Science.gov

Sample records for continuous theta burst

  1. Continuous theta burst transcranial magnetic stimulation affects brain functional connectivity.

    PubMed

    Dan Cao; Yingjie Li; Ling Wei; Yingying Tang

    2016-08-01

    Prefrontal cortex (PFC) plays an important role in the emotional processing as well as in the functional brain network. Hyperactivity in the right dorsolateral prefrontal cortex (DLPFC) would be found in anxious participants. However, it is still unclear what the role of PFC played in a resting functional network. Continuous theta burst transcranial magnetic stimulation (cTBS) is an effective tool to create virtual lesions on brain regions. In this paper, we applied cTBS over right prefrontal area, and investigated the effects of cTBS on the brain activity for functional connectivity by the method of graph theory. We recorded 64-channels EEG on thirteen healthy participants in the resting condition and emotional tasks before and after 40 s of cTBS. This work focused on the effect of cTBS on cortical activities in the resting condition by calculating the coherence between EEG channels and building functional networks before and after cTBS in the delta, theta, alpha and beta bands. Results revealed that 1) The functional connectivity after cTBS was significantly increased compared with that before cTBS in delta, theta, alpha and beta bands in the resting condition; 2) The efficiency-cost reached the maximum before and after cTBS both with the cost about 0.3 in the bands above, which meant that the information transmission of functional brain network with this cost was highly efficient; 3) the clustering coefficient and path length after cTBS was significantly increased in delta, theta and beta bands. In conclusion, cTBS over PFC indeed enhanced the functional connectivity in the resting condition. In addition, the information transmission in the resting brain network was highly efficient with the cost about 0.3.

  2. Continuous theta-burst stimulation modulates tactile synchronization

    PubMed Central

    2013-01-01

    Background Temporal order judgement (TOJ) is the ability to detect the order of occurrence of two sequentially delivered stimuli. Previous research has shown that TOJ in the presence of synchronized periodic conditioning stimuli impairs TOJ performance, and this phenomenon is suggested to be mediated by GABAergic interneurons that cause perceptual binding across the two skin sites. Application of continuous theta-burst repetitive TMS (cTBS) over primary somatosensory cortex (SI) alters temporal and spatial tactile perception. The purpose of this study was to examine TOJ perception in the presence and absence of synchronized periodic conditioning stimuli before and after cTBS applied over left-hemisphere SI. A TOJ task was administered on the right index and middle finger (D2 and D3) in two separate sessions in the presence and absence of conditioning stimuli (a background low amplitude sinusoidal vibration). Results CTBS reduced the impact of the conditioning stimuli on TOJ performance for up to 18 minutes following stimulation while sham cTBS did not affect TOJ performance. In contrast, the TOJ task performed in the absence of synchronized conditioning stimulation was unaltered following cTBS. Conclusion We conclude that cTBS suppresses inhibitory networks in SI that mediate perceptual binding during TOJ synchronization. CTBS offers one method to suppress cortical excitability in the cortex and potentially benefit clinical populations with altered inhibitory cortical circuits. Additionally, TOJ measures with conditioning stimuli may provide an avenue to assess sensory processing in neurologically impaired patient populations. PMID:23968301

  3. Modulation of Visual Cortex Excitability by Continuous Theta Burst Stimulation Depends on Coil Type

    PubMed Central

    Brückner, Sabrina; Kammer, Thomas

    2016-01-01

    Subthreshold continuous theta burst stimulation of the visual cortex has been reported to cause inhibitory effects on phosphene threshold. In contrast, we observed no inhibition in a former study applying higher stimulation intensities. The main discrepancies between our experiments and the former studies were stimulation intensity and coil type. We aimed at investigating the role of these factors on the modulatory effects of continuous theta burst stimulation applied to the visual cortex. In a between-group-design, we used either a figure-of-eight-coil or a round coil, respectively. We measured phosphene thresholds prior and after continuous theta burst stimulation applied at 80% of individual phosphene threshold. With the figure-of-eight-coil, phosphene thresholds significantly decreased following stimulation. This is in line with the results of our former study but contrary to the increase observed in the other two studies. Using a round coil, no significant effect was observed. A correlation analysis revealed an inhibitory effect in subjects with higher phosphene thresholds only. Furthermore, the slope of the baseline phosphene threshold seems to predict the direction of modulation, independent from coil type. Thus, modulatory effects of continuous theta burst stimulation seem to depend on coil type and psychophysics parameters, probably due to different cortex volumes stimulated. Stochastic resonance phenomena might account for the differences observed. PMID:27459108

  4. Theta-Burst LTP

    PubMed Central

    Larson, John; Munkácsy, Erin

    2014-01-01

    This review covers the spatial and temporal rules governing induction of hippocampal long-term potentiation (LTP) by theta-burst stimulation. Induction of LTP in field CA1 by high frequency stimulation bursts that resemble the burst discharges (complex-spikes) of hippocampal pyramidal neurons involves a multiple-step mechanism. A single burst is insufficient for LTP induction because it evokes both excitatory and inhibitory currents that partially cancel and limit postsynaptic depolarization. Bursts repeated at the frequency (~5 Hz) of the endogenous theta rhythm induce maximal LTP, primarily because this frequency disables feed-forward inhibition and allows sufficient postsynaptic depolarization to activate voltage-sensitive NMDA receptors. The disinhibitory process, referred to as “priming”, involves presynaptic GABA autoreceptors that inhibit GABA release. Activation of NMDA receptors allows a calcium flux into dendritic spines that serves as the proximal trigger for LTP. We include new data showing that theta-burst stimulation is more efficient than other forms of stimulation for LTP induction. In addityion, we demonstrate that associative interactions between synapses activated during theta-bursts are limited to major dendritic domains since such interactions occur within apical or basal dendritic trees but not between them. We review evidence that recordings of electrophysiological responses during theta burst stimulation can help to determine if experimental manipulations that affect LTP do so by affecting events antecedent to the induction process, such as NMDA receptor activation, or downstream signaling cascades that result from postsynaptic calcium fluxes. Finally, we argue that theta-burst LTP represents a minimal model for stable, non-decremental LTP that is more sensitive to a variety of experimental manipulations than is LTP induced by other stimulation paradigms. PMID:25452022

  5. Continuous theta-burst stimulation over primary somatosensory cortex modulates short-latency afferent inhibition.

    PubMed

    Tsang, Philemon; Jacobs, Mark F; Lee, Kevin G H; Asmussen, Michael J; Zapallow, Christopher M; Nelson, Aimee J

    2014-11-01

    The present study investigated the effects of continuous theta-burst stimulation (cTBS) over primary somatosensory (SI) and motor (M1) cortices on motor-evoked potentials (MEPs) and short-latency afferent inhibition (SAI). MEPs and SAI were recorded from the first dorsal interosseous (FDI) muscle of the right hand following 30Hz cTBS over left-hemisphere SI and M1 delivered to the same participants in separate sessions. Measurements were taken before and up to 60min following cTBS. CTBS over M1 suppressed MEPs and did not alter SAI. In contrast cTBS over SI facilitated MEPs and decreased median and digital nerve evoked SAI. These findings indicate that SAI amplitude is influenced by cTBS over SI but not M1, suggesting an important role for SI in the modulation of this circuit. These data provide further evidence that cTBS over SI versus M1 has opposite effects on corticospinal excitability. To date, plasticity-inducing TMS protocols delivered over M1 have failed to modulate SAI, and the present research continues to support these findings. However, in young adults, cTBS over SI acts to reduce SAI and simultaneously increase corticospinal excitability. Future studies may investigate the potential to modulate SAI via targeting neural activity within SI. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Combined transcranial alternating current stimulation and continuous theta burst stimulation: a novel approach for neuroplasticity induction.

    PubMed

    Goldsworthy, Mitchell R; Vallence, Ann-Maree; Yang, Ruiting; Pitcher, Julia B; Ridding, Michael C

    2016-02-01

    Non-invasive brain stimulation can induce functionally relevant plasticity in the human cortex, making it potentially useful as a therapeutic tool. However, the induced changes are highly variable between individuals, potentially limiting research and clinical utility. One factor that might contribute to this variability is the level of cortical inhibition at the time of stimulation. The alpha rhythm (~ 8-13 Hz) recorded with electroencephalography (EEG) is thought to reflect pulsatile cortical inhibition; therefore, targeting non-invasive brain stimulation to particular phases of the alpha rhythm may provide an approach to enhance plasticity induction. Transcranial alternating current stimulation (tACS) has been shown to entrain cortical oscillations in a frequency-specific manner. We investigated whether the neuroplastic response to continuous theta burst stimulation (cTBS) was enhanced by timing bursts of stimuli to the peak or the trough of a tACS-imposed alpha rhythm. While motor evoked potentials (MEPs) were unaffected when cTBS was applied in-phase with the peak of the tACS-imposed oscillation, MEP depression was enhanced when cTBS was applied in-phase with the trough. This enhanced MEP depression was dependent on the individual peak frequency of the endogenous alpha rhythm recorded with EEG prior to stimulation, and was strongest in those participants classified as non-responders to standard cTBS. These findings suggest that tACS may be used in combination with cTBS to enhance the plasticity response. Furthermore, the peak frequency of endogenous alpha, as measured with EEG, may be used as a simple marker to pre-select those individuals likely to benefit from this approach. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Continuous Theta-Burst Stimulation Demonstrates a Causal Role of Premotor Homunculus in Action Understanding

    PubMed Central

    Sandberg, Kristian; Skewes, Joshua; Wolf, Thomas; Blicher, Jakob; Overgaard, Morten; Frith, Chris D.

    2014-01-01

    Although it is well established that regions of premotor cortex (PMC) are active during action observation, it remains controversial whether they play a causal role in action understanding. In the experiment reported here, we used off-line continuous theta-burst stimulation (cTBS) to investigate this question. Participants received cTBS over the hand and lip areas of left PMC, in separate sessions, before completing a pantomime-recognition task in which half of the trials contained pantomimed hand actions, and half contained pantomimed mouth actions. The results reveal a double dissociation: Participants were less accurate in recognizing pantomimed hand actions after receiving cTBS over the hand area than over the lip area and less accurate in recognizing pantomimed mouth actions after receiving cTBS over the lip area than over the hand area. This finding constrains theories of action understanding by showing that somatotopically organized regions of PMC contribute causally to action understanding and, thus, that the mechanisms underpinning action understanding and action performance overlap. PMID:24549297

  8. Facilitation of Fast Backward Priming After Left Cerebellar Continuous Theta-Burst Stimulation.

    PubMed

    Allen-Walker, Louise S T; Bracewell, R Martyn; Thierry, Guillaume; Mari-Beffa, Paloma

    2017-09-05

    Traditional theories of backward priming account only for the priming effects found at long stimulus onset asynchronies (SOAs). Here, we suggest that the presence of backward priming at short SOAs may be related to the integrative role of the cerebellum. Previous research has shown that the right cerebellum is involved in forward associative priming. Functional magnetic resonance imaging reveals some activation of the left cerebellar hemisphere during backward priming; but what this activation represents is unclear. Here we explore this issue using continuous theta-burst transcranial magnetic stimulation (cTBS) and associative priming in a lexical decision task. We tested the hypothesis that the left cerebellum plays a role in backward priming and that this is dissociated from the role of the right cerebellum in forward priming. Before and after cTBS was applied to their left and right cerebellar hemispheres, participants completed a lexical decision task. Although we did not replicate the forward priming effect reported in the literature, we did find a significant increase in backward priming after left relative to right cerebellar cTBS. We consider how theories of cerebellar function in the motor domain can be extended to language and cognitive models of backward priming.

