggregate a huge amount of sensed data to provide continuous and spatially dense observation of environment. The control and monitoring of indoor atmosphere conditions represents an important task with the aim of ensuring suitable working and living spaces to people. However, the comprehensive air quality, which includes monitoring of humidity, temperature, gas concentrations, etc., is not so easy to be monitored and controlled. In this paper an indoor WSN monitoring system was developed. In the system several sensors such as temperature sensor, humidity sensor, gases sensor, were built in a RF transceiver board for monitoring indoor environment conditions. The indoor environmental monitoring parameters can be transmitted by wireless to database server and then viewed throw PC or PDA accessed to the local area networks by administrators. The system, which was also field-tested and showed a reliable and robust characteristic, is significant and valuable to people.
Best practices for continuous monitoring of temperature and flow in wadeable streams
Stamp, Jen; Hamilton, Anna; Craddock, Michelle; Parker, Laila; Roy, Allison; Isaak, Daniel J.; Holden, Zachary; Passmore, Margaret; Bierwagen, Britta
2014-01-01
The United States Environmental Protection Agency (U.S. EPA) is working with its regional offices, states, tribes, river basin commissions and other entities to establish Regional Monitoring Networks (RMNs) for freshwater wadeable streams. To the extent possible, uninterrupted, biological, temperature and hydrologic data will be collected on an ongoing basis at RMN sites, which are primarily located on smaller, minimally disturbed forested streams. The primary purpose of this document is to provide guidance on how to collect accurate, year-round temperature and hydrologic data at ungaged wadeable stream sites. It addresses questions related to equipment needs, sensor configuration, sensor placement, installation techniques, data retrieval, and data processing. This guidance is intended to increase comparability of continuous temperature and hydrologic data collection at RMN sites and to ensure that the data are of sufficient quality to be used in future analyses. It also addresses challenges posed by year-round deployments. These data will be used for detecting temporal trends; providing information that will allow for a better understanding of relationships between biological, thermal, and hydrologic data; predicting and analyzing climate change impacts and quantifying natural variability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...
Code of Federal Regulations, 2012 CFR
2012-07-01
... regenerative carbon adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2...
Code of Federal Regulations, 2014 CFR
2014-07-01
... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements in paragraphs (c)(1) through (3) of this section: (1) For a thermal oxidizer, install a gas... firebox before any substantial heat exchange occurs. (2) For a catalytic oxidizer, you must install a gas temperature monitor in the gas stream immediately before the catalyst bed, and if you established operating...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements in paragraphs (c)(1) through (3) of this section: (1) For a thermal oxidizer, install a gas... firebox before any substantial heat exchange occurs. (2) For a catalytic oxidizer, you must install a gas temperature monitor in the gas stream immediately before the catalyst bed, and if you established operating...
40 CFR 62.15260 - What other requirements must I meet for continuous monitoring?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false What other requirements must I meet for... August 30, 1999 Other Monitoring Requirements § 62.15260 What other requirements must I meet for... waste combustion unit. (b) Temperature of flue gases at the inlet of your particulate matter air...
40 CFR 63.6125 - What are my monitor installation, operation, and maintenance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission control device, you must monitor on a continuous basis your catalyst inlet temperature in order to... combustion turbine which fires landfill gas or digester gas equivalent to 10 percent or more of the gross... the major source with a non-resettable hour meter to measure the number of hours that distillate oil...
40 CFR 63.6125 - What are my monitor installation, operation, and maintenance requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... control device, you must monitor on a continuous basis your catalyst inlet temperature in order to comply... combustion turbine which fires landfill gas or digester gas equivalent to 10 percent or more of the gross... the major source with a non-resettable hour meter to measure the number of hours that distillate oil...
40 CFR 63.6125 - What are my monitor installation, operation, and maintenance requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... control device, you must monitor on a continuous basis your catalyst inlet temperature in order to comply... combustion turbine which fires landfill gas or digester gas equivalent to 10 percent or more of the gross... the major source with a non-resettable hour meter to measure the number of hours that distillate oil...
40 CFR 63.6125 - What are my monitor installation, operation, and maintenance requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission control device, you must monitor on a continuous basis your catalyst inlet temperature in order to... combustion turbine which fires landfill gas or digester gas equivalent to 10 percent or more of the gross... the major source with a non-resettable hour meter to measure the number of hours that distillate oil...
Microchip transponder thermometry for monitoring core body temperature of antelope during capture.
Rey, Benjamin; Fuller, Andrea; Hetem, Robyn S; Lease, Hilary M; Mitchell, Duncan; Meyer, Leith C R
2016-01-01
Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R(2)=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R(2)=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming
2016-01-01
Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.
Core temperature rhythms in normal and tumor-bearing mice.
Griffith, D J; Busot, J C; Lee, W E; Djeu, D J
1993-01-01
The core temperature temporal behavior of DBA/2 mice (11 normal and 13 with an ascites tumor) was studied using surgically implanted radio telemetry transmitters. Normal mice continuously displayed a stable 24 hour temperature rhythm. Tumor-bearers displayed a progressive deterioration of the temperature rhythm following inoculation with tumor cells. While such disruptions have been noted by others, details on the dynamics of the changes have been mostly qualitative, often due to time-averaging or steady-state analysis of the data. The present study attempts to quantify the dynamics of the disruption of temperature rhythm (when present) by continuously monitoring temperatures over periods up to a month. Analysis indicated that temperature regulation in tumor-bearers was adversely affected during the active period only. Furthermore, it appears that the malignancy may be influencing temperature regulation via pathways not directly attributable to the energy needs of the growing tumor.
Passive monitoring using traffic noise recordings - case study on the Steinachtal Bridge
NASA Astrophysics Data System (ADS)
Salvermoser, Johannes; Stähler, Simon; Hadziioannou, Céline
2015-04-01
Civil structures age continuously. The early recognition of potentially critical damages is an important economical issue, but also one of public safety. Continuous tracking of small changes in the medium by using passive methods would offer an extension to established active non-destructive testing procedures at relatively low cost. Here we present a case study of structural monitoring using continuous recordings of traffic noise on a 200 meter long reinforced concrete highway bridge in Germany. Over two months of continuos geophone records are used in the frequency range of 2-8 Hz. Using passive image interferometry, evaluation of hourly cross-correlations between recordings at pairs of receivers yield velocity variations in the range of -1.5% to +2.1%. We were able to correlate our outcomes with temperature measurements of the same two month period. The measured velocity changes scale with the temperature variations with on average a dv/v of 0.064% per degree Celsius. This value is in accordance with other studies of concrete response to temperature, confirming that we are able to observe subtle changes with physical origin. It is shown that traffic noise is temporally homogenenous enough to fulfill the requirements of passive image interferometry.
Dawson, David G; Bower, Kristin A; Burnette, Candace N; Holt, Rebecca K; Swearengen, James R; Dabisch, Paul A; Scorpio, Angelo
2017-11-01
We used a continuous-monitoring digital telemetry system to investigate temperature response in New Zealand White rabbits after inhalation or subcutaneous challenge with Bacillus anthracis. Two spore preparations of B. anthracis Ames A2084 were evaluated by using a nose-only inhalation model, and 2 strains, B. anthracis Ames A2084 and B. anthracis UT500, were evaluated in a subcutaneous model. Animal body temperature greater than 3 SD above the mean baseline temperature was considered a significant increase in body temperature (SIBT). All rabbits that exhibited SIBT after challenge by either route of infection or bacterial strain eventually died or were euthanized due to infection, and all rabbits that died or were euthanized due to infection exhibited SIBT during the course of disease. The time at onset of SIBT preceded clinical signs of disease in 94% of the rabbits tested by as long as 2 days. In addition, continuous temperature monitoring facilitated discrimination between the 2 B. anthracis strains with regard to the time interval between SIBT and death. These data suggest that for the New Zealand White rabbit anthrax model, SIBT is a reliable indicator of infection, is predictive of experimental outcome in the absence of treatment, and is measurable prior to the appearance of more severe signs of disease. The use of digital telemetry to monitor infectious disease course in animal models of anthrax can potentially be used in conjunction with other clinical score metrics to refine endpoint euthanasia criteria.
Bandla, Aishwarya; Sundar, Raghav; Liao, Lun-De; Sze Hui Tan, Stacey; Lee, Soo-Chin; Thakor, Nitish V; Wilder-Smith, Einar P V
2016-01-01
Chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting side effect of several chemotherapeutic agents, often leading to treatment discontinuation. Up to 20% of patients treated with weekly paclitaxel experience severe CIPN and no effective treatment has been established so far. The mechanisms of CIPN damage are unclear, but are directly dose-related. We had earlier demonstrated, in rats, the influence of hypothermia in reducing nerve blood flow. Here, we hypothesize that continuous flow limb hypothermia during chemotherapy reduces the incidence and severity of CIPN, by limiting deliverance of the neurotoxic drug to the peripheral nerves. In this study, prior to assessing the effect of hypothermia in preventing CIPN in cancer subjects undergoing paclitaxel chemotherapy, we assess the safety and tolerable temperatures for limb hypothermia in healthy human subjects. In 15 healthy human subjects, hypothermia was administered as continuous flow cooling, unilaterally, via a thermoregulator setup covering the digits up to the elbow/knee, along with continuous skin temperature monitoring. Thermoregulator coolant temperatures between 25 °C and 20 °C were tested for tolerability, based on a carefully designed temperature regulation protocol, and maintained for three hours mimicking the duration of chemotherapy. Tolerability was evaluated using various safety and tolerability scores to monitor the subjects. At the end of the cooling session the healthy subjects presented without significant adverse effects, the main being brief mild skin erythema and transient numbness. Coolant temperatures as low as 22 °C were well tolerated continuously over three hours. Our results confirm the safety and tolerability of continuous flow limb hypothermia in healthy subjects. Further studies will use 22 °C thermoregulator temperature to investigate hypothermia in preventing CIPN in breast cancer patients receiving adjuvant weekly paclitaxel. This pilot study may contribute to alleviating chemotherapy dose limitation due to CIPN and increase the likelihood of success of chemotherapy.
A mobile phone based alarm system for supervising vital parameters in free moving rats.
Kellermann, Kristine; Kreuzer, Matthias; Omerovich, Adem; Hoetzinger, Franziska; Kochs, Eberhard F; Jungwirth, Bettina
2012-02-23
Study protocols involving experimental animals often require the monitoring of different parameters not only in anesthetized, but also in free moving animals. Most animal research involves small rodents, in which continuously monitoring parameters such as temperature and heart rate is very stressful for the awake animals or simply not possible. Aim of the underlying study was to monitor heart rate, temperature and activity and to assess inflammation in the heart, lungs, liver and kidney in the early postoperative phase after experimental cardiopulmonary bypass involving 45 min of deep hypothermic circulatory arrest in rats. Besides continuous monitoring of heart rate, temperature and behavioural activity, the main focus was on avoiding uncontrolled death of an animal in the early postoperative phase in order to harvest relevant organs before autolysis would render them unsuitable for the assessment of inflammation. We therefore set up a telemetry-based system (Data Science International, DSI™) that continuously monitored the rat's temperature, heart rate and activity in their cages. The data collection using telemetry was combined with an analysis software (Microsoft excel™), a webmail application (GMX) and a text message-service. Whenever an animal's heart rate dropped below the pre-defined threshold of 150 beats per minute (bpm), a notification in the form of a text message was automatically sent to the experimenter's mobile phone. With a positive predictive value of 93.1% and a negative predictive value of 90.5%, the designed surveillance and alarm system proved a reliable and inexpensive tool to avoid uncontrolled death in order to minimize suffering and harvest relevant organs before autolysis would set in. This combination of a telemetry-based system and software tools provided us with a reliable notification system of imminent death. The system's high positive predictive value helped to avoid uncontrolled death and facilitated timely organ harvesting. Additionally we were able to markedly reduce the drop out rate of experimental animals, and therefore the total number of animals used in our study. This system can be easily adapted to different study designs and prove a helpful tool to relieve stress and more importantly help to reduce animal numbers.
Radiotelemetry is revolutionizing the study of thermoregulation of rodents. Continuous monitoring of core temperature in rodents has been an essential methodology to unravel the mechanisms of thermoregulation. However, prior to the advent of radiotelemetry, the only way to monito...
Core-temperature sensor ingestion timing and measurement variability.
Domitrovich, Joseph W; Cuddy, John S; Ruby, Brent C
2010-01-01
Telemetric core-temperature monitoring is becoming more widely used as a noninvasive means of monitoring core temperature during athletic events. To determine the effects of sensor ingestion timing on serial measures of core temperature during continuous exercise. Crossover study. Outdoor dirt track at an average ambient temperature of 4.4°C ± 4.1°C and relative humidity of 74.1% ± 11.0%. Seven healthy, active participants (3 men, 4 women; age = 27.0 ± 7.5 years, height = 172.9 ± 6.8 cm, body mass = 67.5 ± 6.1 kg, percentage body fat = 12.7% ± 6.9%, peak oxygen uptake [Vo(2peak)] = 54.4 ± 6.9 mL•kg⁻¹•min⁻¹) completed the study. Participants completed a 45-minute exercise trial at approximately 70% Vo(2peak). They consumed core-temperature sensors at 24 hours (P1) and 40 minutes (P2) before exercise. Core temperature was recorded continuously (1-minute intervals) using a wireless data logger worn by the participants. All data were analyzed using a 2-way repeated-measures analysis of variance (trial × time), Pearson product moment correlation, and Bland-Altman plot. Fifteen comparisons were made between P1 and P2. The main effect of time indicated an increase in core temperature compared with the initial temperature. However, we did not find a main effect for trial or a trial × time interaction, indicating no differences in core temperature between the sensors (P1 = 38.3°C ± 0.2°C, P2 = 38.3°C ± 0.4°C). We found no differences in the temperature recordings between the 2 sensors. These results suggest that assumed sensor location (upper or lower gastrointestinal tract) does not appreciably alter the transmission of reliable and repeatable measures of core temperature during continuous running in the cold.
Portable System for Monitoring the Microclimate in the Footwear-Foot Interface
Sandoval-Palomares, José de Jesús; Yáñez-Mendiola, Javier; Gómez-Espinosa, Alfonso; López-Vela, José Martin
2016-01-01
A new, continuously-monitoring portable device that monitors the diabetic foot has shown to help in reduction of diabetic foot complications. Persons affected by diabetic foot have shown to be particularly sensitive in the plantar surface; this sensitivity coupled with certain ambient conditions may cause dry skin. This dry skin leads to the formation of fissures that may eventually result in a foot ulceration and subsequent hospitalization. This new device monitors the micro-climate temperature and humidity areas between the insole and sole of the footwear. The monitoring system consists of an array of ten sensors that take readings of relative humidity within the range of 100% ± 2% and temperature within the range of −40 °C to 123.8 ± 0.3 °C. Continuous data is collected using embedded C software and the recorded data is processed in Matlab. This allows for the display of data; the implementation of the iterative Gauss-Newton algorithm method was used to display an exponential response curve. Therefore, the aim of our system is to obtain feedback data and provide the critical information to various footwear manufacturers. The footwear manufactures will utilize this critical information to design and manufacture diabetic footwear that reduce the risk of ulcers in diabetic feet. PMID:27399718
Using a Computer to Monitor Temperature and Light.
ERIC Educational Resources Information Center
Watson, J. M.
1984-01-01
A 16K Sinclair ZX81 microcomputer equipped with an analog to digital board and a Sinclair printer was used to capture data continuously from a total of eight temperature or light sensors. Describes the construction of the peripherals, explains how to connect them together, and provides a program to run the ZX81. (Author/JN)
Code of Federal Regulations, 2014 CFR
2014-07-01
... using a carbon adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2...
40 CFR 63.8244 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature specified in § 63.8232(f)(1)(vii) during each heating phase of the regeneration cycle of your... determined according to § 63.8232(f)(2) for three consecutive regeneration cycles, your monitoring value is out of range and you must take corrective action as soon as practicable. During the first regeneration...
40 CFR 63.8244 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... temperature specified in § 63.8232(f)(1)(vii) during each heating phase of the regeneration cycle of your... determined according to § 63.8232(f)(2) for three consecutive regeneration cycles, your monitoring value is out of range and you must take corrective action as soon as practicable. During the first regeneration...
40 CFR 63.8244 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... temperature specified in § 63.8232(f)(1)(vii) during each heating phase of the regeneration cycle of your... determined according to § 63.8232(f)(2) for three consecutive regeneration cycles, your monitoring value is out of range and you must take corrective action as soon as practicable. During the first regeneration...
40 CFR 63.8244 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... temperature specified in § 63.8232(f)(1)(vii) during each heating phase of the regeneration cycle of your... determined according to § 63.8232(f)(2) for three consecutive regeneration cycles, your monitoring value is out of range and you must take corrective action as soon as practicable. During the first regeneration...
Hobza, Christopher M.
2008-01-01
The water supply in parts of the North Platte River Basin in the Nebraska Panhandle has been designated as fully appropriated or over appropriated by the Nebraska Department of Natural Resources. Recent legislation (LB 962) requires the North Platte Natural Resources District and the Nebraska Department of Natural Resources to develop an Integrated Management Plan to balance ground- and surface-water supply and demand within the North Platte Natural Resources District. For a ground-water-flow model to accurately simulate existing or future ground-water and surface-water conditions, accurate estimates of specific input variables such as streambed conductance or canal-seepage rates are required. As of 2008, the values input into ground-water models were estimated on the basis of interpreted lithology from test holes and geophysical surveys. Often, contrasts of several orders of magnitude exist for streambed conductance among the various sediment textures present locally, and thin, near-surface layers of fine sediment can clog the streambed, substantially reducing conductance. To accurately quantify the rates of leakage from irrigation canals and estimate ground-water recharge, the U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, collected continuous temperature and water-level data to use heat as a tracer for a selected reach of Tri-State Canal west of Scottsbluff, Nebraska. Continuous records of subsurface temperature, ground-water level, canal stage, and water temperature, and sediment core data are presented in this report. Subsurface temperature was monitored at four vertical sensor arrays of thermocouples installed at various depths beneath the canal bed from March through September 2007. Canal stage and water temperature were measured from June to September 2007. Ground-water level was recorded continuously in an observation well drilled near the subsurface temperature monitoring site. These data sets were collected for use as inputs for a computer model to estimate the vertical hydraulic conductivity. Before the initiation of flow, diurnal variations in subsurface temperature occurred because of daytime heating and nighttime cooling of bed sediment. Flow in Tri-State Canal was first detected on June 16 at the monitoring site as a disruption in the temperature signal in the shallowest thermocouple in all four vertical sensor arrays. This disruption in the temperature pattern occurred in deeper thermocouples at slightly later times during the rapid infiltration of canal water. The ground-water level began to rise approximately 23 hours after flow was first detected at the monitoring site. Canal stage rose for 7 days until the maximum flow capacity of the canal was approached on June 23, 2007. Measured water temperatures ranged from 18 to 25 degrees Celsius (C) while the canal was flowing near maximum capacity. Small diurnal variations of 1.0 to 1.5 degrees C in water temperature were recorded during this time. Measured ground-water levels rose constantly during the entire irrigation season until levels peaked on September 3, 2007, 3 days after diversions to Tri-State Canal ceased.
Wagner, Richard J.; Boulger, Robert W.; Oblinger, Carolyn J.; Smith, Brett A.
2006-01-01
The U.S. Geological Survey uses continuous water-quality monitors to assess the quality of the Nation's surface water. A common monitoring-system configuration for water-quality data collection is the four-parameter monitoring system, which collects temperature, specific conductance, dissolved oxygen, and pH data. Such systems also can be configured to measure other properties, such as turbidity or fluorescence. Data from sensors can be used in conjunction with chemical analyses of samples to estimate chemical loads. The sensors that are used to measure water-quality field parameters require careful field observation, cleaning, and calibration procedures, as well as thorough procedures for the computation and publication of final records. This report provides guidelines for site- and monitor-selection considerations; sensor inspection and calibration methods; field procedures; data evaluation, correction, and computation; and record-review and data-reporting processes, which supersede the guidelines presented previously in U.S. Geological Survey Water-Resources Investigations Report WRIR 00-4252. These procedures have evolved over the past three decades, and the process continues to evolve with newer technologies.
Krappmann, Michael; de Boer, Arjen R; Kool, Daniël R W; Irth, Hubertus; Letzel, Thomas
2016-04-30
Continuous-flow reaction detection systems (monitoring enzymatic reactions with mass spectrometry (MS)) lack quantitative values so far. Therefore, two independent internal standards (IS) are implemented in a way that the online system stability can be observed, quantitative conversion values for substrate and product can be obtained and they can be used as mass calibration standards for high MS accuracy. An application previously developed for the MS detection of peptide phosphorylation by cAMP-dependent protein kinase A (PKA) (De Boer et al., Anal. Bioanal. Chem. 2005, 381, 647-655) was transferred to a continuous-flow reaction detection system. This enzymatic reaction, involving enzyme activation as well as the transfer of a phosphate group from ATP to a peptide substrate, was used to prove the compatibility of a quantitative enzymatic assay in a continuous-flow real-time system (connected to MS). Moreover (using internal standards), the critical parameter reaction temperature (including solution density variations depending on temperature) was studied in the continuous-flow mixing system. Furthermore, two substrates (malantide and kemptide), two enzyme types (catalytic subunit of PKA and complete PKA) and one inhibitor were tested to determine system robustness and long-term availability. Even spraying solutions that contained significant amount of MS contaminants (e.g. the polluted catalytic subunit) resulted in quantifiable MS signal intensities. Subsequent recalculations using the internal standards led to results representing the power of this application. The presented methodology and the data evaluation with available Achroma freeware enable the direct coupling of biochemical assays with quantitative MS detection. Monitoring changes such as temperature, reaction time, inhibition, or compound concentrations can be observed quantitatively and thus enzymatic activity can be calculated. Copyright © 2016 John Wiley & Sons, Ltd.
Mitchell, Joel B; Goldston, Kelly R; Adams, Amy N; Crisp, Kelli M; Franklin, Brian B; Kreutzer, Andreas; Montalvo, Diego X; Turner, Marcell G; Phillips, Melody D
2015-01-01
Non-invasive temperature monitoring with a sensor inside protective headgear may be effective in detecting temperatures that are associated with heat illness. The purpose was to establish the relationship between in-hardhat temperatures (Tih) and core temperature (Tc) as measured by rectal (Tre) and esophageal (Tes) probes. Thirty males (age 24.57 ± 4.32 yrs.) completed two trials: continuous submaximal exercise (CSE) and a series of high intensity 30-s sprints (HIE) with a one-minute rest between each. Exercise in both conditions was in a 36(°)C environment (40% RH) while wearing a standard hardhat with sensors mounted on the forehead that were monitored remotely. Exercise continued until voluntary termination or until Tc reached 39.5(°)C. Temperatures, heart rate, cardiorespiratory, and perceptual responses were monitored throughout. A physiological strain index (PSI) was calculated from Tc and HR. The final temperatures in the CSE condition were 38.77 ± 0.41, 38.90 ± 0.49 and 39.29 ± 0.58(°)C and in the HIE condition, final temperatures were 38.76 ± 0.37, 38.91 ± 0.47, and 39.19 ± 0.57 f (o)C for Tih, Tre, and Tes, respectively. The PSI in CSE was 9.62 ± 062, 9.18 ± 1.11, and 10.04 ± 1.05, and in the HIE condition 9.67 ± 068, 9.29 ± 0.99. and 9.86 ± 1.02 based on Tih, Tre and Tes, respectively. The general agreement between the Tih and other temperature measures along with the consistency as indicated by a low coefficient of variation (approx. 1%) in the recordings of the Tih sensors at the point of termination suggest that this device, or similar devices, may have application as a warning system for impending heat-related problems.
Incubator temperature control: effects on the very low birthweight infant.
Ducker, D A; Lyon, A J; Ross Russell, R; Bass, C A; McIntosh, N
1985-01-01
We studied temperature stability in 22 infants of birthweight less than 1500 g in the first four days of life. Infants were nursed in incubators using either air mode control or skin temperature servo control. Data were collected continuously using a computer linked monitoring system. Skin temperature control resulted in a less stable thermal environment than air mode control. Increased thermal stability in the incubator on air mode control may well be beneficial, particularly to sick, very low birthweight infants. PMID:4062342
Wearable vital parameters monitoring system
NASA Astrophysics Data System (ADS)
Caramaliu, Radu Vadim; Vasile, Alexandru; Bacis, Irina
2015-02-01
The system we propose monitors body temperature, heart rate and beside this, it tracks if the person who wears it suffers a faint. It uses a digital temperature sensor, a pulse sensor and a gravitational acceleration sensor to monitor the eventual faint or small heights free falls. The system continuously tracks the GPS position when available and stores the last valid data. So, when measuring abnormal vital parameters the module will send an SMS, using the GSM cellular network , with the person's social security number, the last valid GPS position for that person, the heart rate, the body temperature and, where applicable, a valid fall alert or non-valid fall alert. Even though such systems exist, they contain only faint detection or heart rate detection. Usually there is a strong correlation between low/high heart rate and an eventual faint. Combining both features into one system results in a more reliable detection device.
Air Quality Monitoring During Construction and Initial Occupation of a New Building.
Valicenti, John A; Wenger, Jarrell
1997-08-01
Air quality monitoring was conducted during the late construction and early occupation stages of the College of DuPage Student Resource Center (SRC) addition from April 24,1995, to July 20,1995. Chemical contaminants monitored included combustibles; cleaning solvents; and human, furniture, and carpeting effluents. Carbon dioxide, carbon monoxide, ethanol, propane, 3-pentanone, methyl cyclohexane, methyl formate, tetrahydrofuran, methyl methacrylate, and cyclohexane were used as calibration standards for continuous infrared absorption measurements. Indoor water content, outdoor relative humidity, indoor and outdoor temperatures, and indoor airborne particulate matter were measured. After most construction and indoor painting and carpeting were completed, a two-week air-out was performed using a continuous supply of fresh air, without recirculated air. This resulted in a low "case study" level of contaminants. Contaminant levels increased significantly after furniture and people move-ins and student use. Contaminant level changes were observed during typical indoor construction days, before and after a power outage-caused loss of ventilation, and in the presence of carpentry machines. A "naive" sensory panel contributed its "perception" of air quality, and anair quality survey was conducted among new building employees. No significant or consistent effects of indoor contaminants or indoor temperature upon indoor perception were noted. An inverse relationship between indoor air quality perceptions and the outdoor Temperature-Humidity Index was found.
Software for marine ecological environment comprehensive monitoring system based on MCGS
NASA Astrophysics Data System (ADS)
Wang, X. H.; Ma, R.; Cao, X.; Cao, L.; Chu, D. Z.; Zhang, L.; Zhang, T. P.
2017-08-01
The automatic integrated monitoring software for marine ecological environment based on MCGS configuration software is designed and developed to realize real-time automatic monitoring of many marine ecological parameters. The DTU data transmission terminal performs network communication and transmits the data to the user data center in a timely manner. The software adopts the modular design and has the advantages of stable and flexible data structure, strong portability and scalability, clear interface, simple user operation and convenient maintenance. Continuous site comparison test of 6 months showed that, the relative error of the parameters monitored by the system such as temperature, salinity, turbidity, pH, dissolved oxygen was controlled within 5% with the standard method and the relative error of the nutrient parameters was within 15%. Meanwhile, the system had few maintenance times, low failure rate, stable and efficient continuous monitoring capabilities. The field application shows that the software is stable and the data communication is reliable, and it has a good application prospect in the field of marine ecological environment comprehensive monitoring.
The Ultrachopper tip: a wound temperature study.
Barlow, William R; Pettey, Jeff; Olson, Randall J
2013-12-01
To determine the thermal characteristics of the Ultrachopper and its thermal properties in varied viscosurgical substances. Experimental study. Not applicable. The Ultrachopper (Alcon, Inc) tip with the Infiniti (Alcon, Inc) handpiece was attached to a thermistor and placed in a test chamber filled with either an ophthalmic viscosurgical device (OVD) or balanced salt solution (BSS). The thermistor allowed for continuous monitoring of temperature from baseline and the change that occurred over 60 seconds of continuous run time. Mean maximum temperature in each OVD exceeded 50°C over the first 25 seconds of continuous run time. The mean maximum temperature was statistically significantly higher with all OVDs (p < 0.0001) when compared with BSS. A small but statistically significant difference in mean maximum temperature was shown between Healon 5 (AMO, Inc) and Viscoat (Alcon, Inc) (p < 0.05). The linear increase in temperature was statistically significantly different with all OVDs compared with BSS (p < 0.0001). The thermal properties of the Ultrachopper tip demonstrate a heat-generating capacity that achieves published thresholds for risk for wound burn. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Jiang, Jonathan H.; Wang, Ding-Yi; Romans, Larry J.; Ao, Chi O.; Schwartz, Michael J.; Stiller, Gabriele P.; von Clarmann, Thomas; Lopez-Puertas, Manuel; Funke, Bernd; Gil-Lopez, Sergio;
2003-01-01
A new generation GPS flight receiver was launched on the Argentinian satellite SAC-C in 2001. It has demonstrated the potential applicability for the continuous monitoring of the earth's atmosphere with radio occultation technology, and providing high vertical resolution profiles of temperature and water vapour data complementary to other sounding techniques.
Sebok, Eva; Engesgaard, Peter; Duque, Carlos
2017-08-24
This study presented the monitoring and quantification of streambed sedimentation and scour in a stream with dynamically changing streambed based on measured phase and amplitude of the diurnal signal of sediment temperature time series. With the applied method, changes in streambed elevation were estimated on a sub-daily scale with 2-h intervals without continuous maintenance of the measurement system, thus making both high temporal resolution and long-term monitoring of streambed elevations possible. Estimates of streambed elevation showed that during base flow conditions streambed elevation fluctuates by 2-3 cm. Following high stream stages, scouring of 2-5 cm can be observed even at areas with low stream flow and weak currents. Our results demonstrate that weather variability can induce significant changes in the stream water and consequently sediment temperatures influencing the diurnal temperature signal in such an extent that the sediment thickness between paired temperature sensors were overestimated by up to 8 cm. These observations have significant consequences on the design of vertical sensor spacing in high-flux environments and in climates with reduced diurnal variations in air temperature.
Continuous monitoring of Hawaiian volcanoes with thermal cameras
Patrick, Matthew R.; Orr, Tim R.; Antolik, Loren; Lee, Robert Lopaka; Kamibayashi, Kevan P.
2014-01-01
Continuously operating thermal cameras are becoming more common around the world for volcano monitoring, and offer distinct advantages over conventional visual webcams for observing volcanic activity. Thermal cameras can sometimes “see” through volcanic fume that obscures views to visual webcams and the naked eye, and often provide a much clearer view of the extent of high temperature areas and activity levels. We describe a thermal camera network recently installed by the Hawaiian Volcano Observatory to monitor Kīlauea’s summit and east rift zone eruptions (at Halema‘uma‘u and Pu‘u ‘Ō‘ō craters, respectively) and to keep watch on Mauna Loa’s summit caldera. The cameras are long-wave, temperature-calibrated models protected in custom enclosures, and often positioned on crater rims close to active vents. Images are transmitted back to the observatory in real-time, and numerous Matlab scripts manage the data and provide automated analyses and alarms. The cameras have greatly improved HVO’s observations of surface eruptive activity, which includes highly dynamic lava lake activity at Halema‘uma‘u, major disruptions to Pu‘u ‘Ō‘ō crater and several fissure eruptions.
Kristó, Katalin; Kovács, Orsolya; Kelemen, András; Lajkó, Ferenc; Klivényi, Gábor; Jancsik, Béla; Pintye-Hódi, Klára; Regdon, Géza
2016-12-01
In the literature there are some publications about the effect of impeller and chopper speeds on product parameters. However, there is no information about the effect of temperature. Therefore our main aim was the investigation of elevated temperature and temperature distribution during pelletization in a high shear granulator according to process analytical technology. During our experimental work, pellets containing pepsin were formulated with a high-shear granulator. A specially designed chamber (Opulus Ltd.) was used for pelletization. This chamber contained four PyroButton-TH® sensors built in the wall and three PyroDiff® sensors 1, 2 and 3cm from the wall. The sensors were located in three different heights. The impeller and chopper speeds were set on the basis of 3 2 factorial design. The temperature was measured continuously in 7 different points during pelletization and the results were compared with the temperature values measured by the thermal sensor of the high-shear granulator. The optimization parameters were enzyme activity, average size, breaking hardness, surface free energy and aspect ratio. One of the novelties was the application of the specially designed chamber (Opulus Ltd.) for monitoring the temperature continuously in 7 different points during high-shear granulation. The other novelty of this study was the evaluation of the effect of temperature on the properties of pellets containing protein during high-shear pelletization. Copyright © 2016 Elsevier B.V. All rights reserved.
Field Test of Boiler Primary Loop Temperature Controller
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glanville, P.; Rowley, P.; Schroeder, D.
Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation duringmore » perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.« less
Cuesta-Frau, David; Varela, Manuel; Aboy, Mateo; Miró-Martínez, Pau
2009-01-01
We describe a device for dual channel body temperature monitoring. The device can operate as a real time monitor or as a data logger, and has Bluetooth capabilities to enable for wireless data download to the computer used for data analysis. The proposed device is capable of sampling temperature at a rate of 1 sample per minute with a resolution of 0.01 °C . The internal memory allows for stand-alone data logging of up to 10 days. The device has a battery life of 50 hours in continuous real-time mode. In addition to describing the proposed device in detail, we report the results of a statistical analysis conducted to assess its accuracy and reproducibility. PMID:22408473
Cuesta-Frau, David; Varela, Manuel; Aboy, Mateo; Miró-Martínez, Pau
2009-01-01
We describe a device for dual channel body temperature monitoring. The device can operate as a real time monitor or as a data logger, and has Bluetooth capabilities to enable for wireless data download to the computer used for data analysis. The proposed device is capable of sampling temperature at a rate of 1 sample per minute with a resolution of 0.01 °C . The internal memory allows for stand-alone data logging of up to 10 days. The device has a battery life of 50 hours in continuous real-time mode. In addition to describing the proposed device in detail, we report the results of a statistical analysis conducted to assess its accuracy and reproducibility.
Climate forcings and feedbacks
NASA Technical Reports Server (NTRS)
Hansen, James
1993-01-01
Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption or an El Nino.
NASA Astrophysics Data System (ADS)
Campbell, Anne A.; Porter, Wallace D.; Katoh, Yutai; Snead, Lance L.
2016-03-01
Silicon carbide is used as a passive post-irradiation temperature monitor because the irradiation defects will anneal out above the irradiation temperature. The irradiation temperature is determined by measuring a property change after isochronal annealing, i.e., lattice spacing, dimensions, electrical resistivity, thermal diffusivity, or bulk density. However, such methods are time-consuming since the steps involved must be performed in a serial manner. This work presents the use of thermal expansion from continuous dilatometry to calculate the SiC irradiation temperature, which is an automated process requiring minimal setup time. Analysis software was written that performs the calculations to obtain the irradiation temperature and removes possible user-introduced error while standardizing the analysis. This method has been compared to an electrical resistivity and isochronal annealing investigation, and the results revealed agreement of the calculated temperatures. These results show that dilatometry is a reliable and less time-intensive process for determining irradiation temperature from passive SiC thermometry.
Cerebral monitoring during cardiopulmonary bypass in children.
Kern, F H; Schell, R M; Greeley, W J
1993-07-01
Although cerebral monitoring during CPB remains primarily investigational, recent data support its clinical utility. In particular, it is cerebral metabolic monitoring that provides meaningful information in terms of preparing the brain for dhCPB and dhCA. Cerebral blood flow or cerebral blood flow velocity monitoring is less beneficial due to the presence of luxuriant cerebral blood flow at deep hypothermic temperatures. Conventional temperature monitoring can be improved upon by adding jugular venous oxygen saturation monitoring to satisfy the primary goal of cerebral protection--uniform cerebral cooling and metabolic suppression. Although online measures of cerebral cellular metabolism are not widely available, early experience with near infrared technology suggests that it is a feasible and reliable monitor of cerebral metabolic activity and is likely to represent an important noninvasive continuous monitor in the near future. CMRO2 recovery data have suggested that cerebral metabolic suppression is more severe the longer the period of dhCA. Cerebral protection strategies, such as intermittent cerebral perfusion have demonstrated less metabolic suppression of dhCA in animal models and are currently undergoing clinical evaluation in our institution. Finally, the postoperative period remains a high-risk period for neurologic injury because temperatures are normothermic, cardiac output is reduced, cerebral autoregulation is impaired, and management strategies, such as hyperventilation, are commonly used to increase pulmonary blood flow with little knowledge on its effects on cerebral perfusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malathi, N.; Sahoo, P., E-mail: sahoop@igcar.gov.in; Ananthanarayanan, R.
2015-02-15
An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision,more » sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control and Safety Rod Drive Mechanism during reactor operation.« less
Wilkowske, Chris D.; Rowland, Ryan C.; Naftz, David L.
2001-01-01
Three permeable reactive barriers (PRBs) were installed near Fry Canyon, Utah, in August 1997 to demonstrate the use of PRBs to control the migration of uranium in ground water. Reactive material included (1) bone-char phosphate, (2) zero-valent iron pellets, and (3) amorphous ferric oxyhydroxide coated gravel. An extensive monitoring network was installed in and around each PRB for collection of water samples, analysis of selected water-quality parameters, and monitoring of water levels. Water temperature, specific conductance, pH, Eh (oxidation-reduction potential), and dissolved oxygen were measured continuously within three different barrier materials, and in two monitoring wells. Water temperature and water level below land surface were electronically recorded every hour with pressure transducers. Data were collected from ground-water monitoring wells installed in and around the PRBs during 1996-98 and from surface-water sites in Fry Creek.
Evaluation of EDR-3 vibration, shock, temperature, and humidity recording unit
NASA Technical Reports Server (NTRS)
Rees, Kevin G.; Mondale, C. F.
1990-01-01
The purpose of this evaluation was to determine if the self-contained, off-the-shelf, Environmental Data Recorder 3 (EDR-3) could be qualified to monitor shock, vibration, and temperature during rail transportation of space shuttle solid rocket components. The evaluation testing started in November 1989 and continued until June 1990. Two EDR-3 units were used to monitor both on- and off-plant shipments of shuttle components. In addition, extensive testing was performed at Thiokol's Vibration Test facility, T-53. Testing demonstrated that the EDR-3 is capable of successfully monitoring actual shipments of solid rocket hardware. Thiokol metrology has verified the accuracy of temperature monitoring. In addition, calibrated shock/vibration testing demonstrated that the EDR-3 does accurately record acceleration. It is recommended that the vendor modify the EDR-3 data recovery system to allow remote communication via a 30-foot cable. This would permit communication with the unit mounted on a case segment after a rail car cover is installed. The vendor will make this change and produce a new model, designated EDR-3-10. It is further recommended that Thiokol qualify the EDR-3-10 for transportation monitoring of redesigned solid rocket motor (RSRM) components.
RFID Technology for Continuous Monitoring of Physiological Signals in Small Animals.
Volk, Tobias; Gorbey, Stefan; Bhattacharyya, Mayukh; Gruenwald, Waldemar; Lemmer, Björn; Reindl, Leonhard M; Stieglitz, Thomas; Jansen, Dirk
2015-02-01
Telemetry systems enable researchers to continuously monitor physiological signals in unrestrained, freely moving small rodents. Drawbacks of common systems are limited operation time, the need to house the animals separately, and the necessity of a stable communication link. Furthermore, the costs of the typically proprietary telemetry systems reduce the acceptance. The aim of this paper is to introduce a low-cost telemetry system based on common radio frequency identification technology optimized for battery-independent operational time, good reusability, and flexibility. The presented implant is equipped with sensors to measure electrocardiogram, arterial blood pressure, and body temperature. The biological signals are transmitted as digital data streams. The device is able of monitoring several freely moving animals housed in groups with a single reader station. The modular concept of the system significantly reduces the costs to monitor multiple physiological functions and refining procedures in preclinical research.
A multiparameter wearable physiologic monitoring system for space and terrestrial applications
NASA Technical Reports Server (NTRS)
Mundt, Carsten W.; Montgomery, Kevin N.; Udoh, Usen E.; Barker, Valerie N.; Thonier, Guillaume C.; Tellier, Arnaud M.; Ricks, Robert D.; Darling, Robert B.; Cagle, Yvonne D.; Cabrol, Nathalie A.;
2005-01-01
A novel, unobtrusive and wearable, multiparameter ambulatory physiologic monitoring system for space and terrestrial applications, termed LifeGuard, is presented. The core element is a wearable monitor, the crew physiologic observation device (CPOD), that provides the capability to continuously record two standard electrocardiogram leads, respiration rate via impedance plethysmography, heart rate, hemoglobin oxygen saturation, ambient or body temperature, three axes of acceleration, and blood pressure. These parameters can be digitally recorded with high fidelity over a 9-h period with precise time stamps and user-defined event markers. Data can be continuously streamed to a base station using a built-in Bluetooth RF link or stored in 32 MB of on-board flash memory and downloaded to a personal computer using a serial port. The device is powered by two AAA batteries. The design, laboratory, and field testing of the wearable monitors are described.
Monitoring of a steep rockfall area experiencing fast displacements in Kåfjord, Northern Norway
NASA Astrophysics Data System (ADS)
Dreiås Majala, Gudrun; Harald Blikra, Lars; Skrede, Ingrid; Kristensen, Lene
2016-04-01
An unstable rockfall area in Kåfjord, Northern Norway, was recognized during periodic monitoring campaigns in July and early September 2015. The LiSALab ground based Interferometric Synthethic Aperture Radar (GB InSAR) from Ellegi were used. A relatively sharply defined steep area of 1200 m2 (6.000 - 12.000 m3) was documented to be in movement. Norwegian Water Resources and Energy Directorate (NVE) was at this point performing mitigation work in terms of an embarkment within the rockfall run-out area. The monitoring system was reinstalled and adjusted to perform continuous monitoring with an early-warning aim. The section for rockslide management in NVE was responsible for the monitoring and the warning to the municipality and Police. The displacements increased from about 1 mm/day in July to 3 cm/day in mid September. People were evalcuated due to increased velocities the 16th of September. The displacements continued to increase in several stages, and with a distinct accelleration the 2nd of October. The velocity peaked in a short window to more than 200 cm/day, and it ended with a partly frontal and sideway collapse of the unstable area. However, large parts of the area stabilized again, and the run-out lengths from the small rockfalls were limited. The GB InSAR system operated exceptionally well during the event, and were able to follow continuously the displacements during the accelleration stage until collapse as the processing time window was frequently adjusted to the changes in velocity. We were also able to follow inidividual rockfalls from the images - primarily as the rockfall impact points on the slope below showed up clearly on the radar images. The area continued to stabilize due to falling temperatures, and the mitigation work were finished during the fall. The displacements seem to be correlated to the increasing temperatures in late summer and precipitation events.
NASA Astrophysics Data System (ADS)
Pesqueira, A.; Pivovaroff, A. L.; Sun, W.; Seibt, U.
2016-12-01
"Hot drought," or drought that occurs in conjunction with warmer temperatures due to climate change, is driving regional vegetation die-off worldwide. We examined how water use efficiency (WUE), or the ratio of carbon assimilation to transpiration, varies with changes in temperature. We use flow-through chambers at Stunt Ranch, a University of California Natural Reserve System (UCNRS) site located in the Southern California Santa Monica Mountains. We focused on four woody, native species with contrasting adaptations to seasonal drought, including Heteromeles arbutifolia, Malosma laurina, and Quercus agrifolia which are evergreen chaparral shrubs/trees, and Salvia leucophylla which is a drought-deciduous coastal sage scrub shrub. For the four species, we continuously monitored fluxes of carbon and water to calculate WUE. WUE was higher in the relatively cool, wet spring months for all species, but declined with the onset of the seasonal drought and warmer summer temperatures. We observed the highest WUE values in the temperature range from 10°C to 25°C. During the summer months, all species have the highest WUE during the morning, taking advantage of the lower evaporative demand before the temperature increases during midday and afternoon. The species with the highest WUE, M. laurina, also typically has the deepest roots at the site. Ongoing monitoring will allow us to investigate how WUE will continue to respond to water stress and high temperatures combined with intensifying water stress during the hot, dry summer months.
Ultraviolet absorption cross-sections of hot carbon dioxide
NASA Astrophysics Data System (ADS)
Oehlschlaeger, Matthew A.; Davidson, David F.; Jeffries, Jay B.; Hanson, Ronald K.
2004-12-01
The temperature-dependent ultraviolet absorption cross-section for CO 2 has been measured in shock-heated gases between 1500 and 4500 K at 216.5, 244, 266, and 306 nm. Continuous-wave lasers provide the spectral brightness to enable precise time-resolved measurements with the microsecond time-response needed to monitor thermal decomposition of CO 2 at temperatures above 3000 K. The photophysics of the highly temperature dependent cross-section is discussed. The new data allows the extension of CO 2 absorption-based temperature sensing methods to higher temperatures, such as those found in behind detonation waves.
Thermodynamic Profiles of the Destructive June 2012 Derecho
NASA Astrophysics Data System (ADS)
Liu, C.; Novakovskaia, E.; Bosse, J.; Ware, R.; Stillman, D.; Sloop, C.; Blanchette, L.; Demoz, B.; Nelson, M.; Cooper, L.; Czarnetzki, A.; Reehorst, A.
2012-12-01
The June 2012 mid-Atlantic and Midwest Derecho was one of the most destructive and deadly fast-moving severe thunderstorm events in North American history. The derecho produced wind gusts approaching 100 miles per hour as it traveled more than 600 miles across large sections of the Midwestern United States, the central Appalachians and the Mid-Atlantic States on the afternoon and evening of June 29, 2012 and into the early morning of June 30, 2012. It produced hurricane-like impacts with little warning, resulting in more than 20 deaths, widespread damage and millions of power outages across the entire affected region. We present continuous temperature and moisture profiles observed by microwave radiometers, and derived forecast indices, along the storm path at locations in Iowa, Ohio and Maryland, providing unique perspective on the evolution of this historic storm. For example, an extreme CAPE value of 5,000 J/kg was derived from radiometer observations at Germantown, Maryland ten hours before storm passage, and 80 knot Wind Index (WINDEX) was derived seven hours before passage. The Germantown radiometer is operated as part of the Earth Networks Boundary Layer Network (BLN) for continuous thermodynamic monitoring of the planetary boundary layer up to 30,000 feet. The BLN uses Radiometrics microwave profilers providing continuous temperature and humidity soundings with radiosonde-equivalent observation accuracy, and unique liquid soundings. This case study illustrates the promise for severe storm forecast improvement based on continuous monitoring of temperature and moisture in the boundary layer and above.
Campbell, Anne A.; Porter, Wallace D.; Katoh, Yutai; ...
2016-01-14
Silicon carbide is used as a passive post-irradiation temperature monitor because the irradiation defects will anneal out above the irradiation temperature. The irradiation temperature is determined by measuring a property change after isochronal annealing, i.e., lattice spacing, dimensions, electrical resistivity, thermal diffusivity, or bulk density. However, such methods are time-consuming since the steps involved must be performed in a serial manner. This work presents the use of thermal expansion from continuous dilatometry to calculate the SiC irradiation temperature, which is an automated process requiring minimal setup time. Analysis software was written that performs the calculations to obtain the irradiation temperaturemore » and removes possible user-introduced error while standardizing the analysis. In addition, this method has been compared to an electrical resistivity and isochronal annealing investigation, and the results revealed agreement of the calculated temperatures. These results show that dilatometry is a reliable and less time-intensive process for determining irradiation temperature from passive SiC thermometry.« less
NASA Astrophysics Data System (ADS)
Rushambwa, Munyaradzi C.; Gezimati, Mavis; Jeeva, J. B.
2017-11-01
Novel advancements in systems miniaturization, electronics in health care and communication technologies are enabling the integration of both patients and doctors involvement in health care system. A Wearable Wireless Body Area Network (WWBAN) provides continuous, unobtrusive ambulatory, ubiquitous health monitoring, and provide real time patient’s status to the physician without any constraint on their normal daily life activities. In this project we developed a wearable wireless body area network system that continuously monitor the health of the elderly and the disabled and provide them with independent, safe and secure living. The WWBAN system monitors the following parameters; blood oxygen saturation using a pulse oximeter sensor (SpO2), heart rate (HR) pulse sensor, Temperature, hydration, glucose level and fall detection. When the wearable system is put on, the sensor values are processed and analysed. If any of the monitored parameter values falls below or exceeds the normal range, there is trigger of remote alert by which an SMS is send to a doctor or physician via GSM module and network. The developed system offers flexibility and mobility to the user; it is a real time system and has significance in revolutionizing health care system by enabling non-invasive, inexpensive, continuous health monitoring.
Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; ...
2014-04-30
Here we present a board-level integrated silicon carbide (SiC) MOSFET power module for high temperature and high power density application. Specifically, a silicon-on-insulator (SOI)-based gate driver capable of operating at 200°C ambient temperature is designed and fabricated. The sourcing and sinking current capability of the gate driver are tested under various ambient temperatures. Also, a 1200 V/100 A SiC MOSFET phase-leg power module is developed utilizing high temperature packaging technologies. The static characteristics, switching performance, and short-circuit behavior of the fabricated power module are fully evaluated at different temperatures. Moreover, a buck converter prototype composed of the SOI gate drivermore » and SiC power module is built for high temperature continuous operation. The converter is operated at different switching frequencies up to 100 kHz, with its junction temperature monitored by a thermosensitive electrical parameter and compared with thermal simulation results. The experimental results from the continuous operation demonstrate the high temperature capability of the power module at a junction temperature greater than 225°C.« less
Ellis, M; Manandhar, N; Shakya, U; Manandhar, D S; Fawdry, A; Costello, A M
1996-07-01
To describe the pattern of hypothermia and cold stress after delivery among a normal neonatal population in Nepal; to provide practical advice for improving thermal care in a resource limited maternity hospital. The principal government funded maternity hospital in Kathmandu, Nepal, with an annual delivery rate of 15,000 (constituting 40% of all Kathmandu Valley deliveries), severe resource limitations (annual budget Pounds 250,000), and a cold winter climate provided the setting. Thirty five healthy term neonates not requiring special care were enrolled for study within 90 minutes of birth. Continuous ambulatory temperature monitoring, using microthermistor skin probes for forehead and axilla, a flexible rectal probe, and a black ball probe placed next to the infant for ambient temperature, was carried out. All probes were connected to a compact battery powered Squirrel Memory Logger, giving a temperature reading to 0.2 degree C at five minute intervals for 24 hours. Severity and duration of hypothermia, using cutoff values of core temperature less than 36 degrees C, 34 degrees C, and 32 degrees C; and cold stress, using cutoff values of skin-core (forehead-axilla) temperature difference greater than 3 degrees C and 4 degrees C were the main outcome measures. Twenty four hour mean ambient temperatures were generally lower than the WHO recommended level of 25 degrees C (median 22.3 degrees C, range 15.1-27.5 degrees C). Postnatal hypothermia was prolonged, with axillary core temperatures only reaching 36 degrees C after a mean of 6.4 hours (range 0-21.1; SD 4.6). There was persistent and increasing cold stress over the first 24 hours with the core-skin (axillary-forehead) temperature gap exceeding 3 degrees C for more than half of the first 24 hours. Continuous ambulatory recording identifies weak links in the "warm chain" for neonates. The severity and duration of thermal problems was greater than expected even in a hospital setting where some of the WHO recommendations had already been implemented.
Data acquisition and PV module power production in upgraded TEP/AzRISE solar test yard
NASA Astrophysics Data System (ADS)
Bennett, Whit E.; Fishgold, Asher D.; Lai, Teh; Potter, Barrett G.; Simmons-Potter, Kelly
2017-08-01
The Tucson Electric Power (TEP)/University of Arizona AzRISE (Arizona Research Institute for Solar Energy) solar test yard is continuing efforts to improve standardization and data acquisition reliability throughout the facility. Data reliability is ensured through temperature-insensitive data acquisition devices with battery backups in the upgraded test yard. Software improvements allow for real-time analysis of collected data, while uploading to a web server. Sample data illustrates high fidelity monitoring of the burn-in period of a polycrystalline silicon photovoltaic module test string with no data failures over 365 days of data collection. In addition to improved DAQ systems, precision temperature monitoring has been implemented so that PV module backside temperatures are routinely obtained. Weather station data acquired at the test yard provides local ambient temperature, humidity, wind speed, and irradiance measurements that have been utilized to enable characterization of PV module performance over an extended test period
NASA Technical Reports Server (NTRS)
Ives, R. E.
1982-01-01
A thermal monitoring and control concept is described for a volatile condensable materials (VCM) test apparatus where electric resistance heaters are employed. The technique is computer based, but requires only proportioning ON/OFF relay control signals supplied through a programmable scanner and simple quadrac power controllers. System uniqueness is derived from automatic temperature measurements and the averaging of these measurements in discrete overlapping temperature zones. Overall control tolerance proves to be better than + or - 0.5 C from room ambient temperature to 150 C. Using precisely calibrated thermocouples, the method provides excellent temperature control of a small copper VCM heating plate at 125 + or - 0.2 C over a 24 hr test period. For purposes of unattended operation, the programmable computer/controller provides a continual data printout of system operation. Real time operator command is also provided for, as is automatic shutdown of the system and operator alarm in the event of malfunction.
A distributed fluid level sensor suitable for monitoring fuel load on board a moving fuel tank
NASA Astrophysics Data System (ADS)
Arkwright, John W.; Parkinson, Luke A.; Papageorgiou, Anthony W.
2018-02-01
A temperature insensitive fiber Bragg grating sensing array has been developed for monitoring fluid levels in a moving tank. The sensors are formed from two optical fibers twisted together to form a double helix with pairs of fiber Bragg gratings located above one another at the points where the fibers are vertically disposed. The sensing mechanism is based on a downwards deflection of the section of the double helix containing the FBGs which causes the tension in the upper FBG to decrease and the tension in the lower FBG to increase with concomitant changes in Bragg wavelength in each FBG. Changes in ambient temperature cause a common mode increase in Bragg wavelength, thus monitoring the differential change in wavelength provides a temperature independent measure of the applied pressure. Ambient temperature can be monitored simultaneously by taking the average wavelength of the upper and lower FBGs. The sensors are able to detect variations in pressure with resolutions better than 1 mmH2O and when placed on the bottom of a tank can be used to monitor fluid level based on the recorded pressure. Using an array of these sensors located along the bottom of a moving tank it was possible to monitor the fluid level at multiple points and hence dynamically track the total fluid volume in the tank. The outer surface of the sensing array is formed from a thin continuous Teflon sleeve, making it suitable for monitoring the level of volatile fluids such as aviation fuel and gasoline.
HALT to qualify electronic packages: a proof of concept
NASA Astrophysics Data System (ADS)
Ramesham, Rajeshuni
2014-03-01
A proof of concept of the Highly Accelerated Life Testing (HALT) technique was explored to assess and optimize electronic packaging designs for long duration deep space missions in a wide temperature range (-150°C to +125°C). HALT is a custom hybrid package suite of testing techniques using environments such as extreme temperatures and dynamic shock step processing from 0g up to 50g of acceleration. HALT testing used in this study implemented repetitive shock on the test vehicle components at various temperatures to precipitate workmanship and/or manufacturing defects to show the weak links of the designs. The purpose is to reduce the product development cycle time for improvements to the packaging design qualification. A test article was built using advanced electronic package designs and surface mount technology processes, which are considered useful for a variety of JPL and NASA projects, i.e. (surface mount packages such as ball grid arrays (BGA), plastic ball grid arrays (PBGA), very thin chip array ball grid array (CVBGA), quad flat-pack (QFP), micro-lead-frame (MLF) packages, several passive components, etc.). These packages were daisy-chained and independently monitored during the HALT test. The HALT technique was then implemented to predict reliability and assess survivability of these advanced packaging techniques for long duration deep space missions in much shorter test durations. Test articles were built using advanced electronic package designs that are considered useful in various NASA projects. All the advanced electronic packages were daisychained independently to monitor the continuity of the individual electronic packages. Continuity of the daisy chain packages was monitored during the HALT testing using a data logging system. We were able to test the boards up to 40g to 50g shock levels at temperatures ranging from +125°C to -150°C. The HALT system can deliver 50g shock levels at room temperature. Several tests were performed by subjecting the test boards to various g levels ranging from 5g to 50g, test durations of 10 minutes to 60 minutes, hot temperatures of up to +125°C and cold temperatures down to -150°C. During the HALT test, electrical continuity measurements of the PBGA package showed an open-circuit, whereas the BGA, MLF, and QFPs showed signs of small variations of electrical continuity measurements. The electrical continuity anomaly of the PBGA occurred in the test board within 12 hours of commencing the accelerated test. Similar test boards were assembled, thermal cycled independently from -150°C to +125°C and monitored for electrical continuity through each package design. The PBGA package on the test board showed an anomalous electrical continuity behavior after 959 thermal cycles. Each thermal cycle took around 2.33 hours, so that a total test time to failure of the PBGA was 2,237 hours (or ~3.1 months) due to thermal cycling alone. The accelerated technique (thermal cycling + shock) required only 12 hours to cause a failure in the PBGA electronic package. Compared to the thermal cycle only test, this was an acceleration of ~186 times (more than 2 orders of magnitude). This acceleration process can save significant time and resources for predicting the life of a package component in a given environment, assuming the failure mechanisms are similar in both the tests. Further studies are in progress to make systematic evaluations of the HALT technique on various other advanced electronic packaging components on the test board. With this information one will be able to estimate the number of mission thermal cycles to failure with a much shorter test program. Further studies are in progress to make systematic study of various components, constant temperature range for both the tests. Therefore, one can estimate the number of hours to fail in a given thermal and shock levels for a given test board physical properties.
Design of smart neonatal health monitoring system using SMCC
Mukherjee, Anwesha; Bhakta, Ishita
2016-01-01
Automated health monitoring and alert system development is a demanding research area today. Most of the currently available monitoring and controlling medical devices are wired which limits freeness of working environment. Wireless sensor network (WSN) is a better alternative in such an environment. Neonatal intensive care unit is used to take care of sick and premature neonates. Hypothermia is an independent risk factor for neonatal mortality and morbidity. To prevent it an automated monitoring system is required. In this Letter, an automated neonatal health monitoring system is designed using sensor mobile cloud computing (SMCC). SMCC is based on WSN and MCC. In the authors’ system temperature sensor, acceleration sensor and heart rate measurement sensor are used to monitor body temperature, acceleration due to body movement and heart rate of neonates. The sensor data are stored inside the cloud. The health person continuously monitors and accesses these data through the mobile device using an Android Application for neonatal monitoring. When an abnormal situation arises, an alert is generated in the mobile device of the health person. By alerting health professional using such an automated system, early care is provided to the affected babies and the probability of recovery is increased. PMID:28261491
Design of smart neonatal health monitoring system using SMCC.
De, Debashis; Mukherjee, Anwesha; Sau, Arkaprabha; Bhakta, Ishita
2017-02-01
Automated health monitoring and alert system development is a demanding research area today. Most of the currently available monitoring and controlling medical devices are wired which limits freeness of working environment. Wireless sensor network (WSN) is a better alternative in such an environment. Neonatal intensive care unit is used to take care of sick and premature neonates. Hypothermia is an independent risk factor for neonatal mortality and morbidity. To prevent it an automated monitoring system is required. In this Letter, an automated neonatal health monitoring system is designed using sensor mobile cloud computing (SMCC). SMCC is based on WSN and MCC. In the authors' system temperature sensor, acceleration sensor and heart rate measurement sensor are used to monitor body temperature, acceleration due to body movement and heart rate of neonates. The sensor data are stored inside the cloud. The health person continuously monitors and accesses these data through the mobile device using an Android Application for neonatal monitoring. When an abnormal situation arises, an alert is generated in the mobile device of the health person. By alerting health professional using such an automated system, early care is provided to the affected babies and the probability of recovery is increased.
Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Shellenbarger, Gregory; Weidich, Kurt
2014-01-01
The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay. The San Francisco Bay area is home to millions of people, and the bay teems with both resident and migratory wildlife, plants, and fish. Fresh water mixes with salt water in the bay, which is subject both to riverine and marine (tides, waves, influx of salt water) influences. To understand this environment, the USGS, along with its partners, has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay. Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which causes gravity driven circulation patterns and stratification in the water column. Turbidity is measured using light-scattering from suspended solids in water, and is used as a surrogate for suspended-sediment concentration (SSC). Suspended sediment often carries adsorbed contaminants; attenuates sunlight in the water column; deposits on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; and deposits in ports and shipping channels, which can necessitate dredging. Dissolved oxygen, which is essential to a healthy ecosystem, is a fundamental indicator of water quality, and its concentration is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically change on a daily cycle: consequently, salinity, water temperature, suspendedsediment concentration, and dissolvedoxygen concentration vary spatially and temporally throughout the bay, and continuous measurements are needed to observe these changes. The purpose of this fact sheet is to inform the public and resource managers of the availability of these water-quality data.
Løkke, Mette Marie; Seefeldt, Helene Fast; Edwards, Gareth; Green, Ole
2011-01-01
In order to design optimal packages, it is of pivotal importance to determine the rate at which harvested fresh fruits and vegetables consume oxygen. The respiration rate of oxygen (RRO2) is determined by measuring the consumed oxygen per hour per kg plant material, and the rate is highly influenced by temperature and gas composition. Traditionally, RRO2 has been determined at discrete time intervals. In this study, wireless sensor networks (WSNs) were used to determine RRO2 continuously in plant material (fresh cut broccoli florets) at 5 °C, 10 °C and 20 °C and at modified gas compositions (decreasing oxygen and increasing carbon dioxide levels). Furthermore, the WSN enabled concomitant determination of oxygen and temperature in the very close vicinity of the plant material. This information proved a very close relationship between changes in temperature and respiration rate. The applied WSNs were unable to determine oxygen levels lower than 5% and carbon dioxide was not determined. Despite these drawbacks in relation to respiration analysis, the WSNs offer a new possibility to do continuous measurement of RRO2 in post harvest research, thereby investigating the close relation between temperature and RRO2. The conclusions are that WSNs have the potential to be used as a monitor of RRO2 of plant material after harvest, during storage and packaging, thereby leading to optimized consumer products. PMID:22164085
Code of Federal Regulations, 2013 CFR
2013-07-01
... regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or...
Monitoring and Prediction of Precipitable Water Vapor using GPS data in Turkey
NASA Astrophysics Data System (ADS)
Ansari, Kutubuddin; Althuwaynee, Omar F.; Corumluoglu, Ozsen
2016-12-01
Although Global Positioning System (GPS) primarily provide accurate estimates of position, velocity and time of the receiver, as the signals pass through the atmoshphere carrying its signatures, thus offers opportunities for atmoshpheric applications. Precipitable water vapor (PWV) is a vital component of the atmosphere and significantly influences atmospheric processes like rainfall and atmospheric temperature. The developing networks of continuously operating GPS can be used to efficiently estimate PWV. The Turkish Permanent GPS Network (TPGN) is employed to monitor PWV information in Turkey. This work primarily aims to derive long-term data of PWV by using atmospheric path delays observed through continuously operating TPGN from November 2014 to October 2015. A least square mathematical approach was then applied to establish the relation of the observed PWV to rainfall and temperature. The modeled PWV was correlated with PWV estimated from GPS data, with an average correlation of 67.10 %-88.60 %. The estimated root mean square error (RMSE) varied from 2.840 to 6.380, with an average of 4.697. Finally, data of TPGN, rainfall, and temperature were obtained for less than 2 months (November 2015 to December 2015) and assessed to validate the mathematical model. This study provides a basis for determining PWV by using rainfall and temperature data.
Wagner, Richard J.; Mattraw, Harold C.; Ritz, George F.; Smith, Brett A.
2000-01-01
The U.S. Geological Survey uses continuous water-quality monitors to assess variations in the quality of the Nation's surface water. A common system configuration for data collection is the four-parameter water-quality monitoring system, which collects temperature, specific conductance, dissolved oxygen, and pH data, although systems can be configured to measure other properties such as turbidity or chlorophyll. The sensors that are used to measure these water properties require careful field observation, cleaning, and calibration procedures, as well as thorough procedures for the computation and publication of final records. Data from sensors can be used in conjunction with collected samples and chemical analyses to estimate chemical loads. This report provides guidelines for site-selection considerations, sensor test methods, field procedures, error correction, data computation, and review and publication processes. These procedures have evolved over the past three decades, and the process continues to evolve with newer technologies.
Hu, Ming-Ming; Emamipour, Hamidreza; Johnsen, David L; Rood, Mark J; Song, Linhua; Zhang, Zailong
2017-07-05
Adsorption systems typically need gas and temperature sensors to monitor their adsorption/regeneration cycles to separate gases from gas streams. Activated carbon fiber cloth (ACFC)-electrothermal swing adsorption (ESA) is an adsorption system that has the potential to be controlled with the electrical properties of the adsorbent and is studied here to monitor and control the adsorption/regeneration cycles without the use of gas and temperature sensors and to predict breakthrough before it occurs. The ACFC's electrical resistance was characterized on the basis of the amount of adsorbed organic gas/vapor and the adsorbent temperature. These relationships were then used to develop control logic to monitor and control ESA cycles on the basis of measured resistance and applied power values. Continuous sets of adsorption and regeneration cycles were performed sequentially entirely on the basis of remote electrical measurements and achieved ≥95% capture efficiency at inlet concentrations of 2000 and 4000 ppm v for isobutane, acetone, and toluene in dry and elevated relative humidity gas streams, demonstrating a novel cyclic ESA system that does not require gas or temperature sensors. This contribution is important because it reduces the cost and simplifies the system, predicts breakthrough before its occurrence, and reduces emissions to the atmosphere.