  9. Continuous theta-burst stimulation demonstrates a causal role of premotor homunculus in action understanding.

    PubMed

    Michael, John; Sandberg, Kristian; Skewes, Joshua; Wolf, Thomas; Blicher, Jakob; Overgaard, Morten; Frith, Chris D

    2014-04-01

    Although it is well established that regions of premotor cortex (PMC) are active during action observation, it remains controversial whether they play a causal role in action understanding. In the experiment reported here, we used off-line continuous theta-burst stimulation (cTBS) to investigate this question. Participants received cTBS over the hand and lip areas of left PMC, in separate sessions, before completing a pantomime-recognition task in which half of the trials contained pantomimed hand actions, and half contained pantomimed mouth actions. The results reveal a double dissociation: Participants were less accurate in recognizing pantomimed hand actions after receiving cTBS over the hand area than over the lip area and less accurate in recognizing pantomimed mouth actions after receiving cTBS over the lip area than over the hand area. This finding constrains theories of action understanding by showing that somatotopically organized regions of PMC contribute causally to action understanding and, thus, that the mechanisms underpinning action understanding and action performance overlap.

  10. Continuous theta-burst stimulation of the primary motor cortex in essential tremor.

    PubMed

    Hellriegel, Helge; Schulz, Eva M; Siebner, Hartwig R; Deuschl, Günther; Raethjen, Jan H

    2012-05-01

    We investigated whether essential tremor (ET) can be altered by suppressing the corticospinal excitability in the primary motor cortex (M1) with transcranial magnetic stimulation. 10 Patients with ET and 10 healthy controls underwent transcranial continuous theta-burst stimulation (cTBS) of the left primary motor hand area at 80% (real cTBS) and 30% (control cTBS) of active motor threshold in two separate sessions at least one week apart. Postural tremor was rated clinically and measured accelerometrically before and after cTBS. Corticospinal excitability was assessed by recording the motor evoked potentials (MEP) from the first dorsal interosseous muscle. Real cTBS but not control cTBS reduced the tremor total power assessed with accelerometry. This beneficial effect was subclinical as there were no significant changes in clinical tremor rating after real cTBS. Relative to control cTBS, real cTBS reduced corticospinal excitability in the stimulated primary motor cortex only in healthy controls but not in ET patients. Real cTBS has a beneficial effect on ET. Since cTBS did not induce a parallel reduction in corticospinal excitability, this effect was not mediated by a suppression of the corticospinal motor output. "Inhibitory" cTBS of M1 leads to a consistent but subclinical reduction in tremor amplitude. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Speed of processing in the primary motor cortex: a continuous theta burst stimulation study.

    PubMed

    Lakhani, Bimal; Bolton, David A E; Miyasike-Dasilva, Veronica; Vette, Albert H; McIlroy, William E

    2014-03-15

    'Temporally urgent' reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the involvement of motor cortex in speed of processing. The primary objective of this study was to explore the involvement of M1 in speed of processing with respect to stimulus intensity. Thirteen healthy young adults participated in this experiment. Behavioral testing consisted of a simple button press using the index finger following median nerve stimulation of the opposite limb, at either high or low stimulus intensity. Reaction time was measured by the onset of electromyographic activity from the first dorsal interosseous (FDI) muscle of each limb. Participants completed a 30 min bout of behavioral testing prior to, and 15 min following, the delivery of cTBS to the motor cortical representation of the right FDI. The effect of cTBS on motor cortex was measured by recording the average of 30 motor evoked potentials (MEPs) just prior to, and 5 min following, cTBS. Paired t-tests revealed that, of thirteen participants, five demonstrated a significant attenuation, three demonstrated a significant facilitation and five demonstrated no significant change in MEP amplitude following cTBS. Of the group that demonstrated attenuated MEPs, there was a biologically significant interaction between stimulus intensity and effect of cTBS on reaction time and amplitude of muscle activation. This study demonstrates the variability of potential outcomes associated with the use of cTBS and further study on the mechanisms that underscore the methodology is required. Importantly, changes in motor cortical excitability may be an important determinant of speed of processing following high intensity stimulation.

  12. A Data-Driven Approach to Responder Subgroup Identification after Paired Continuous Theta Burst Stimulation

    PubMed Central

    Heidegger, Tonio; Hansen-Goos, Onno; Batlaeva, Olga; Annak, Onur; Ziemann, Ulf; Lötsch, Jörn

    2017-01-01

    Background: Modulation of cortical excitability by transcranial magnetic stimulation (TMS) is used for investigating human brain functions. A common observation is the high variability of long-term depression (LTD)-like changes in human (motor) cortex excitability. This study aimed at analyzing the response subgroup distribution after paired continuous theta burst stimulation (cTBS) as a basis for subject selection. Methods: The effects of paired cTBS using 80% active motor threshold (AMT) in 31 healthy volunteers were assessed at the primary motor cortex (M1) corresponding to the representation of the first dorsal interosseous (FDI) muscle of the left hand, before and up to 50 min after plasticity induction. The changes in motor evoked potentials (MEPs) were analyzed using machine-learning derived methods implemented as Gaussian mixture modeling (GMM) and computed ABC analysis. Results: The probability density distribution of the MEP changes from baseline was tri-modal, showing a clear separation at 80.9%. Subjects displaying at least this degree of LTD-like changes were n = 6 responders. By contrast, n = 7 subjects displayed a paradox response with increase in MEP. Reassessment using ABC analysis as alternative approach led to the same n = 6 subjects as a distinct category. Conclusion: Depressive effects of paired cTBS using 80% AMT endure at least 50 min, however, only in a small subgroup of healthy subjects. Hence, plasticity induction by paired cTBS might not reflect a general mechanism in human motor cortex excitability. A mathematically supported criterion is proposed to select responders for enrolment in assessments of human brain functional networks using virtual brain lesions. PMID:28824394

  13. Cerebellar continuous theta-burst stimulation affects motor learning of voluntary arm movements in humans.

    PubMed

    Li Voti, Pietro; Conte, Antonella; Rocchi, Lorenzo; Bologna, Matteo; Khan, Nashaba; Leodori, Giorgio; Berardelli, Alfredo

    2014-01-01

    In this study we investigated in healthy subjects whether continuous theta-burst stimulation (cTBS) over the lateral cerebellum alters motor practice and retention phases during ipsilateral index finger and arm reaching movements. In 12 healthy subjects we delivered cTBS before repeated index finger abductions or arm reaching movements differing in complexity (reaching-to-grasp and reaching-to-point). We evaluated kinematic variables for index finger and arm reaching movements and changes in primary motor cortex (M1) activity tested with transcranial magnetic stimulation. Peak acceleration increased during motor practice for index finger abductions and reaching-to-grasp movements and persisted during motor retention. Peak acceleration decreased during motor practice for reaching-to-point movements and the decrease remained during motor retention. Cerebellar cTBS left the changes in peak acceleration during motor practice for index finger abductions and reaching-to-grasp arm movements unchanged but reduced peak acceleration at motor retention. Cerebellar cTBS prevented the decrease in peak acceleration for reaching-to-point movements during motor practice and at motor retention. Index finger abductions and arm reaching movements increased M1 excitability. Cerebellar cTBS decreased the motor evoked potential (MEP) facilitation induced by index finger movements, but increased the MEP facilitation after reaching-to-grasp and reaching-to-point movements. Cerebellar stimulation prevents motor retention for index finger abductions, reaching-to-grasp and reaching-to-point movements and degrades motor practice only for reaching-to-point movements. Cerebellar cTBS alters practice-related changes in M1 excitability depending on how intensely the cerebellum contributes to the task. Changes in M1 excitability reflect mechanisms of homeostatic plasticity elicited by the interaction of an 'exogenous' (cTBS-induced) and an 'endogenous' (motor practice-induced) plasticity

  14. Probing the timing network: A continuous theta burst stimulation study of temporal categorization.

    PubMed

    Méndez, Juan Carlos; Rocchi, Lorenzo; Jahanshahi, Marjan; Rothwell, John; Merchant, Hugo

    2017-07-25

    Time perception in the millisecond and second ranges is thought to be processed by different neural mechanisms. However, whether there is a sharp boundary between these ranges and whether they are implemented in the same, overlapped or separate brain areas is still not certain. To probe the role of the right dorsolateral prefrontal cortex (dlPFC), the right supplementary motor area (SMA), and the cerebellum on time perception, we temporarily altered their activity on healthy volunteers on separate sessions using transcranial magnetic stimulation with the continuous Theta Burst Stimulation (cTBS) protocol. A control session was reserved for the stimulation of the primary somatosensory cortex (S1). Before and after stimulation, participants were tested on a temporal categorization task using intervals in the hundreds and thousands of milliseconds ranges, as well as on a pitch categorization task which was used as a further control. We then looked for changes in the Relative Threshold and the Constant Error, which, respectively, reflect participants' sensitivity to interval duration and their accuracy at setting an interval that acts as a boundary between categories. We found that after cTBS in all of the studied regions, the Relative Threshold, but not the Constant Error, was affected and only when hundreds of milliseconds intervals were being categorized. Categorization of thousands of milliseconds intervals and of pitch was not affected. These results suggest that the fronto-cerebellar circuit is particularly involved in the estimation of intervals in the hundreds of milliseconds range. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. After Effects of Cerebellar Continuous Theta Burst Stimulation on Reflexive Saccades and Smooth Pursuit in Humans.

    PubMed

    Colnaghi, Silvia; Colagiorgio, P; Ramat, S; D'Angelo, E; Koch, G; Versino, M

    2017-08-01

    The use of cerebellar repetitive transcranial magnetic stimulation has been attempted for perturbing reflexive and voluntary eye movements, but discrepancies are seen between the results of distinct studies possibly due to the different stimulation sites, intensities, and paradigms. We describe the after effects of 20 and 40 s continuous Theta Burst Stimulation (cTBS) as compared to sham stimulation, applied over the lateral cerebellar vermis and paravermis on Reflexive Saccades (RS) and Smooth Pursuit (SP) eye movements, recorded in the 30 min following stimulation. The experiments were carried out in eight healthy volunteers, and eye movements were recorded monocularly with video-oculography. The 40 s cTBS significantly increased the amplitude of ipsilateral RS and the acceleration of the ipsilateral SP, and this effect was detectable all over the 30-min recording period; 40 s cTBS did not modify the other parameters, namely the peak velocity, the duration and the latency of RS, and the latency and the velocity of SP. The 20 s cTBS was ineffective on all RS and SP parameters. Finally, we detected a significant quite-linear reduction of RS peak velocity over time, but this was independent from cTBS and was probably caused by fatigue. The effects of 40 s cTBS in our experiments mimic the disorder of ocular motility in Wallenberg's syndrome and could result from functional impairment of cerebellopontine pathways. This effect lasts 30 min at least, and can provide a useful framework for adaptive ocular motor studies.

  16. Continuous theta burst stimulation over the left dorsolateral prefrontal cortex decreases medium load working memory performance in healthy humans.

    PubMed

    Schicktanz, Nathalie; Fastenrath, Matthias; Milnik, Annette; Spalek, Klara; Auschra, Bianca; Nyffeler, Thomas; Papassotiropoulos, Andreas; de Quervain, Dominique J-F; Schwegler, Kyrill

    2015-01-01

    The dorsolateral prefrontal cortex (DLPFC) plays a key role in working memory. Evidence indicates that transcranial magnetic stimulation (TMS) over the DLPFC can interfere with working memory performance. Here we investigated for how long continuous theta-burst stimulation (cTBS) over the DLPFC decreases working memory performance and whether the effect of cTBS on performance depends on working memory load. Forty healthy young subjects received either cTBS over the left DLPFC or sham stimulation before performing a 2-, and 3-back working memory letter task. An additional 0-back condition served as a non-memory-related control, measuring general attention. cTBS over the left DLPFC significantly impaired 2-back working memory performance for about 15 min, whereas 3-back and 0-back performances were not significantly affected. Our results indicate that the effect of left DLPFC cTBS on working memory performance lasts for roughly 15 min and depends on working memory load.

  17. Continuous theta-burst stimulation combined with occupational therapy for upper limb hemiparesis after stroke: a preliminary study.