Cabin Atmosphere Monitoring System (CAMS), pre-prototype model development continuation
NASA Technical Reports Server (NTRS)
Bursack, W. W.; Harris, W. A.
1975-01-01
The development of the Cabin Atmosphere Monitoring System (CAMS) is described. Attention was directed toward improving stability and reliability of the design using flight application guidelines. Considerable effort was devoted to the development of a temperature-stable RF/DC generator used for excitation of the quadrupole mass filter. Minor design changes were made in the preprototype model. Specific gas measurement examples are included along with a discussion of the measurement rationale employed.
Adjustment of sleep and the circadian temperature rhythm after flights across nine time zones
NASA Technical Reports Server (NTRS)
Gander, Philippa H.; Myhre, Grete; Graeber, R. Curtis; Lauber, John K.; Andersen, Harald T.
1989-01-01
The adjustment of sleep-wake patterns and the circadian temperature rhythm was monitored in nine Royal Norwegian Airforce volunteers operating P-3 aircraft during a westward training deployment across nine time zones. Subjects recorded all sleep and nap times, rated nightly sleep quality, and completed personality inventories. Rectal temperature, heart rate, and wrist activity were continuously monitored. Adjustment was slower after the return eastward flight than after the outbound westward flight. The eastward flight produced slower readjustment of sleep timing to local time and greater interindividual variability in the patterns of adjustment of sleep and temperature. One subject apparently exhibited resynchronization by partition, with the temperature rhythm undergoing the reciprocal 15-h delay. In contrast, average heart rates during sleep were significantly elevated only after westward flight. Interindividual differences in adjustment of the temperature rhythm were correlated with some of the personality measures. Larger phase delays in the overall temperature waveform (as measured on the 5th day after westward flight) were exhibited by extraverts, and less consistently by evening types.
Fiber-Optic Surface Temperature Sensor Based on Modal Interference.
Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc
2016-07-28
Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.
Trontz, Adam; Cheng, Baokai; Zeng, Shixuan; Xiao, Hai; Dong, Junhang
2015-01-01
Metal-ceramic coaxial cable Fabry-Pérot interferometric (MCCC-FPI) sensors have been developed using a stainless steel tube and a stainless steel wire as the outer and inner conductors, respectively; a tubular α-alumina insulator; and a pair of air gaps created in the insulator along the cable to serve as weak reflectors for the transmitting microwave (MW) signal. The MCCC-FPI sensors have been demonstrated for high temperature measurements using MW signals in a frequency range of 2–8 GHz. The temperature measurement is achieved by monitoring the frequency shift (Δƒ) of the MW interferogram reflected from the pair of weak reflectors. The MW sensor exhibited excellent linear dependence of Δƒ on temperature; small measurement deviations (±2.7%); and fast response in a tested range of 200–500 °C. The MCCC has the potential for further developing multipoint FPI sensors in a single-cable to achieve in situ and continuous measurement of spatially distributed temperature in harsh environments. PMID:26404280
Trontz, Adam; Cheng, Baokai; Zeng, Shixuan; Xiao, Hai; Dong, Junhang
2015-09-25
Metal-ceramic coaxial cable Fabry-Pérot interferometric (MCCC-FPI) sensors have been developed using a stainless steel tube and a stainless steel wire as the outer and inner conductors, respectively; a tubular α-alumina insulator; and a pair of air gaps created in the insulator along the cable to serve as weak reflectors for the transmitting microwave (MW) signal. The MCCC-FPI sensors have been demonstrated for high temperature measurements using MW signals in a frequency range of 2-8 GHz. The temperature measurement is achieved by monitoring the frequency shift (Δƒ) of the MW interferogram reflected from the pair of weak reflectors. The MW sensor exhibited excellent linear dependence of Δƒ on temperature; small measurement deviations (±2.7%); and fast response in a tested range of 200-500 °C. The MCCC has the potential for further developing multipoint FPI sensors in a single-cable to achieve in situ and continuous measurement of spatially distributed temperature in harsh environments.
NASA Astrophysics Data System (ADS)
Ferrari, Luca; Rovati, Luigi; Fabbri, Paola; Pilati, Francesco
2013-02-01
During extracorporeal circulation (ECC), blood is periodically sampled and analyzed to maintain the blood-gas status of the patient within acceptable limits. This protocol has well-known drawbacks that may be overcome by continuous monitoring. We present the characterization of a new pH sensor for continuous monitoring in ECC. This monitoring device includes a disposable fluorescence-sensing element directly in contact with the blood, whose fluorescence intensity is strictly related to the pH of the blood. In vitro experiments show no significant difference between the blood gas analyzer values and the sensor readings; after proper calibration, it gives a correlation of R>0.9887, and measuring errors were lower than the 3% of the pH range of interest (RoI) with respect to a commercial blood gas analyzer. This performance has been confirmed also by simulating a moderate ipothermia condition, i.e., blood temperature 32°C, frequently used in cardiac surgery. In ex vivo experiments, performed with animal models, the sensor is continuously operated in an extracorporeal undiluted blood stream for a maximum of 11 h. It gives a correlation of R>0.9431, and a measuring error lower than the 3% of the pH RoI with respect to laboratory techniques.
Ferrari, Luca; Rovati, Luigi; Fabbri, Paola; Pilati, Francesco
2013-02-01
During extracorporeal circulation (ECC), blood is periodically sampled and analyzed to maintain the blood-gas status of the patient within acceptable limits. This protocol has well-known drawbacks that may be overcome by continuous monitoring. We present the characterization of a new pH sensor for continuous monitoring in ECC. This monitoring device includes a disposable fluorescence-sensing element directly in contact with the blood, whose fluorescence intensity is strictly related to the pH of the blood. In vitro experiments show no significant difference between the blood gas analyzer values and the sensor readings; after proper calibration, it gives a correlation of R>0.9887, and measuring errors were lower than the 3% of the pH range of interest (RoI) with respect to a commercial blood gas analyzer. This performance has been confirmed also by simulating a moderate ipothermia condition, i.e., blood temperature 32°C, frequently used in cardiac surgery. In ex vivo experiments, performed with animal models, the sensor is continuously operated in an extracorporeal undiluted blood stream for a maximum of 11 h. It gives a correlation of R>0.9431, and a measuring error lower than the 3% of the pH RoI with respect to laboratory techniques.
A flexible skin patch for continuous physiological monitoring of mental disorders
NASA Astrophysics Data System (ADS)
Jang, Won Ick; Lee, Bong Kuk; Ryu, Jin Hwa; Baek, In-Bok; Yu, Han Young; Kim, Seunghwan
2017-10-01
In this study, we have newly developed a flexible adhesive skin patch of electrocardiogram (ECG) device for continuous physiological monitoring of mental disorders. In addition, this flexible patch did not cause any damage to the skin even after 24 hours attachment. We have also suggested the possibility of novel interconnection for copper film on polyimide and polydimethylsiloxane (PDMS) layers of the flexible patch. Self-align and soldering of IC chips such as resistor between metal pads on flexible skin patch have also successfully fabricated for 5 min at 180 °C in vacuum oven. Low temperature interconnection technology based on a Sn42/Bi58 solder was also developed for flexible ECG devices. As a result, we can monitor the mental health status through a comprehensive analysis of biological signals from flexible ECG devices.
Water quality monitoring and data collection in the Mississippi sound
Runner, Michael S.; Creswell, R.
2002-01-01
The United States Geological Survey and the Mississippi Department of Marine Resources are collecting data on the quality of the water in the Mississippi Sound of the Gulf of Mexico, and streamflow data for its tributaries. The U.S. Geological Survey is collecting continuous water-level data, continuous and discrete water-temperature data, continuous and discrete specific-conductance data, as well as chloride and salinity samples at two locations in the Mississippi Sound and three Corps of Engineers tidal gages. Continuous-discharge data are also being collected at two additional stations on tributaries. The Mississippi Department of Marine Resources collects water samples at 169 locations in the Gulf of Mexico. Between 1800 and 2000 samples are collected annually which are analyzed for turbidity and fecal coliform bacteria. The continuous data are made available real-time through the internet and are being used in conjunction with streamflow data, weather data, and sampling data for the monitoring and management of the oyster reefs, the shrimp fishery and other marine species and their habitats.
46 CFR 154.1810 - Cargo manual.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with inert gas and air. (13) A description of hull and cargo tank temperature monitoring systems. (14... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1810 Cargo manual. (a) No person...
46 CFR 154.1810 - Cargo manual.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with inert gas and air. (13) A description of hull and cargo tank temperature monitoring systems. (14... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1810 Cargo manual. (a) No person...
46 CFR 154.1810 - Cargo manual.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with inert gas and air. (13) A description of hull and cargo tank temperature monitoring systems. (14... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1810 Cargo manual. (a) No person...
46 CFR 154.1810 - Cargo manual.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with inert gas and air. (13) A description of hull and cargo tank temperature monitoring systems. (14... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1810 Cargo manual. (a) No person...
The effect of cooled dialysate on thermal energy balance in hemodialysis patients.
Provenzano, R; Sawaya, B; Frinak, S; Polaschegg, H D; Roy, T; Zasuwa, G; Dumler, F; Levin, N W
1988-01-01
The authors have monitored extracorporeal thermal energy balance using continuous in-line arterial and venous temperature and blood flow measurements. Use of dialysate at 37 degrees C resulted in a mean heat energy gain of 83 +/- 61 cal/min, whereas dialysate at 34 degrees C produced a loss of 463 +/- 121 cal/min. Monitoring extracorporeal thermal energy balance during cooled-dialysate hemodialysis will facilitate the use of feedback loops for dialysate temperature control in order to maximize hemodynamic stability while reducing discomfort. This methodology also may be helpful in assessing the metabolic effects of protein intake, high flux dialysis, membrane biocompatibility, and adequacy of dialysis in relation to thermal energy balance.
Fine PM measurements: personal and indoor air monitoring.
Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H
2002-12-01
This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.
Burggraeve, A; Van den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T
2011-04-18
Fluid bed granulation is a batch process, which is characterized by the processing of raw materials for a predefined period of time, consisting of a fixed spraying phase and a subsequent drying period. The present study shows the multivariate statistical modeling and control of a fluid bed granulation process based on in-line particle size distribution (PSD) measurements (using spatial filter velocimetry) combined with continuous product temperature registration using a partial least squares (PLS) approach. Via the continuous in-line monitoring of the PSD and product temperature during granulation of various reference batches, a statistical batch model was developed allowing the real-time evaluation and acceptance or rejection of future batches. Continuously monitored PSD and product temperature process data of 10 reference batches (X-data) were used to develop a reference batch PLS model, regressing the X-data versus the batch process time (Y-data). Two PLS components captured 98.8% of the variation in the X-data block. Score control charts in which the average batch trajectory and upper and lower control limits are displayed were developed. Next, these control charts were used to monitor 4 new test batches in real-time and to immediately detect any deviations from the expected batch trajectory. By real-time evaluation of new batches using the developed control charts and by computation of contribution plots of deviating process behavior at a certain time point, batch losses or reprocessing can be prevented. Immediately after batch completion, all PSD and product temperature information (i.e., a batch progress fingerprint) was used to estimate some granule properties (density and flowability) at an early stage, which can improve batch release time. Individual PLS models relating the computed scores (X) of the reference PLS model (based on the 10 reference batches) and the density, respectively, flowabililty as Y-matrix, were developed. The scores of the 4 test batches were used to examine the predictive ability of the model. Copyright © 2011 Elsevier B.V. All rights reserved.
Novel MEMS-based thermometer with low power consumption for health-monitoring network application
NASA Astrophysics Data System (ADS)
Zhang, Y.; Ikehara, T.; Lu, J.; Kobayashi, T.; Ichiki, M.; Itoh, T.; Maeda, R.
2007-12-01
We proposed one novel MEMS-based thermometer with low power-consumption for animal/human health-monitoring network application. The novel MEMS-based thermometer was consisted of triple-beam bimorph arrays so that it could work in a continuous temperature range. Neither continuous electric supply nor A/D converter interface is required by the novel thermometer owing to the well-known deflection of bimaterials cantilever upon temperature changes. The triple-beam structure also facilitated the novel thermometer with excellent fabrication feasibility by conventional microfabrication technology. The parameters of the triple-beam bimorph arrays were determined by finite element analysis with ANSYS program. Low stress Au and Mo metal films were used as top and bottom layer, respectively. The deflection of the triple-beam bimorphs were measured on a home-made heating stage by a confocal scanning laser microscopy. The novel bimorphs had temperature responses similar to traditional single-beam bimorphs. Initial bend of the prepared triple-beam bimorphs were dominantly determined by their side beams. The sensitivity of the novel thermometer was as high as 0.1°C. Experimental results showed that the novel thermometer is attractive for network sensing applications where the power capacity is limited.
Climate change, global warming and coral reefs: modelling the effects of temperature.
Crabbe, M James C
2008-10-01
Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.
Villalonga, Claudia; Damas, Miguel
2014-01-01
Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices. PMID:25295301
Banos, Oresti; Villalonga, Claudia; Damas, Miguel; Gloesekoetter, Peter; Pomares, Hector; Rojas, Ignacio
2014-01-01
Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices.
Biofouling and the continuous monitoring of underwater light from a seagrass perspective
Onuf, C.P.
2006-01-01
For more than a decade, inexpensive electronic instruments have made continuous underwater light monitoring an integral part of many seagrass studies. Although biofouling, if not controlled, compromises the utility of the record. A year-long assessment of the time course of sensor fouling, in the Laguna Madre of Texas established that light transmitted through the fouling layer after 2 wk of exposure exceeded 90% except for a 6-8 wk period in May and June. On that basis, a 2-wk interval was chosen for routine servicing. Subsequent monitoring proved this choice to be grossly in error. The period of sub-90% transmittance after 2 wk extended to 4-6 mo annually over the next 3 yr. Fouling was strongly correlated with temperature, ambient light, and year. Since an algal bloom of 7-yr duration finally waned during this study, increased ambient light seemed most likely to explain increased fouling later in the study. The explanatory value of light was less than temperature or year in multiple regression, requiring some other explanation of the date effect than change in ambient light. Allelopathic and suspension-feeding depressant effects of the brown tide are offered as the most likely cause of unusually low fouling in the first year. Biofouling was so unpredictable and rapid in this study that at least weekly maintenance would be required to assure reliability of the light monitoring record. ?? 2006 Estuarine Research Federation.
Groschen, George E.; King, Robin B.
2005-01-01
Eight streams, representing a wide range of environmental and water-quality conditions across Illinois, were monitored from July 2001 to October 2003 for five water-quality parameters as part of a pilot study by the U.S. Geological Survey (USGS) in cooperation with the Illinois Environmental Protection Agency (IEPA). Continuous recording multi-parameter water-quality monitors were installed to collect data on water temperature, dissolved-oxygen concentrations, specific conductivity, pH, and turbidity. The monitors were near USGS streamflow-gaging stations where stage and streamflow are continuously recorded. During the study period, the data collected for these five parameters generally met the data-quality objectives established by the USGS and IEPA at all eight stations. A similar pilot study during this period for measurement of chlorophyll concentrations failed to achieve the data-quality objectives. Of all the sensors used, the temperature sensors provided the most accurate and reliable measurements (generally within ?5 percent of a calibrated thermometer reading). Signal adjustments and calibration of all other sensors are dependent upon an accurate and precise temperature measurement. The dissolved-oxygen sensors were the next most reliable during the study and were responsive to changing conditions and accurate at all eight stations. Specific conductivity was the third most accurate and reliable measurement collected from the multi-parameter monitors. Specific conductivity at the eight stations varied widely-from less than 40 microsiemens (?S) at Rayse Creek near Waltonville to greater than 3,500 ?S at Salt Creek at Western Springs. In individual streams, specific conductivity often changed quickly (greater than 25 percent in less than 3 hours) and the sensors generally provided good to excellent record of these variations at all stations. The widest range of specific-conductivity measurements was in Salt Creek at Western Springs in the Greater Chicago metropolitan area. Unlike temperature, dissolved oxygen, and specific conductivity that have been typically measured over a wide range of historical streamflow conditions in many streams, there are few historical turbidity data and the full range of turbidity values is not well known for many streams. Because proposed regional criteria for turbidity in regional streams are based on upper 25th percentiles of concentration in reference streams, accurate determination of the distribution of turbidity in monitored streams is important. Digital data from all five sensors were recorded within each of the eight sondes deployed in the streams and in automated data recorders in the nearby streamflow-gaging houses at each station. The data recorded on each sonde were retrieved to a field laptop computer at each station visit. The feasibility of transmitting these data in near-real time to a central processing point for dissemination on the World-Wide Web was tested successfully. Data collected at all eight stations indicate that a number of factors affect the dissolved-oxygen concentration in the streams and rivers monitored. These factors include: temperature, biological activity, nutrient runoff, and weather (storm runoff). During brief periods usually in late summer, dissolved-oxygen concentrations in half or more of the eight streams and rivers monitored were below the 5 milligrams per liter minimum established by the Illinois Pollution Control Board to protect aquatic life. Because the streams monitored represent a wide range in water-quality and environmental conditions, including diffuse (non-point) runoff and wastewater-effluent contributions, this result indicates that deleterious low dissolved-oxygen concentrations during late summer may be widespread in Illinois streams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mok, W.Y.; Cox, W.M.
1992-12-01
The work described in this report was the first British in-plant application of continuous online electrochemical corrosion monitoring technology in pulverized coal-fired superheater environments. The work was conducted at Drax Power Station, National Power plc, UK. The investigation was to evaluate the relative corrosion performance of stainless steel Alloys 316 and 310. Two electrochemical sensor assemblies fabricated from the test alloys were attached to the end of a coupon exposure probe which was inserted into the superheater section of a 660MW boiler. The probe assemblies were exposed at a nominal temperature of 665{degrees}C (1229{degrees}F) during the trial. two series ofmore » short term temperature scanning tests were carried out. Alloy 310 performed comparatively better than Alloy 316. Minimal corrosion loss was sustained by Alloy 310 whilst a characteristic wastage flat was observed on Alloy 316. It was shown that variations in boiler operation could affect the minute-to-minute corrosion behavior of the test materials. The results of the brief temperature scan program indicated a trend of increasing corrosion with exposure temperature. No evidence was observed of the ``bell-shaped`` curve behavior reported in laboratory studies of molten salt corrosion. Metallographic examination of the sensors indicated that only small and discrete areas of internal sulfur enrichment beneath the surface scale. This is untypical of the morphology of sulfur enriched scale found in molten salt corrosion systems. The corrosion processes were predominately in the form of oxidation/sulfidation. The formation of a wastage flat was postulated to have been caused by an electrochemical mechanism similar to that of flow assisted corrosion in aqueous electrolytes. These results confirmed that continuous on-line electrochemical instrumentation could be used to investigate, monitor and characterize high temperature oxidation in power generation boiler superheaters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mok, W.Y.; Cox, W.M.
1992-12-01
The work described in this report was the first British in-plant application of continuous online electrochemical corrosion monitoring technology in pulverized coal-fired superheater environments. The work was conducted at Drax Power Station, National Power plc, UK. The investigation was to evaluate the relative corrosion performance of stainless steel Alloys 316 and 310. Two electrochemical sensor assemblies fabricated from the test alloys were attached to the end of a coupon exposure probe which was inserted into the superheater section of a 660MW boiler. The probe assemblies were exposed at a nominal temperature of 665[degrees]C (1229[degrees]F) during the trial. two series ofmore » short term temperature scanning tests were carried out. Alloy 310 performed comparatively better than Alloy 316. Minimal corrosion loss was sustained by Alloy 310 whilst a characteristic wastage flat was observed on Alloy 316. It was shown that variations in boiler operation could affect the minute-to-minute corrosion behavior of the test materials. The results of the brief temperature scan program indicated a trend of increasing corrosion with exposure temperature. No evidence was observed of the bell-shaped'' curve behavior reported in laboratory studies of molten salt corrosion. Metallographic examination of the sensors indicated that only small and discrete areas of internal sulfur enrichment beneath the surface scale. This is untypical of the morphology of sulfur enriched scale found in molten salt corrosion systems. The corrosion processes were predominately in the form of oxidation/sulfidation. The formation of a wastage flat was postulated to have been caused by an electrochemical mechanism similar to that of flow assisted corrosion in aqueous electrolytes. These results confirmed that continuous on-line electrochemical instrumentation could be used to investigate, monitor and characterize high temperature oxidation in power generation boiler superheaters.« less
MULTIYEAR REAL-TIME MONITORING OF PARTICLES, PAH, AND BLACK CARBON IN AN OCCUPIED HOUSE
Concentrations of ultrafine, fine, and coarse particles, particle-bound polycyclic aromatic hydrocarbons (PAH), and black carbon have been measured continuously (every 1 to 5 minutes) in an occupied townhouse for 2-3 years. Also, since the summer of 1999, temperature (outdoors...
To investigate the practicality of hypothermia and hypometabolism as sensitive indices of toxicity in the mouse, oxygen consumption was monitored continuously and body temperature was measured at 30 min post-injection following the intraperitoneal administration of various metal ...
NASA Astrophysics Data System (ADS)
Shao, Honglan; Xie, Feng; Liu, Chengyu; Liu, Zhihui; Zhang, Changxing; Yang, Gui; Wang, Jianyu
2016-04-01
The cooling water discharged from the coastal plants flow into the sea continuously, whose temperature is higher than original sea surface temperature (SST). The fact will have non-negligible influence on the marine environment in and around where the plants site. Hence, it's significant to monitor the temporal and spatial variation of the warm-water discharge for the assessment of the effect of the plant on its surrounding marine environment. The paper describes an approach for the dynamic monitoring of the warm-water discharge of coastal plants based on the airborne high-resolution thermal infrared remote sensing technology. Firstly, the geometric correction was carried out for the thermal infrared remote sensing images acquired on the aircraft. Secondly, the atmospheric correction method was used to retrieve the sea surface temperature of the images. Thirdly, the temperature-rising districts caused by the warm-water discharge were extracted. Lastly, the temporal and spatial variations of the warm-water discharge were analyzed through the geographic information system (GIS) technology. The approach was applied to Qinshan nuclear power plant (NPP), in Zhejiang Province, China. In considering with the tide states, the diffusion, distribution and temperature-rising values of the warm-water discharged from the plant were calculated and analyzed, which are useful to the marine environment assessment.
A Smartphone-Based Driver Safety Monitoring System Using Data Fusion
Lee, Boon-Giin; Chung, Wan-Young
2012-01-01
This paper proposes a method for monitoring driver safety levels using a data fusion approach based on several discrete data types: eye features, bio-signal variation, in-vehicle temperature, and vehicle speed. The driver safety monitoring system was developed in practice in the form of an application for an Android-based smartphone device, where measuring safety-related data requires no extra monetary expenditure or equipment. Moreover, the system provides high resolution and flexibility. The safety monitoring process involves the fusion of attributes gathered from different sensors, including video, electrocardiography, photoplethysmography, temperature, and a three-axis accelerometer, that are assigned as input variables to an inference analysis framework. A Fuzzy Bayesian framework is designed to indicate the driver’s capability level and is updated continuously in real-time. The sensory data are transmitted via Bluetooth communication to the smartphone device. A fake incoming call warning service alerts the driver if his or her safety level is suspiciously compromised. Realistic testing of the system demonstrates the practical benefits of multiple features and their fusion in providing a more authentic and effective driver safety monitoring. PMID:23247416
Murphy, Jennifer C.; Farmer, James; Layton, Alice
2016-06-13
The U.S. Geological Survey, in cooperation with the Tennessee Duck River Development Agency, monitored water quality at several locations in the upper Duck River watershed between October 2007 and September 2010. Discrete water samples collected at 24 sites in the watershed were analyzed for water quality, and Escherichia coli (E. coli) and enterococci concentrations. Additional analyses, including the determination of anthropogenic-organic compounds, bacterial concentration of resuspended sediment, and bacterial-source tracking, were performed at a subset of sites. Continuous monitoring of streamflow, turbidity, and specific conductance was conducted at seven sites; a subset of sites also was monitored for water temperature and dissolved oxygen concentration. Multiple-regression models were developed to predict instantaneous E. coli concentrations and loads at sites with continuous monitoring. This data collection effort, along with the E. coli models and predictions, support analyses of the relations among land use, bacteria source and transport, and basin hydrology in the upper Duck River watershed.
Nakata, Shogo; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2017-03-24
Real-time daily healthcare monitoring may increase the chances of predicting and diagnosing diseases in their early stages which, currently, occurs most frequently during medical check-ups. Next-generation noninvasive healthcare devices, such as flexible multifunctional sensor sheets designed to be worn on skin, are considered to be highly suitable candidates for continuous real-time health monitoring. For healthcare applications, acquiring data on the chemical state of the body, alongside physical characteristics such as body temperature and activity, are extremely important for predicting and identifying potential health conditions. To record these data, in this study, we developed a wearable, flexible sweat chemical sensor sheet for pH measurement, consisting of an ion-sensitive field-effect transistor (ISFET) integrated with a flexible temperature sensor: we intend to use this device as the foundation of a fully integrated, wearable healthcare patch in the future. After characterizing the performance, mechanical flexibility, and stability of the sensor, real-time measurements of sweat pH and skin temperature are successfully conducted through skin contact. This flexible integrated device has the potential to be developed into a chemical sensor for sweat for applications in healthcare and sports.
NASA Astrophysics Data System (ADS)
Ubertini, Filippo; Comanducci, Gabriele; Cavalagli, Nicola; Laura Pisello, Anna; Luigi Materazzi, Annibale; Cotana, Franco
2017-01-01
Continuously identified natural frequencies of vibration can provide unique information for low-cost automated condition assessment of civil constructions and infrastructures. However, the effects of changes in environmental parameters, such as temperature and humidity, need to be effectively investigated and accurately removed from identified frequency data for an effective performance assessment. This task is particularly challenging in the case of historical constructions that are typically massive and heterogeneous masonry structures characterized by complex variations of materials' properties with varying environmental parameters and by a differential heat conduction process where thermal capacity plays a major role. While there is abundance of documented monitoring data highlighting correlations between environmental parameters and natural frequencies in the case of new structures, such as long-span bridges, similar studies for historical constructions are still missing, with only a few literature works occasionally reporting increments in natural frequencies with increasing temperature of construction materials due to the closure of internal micro-cracks in the mortar layers caused by thermal expansion. In order to gain some knowledge on the effects of changes in temperature and humidity on the natural frequencies of slender masonry buildings, the paper focuses on the case study of an Italian monumental bell tower that has been monitored by the authors for more than nine months. Correlations between natural frequencies and environmental parameters are investigated in detail and the predictive capabilities of linear statistical regressive models based on the use of several environmental continuous monitoring sensors are assessed. At the end, three basic mechanisms governing environmentally-induced changes in the dynamic behavior of the tower are identified and essential information is achieved on the optimal location and minimum number of environmental sensors that are necessary in a structural health monitoring perspective.
Maintaining Perioperative Normothermia: Sustaining an Evidence-Based Practice Improvement Project.
Levin, Rona F; Wright, Fay; Pecoraro, Kathleen; Kopec, Wendy
2016-02-01
Unintentional perioperative hypothermia has been shown to cause serious patient complications and, thus, to increase health care costs. In 2009, an evidence-based practice improvement project produced a significant decrease in unintentional perioperative hypothermia in colorectal surgical patients through monitoring of OR ambient room temperature. Project leaders engaged all interdisciplinary stakeholders in the original project, which facilitated the sustainability of the intervention method. An important aspect of sustainability is ongoing monitoring and evaluation of a new intervention method. Therefore, continued evaluation of outcomes of the protocol developed in 2009 was scheduled at specific time points after the initial small test of change with colorectal patients. This article focuses on how attention to sustainability factors during implementation of an improvement project led to the sustainability of a protocol for monitoring OR ambient room temperature with all types of surgical patients five years after the initial project. Copyright © 2016 AORN, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Krotov, Eugene V.; Yakovlev, Ivan V.; Zhadobov, Maxim; Reyman, Alexander M.; Zharov, Vladimir P.
2002-06-01
This work present the results of experimental study of applicability of acoustical brightness thermometry (ABT) in monitoring of internal temperature during laser hyperthermia and interstitial therapy. In these experiments the radiation of pulse repetition Nd:YAG laser (1064 nm) and continuous diode laser (800 nm) were used as heating sources. Experiments were performed in vitro by insertion of optical fiber inside the objects - optically transparent gelatin with incorporated light absorbing heterogeneities and samples of biological tissues (e.g. liver). During laser heating, internal temperature in absorbing heterogeneity and at fiber end were monitored by means of multi-channel ABT. The independent temperature control was performed with tiny electronic thermometer incorporated in heated zones. The results of experiments demonstrated reasonable sensitivity and accuracy of ABT for real-time temperature control during different kind of laser thermal therapies. According to preliminary data, ABT allow to measure temperature in depth up to 3-5 cm (depends on tissue properties) with spatial resolution some mm. Obtained data show that ABT is a very promising tool to give quantitative measure for different types of energy deposition (laser, microwave, focused ultrasound etc) at the depth commonly encountered in tumors of vital organs. Besides, ABT could give information about diffusion effects in heated zones or optical absorption. This work was supported by Russian Foundation for Basic Research and 6th competition-expertise of young scientists of Russian Academy of Sciences.
Thermal diffusivity and nuclear spin relaxation: a continuous wave free precession NMR study.
Venâncio, Tiago; Engelsberg, Mario; Azeredo, Rodrigo B V; Colnago, Luiz A
2006-07-01
Continuous wave free precession (CWFP) nuclear magnetic resonance is capable of yielding quantitative and easily obtainable information concerning the kinetics of processes that change the relaxation rates of the nuclear spins through the action of some external agent. In the present application, heat flow from a natural rubber sample to a liquid nitrogen thermal bath caused a large temperature gradient leading to a non-equilibrium temperature distribution. The ensuing local changes in the relaxation rates could be monitored by the decay of the CWFP signals and, from the decays, it was possible to ascertain the prevalence of a diffusive process and to obtain an average value for the thermal diffusivity.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., or to temperature simulation devices. (vi) Conduct a visual inspection of each sensor every quarter... sensor values with electronic signal simulations or via relative accuracy testing. (v) Perform accuracy... values with electronic signal simulations or with values obtained via relative accuracy testing. (vi...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., or to temperature simulation devices. (vi) Conduct a visual inspection of each sensor every quarter... sensor values with electronic signal simulations or via relative accuracy testing. (v) Perform accuracy... values with electronic signal simulations or with values obtained via relative accuracy testing. (vi...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., or to temperature simulation devices. (vi) Conduct a visual inspection of each sensor every quarter... sensor values with electronic signal simulations or via relative accuracy testing. (v) Perform accuracy... values with electronic signal simulations or with values obtained via relative accuracy testing. (vi...
Continous Monitoring of Melt Composition
NASA Technical Reports Server (NTRS)
Frazer, R. E.; Andrews, T. W.
1984-01-01
Compositions of glasses and alloys analyzed and corrected in real time. Spectral analysis and temperature measurement performed simultaneously on molten material in container, such as open-hearth furnace, crucible or tank of continuous furnace. Speed of analysis makes it possible to quickly measure concentration of volatile elements depleted by prolonged heating.
Temperature imaging with ultrasonic transmission tomography for treatment control
NASA Astrophysics Data System (ADS)
Chu, Zheqi; Pinter, Stephen. Z.; Yuan, Jie; Scarpelli, Matthew L.; Kripfgans, Oliver D.; Fowlkes, J. Brian; Duric, Neb; Carson, Paul L.
2017-03-01
Hyperthermia is a promising method to enhance chemo- or radiation therapy of breast cancer and the time-temperature profile in the target and surrounding areas is the primary monitoring method. Unlike with thermal ablation of lesions, in hyperthermia there are not good alternative treatment monitoring quantities. However, there is less problem with non-monotonic thermal coefficients of speed of sound used with ultrasonic imaging of temperature. This paper tests a long discussed but little investigated method of imaging temperature using speed of sound and proposes methods of reducing edge enhancement artifacts in the temperature image. Normally, when directly using the speed of sound to reconstruct the temperature image around the tumor, there will be an abnormal bipolar edge enhancement along the boundary between two materials with different speeds of sound at a given temperature. This due to partial volume effects and can be diminished by regularized, weighted deconvolution. An initial, manual deconvolution is shown, as well as an EMD (Empirical Mode Decomposition) method. Here we use the continuity and other constraints to choose the coefficient, reprocess the temperature field image and take the mean variations of the temperature in the adjacent pixels as the judgment criteria. Both methods effectively reduce the edge enhancement and produce a more precise image of temperature.