    PubMed

    Yamada, Naoki; Kakuda, Wataru; Kondo, Takahiro; Shimizu, Masato; Sageshima, Masashi; Mitani, Sugao; Abo, Masahiro

    2014-12-01

    The purpose of this study was to assess the safety, feasibility and efficacy of continuous theta-burst stimulation (cTBS) combined with intensive occupational therapy (OT) for upper limb hemiparesis after stroke. Ten patients with history of stroke and upper limb hemiparesis (age 62.0 ± 11.1 years, time since stroke 95.7 ± 70.2 months, mean ± SD) were studied. Each patient received 13 sessions, each comprising 160 s of cTBS applied to the skull on the area of the non-lesional hemisphere (using a 70-mm figure-8 coil, three pulse bursts at 50 Hz, repeated every 200 ms, i.e., 5 Hz, with total stimulation of 2,400 pulses), followed by intensive OT (comprising 120-min one-to-one training and 120-min self-training) during 15-day hospitalization. The motor function of the affected upper limb was evaluated by Fugl-Meyer Assessment (FMA) and Wolf Motor Function Test (WMFT) on the days of admission and discharge. All patients completed the 15-day protocol without any adverse effects. Treatment significantly increased the FMA score (from 46.6 ± 8.7 to 51.6 ± 8.2 points, p < 0.01) and shortened the log performance time of WMFT (from 2.5 ± 1.1 to 2.2 ± 1.2 s, p < 0.01). The 15-day protocol of cTBS combined with intensive OT is a safe and potentially useful therapeutic modality for upper limb hemiparesis after stroke.

  18. Continuous theta burst stimulation (cTBS) on left cerebellar hemisphere affects mental rotation tasks during music listening.

    PubMed

    Picazio, Silvia; Oliveri, Massimiliano; Koch, Giacomo; Caltagirone, Carlo; Petrosini, Laura

    2013-01-01

    Converging evidence suggests an association between spatial and music domains. A cerebellar role in music-related information processing as well as in spatial-temporal tasks has been documented. Here, we investigated the cerebellar role in the association between spatial and musical domains, by testing performances in embodied (EMR) or abstract (AMR) mental rotation tasks of subjects listening Mozart Sonata K.448, which is reported to improve spatial-temporal reasoning, in the presence or in the absence of continuous theta burst stimulation (cTBS) of the left cerebellar hemisphere. In the absence of cerebellar cTBS, music listening did not influence either MR task, thus not revealing a "Mozart Effect". Cerebellar cTBS applied before musical listening made subjects faster (P = 0.005) and less accurate (P = 0.005) in performing the EMR but not the AMR task. Thus, cerebellar inhibition by TBS unmasked the effect of musical listening on motor imagery. These data support a coupling between music listening and sensory-motor integration in cerebellar networks for embodied representations.

  19. Continuous theta-burst stimulation (cTBS) over the lateral prefrontal cortex alters reinforcement learning bias.

    PubMed

    Ott, Derek V M; Ullsperger, Markus; Jocham, Gerhard; Neumann, Jane; Klein, Tilmann A

    2011-07-15

    The prefrontal cortex is known to play a key role in higher-order cognitive functions. Recently, we showed that this brain region is active in reinforcement learning, during which subjects constantly have to integrate trial outcomes in order to optimize performance. To further elucidate the role of the dorsolateral prefrontal cortex (DLPFC) in reinforcement learning, we applied continuous theta-burst stimulation (cTBS) either to the left or right DLPFC, or to the vertex as a control region, respectively, prior to the performance of a probabilistic learning task in an fMRI environment. While there was no influence of cTBS on learning performance per se, we observed a stimulation-dependent modulation of reward vs. punishment sensitivity: Left-hemispherical DLPFC stimulation led to a more reward-guided performance, while right-hemispherical cTBS induced a more avoidance-guided behavior. FMRI results showed enhanced prediction error coding in the ventral striatum in subjects stimulated over the left as compared to the right DLPFC. Both behavioral and imaging results are in line with recent findings that left, but not right-hemispherical stimulation can trigger a release of dopamine in the ventral striatum, which has been suggested to increase the relative impact of rewards rather than punishment on behavior.

  20. Continuous Theta Burst Stimulation (cTBS) on Left Cerebellar Hemisphere Affects Mental Rotation Tasks during Music Listening

    PubMed Central

    Picazio, Silvia; Oliveri, Massimiliano; Koch, Giacomo; Caltagirone, Carlo; Petrosini, Laura

    2013-01-01

    Converging evidence suggests an association between spatial and music domains. A cerebellar role in music-related information processing as well as in spatial-temporal tasks has been documented. Here, we investigated the cerebellar role in the association between spatial and musical domains, by testing performances in embodied (EMR) or abstract (AMR) mental rotation tasks of subjects listening Mozart Sonata K.448, which is reported to improve spatial-temporal reasoning, in the presence or in the absence of continuous theta burst stimulation (cTBS) of the left cerebellar hemisphere. In the absence of cerebellar cTBS, music listening did not influence either MR task, thus not revealing a “Mozart Effect”. Cerebellar cTBS applied before musical listening made subjects faster (P = 0.005) and less accurate (P = 0.005) in performing the EMR but not the AMR task. Thus, cerebellar inhibition by TBS unmasked the effect of musical listening on motor imagery. These data support a coupling between music listening and sensory-motor integration in cerebellar networks for embodied representations. PMID:23724071

  1. Primary somatosensory cortex necessary for the perception of weight from other people's action: A continuous theta-burst TMS experiment.

    PubMed

    Valchev, Nikola; Tidoni, Emmanuele; Hamilton, Antonia F de C; Gazzola, Valeria; Avenanti, Alessio

    2017-02-28

    The presence of a network of areas in the parietal and premotor cortices, which are active both during action execution and observation, suggests that we might understand the actions of other people by activating those motor programs for making similar actions. Although neurophysiological and imaging studies show an involvement of the somatosensory cortex (SI) during action observation and execution, it is unclear whether SI is essential for understanding the somatosensory aspects of observed actions. To address this issue, we used off-line transcranial magnetic continuous theta-burst stimulation (cTBS) just before a weight judgment task. Participants observed the right hand of an actor lifting a box and estimated its relative weight. In counterbalanced sessions, we delivered sham and active cTBS over the hand region of the left SI and, to test anatomical specificity, over the left motor cortex (M1) and the left superior parietal lobule (SPL). Active cTBS over SI, but not over M1 or SPL, impaired task performance relative to sham cTBS. Moreover, active cTBS delivered over SI just before participants were asked to evaluate the weight of a bouncing ball did not alter performance compared to sham cTBS. These findings indicate that SI is critical for extracting somatosensory features (heavy/light) from observed action kinematics and suggest a prominent role of SI in action understanding.

  2. Continuous Theta Burst Stimulation over the Left Dorsolateral Prefrontal Cortex Decreases Medium Load Working Memory Performance in Healthy Humans

    PubMed Central

    Schicktanz, Nathalie; Fastenrath, Matthias; Milnik, Annette; Spalek, Klara; Auschra, Bianca; Nyffeler, Thomas; Papassotiropoulos, Andreas; de Quervain, Dominique J.-F.; Schwegler, Kyrill

    2015-01-01

    The dorsolateral prefrontal cortex (DLPFC) plays a key role in working memory. Evidence indicates that transcranial magnetic stimulation (TMS) over the DLPFC can interfere with working memory performance. Here we investigated for how long continuous theta-burst stimulation (cTBS) over the DLPFC decreases working memory performance and whether the effect of cTBS on performance depends on working memory load. Forty healthy young subjects received either cTBS over the left DLPFC or sham stimulation before performing a 2-, and 3-back working memory letter task. An additional 0-back condition served as a non-memory-related control, measuring general attention. cTBS over the left DLPFC significantly impaired 2-back working memory performance for about 15 min, whereas 3-back and 0-back performances were not significantly affected. Our results indicate that the effect of left DLPFC cTBS on working memory performance lasts for roughly 15 min and depends on working memory load. PMID:25781012

  3. Continuous theta-burst stimulation over the dorsal premotor cortex interferes with associative learning during object lifting.

    PubMed

    Nowak, Dennis A; Berner, Julia; Herrnberger, Bärbel; Kammer, Thomas; Grön, Georg; Schönfeldt-Lecuona, Carlos

    2009-04-01

    When lifting objects of different mass, humans scale grip force according to the expected mass. In this context, humans are able to associate a sensory cue, such as a colour, to a particular mass of an object and link this association to the grip forces necessary for lifting. Here, we study the role of the dorsal premotor cortex (PMd) in setting-up an association between a colour cue and a particular mass to be lifted. Healthy right-handed subjects used a precision grip between the index finger and thumb to lift two different masses. Colour cues provided information about which of the two masses subjects would have to lift. Subjects first performed a series of lifts with the right hand to establish a stable association between a colour cue and a mass, followed by 20sec of continuous high frequency repetitive trancranial magnetic stimulation using a recently developed protocol (continuous theta-burst stimulation, cTBS) over (i) the left primary motor cortex, (ii) the left PMd and (iii) the left occipital cortex to be commenced by another series of lifts with either the right or left hand. cTBS over the PMd, but not over the primary motor cortex or O1, disrupted the predictive scaling of isometric finger forces based on colour cues, irrespective of whether the right or left hand performed the lifts after the stimulation. Our data highlight the role of the PMd to generalize and maintain associative memory processes relevant for predictive control of grip forces during object manipulation.

  4. Continuous theta burst stimulation over the left pre-motor cortex affects sensorimotor timing accuracy and supraliminal error correction.

    PubMed

    Bijsterbosch, Janine D; Lee, Kwang-Hyuk; Dyson-Sutton, William; Barker, Anthony T; Woodruff, Peter W R

    2011-09-02

    Adjustments to movement in response to changes in our surroundings are common in everyday behavior. Previous research has suggested that the left pre-motor cortex (PMC) is specialized for the temporal control of movement and may play a role in temporal error correction. The aim of this study was to determine the role of the left PMC in sensorimotor timing and error correction using theta burst transcranial magnetic stimulation (TBS). In Experiment 1, subjects performed a sensorimotor synchronization task (SMS) with the left and the right hand before and after either continuous or intermittent TBS (cTBS or iTBS). Timing accuracy was assessed during synchronized finger tapping with a regular auditory pacing stimulus. Responses following perceivable local timing shifts in the pacing stimulus (phase shifts) were used to measure error correction. Suppression of the left PMC using cTBS decreased timing accuracy because subjects tapped further away from the pacing tones and tapping variability increased. In addition, error correction responses returned to baseline tap-tone asynchrony levels faster following negative shifts and no overcorrection occurred following positive shifts after cTBS. However, facilitation of the left PMC using iTBS did not affect timing accuracy or error correction performance. Experiment 2 revealed that error correction performance may change with practice, independent of TBS. These findings provide evidence for a role of the left PMC in both sensorimotor timing and error correction in both hands. We propose that the left PMC may be involved in voluntarily controlled phase correction responses to perceivable timing shifts.

  5. Continuous theta burst stimulation of the supplementary motor area: effect upon perception and somatosensory and motor evoked potentials.