Temperature monitoring during cardiopulmonary bypass--do we undercool or overheat the brain?
Kaukuntla, Hemanth; Harrington, Deborah; Bilkoo, Inderaj; Clutton-Brock, Tom; Jones, Timothy; Bonser, Robert S
2004-09-01
Brain cooling is an essential component of aortic surgery requiring circulatory arrest and inadequate cooling may lead to brain injury. Similarly, brain hyperthermia during the rewarming phase of cardiopulmonary bypass may also lead to neurological injury. Conventional temperature monitoring sites may not reflect the core brain temperature (Tdegrees). We compared jugular bulb venous temperatures (JB) during deep hypothermic circulatory arrest and normothermic bypass with Nasopharyngeal (NP), Arterial inflow (AI), Oesophageal (O), Venous return (VR), Bladder (B) and Orbital skin (OS) temperatures. 18 patients undergoing deep hypothermia (DH) and 8 patients undergoing normothermic bypass (mean bladder Tdegrees-36.29 degreesC) were studied. For DH, cooling was continued to 15 degreesC NP (mean cooling time-66 min). At pre-determined arterial inflow Tdegrees, NP, JB and O Tdegree's were measured. A 6-channel recorder continuously recorded all Tdegree's using calibrated thermocouples. During the cooling phase of DH, NP lagged behind AI and JB Tdegree's. All these equilibrated at 15 degreesC. During rewarming, JB and NP lagged behind AI and JB was higher than NP at any time point. During normothermic bypass, although NP was reflective of the AI and JB Tdegrees trends, it underestimated peak JB Tdegrees (P=0.001). Towards the end of bypass, peak JB was greater than the arterial inflow Tdegrees (P=0.023). If brain venous outflow Tdegrees (JB) accurately reflects brain Tdegrees, NP Tdegrees is a safe surrogate indicator of cooling. During rewarming, all peripheral sites underestimate brain temperature and caution is required to avoid hyperthermic arterial inflow, which may inadvertently, result in brain hyperthermia.
On line instrument systems for monitoring steam turbogenerators
NASA Astrophysics Data System (ADS)
Clapis, A.; Giorgetti, G.; Lapini, G. L.; Benanti, A.; Frigeri, C.; Gadda, E.; Mantino, E.
A computerized real time data acquisition and data processing for the diagnosis of malfunctioning of steam turbogenerator systems is described. Pressure, vibration and temperature measurements are continuously collected from standard or special sensors including startup or stop events. The architecture of the monitoring system is detailed. Examples of the graphics output are presented. It is shown that such a system allows accurate diagnosis and the possibility of creating a data bank to describe the dynamic characteristics of the machine park.
Development of Sesquioxide Ceramic for High Energy Lasers
2015-05-25
CSJ308 , Mutsuno, Atsuta- ku Nagoya 456-0023 Japan 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 9. SPONSORING/MONITORING AGENCY NAME...Labo Co., Ltd.,1-2-19-CSJ308 , Mutsuno, Atsuta- ku ,Nagoya 456-0023,Japan,NA,NA 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 9. SPONSORING/MONITORING...Huang, D. Shen , J. Zhang, H. Chen, Y. Wang, X. Liu, D. Tang, “Room Temperature Continuous-wave Laser Performance of LD Pumped Er:Lu2O3 and Er:Y2O3
NASA Astrophysics Data System (ADS)
Korotaev, Valery V.; Denisov, Victor M.; Rodrigues, Joel J. P. C.; Serikova, Mariya G.; Timofeev, Andrey V.
2015-05-01
The paper deals with the creation of integrated monitoring systems. They combine fiber-optic classifiers and local sensor networks. These systems allow for the monitoring of complex industrial objects. Together with adjacent natural objects, they form the so-called geotechnical systems. An integrated monitoring system may include one or more spatially continuous fiber-optic classifiers based on optic fiber and one or more arrays of discrete measurement sensors, which are usually combined in sensor networks. Fiber-optic classifiers are already widely used for the control of hazardous extended objects (oil and gas pipelines, railways, high-rise buildings, etc.). To monitor local objects, discrete measurement sensors are generally used (temperature, pressure, inclinometers, strain gauges, accelerometers, sensors measuring the composition of impurities in the air, and many others). However, monitoring complex geotechnical systems require a simultaneous use of continuous spatially distributed sensors based on fiber-optic cable and connected local discrete sensors networks. In fact, we are talking about integration of the two monitoring methods. This combination provides an additional way to create intelligent monitoring systems. Modes of operation of intelligent systems can automatically adapt to changing environmental conditions. For this purpose, context data received from one sensor (e.g., optical channel) may be used to change modes of work of other sensors within the same monitoring system. This work also presents experimental results of the prototype of the integrated monitoring system.
Space Biosensor Systems: Implications for Technology Transfer
NASA Technical Reports Server (NTRS)
Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)
1997-01-01
To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.
Quality tracing in meat supply chains
Mack, Miriam; Dittmer, Patrick; Veigt, Marius; Kus, Mehmet; Nehmiz, Ulfert; Kreyenschmidt, Judith
2014-01-01
The aim of this study was the development of a quality tracing model for vacuum-packed lamb that is applicable in different meat supply chains. Based on the development of relevant sensory parameters, the predictive model was developed by combining a linear primary model and the Arrhenius model as the secondary model. Then a process analysis was conducted to define general requirements for the implementation of the temperature-based model into a meat supply chain. The required hardware and software for continuous temperature monitoring were developed in order to use the model under practical conditions. Further on a decision support tool was elaborated in order to use the model as an effective tool in combination with the temperature monitoring equipment for the improvement of quality and storage management within the meat logistics network. Over the long term, this overall procedure will support the reduction of food waste and will improve the resources efficiency of food production. PMID:24797136
Quality tracing in meat supply chains.
Mack, Miriam; Dittmer, Patrick; Veigt, Marius; Kus, Mehmet; Nehmiz, Ulfert; Kreyenschmidt, Judith
2014-06-13
The aim of this study was the development of a quality tracing model for vacuum-packed lamb that is applicable in different meat supply chains. Based on the development of relevant sensory parameters, the predictive model was developed by combining a linear primary model and the Arrhenius model as the secondary model. Then a process analysis was conducted to define general requirements for the implementation of the temperature-based model into a meat supply chain. The required hardware and software for continuous temperature monitoring were developed in order to use the model under practical conditions. Further on a decision support tool was elaborated in order to use the model as an effective tool in combination with the temperature monitoring equipment for the improvement of quality and storage management within the meat logistics network. Over the long term, this overall procedure will support the reduction of food waste and will improve the resources efficiency of food production.
Guidelines for the collection of continuous stream water-temperature data in Alaska
Toohey, Ryan C.; Neal, Edward G.; Solin, Gary L.
2014-01-01
Objectives of stream monitoring programs differ considerably among many of the academic, Federal, state, tribal, and non-profit organizations in the state of Alaska. Broad inclusion of stream-temperature monitoring can provide an opportunity for collaboration in the development of a statewide stream-temperature database. Statewide and regional coordination could reduce overall monitoring cost, while providing better analyses at multiple spatial and temporal scales to improve resource decision-making. Increased adoption of standardized protocols and data-quality standards may allow for validation of historical modeling efforts with better projection calibration. For records of stream water temperature to be generally consistent, unbiased, and reproducible, data must be collected and analyzed according to documented protocols. Collection of water-temperature data requires definition of data-quality objectives, good site selection, proper selection of instrumentation, proper installation of sensors, periodic site visits to maintain sensors and download data, pre- and post-deployment verification against an NIST-certified thermometer, potential data corrections, and proper documentation, review, and approval. A study created to develop a quality-assurance project plan, data-quality objectives, and a database management plan that includes procedures for data archiving and dissemination could provide a means to standardize a statewide stream-temperature database in Alaska. Protocols can be modified depending on desired accuracy or specific needs of data collected. This document is intended to guide users in collecting time series water-temperature data in Alaskan streams and draws extensively on the broader protocols already published by the U.S. Geological Survey.
Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Livsey, Daniel N.
2018-03-08
The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay (bay) as part of a multi-agency effort to address management, water supply, and ecological concerns. The San Francisco Bay area is home to millions of people, and the bay teems both with resident and with migratory wildlife, plants, and fish. Freshwater mixes with salt water in the bay, which is subject both to riverine influences (floods, droughts, managed reservoir releases and freshwater diversions) and to marine influences (tides, waves, effects of salt water). To understand this environment, the USGS, along with its partners (see “Acknowledgements”), has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay (fig. 1). Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which controls gravity-driven circulation patterns and stratification in the water column. Turbidity, a measure of light scattered from suspended particles in the water, is used to estimate suspended-sediment concentration (SSC). Suspended sediment affects the bay in multiple ways: attenuation of sunlight in the water column, affecting phytoplankton growth; deposition on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; deposition in ports and shipping channels, which can necessitate dredging; and often, adsorption of contaminants, affecting their distribution and concentrations in the environment. Dissolved oxygen concentration, essential to a healthy ecosystem and a fundamental indicator of water quality, is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically vary on a daily cycle. Consequently, salinity, water temperature, SSC, and dissolved-oxygen concentration vary spatially and temporally throughout the bay. Therefore, continuous measurements are needed to observe these changes. The purpose of this fact sheet is to provide information about these variables, as well as internet links to access these continuous water-quality data collected by the USGS.
Siegelaar, Sarah E; Barwari, Temo; Hermanides, Jeroen; van der Voort, Peter H J; Hoekstra, Joost B L; DeVries, J Hans
2013-11-01
Continuous glucose monitoring could be helpful for glucose regulation in critically ill patients; however, its accuracy is uncertain and might be influenced by microcirculation. We investigated the microcirculation and its relation to the accuracy of 2 continuous glucose monitoring devices in patients after cardiac surgery. The present prospective, observational study included 60 patients admitted for cardiac surgery. Two continuous glucose monitoring devices (Guardian Real-Time and FreeStyle Navigator) were placed before surgery. The relative absolute deviation between continuous glucose monitoring and the arterial reference glucose was calculated to assess the accuracy. Microcirculation was measured using the microvascular flow index, perfused vessel density, and proportion of perfused vessels using sublingual sidestream dark-field imaging, and tissue oxygenation using near-infrared spectroscopy. The associations were assessed using a linear mixed-effects model for repeated measures. The median relative absolute deviation of the Navigator was 11% (interquartile range, 8%-16%) and of the Guardian was 14% (interquartile range, 11%-18%; P = .05). Tissue oxygenation significantly increased during the intensive care unit admission (maximum 91.2% [3.9] after 6 hours) and decreased thereafter, stabilizing after 20 hours. A decrease in perfused vessel density accompanied the increase in tissue oxygenation. Microcirculatory variables were not associated with sensor accuracy. A lower peripheral temperature (Navigator, b = -0.008, P = .003; Guardian, b = -0.006, P = .048), and for the Navigator, also a higher Acute Physiology and Chronic Health Evaluation IV predicted mortality (b = 0.017, P < .001) and age (b = 0.002, P = .037) were associated with decreased sensor accuracy. The results of the present study have shown acceptable accuracy for both sensors in patients after cardiac surgery. The microcirculation was impaired to a limited extent compared with that in patients with sepsis and healthy controls. This impairment was not related to sensor accuracy but the peripheral temperature for both sensors and patient age and Acute Physiology and Chronic Health Evaluation IV predicted mortality for the Navigator were. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Monitoring of biopile composting of oily sludge.
Kriipsalu, Mait; Nammari, Diauddin
2010-05-01
This paper describes a bioreactor set-up used to simulate degradation of petroleum hydrocarbons in a static biopile. The large-scale test was performed in a 28 m(3) custom-designed reactor. Oily sludge (40% by weight, having 7% dry matter [DM], and hydrocarbons C(10)-C(40) 160,000 mg kg(-1) DM) was mixed with organic-rich amendments - mature oil-compost (40%) and garden waste compost (20%). Within the reactor, the temperature and soil gases were monitored continuously during 370 days via 24 measurement points. Also, moisture content was continuously recorded and airflow through compost mix occasionally measured. Three-dimensional ordinary kriging spatial models were created to describe the dynamic variations of temperature, air distribution, and hydrocarbon concentration. There were large temperature differences in horizontal and vertical sections during initial months of composting only. Water content of the mixture was uneven by layers, referring on relocation of moisture due to aeration and condensation. The air distribution through the whole reactor varied largely despite of continuous aeration, while the concentration of O(2) was never reduced less than 1-2% on average. The results showed that composting of sludge using force-aerated static biopile technology was justified during the first 3-4 months, after which the masses could be re-mixed and heaped for further maturation in low-tech compost windrows. After 370 days of treatment, the content of hydrocarbons (C( 10)-C(40)) in the compost mixture was reduced by 68.7%.
Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long
2016-01-01
Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region. PMID:27869668
Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long
2016-11-17
Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region.
Trontz, Adam; Cheng, Baokai; Zeng, Shixuan; ...
2015-09-25
Metal-ceramic coaxial cable Fabry-Pérot interferometric (MCCC-FPI) sensors have been developed using a stainless steel tube and a stainless steel wire as the outer and inner conductors, respectively; a tubular α-alumina insulator; and a pair of air gaps created in the insulator along the cable to serve as weak reflectors for the transmitting microwave (MW) signal. The MCCC-FPI sensors have been demonstrated for high temperature measurements using MW signals in a frequency range of 2–8 GHz. The temperature measurement is achieved by monitoring the frequency shift (Δƒ) of the MW interferogram reflected from the pair of weak reflectors. The MW sensormore » exhibited excellent linear dependence of Δƒ on temperature; small measurement deviations (±2.7%); and fast response in a tested range of 200–500 °C. The MCCC has the potential for further developing multipoint FPI sensors in a single-cable to achieve in situ and continuous measurement of spatially distributed temperature in harsh environments.« less
Radiometric Thermometry for Wearable Deep Tissue Monitoring
NASA Astrophysics Data System (ADS)
Momenroodaki, Parisa
Microwave thermometry is an attractive non-invasive method for measuring internal body temperature. This approach has the potential of enabling a wearable device that can continuously monitor core body temperature. There are a number of health-related applications in both diagnostics and therapy, which can benefit from the knowledge of core body temperature. However,there are a limited number of device solutions, which are usually not wearable or cannot continuously monitor internal body temperature non-invasively. In this thesis, a possible path toward implementing such a thermometer is presented. The device operates in the "quiet" frequency band of 1.4 GHz which is chosen as a compromise between sensing depth and radio frequency interference (RFI). A major challenge in microwave thermometry is detecting small temperature variations of deep tissue layers from surface (skin) measurements. The type and thickness of tissue materials significantly affect the design of the probe, which has the function of receiving black-body radiation from tissues beneath it and coupling the power to a sensitive radiometric receiver. High dielectric constant contrast between skin, fat (/bone), and muscle layers suggests structures with dominant tangential component of the electric field, such as a patch or slot. Adding a layer of low-loss,low-dielectric constant superstrate can further reduce the contribution of superficial tissue layers in the received thermal noise. Several probe types are designed using a full-wave electromagnetic simulator, with a goal of maximizing the power reception from deep tissue layers. The designs are validated with a second software tool and various measurements. A stable, narrow-band, and highly sensitive radiometer is developed, enabling the device to operate in a non-shielded RF environment.To use the microwave thermometer in a RF congested environment, not only narrow-band probe and radiometers are used but an additional probe is introduced for observing the environmental interference. By applying an adaptive filter, the effect of RFI is mitigated in long-term measurements. Several solid and liquid tissue phantoms, required for accurate modeling of the probe and human body interaction, are also developed. The concept of human body microwave thermometry is validated through several measurements on the single-layer and multiple-layer tissue phantoms as well as on the surface of the human body, specifically on the cheek where the internal temperature can easily be changed and independently measured with a thermocouple. Measurement results prove the capability of the device in tracking the temperature of buried tissue layer phantoms to within 0.2K, as well as monitoring internal human body temperature.
Continuous Groundwater Monitoring Collocated at USGS Streamgages
NASA Astrophysics Data System (ADS)
Constantz, J. E.; Eddy-Miller, C.; Caldwell, R.; Wheeer, J.; Barlow, J.
2012-12-01
USGS Office of Groundwater funded a 2-year pilot study collocating groundwater wells for monitoring water level and temperature at several existing continuous streamgages in Montana and Wyoming, while U.S. Army Corps of Engineers funded enhancement to streamgages in Mississippi. To increase spatial relevance with in a given watershed, study sites were selected where near-stream groundwater was in connection with an appreciable aquifer, and where logistics and cost of well installations were considered representative. After each well installation and surveying, groundwater level and temperature were easily either radio-transmitted or hardwired to existing data acquisition system located in streamgaging shelter. Since USGS field personnel regularly visit streamgages during routine streamflow measurements and streamgage maintenance, the close proximity of observation wells resulted in minimum extra time to verify electronically transmitted measurements. After field protocol was tuned, stream and nearby groundwater information were concurrently acquired at streamgages and transmitted to satellite from seven pilot-study sites extending over nearly 2,000 miles (3,200 km) of the central US from October 2009 until October 2011, for evaluating the scientific and engineering add-on value of the enhanced streamgage design. Examination of the four-parameter transmission from the seven pilot study groundwater gaging stations reveals an internally consistent, dynamic data suite of continuous groundwater elevation and temperature in tandem with ongoing stream stage and temperature data. Qualitatively, the graphical information provides appreciation of seasonal trends in stream exchanges with shallow groundwater, as well as thermal issues of concern for topics ranging from ice hazards to suitability of fish refusia, while quantitatively this information provides a means for estimating flux exchanges through the streambed via heat-based inverse-type groundwater modeling. In June USGS Fact Sheet 2012-3054 was released online, summarizing the results of the pilot project.
Body Temperature Monitoring Using Subcutaneously Implanted Thermo-loggers from Holstein Steers
Lee, Y.; Bok, J. D.; Lee, H. J.; Lee, H. G.; Kim, D.; Lee, I.; Kang, S. K.; Choi, Y. J.
2016-01-01
Body temperature (BT) monitoring in cattle could be used to early detect fever from infectious disease or physiological events. Various ways to measure BT have been applied at different locations on cattle including rectum, reticulum, milk, subcutis and ear canal. In other to evaluate the temperature stability and reliability of subcutaneous temperature (ST) in highly fluctuating field conditions for continuous BT monitoring, long term ST profiles were collected and analyzed from cattle in autumn/winter and summer season by surgically implanted thermo-logger devices. Purposes of this study were to assess ST in the field condition as a reference BT and to determine any location effect of implantation on ST profile. In results, ST profile in cattle showed a clear circadian rhythm with daily lowest at 05:00 to 07:00 AM and highest around midnight and rather stable temperature readings (mean±standard deviation [SD], 37.1°C to 37.36°C±0.91°C to 1.02°C). STs are 1.39°C to 1.65°C lower than the rectal temperature and sometimes showed an irregular temperature drop below the normal physiologic one: 19.4% or 36.4% of 54,192 readings were below 36.5°C or 37°C, respectively. Thus, for BT monitoring purposes in a fever-alarming-system, a correction algorithm is necessary to remove the influences of ambient temperature and animal resting behavior especially in winter time. One way to do this is simply discard outlier readings below 36.5°C or 37°C resulting in a much improved mean±SD of 37.6°C±0.64°C or 37.8°C±0.55°C, respectively. For location the upper scapula region seems the most reliable and convenient site for implantation of a thermo-sensor tag in terms of relatively low influence by ambient temperature and easy insertion compared to lower scapula or lateral neck. PMID:26732455
Investigation of package sealing using organic adhesives
NASA Technical Reports Server (NTRS)
Perkins, K. L.; Licari, J. J.
1977-01-01
A systematic study was performed to evaluate the suitability of adhesives for sealing hybrid packages. Selected adhesives were screened on the basis of their ability to seal gold-plated Kovar butterfly-type packages that retain their seal integrity after individual exposures to increasingly severe temperature-humidity environments. Tests were also run using thermal shock, temperature cycling, mechanical shock and temperature aging. The four best adhesives were determined and further tested in a 60 C/98% RH environment and continuously monitored in regard to moisture content. Results are given, however, none of the tested adhesives passed all the tests.
Cold chain monitoring during cold transportation of human corneas for transplantation.
Net, M; Trias, E; Navarro, A; Ruiz, A; Diaz, P; Fontenla, J R; Manyalich, M
2003-08-01
As recommended by international standards the cornea should be maintained in a specific temperature range (2 degrees -8 degrees C) to guarantee its viability. However, there is no standard packaging method to maintain these conditions during transport. Our packaging system is similar to those used by the main eye banks in Spain and elsewhere in Europe. The objective is to monitor the cold chain in the current packaging method to validate the maintenance of temperature within the adequate range for a minimum 24-hour period. The effects of the following variables were studied: number and freezing temperature of the cold packs; air volume in the packaging system; position of the cornea in the packaging system; and the wall section of the container. Exterior temperature was maintained constant at 20 degrees to 24 degrees C. The cold chain was monitored using a device that measures temperature continuously and for which a histogram of temperature variation can be downloaded to a computer for further analysis. When the cold packs were frozen to -40 degrees C or the number of cold packs increased to four, the temperature decreased quickly to 0 degrees C and the transport period was not prolonged. The main objective was to improve isolation by reducing inner air volume, and maintaining the position of the cornea in the container. The currently used cold packaging systems (not frozen, 4 degrees C) do not maintain the temperature within the accepted range for the required distribution period. The improved system maintains the cornea at between 2 degrees C and 6 degrees C for a minimum of 24 hours.
Is freezing in the vaccine cold chain an ongoing issue? A literature review.
Hanson, Celina M; George, Anupa M; Sawadogo, Adama; Schreiber, Benjamin
2017-04-19
Vaccine exposure to temperatures below recommended ranges in the cold chain may decrease vaccine potency of freeze-sensitive vaccines leading to a loss of vaccine investments and potentially places children at risk of contracting vaccine preventable illnesses. This literature review is an update to one previously published in 2007 (Matthias et al., 2007), analyzing the prevalence of vaccine exposure to temperatures below recommendations throughout various segments of the cold chain. Overall, 45 studies included in this review assess temperature monitoring, of which 29 specifically assess 'too cold' temperatures. The storage segments alone were evaluated in 41 articles, 15 articles examined the transport segment and 4 studied outreach sessions. The sample size of the studies varied, ranging from one to 103 shipments and from three to 440 storage units. Among reviewed articles, the percentage of vaccine exposure to temperatures below recommended ranges during storage was 33% in wealthier countries and 37.1% in lower income countries. Vaccine exposure to temperatures below recommended ranges occurred during shipments in 38% of studies from higher income countries and 19.3% in lower income countries. This review highlights continuing issues of vaccine exposure to temperatures below recommended ranges during various segments of the cold chain. Studies monitoring the number of events vaccines are exposed to 'too cold' temperatures as well as the duration of these events are needed. Many reviewed studies emphasize the lack of knowledge of health workers regarding freeze damage of vaccines and how this has an effect on temperature monitoring. It is important to address this issue by educating vaccinators and cold chain staff to improve temperature maintenance and supply chain management, which will facilitate the distribution of potent vaccines to children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Comparative study of gas-analyzing systems designed for continuous monitoring of TPP emissions
NASA Astrophysics Data System (ADS)
Kondrat'eva, O. E.; Roslyakov, P. V.
2017-06-01
Determining the composition of combustion products is important in terms of both control of emissions into the atmosphere from thermal power plants and optimization of fuel combustion processes in electric power plants. For this purpose, the concentration of oxygen, carbon monoxide, nitrogen, and sulfur oxides in flue gases is monitored; in case of solid fuel combustion, fly ash concentration is monitored as well. According to the new nature conservation law in Russia, all large TPPs shall be equipped with continuous emission monitoring and measurement systems (CEMMS) into the atmosphere. In order to ensure the continuous monitoring of pollutant emissions, direct round-the-clock measurements are conducted with the use of either domestically produced or imported gas analyzers and analysis systems, the operation of which is based on various physicochemical methods and which can be generally used when introducing CEMMS. Depending on the type and purposes of measurement, various kinds of instruments having different features may be used. This article represents a comparative study of gas-analysis systems for measuring the content of polluting substances in exhaust gases based on various physical and physicochemical analysis methods. It lists basic characteristics of the methods commonly applied in the area of gas analysis. It is proven that, considering the necessity of the long-term, continuous operation of gas analyzers for monitoring and measurement of pollutant emissions into the atmosphere, as well as the requirements for reliability and independence from aggressive components and temperature of the gas flow, it is preferable to use optical gas analyzers for the aforementioned purposes. In order to reduce the costs of equipment comprising a CEMMS at a TPP and optimize the combustion processes, electrochemical and thermomagnetic gas analyzers may also be used.
Environmental monitoring of Galway Bay: fusing data from remote and in-situ sources
NASA Astrophysics Data System (ADS)
O'Connor, Edel; Hayes, Jer; Smeaton, Alan F.; O'Connor, Noel E.; Diamond, Dermot
2009-09-01
Changes in sea surface temperature can be used as an indicator of water quality. In-situ sensors are being used for continuous autonomous monitoring. However these sensors have limited spatial resolution as they are in effect single point sensors. Satellite remote sensing can be used to provide better spatial coverage at good temporal scales. However in-situ sensors have a richer temporal scale for a particular point of interest. Work carried out in Galway Bay has combined data from multiple satellite sources and in-situ sensors and investigated the benefits and drawbacks of using multiple sensing modalities for monitoring a marine location.
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.
1997-01-01
Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.
The monitoring of eco-hydrological parameters within the LIFE Ljubljanica Connects project
NASA Astrophysics Data System (ADS)
Sapač, Klaudija; Šraj, Mojca; Zabret, Katarina; Brilly, Mitja; Vidmar, Andrej
2016-04-01
The main objectives of the Ljubljanica Connects project arising from the need to improve the living conditions in the Ljubljanica River for endangered fish species. The history of improving the conditions dates back more than 100 years ago with the construction of fish passages at the obstacles on the Ljubljanica River. As part of the project the fish passages were reconstructed and upgraded to improve river connectivity. But for the survival of fish and other aquatic organisms in the river also adequate living conditions are necessary which can be determined by measurements of individual parameters of water quality. Within the LIFE Ljubljanica Connects project we have established continuous eco-hydrological monitoring of water level and temperature at 17 measuring sites and concentration of dissolved oxygen at 3 measuring sites along the Ljubljanica River and its tributaries. Water level data are input data for the hydrological model of Ljubljanica River, while water temperature and concentration of dissolved oxygen are the basic indicators of the quality of the water. The purpose of this paper is to present the measuring equipment of eco-hydrological monitoring, the first feedback on the results of measured water temperature and the concentration of dissolved oxygen in the Ljubljanica River, and the advantages and importance of such monitoring.
Code of Federal Regulations, 2013 CFR
2013-07-01
... temperature simulation devices. (v) Conduct a visual inspection of each sensor every quarter if redundant... simulations or via relative accuracy testing. (v) Conduct an accuracy audit every quarter and after every deviation. Accuracy audit methods include comparisons of sensor values with electronic signal simulations or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... temperature simulation devices. (v) Conduct a visual inspection of each sensor every quarter if redundant... simulations or via relative accuracy testing. (v) Conduct an accuracy audit every quarter and after every deviation. Accuracy audit methods include comparisons of sensor values with electronic signal simulations or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature simulation devices. (v) Conduct a visual inspection of each sensor every quarter if redundant... simulations or via relative accuracy testing. (v) Conduct an accuracy audit every quarter and after every deviation. Accuracy audit methods include comparisons of sensor values with electronic signal simulations or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... temperature simulation devices. (v) Conduct a visual inspection of each sensor every quarter if redundant... signal simulations or via relative accuracy testing. (v) Conduct an accuracy audit every quarter and... signal simulations or via relative accuracy testing. (vi) Perform leak checks monthly. (vii) Perform...
Code of Federal Regulations, 2013 CFR
2013-07-01
... temperature simulation devices. (v) Conduct a visual inspection of each sensor every quarter if redundant... signal simulations or via relative accuracy testing. (v) Conduct an accuracy audit every quarter and... signal simulations or via relative accuracy testing. (vi) Perform leak checks monthly. (vii) Perform...
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature simulation devices. (v) Conduct a visual inspection of each sensor every quarter if redundant... signal simulations or via relative accuracy testing. (v) Conduct an accuracy audit every quarter and... signal simulations or via relative accuracy testing. (vi) Perform leak checks monthly. (vii) Perform...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
...) temperature Continuous records as specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
...) temperature Continuous records as specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle...
40 CFR 63.1350 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... zero and 1.5 times the average temperature established according to the requirements in § 63.1349(b)(3... absolute PM loadings. (v) The BLDS must be equipped with a device to continuously record the output signal... must have provisions to determine the daily zero and upscale calibration drift (CD) (see sections 3.1...
40 CFR 63.1350 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... zero and 1.5 times the average temperature established according to the requirements in § 63.1349(b)(3... absolute PM loadings. (v) The BLDS must be equipped with a device to continuously record the output signal... must have provisions to determine the daily zero and upscale calibration drift (CD) (see sections 3.1...
Pellerin, Brian A.; Bergamaschi, Brian A.; Murdoch, Peter S.; Downing, Bryan D.; Saraceno, John Franco; Aiken, George R.; Striegl, Robert G.
2011-01-01
Floods, hurricanes, and longer-term changes in climate and land use can have profound effects on water quality due to shifts in hydrologic flow paths, water residence time, precipitation patterns, connectivity between rivers and uplands, and many other factors. In order to understand and respond to changes in hydrology and water quality, resource managers and policy makers have a need for accurate and early indicators, as well as the ability to assess possible mechanisms and likely outcomes. In-situ optical sensors-those making continuous measurements of constituents by absorbance or fluorescence properties in the environment at timescales of minutes to years-have a long history in oceanography for developing highly resolved concentrations and fluxes, but are not commonly used in freshwater systems. The United States Geological Survey (USGS) has developed the Aquatic Real-Time Monitoring Network, with high-resolution optical data collection for organic carbon, nutrients, and sediment in large coastal rivers, along with continuous measurements of discharge, water temperature, and dissolved inorganic carbon. The collecting of continuous water-quality data in the Nation?s waterways has revealed temporal trends and spatial patterns in constituents that traditional sampling approaches fail to capture, and will serve a critical role in monitoring, assessment and decision-making in a rapidly changing landscape.
Improving marine disease surveillance through sea temperature monitoring, outlooks and projections
Maynard, Jeffrey; van Hooidonk, Ruben; Harvell, C. Drew; Eakin, C. Mark; Liu, Gang; Willis, Bette L.; Williams, Gareth J.; Dobson, Andrew; Heron, Scott F.; Glenn, Robert; Reardon, Kathleen; Shields, Jeffrey D.
2016-01-01
To forecast marine disease outbreaks as oceans warm requires new environmental surveillance tools. We describe an iterative process for developing these tools that combines research, development and deployment for suitable systems. The first step is to identify candidate host–pathogen systems. The 24 candidate systems we identified include sponges, corals, oysters, crustaceans, sea stars, fishes and sea grasses (among others). To illustrate the other steps, we present a case study of epizootic shell disease (ESD) in the American lobster. Increasing prevalence of ESD is a contributing factor to lobster fishery collapse in southern New England (SNE), raising concerns that disease prevalence will increase in the northern Gulf of Maine under climate change. The lowest maximum bottom temperature associated with ESD prevalence in SNE is 12°C. Our seasonal outlook for 2015 and long-term projections show bottom temperatures greater than or equal to 12°C may occur in this and coming years in the coastal bays of Maine. The tools presented will allow managers to target efforts to monitor the effects of ESD on fishery sustainability and will be iteratively refined. The approach and case example highlight that temperature-based surveillance tools can inform research, monitoring and management of emerging and continuing marine disease threats. PMID:26880840
Improving marine disease surveillance through sea temperature monitoring, outlooks and projections.
Maynard, Jeffrey; van Hooidonk, Ruben; Harvell, C Drew; Eakin, C Mark; Liu, Gang; Willis, Bette L; Williams, Gareth J; Groner, Maya L; Dobson, Andrew; Heron, Scott F; Glenn, Robert; Reardon, Kathleen; Shields, Jeffrey D
2016-03-05
To forecast marine disease outbreaks as oceans warm requires new environmental surveillance tools. We describe an iterative process for developing these tools that combines research, development and deployment for suitable systems. The first step is to identify candidate host-pathogen systems. The 24 candidate systems we identified include sponges, corals, oysters, crustaceans, sea stars, fishes and sea grasses (among others). To illustrate the other steps, we present a case study of epizootic shell disease (ESD) in the American lobster. Increasing prevalence of ESD is a contributing factor to lobster fishery collapse in southern New England (SNE), raising concerns that disease prevalence will increase in the northern Gulf of Maine under climate change. The lowest maximum bottom temperature associated with ESD prevalence in SNE is 12 °C. Our seasonal outlook for 2015 and long-term projections show bottom temperatures greater than or equal to 12 °C may occur in this and coming years in the coastal bays of Maine. The tools presented will allow managers to target efforts to monitor the effects of ESD on fishery sustainability and will be iteratively refined. The approach and case example highlight that temperature-based surveillance tools can inform research, monitoring and management of emerging and continuing marine disease threats. © 2016 The Authors.
Statistical models for fever forecasting based on advanced body temperature monitoring.
Jordan, Jorge; Miro-Martinez, Pau; Vargas, Borja; Varela-Entrecanales, Manuel; Cuesta-Frau, David
2017-02-01
Body temperature monitoring provides health carers with key clinical information about the physiological status of patients. Temperature readings are taken periodically to detect febrile episodes and consequently implement the appropriate medical countermeasures. However, fever is often difficult to assess at early stages, or remains undetected until the next reading, probably a few hours later. The objective of this article is to develop a statistical model to forecast fever before a temperature threshold is exceeded to improve the therapeutic approach to the subjects involved. To this end, temperature series of 9 patients admitted to a general internal medicine ward were obtained with a continuous monitoring Holter device, collecting measurements of peripheral and core temperature once per minute. These series were used to develop different statistical models that could quantify the probability of having a fever spike in the following 60 minutes. A validation series was collected to assess the accuracy of the models. Finally, the results were compared with the analysis of some series by experienced clinicians. Two different models were developed: a logistic regression model and a linear discrimination analysis model. Both of them exhibited a fever peak forecasting accuracy greater than 84%. When compared with experts' assessment, both models identified 35 (97.2%) of 36 fever spikes. The models proposed are highly accurate in forecasting the appearance of fever spikes within a short period in patients with suspected or confirmed febrile-related illnesses. Copyright © 2016 Elsevier Inc. All rights reserved.
Taking the temperature of the interiors of magnetically heated nanoparticles.
Dong, Juyao; Zink, Jeffrey I
2014-05-27
The temperature increase inside mesoporous silica nanoparticles induced by encapsulated smaller superparamagnetic nanocrystals in an oscillating magnetic field is measured using a crystalline optical nanothermometer. The detection mechanism is based on the temperature-dependent intensity ratio of two luminescence bands in the upconversion emission spectrum of NaYF4:Yb(3+), Er(3+). A facile stepwise phase transfer method is developed to construct a dual-core mesoporous silica nanoparticle that contains both a nanoheater and a nanothermometer in its interior. The magnetically induced heating inside the nanoparticles varies with different experimental conditions, including the magnetic field induction power, the exposure time to the magnetic field, and the magnetic nanocrystal size. The temperature increase of the immediate nanoenvironment around the magnetic nanocrystals is monitored continuously during the magnetic oscillating field exposure. The interior of the nanoparticles becomes much hotter than the macroscopic solution and cools to the temperature of the ambient fluid on a time scale of seconds after the magnetic field is turned off. This continuous absolute temperature detection method offers quantitative insight into the nanoenvironment around magnetic materials and opens a path for optimizing local temperature controls for physical and biomedical applications.
Smart catheter flow sensor for real-time continuous regional cerebral blood flow monitoring
NASA Astrophysics Data System (ADS)
Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A.; Wu, Zhizhen; Ahn, Chong H.; LeDoux, David; Shutter, Lori A.; Narayan, Raj K.
2011-12-01
We present a smart catheter flow sensor for real-time, continuous, and quantitative measurement of regional cerebral blood flow using in situ temperature and thermal conductivity compensation. The flow sensor operates in a constant-temperature mode and employs a periodic heating and cooling technique. This approach ensures zero drift and provides highly reliable data with microelectromechanical system-based thin film sensors. The developed flow sensor has a sensitivity of 0.973 mV/ml/100 g/min in the range from 0 to 160 ml/100 g/min with a linear correlation coefficient of R2 = 0.9953. It achieves a resolution of 0.25 ml/100 g/min and an accuracy better than 5 ml/100 g/min.
Application of displacement monitoring system on high temperature steam pipe
NASA Astrophysics Data System (ADS)
Ghaffar, M. H. A.; Husin, S.; Baek, J. E.
2017-10-01
High-energy piping systems of power plants such as Main Steam (MS) pipe or Hot Reheat (HR) pipe are operating at high temperature and high pressure at base and cyclic loads. In the event of transient condition, a pipe can be deflected dramatically and caused high stress in the pipe, yielding to failure of the piping system. Periodic monitoring and walk down can identify abnormalities but limitations exist in the standard walk down practice. This paper provides a study of pipe displacement monitoring on MS pipe of coal-fired power plant to continuously capture the pipe movement behaviour at different load using 3-Dimensional Displacement Measuring System (3DDMS). The displacement trending at Location 5 and 6 (north and south) demonstrated pipes displace less than 25% to that of design movement. It was determined from synchronisation analysis that Location 7 (north) and Location 8 (south) pipe actual movement difference has exceeded the design movement difference. Visual survey at specified locations with significant displacement trending reveals issues of hydraulic snubber and piping interferences. The study demonstrated that the displacement monitoring is able to capture pipe movement at all time and allows engineer to monitor pipe movement behaviour, aids in identifying issue early for remedy action.
NASA Astrophysics Data System (ADS)
Bedoya, Andres; Navas-Guzmán, Francisco; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas
2017-04-01
Profiles of meteorological variables such as temperature, relative humidity and integrated water vapor derived from a ground-based microwave radiometer (MWR, RPG-HATPRO) are continuously monitored since 2012 at Granada station (Southeastern Spain). During this period up to 210 collocated meteorological balloons, equipped with a radiosonde DFM-09 (GRAWMET), were launched. This study is carried out with a twofold goal. On one hand, a validation of the MWR products such as temperature and water vapor mixing ratio profiles and the IWV from MWR is carried out comparing with radiosonde measurements. The behavior of MWR retrievals under clear and cloudy conditions and for special situations such as inversions has been analyzed. On the other hand, the whole period with continuous measurements is used for a statistical evaluation of the meteorological variables derived from MWR in order to thermodynamically characterize the atmosphere over Granada.
Characterization of a quantum cascade laser-based emissivity monitor for CORSAIR
NASA Astrophysics Data System (ADS)
Lwin, Maung; Wojcik, Michael; Latvakoski, Harri; Scott, Deron; Watson, Mike; Marchant, Alan; Topham, Shane; Mlynczak, Martin
2011-06-01
Continuous improvements of quantum cascade laser (QCL) technology have extended the applications in environmental trace gas monitoring, mid-infrared spectroscopy in medicine and life science, law enforcement and homeland security and satellite sensor systems. We present the QCL based emissivity monitor for the CORSAIR blackbody. The emissivity of the blackbody was designed to be better than 0.9999 for the spectral range between 5 to 50μm. To actively monitor changes in blackbody emissivity we employ a QCL-based infrared illumination source. The illumination source consisted of a QCL and thermoelectric cooler (TEC) unit mounted on a copper fixture. The stability of the QCL was measured for 30, 60, and 90s operation time at 1.5A driving current. The temperature distribution along the laser mounting fixture and time dependent system heat dispersion were analyzed. The results were compared to radiative and conductive heat transfer models to define the potential laser operating time and required waiting time to return to initial temperature of the laser mount. The observed cooling behaviour is consistent with a primarily conductive heat transfer mechanism.
Neonatal non-contact respiratory monitoring based on real-time infrared thermography
2011-01-01
Background Monitoring of vital parameters is an important topic in neonatal daily care. Progress in computational intelligence and medical sensors has facilitated the development of smart bedside monitors that can integrate multiple parameters into a single monitoring system. This paper describes non-contact monitoring of neonatal vital signals based on infrared thermography as a new biomedical engineering application. One signal of clinical interest is the spontaneous respiration rate of the neonate. It will be shown that the respiration rate of neonates can be monitored based on analysis of the anterior naris (nostrils) temperature profile associated with the inspiration and expiration phases successively. Objective The aim of this study is to develop and investigate a new non-contact respiration monitoring modality for neonatal intensive care unit (NICU) using infrared thermography imaging. This development includes subsequent image processing (region of interest (ROI) detection) and optimization. Moreover, it includes further optimization of this non-contact respiration monitoring to be considered as physiological measurement inside NICU wards. Results Continuous wavelet transformation based on Debauches wavelet function was applied to detect the breathing signal within an image stream. Respiration was successfully monitored based on a 0.3°C to 0.5°C temperature difference between the inspiration and expiration phases. Conclusions Although this method has been applied to adults before, this is the first time it was used in a newborn infant population inside the neonatal intensive care unit (NICU). The promising results suggest to include this technology into advanced NICU monitors. PMID:22243660
On-chip temperature-based digital signal processing for customized wireless microcontroller
NASA Astrophysics Data System (ADS)
Farhah Razanah Faezal, Siti; Isa, Mohd Nazrin Md; Harun, Azizi; Nizam Mohyar, Shaiful; Bahari Jambek, Asral
2017-11-01
Increases in die size and power density inside system-on-chip (SoC) design have brought thermal issue inside the system. Uneven heat-up and increasing in temperature offset on-chip has become a major factor that can limits the system performance. This paper presents the design and simulation of a temperature-based digital signal processing for modern system-on-chip design using the Verilog HDL. This design yields continuous monitoring of temperature and reacts to specified conditions. The simulation of the system has been done on Altera Quartus Software v. 14. With system above, microcontroller can achieve nominal power dissipation and operation is within the temperature range due to the incorporate of an interrupt-based system.
NASA Astrophysics Data System (ADS)
Belica, L.; Mitasova, H.; Caldwell, P.; McCarter, J. B.; Nelson, S. A. C.
2017-12-01
Thermal regimes of forested headwater streams continue to be an area of active research as climatic, hydrologic, and land cover changes can influence water temperature, a key aspect of aquatic ecosystems. Widespread monitoring of stream temperatures have provided an important data source, yielding insights on the temporal and spatial patterns and the underlying processes that influence stream temperature. However, small forested streams remain challenging to model due to the high spatial and temporal variability of stream temperatures and the climatic and hydrologic conditions that drive them. Technological advances and increased computational power continue to provide new tools and measurement methods and have allowed spatially explicit analyses of dynamic natural systems at greater temporal resolutions than previously possible. With the goal of understanding how current stream temperature patterns and processes may respond to changing landcover and hydroclimatoligical conditions, we combined high-resolution, spatially explicit geospatial modeling with deterministic heat flux modeling approaches using data sources that ranged from traditional hydrological and climatological measurements to emerging remote sensing techniques. Initial analyses of stream temperature monitoring data revealed that high temporal resolution (5 minutes) and measurement resolutions (<0.1°C) were needed to adequately describe diel stream temperature patterns and capture the differences between paired 1st order and 4th order forest streams draining north and south facing slopes. This finding along with geospatial models of subcanopy solar radiation and channel morphology were used to develop hypotheses and guide field data collection for further heat flux modeling. By integrating multiple approaches and optimizing data resolution for the processes being investigated, small, but ecologically significant differences in stream thermal regimes were revealed. In this case, multi-approach research contributed to the identification of the dominant mechanisms driving stream temperature in the study area and advanced our understanding of the current thermal fluxes and how they may change as environmental conditions change in the future.
Bakker, Akke; Holman, Rebecca; Rodrigues, Dario B; Dobšíček Trefná, Hana; Stauffer, Paul R; van Tienhoven, Geertjan; Rasch, Coen R N; Crezee, Hans
2018-04-27
Tumor response and treatment toxicity are related to minimum and maximum tissue temperatures during hyperthermia, respectively. Using a large set of clinical data, we analyzed the number of sensors required to adequately monitor skin temperature during superficial hyperthermia treatment of breast cancer patients. Hyperthermia treatments monitored with >60 stationary temperature sensors were selected from a database of patients with recurrent breast cancer treated with re-irradiation (23 × 2 Gy) and hyperthermia using single 434 MHz applicators (effective field size 351-396 cm 2 ). Reduced temperature monitoring schemes involved randomly selected subsets of stationary skin sensors, and another subset simulating continuous thermal mapping of the skin. Temperature differences (ΔT) between subsets and complete sets of sensors were evaluated in terms of overall minimum (T min ) and maximum (T max ) temperature, as well as T90 and T10. Eighty patients were included yielding a total of 400 hyperthermia sessions. Median ΔT was <0.01 °C for T90, its 95% confidence interval (95%CI) decreased to ≤0.5 °C when >50 sensors were used. Subsets of <10 sensors result in underestimation of T max up to -2.1 °C (ΔT 95%CI), which decreased to -0.5 °C when >50 sensors were used. Thermal profiles (8-21 probes) yielded a median ΔT < 0.01 °C for T90 and T max , with a 95%CI of -0.2 °C and 0.4 °C, respectively. The detection rate of T max ≥43 °C is ≥85% while using >50 stationary sensors or thermal profiles. Adequate coverage of the skin temperature distribution during superficial hyperthermia treatment requires the use of >50 stationary sensors per 400 cm 2 applicator. Thermal mapping is a valid alternative.
Tse, Karen; Sillito, Rowland; Keerie, Amy; Collier, Rachel; Grant, Claire; Karp, Natasha A; Vickers, Cathy; Chapman, Kathryn; Armstrong, J Douglas; Redfern, William S
2018-04-01
The ActualHCA™ system continuously monitors the activity, temperature and behavior of group-housed rats without invasive surgery. The system was validated to detect the contrasting effects of sedative and stimulant test agents (chlorpromazine, clonidine and amphetamine), and compared with the modified Irwin test (mIT) with rectal temperature measurements. Six male Han Wistar rats per group were used to assess each test agent and vehicle controls in separate ActualHCA™ recordings and mIT. The mIT was undertaken at 15, 30 mins, 1, 2, 4 and 24 h post-dose. ActualHCA™ recorded continuously for 24 h post-dose under 3 experimental conditions: dosed during light phase, dark phase, and light phase with a scheduled cage change at the time of peak effects determined by mIT. ActualHCA™ detected an increase stimulated activity from the cage change at 1-2 h post-dose which was obliterated by chlorpromazine and clonidine. Amphetamine increased activity up to 4 h post-dose in all conditions. Temperature from ActualHCA™ was affected by all test agents in all conditions. The mIT showed effects on all 3 test agents up to 4 h post-dose, with maximal effects at 1-2 h post-dose. The maximal effects on temperature from ActualHCA™ differed from mIT. Delayed effects on activity were detected by ActualHCA™, but not on mIT. Continuous monitoring has the advantage of capturing effects over time that may be missed with manual tests using pre-determined time points. This automated behavioural system does not replace the need for conventional methods but could be implemented simultaneously to improve our understanding of behavioural pharmacology. Copyright © 2018 Elsevier Inc. All rights reserved.
A novel technique to control high temperature materials degradation in fossil plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Rodriguez, J.G.; Porcayo-Calderon, J.; Martinez-Villafane, A.
1995-11-01
High temperature corrosion of superheater (SH) and, specially, reheater (RH) is strongly dependent on metal temperature. In this work, a way to continuously monitor the metal temperature of SH or RH, elements developed by the Instituto de Investigaciones Electricas (IIE) is described and the effects of operating parameters on metal temperature are evaluated. Also, the effects the steam-generator design and metal temperature on the corrosion rates have been investigated. In some steam generators, corrosion rates were reduced from 0.7 to 0.2 mm/y by changing the tube material and reducing the metal temperature. Also, the effect of metal temperature on themore » residual life of a 347H tube in a 158MW steam generator is evaluated. It is concluded that metal temperature is the most important parameter in controlling the high-temperature materials behavior in boiler environments.« less
Kim, Jung Hyup; Rothrock, Ling; Laberge, Jason
2014-05-01
This paper provides a case study of Signal Detection Theory (SDT) as applied to a continuous monitoring dual-task environment. Specifically, SDT was used to evaluate the independent contributions of sensitivity and bias to different qualitative gauges used in process control. To assess detection performance in monitoring the gauges, we developed a Time Window-based Human-In-The-Loop (TWHITL) simulation bed. Through this test bed, we were able to generate a display similar to those monitored by console operators in oil and gas refinery plants. By using SDT and TWHITL, we evaluated the sensitivity, operator bias, and response time of flow, level, pressure, and temperature gauge shapes developed by Abnormal Situation Management(®) (ASM(®)) Consortium (www.asmconsortium.org). Our findings suggest that display density influences the effectiveness of participants in detecting abnormal shapes. Furthermore, results suggest that some shapes elicit better detection performance than others. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Ibe, O E; Austin, T; Sullivan, K; Fabanwo, O; Disu, E; Costello, A M de L
2004-09-01
Although skin-to-skin contact (or kangaroo mother care, KMC) for preterm infants is a practical alternative to incubator care, no studies have compared these methods using continuous ambulatory temperature monitoring. To compare thermal regulation in low birthweight infants (< 2000 g) managed by KMC alternating with conventional care (CC) and to determine the acceptability to mothers of KMC, an experimental study with a crossover design with observational and qualitative data collected on temperature patterns and mothers attitudes to skin-to-skin care was conducted in the neonatal wards of three hospitals in Lagos, Nigeria. Thirteen eligible infants were nursed by their mothers or surrogates in 38 4-hour sessions of KMC and the results compared with 38 sessions of incubator care. The risk of hypothermia was reduced by > 90% when nursed by KMC rather than conventional care, relative risk (RR) 0.09 (0.03-0.25). More cases of hyperthermia (> 37.5 degrees C) occurred with KMC, and coreperiphery temperature differences were widened, but the risk of hyperthermia > 37.9 degrees C (RR 1.3, 0.9-1.7) was not significant. Micro-ambient temperatures were higher during KMC, although the average room temperatures during both procedures did not differ significantly. Mothers felt that KMC was safe, and preferred the method to CC because it did not separate them from their infants, although some had problems adjusting to this method of care. Where equipment for thermal regulation is lacking or unreliable, KMC is a preferable method for managing stable low birthweight infants. Copyright 2004 Liverpool School of Tropical Medicine
Real-time assessment of critical quality attributes of a continuous granulation process.
Fonteyne, Margot; Vercruysse, Jurgen; Díaz, Damián Córdoba; Gildemyn, Delphine; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas
2013-02-01
There exists the intention to shift pharmaceutical manufacturing of solid dosage forms from traditional batch production towards continuous production. The currently applied conventional quality control systems, based on sampling and time-consuming off-line analyses in analytical laboratories, would annul the advantages of continuous processing. It is clear that real-time quality assessment and control is indispensable for continuous production. This manuscript evaluates strengths and weaknesses of several complementary Process Analytical Technology (PAT) tools implemented in a continuous wet granulation process, which is part of a fully continuous from powder-to-tablet production line. The use of Raman and NIR-spectroscopy and a particle size distribution analyzer is evaluated for the real-time monitoring of critical parameters during the continuous wet agglomeration of an anhydrous theophylline- lactose blend. The solid state characteristics and particle size of the granules were analyzed in real-time and the critical process parameters influencing these granule characteristics were identified. The temperature of the granulator barrel, the amount of granulation liquid added and, to a lesser extent, the powder feed rate were the parameters influencing the solid state of the active pharmaceutical ingredient (API). A higher barrel temperature and a higher powder feed rate, resulted in larger granules.
Ulrich, P N; Marsh, A G
2009-01-01
The mitochondria of intertidal invertebrates continue to function when organisms are exposed to rapid substantial shifts in temperature. To test if mitochondrial physiology of the clam Mercenaria mercenaria is compromised under elevated temperatures, we measured mitochondrial respiration efficiency at 15 degrees C, 18 degrees C, and 21 degrees C using a novel, high-throughput, microplate respirometry methodology developed for this study. Though phosphorylating (state 3) and resting (state 4) respiration rates were unaffected over this temperature range, respiratory control ratios (RCRs: ratio of state 3 to state 4 respiration rates) decreased significantly above 18 degrees C (p < 0.05). The drop in RCR was not associated with reduction of phosphorylation efficiency, suggesting that, while aerobic scope of mitochondrial respiration is limited at elevated temperatures, mitochondria continue to efficiently produce adenosine triphosphate. We further investigated the response of clam mitochondria to elevated temperatures by monitoring phosphorylation of mitochondrial protein. Three proteins clearly demonstrated significant time- and temperature-specific phosphorylation patterns. The protein-specific patterns of phosphorylation may suggest that a suite of protein kinases and phosphatases regulate mitochondrial physiology in response to temperature. Thus, while aerobic scope of clam mitochondrial respiration is reduced at moderate temperatures, specific protein phosphorylation responses reflect large shifts in function that are initiated within the organelle at higher temperatures.
Real-time, aptamer-based tracking of circulating therapeutic agents in living animals
Ferguson, B. Scott; Hoggarth, David A.; Maliniak, Dan; Ploense, Kyle; White, Ryan J.; Woodward, Nick; Hsieh, Kuangwen; Bonham, Andrew J.; Eisenstein, Michael; Kippin, Tod; Plaxco, Kevin W.; Soh, H. Tom
2014-01-01
A sensor capable of continuously measuring specific molecules in the bloodstream in vivo would give clinicians a valuable window into patients’ health and their response to therapeutics. Such technology would enable truly personalized medicine, wherein therapeutic agents could be tailored with optimal doses for each patient to maximize efficacy and minimize side effects. Unfortunately, continuous, real-time measurement is currently only possible for a handful of targets, such as glucose, lactose, and oxygen, and the few existing platforms for continuous measurement are not generalizable for the monitoring of other analytes, such as small-molecule therapeutics. In response, we have developed a real-time biosensor capable of continuously tracking a wide range of circulating drugs in living subjects. Our microfluidic electrochemical detector for in vivo continuous monitoring (MEDIC) requires no exogenous reagents, operates at room temperature, and can be reconfigured to measure different target molecules by exchanging probes in a modular manner. To demonstrate the system's versatility, we measured therapeutic in vivo concentrations of doxorubicin (a chemotherapeutic) and kanamycin (an antibiotic) in live rats and in human whole blood for several hours with high sensitivity and specificity at sub-minute temporal resolution. Importantly, we show that MEDIC can also obtain pharmacokineticparameters for individual animals in real-time. Accordingly, just as continuous glucose monitoring technology is currently revolutionizing diabetes care, we believe MEDIC could be a powerful enabler for personalized medicine by ensuring delivery of optimal drug doses for individual patients based on direct detection of physiological parameters. PMID:24285484
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, R.; Walsh, D.; White, J.
1992-01-01
Carbon monoxide (CO) emission levels were continuously monitored in 8 mobile trailer homes less than 10 years old. These homes were monitored in an US EPA study on indoor air quality as affected by unvented portable kerosene heaters. Respondents were asked to operate their heaters in a normal fashion. CO, air exchange and temperature values were measured during the study in each home. Results indicate that consumers using unvented kerosene heaters may be unknowingly exposed to high CO levels without taking proper precautions.
Monitoring the Thermal Regime at Hot Creek and Vicinity, Long Valley Caldera, Eastern California
NASA Astrophysics Data System (ADS)
Clor, L. E.; Hurwitz, S.; Howle, J.
2015-12-01
Hot Creek Gorge contains the most obvious surface expression of the hydrothermal system in Long Valley Caldera, California, discharging 200-300 L/s of thermal water according to USGS measurements made since 1988. Formerly, Hot Creek was a popular public swimming area, but it was closed in 2006 due to unpredictable temperature fluctuations and sporadic geysering of thermal water within the creek (Farrar et al. USGS Fact Sheet2007-3045). The USGS has monitored the thermal regime in the area since the mid-1980s, including a long-term series of studies 0.6 km away at well CH-10b. Temperature measurements in the ~100 m deep well, which have been performed on an intermittent basis since it was drilled in 1983, reveal a complex temperature profile. Temperatures increase with depth to a maximum at about 45 meters below the ground surface, and then decrease steadily to the bottom of the well. The depth of the temperature maximum in the well (~45 m) corresponds to an elevation of ~2,120 m, roughly equivalent to the elevation of Hot Creek, and appears to sample the same hydrothermal flow system that supplies thermal features at the surface in the gorge. Starting in the early 1990s, the maximum temperature in CH-10b rose from 93.4°C to its peak in 2007 at 101.0°C. A cooling trend was observed beginning in 2009 and continues to present (99.3°C in June 2015). As the input into CH-10b is at the elevation of the creek, it exhibits the potential for response to thermal events at Hot Creek, and could provide a useful tool for monitoring future hazards. On short timescales, CH-10b also responds to large global earthquakes, greater than ~M7. These responses are captured with continuously logged high-frequency data (5s), and are usually characterized by a co-seismic water level drop of up to ten centimeters. Water levels tend to recover to pre-earthquake levels within a few hours to days.
Temperature in the anterior chamber during phacoemulsification.
Suzuki, Hisaharu; Oki, Kotaro; Igarashi, Tsutomu; Shiwa, Toshihiko; Takahashi, Hiroshi
2014-05-01
To evaluate changes in the aqueous humor temperature using 2 phacoemulsification units (Stellaris 28.5 kHz device and Whitestar Signature 40 kHz device). Nippon Medical School, Musashikosugi Hospital, Kawasaki City, Kanagawa, Japan. Experimental study. Aqueous humor temperatures were measured with a temperature probe set in the anterior chamber during ultrasound (US) oscillation in porcine eyes under 5 conditions. Continuous longitudinal oscillation caused a rapid rise in aqueous humor temperature, while the pulse and elliptical modes suppressed temperature elevation. Reducing the number of US tip vibrations did not reduce the temperature in the anterior chamber. However, raising the vacuum setting allowed the aspirations to rise to the set value, thereby lowering the temperature in the anterior chamber. Because differences in the phacoemulsification settings can lead to temperature elevations in the anterior chamber, surgeons must carefully monitor these settings to prevent corneal tissue damage. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nakada, Hirofumi; Horie, Seichi; Kawanami, Shoko; Inoue, Jinro; Iijima, Yoshinori; Sato, Kiyoharu; Abe, Takeshi
2017-09-01
We aimed to develop a practical method to estimate oesophageal temperature by measuring multi-locational auditory canal temperatures. This method can be applied to prevent heatstroke by simultaneously and continuously monitoring the core temperatures of people working under hot environments. We asked 11 healthy male volunteers to exercise, generating 80 W for 45 min in a climatic chamber set at 24, 32 and 40 °C, at 50% relative humidity. We also exposed the participants to radiation at 32 °C. We continuously measured temperatures at the oesophagus, rectum and three different locations along the external auditory canal. We developed equations for estimating oesophageal temperatures from auditory canal temperatures and compared their fitness and errors. The rectal temperature increased or decreased faster than oesophageal temperature at the start or end of exercise in all conditions. Estimated temperature showed good similarity with oesophageal temperature, and the square of the correlation coefficient of the best fitting model reached 0.904. We observed intermediate values between rectal and oesophageal temperatures during the rest phase. Even under the condition with radiation, estimated oesophageal temperature demonstrated concordant movement with oesophageal temperature at around 0.1 °C overestimation. Our method measured temperatures at three different locations along the external auditory canal. We confirmed that the approach can credibly estimate the oesophageal temperature from 24 to 40 °C for people performing exercise in the same place in a windless environment.
Wireless physiological monitoring system for psychiatric patients.
Rademeyer, A J; Blanckenberg, M M; Scheffer, C
2009-01-01
Patients in psychiatric hospitals that are sedated or secluded are at risk of death or injury if they are not continuously monitored. Some psychiatric patients are restless and aggressive, and hence the monitoring device should be robust and must transmit the data wirelessly. Two devices, a glove that measures oxygen saturation and a dorsally-mounted device that measures heart rate, skin temperature and respiratory rate were designed and tested. Both devices connect to one central monitoring station using two separate Bluetooth connections, ensuring a completely wireless setup. A Matlab graphical user interface (GUI) was developed for signal processing and monitoring of the vital signs of the psychiatric patient. Detection algorithms were implemented to detect ECG arrhythmias such as premature ventricular contraction and atrial fibrillation. The prototypes were manufactured and tested in a laboratory setting on healthy volunteers.
Evaluation of Diesel Exhaust Continuous Monitors in Controlled Environmental Conditions
Yu, Chang Ho; Patton, Allison P.; Zhang, Andrew; Fanac, Zhi-Hua (Tina); Weisel, Clifford P.; Lioy, Paul J.
2015-01-01
Diesel exhaust (DE) contains a variety of toxic air pollutants, including diesel particulate matter (DPM) and gaseous contaminants (e.g., carbon monoxide (CO)). DPM is dominated by fine (PM2.5) and ultrafine particles (UFP), and can be representatively determined by its thermal-optical refractory as elemental carbon (EC) or light-absorbing characteristics as black carbon (BC). The currently accepted reference method for sampling and analysis of occupational exposure to DPM is the National Institute for Occupational Safety and Health (NIOSH) Method 5040. However, this method cannot provide in-situ short-term measurements of DPM. Thus, real-time monitors are gaining attention to better examine DE exposures in occupational settings. However, real-time monitors are subject to changing environmental conditions. Field measurements have reported interferences in optical sensors and subsequent real-time readings, under conditions of high humidity and abrupt temperature changes. To begin dealing with these issues, we completed a controlled study to evaluate five real-time monitors: Airtec real-time DPM/EC Monitor, TSI SidePak Personal Aerosol Monitor AM510 (PM2.5), TSI Condensation Particle Counter 3007, microAeth AE51 BC Aethalometer, and Langan T15n CO Measurer. Tests were conducted under different temperatures (55, 70, and 80 °F), relative humidity (10, 40, and 80%), and DPM concentrations (50 and 200 µg/m3) in a controlled exposure facility. The 2-hour averaged EC measurements from the Airtec instrument showed relatively good agreement with NIOSH Method 5040 (R2=0.84; slope=1.17±0.06; N=27) and reported ~17% higher EC concentrations than the NIOSH reference method. Temperature, relative humidity, and DPM levels did not significantly affect relative differences in 2-hour averaged EC concentrations obtained by the Airtec instrument versus the NIOSH method (p<0.05). Multiple linear regression analyses, based on 1-min averaged data, suggested combined effects of up to 5% from relative humidity and temperature on real-time measurements. The overall deviations of these real-time monitors from the NIOSH method results were ≤20%. However, simultaneous monitoring of temperature and relative humidity is recommended in field investigations to understand and correct for environmental impacts on real-time monitoring data. PMID:25894766
Effect of change in ambient temperature on core temperature during the daytime.
Kakitsuba, Naoshi; White, Matthew D
2014-07-01
In this study, the hypothesis is tested that continuous increases in ambient temperature (Ta) during daytime would give elevated core and skin temperatures, and consequently better thermal sensation and comfort. Rectal temperature (Tre), skin temperatures and regional dry heat losses at 7 sites were continuously measured for 10 Japanese male subjects in three thermal conditions: cond. 1, stepwise increases in Ta from 26 °C at 9 h00 to 30 °C at 18 h00; cond. 2, steady Ta at 28 °C from 9 h00 to 18 h00 and cond. 3, stepwise decreases in Ta from 30 °C at 9 h00 to 26 °C at 18 h00. Oxygen consumption was measured and thermal sensation and comfort votes were monitored at 15 min intervals. Body weight loss was measured at 1 h intervals. While Tre increased continuously in the morning period in any condition, it increased to a significantly greater (p<0.05) 36.9±0.3 °C at 18 h00 in cond. 1 relative to 36.7±0.28 °C in Cond. 2 and 36.5±0.37 °C in cond. 3. Better thermal comfort was observed in the afternoon and the evening in Cond.1 as compared with the other 2 conditions. Thus, a progressive and appropriate increase in Ta may induce optimal cycle in core temperature during daytime, particularly for a resting person.
A wearable bluetooth LE sensor for patient monitoring during MRI scans.
Vogt, Christian; Reber, Jonas; Waltisberg, Daniel; Buthe, Lars; Marjanovic, Josip; Munzenrieder, Niko; Pruessmann, Klaas P; Troster, Gerhard
2016-08-01
This paper presents a working prototype of a wearable patient monitoring device capable of recording the heart rate, blood oxygen saturation, surface temperature and humidity during an magnetic resonance imaging (MRI) experiment. The measured values are transmitted via Bluetooth low energy (LE) and displayed in real time on a smartphone on the outside of the MRI room. During 7 MRI image acquisitions of at least 1 min and a total duration of 25 min no Bluetooth data packets were lost. The raw measurements of the light intensity for the photoplethysmogram based heart rate measurement shows an increased noise floor by 50LSB (least significant bit) during the MRI operation, whereas the temperature and humidity readings are unaffected. The device itself creates a magnetic resonance (MR) signal loss with a radius of 14 mm around the device surface and shows no significant increase in image noise of an acquired MRI image due to its radio frequency activity. This enables continuous and unobtrusive patient monitoring during MRI scans.