    PubMed

    Legon, Wynn; Dionne, Jennifer K; Staines, W Richard

    2013-11-01

    The supplementary motor area (SMA) has been implicated in many aspects of movement preparation and execution. In addition to motor roles, the SMA is responsive to somesthetic stimuli though it is unclear exactly what role the SMA plays in a somatosensory network. It is the purpose of this study to assess how continuous theta burst stimulation (cTBS) of the SMA affects both somatosensory (SEPs) and motor evoked potentials (MEPs) and if cTBS leads to alterations in tactile perception thresholds of the index fingertip. In experiment 1, cTBS was delivered over scalp sites FCZ (SMA stimulation) (n = 10) and CZ (control stimulation) (n = 10) in separate groups for 40 s (600 pulses) at 90% of participants' resting motor threshold. For both groups, median nerve SEPs were elicited from the right wrist at rest via electrical stimulation (0.5 ms pulse) before and at 10 min intervals post-cTBS out to 30 min (t = pre, 10, 20, and 30 min). Subjects' perceptual thresholds were assessed at similar time intervals as the SEP data using a biothesiometer (120 Hz vibration). In experiment 2 (n = 10) the effect of cTBS to SMA upon single and paired-pulse MEP amplitudes from the right first dorsal interosseous (FDI) was assessed. cTBS to scalp site FCZ (SMA stimulation) reduced the frontal N30 SEP and increased tactile perceptual thresholds 30 min post-stimulation. However, parietal SEPs and MEP amplitudes from both single and paired-pulse stimulation were unaffected at all time points post-stimulation. cTBS to stimulation site CZ (control) did not result in any physiological or behavioral changes. These data demonstrate cTBS to the SMA reduces the amplitude of the N30 coincident with an increase in vibration sensation threshold but does not affect primary somatosensory or motor cortex excitability. The SMA may play a significant role in a somatosensory tactile attention network. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Thalamic Bursts Down-regulate Cortical Theta and Nociceptive Behavior.

    PubMed

    LeBlanc, Brian W; Cross, Brent; Smith, Kelsey A; Roach, Catherine; Xia, Jimmy; Chao, Yu-Chieh; Levitt, Joshua; Koyama, Suguru; Moore, Christopher I; Saab, Carl Y

    2017-05-30

    We tested the relation between pain behavior, theta (4-8 Hz) oscillations in somatosensory cortex and burst firing in thalamic neurons in vivo. Optically-induced thalamic bursts attenuated cortical theta and mechanical allodynia. It is proposed that thalamic bursts are an adaptive response to pain that de-synchronizes cortical theta and decreases sensory salience.

  7. Variation in left posterior parietal-motor cortex interhemispheric facilitation following right parietal continuous theta-burst stimulation in healthy adults.

    PubMed

    Killington, Christopher; Barr, Christopher; Loetscher, Tobias; Bradnam, Lynley V

    2016-08-25

    Spatial neglect is modeled on an imbalance of interhemispheric inhibition (IHI); however evidence is emerging that it may not explain neglect in all cases. The aim of this study was to investigate the IHI imbalance model of visual neglect in healthy adults, using paired pulse transcranial magnetic stimulation to probe excitability of projections from posterior parietal cortex (PPC) to contralateral primary motor cortex (M1) bilaterally. Motor-evoked potentials (MEPs) were recorded from the first dorsal interossei and facilitation was determined as ratio of conditioned to non-conditioned MEP amplitude. A laterality index reflecting the balance of excitability between the two hemispheres was calculated. A temporal order judgment task (TOJ) assessed visual attention. Continuous theta-burst stimulation was used to transiently suppress right parietal cortex activity and the effect on laterality and judgment task measured, along with associations between baseline and post stimulation measures. Stimulation had conflicting results on laterality, with most participants demonstrating an effect in the negative direction with no decrement in the TOJ task. Correlation analysis suggests a strong association between laterality direction and degree of facilitation of left PPC-to right M1 following stimulation (r=.902), with larger MEP facilitation at baseline demonstrating greater reduction (r=-.908). Findings indicate there was relative balance between the cortices at baseline but right PPC suppression did not evoke left PPC facilitation in most participants, contrary to the IHI imbalance model. Left M1 facilitation prior to stimulation may predict an individual's response to continuous theta-burst stimulation of right PPC.

  8. Offline continuous theta burst stimulation over right inferior frontal gyrus and pre-supplementary motor area impairs inhibition during a go/no-go task.

    PubMed

    Drummond, Neil M; Cressman, Erin K; Carlsen, Anthony N

    2017-04-06

    In a typical go/no-go task a single imperative stimulus is presented each trial, either a go or no-go stimulus. Participants are instructed to initiate a known response upon appearance of the go-signal and withhold the response if the no-go signal is presented. It is unclear whether the go-response is prepared in advance of the imperative stimulus in a go/no-go task. Moreover, it is unclear if inhibitory control processes suppress preparatory go-activation. The purpose of the present experiment was 1) to determine whether the go-response is prepared in advance of stimulus identification with the use of a startling acoustic stimulus (SAS), and 2) investigate the inhibitory role of the right inferior frontal gyrus (rIFG) and pre-supplementary motor area (preSMA) during the performance of a go/no-go task with the use of continuous theta burst stimulation (cTBS). The experiment consisted of three phases; a pre-cTBS phase in which participants completed a go/no-go and simple-RT task, followed by offline cTBS to temporarily deactivate either rIFG or preSMA (with a sham control), then a post-cTBS phase which was identical to the pre-cTBS phase. Results revealed that stimulation to both cortical sites impaired participants' ability to withhold movements during no-go trials. Notably, rIFG or preSMA stimulation did not affect the latency of voluntary go-responses and did not enable the SAS to involuntarily trigger responses. These findings suggest that preparation and initiation of the go-response occurs after the imperative stimulus, with the rIFG and preSMA involved in inhibiting the go-response once the stimulus is identified as a no-go signal.

  9. Task-relevancy effects on movement-related gating are modulated by continuous theta-burst stimulation of the dorsolateral prefrontal cortex and primary somatosensory cortex.

    PubMed

    Brown, Katlyn E; Ferris, Jennifer K; Amanian, Mohammad A; Staines, W Richard; Boyd, Lara A

    2015-03-01

    Movement-related gating ensures that decreased somatosensory information from external stimulation reaches the cortex during movement when compared to resting levels; however, gating may be influenced by task-relevant manipulations, such that increased sensory information ascends to the cortex when information is relevant to goal-based actions. These task-relevancy effects are hypothesized to be controlled by a network involving the dorsolateral prefrontal cortex (DLPFC) based on this region's known role in selective attention, modulating the primary somatosensory cortex (S1). The purpose of the current study was first to verify task-relevancy influences on movement-related gating in the upper limb, and second to test the contribution of the DLPFC and the primary somatosensory cortex (S1) to these relevancy effects. Ten healthy participants received median nerve stimulation at the left wrist during three conditions: rest, task-irrelevant movement, and task-relevant movement. Cortical responses to median nerve stimulations were measured in the form of somatosensory evoked potentials (SEPs). The three conditions were collected on a baseline day and on two separate days following continuous theta-burst (cTBS), which transiently reduces cortical excitability, over either the contralateral S1 or DLPFC. Results demonstrated a significant interaction between stimulation and condition, with a priori contrasts revealing that cTBS over either S1 or DLPFC diminished the relevancy-based modulation of SEP amplitudes; however, the degree of this effect was different. These results indicate that DLPFC influences over S1 are involved in the facilitation of relevant sensory information during movement.

  10. Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex and the Pre-SMA Alter Drift Rate and Response Thresholds Respectively During Perceptual Decision-Making.

    PubMed

    Georgiev, Dejan; Rocchi, Lorenzo; Tocco, Pierluigi; Speekenbrink, Maarten; Rothwell, John C; Jahanshahi, Marjan

    2016-01-01

    The speed-accuracy trade-off (SAT) refers to the balancing of speed versus accuracy during decision-making. SAT is very commonly investigated with perceptual decision-making tasks such as the moving dots task (MDT). The dorsolateral prefrontal cortex (DLPFC) and the pre-supplementary motor area (pre-SMA) are two brain regions considered to be involved in the control of SAT. The study tested whether the DLPFC and the pre-SMA play an essential role in the control of SAT. We hypothesized that continuous theta burst stimulation (cTBS) over the right DLPFC would primarily alter the rate of accumulation of evidence, whereas stimulation of the pre-SMA would influence the threshold for reaching a decision. Fifteen (5 females; mean age = 30, SD =5.40) healthy volunteers participated in the study. We used two versions of the MDT and cTBS over the right DLPFC, pre-SMA and sham stimulation. The drift diffusion model was fit to the behavioural data (reaction time and error rate) in order to calculate the drift rate, boundary separation (threshold) and non-decision time. cTBS over the right DLPFC decreased the rate of accumulation of evidence (i.e. the drift rate from the diffusion model) in high (0.35 and 0.5) but not in low coherence trials. cTBS over the pre-SMA changed the boundary separation/threshold required to reach a decision on accuracy, but not on speed trials. The results suggest for the first time that both the DLPFC and the pre-SMA make essential but distinct contributions to the modulation of SAT. Copyright © 2016. Published by Elsevier Inc.

  11. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input.

    PubMed

    Brown, Matt J N; Staines, W Richard

    2016-02-15

    Somatosensory evoked potentials (SEPs) represent somatosensory processing in non-primary motor areas (i.e. frontal N30 and N60) and somatosensory cortices (i.e. parietal P50). It is well-known that the premotor cortex (PMC) and prefrontal cortex (PFC) are involved in the preparation and planning of upper limb movements but it is currently unclear how they modulate somatosensory processing for upper limb motor control. In the current study, two experiments examined SEP modulations after continuous theta burst stimulation (cTBS) was used to transiently disrupt the left PMC (Experiment 1) and right PFC (Experiment 2). Both Experiment 1 (n=15) and Experiment 2 (n=16) used pre-post experimental designs. In both experiments participants performed a task requiring detection of varying amplitudes of attended vibrotactile (VibT) stimuli to the left index finger (D2) and execution of a pre-matched finger sequence with the right (contralateral) hand to specific VibT targets. During the task, SEPs were measured to median nerve (MN) stimulations time-locked during pre-stimulus (250 ms before VibT), early response selection (250 ms after VibT), late preparatory (750 ms after VibT) and execution (1250 ms VibT) phases. The key findings of Experiment 1 revealed significant decreases in N30 and N60 peak amplitudes after cTBS to PMC. In contrast, the results of Experiment 2, also found significant decreased N60 peak amplitudes as well as trends for increased N30 and P50 peak amplitudes. A direct comparison of Experiment 1 and Experiment 2 confirmed differential modulation of N30 peak amplitudes after PMC (gated) compared to PFC (enhanced) cTBS. Collectively, these results support that both the left PMC and right PFC have modulatory roles on early somatosensory input into non-primary motor areas, such as PMC and supplementary motor area (SMA), represented by frontal N30 and N60 SEPs. These results confirm that PMC and PFC are both part of a network that regulates somatosensory input

  12. Bilateral Theta-Burst TMS to Influence Global Gestalt Perception

    PubMed Central

    Ritzinger, Bernd; Huberle, Elisabeth; Karnath, Hans-Otto

    2012-01-01

    While early and higher visual areas along the ventral visual pathway in the inferotemporal cortex are critical for the recognition of individual objects, the neural representation of human perception of complex global visual scenes remains under debate. Stroke patients with a selective deficit in the perception of a complex global Gestalt with intact recognition of individual objects – a deficit termed simultanagnosia – greatly helped to study this question. Interestingly, simultanagnosia typically results from bilateral lesions of the temporo-parietal junction (TPJ). The present study aimed to verify the relevance of this area for human global Gestalt perception. We applied continuous theta-burst TMS either unilaterally (left or right) or bilateral simultaneously over TPJ. Healthy subjects were presented with hierarchically organized visual stimuli that allowed parametrical degrading of the object at the global level. Identification of the global Gestalt was significantly modulated only for the bilateral TPJ stimulation condition. Our results strengthen the view that global Gestalt perception in the human brain involves TPJ and is co-dependent on both hemispheres. PMID:23110106

  13. Bilateral theta-burst TMS to influence global gestalt perception.

    PubMed

    Ritzinger, Bernd; Huberle, Elisabeth; Karnath, Hans-Otto

    2012-01-01

    While early and higher visual areas along the ventral visual pathway in the inferotemporal cortex are critical for the recognition of individual objects, the neural representation of human perception of complex global visual scenes remains under debate. Stroke patients with a selective deficit in the perception of a complex global Gestalt with intact recognition of individual objects - a deficit termed simultanagnosia - greatly helped to study this question. Interestingly, simultanagnosia typically results from bilateral lesions of the temporo-parietal junction (TPJ). The present study aimed to verify the relevance of this area for human global Gestalt perception. We applied continuous theta-burst TMS either unilaterally (left or right) or bilateral simultaneously over TPJ. Healthy subjects were presented with hierarchically organized visual stimuli that allowed parametrical degrading of the object at the global level. Identification of the global Gestalt was significantly modulated only for the bilateral TPJ stimulation condition. Our results strengthen the view that global Gestalt perception in the human brain involves TPJ and is co-dependent on both hemispheres.

  14. Theta burst stimulation over the right Broca's homologue induces improvement of naming in aphasic patients.

    PubMed

    Kindler, Jochen; Schumacher, Rahel; Cazzoli, Dario; Gutbrod, Klemens; Koenig, Monica; Nyffeler, Thomas; Dierks, Thomas; Müri, René M

    2012-08-01

    Improvements of language production in aphasic patients have been reported following repeated 1-Hz transcranial magnetic stimulation over the nondamaged right hemisphere. Most studies examined aphasic patients in the chronic phase. The effect of transcranial magnetic stimulation application in acute or subacute patients has not been systematically studied. We aimed to evaluate whether continuous theta burst stimulation, an inhibitory protocol with a shorter application time than the common 1-Hz protocol, is able to improve naming performance in aphasic patients in different poststroke phases. Eighteen right-handed aphasic patients performed a picture naming task and a language independent alertness test before and after the application of theta burst stimulation over the intact right Broca's homologue localized by the 10-20 electroencephalogram system in a randomized, sham-controlled, crossover trial. We found that naming performance was significantly better, and naming latency was significantly shorter, after theta burst stimulation than after the sham intervention. Patients who responded best were in the subacute phase after stroke. This setting with the short theta burst stimulation application time and the simple stimulation localization procedure is suitable for clinical purposes.

  15. Effects of theta burst stimulation on referred phantom sensations in patients with spinal cord injury.

    PubMed

    Nardone, Raffaele; De Blasi, Pierpaolo; Höller, Yvonne; Taylor, Alexandra C; Brigo, Francesco; Trinka, Eugen

    2016-03-02

    To further explore the mechanisms underlying cortical reorganization in patients with phantom sensations after deafferentation, a repetitive transcranial magnetic stimulation study was carried out in two patients with referred phantom sensations (RPS) after incomplete spinal cord injury at the thoracic level. We delivered continuous (inhibitory), intermittent (excitatory), and placebo theta burst stimulation to the contralateral primary motor cortex (M1), primary somatosensory cortex (S1), and secondary somatosensory cortex (S2). Perception of RPS was significantly and transiently disrupted by inhibitory theta burst stimulation applied over S1 and, to a lesser extent, S2. This study supports the hypothesis that RPS depend on remapping in the somatosensory cortex and provides further electrophysiological evidence in vivo that cortical reorganizational processes are critically modulated by GABAergic mechanisms. Enhancement of GABAergic activity may block cortical reorganization, leading to RPS in spinal cord injury patients.

  16. Theta burst stimulation over the primary motor cortex does not induce cortical plasticity in Parkinson's disease.

    PubMed

    Eggers, Carsten; Fink, Gereon R; Nowak, Dennis A

    2010-10-01

    The purpose of this study was to investigate whether a period of continuous theta burst stimulation (cTBS) induces cortical plasticity and thus improves bradykinesia of the upper limb in Parkinson's disease. In eight patients with Parkinson's disease (two females; mean age: 68.5 ± 5 years; disease duration: 4 ± 3 years) electrophysiological (motor evoked potentials, contralateral and ipsilateral silent period) and behavioural (Purdue pegboard test, UPDRS motor subscore) parameters were evaluated before (baseline condition) and after a 40-s period of (1) real or (2) sham continuous theta burst stimulation over the primary motor cortex contralateral to the more affected body side off dopaminergic drugs. Compared to baseline, cTBS did change neither measures of cortical excitability nor behavioural measures. cTBS over the primary motor cortex does not impact on cortical excitability or motor function of the upper limb in Parkinson's disease. We interpret these data to reflect impaired cortical plasticity in Parkinson's disease. This study is an important contribution to the knowledge about impaired plasticity in Parkinson's disease.

  17. The Predictive Nature of Pseudoneglect for Visual Neglect: Evidence from Parietal Theta Burst Stimulation

    PubMed Central

    Varnava, Alice; Dervinis, Martynas; Chambers, Christopher D.

    2013-01-01

    Following parietal damage most patients with visual neglect bisect horizontal lines significantly away from the true centre. Neurologically intact individuals also misbisect lines; a phenomenon referred to as ‘pseudoneglect’. In this study we examined the relationship between neglect and pseudoneglect by testing how patterns of pre-existing visuospatial asymmetry predict asymmetry caused by parietal interference. Twenty-four participants completed line bisection and Landmark tasks before receiving continuous theta burst stimulation to the left or right angular gyrus. Results showed that a pre-existing pattern of left pseudoneglect (i.e. right bias), but not right pseudoneglect, predicts left neglect-like behaviour during line bisection following right parietal cTBS. This correlation is consistent with the view that neglect and pseudoneglect arise via a common or linked neural mechanism. PMID:23823975

  18. Cosine Directional Tuning of Theta Cell Burst Frequencies: Evidence for Spatial Coding by Oscillatory Interference

    PubMed Central

    Welday, Adam C.; Shlifer, I. Gary; Bloom, Matthew L.; Zhang, Kechen

    2011-01-01

    The rodent septohippocampal system contains “theta cells,” which burst rhythmically at 4–12 Hz, but the functional significance of this rhythm remains poorly understood (Buzsáki, 2006). Theta rhythm commonly modulates the spike trains of spatially tuned neurons such as place (O'Keefe and Dostrovsky, 1971), head direction (Tsanov et al., 2011a), grid (Hafting et al., 2005), and border cells (Savelli et al., 2008; Solstad et al., 2008). An “oscillatory interference” theory has hypothesized that some of these spatially tuned neurons may derive their positional firing from phase interference among theta oscillations with frequencies that are modulated by the speed and direction of translational movements (Burgess et al., 2005, 2007). This theory is supported by studies reporting modulation of theta frequency by movement speed (Rivas et al., 1996; Geisler et al., 2007; Jeewajee et al., 2008a), but modulation of theta frequency by movement direction has never been observed. Here we recorded theta cells from hippocampus, medial septum, and anterior thalamus of freely behaving rats. Theta cell burst frequencies varied as the cosine of the rat's movement direction, and this directional tuning was influenced by landmark cues, in agreement with predictions of the oscillatory interference theory. Computer simulations and mathematical analysis demonstrated how a postsynaptic neuron can detect location-dependent synchrony among inputs from such theta cells, and thereby mimic the spatial tuning properties of place, grid, or border cells. These results suggest that theta cells may serve a high-level computational function by encoding a basis set of oscillatory signals that interfere with one another to synthesize spatial memory representations. PMID:22072668

  19. High visual demand following theta burst stimulation modulates the effect on visual cortex excitability.

    PubMed

    Brückner, Sabrina; Kammer, Thomas

    2015-01-01

    Modulatory effects of repetitive transcranial magnetic stimulation (TMS) depend on the activity of the stimulated cortical area before, during, and even after application. In the present study, we investigated the effects of theta burst stimulation (TBS) on visual cortex excitability using phosphene threshold (PTs). In a between-group design either continuous or intermittent TBS was applied with 100% of individual PT intensity. We varied visual demand following stimulation in form of high demand (acuity task) or low demand (looking at the wall). No change of PTs was observed directly after TBS. We found increased PTs only if subjects had high visual demand following continuous TBS. With low visual demand following stimulation no change of PT was observed. Intermittent TBS had no effect on visual cortex excitability at all. Since other studies showed increased PTs following continuous TBS using subthreshold intensities, our results highlight the importance of stimulation intensity applying TBS to the visual cortex. Furthermore, the state of the neurons in the stimulated cortex area not only before but also following TBS has an important influence on the effects of stimulation, making it necessary to scrupulously control for activity during the whole experimental session in a study.

  20. High visual demand following theta burst stimulation modulates the effect on visual cortex excitability

    PubMed Central

    Brückner, Sabrina; Kammer, Thomas

    2015-01-01

    Modulatory effects of repetitive transcranial magnetic stimulation (TMS) depend on the activity of the stimulated cortical area before, during, and even after application. In the present study, we investigated the effects of theta burst stimulation (TBS) on visual cortex excitability using phosphene threshold (PTs). In a between-group design either continuous or intermittent TBS was applied with 100% of individual PT intensity. We varied visual demand following stimulation in form of high demand (acuity task) or low demand (looking at the wall). No change of PTs was observed directly after TBS. We found increased PTs only if subjects had high visual demand following continuous TBS. With low visual demand following stimulation no change of PT was observed. Intermittent TBS had no effect on visual cortex excitability at all. Since other studies showed increased PTs following continuous TBS using subthreshold intensities, our results highlight the importance of stimulation intensity applying TBS to the visual cortex. Furthermore, the state of the neurons in the stimulated cortex area not only before but also following TBS has an important influence on the effects of stimulation, making it necessary to scrupulously control for activity during the whole experimental session in a study. PMID:26578935

  1. Sensitivity to theta-burst timing permits LTP in dorsal striatal adult brain slice

    PubMed Central

    Hawes, Sarah L.; Gillani, Fawad; Evans, Rebekah C.; Benkert, Elizabeth A.

    2013-01-01

    Long-term potentiation (LTP) of excitatory afferents to the dorsal striatum likely occurs with learning to encode new skills and habits, yet corticostriatal LTP is challenging to evoke reliably in brain slice under physiological conditions. Here we test the hypothesis that stimulating striatal afferents with theta-burst timing, similar to recently reported in vivo temporal patterns corresponding to learning, evokes LTP. Recording from adult mouse brain slice extracellularly in 1 mM Mg2+, we find LTP in dorsomedial and dorsolateral striatum is preferentially evoked by certain theta-burst patterns. In particular, we demonstrate that greater LTP is produced using moderate intraburst and high theta-range frequencies, and that pauses separating bursts of stimuli are critical for LTP induction. By altering temporal pattern alone, we illustrate the importance of burst-patterning for LTP induction and demonstrate that corticostriatal long-term depression is evoked in the same preparation. In accord with prior studies, LTP is greatest in dorsomedial striatum and relies on N-methyl-d-aspartate receptors. We also demonstrate a requirement for both Gq- and Gs/olf-coupled pathways, as well as several kinases associated with memory storage: PKC, PKA, and ERK. Our data build on previous reports of activity-directed plasticity by identifying effective values for distinct temporal parameters in variants of theta-burst LTP induction paradigms. We conclude that those variants which best match reports of striatal activity during learning behavior are most successful in evoking dorsal striatal LTP in adult brain slice without altering artificial cerebrospinal fluid. Future application of this approach will enable diverse investigations of plasticity serving striatal-based learning. PMID:23926032