Lei, Kin Fong; Chen, Kuan-Hao; Tsui, Po-Hsiang; Tsang, Ngan-Ming
2013-01-01
Blood coagulation is an extremely complicated and dynamic physiological process. Monitoring of blood coagulation is essential to predict the risk of hemorrhage and thrombosis during cardiac surgical procedures. In this study, a high throughput microfluidic chip has been developed for the investigation of the blood coagulation process under temperature and hematocrit variations. Electrical impedance of the whole blood was continuously recorded by on-chip electrodes in contact with the blood sample during coagulation. Analysis of the impedance change of the blood was conducted to investigate the characteristics of blood coagulation process and the starting time of blood coagulation was defined. The study of blood coagulation time under temperature and hematocrit variations was shown a good agreement with results in the previous clinical reports. The electrical impedance measurement for the definition of blood coagulation process provides a fast and easy measurement technique. The microfluidic chip was shown to be a sensitive and promising device for monitoring blood coagulation process even in a variety of conditions. It is found valuable for the development of point-of-care coagulation testing devices that utilizes whole blood sample in microliter quantity. PMID:24116099
Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1985
Farrar, C.D.; Sorey, M.L.; Rojstaczer, S.A.; Janik, C.J.; Winnett, T.L.; Clark, M.D.
1987-01-01
Hydrologic and geochemical monitoring, to detect changes caused by magmatic and tectonic processes in the Long Valley caldera has continued through 1985. The monitoring included the collection of the following types of data: chemical and isotopic composition of water and gases from springs, wells, and steam vents; temperatures in wells, springs, and steam vents; flow rates of springs and streams; water levels in wells; and barometric pressure and precipitation at several sites. In addition, reservoir temperatures for the geothermal system were estimated from computations based on chemical geothermometers applied to fluid samples from wells and springs. Estimates of thermal water discharged from springs were made on the basis of boron and chloride fluxes in surface waters for selected sites in the Casa Diablo area and along the Mammoth-Hot Creek drainage. These data are presented in tables and graphs. The Long Valley area was relatively quiescent throughout 1985 in terms of geodetic changes and seismic activity. As a consequence , the hydrologic system varied mainly in response to seasonal influences of temperature, atmospheric pressure, and precipitation. However, spring flows near Casa Diablo were influenced by pumping at the geothermal production well field nearby. (Author 's abstract)
Stephanie Moore; Nathan J. Mantua; Jan A. Newton; Mitsuhiro Kawase; Mark J. Warner; Jonathan P. Kellogg
2008-01-01
Temporal and spatial patterns of variability in Puget Sound's oceanographic properties are determined using continuous vertical profile data from two long-term monitoring programs; monthly observations at 16 stations from 1993 to 2002, and biannual observations at 40 stations from 1998 to 2003. Climatological monthly means of temperature, salinity, and density...
Temperature Climatology with Rayleigh Lidar Above Observatory of Haute-Provence: Dynamical Feedback
NASA Astrophysics Data System (ADS)
Keckhut, Philippe; Hauchecorne, Alain; Funatsu, Beatriz; Khaykin, Serguey; Mze, Nahouda; Claud, Chantal; Angot, Guillaume
2016-06-01
Rayleigh lidar in synergy with satellite observations (SSU and AMSU) allow insuring an efficient monitoring and showing that cooling has continued. New approach for trend detection has been developed allowing a better estimate of changes due to radiative forcing. Stratospheric Warmings and gravity waves contribute to insure a dynamical feedback of the long-term changes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Table 4 to this subpart a. Monitoring and recording every 15 minutes the total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15 minutes of completing any cooling cycle, andb. Maintaining the total regeneration stream mass or volumetric flow, and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Table 4 to this subpart a. Monitoring and recording every 15 minutes the total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15 minutes of completing any cooling cycle, andb. Maintaining the total regeneration stream mass or volumetric flow, and...
Continuous aqueous tritium monitor
McManus, Gary J.; Weesner, Forrest J.
1989-05-30
An apparatus for a selective on-line determination of aqueous tritium concentration is disclosed. A moist air stream of the liquid solution being analyzed is passed through a permeation dryer where the tritium and moisture and selectively removed to a purge air stream. The purge air stream is then analyzed for tritium concentration, humidity, and temperature, which allows computation of liquid tritium concentration.
Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies
D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez
2000-01-01
Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production Pt. 63, Subpt. PPP, Table 7... regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon...
NASA Astrophysics Data System (ADS)
Yang, Weiqiang; Yin, Ke; Zhang, Bin; Xue, Guanghui; Hou, Jing
2014-07-01
We have experimentally investigated several hundred kHz repetition rate 1,550-nm nanosecond pulses amplification in Er-Yb co-doped fiber amplifier (EYDFA). The experimental setup has three stage fiber amplifiers. At the output of the second stage EYDFA, Yb3+ ions induced amplified spontaneous emission (Yb-ASE) is not observed owing to the low pump power. In the third stage EYDFA, a simultaneously seeded 1,064-nm continuous-wave laser is used to control Yb-ASE. Without any additional 1,064-nm signal, significantly backward Yb-ASE which caused loss-induced heat accumulation at the input port of the pump combiner can be observed. The monitored temperature at the input port of the pump combiner rapidly grows from 30 to 80 °C when the pump power is turned from 20 to 32 W. When a 196-mW forward 1,064-nm laser is added, the monitored backward Yb-ASE power is significantly declined, and the monitored temperature is kept below 35 °C. But, the additional signal caused a large power fraction at 1,064 nm in the output laser. In our experiment at the maximum pump power of 48.5 W, the total output power is 20 W with ~6.4-W 1,550-nm pulsed laser and ~13-W 1,064-nm continuous-wave laser.
Fracture resistance of a TiB2 particle/SiC matrix composite at elevated temperature
NASA Technical Reports Server (NTRS)
Jenkins, Michael G.; Salem, Jonathan A.; Seshadri, Srinivasa G.
1988-01-01
The fracture resistance of a comercial TiB2 particle/SiC matrix composite was evaluated at temperatures ranging from 20 to 1400 C. A laser interferometric strain gauge (LISG) was used to continuously monitor the crack mouth opening displacement (CMOD) of the chevron-notched and straight-notched, three-point bend specimens used. Crack growth resistance curves (R-curves) were determined from the load versus displacement curves and displacement calibrations. Fracture toughness, work-of-fracture, and R-curve levels were found to decrease with increasing temperature. Microstructure, fracture surface, and oxidation coat were examined to explain the fracture behavior.
Fracture resistance of a TiB2 particle/SiC matrix composite at elevated temperature
NASA Technical Reports Server (NTRS)
Jenkins, Michael G.; Salem, Jonathan A.; Seshadri, Srinivasa G.
1989-01-01
The fracture resistance of a commercial TiB2 particle/SiC matrix composite was evaluated at temperatures ranging from 20 to 1400 C. A laser interferometric strain gauge (LiSG) was used to continuously monitor the crack mouth opening displacement (CMOD) of the chevron-notched and straight-notched, three-point bend specimens used. Crack growth resistance curves (R-curves) were determined from the load versus displacement curves and displacement calibrations. Fracture toughness, work-of-fracture, and R-curve levels were found to decrease with increasing temperature. Microstructure, fracture surface, and oxidation coat were examined to explain the fracture behavior.
Detection of essential hypertension with physiological signals from wearable devices.
Ghosh, Arindam; Torres, Juan Manuel Mayor; Danieli, Morena; Riccardi, Giuseppe
2015-08-01
Early detection of essential hypertension can support the prevention of cardiovascular disease, a leading cause of death. The traditional method of identification of hypertension involves periodic blood pressure measurement using brachial cuff-based measurement devices. While these devices are non-invasive, they require manual setup for each measurement and they are not suitable for continuous monitoring. Research has shown that physiological signals such as Heart Rate Variability, which is a measure of the cardiac autonomic activity, is correlated with blood pressure. Wearable devices capable of measuring physiological signals such as Heart Rate, Galvanic Skin Response, Skin Temperature have recently become ubiquitous. However, these signals are not accurate and are prone to noise due to different artifacts. In this paper a) we present a data collection protocol for continuous non-invasive monitoring of physiological signals from wearable devices; b) we implement signal processing techniques for signal estimation; c) we explore how the continuous monitoring of these physiological signals can be used to identify hypertensive patients; d) We conduct a pilot study with a group of normotensive and hypertensive patients to test our techniques. We show that physiological signals extracted from wearable devices can distinguish between these two groups with high accuracy.
Wearable sensors for health monitoring
NASA Astrophysics Data System (ADS)
Suciu, George; Butca, Cristina; Ochian, Adelina; Halunga, Simona
2015-02-01
In this paper we describe several wearable sensors, designed for monitoring the health condition of the patients, based on an experimental model. Wearable sensors enable long-term continuous physiological monitoring, which is important for the treatment and management of many chronic illnesses, neurological disorders, and mental health issues. The system is based on a wearable sensors network, which is connected to a computer or smartphone. The wearable sensor network integrates several wearable sensors that can measure different parameters such as body temperature, heart rate and carbon monoxide quantity from the air. After the portable sensors measuring parameter values, they are transmitted by microprocessor through the Bluetooth to the application developed on computer or smartphone, to be interpreted.
Continuous CO2 gas monitoring to clarify natural pattern and artificial leakage signals
NASA Astrophysics Data System (ADS)
Joun, W.; Ha, S. W.; Joo, Y. J.; Lee, S. S.; Lee, K. K.
2017-12-01
Continuous CO2 gas monitoring at shallow aquifer is significant for early detection and immediate handling of an aquifer impacted by leaking CO2 gas from the sequestration reservoir. However, it is difficult to decide the origin of CO2 gas because detected CO2 includes not only leaked CO2 but also naturally emitted CO2. We performed CO2 injection and monitoring tests in a shallow aquifer. Before the injection of CO2 infused water, we have conducted continuous monitoring of multi-level soil CO2 gas concentration and physical parameters such as temperature, humidity, pressure, wind speed and direction, and precipitation. The monitoring data represented that CO2 gas concentrations in unsaturated soil zone borehole showed differences at depths and daily variation (360 to 6980 ppm volume). Based on the observed data at 5 m and 8 m depths, vertical flux of gas was calculated as 0.471 L/min (LPM) for inflow from 5 m to 8 m and 9.42E-2 LPM for outflow from 8 m to 5 m. The numerical and analytical models were used to calculate the vertical flux of gas and to compare with observations. The results showed that pressure-based modeling could not explain the rapid change of CO2 gas concentration in borehole. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)
Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry
NASA Technical Reports Server (NTRS)
Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)
1995-01-01
The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.
NASA Astrophysics Data System (ADS)
Isaak, Daniel J.; Wenger, Seth J.; Peterson, Erin E.; Ver Hoef, Jay M.; Nagel, David E.; Luce, Charles H.; Hostetler, Steven W.; Dunham, Jason B.; Roper, Brett B.; Wollrab, Sherry P.; Chandler, Gwynne L.; Horan, Dona L.; Parkes-Payne, Sharon
2017-11-01
Thermal regimes are fundamental determinants of aquatic ecosystems, which makes description and prediction of temperatures critical during a period of rapid global change. The advent of inexpensive temperature sensors dramatically increased monitoring in recent decades, and although most monitoring is done by individuals for agency-specific purposes, collectively these efforts constitute a massive distributed sensing array that generates an untapped wealth of data. Using the framework provided by the National Hydrography Dataset, we organized temperature records from dozens of agencies in the western U.S. to create the NorWeST database that hosts >220,000,000 temperature recordings from >22,700 stream and river sites. Spatial-stream-network models were fit to a subset of those data that described mean August water temperatures (AugTw) during 63,641 monitoring site-years to develop accurate temperature models (r2 = 0.91; RMSPE = 1.10°C; MAPE = 0.72°C), assess covariate effects, and make predictions at 1 km intervals to create summer climate scenarios. AugTw averaged 14.2°C (SD = 4.0°C) during the baseline period of 1993-2011 in 343,000 km of western perennial streams but trend reconstructions also indicated warming had occurred at the rate of 0.17°C/decade (SD = 0.067°C/decade) during the 40 year period of 1976-2015. Future scenarios suggest continued warming, although variation will occur within and among river networks due to differences in local climate forcing and stream responsiveness. NorWeST scenarios and data are available online in user-friendly digital formats and are widely used to coordinate monitoring efforts among agencies, for new research, and for conservation planning.
NASA Astrophysics Data System (ADS)
Ulrich, C.; Ajo Franklin, J. B.; Ekblaw, I.; Lindsey, N.; Wagner, A. M.; Saari, S.; Daley, T. M.; Freifeld, B. M.
2016-12-01
As global temperatures continue to rise, permafrost landscapes will experience more rapid changes than other global climate zones. Permafrost thaw is a result of increased temperatures in arctic settings resulting in surface deformation and subsurface hydrology changes. From an engineering perspective, surface deformation poses a threat to the stability of existing infrastructure such as roads, utility piping, and building structures. Preemptively detecting or monitoring subsurface thaw dynamics presents a difficult challenge due to the long time scales as deformation occurs. Increased subsurface moisture content results from permafrost thaw of which electrical resistivity tomography (ERT), soil temperature, and nuclear magnetic resonance (NMR) are directly sensitive. In this experiment we evaluate spatial and temporal changes in subsurface permafrost conditions (moisture content and temperature) at a experimental heating plot in Fairbanks, AK. This study focuses on monitoring thaw signatures using multiple collocated electrical resistivity (ERT), borehole temperature, and borehole nuclear magnetic resonance (NMR) measurements. Timelapse ERT (sensitive to changes in moisture content) was inverted using collocated temperature and NMR to constrain ERT inversions. Subsurface thermal state was monitored with timelapse thermistors, sensitive to soil ice content. NMR was collected in multiple boreholes and is sensitive to changes in moisture content and pore scale distribution. As permafrost thaws more hydrogen, in the form of water, is available resulting in a changing NMR response. NMR requires the availability of liquid water in order to induce spin of the hydrogen molecule, hence, if frozen water molecules will be undetectable. In this study, the permafrost is poised close to 0oC and is mainly silt with small pore dimensions; this combination makes NMR particularly useful due to the possibility of sub-zero thaw conditions within the soil column. Overall this experiment presents a complementary suite of methods that provides feedback on subsurface permafrost state even in cases where soil texture might control unfrozen water content.
Liu, Yan; Wang, Hai; Zhao, Wei; Qin, Hongbo; Xie, Yongqiang
2018-01-01
Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed. PMID:29470408
Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System
Bermudez, Sergio A.; Schrott, Alejandro G.; Tsukada, Masahiko; Kargere, Lucretia; Marianno, Fernando; Hamann, Hendrik F.; López, Vanessa; Leona, Marco
2017-01-01
Results from three years of continuous monitoring of environmental conditions using a wireless sensor platform installed at The Cloisters, the medieval branch of the New York Metropolitan Museum of Art, are presented. The platform comprises more than 200 sensors that were distributed in five galleries to assess temperature and air flow and to quantify microclimate changes using physics-based and statistical models. The wireless sensor network data shows a very stable environment within the galleries, while the dense monitoring enables localized monitoring of subtle changes in air quality trends and impact of visitors on the microclimate conditions. The high spatial and temporal resolution data serves as a baseline study to understand the impact of visitors and building operations on the long-term preservation of art objects. PMID:28858223
Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System.
Klein, Levente J; Bermudez, Sergio A; Schrott, Alejandro G; Tsukada, Masahiko; Dionisi-Vici, Paolo; Kargere, Lucretia; Marianno, Fernando; Hamann, Hendrik F; López, Vanessa; Leona, Marco
2017-08-31
Results from three years of continuous monitoring of environmental conditions using a wireless sensor platform installed at The Cloisters, the medieval branch of the New York Metropolitan Museum of Art, are presented. The platform comprises more than 200 sensors that were distributed in five galleries to assess temperature and air flow and to quantify microclimate changes using physics-based and statistical models. The wireless sensor network data shows a very stable environment within the galleries, while the dense monitoring enables localized monitoring of subtle changes in air quality trends and impact of visitors on the microclimate conditions. The high spatial and temporal resolution data serves as a baseline study to understand the impact of visitors and building operations on the long-term preservation of art objects.
Liu, Yan; Wang, Hai; Zhao, Wei; Zhang, Min; Qin, Hongbo; Xie, Yongqiang
2018-02-22
Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed.
Lemon, Mary Grace T.; Allen, Scott T.; Edwards, Brandon L.; King, Sammy L.; Keim, Richard F.
2016-01-01
Decreased water availability due to hydrologic modifications, groundwater withdrawal, and climate change threaten bottomland hardwood (BLH) forest communities. We used satellite-derived (MODIS) land-surface temperature (LST) data to investigate spatial heterogeneity of canopy temperature (an indicator of plant-water status) in a floodplain forest of the upper Sabine River for 2008–2014. High LST pixels were generally further from the river and at higher topographic locations, indicating lower water-availability. Increasing rainfall-derived soil moisture corresponded with decreased heterogeneity of LST between pixels but there was weaker association between Sabine River stage and heterogeneity. Stronger dependence of LST convergence on rainfall rather than river flow suggests that some regions are less hydrologically connected to the river, and vegetation may rely on local precipitation and other contributions to the riparian aquifer to replenish soil moisture. Observed LST variations associated with hydrology encourage further investigation of the utility of this approach for monitoring forest stress, especially with considerations of climate change and continued river management.
Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman
2015-01-01
Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc.
Challenges in Melt Furnace Tests
NASA Astrophysics Data System (ADS)
Belt, Cynthia
2014-09-01
Measurement is a critical part of running a cast house. Key performance indicators such as energy intensity, production (or melt rate), downtime (or OEE), and melt loss must all be understood and monitored on a weekly or monthly basis. Continuous process variables such as bath temperature, flue temperature, and furnace pressure should be used to control the furnace systems along with storing the values in databases for later analysis. While using measurement to track furnace performance over time is important, there is also a time and place for short-term tests.
NASA Technical Reports Server (NTRS)
Kosterev, A. A.; Tittel, F. K.; Durante, W.; Allen, M.; Kohler, R.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Cho, A. Y.
2002-01-01
We report the first application of pulsed, near-room-temperature quantum cascade laser technology to the continuous detection of biogenic CO production rates above viable cultures of vascular smooth muscle cells. A computer-controlled sequence of measurements over a 9-h period was obtained, resulting in a minimum detectable CO production of 20 ppb in a 1-m optical path above a standard cell-culture flask. Data-processing procedures for real-time monitoring of both biogenic and ambient atmospheric CO concentrations are described.
Groundwater temperature transients on the Armutlu peninsula, eastern Marmara region
NASA Astrophysics Data System (ADS)
Woith, Heiko; Caka, Deniz; Seyis, Cemil; Italiano, Francesco; Celik, Cengiz; Wang, Rongjiang; Baris, Serif
2016-04-01
Since many years MAM and GFZ in co-operation with Kocaeli University (KU) operate fluid monitoring stations around the Sea of Marmara. In the frame of MARsite (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417) these networks were jointly evaluated for the first time. The on-land fluid monitoring networks continuously monitor the following parameters: soil radon (21 sites), temperature and conductivity of thermal springs (9 sites) operated by MAM covering the whole Marmara region; fluid pressure and water level/temperature (8 sites) within ARNET operated by GFZ/KU. ARNET is a combined seismological/hydrogeological monitoring network covering the Armutlu peninsula located SE of Istanbul. Additional to the geothermal wells and springs - our main target to detect transients of potentially seismo-tectonic origin - three shallow groundwater wells (tenth of meters deep) are being operated to identify and quantify seasonal variations, and meteorological influences like rainfall and snowmelt. But it turned out that these shallow aquifer systems showed very stable conditions with very small annual temperature amplitudes (0.2 - 0.3°C). One of these shallow monitoring wells is located just south of Lake Iznik (in the village of Sölöz) very close to the southern branch of the North Anatolian Fault Zone. Water level showed a steady decreasing trend since June 2012. This trend resulted in a data gap starting in January 2014, when the water level dropped below the sensor position. After adjusting the sensor position, positive spikes in the borehole temperature were recorded in June and August 2014, and again in 2015. The spikes are characterised by a sharp temperature increase followed by a decay lasting several days until the pre-event temperature was reached again. Since the spikes occurred on two independent logger systems, and since they lasted several days, a technical origin is not likely. During the station visit in 2015 a physical explanation for these positive temperature spikes emerged. We noticed the release of pressured gas while opening the wellhead. Thus, tentatively we propose that the rise of a giant gas bubble was responsible for the temperature spikes. We present a preliminary model to explain the observations.
Field Test of Boiler Primary Loop Temperature Controller
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glanville, P.; Rowley, P.; Schroeder, D.
Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation duringmore » perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.« less
STS-47 MS Davis uses SLJ Rack 8 continuous heating furnace (CHF) on OV-105
1992-09-20
STS047-02-003 (12 - 20 Sept 1992) --- Astronaut N. Jan Davis, mission specialist, works at the Continuous Heating Furnace (CHF) in the Spacelab-J Science Module. This furnace provided temperatures up to 1,300 degrees Celsius and rapid cooling to two sets of samples concurrently. The furnace accommodated in-space experiments in the Fabrication of Si-As-Te:Ni Ternary Amorphous Semiconductor and the Crystal Growth of Compound Semiconductors. These were two of the many experiments designed and monitored by Japan's National Space Development Agency (NASDA).
Design of autonomous sensor nodes for remote soil monitoring in tropical banana plantation
NASA Astrophysics Data System (ADS)
Tiausas, Francis Jerome G.; Co, Jerelyn; Macalinao, Marc Joseph M.; Guico, Maria Leonora; Monje, Jose Claro; Oppus, Carlos
2017-09-01
Determining the effect of Fusarium oxysporum f. sp. cubense Tropical Race 4 on various soil parameters is essential in modeling and predicting its occurrence in banana plantations. One way to fulfill this is through a sensor network that will continuously and automatically monitor environmental conditions at suspect locations for an extended period of time. A wireless sensor network was developed specifically for this purpose. This sensor network is capable of measuring soil acidity, moisture, temperature, and conductivity. The designed prototype made use of off-the-shelf Parrot Flower Power soil sensor, pH sensor, Bluno Beetle, battery, and 3D-printed materials, catering specifically to the conditions of tropical banana plantations with consideration for sensor node size, communication, and power. Sensor nodes were tested on both simulated tropical environments and on an actual banana plantation in San Jose, General Santos City, Philippines. Challenges were resolved through iterative design and development of prototypes. Several tests including temperature and weather resilience, and structural stress tests were done to validate the design. Findings showed that the WSN nodes developed for this purpose are resilient to high tropical temperatures for up to 12 hours of continuous exposure, are able to withstand compressive forces of up to 8880.6 N, and can reliably collect data automatically from the area 47.96% of the time at an hourly frequency under actual field conditions.
Effect of microwave irradiation on TATB explosive (II): temperature response and other risk.
Yu, Weifei; Zhang, Tonglai; Zuo, Jun; Huang, Yigang; Li, Gang; Han, Chao; Li, Jinshan; Huang, Hui
2010-01-15
TATB (1,3,5-triamino-2,4,6-trinitrobenzene) explosives were safely irradiated with microwave and showed no visible change according to XPS and XRD spectra. Temperature of TATB sample increased quickly at the beginning and gently during sequent continuous irradiation with temperature less than 140 degrees C after 60 min, 480 W irradiation, and increased more quickly in 300 g at 480 W than in 150 g at 480 W, both implied that heat dissipation was in the majority of microwave energy. Two major risk factors in microwave irradiation were concerned including overheating which should be avoidable with temperature monitor and microwave discharge which should be controllable experimentally though dielectric breakdown mechanism was not elucidated theoretically yet.
Kopp, Blaine S.; Nielsen, Martha; Glisic, Dejan; Neckles, Hilary A.
2009-01-01
This report documents results of pilot tests of a protocol for monitoring estuarine nutrient enrichment for the Vital Signs Monitoring Program of the National Park Service Northeast Coastal and Barrier Network. Data collected from four parks during protocol development in 2003-06 are presented: Gateway National Recreation Area, Colonial National Historic Park, Fire Island National Seashore, and Assateague Island National Seashore. The monitoring approach incorporates several spatial and temporal designs to address questions at a hierarchy of scales. Indicators of estuarine response to nutrient enrichment were sampled using a probability design within park estuaries during a late-summer index period. Monitoring variables consisted of dissolved-oxygen concentration, chlorophyll a concentration, water temperature, salinity, attenuation of downwelling photosynthetically available radiation (PAR), and turbidity. The statistical sampling design allowed the condition of unsampled locations to be inferred from the distribution of data from a set of randomly positioned "probability" stations. A subset of sampling stations was sampled repeatedly during the index period, and stations were not rerandomized in subsequent years. These "trend stations" allowed us to examine temporal variability within the index period, and to improve the sensitivity of the monitoring protocol to detecting change through time. Additionally, one index site in each park was equipped for continuous monitoring throughout the index period. Thus, the protocol includes elements of probabilistic and targeted spatial sampling, and the temporal intensity ranges from snapshot assessments to continuous monitoring.
NASA Astrophysics Data System (ADS)
Hill, D. P.
1984-06-01
Recent patterns of geologic unrest in long Valley caldera in east-central California emphasize that this large, silicic volcanic system and the adjacent, geologically youthful Inyo-Mono Craters volcanic chain are still active and capable of producing locally hazardous volcanic eruptions. A series of four magnitude -6 earthquakes in May 1980 called attention to this current episode of unrest, and subsequent activity has included numerous earthquake swarms in the south moat of the caldera accompanied by inflation of the resurgent dome by more than 50 cm over the last five years. The seismicity associated with this unrest is currently monitored by a network of 31 telemetered seismic stations with an automatic processing system that yelds hypocentral locations and earthquake magnitudes in near-real time. Deformation of the ground is monitored by a) a series of overlapping trilateration networks that provide coverage ranging from annual measurements of regional deformation to daily measurements of deformation local to the active, southern section of the caldera, b) a regional network of level lines surveyed annually, c) a regional network of precise gravity stations occupied annually, d) local, L-shaped level figures surveyed every few months, and e) a network of fourteen borehole tiltmeter clusters (two instruments in each cluster) and a borehole dilatometer, the telemetered signals from which provide continuous data on deformation rates. Additional telemetered data provide continuous information on fluctuations in the local magnetic field, hydrogen gas emission rates at three sites, and water level and temperatures in three wells. Continuous data on disharge rates and temperatures from hot springs and fumaroles are collected by several on-site recorders within the caldera, and samples for liquid and gas chemistry are collected several times per year from selected hot springs and fumaroles.
NASA Astrophysics Data System (ADS)
Kellerer-Pirklbauer, Andreas; Bodin, Xavier; Delaloye, Reynald; Fischer, Andrea; Gärtner-Roer, Isabelle; Hartl, Lea; Kaufmann, Viktor; Krainer, Karl; Lambiel, Christophe; Mair, Volkmar; Marcer, Marco; Morra di Cella, Umberto; Scapozza, Cristian; Schoeneich, Philippe; Staub, Benno
2017-04-01
Active, inactive and relict rock glaciers are widespread periglacial landforms in the European Alps as revealed by several inventories elaborated for Slovenia, Austria, Switzerland, Italy, and France. Rock glaciers indicate present or past permafrost conditions in mountain environments and hence have a high climatic or paleoclimatic relevance. The monitoring of surface velocities at active rock glaciers has a long tradition in the European Alps with first terrestrial photogrammetric surveys in the Swiss and Austrian Alps already in the 1920s. Since the 1990s velocity monitoring activities have been substantially expanded but also institutionalized. Today, several research groups carry out annual or even continuous monitoring of rock glacier creep at more than 30 rock glaciers in Austria, France, Italy, and Switzerland. In many cases such a kinematic monitoring is jointly accomplished with meteorological and ground temperature monitoring in order to better understand the rock glacier-climate relationships and the reaction of rock glacier behavior to climatic changes. In this contribution we present a synthesis of the main results from long-term monitoring of several rock glaciers in the European Alps with at least annually-repeated data. Similarities but also differences of the movement patterns at the different sites are discussed, while the spatio-temporal pattern of the surface displacement is looked at against the climate context. In general, rock glacier surface velocities in the European Alps have been rather low during the 1980s and 1990s and reached a first peak in 2003/04 followed by a drastic drop until c.2007/08. Since then rock glacier surface velocities increased again with new velocity records in 2015/16 superior to the first peak around 2003/04. These creep rate maxima coincide with the warmest permafrost temperatures ever measured in boreholes and are likely a result of the continuously warm conditions at the ground surface over the past seven years.
Determinants of bovine thermal response to heat and solar radiation exposures in a field environment
NASA Astrophysics Data System (ADS)
Scharf, Brad; Leonard, Michael J.; Weaber, Robert L.; Mader, Terry L.; Hahn, G. Leroy; Spiers, Donald E.
2011-07-01
Continuous exposure of cattle to summer heat in the absence of shade results in significant hyperthermia and impairs growth and general health. Reliable predictors of heat strain are needed to identify this condition. A 12-day study was conducted during a moderate summer heat period using 12 Angus x Simmental ( Bos taurus) steers (533 ± 12 kg average body weight) to identify animal and ambient determinations of core body temperature ( T core) and respiration rate (RR) responses to heat stress. Steers were provided standard diet and water ad libitum, and implanted intraperitoneally with telemetric transmitters to monitor T core hourly. Visual count of flank movement at 0800 and 1500 hours was used for RR. Dataloggers recorded air temperature ( T a), and black globe temperatures ( T bg) hourly to assess radiant heat load. Analysis was across four periods and 2 consecutive days averaged within each period. Average T a and T bg increased progressively from 21.7 to 30.3°C and 25.3 to 34.0°C, respectively, from the first to fourth periods. A model utilizing a quadratic function of T a explained the most variation in T core ( R 2 = 0.56). A delay in response from 1 to 3 h did not significantly improve R 2 for this relationship. Measurements at 0800 and 1500 hours alone are sufficient to predict heat strain. Daily minimum core body temperature and initial 2-h rise in T a were predictors of maximum core temperature and RR. Further studies using continuous monitoring are needed to expand prediction of heat stress impact under different conditions.
NASA Astrophysics Data System (ADS)
Walton, M.
1991-10-01
The technical feasibility of high-temperature (greater than 100 C) aquifer thermal energy storage (IOTAS) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the additions to the FTF for the long-term cycles and the details of the first long-term cycle (LT1) that was conducted from November 1984 through May 1985. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic aspects of LT1 are reported. The permits for long-term cycles required the addition of a monitoring well 30.5 m from the storage well for monitoring near the edge of the thermally affected area and allowed the addition of a cation-exchange water softener to enable continuous operation during the injection phase. Approximately 62 percent of the 9.47 GWh of energy added to the 9.21 x 10(exp 4) cu m of ground water stored in the aquifer LT1 was recovered. Ion-exchange water softening of the heated and stored ground water prevented scaling in the system heat exchangers and the storage well and changed the major-ion chemistry of the stored water. Temperatures at the storage horizons in site monitoring wells reached as high as 108 C during the injection phase of LT1. Following heat recovery, temperatures were less than 30 C at the same locations. Less permeable horizons underwent slow temperature changes. No thermal or chemical effects were observed at the remote monitoring site.
Maxton, Fiona J C; Justin, Linda; Gillies, Donna
2004-01-01
Monitoring temperature in critically ill children is an important component of care, yet the accuracy of methods is often questioned. Temperature measured in the pulmonary artery is considered the 'gold standard', but this route is unsuitable for the majority of patients. An accurate, reliable and less invasive method is, however, yet to be established in paediatric intensive care work. To determine which site most closely reflects core temperature in babies and children following cardiac surgery, by comparing pulmonary artery temperature to the temperature measured at rectal, bladder, nasopharyngeal, axillary and tympanic sites. A convenience sample of 19 postoperative cardiac patients was studied. Temperature was recorded as a continuous measurement from pulmonary artery, rectal, nasopharyngeal and bladder sites. Axillary and tympanic temperatures were recorded at 30 minute intervals for 6 1/2 hours postoperatively. The small sample size of 19 infants and children limits the generalizability of the study. Repeated measures analysis of variance demonstrated no significant difference between pulmonary artery and bladder temperatures, and pulmonary artery and nasopharyngeal temperatures. Intraclass correlation showed that agreement was greatest between pulmonary artery temperature and temperature measured by bladder catheter. There was a significant difference between pulmonary artery temperature and temperature measured at rectal, tympanic and pulmonary artery and axillary sites. Repeated measures analysis showed a significant lag between pulmonary artery and rectal temperature of between 0 and 150 minutes after the 6-hour measurement period. In this study, bladder temperature was shown to be the best estimate of pulmonary artery temperature, closely followed by the temperature measured by nasopharyngeal probe. The results support the use of bladder or nasopharyngeal catheters to monitor temperature in critically ill children after cardiac surgery.