  2. Theta-burst Transcranial Magnetic Stimulation Alters the Functional Topography of the Cortical Motor Network

    PubMed Central

    NOH, Nor Azila; FUGGETTA, Giorgio; MANGANOTTI, Paolo

    2015-01-01

    Background: Transcranial magnetic stimulation (TMS) is a non-invasive tool that is able to modulate the electrical activity of the brain depending upon its protocol of stimulation. Theta burst stimulation (TBS) is a high-frequency TMS protocol that is able to induce prolonged plasticity changes in the brain. The induction of plasticity-like effects by TBS is useful in both experimental and therapeutic settings; however, the underlying neural mechanisms of this modulation remain unclear. The aim of this study was to investigate the effects of continuous TBS (cTBS) on the intrahemispheric and interhemispheric functional connectivity of the resting and active brain. Methods: A total of 26 healthy humans were randomly divided into two groups that received either real cTBS or sham (control) over the left primary motor cortex. Surface electroencephalogram (EEG) was used to quantify the changes of neural oscillations after cTBS at rest and after a choice reaction time test. The cTBS-induced EEG oscillations were computed using spectral analysis of event-related coherence (ERCoh) of theta (4–7.5 Hz), low alpha (8–9.5 Hz), high alpha (10–12.5 Hz), low beta (13–19.5 Hz), and high beta (20–30 Hz) brain rhythms. Results: We observed a global decrease in functional connectivity of the brain in the cTBS group when compared to sham in the low beta brain rhythm at rest and high beta brain rhythm during the active state. In particular, EEG spectral analysis revealed that high-frequency beta, a cortically generated brain rhythm, was the most sensitive band that was modulated by cTBS. Conclusion: Overall, our findings suggest that cTBS, a TMS protocol that mimics the mechanism of long-term depression of synaptic plasticity, modulates motor network oscillations primarily at the cortical level and might interfere with cortical information coding. PMID:27006636

  3. Independent mechanisms for ventriloquism and multisensory integration as revealed by theta-burst stimulation.

    PubMed

    Bertini, Caterina; Leo, Fabrizio; Avenanti, Alessio; Làdavas, Elisabetta

    2010-05-01

    The visual and auditory systems often concur to create a unified perceptual experience and to determine the localization of objects in the external world. Co-occurring auditory and visual stimuli in spatial coincidence are known to enhance performance of auditory localization due to the integration of stimuli from different sensory channels (i.e. multisensory integration). However, auditory localization of audiovisual stimuli presented at spatial disparity might also induce a mislocalization of the sound towards the visual stimulus (i.e. ventriloquism effect). Using repetitive transcranial magnetic stimulation we tested the role of right temporoparietal (rTPC), right occipital (rOC) and right posterior parietal (rPPC) cortex in an auditory localization task in which indices of ventriloquism and multisensory integration were computed. We found that suppression of rTPC excitability by means of continuous theta-burst stimulation (cTBS) reduced multisensory integration. No similar effect was found for cTBS over rOC. Moreover, inhibition of rOC, but not of rTPC, suppressed the visual bias in the contralateral hemifield. In contrast, cTBS over rPPC did not produce any modulation of ventriloquism or integrative effects. The double dissociation found in the present study suggests that ventriloquism and audiovisual multisensory integration are functionally independent phenomena and may be underpinned by partially different neural circuits.

  4. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex

    PubMed Central

    Di Lazzaro, V; Pilato, F; Saturno, E; Oliviero, A; Dileone, M; Mazzone, P; Insola, A; Tonali, PA; Ranieri, F; Huang, YZ; Rothwell, JC

    2005-01-01

    In four conscious patients who had electrodes implanted in the cervical epidural space for the control of pain, we recorded corticospinal volleys evoked by single-pulse transcranial magnetic stimulation (TMS) over the motor cortex before and after a 20 s period of continuous theta-burst stimulation (cTBS). It has previously been reported that this form of repetitive TMS reduces the amplitude of motor-evoked potentials (MEPs), with the maximum effect occurring at 5–10 min after the end of stimulation. The present results show that cTBS preferentially decreases the amplitude of the corticospinal I1 wave, with approximately the same time course. This is consistent with a cortical origin of the effect on the MEP. However, other protocols that lead to MEP suppression, such as short-interval intracortical inhibition, are characterized by reduced excitability of late I waves (particularly I3), suggesting that cTBS suppresses MEPs through different mechanisms, such as long-term depression in excitatory synaptic connections. PMID:15845575

  5. Theta Burst Stimulation of the Precuneus Modulates Resting State Connectivity in the Left Temporal Pole.

    PubMed

    Mancini, Matteo; Mastropasqua, Chiara; Bonnì, Sonia; Ponzo, Viviana; Cercignani, Mara; Conforto, Silvia; Koch, Giacomo; Bozzali, Marco

    2017-03-14

    It has been shown that continuous theta burst stimulation (cTBS) over the precuneus acts on specific memory retrieval abilities. In order to study the neural mechanisms beyond these findings, we combined cTBS and resting-state functional magnetic resonance imaging. Our experimental protocol involved stimulation and sham conditions on a group of healthy subjects, and each condition included a baseline and two follow-up acquisitions (5 and 15 min after baseline) after cTBS. We analysed brain functional connectivity by means of graph theoretical measures, with a specific focus on the network modular structure. Our results showed that cTBS of the precuneus selectively affects the left temporal pole, decreasing its functional connectivity in the first follow-up. Moreover, we observed a significant increase in the size of the module of the precuneus in the second follow-up. Such effects were absent in the sham condition. We observed here a modulation of functional connectivity as a result of inhibitory stimulation over the precuneus. Such a modulation first acts indirectly on the temporal area and then extends the connectivity of the precuneus itself by a feed-back mechanism. Our current findings extend our previous behavioural observations and increase our understanding of the mechanisms underlying the stimulation of the precuneus.

  6. Theta burst stimulation improves overt visual search in spatial neglect independently of attentional load.

    PubMed

    Cazzoli, Dario; Rosenthal, Clive R; Kennard, Christopher; Zito, Giuseppe A; Hopfner, Simone; Müri, René M; Nyffeler, Thomas

    2015-12-01

    Visual neglect is considerably exacerbated by increases in visual attentional load. These detrimental effects of attentional load are hypothesised to be dependent on an interplay between dysfunctional inter-hemispheric inhibitory dynamics and load-related modulation of activity in cortical areas such as the posterior parietal cortex (PPC). Continuous Theta Burst Stimulation (cTBS) over the contralesional PPC reduces neglect severity. It is unknown, however, whether such positive effects also operate in the presence of the detrimental effects of heightened attentional load. Here, we examined the effects of cTBS on neglect severity in overt visual search (i.e., with eye movements), as a function of high and low visual attentional load conditions. Performance was assessed on the basis of target detection rates and eye movements, in a computerised visual search task and in two paper-pencil tasks. cTBS significantly ameliorated target detection performance, independently of attentional load. These ameliorative effects were significantly larger in the high than the low load condition, thereby equating target detection across both conditions. Eye movement analyses revealed that the improvements were mediated by a redeployment of visual fixations to the contralesional visual field. These findings represent a substantive advance, because cTBS led to an unprecedented amelioration of overt search efficiency that was independent of visual attentional load.

  7. Probing changes in corticospinal excitability following theta burst stimulation of the human primary motor cortex.

    PubMed

    Goldsworthy, Mitchell R; Vallence, Ann-Maree; Hodyl, Nicolette A; Semmler, John G; Pitcher, Julia B; Ridding, Michael C

    2016-01-01

    To determine whether the intensity of transcranial magnetic stimulation (TMS) used to probe changes in corticospinal excitability influences the measured plasticity response to theta burst stimulation (TBS) of the human primary motor cortex. Motor evoked potential (MEP) input/output (I/O) curves were recorded before and following continuous TBS (cTBS) (Experiment 1; n=18) and intermittent TBS (iTBS) (Experiment 2; n=18). The magnitude and consistency of MEP depression induced by cTBS was greatest when probed using stimulus intensities at or above 150% of resting motor threshold (RMT). In contrast, facilitation of MEPs following iTBS was strongest and most consistent at 110% of RMT. The plasticity response to both cTBS and iTBS is influenced by the stimulus intensity used to probe the induced changes in corticospinal excitability. The results highlight the importance of the test stimulus intensity used to assess TBS-induced changes in corticospinal excitability when interpreting neuroplasticity data, and suggest that a number of test intensities may be required to reliably probe the plasticity response. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Efficacy and Time Course of Theta Burst Stimulation in Healthy Humans.

    PubMed

    Wischnewski, Miles; Schutter, Dennis J L G

    2015-01-01

    In the past decade research has shown that continuous (cTBS) and intermittent theta burst stimulation (iTBS) alter neuronal excitability levels in the primary motor cortex. Quantitatively review the magnitude and time course on cortical excitability of cTBS and iTBS. Sixty-four TBS studies published between January 2005 and October 2014 were retrieved from the scientific search engine PubMED and included for analyses. The main inclusion criteria involved stimulation of the primary motor cortex in healthy volunteers with no motor practice prior to intervention and motor evoked potentials as primary outcome measure. ITBS applied for 190 s significantly increases cortical excitability up to 60 min with a mean maximum potentiation of 35.54 ± 3.32%. CTBS applied for 40 s decreases cortical excitability up to 50 min with a mean maximum depression of -22.81 ± 2.86%, while cTBS applied for 20 s decreases cortical excitability (mean maximum -27.84 ± 4.15%) for 20 min. The present findings offer normative insights into the magnitude and time course of TBS-induced changes in cortical excitability levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients.

    PubMed

    Koch, Giacomo; Porcacchia, Paolo; Ponzo, Viviana; Carrillo, Fatima; Cáceres-Redondo, María Teresa; Brusa, Livia; Desiato, Maria Teresa; Arciprete, Flavio; Di Lorenzo, Francesco; Pisani, Antonio; Caltagirone, Carlo; Palomar, Francisco J; Mir, Pablo

    2014-01-01

    Dystonia is generally regarded as a disorder of the basal ganglia and their efferent connections to the thalamus and brainstem, but an important role of cerebellar-thalamo-cortical (CTC) circuits in the pathophysiology of dystonia has been invoked. Here in a sham controlled trial, we tested the effects of two-weeks of cerebellar continuous theta burst stimulation (cTBS) in a sample of cervical dystonia (CD) patients. Clinical evaluations were performed by administering the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) and the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). We used TMS to measure the inhibitory connectivity between the cerebellum and the contralateral motor cortex (cerebellar brain inhibition [CBI]), and the excitability of the contralateral primary motor cortex assessing intracortical inhibition (SICI), intracortical facilitation (ICF) and cortical silent period (CSP). Paired associative stimulation (PAS) was tested to evaluate the level and the topographical specificity of cortical plasticity, which is abnormally enhanced and non-focal in CD patients. Two weeks of cerebellar stimulation resulted in a small but significant clinical improvement as measured by the TWSTRS of approximately 15%. Cerebellar stimulation modified the CBI circuits and reduced the heterotopic PAS potentiation, leading to a normal pattern of topographic specific induced plasticity. These data provide novel evidence CTC circuits could be a potential target to partially control some dystonic symptoms in patients with cervical dystonia. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Theta burst stimulation in the treatment of incapacitating tinnitus accompanied by severe depression.

    PubMed

    Soekadar, Surjo R; Arfeller, Carola; Rilk, Albrecht; Plontke, Stefan K; Plewnia, Christian

    2009-04-01

    This case report describes the use of transcranial magnetic theta burst stimulation (TBS) in the treatment of incapacitating tinnitus accompanied by symptoms of severe depression. Tinnitus is known to be associated with hyperactivity and maladaptive cortical reorganization of the central auditory system. Combined with anxiety and depression, it can occasionally constitute a psychiatric emergency. Recently, it has been demonstrated that tinnitus can be temporarily suppressed by non-invasive transcranial magnetic stimulation. TBS is a newly developed technique for rapid and lasting modulation of cortical excitability. Herein, we present a case of a 54-year-old woman with incapacitating tinnitus that has significantly decreased after three cycles of 1-week treatment with continuous TBS to the temporo-parietal auditory association cortex. According to the Tinnitus Questionnaire, tinnitus intensity decreased from 84 points before to 59 points after treatment. Hamilton Rating Scale for Depression score dropped from 44 to 23 points. TBS showed to be efficient, well-tolerated, and practical in the management of distressing tinnitus accompanied by symptoms of severe depression.

  11. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex.