Self-regulating proportionally controlled heating apparatus and technique
NASA Technical Reports Server (NTRS)
Strange, M. G. (Inventor)
1975-01-01
A self-regulating proportionally controlled heating apparatus and technique is provided wherein a single electrical resistance heating element having a temperature coefficient of resistance serves simultaneously as a heater and temperature sensor. The heating element is current-driven and the voltage drop across the heating element is monitored and a component extracted which is attributable to a change in actual temperature of the heating element from a desired reference temperature, so as to produce a resulting error signal. The error signal is utilized to control the level of the heater drive current and the actual heater temperature in a direction to reduce the noted temperature difference. The continuous nature of the process for deriving the error signal feedback information results in true proportional control of the heating element without the necessity for current-switching which may interfere with nearby sensitive circuits, and with no cyclical variation in the controlled temperature.
NASA Technical Reports Server (NTRS)
Lisy, Frederick J.
2015-01-01
Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.
Yakum, Martin Ndinakie; Ateudjieu, Jerome; Walter, Ebile Akoh; Watcho, Pierre
2015-04-14
The cold chain must be monitored continuously in order to guarantee vaccines' quality. From field reports and previous studies, cold chain monitoring for expanded program on immunization (EPI) is still not satisfactory in Cameroon. This study was conducted to evaluate the availability and functioning of cold chain equipment as well as knowledge. It was a cross-sectional study involving a multistage sampling. 3urban and 5rural districts were selected randomly from the 19 health districts of the North West region. In each district all the health facilities taking part in the EPI were targeted. Data were collected using a questionnaire administered face to face to health personnel and with an observational grid to assess availability, functioning, and monitoring of cold chain equipment and power supply. The data were analyzed using the epi-info software. A total of 70 health facilities were contacted and 65(88.6%) of them included in the study. Fifty-three (81.5%) out of 65 health facilities had at least one functional vaccine refrigerator. The national guideline of EPI was not present in 21(33.9%) health facilities. Temperature chart was complete/correctly filled in 25(50.0%) of the 50(96.2%) facilities having it. About 14 (26.9%) of the health facilities record at least one abnormal temperature during the last 2 months following data collection. Seventeen (28.3%) personnel did not know the correct vaccine storage temperature. The availability of vaccine storage equipment for EPI is acceptable in the North West Region of Cameroon but the capacity of those in charge to properly monitor it in all health facilities is still limited. To ensure that vaccines administered in the North West Region are stored at the recommended temperature, all District Health Services should train and regularly supervise the health personnel in charge of cold chain monitoring.
Continuous aqueous tritium monitor
McManus, G.J.; Weesner, F.J.
1987-10-19
An apparatus for a selective on-line determination of aqueous tritium concentration is disclosed. A moist air stream of the liquid solution being analyzed is passed through a permeation dryer where the tritium and moisture are selectively removed to a purge air stream. The purge air stream is then analyzed for tritium concentration, humidity, and temperature, which allows computation of liquid tritium concentration. 2 figs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2011 CFR
2011-07-01
... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...
Code of Federal Regulations, 2010 CFR
2010-07-01
... rural HMIWI HMIWI a with dry scrubber followed by fabric filter HMIWI a with wet scrubber HMIWI a with dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Once per charge Once per charge ✔ ✔ ✔ ✔ Maximum fabric filter inlet temperature Continuous Once...
Influence of volcanic history on groundwater patterns on the west slope of the Oregon High Cascades.
A. Jefferson; G. Grant; T. Rose
2006-01-01
Spring systems on the west slope of the Oregon High Cascades exhibit complex relationships among modern topography, lava flow geometries, and groundwater flow patterns. Seven cold springs were continuously monitored for discharge and temperature in the 2004 water year, and they were periodically sampled for ?18O, ?D, tritium, and dissolved noble gases. Anomalously high...
NASA Astrophysics Data System (ADS)
Aly, Nevin; Gomez-Heras, Miguel; Hamed, Ayman; Alvarez de Buergo, Monica
2013-04-01
weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures Nevin Aly Mohamed (1), Miguel Gomez - Heras(2), Ayman Hamed Ahmed (1), and Monica Alvarez de Buergo(2). (1) Faculty of Pet. & Min. Engineering- Suez Canal University, Suez, Egypt, (2) Instituto de Geociencias (CSIC-UCM) Madrid. Spain. Limestone is one of the most frequent building stones in Egypt and is used since the time of ancient Egyptians and salt weathering is one of the main threats to its conservation. Most of the limestone used in historical monuments in Cairo is a biomicrite extracted from the Mid-Eocene Mokattam Group. During this work, cylindrical samples (2.4 cm diameter and approx. 4.8 cm length) were subjected, in a purpose-made simulation chamber, to simulated laboratory weathering tests with fixed salt concentration (10% weight NaCl solution), at different temperatures, which were kept constant throughout each test (10, 20, 30, 40 oC). During each test, salt solutions flowed continuously imbibing samples by capilarity. Humidity within the simulation chamber was reduced using silica gel to keep it low and constant to increase evaporation rate. Temperature, humidity inside the simulation chamber and samples weight were digitally monitored during each test. Results show the advantages of the proposed experimental methodology using a continuous flow of salt solutions and shed light on the effect of temperature on the dynamics of salt crystallization on and within samples. Research funded by mission sector of high education ministry, Egypt and Geomateriales S2009/MAT-1629.
MBE growth of vertical-cavity surface-emitting laser structure without real-time monitoring
NASA Astrophysics Data System (ADS)
Wu, C. Z.; Tsou, Y.; Tsai, C. M.
1999-05-01
Evaluation of producing a vertical-cavity surface-emitting laser (VCSEL) epitaxial structure by molecular beam epitaxy (MBE) without resorting to any real-time monitoring technique is reported. Continuous grading of Al xGa 1- xAs between x=0.12 to x=0.92 was simply achieved by changing the Al and Ga cell temperatures in no more than three steps per DBR period. Highly uniform DBR and VCSEL structures were demonstrated with a multi-wafer MBE system. Run-to-run standard deviation of reflectance spectrum center wavelength was 0.5% and 1.4% for VCSEL etalon wavelength.
NASA Astrophysics Data System (ADS)
Arosio, Diego; Munda, Stefano; Tresoldi, Greta; Papini, Monica; Longoni, Laura; Zanzi, Luigi
2017-10-01
This work is based on the assumption that a resistivity meter can effectively monitor water saturation in earth levees and can be used as a warning system when saturation exceeds the expected seasonal maxima. We performed time-lapse ERT measurements to assess the capability of this method to detect areas where seepage is critical. These measurements were also very useful to design a prototype monitoring system with remarkable savings by customizing the specifications according to field observations. The prototype consists of a remotely controlled low-power resistivity meter with a spread of 48 stainless steel 20 × 20 cm plate electrodes buried at half-meter depth. We deployed the newly-designed permanent monitoring system on a critical levee segment. A weather station and an ultrasonic water level sensor were also installed in order to analyse the correlation of resistivity with temperature, rainfalls and water level seasonal variations. The preliminary analysis of the monitoring data shows that the resistivity maps follow a very reasonable trend related with the saturation/drying cycle of the levee caused by the seasonal variations of the water level in the irrigation channel. Sharp water level changes cause delayed and smooth resistivity variations. Rainfalls and, to a lesser extent, temperature seem to have an influence on the collected data but effects are apparently negligible beyond 1 m depth. The system is currently operating and results are continuously monitored.
Fuel processor temperature monitoring and control
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2002-01-01
In one embodiment, the method of the invention monitors one or more of the following conditions: a relatively low temperature value of the gas stream; a relatively high temperature value of the gas stream; and a rate-of-change of monitored temperature. In a preferred embodiment, the rate of temperature change is monitored to prevent the occurrence of an unacceptably high or low temperature condition. Here, at least two temperatures of the recirculating gas stream are monitored over a period of time. The rate-of-change of temperature versus time is determined. Then the monitored rate-of-change of temperature is compared to a preselected rate-of-change of value. The monitoring of rate-of-change of temperature provides proactive means for preventing occurrence of an unacceptably high temperature in the catalytic reactor.
Experiences and recommendations in deploying a real-time, water quality monitoring system
NASA Astrophysics Data System (ADS)
O'Flynn, B.; Regan, F.; Lawlor, A.; Wallace, J.; Torres, J.; O'Mathuna, C.
2010-12-01
Monitoring of water quality at a river basin level to meet the requirements of the Water Framework Directive (WFD) using conventional sampling and laboratory-based techniques poses a significant financial burden. Wireless sensing systems offer the potential to reduce these costs considerably, as well as provide more useful, continuous monitoring capabilities by giving an accurate idea of the changing environmental and water quality in real time. It is unlikely that the traditional spot/grab sampling will provide a reasonable estimate of the true maximum and/or mean concentration for a particular physicochemical variable in a water body with marked temporal variability. When persistent fluctuations occur, it is likely only to be detected through continuous measurements, which have the capability of detecting sporadic peaks of concentration. Thus, in situ sensors capable of continuous sampling of parameters required under the WFD would therefore provide more up-to-date information, cut monitoring costs and provide better coverage representing long-term trends in fluctuations of pollutant concentrations. DEPLOY is a technology demonstration project, which began planning and station selection and design in August 2008 aiming to show how state-of-the-art technology could be implemented for cost-effective, continuous and real-time monitoring of a river catchment. The DEPLOY project is seen as an important building block in the realization of a wide area autonomous network of sensors capable of monitoring the spatial and temporal distribution of important water quality and environmental target parameters. The demonstration sites chosen are based in the River Lee, which flows through Ireland's second largest city, Cork, and were designed to include monitoring stations in five zones considered typical of significant river systems--these monitor water quality parameters such as pH, temperature, depth, conductivity, turbidity and dissolved oxygen. Over one million data points have been collected since the multi-sensor system was deployed in May 2009. Extreme meteorological events have occurred during the period of deployment and the collection of real-time water quality data as well as the knowledge, experience and recommendations for future deployments are discussed.
Smart Vest: wearable multi-parameter remote physiological monitoring system.
Pandian, P S; Mohanavelu, K; Safeer, K P; Kotresh, T M; Shakunthala, D T; Gopal, Parvati; Padaki, V C
2008-05-01
The wearable physiological monitoring system is a washable shirt, which uses an array of sensors connected to a central processing unit with firmware for continuously monitoring physiological signals. The data collected can be correlated to produce an overall picture of the wearer's health. In this paper, we discuss the wearable physiological monitoring system called 'Smart Vest'. The Smart Vest consists of a comfortable to wear vest with sensors integrated for monitoring physiological parameters, wearable data acquisition and processing hardware and remote monitoring station. The wearable data acquisition system is designed using microcontroller and interfaced with wireless communication and global positioning system (GPS) modules. The physiological signals monitored are electrocardiogram (ECG), photoplethysmogram (PPG), body temperature, blood pressure, galvanic skin response (GSR) and heart rate. The acquired physiological signals are sampled at 250samples/s, digitized at 12-bit resolution and transmitted wireless to a remote physiological monitoring station along with the geo-location of the wearer. The paper describes a prototype Smart Vest system used for remote monitoring of physiological parameters and the clinical validation of the data are also presented.
Zydlewski, G.B.; Haro, A.; McCormick, S.D.
2005-01-01
Temperature control of Atlantic salmon (Salmo salar) smolt migration was tested using a novel technique allowing nearly continuous monitoring of behavior with complete control over environmental conditions. Parr and presmolts were implanted with passive integrated transponder tags, placed in simulated streams, and monitored for upstream and downstream movements. Beginning 18 April, temperature was increased 1??C every third day (advanced), fourth day (ambient), and tenth day (delayed). Smolt downstream movements were initially low, peaked in mid-May, and subsequently declined under all conditions. Parr downstream movements were significantly lower than those of smolts in all treatments (0.8 ?? 0.5 movement??day-1 versus 26.5 ?? 4.5 movements??day-1, mean ?? SE) and showed no increase. At delayed temperatures, smolts sustained downstream movements through July; those under ambient and advanced conditions ceased activity by mid-June. Initiation and termination of downstream movements occurred at significantly different temperatures but at the same number of degree-days in all treatments. Physiological changes associated with smolting (gill Na+,K +-ATPase activity and plasma thyroxine) were coincident with behavioral changes. This is the first evidence of a behavioral component to the smolt window. We found that temperature experience over time is more relevant to initiation and termination of downstream movement than a temperature threshold. ?? 2005 NRC Canada.
NASA Astrophysics Data System (ADS)
Folch, Albert; del Val, Laura; Luquot, Linda; Martínez, Laura; Bellmunt, Fabian; Le Lay, Hugo; Rodellas, Valentí; Ferrer, Núria; Fernández, Sheila; Ledo, Juanjo; Pezard, Philippe; Bour, Olivier; Queralt, Pilar; Marcuello, Alex; García-Orellana, Jordi; Saaltink, Maarten; Vázquez-Suñé, Enric; Carrera, Jesús
2016-04-01
Understand the dynamics of the fresh-salt water interface in aquifers is a key issue to comprehend mixing process and to quantity the discharge of nutrients in to coastal areas. In order to go beyond the current knowledge in this issue an experimental site has been set up at the alluvial aquifer Riera Argentona (Barcelona - Spain). The site comprises 16 shallow piezometers installed between 30 and 90 m from the seashore, with depths ranging between 15 and 25 meters. The seawater interface is being monitored using several techniques, the combination of which will help us to understand the spatial and temporal behaviour of the mixing zone and the geochemical processes occurring there. Specially the deepest piezometers are equipped with electrodes in order to perform cross-hole electrical resistivity tomography (CHERT). In addition, all piezometers are also equipped with Fiber Optic cable to perform distributed temperature measurements. Two single steel armoured fibre optic cable lines of around 600m length were installed in all boreholes. The objective is to use the cable both as passive and active temperature sensor. The first is being done for the continuous monitoring of temperature whereas; the second provides a higher temperature resolution used to monitor field experiments. Periodic CHERT measurements are carried out between the piezometer equipped with electrodes, resulting in parallel and perpendicular vertical cross sections of the site resistivity. The position of the fresh-salt water interface can be identified due to the resistivity contrast between the saline and fresh water. Preliminary results of periodic distributed temperature measurements will be also be used to monitor the position of the mixing zone thanks to the contrast and seasonal temperature changes. Periodic down-hole EC profiles will be used to validate the method. Acknowledgements This work was funded by the projects CGL2013-48869-C2-1 y CGL2013-48869-C2-2-R of the Spanish Government. We would like to thank SIMMAR (Serveis Integrals de Manteniment del Maresme) and the Consell Comarcal del Maresme in the construction of the research site.
Raeini-Sarjaz, Mahmoud; Chalavi, Vida
2008-11-01
Pulvinus activity of Phaseolus species in response to environmental stimuli plays an essential role in heliotropic leaf movement. The aims of this study were to monitor the continuous daily pulvinus movement and pulvinus temperature, and to evaluate the effects of leaf movements, on a hot day, on instantaneous leaf water-use efficiency (WUEi), leaf gas exchange, and leaf temperature. Potted plants of Phaseolus vulgaris L. var. Provider were grown in Chicot sandy loam soil under well-watered conditions in a greenhouse. When the second trifoliate leaf was completely extended, one plant was selected to measure pulvinus movement using a beta-ray gauging (BRG) meter with a point source of thallium-204 (204Tl). Leaf gas exchange measurements took place on similar leaflets of three plants at an air temperature interval of 33-42 degrees C by a steady-state LI-6200 photosynthesis system. A copper-constantan thermocouple was used to monitor pulvinus temperature. Pulvinus bending followed the daily diurnal rhythm. Significant correlations were found between the leaf-incident angle and the stomatal conductance (R2 = 0.54; P < 0.01), and photosynthesis rate (R2 = 0.84; P < 0.01). With a reduction in leaf-incidence angle and increase in air temperature, WUEi was reduced. During the measurements, leaf temperature remained below air temperature and was a significant function of air temperature (r = 0.92; P < 0.01). In conclusion, pulvinus bending followed both light intensity and air temperature and influenced leaf gas exchange.
Novel Analytic Methods Needed for Real-Time Continuous Core Body Temperature Data
Hertzberg, Vicki; Mac, Valerie; Elon, Lisa; Mutic, Nathan; Mutic, Abby; Peterman, Katherine; Tovar-Aguilar, J. Antonio; Economos, Jeannie; Flocks, Joan; McCauley, Linda
2017-01-01
Affordable measurement of core body temperature, Tc, in a continuous, real-time fashion is now possible. With this advance comes a new data analysis paradigm for occupational epidemiology. We characterize issues arising after obtaining Tc data over 188 workdays for 83 participating farmworkers, a population vulnerable to effects of rising temperatures due to climate change. We describe a novel approach to these data using smoothing and functional data analysis. This approach highlights different data aspects compared to describing Tc at a single time point or summaries of the time course into an indicator function (e.g., did Tc ever exceed 38°C, the threshold limit value for occupational heat exposure). Participants working in ferneries had significantly higher Tc at some point during the workday compared to those working in nurseries, despite a shorter workday for fernery participants. Our results typify the challenges and opportunities in analyzing big data streams from real-time physiologic monitoring. PMID:27756853
Novel Analytic Methods Needed for Real-Time Continuous Core Body Temperature Data.
Hertzberg, Vicki; Mac, Valerie; Elon, Lisa; Mutic, Nathan; Mutic, Abby; Peterman, Katherine; Tovar-Aguilar, J Antonio; Economos, Eugenia; Flocks, Joan; McCauley, Linda
2016-10-18
Affordable measurement of core body temperature (T c ) in a continuous, real-time fashion is now possible. With this advance comes a new data analysis paradigm for occupational epidemiology. We characterize issues arising after obtaining T c data over 188 workdays for 83 participating farmworkers, a population vulnerable to effects of rising temperatures due to climate change. We describe a novel approach to these data using smoothing and functional data analysis. This approach highlights different data aspects compared with describing T c at a single time point or summaries of the time course into an indicator function (e.g., did T c ever exceed 38 °C, the threshold limit value for occupational heat exposure). Participants working in ferneries had significantly higher T c at some point during the workday compared with those working in nurseries, despite a shorter workday for fernery participants. Our results typify the challenges and opportunities in analyzing big data streams from real-time physiologic monitoring. © The Author(s) 2016.
Code of Federal Regulations, 2011 CFR
2011-07-01
... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 62.15220 Section 62.15220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... the operation of my continuous emission monitoring systems and continuous opacity monitoring system...
Code of Federal Regulations, 2010 CFR
2010-07-01
... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 62.15220 Section 62.15220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... the operation of my continuous emission monitoring systems and continuous opacity monitoring system...
Measurement of greenhouse gases in UAE by using Unmanned Aerial Vehicle (UAV)
NASA Astrophysics Data System (ADS)
Abou-Elnour, Ali; Odeh, Mohamed; Abdelrhman, Mohammed; Balkis, Ahmed; Amira, Abdelraouf
2017-04-01
In the present work, a reliable and low cost system has been designed and implemented to measure greenhouse gases (GHG) in United Arab Emirates (UAE) by using unmanned aerial vehicle (UAV). A set of accurate gas, temperature, pressure, humidity sensors are integrated together with a wireless communication system on a microcontroller based platform to continuously measure the required data. The system instantaneously sends the measured data to a center monitoring unit via the wireless communication system. In addition, the proposed system has the features that all measurements are recorded directly in a storage device to allow effective monitoring in regions with weak or no wireless coverage. The obtained data will be used in all further sophisticated calculations for environmental research and monitoring purposes.
NASA Astrophysics Data System (ADS)
Qi, Weiran; Miao, Hongxia; Miao, Xuejiao; Xiao, Xuanxuan; Yan, Kuo
2016-10-01
In order to ensure the safe and stable operation of the prefabricated substations, temperature sensing subsystem, temperature remote monitoring and management subsystem, forecast subsystem are designed in the paper. Wireless temperature sensing subsystem which consists of temperature sensor and MCU sends the electrical equipment temperature to the remote monitoring center by wireless sensor network. Remote monitoring center can realize the remote monitoring and prediction by monitoring and management subsystem and forecast subsystem. Real-time monitoring of power equipment temperature, history inquiry database, user management, password settings, etc., were achieved by monitoring and management subsystem. In temperature forecast subsystem, firstly, the chaos of the temperature data was verified and phase space is reconstructed. Then Support Vector Machine - Particle Swarm Optimization (SVM-PSO) was used to predict the temperature of the power equipment in prefabricated substations. The simulation results found that compared with the traditional methods SVM-PSO has higher prediction accuracy.
NASA Astrophysics Data System (ADS)
Richard, G. A.; Hammond, J. C.; Kampf, S. K.; Moore, C. D.; Eurich, A.
2017-12-01
Snowpack trend analyses and modeling studies suggest that lower elevation snowpacks in mountain regions are most sensitive to drought and warming temperatures, however, in Colorado, most snow monitoring occurs in the high elevations where snow lasts throughout the winter and most streamflow monitoring occurs at lower elevations. The lack of combined snow and streamflow monitoring in watersheds along the transition from intermittent to persistent snow creates a gap in our understanding of snowmelt and runoff within the intermittent-persistent snow transition. Expanded hydrologic monitoring that spans the gradient of snow conditions in Colorado can help improve streamflow prediction and inform land and water managers. This study established hydrologic monitoring watersheds in intermittent, transitional, and persistent snow zones on the east slope and west slope of the Rocky Mountains in Colorado, and uses this monitoring network to improve understanding of how snow accumulation and melt affect soil moisture and streamflow generation under different snow conditions. We monitored six small watersheds (three west slope, three east slope) (0.8 to 3.9 km2) that drain intermittent, transitional, and persistent snow zones. At each site, we measured: streamflow, snow depth, soil moisture, precipitation, air temperature, and snow water equivalent (SWE). In our first season of monitoring, the west slope persistent and transitional sites had more mid-winter melt and infiltration, shorter snowpack duration, and lower peak SWE than the east slope sites. Snow cover remained at the east slope persistent site into June, whereas much of the snow at the persistent site on the west slope had already melted by early June. The difference in soil water input likely has consequences for streamflow response that we will continue to examine in future years. At the west slope intermittent site, the stream did not flow during the entire first year of monitoring, while at the east slope intermittent site, the streams flowed intermittently during winter and spring, likely a result of different subsurface geology. With our ongoing watershed monitoring across a broad range of snow conditions in Colorado, we continue to learn about the factors that increase or decrease streamflow in the headwater streams that supply the state's major rivers.
Cryostat system for investigation on new neutron moderator materials at reactor TRIGA PUSPATI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dris, Zakaria bin, E-mail: zakariadris@gmail.com; Centre for Nuclear Energy, Universiti Tenaga Nasional; Mohamed, Abdul Aziz bin
2016-01-22
A simple continuous flow (SCF) cryostat was designed to investigate the neutron moderation of alumina in high temperature co-ceramic (HTCC) and polymeric materials such as Teflon under TRIGA neutron environment using a reflected neutron beam from a monochromator. Cooling of the cryostat will be carried out using liquid nitrogen. The cryostat will be built with an aluminum holder for moderator within stainless steel cylinder pipe. A copper thermocouple will be used as the temperature sensor to monitor the moderator temperature inside the cryostat holder. Initial measurements of neutron spectrum after neutron passing through the moderating materials have been carried outmore » using a neutron spectrometer.« less
Microbial fuel cells as power supply of a low-power temperature sensor
NASA Astrophysics Data System (ADS)
Khaled, Firas; Ondel, Olivier; Allard, Bruno
2016-02-01
Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.
Beussink, Amy M.; Burnich, Michael R.
2009-01-01
Lake Houston, a reservoir impounded in 1954 by the City of Houston, Texas, is a primary source of drinking water for Houston and surrounding areas. The U.S. Geological Survey, in cooperation with the City of Houston, developed a continuous water-quality monitoring network to track daily changes in water quality in the southwestern quadrant of Lake Houston beginning in 2006. Continuous water-quality data (the physiochemical properties water temperature, specific conductance, pH, dissolved oxygen concentration, and turbidity) were collected from Lake Houston to characterize the in-lake processes that affect water quality. Continuous data were collected hourly from mobile, multi-depth monitoring stations developed and constructed by the U.S. Geological Survey. Multi-depth monitoring stations were installed at five sites in three general locations in the southwestern quadrant of the lake. Discrete water-quality data (samples) were collected routinely (once or twice each month) at all sites to characterize the chemical and biological (phytoplankton and bacteria) response to changes in the continuous water-quality properties. Physiochemical properties (the five continuously monitored plus transparency) were measured in the field when samples were collected. In addition to the routine samples, discrete water-quality samples were collected synoptically (one or two times during the study period) at all sites to determine the presence and levels of selected constituents not analyzed in routine samples. Routine samples were measured or analyzed for acid neutralizing capacity; selected major ions and trace elements (calcium, silica, and manganese); nutrients (filtered and total ammonia nitrogen, filtered nitrate plus nitrite nitrogen, total nitrate nitrogen, filtered and total nitrite nitrogen, filtered and total orthophosphate phosphorus, total phosphorus, total nitrogen, total organic carbon); fecal indicator bacteria (total coliform and Escherichia coli); sediment (suspended-sediment concentration and loss-on-ignition); actinomycetes bacteria; taste-and-odor-causing compounds (2-methylisoborneol and geosmin); cyanobacterial toxins (total microcystins); and phytoplankton abundance, biovolume, and community composition (taxonomic identification to genus). Synoptic samples were analyzed for major ions, trace elements, wastewater indicators, pesticides, volatile organic compounds, and carbon. The analytical data are presented in tables by type (continuous, discrete routine, discrete synoptic) and listed by station number. Continuously monitored properties (except pH) also are displayed graphically.
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Gastelli, Michael G.; Ellis, John R.; Burke, Christopher S.
1995-01-01
An experimental study was conducted to investigate the mechanical behavior of a T650-35/AMB21 eight-harness satin weave polymer composite system. Emphasis was placed on the development and refinement of techniques used in elevated temperature uniaxial PMC testing. Issues such as specimen design, gripping, strain measurement, and temperature control and measurement were addressed. Quasi-static tensile and fatigue properties (R(sub sigma) = 0.1) were examined at room and elevated temperatures. Stiffness degradation and strain accumulation during fatigue cycling were recorded to monitor damage progression and provide insight for future analytical modeling efforts. Accomplishments included an untabbed dog-bone specimen design which consistently failed in the gage section, accurate temperature control and assessment, and continuous in-situ strain measurement capability during fatigue loading at elevated temperatures. Finally, strain accumulation and stiffness degradation during fatigue cycling appeared to be good indicators of damage progression.
Code of Federal Regulations, 2011 CFR
2011-07-01
... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 60.1765 Section 60.1765 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... continuous emission monitoring systems and continuous opacity monitoring system? Use the required span values...
Code of Federal Regulations, 2010 CFR
2010-07-01
... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 60.1765 Section 60.1765 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... continuous emission monitoring systems and continuous opacity monitoring system? Use the required span values...
Autonomic predictors of recovery following surgery: A comparative study
Williamson, John B.; Lewis, Greg; Grippo, Angela J.; Lamb, Damon; Harden, Emily; Handleman, Mika; Lebow, Jocelyn; Carter, C. Sue; Porges, Stephen W.
2015-01-01
Although heart rate and temperature are continuously monitored in patients during recovery following surgery, measures that extract direct manifestations of neural regulation of autonomic circuits from the beat-to-beat heart rate may be more sensitive to outcome. We explore the relationship between features of autonomic regulation and survival in the prairie vole, a small mammal, with features of vagal regulation of the heart similar to humans. Cardiac vagal regulation is manifested in the beat-to-beat heart rate variability (HRV) pattern and can be quantified by extracting measures of the amplitude of periodic oscillations associated with spontaneous breathing. Thus, monitoring beat-to-beat heart rate patterns post-surgery in the prairie vole may provide an opportunity to dynamically assess autonomic adjustments during recovery. Surgeries to implant telemetry devices to monitor body temperature and continuous ECG in prairie voles are routinely performed in our laboratory. Ten of these implanted prairie voles died within 48 h post-surgery. To compare the post-surgery autonomic trajectories with typical surviving prairie voles, the post-surgery data from 17 surviving prairie voles were randomly selected. The data are reported hourly for 27 prairie voles between 6 and 14 h (1 h before the demise of the first subject) post-surgery. Receiver operator curves were calculated hourly for each variable to evaluate sensitivity in discriminating survival. The data illustrate that measures of HRV are the most sensitive indicators. These findings provide a foundation for investigating further neural mechanisms of cardiovascular function. PMID:20451468
Analysis of Long-Term Temperature Variations in the Human Body.
Dakappa, Pradeepa Hoskeri; Mahabala, Chakrapani
2015-01-01
Body temperature is a continuous physiological variable. In normal healthy adults, oral temperature is estimated to vary between 36.1°C and 37.2°C. Fever is a complex host response to many external and internal agents and is a potential contributor to many clinical conditions. Despite being one of the foremost vital signs, temperature and its analysis and variations during many pathological conditions has yet to be examined in detail using mathematical techniques. Classical fever patterns based on recordings obtained every 8-12 h have been developed. However, such patterns do not provide meaningful information in diagnosing diseases. Because fever is a host response, it is likely that there could be a unique response to specific etiologies. Continuous long-term temperature monitoring and pattern analysis using specific analytical methods developed in engineering and physics could aid in revealing unique fever responses of hosts and in different clinical conditions. Furthermore, such analysis can potentially be used as a novel diagnostic tool and to study the effect of pharmaceutical agents and other therapeutic protocols. Thus, the goal of our article is to present a comprehensive review of the recent relevant literature and analyze the current state of research regarding temperature variations in the human body.
Shulman, Stanley A; Smith, Jerome P
2002-01-01
A method is presented for the evaluation of the bias, variability, and accuracy of gas monitors. This method is based on using the parameters for the fitted response curves of the monitors. Thereby, variability between calibrations, between dates within each calibration period, and between different units can be evaluated at several different standard concentrations. By combining variability information with bias information, accuracy can be assessed. An example using carbon monoxide monitor data is provided. Although the most general statistical software required for these tasks is not available on a spreadsheet, when the same number of dates in a calibration period are evaluated for each monitor unit, the calculations can be done on a spreadsheet. An example of such calculations, together with the formulas needed for their implementation, is provided. In addition, the methods can be extended by use of appropriate statistical models and software to evaluate monitor trends within calibration periods, as well as consider the effects of other variables, such as humidity and temperature, on monitor variability and bias.
Shih, Jeanne-Louise; Kobayashi, Makiko; Jen, Cheng-Kuei
2010-09-01
Piezoelectric films have been deposited by a sol-gel spray technique onto 75-μm-thick titanium and stainless steel (SS) membranes and have been fabricated into flexible ultrasonic transducers (FUTs). FUTs using titanium membranes were glued and those using SS membranes brazed onto steel pipes, procedures that serve as on-site installation techniques for the purpose of offering continuous thickness monitoring capabilities at up to 490 °C. At 150 °C, the thickness measurement accuracy of a pipe with an outer diameter of 26.6 mm and a wall thickness of 2.5 mm was estimated to be 26 μm and the center frequency of the FUT was 10.8 MHz. It is demonstrated that the frequency bandwidth of the FUTs and SNR of signals using glue or brazing materials as high-temperature couplant for FUTs are sufficient to inspect the steel pipes even with a 2.5 mm wall thickness.
Ultrasound Guidance and Monitoring of Laser-Based Fat Removal
Shah, Jignesh; Thomsen, Sharon; Milner, Thomas E.; Emelianov, Stanislav Y.
2009-01-01
Background and Objectives We report on a study to investigate feasibility of utilizing ultrasound imaging to guide laser removal of subcutaneous fat. Ultrasound imaging can be used to identify the tissue composition and to monitor the temperature increase in response to laser irradiation. Study Design/Materials and Methods Laser heating was performed on ex vivo porcine subcutaneous fat through the overlying skin using a continuous wave laser operating at 1,210 nm optical wavelength. Ultrasound images were recorded using a 10 MHz linear array-based ultrasound imaging system. Results Ultrasound imaging was utilized to differentiate between water-based and lipid-based regions within the porcine tissue and to identify the dermis-fat junction. Temperature maps during the laser exposure in the skin and fatty tissue layers were computed. Conclusions Results of our study demonstrate the potential of using ultrasound imaging to guide laser fat removal. PMID:19065554
Intelligent sensor-model automated control of PMR-15 autoclave processing
NASA Technical Reports Server (NTRS)
Hart, S.; Kranbuehl, D.; Loos, A.; Hinds, B.; Koury, J.
1992-01-01
An intelligent sensor model system has been built and used for automated control of the PMR-15 cure process in the autoclave. The system uses frequency-dependent FM sensing (FDEMS), the Loos processing model, and the Air Force QPAL intelligent software shell. The Loos model is used to predict and optimize the cure process including the time-temperature dependence of the extent of reaction, flow, and part consolidation. The FDEMS sensing system in turn monitors, in situ, the removal of solvent, changes in the viscosity, reaction advancement and cure completion in the mold continuously throughout the processing cycle. The sensor information is compared with the optimum processing conditions from the model. The QPAL composite cure control system allows comparison of the sensor monitoring with the model predictions to be broken down into a series of discrete steps and provides a language for making decisions on what to do next regarding time-temperature and pressure.
Noninvasive hemoglobin monitoring in critically ill pediatric patients at risk of bleeding.
García-Soler, P; Camacho Alonso, J M; González-Gómez, J M; Milano-Manso, G
2017-05-01
To determine the accuracy and usefulness of noninvasive continuous hemoglobin (Hb) monitoring in critically ill patients at risk of bleeding. An observational prospective study was made, comparing core laboratory Hb measurement (LabHb) as the gold standard versus transcutaneous hemoglobin monitoring (SpHb). Pediatric Intensive Care Unit of a tertiary University Hospital. Patients weighing >3kg at risk of bleeding. SpHb was measured using the Radical7 pulse co-oximeter (Masimo Corp., Irvine, CA, USA) each time a blood sample was drawn for core laboratory analysis (Siemens ADVIA 2120i). Sociodemographic characteristics, perfusion index (PI), pleth variability index, heart rate, SaO 2 , rectal temperature, low signal quality and other events that can interfere with measurement. A total of 284 measurements were made (80 patients). Mean LabHb was 11.7±2.05g/dl. Mean SpHb was 12.32±2g/dl (Pearson 0.72, R 2 0.52). The intra-class correlation coefficient was 0.69 (95%CI 0.55-0.78)(p<0.001). Bland-Altman analysis showed a mean difference of 0.07 ±1.46g/dl. A lower PI and higher temperature independently increased the risk of low signal quality (OR 0.531 [95%CI 0.32-0.88] and 0.529 [95%CI 0.33-0.85], respectively). SpHb shows a good overall correlation to LabHb, though with wide limits of agreement. Its main advantage is continuous monitoring of patients at risk of bleeding. The reliability of the method is limited in cases with poor peripheral perfusion. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.
Portable high precision pressure transducer system
Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.
1994-01-01
A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.
Restoration of the Apollo Heat Flow Experiments Metadata
NASA Technical Reports Server (NTRS)
Nagihara, S.; Stephens, M. K.; Taylor, P. T.; Williams, D. R.; Hills, H. K.; Nakamura, Y.
2015-01-01
Geothermal heat flow probes were deployed on the Apollo 15 and 17 missions as part of the Apollo Lunar Surface Experiments Package (ALSEP). At each landing site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The holes were 1- and 1.5-m deep at the Apollo 15 site and 2.5-m deep at the Apollo 17 sites. The probes monitored surface temperature and subsurface temperatures at different depths. At the Apollo 15 site, the monitoring continued from July 1971 to January 1977. At the Apollo 17 site, it did from December 1972 to September 1977. Based on the observations made through December 1974, Marcus Langseth, the principal investigator of the heat flow experiments (HFE), determined the thermal conductivity of the lunar regolith by mathematically modeling how the seasonal temperature fluctuation propagated down through the regolith. He also determined the temperature unaffected by diurnal and seasonal thermal waves of the regolith at different depths, which yielded the geothermal gradient. By multiplying the thermal gradient and the thermal conductivity, Langseth obtained the endogenic heat flow of the Moon as 21 mW/m(exp 2) at Site 15 and 16 mW/m(exp 2) at Site 17.
ELECTRICITY GENERATION FROM LANDFILL GAS IN TURKEY.
Salihoglu, Nezih Kamil
2018-05-08
Landfill gas (LFG)-to-energy plants in Turkey were investigated, and the LFG-to-energy plant of a metropolitan municipal landfill was monitored for 3 years. Installed capacities and actual gas engine working hours were determined. An equation was developed to estimate the power capacity for LFG-to-energy plants for a given amount of landfilled waste. Monitoring the actual gas generation rates enabled determination of LFG generation factors for Turkish municipal waste. A significant relationship (R = 0.524, p < 0.01, 2-tailed) was found between the amounts of landfilled waste and the ambient temperature, which can be attributed to food consumption and kitchen waste generation behaviors influenced by the ambient temperature. However, no significant correlation was found between the ambient temperature and the generated LFG. A temperature buffering capacity was inferred to exist within the landfill, which enables the anaerobic reactions to continue functioning even during cold seasons. The average LFG and energy generation rates were 45 m 3 LFG/ton waste landfilled and 0.08 MWh/ton waste landfilled, respectively. The mean specific LFG consumption for electricity generation was 529 ± 28 m 3 /MWh.
NASA Astrophysics Data System (ADS)
Chao, Xing; Jeffries, Jay B.; Hanson, Ronald K.
2013-03-01
A real-time, in situ CO sensor using 2.3 μm DFB diode laser absorption, with calibration-free wavelength-modulation-spectroscopy, was demonstrated for continuous monitoring in the boiler exhaust of a pulverized-coal-fired power plant up to temperatures of 700 K. The sensor was similar to a design demonstrated earlier in laboratory conditions, now refined to accommodate the harsh conditions of utility boilers. Measurements were performed across a 3 m path in the particulate-laden economizer exhaust of the coal-fired boiler. A 0.6 ppm detection limit with 1 s averaging was estimated from the results of a continuous 7-h-long measurement with varied excess air levels. The measured CO concentration exhibited expected inverse trends with the excess O2 concentration, which was varied between 1 and 3 %. Measured CO concentrations ranged between 6 and 200 ppm; evaluation of the data suggested a dynamic range from 6 to 10,000 ppm based on a minimum signal-to-noise ratio of ten and maximum absorbance of one. This field demonstration of a 2.3 μm laser absorption sensor for CO showed great potential for real-time combustion exhaust monitoring and control of practical combustion systems.
Method of making superconducting cylinders for flux detectors
Goodkind, J.M.; Stolfa, D.L.
1971-07-06
A method of making superconducting cylinders of the ''weak link'' type is provided. The method allows the weak link to be made much smaller than was heretofore possible, thereby greatly increasing sensitivity and operating temperature range when the cylinder is used in a flux detector. The resistance of the weak link is monitored continuously as metal is removed from the link by electrochemical action.
Karam, Amanda L; McMillan, Catherine C; Lai, Yi-Chun; de Los Reyes, Francis L; Sederoff, Heike W; Grunden, Amy M; Ranjithan, Ranji S; Levis, James W; Ducoste, Joel J
2017-06-14
The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software.
Karam, Amanda L.; McMillan, Catherine C.; Lai, Yi-Chun; de los Reyes, Francis L.; Sederoff, Heike W.; Grunden, Amy M.; Ranjithan, Ranji S.; Levis, James W.; Ducoste, Joel J.
2017-01-01
The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software. PMID:28654054
Continuous Ultrasonic Inspection of Extruded Wood-Plastic Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Brian J.; Bender, Donald A.
Nondestructive evaluation (NDE) techniques are needed for in-line monitoring of wood-plastic composite (WPC) quality during manufacturing for process control. Through-transmission ultrasonic inspection is useful in characterizing stiffness and detecting cracks and voids in a range of materials; however, little is documented about ultrasound propagation in WPC materials. The objectives of this research were to determine applicable ultrasonic transducer frequencies, coupling methods, configurations and placements for wave speed monitoring and web defect detection within an extrusion process; to quantify the effects of temperature on ultrasonic parameters; and to develop a prototype ultrasonic inspection system for a full-size extrusion line. An angledmore » beam, water-coupled ultrasonic inspection system using a pair of 50-kHz narrowband transducers was adequate for monitoring wave speed parallel to the extrusion direction. For locating internal web defects, water-coupled, 500-kHz broadband ultrasonic transducers were used in a through-thickness transmission setup. Temperature compensation factors were developed to adjust ultrasonic wave speed measurements. The prototype inspection system was demonstrated in a 55 mm conical twin-screw extrusion line.« less
21 CFR 882.5500 - Lesion temperature monitor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lesion temperature monitor. 882.5500 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5500 Lesion temperature monitor. (a) Identification. A lesion temperature monitor is a device used to monitor the tissue...
21 CFR 882.5500 - Lesion temperature monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lesion temperature monitor. 882.5500 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5500 Lesion temperature monitor. (a) Identification. A lesion temperature monitor is a device used to monitor the tissue...
21 CFR 882.5500 - Lesion temperature monitor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lesion temperature monitor. 882.5500 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5500 Lesion temperature monitor. (a) Identification. A lesion temperature monitor is a device used to monitor the tissue...
In-Situ Acoustic Measurements of Temperature Profile in Extreme Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skliar, Mikhail
2015-03-31
A gasifier’s temperature is the primary characteristic that must be monitored to ensure its performance and the longevity of its refractory. One of the key technological challenges impacting the reliability and economics of coal and biomass gasification is the lack of temperature sensors that are capable of providing accurate, reliable, and long-life performance in an extreme gasification environment. This research has proposed, demonstrated, and validated a novel approach that uses a noninvasive ultrasound method that provides real-time temperature distribution monitoring across the refractory, especially the hot face temperature of the refractory. The essential idea of the ultrasound measurements of segmentalmore » temperature distribution is to use an ultrasound propagation waveguide across a refractory that has been engineered to contain multiple internal partial reflectors at known locations. When an ultrasound excitation pulse is introduced on the cold side of the refractory, it will be partially reflected from each scatterer in the US propagation path in the refractory wall and returned to the receiver as a train of partial echoes. The temperature in the corresponding segment can be determined based on recorded ultrasonic waveform and experimentally defined relationship between the speed of sound and temperature. The ultrasound measurement method offers a powerful solution to provide continuous real time temperature monitoring for the occasions that conventional thermal, optical and other sensors are infeasible, such as the impossibility of insertion of temperature sensor, harsh environment, unavailable optical path, and more. Our developed ultrasound system consists of an ultrasound engineered waveguide, ultrasound transducer/receiver, and data acquisition, logging, interpretation, and online display system, which is simple to install on the existing units with minimal modification on the gasifier or use with new units. This system has been successfully tested with a 100 kW pilot scale down flow oxyfuel combustor, capturing in real time temperature changes during all relevant combustion process changes. The ultrasound measurements have excellent agreement with thermo- couple measurements, and appear to be more sensitive to temperature changes before the thermocouples response, which is believed to be the first demonstration of ultrasound measurements segmental temperature distribution across refractories.« less
NASA Astrophysics Data System (ADS)
Kurzeja, Robert J.; O'Steen, Byron L.; Pendergast, Malcolm M.
2002-01-01
The Tropical Pacific Island of Nauru is a US DOE ARM observation site that monitors tropical climate and atmospheric radiation. This observation site is ideal for validating MTI images because of the extensive deployment of continuously operating instruments. MTI images are also useful in assessing the effect of the island on the ocean climate and on the ARM data. An MTI image has been used to determine the spatial distribution of water vapor and sea-surface temperature near the island. The results are compared with a three-dimensional numerical model simulation.
Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR.
Garcia-Ruiz, Andres; Dominguez-Lopez, Alejandro; Pastor-Graells, Juan; Martins, Hugo F; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel
2018-01-08
We demonstrate a technique allowing to develop a fully distributed optical fiber hot-wire anemometer capable of reaching a wind speed uncertainty of ≈ ±0.15m/s (±0.54km/h) at only 60 mW/m of dissipated power in the sensing fiber, and within only four minutes of measurement time. This corresponds to similar uncertainty values than previous papers on distributed optical fiber anemometry but requires two orders of magnitude smaller dissipated power and covers at least one order of magnitude longer distance. This breakthrough is possible thanks to the extreme temperature sensitivity and single-shot performance of chirped-pulse phase-sensitive optical time domain reflectometry (ΦOTDR), together with the availability of metal-coated fibers. To achieve these results, a modulated current is fed through the metal coating of the fiber, causing a modulated temperature variation of the fiber core due to Joule effect. The amplitude of this temperature modulation is strongly dependent on the wind speed at which the fiber is subject. Continuous monitoring of the temperature modulation along the fiber allows to determine the wind speed with singular low power injection requirements. Moreover, this procedure makes the system immune to temperature drifts of the fiber, potentially allowing for a simple field deployment. Being a much less power-hungry scheme, this method also allows for monitoring over much longer distances, in the orders of 10s of km. We expect that this system can have application in dynamic line rating and lateral wind monitoring in railway catenary wires.
Water-quality characteristics of Montana streams in a statewide monitoring network, 1999-2003
Lambing, John H.; Cleasby, Thomas E.
2006-01-01
A statewide monitoring network of 38 sites was operated during 1999-2003 in cooperation with the Montana Department of Environmental Quality to provide a broad geographic base of water-quality information on Montana streams. The purpose of this report is to summarize and describe the water-quality characteristics for those sites. Samples were collected at U.S. Geological Survey streamflow-gaging stations in the Missouri, Yellowstone, and Columbia River basins for stream properties, nutrients, suspended sediment, major ions, and selected trace elements. Mean annual streamflows were below normal during the period, which likely influenced water quality. Continuous water-temperature monitors were operated at 26 sites. The median of daily mean water temperatures for the June-August summer period ranged from 12.5 degC at Kootenai River below Libby Dam to 23.0 degC at Poplar River near Poplar and Tongue River at Miles City. In general, sites in the Missouri River basin commonly had the highest water temperatures. Median daily mean summer water temperatures at four sites (Jefferson River near Three Forks, Missouri River at Toston, Judith River near Winifred, and Poplar River near Poplar) classified as supporting or marginally supporting cold-water biota exceeded the general guideline of 19.4 degC for cold-water biota. Median daily mean temperatures at sites in the network classified as supporting warm-water biota did not exceed the guideline of 26.7 degC for warm-water biota, although several sites exceeded the warm-water guideline on several days during the summer. More...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring requirements for a continuous emissions monitoring system? 63.7747 Section 63.7747 Protection of... apply for alternative monitoring requirements for a continuous emissions monitoring system? (a) You may... prevention technique, a description of the continuous monitoring system or method including appropriate...
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring requirements for a continuous emissions monitoring system? 63.7747 Section 63.7747 Protection of... apply for alternative monitoring requirements for a continuous emissions monitoring system? (a) You may... prevention technique, a description of the continuous monitoring system or method including appropriate...
Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i
Patrick, Matthew R.; Swanson, Don; Orr, Tim R.
2016-01-01
Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.
Monitoring of freeze-thaw cycles in concrete using embedded sensors and ultrasonic imaging.
Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita
2014-01-29
This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches-the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined.
Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging
Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita
2014-01-01
This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches—the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined. PMID:24481231
Rapid response of a hydrologic system to volcanic activity: Masaya volcano, Nicaragua
Pearson, S.C.P.; Connor, C.B.; Sanford, W.E.
2008-01-01
Hydrologic systems change in response to volcanic activity, and in turn may be sensitive indicators of volcanic activity. Here we investigate the coupled nature of magmatic and hydrologic systems using continuous multichannel time series of soil temperature collected on the flanks of Masaya volcano, Nicaragua, one of the most active volcanoes in Central America. The soil temperatures were measured in a low-temperature fumarole field located 3.5 km down the flanks of the volcano. Analysis of these time series reveals that they respond extremely rapidly, on a time scale of minutes, to changes in volcanic activity also manifested at the summit vent. These rapid temperature changes are caused by increased flow of water vapor through flank fumaroles during volcanism. The soil temperature response, ~5 °C, is repetitive and complex, with as many as 13 pulses during a single volcanic episode. Analysis of the frequency spectrum of these temperature time series shows that these anomalies are characterized by broad frequency content during volcanic activity. They are thus easily distinguished from seasonal trends, diurnal variations, or individual rainfall events, which triggered rapid transient increases in temperature during 5% of events. We suggest that the mechanism responsible for the distinctive temperature signals is rapid change in pore pressure in response to magmatism, a response that can be enhanced by meteoric water infiltration. Monitoring of distal fumaroles can therefore provide insight into coupled volcanic-hydrologic-meteorologic systems, and has potential as an inexpensive monitoring tool.
A usability study of a mobile monitoring system for congestive heart failure patients.
Svagård, I; Austad, H O; Seeberg, T; Vedum, J; Liverud, A; Mathiesen, B M; Keller, B; Bendixen, O C; Osborne, P; Strisland, F
2014-01-01
Sensor-based monitoring of congestive heart-failure (CHF) patients living at home can improve quality of care, detect exacerbations of disease at an earlier stage and motivate the patient for better self care. This paper reports on a usability study of the ESUMS system that provides continuous measurements of heart rate, activity, upper body posture and skin temperature via a sensor belt and a smartphone as patient terminal. Five CHF patients were included in the trial, all recently discharged from hospital. The nurses experienced continuous heart rate, activity and posture monitoring as useful and objective tools that helped them in their daily assessment of patient health. They also saw the system as an important educational tool to help patients gain insight into their own condition. Three patients liked that they could have a view of their own physiological and activity data, however the smartphones used in the study turned out to be too complicated for the patients to operate. A smartphone is built to be a multi-purpose device, and this may (conceptually and practically) be incompatible with the patients' demands for ease of use.
NASA Astrophysics Data System (ADS)
Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun
2017-07-01
In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.
Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures
Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo
2018-01-01
The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034
Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures.
Sefa Orak, Mehmet; Nasrollahi, Amir; Ozturk, Turgut; Mas, David; Ferrer, Belen; Rizzo, Piervincenzo
2018-04-18
The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling.
Continuous water quality monitoring for the hard clam industry in Florida, USA.
Bergquist, Derk C; Heuberger, David; Sturmer, Leslie N; Baker, Shirley M
2009-01-01
In 2000, Florida's fast-growing hard clam aquaculture industry became eligible for federal agricultural crop insurance through the US Department of Agriculture, but the responsibility for identifying the cause of mortality remained with the grower. Here we describe the continuous water quality monitoring system used to monitor hard clam aquaculture areas in Florida and show examples of the data collected with the system. Systems recording temperature, salinity, dissolved oxygen, water depth, turbidity and chlorophyll at 30 min intervals were installed at 10 aquaculture lease areas along Florida's Gulf and Atlantic coasts. Six of these systems sent data in real-time to a public website, and all 10 systems provided data for web-accessible archives. The systems documented environmental conditions that could negatively impact clam survival and productivity and identified biologically relevant water quality differences among clam aquaculture areas. Both the real-time and archived data were used widely by clam growers and nursery managers to make management decisions and in filing crop loss insurance claims. While the systems were labor and time intensive, we recommend adjustments that could reduce costs and staff time requirements.
40 CFR 60.1250 - What is my schedule for evaluating continuous emission monitoring systems?
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuous emission monitoring systems? 60.1250 Section 60.1250 Protection of Environment ENVIRONMENTAL... Continuous Emission Monitoring § 60.1250 What is my schedule for evaluating continuous emission monitoring systems? (a) Conduct annual evaluations of your continuous emission monitoring systems no more than 13...
Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
Nagarajan, Vivek Krishna; Yu, Bing
2016-09-01
Real-time monitoring of tissue status during thermal ablation of tumors is critical to ensure complete destruction of tumor mass, while avoiding tissue charring and excessive damage to normal tissues. Currently, magnetic resonance thermometry (MRT), along with magnetic resonance imaging (MRI), is the most commonly used technique for monitoring and assessing thermal ablation process in soft tissues. MRT/MRI is very expensive, bulky, and often subject to motion artifacts. On the other hand, light propagation within tissue is sensitive to changes in tissue microstructure and physiology which could be used to directly quantify the extent of tissue damage. Furthermore, optical monitoring can be a portable, and cost-effective alternative for monitoring a thermal ablation process. The main objective of this study, is to establish a correlation between changes in tissue optical properties and the status of tissue coagulation/damage during heating of ex vivo tissues. A portable diffuse reflectance spectroscopy system and a side-firing fiber-optic probe were developed to study the absorption (μa (λ)), and reduced scattering coefficients (μ's (λ)) of native and coagulated ex vivo porcine, and chicken breast tissues. In the first experiment, both porcine and chicken breast tissues were heated at discrete temperature points between 24 and 140°C for 2 minutes. Diffuse reflectance spectra (430-630 nm) of native and coagulated tissues were recorded prior to, and post heating. In a second experiment, porcine tissue samples were heated at 70°C and diffuse reflectance spectra were recorded continuously during heating. The μa (λ) and μ's (λ) of the tissues were extracted from the measured diffuse reflectance spectra using an inverse Monte-Carlo model of diffuse reflectance. Tissue heating was stopped when the wavelength-averaged scattering plateaued. The wavelength-averaged optical properties, <μ's (λ)> and <μa (λ)>, for native porcine tissues (n = 66) at room temperature, were 5.4 ± 0.3 cm(-1) and 0.780 ± 0.008 cm(-1) (SD), respectively. The <μ's (λ)> and <μa (λ)> for native chicken breast tissues (n = 66) at room temperature, were 2.69 ± 0.08 cm(-1) and 0.29 ± 0.01 cm(-1) (SD), respectively. In the first experiment, the <μ's (λ)> of coagulated porcine and chicken breast tissue rose to 56.4 ± 3.6 cm(-1) at 68.7 ± 1.7°C (SD), and 52.8 ± 1 cm(-1) at 57.1 ± 1.5°C (SD), respectively. Correspondingly, the <μa (λ)> of coagulated porcine (140.6°C), and chicken breast tissues (130°C) were 0.75 ± 0.05 cm(-1) and 0.263 ± 0.004 cm(-1) (SD). For both tissues, charring was observed at temperatures above 80°C. During continuous monitoring of porcine tissue (with connective tissues) heating, the <μ's (λ)> started to rise rapidly from 13.7 ± 1.5 minutes and plateaued at 19 ± 2.5 (SD) minutes. The <μ's (λ)> plateaued at 11.7 ± 3 (SD) minutes for porcine tissue devoid of connective tissue between probe and tissue surface. No charring was observed during continuous monitoring of thermal ablation process. The changes in optical absorption and scattering properties can be continuously quantified, which could be used as a diagnostic biomarker for assessing tissue coagulation/damage during thermal ablation. Lasers Surg. Med. 48:686-694, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Architecture for Improving Terrestrial Logistics Based on the Web of Things
Castro, Miguel; Jara, Antonio J.; Skarmeta, Antonio
2012-01-01
Technological advances for improving supply chain efficiency present three key challenges for managing goods: tracking, tracing and monitoring (TTM), in order to satisfy the requirements for products such as perishable goods where the European Legislations requires them to ship within a prescribed temperature range to ensure freshness and suitability for consumption. The proposed system integrates RFID for tracking and tracing through a distributed architecture developed for heavy goods vehicles, and the sensors embedded in the SunSPOT platform for monitoring the goods transported based on the concept of the Internet of Things. This paper presents how the Internet of Things is integrated for improving terrestrial logistics offering a comprehensive and flexible architecture, with high scalability, according to the specific needs for reaching an item-level continuous monitoring solution. The major contribution from this work is the optimization of the Embedded Web Services based on RESTful (Web of Things) for the access to TTM services at any time during the transportation of goods. Specifically, it has been extended the monitoring patterns such as observe and blockwise transfer for the requirements from the continuous conditional monitoring, and for the transfer of full inventories and partial ones based on conditional queries. In definitive, this work presents an evolution of the previous TTM solutions, which were limited to trailer identification and environment monitoring, to a solution which is able to provide an exhaustive item-level monitoring, required for several use cases. This exhaustive monitoring has required new communication capabilities through the Web of Things, which has been optimized with the use and improvement of a set of communications patterns. PMID:22778657
Architecture for improving terrestrial logistics based on the Web of Things.
Castro, Miguel; Jara, Antonio J; Skarmeta, Antonio
2012-01-01
Technological advances for improving supply chain efficiency present three key challenges for managing goods: tracking, tracing and monitoring (TTM), in order to satisfy the requirements for products such as perishable goods where the European Legislations requires them to ship within a prescribed temperature range to ensure freshness and suitability for consumption. The proposed system integrates RFID for tracking and tracing through a distributed architecture developed for heavy goods vehicles, and the sensors embedded in the SunSPOT platform for monitoring the goods transported based on the concept of the Internet of Things. This paper presents how the Internet of Things is integrated for improving terrestrial logistics offering a comprehensive and flexible architecture, with high scalability, according to the specific needs for reaching an item-level continuous monitoring solution. The major contribution from this work is the optimization of the Embedded Web Services based on RESTful (Web of Things) for the access to TTM services at any time during the transportation of goods. Specifically, it has been extended the monitoring patterns such as observe and blockwise transfer for the requirements from the continuous conditional monitoring, and for the transfer of full inventories and partial ones based on conditional queries. In definitive, this work presents an evolution of the previous TTM solutions, which were limited to trailer identification and environment monitoring, to a solution which is able to provide an exhaustive item-level monitoring, required for several use cases. This exhaustive monitoring has required new communication capabilities through the Web of Things, which has been optimized with the use and improvement of a set of communications patterns.
Continuous 24-hour measurement of middle ear pressure.
Tideholm, B; Jönsson, S; Carlborg, B; Welinder, R; Grenner, J
1996-07-01
A new method was developed for continuous measurement of the middle ear pressure during a 24-h period. The equipment consisted of a piezo-electric pressure device and a digital memory. To allow continuous pressure recordings during normal every-day activities the equipment was made light and portable. The measurement accuracy of the equipment as well as the base-line and temperature stability were tested and found to meet to our requirements satisfactorily. In 4 volunteers with different middle ear conditions, a small perforation was made through the tympanic membrane. A rubber stopper containing a small polyethylene tube was fitted into the external ear canal. Tubal function tests were made to establish the equipment's ability to monitor fast pressure changes. The tests were well in accordance with other methods of direct pressure measurements. The equipment was carried by the volunteers for 24 h to monitor any slow or rapid dynamic pressure changes in the middle ear. Four continuous 24-h measurements are presented. The method was found to be suitable for valid measurements of dynamic pressure changes in the middle ear during normal every-day activities. It may become a useful instrument in the search for a better understanding of the development of chronic middle ear disease.
40 CFR 60.3040 - What is my schedule for evaluating continuous emission monitoring systems?
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuous emission monitoring systems? 60.3040 Section 60.3040 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... continuous emission monitoring systems? (a) Conduct annual evaluations of your continuous emission monitoring...
Merello, Paloma; García-Diego, Fernando-Juan; Zarzo, Manuel
2014-08-01
Chemometrics has been applied successfully since the 1990s for the multivariate statistical control of industrial processes. A new area of interest for these tools is the microclimatic monitoring of cultural heritage. Sensors record climatic parameters over time and statistical data analysis is performed to obtain valuable information for preventive conservation. A case study of an open-air archaeological site is presented here. A set of 26 temperature and relative humidity data-loggers was installed in four rooms of Ariadne's house (Pompeii). If climatic values are recorded versus time at different positions, the resulting data structure is equivalent to records of physical parameters registered at several points of a continuous chemical process. However, there is an important difference in this case: continuous processes are controlled to reach a steady state, whilst open-air sites undergo tremendous fluctuations. Although data from continuous processes are usually column-centred prior to applying principal components analysis, it turned out that another pre-treatment (row-centred data) was more convenient for the interpretation of components and to identify abnormal patterns. The detection of typical trajectories was more straightforward by dividing the whole monitored period into several sub-periods, because the marked climatic fluctuations throughout the year affect the correlation structures. The proposed statistical methodology is of interest for the microclimatic monitoring of cultural heritage, particularly in the case of open-air or semi-confined archaeological sites. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stockdale, James; Ineson, Philip
2016-04-01
Modelled predictions of the response of terrestrial systems to climate change are highly variable, yet the response of net ecosystem exchange (NEE) is a vital ecosystem behaviour to understand due to its inherent feedback to the carbon cycle. The establishment and subsequent monitoring of replicated experimental manipulations are a direct method to reveal these responses, yet are difficult to achieve as they typically resource-heavy and labour intensive. We actively manipulated the temperature at three agricultural grasslands in southern England and deployed novel 'SkyLine' systems, recently developed at the University of York, to continuously monitor GHG fluxes. Each 'SkyLine' is a low-cost and fully autonomous technology yet produces fluxes at a near-continuous temporal frequency and across a wide spatial area. The results produced by 'SkyLine' enable the detail response of each system to increased temperature over diurnal and seasonal timescales. Unexpected differences in NEE are shown between superficially similar ecosystems which, upon investigation, suggest that interactions between a variety of environmental variables are key and that knowledge of pre-existing environmental conditions help to predict a systems response to future climate. For example, the prevailing hydrological conditions at each site appear to affect its response to changing temperature. The high-frequency data shown here, combined with the fully-replicated experimental design reveal complex interactions which must be understood to improve predictions of ecosystem response to a changing climate.
Boreal mire Green House Gas exchange in response to global change perturbations
NASA Astrophysics Data System (ADS)
Nilsson, Mats
2017-04-01
High latitude boreal peatlands contribute importantly to the land-atmosphere-hydrosphere exchange of carbon and GHG, i.e. carbon dioxide, methane and dissolved organic carbon. High latitude biomes are identified as most vulnerable to changing climate. High latitudes are also characterized by a strong seasonality in incoming solar radiation, weather conditions and thus also in biogeochemical processes. The strong seasonality in incoming solar radiation, not to change in response to a changing climate, constitute firm constraints on how changes in air temperature, evapotranspiration and precipitation will affect biogeochemical processes underlying the land atmosphere and land hydrosphere exchange of green house gases. In this presentation I combine data from long-term monitoring, long-term field manipulations and detailed chemical analysis to understand how changes in atmosphere and weather conditions influence the major carbon fluxes of a boreal mire Net Ecosystem Carbon Balance. The long-term monitoring data contains >12 years of continuous Eddy Covariance CO2 data, growing season chamber CH4 data and continuous measurements of discharge export of DOC, CO2 and CH4. Data from long-term field snow removal manipulations and growing season temperature increase manipulations are used to further understand the impact of climate on mire carbon and GHG fluxes. Finally we uses Nuclear Magnetic Spectroscopy (NMR) to reveal how century scale changes in atmospheric CO2 from 300 to 400 pm CO2 and temperature have influenced the net photosynthetic capacity of Sphagnum mosses, the single most important plant genus for boreal mire carbon sequestration.
Hoffmann, G; Schmidt, M; Ammon, C
2016-09-01
In this study, a video-based infrared camera (IRC) was investigated as a tool to monitor the body temperature of calves. Body surface temperatures were measured contactless using videos from an IRC fixed at a certain location in the calf feeder. The body surface temperatures were analysed retrospectively at three larger areas: the head area (in front of the forehead), the body area (behind forehead) and the area of the entire animal. The rectal temperature served as a reference temperature and was measured with a digital thermometer at the corresponding time point. A total of nine calves (Holstein-Friesians, 8 to 35 weeks old) were examined. The average maximum temperatures of the area of the entire animal (mean±SD: 37.66±0.90°C) and the head area (37.64±0.86°C) were always higher than that of the body area (36.75±1.06°C). The temperatures of the head area and of the entire animal were very similar. However, the maximum temperatures as measured using IRC increased with an increase in calf rectal temperature. The maximum temperatures of each video picture for the entire visible body area of the calves appeared to be sufficient to measure the superficial body temperature. The advantage of the video-based IRC over conventional IR single-picture cameras is that more than one picture per animal can be analysed in a short period of time. This technique provides more data for analysis. Thus, this system shows potential as an indicator for continuous temperature measurements in calves.
Feng, Jingjie; Zhou, Congcong; He, Cheng; Li, Yuan; Ye, Xuesong
2017-04-01
In this paper, a miniaturized wearable core body temperature (CBT) monitoring system based on the dual heat flux (DHF) principle was developed. By interspersing calcium carbonate powder in PolyDimethylsiloxane (PDMS), a reformative heat transfer medium was produced to reduce the thermal equilibrium time. Besides, a least mean square (LMS) algorithm based active noise cancellation (ANC) method was adopted to diminish the impact of ambient temperature fluctuations. Theoretical analyses, finite element simulation, experiments on a hot plate and human volunteers were performed. The results showed that the proposed system had the advantages of small size, reduced initial time (~23.5 min), and good immunity to fluctuations of the air temperature. For the range of 37-41 °C on the hot plate, the error compared with a Fluke high accuracy thermometer was 0.08 ± 0.20 °C. In the human experiments, the measured temperature in the rest trial (34 subjects) had a difference of 0.13 ± 0.22 °C compared with sublingual temperature, while a significant increase of 1.36 ± 0.44 °C from rest to jogging was found in the exercise trial (30 subjects). This system has the potential for reliable continuous CBT measurement in rest and can reflect CBT variations during exercise.