    PubMed

    Di Lazzaro, V; Pilato, F; Saturno, E; Oliviero, A; Dileone, M; Mazzone, P; Insola, A; Tonali, P A; Ranieri, F; Huang, Y Z; Rothwell, J C

    2005-06-15

    In four conscious patients who had electrodes implanted in the cervical epidural space for the control of pain, we recorded corticospinal volleys evoked by single-pulse transcranial magnetic stimulation (TMS) over the motor cortex before and after a 20 s period of continuous theta-burst stimulation (cTBS). It has previously been reported that this form of repetitive TMS reduces the amplitude of motor-evoked potentials (MEPs), with the maximum effect occurring at 5-10 min after the end of stimulation. The present results show that cTBS preferentially decreases the amplitude of the corticospinal I1 wave, with approximately the same time course. This is consistent with a cortical origin of the effect on the MEP. However, other protocols that lead to MEP suppression, such as short-interval intracortical inhibition, are characterized by reduced excitability of late I waves (particularly I3), suggesting that cTBS suppresses MEPs through different mechanisms, such as long-term depression in excitatory synaptic connections.

  12. High-amplitude theta wave bursts characterizing narcoleptic mice and patients are also produced by histamine deficiency in mice.

    PubMed

    Bastianini, Stefano; Lo Martire, Viviana; Berteotti, Chiara; Silvani, Alessandro; Ohtsu, Hiroshi; Lin, Jian-Sheng; Zoccoli, Giovanna

    2016-10-01

    Histamine and orexins are wake promoters released by hypothalamic neurons. The activity of histamine neurons is increased by orexin neurons. Recently, it has been shown that orexin deficiency entails high-amplitude theta wave bursts during rapid eye movement sleep and cataplexy in narcoleptic mice. The primary aim of this study was to assess whether histamine system is involved in high-amplitude theta wave burst generation during rapid eye movement sleep. The secondary aim was to assess the effects of combined histamine and orexin deficiency on high-amplitude theta wave bursts during rapid eye movement sleep in mice. Twelve histidine-decarboxylase knockout mice with congenital histamine deficiency, seven double mutant mice with combined deficiency of orexin neurons and histamine, and 11 wild-type control mice were studied with electrodes for sleep recordings and a telemetric blood pressure transducer. High-amplitude theta wave bursts during rapid eye movement sleep were detected in each of the histidine-decarboxylase knockout and double mutant mice, whereas only one burst was found in a wild-type control mouse. High-amplitude theta wave bursts occurred significantly more often and were significantly longer in double mutant than in histidine-decarboxylase knockout mice. In conclusion, it was demonstrated that, similarly to orexin, the chronic impairment of histamine entailed high-amplitude theta wave bursts during rapid eye movement sleep. The current data also suggested a synergistic role of orexin and histamine signalling on high-amplitude theta wave bursts during rapid eye movement sleep in mice. © 2016 European Sleep Research Society.

  13. Attenuation of N2 amplitude of laser-evoked potentials by theta burst stimulation of primary somatosensory cortex.

    PubMed

    Poreisz, Csaba; Antal, Andrea; Boros, Klára; Brepohl, Nadine; Csifcsák, Gábor; Paulus, Walter

    2008-03-01

    Theta burst stimulation (TBS) is a special repetitive transcranial magnetic stimulation (rTMS) paradigm, where bursts of low-intensity stimuli are applied in the theta frequency. The aim of this study was to investigate the effect of neuronavigated TBS over primary somatosensory cortex (SI) on laser-evoked potentials (LEPs) and acute pain perception induced with Tm : YAG laser stimulation. The amplitude changes of the N1, N2, and P2 components of LEPs and related subjective pain rating scores of 12 healthy subjects were analyzed prior to and following continuous TBS (cTBS), intermittent TBS (iTBS), intermediate TBS (imTBS), and sham stimulation. Our results demonstrate that all active TBS paradigms significantly diminished the amplitude of the N2 component, when the hand contralateral to the site of TBS was laser-stimulated. Sham stimulation condition had no significant effect. The subjective pain perception also decreased during the experimental sessions, but did not differ significantly from the sham stimulation condition. The main finding of our study is that TBS over SI diminished the amplitude of the N2 component evoked from the contralateral side without any significant analgesic effects. Furthermore, imTBS produced responses similar to those observed by other forms of TBS induced excitability changes in the SI.

  14. Attenuation of N2 amplitude of laser-evoked potentials by theta burst stimulation of primary somatosensory cortex

    PubMed Central

    Antal, Andrea; Boros, Klára; Brepohl, Nadine; Csifcsák, Gábor; Paulus, Walter

    2007-01-01

    Theta burst stimulation (TBS) is a special repetitive transcranial magnetic stimulation (rTMS) paradigm, where bursts of low-intensity stimuli are applied in the theta frequency. The aim of this study was to investigate the effect of neuronavigated TBS over primary somatosensory cortex (SI) on laser-evoked potentials (LEPs) and acute pain perception induced with Tm : YAG laser stimulation. The amplitude changes of the N1, N2, and P2 components of LEPs and related subjective pain rating scores of 12 healthy subjects were analyzed prior to and following continuous TBS (cTBS), intermittent TBS (iTBS), intermediate TBS (imTBS), and sham stimulation. Our results demonstrate that all active TBS paradigms significantly diminished the amplitude of the N2 component, when the hand contralateral to the site of TBS was laser-stimulated. Sham stimulation condition had no significant effect. The subjective pain perception also decreased during the experimental sessions, but did not differ significantly from the sham stimulation condition. The main finding of our study is that TBS over SI diminished the amplitude of the N2 component evoked from the contralateral side without any significant analgesic effects. Furthermore, imTBS produced responses similar to those observed by other forms of TBS induced excitability changes in the SI. PMID:18043910

  15. A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex.

    PubMed

    Blatow, Maria; Rozov, Andrei; Katona, Istvan; Hormuzdi, Sheriar G; Meyer, Axel H; Whittington, Miles A; Caputi, Antonio; Monyer, Hannah

    2003-06-05

    GABAergic interneurons can phase the output of principal cells, giving rise to oscillatory activity in different frequency bands. Here we describe a new subtype of GABAergic interneuron, the multipolar bursting (MB) cell in the mouse neocortex. MB cells are parvalbumin positive but differ from fast-spiking multipolar (FS) cells in their morphological, neurochemical, and physiological properties. MB cells are reciprocally connected with layer 2/3 pyramidal cells and are coupled with each other by chemical and electrical synapses. MB cells innervate FS cells but not vice versa. MB to MB cell as well as MB to pyramidal cell synapses exhibit paired-pulse facilitation. Carbachol selectively induced synchronized theta frequency oscillations in MB cells. Synchrony required both gap junction coupling and GABAergic chemical transmission, but not excitatory glutamatergic input. Hence, MB cells form a distinct inhibitory network, which upon cholinergic drive can generate rhythmic and synchronous theta frequency activity, providing temporal coordination of pyramidal cell output.

  16. Quadri-Pulse Theta Burst Stimulation using Ultra-High Frequency Bursts - A New Protocol to Induce Changes in Cortico-Spinal Excitability in Human Motor Cortex.

    PubMed

    Jung, Nikolai H; Gleich, Bernhard; Gattinger, Norbert; Hoess, Catrina; Haug, Carolin; Siebner, Hartwig R; Mall, Volker

    2016-01-01

    Patterned transcranial magnetic stimulation (TMS) such as theta burst stimulation (TBS) or quadri-pulse stimulation (QPS) can induce changes in cortico-spinal excitability, commonly referred to as long-term potentiation (LTP)-like and long-term depression (LTD)-like effects in human motor cortex (M1). Here, we aimed to test the plasticity-inducing capabilities of a novel protocol that merged TBS and QPS. 360 bursts of quadri-pulse TBS (qTBS) were continuously given to M1 at 90% of active motor threshold (1440 full-sine pulses). In a first experiment, stimulation frequency of each burst was set to 666 Hz to mimic the rhythmicity of the descending cortico-spinal volleys that are elicited by TMS (i.e., I-wave periodicity). In a second experiment, burst frequency was set to 200 Hz to maximize postsynaptic Ca2+ influx using a temporal pattern unrelated to I-wave periodicity. The second phase of sinusoidal TMS pulses elicited either a posterior-anterior (PA) or anterior-posterior (AP) directed current in M1. Motor evoked potentials (MEPs) were recorded before and after qTBS to probe changes in cortico-spinal excitability. PA-qTBS at 666 Hz caused a decrease in PA-MEP amplitudes, whereas AP-qTBS at 666 Hz induced an increase in mean AP-MEP amplitudes. At a burst frequency of 200 Hz, PA-qTBS and AP-qTBS produced an increase in cortico-spinal excitability outlasting for at least 60 minutes in PA- and AP-MEP amplitudes, respectively. Continuous qTBS at 666 Hz or 200 Hz can induce lasting changes in cortico-spinal excitability. Induced current direction in the brain appears to be relevant when qTBS targets I-wave periodicity, corroborating that high-fidelity spike timing mechanisms are critical for inducing bi-directional plasticity in human M1.

  17. Cerebellar Intermittent Theta-Burst Stimulation and Motor Control Training in Individuals with Cervical Dystonia

    PubMed Central

    Bradnam, Lynley V.; McDonnell, Michelle N.; Ridding, Michael C.

    2016-01-01

    Background: There is emerging evidence that cervical dystonia is a neural network disorder with the cerebellum as a key node. The cerebellum may provide a target for neuromodulation as a therapeutic intervention in cervical dystonia. Objective: This study aimed to assess effects of intermittent theta-burst stimulation of the cerebellum on dystonia symptoms, quality of life, hand motor dexterity and cortical neurophysiology using transcranial magnetic stimulation. Methods: Sixteen participants with cervical dystonia were randomised into real or sham stimulation groups. Cerebellar neuromodulation was combined with motor training for the neck and an implicit learning task. The intervention was delivered over 10 working days. Outcome measures included dystonia severity and pain, quality of life, hand dexterity, and motor-evoked potentials and cortical silent periods recorded from upper trapezius muscles. Assessments were taken at baseline and after 5 and 10 days, with quality of life also measured 4 and 12 weeks later. Results: Intermittent theta-burst stimulation improved dystonia severity (Day 5, −5.44 points; p = 0.012; Day 10, −4.6 points; p = 0.025), however, effect sizes were small. Quality of life also improved (Day 5, −10.6 points, p = 0.012; Day 10, −8.6 points, p = 0.036; Week 4, −12.5 points, p = 0.036; Week 12, −12.4 points, p = 0.025), with medium or large effect sizes. There was a reduction in time to complete the pegboard task pre to post intervention (both p < 0.008). Cortical neurophysiology was unchanged by cerebellar neuromodulation. Conclusion: Intermittent theta-burst stimulation of the cerebellum may improve cervical dystonia symptoms, upper limb motor control and quality of life. The mechanism likely involves promoting neuroplasticity in the cerebellum although the neurophysiology remains to be elucidated. Cerebellar neuromodulation may have potential as a novel treatment intervention for cervical dystonia, although larger

  18. Theta-burst stimulation over primary motor cortex degrades early motor learning.

    PubMed

    Iezzi, Ennio; Suppa, Antonio; Conte, Antonella; Agostino, Rocco; Nardella, Andrea; Berardelli, Alfredo

    2010-02-01

    Theta-burst stimulation (TBS) is currently used for inducing long-lasting changes in primary motor cortex (M1) excitability. More information is needed on how M1 is involved in early motor learning (practice-related improvement in motor performance, motor retention and motor consolidation). We investigated whether inhibitory continuous TBS (cTBS) is an effective experimental approach for modulating early motor learning of a simple finger movement in healthy humans. In a short task, 11 subjects practised 160 movements, and in a longer task also testing motor consolidation ten subjects practised 600 movements. During both experiments subjects randomly received real or sham cTBS over the left M1. Motor evoked potentials were tested at baseline and 7 min after cTBS. In the 160-movement experiment to test motor retention, 20 movements were repeated 30 min after motor practice ended. In the 600-movement experiment motor retention was assessed 15 and 30 min after motor practice ended, motor consolidation was tested by performing 20 movements 24 h after motor practice ended. Kinematic variables - movement amplitude, peak velocity and peak acceleration - were measured. cTBS significantly reduced the practice-related improvement in motor performance of finger movements in the experiment involving 160 movements and in the first part of the experiment involving 600 movements. After cTBS, peak velocity and peak acceleration of the 20 movements testing motor retention decreased whereas those testing motor consolidation remained unchanged. cTBS over M1 degrades practice-related improvement in motor performance and motor retention, but not motor consolidation of a voluntary finger movement.

  19. Resting state morphology predicts the effect of theta burst stimulation in false belief reasoning.

    PubMed

    Hartwright, Charlotte E; Hardwick, Robert M; Apperly, Ian A; Hansen, Peter C

    2016-10-01

    When required to represent a perspective that conflicts with one's own, functional magnetic resonance imaging (fMRI) suggests that the right ventrolateral prefrontal cortex (rvlPFC) supports the inhibition of that conflicting self-perspective. The present task dissociated inhibition of self-perspective from other executive control processes by contrasting belief reasoning-a cognitive state where the presence of conflicting perspectives was manipulated-with a conative desire state wherein no systematic conflict existed. Linear modeling was used to examine the effect of continuous theta burst stimulation (cTBS) to rvlPFC on participants' reaction times in belief and desire reasoning. It was anticipated that cTBS applied to rvlPFC would affect belief but not desire reasoning, by modulating activity in the Ventral Attention System (VAS). We further anticipated that this effect would be mediated by functional connectivity within this network, which was identified using resting state fMRI and an unbiased model-free approach. Simple reaction-time analysis failed to detect an effect of cTBS. However, by additionally modeling individual measures from within the stimulated network, the hypothesized effect of cTBS to belief (but, importantly, not desire) reasoning was demonstrated. Structural morphology within the stimulated region, rvlPFC, and right temporoparietal junction were demonstrated to underlie this effect. These data provide evidence that inconsistencies found with cTBS can be mediated by the composition of the functional network that is being stimulated. We suggest that the common claim that this network constitutes the VAS explains the effect of cTBS to this network on false belief reasoning. Hum Brain Mapp 37:3502-3514, 2016. © 2016 Wiley Periodicals, Inc.

  20. Perfusion MRI Indexes Variability in the Functional Brain Effects of Theta-Burst Transcranial Magnetic Stimulation

    PubMed Central

    Gratton, Caterina; Lee, Taraz G.; Nomura, Emi M.; D’Esposito, Mark

    2014-01-01

    Transcranial Magnetic Stimulation (TMS) is an important tool for testing causal relationships in cognitive neuroscience research. However, the efficacy of TMS can be variable across individuals and difficult to measure. This variability is especially a challenge when TMS is applied to regions without well-characterized behavioral effects, such as in studies using TMS on multi-modal areas in intrinsic networks. Here, we examined whether perfusion fMRI recordings of Cerebral Blood Flow (CBF), a quantitative measure sensitive to slow functional changes, reliably index variability in the effects of stimulation. Twenty-seven participants each completed four combined TMS-fMRI sessions during which both resting state Blood Oxygen Level Dependent (BOLD) and perfusion Arterial Spin Labeling (ASL) scans were recorded. In each session after the first baseline day, continuous theta-burst TMS (TBS) was applied to one of three locations: left dorsolateral prefrontal cortex (L dlPFC), left anterior insula/frontal operculum (L aI/fO), or left primary somatosensory cortex (L S1). The two frontal targets are components of intrinsic networks and L S1 was used as an experimental control. CBF changes were measured both before and after TMS on each day from a series of interleaved resting state and perfusion scans. Although TBS led to weak selective increases under the coil in CBF measurements across the group, individual subjects showed wide variability in their responses. TBS-induced changes in rCBF were related to TBS-induced changes in functional connectivity of the relevant intrinsic networks measured during separate resting-state BOLD scans. This relationship was selective: CBF and functional connectivity of these networks were not related before TBS or after TBS to the experimental control region (S1). Furthermore, subject groups with different directions of CBF change after TBS showed distinct modulations in the functional interactions of targeted networks. These results suggest

  1. Suppression of acute seizures by theta burst electrical stimulation of the hippocampal commissure using a closed-loop system.

    PubMed

    Siah, Boon Hong; Chiang, Chia-Chu; Ju, Ming-Shaung; Lin, Chou-Ching K

    2014-12-17

    This study investigated the effects of electrical stimulation with theta burst stimulation (eTBS) on seizure suppression. Optimal parameters of eTBS were determined through open-loop stimulation experiments and then implemented in a close-loop seizure control system. For the experiments, 4-aminopyridine (4-AP) was injected into the right hippocampus of Sprague-Dawley rats to induce an acute seizure. eTBS was applied on the ventral hippocampal commissure and the effects of eTBS with different combinations of burst frequency and number of pulses per burst were analyzed in terms of seizure suppression. A closed-loop seizure control system was then implemented based on optimal eTBS parameters. The efficiency of the closed-loop eTBS was evaluated and compared to that of high frequency stimulation. The results show that eTBS induced global suppression in the hippocampus and this was sustained even after the application of eTBS. The optimal parameter of eTBS in the open-loop stimulation experiments was a burst frequency at 100Hz with nine pulses in a burst. The eTBS integrated with the on-off control law yielded less actions and cumulative delivered charge, but induced longer after-effects of seizure suppression compared to continuous high frequency stimulation (cHFS). To conclude, eTBS has suppressive effects on 4-AP induced seizure. A closed-loop eTBS system provides a more effective way of suppressing seizure and requires less effort compared to cHFS. eTBS may be a novel stimulation protocol for effective seizure control. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Priming theta burst stimulation enhances motor cortex plasticity in young but not old adults.

    PubMed

    Opie, George M; Vosnakis, Eleni; Ridding, Michael C; Ziemann, Ulf; Semmler, John G

    Primary motor cortex neuroplasticity is reduced in old adults, which may contribute to the motor deficits commonly observed in the elderly. Previous research in young subjects suggests that the neuroplastic response can be enhanced using non-invasive brain stimulation (NIBS), with a larger plastic response observed following priming with both long-term potentiation (LTP) and depression (LTD)-like protocols. However, it is not known if priming stimulation can also modulate plasticity in older adults. To investigate if priming NIBS can be used to modulate motor cortical plasticity in old subjects. In 16 young (22.3 ± 1.0 years) and 16 old (70.2 ± 1.7 years) subjects, we investigated the response to intermittent theta burst stimulation (iTBS; LTP-like) when applied 10 min after sham stimulation, continuous TBS (cTBS; LTD-like) or an identical block of iTBS. Corticospinal plasticity was assessed by recording changes in motor evoked potential (MEP) amplitude. In young subjects, priming with cTBS (cTBS + iTBS) resulted in larger MEPs than priming with either iTBS (iTBS + iTBS; P = 0.001) or sham (sham + iTBS; P < 0.0001), while larger MEPs were seen following iTBS + iTBS than sham + iTBS (P < 0.0001). In old subjects, the response to iTBS + iTBS was not different to sham + iTBS (P > 0.9), whereas the response to cTBS + iTBS was reduced relative to iTBS + iTBS (P = 0.02) and sham + iTBS (P = 0.04). Priming TBS is ineffective for modifying M1 plasticity in older adults, which may limit the therapeutic use of priming stimulation in neurological conditions common in the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Intermittent Theta-Burst Stimulation of the Lateral Cerebellum Increases Functional Connectivity of the Default Network

    PubMed Central

    Farzan, Faranak; Eldaief, Mark C.; Schmahmann, Jeremy D.; Pascual-Leone, Alvaro

    2014-01-01

    Cerebral cortical intrinsic connectivity networks share topographically arranged functional connectivity with the cerebellum. However, the contribution of cerebellar nodes to distributed network organization and function remains poorly understood. In humans, we applied theta-burst transcranial magnetic stimulation, guided by subject-specific connectivity, to regions of the cerebellum to evaluate the functional relevance of connections between cerebellar and cerebral cortical nodes in different networks. We demonstrate that changing activity in the human lateral cerebellar Crus I/II modulates the cerebral default mode network, whereas vermal lobule VII stimulation influences the cerebral dorsal attention system. These results provide novel insights into the distributed, but anatomically specific, modulatory impact of cerebellar effects on large-scale neural network function. PMID:25186750

  4. Long-Term Potentiation by Theta-Burst Stimulation Using Extracellular Field Potential Recordings in Acute Hippocampal Slices.

    PubMed

    Abrahamsson, Therese; Lalanne, Txomin; Watt, Alanna J; Sjöström, P Jesper

    2016-06-01

    This protocol describes how to carry out theta-burst long-term potentiation (LTP) with extracellular field recordings in acute rodent hippocampal slices. This method is relatively simple and noninvasive and provides a way to sample many neurons simultaneously, making it suitable for applications requiring higher throughput than whole-cell recording.

  5. The Contribution of Primary Motor Cortex Is Essential for Probabilistic Implicit Sequence Learning: Evidence from Theta Burst Magnetic Stimulation

    ERIC Educational Resources Information Center

    Wilkinson, Leonora; Teo, James T.; Obeso, Ignacio; Rothwell, John C.; Jahanshahi, Marjan

    2010-01-01

    Theta burst transcranial magnetic stimulation (TBS) is considered to produce plastic changes in human motor cortex. Here, we examined the inhibitory and excitatory effects of TBS on implicit sequence learning using a probabilistic serial reaction time paradigm. We investigated the involvement of several cortical regions associated with implicit…

  6. Long-Term Potentiation by Theta-Burst Stimulation using Extracellular Field Potential Recordings in Acute Hippocampal Slices

    PubMed Central

    Abrahamsson, Therese; Lalanne, Txomin; Watt, Alanna J.; Sjöström, P. Jesper

    2017-01-01

    This protocol describes how to carry out theta-burst long-term potentiation (LTP) with extracellular field recordings in acute rodent hippocampal slices. This method is relatively simple and noninvasive and provides a way to sample many neurons simultaneously, making it suitable for applications requiring higher throughput than whole-cell recording. PMID:27250947

  7. Transient Beneficial Effects of Excitatory Theta Burst Stimulation in a Patient with Phonological Agraphia after Left Supramarginal Gyrus Infarction

    ERIC Educational Resources Information Center

    Nardone, Raffaele; De Blasi, Pierpaolo; Zuccoli, Giulio; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2012-01-01

    We report a patient showing isolated phonological agraphia after an ischemic stroke involving the left supramarginal gyrus (SMG). In this patient, we investigated the effects of focal repetitive transcranial magnetic stimulation (rTMS) given as theta burst stimulation (TBS) over the left SMG, corresponding to the Brodmann area (BA) 40. The patient…

  8. The Contribution of Primary Motor Cortex Is Essential for Probabilistic Implicit Sequence Learning: Evidence from Theta Burst Magnetic Stimulation

    ERIC Educational Resources Information Center

    Wilkinson, Leonora; Teo, James T.; Obeso, Ignacio; Rothwell, John C.; Jahanshahi, Marjan

    2010-01-01

    Theta burst transcranial magnetic stimulation (TBS) is considered to produce plastic changes in human motor cortex. Here, we examined the inhibitory and excitatory effects of TBS on implicit sequence learning using a probabilistic serial reaction time paradigm. We investigated the involvement of several cortical regions associated with implicit…

  9. Transient Beneficial Effects of Excitatory Theta Burst Stimulation in a Patient with Phonological Agraphia after Left Supramarginal Gyrus Infarction

    ERIC Educational Resources Information Center

    Nardone, Raffaele; De Blasi, Pierpaolo; Zuccoli, Giulio; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2012-01-01

    We report a patient showing isolated phonological agraphia after an ischemic stroke involving the left supramarginal gyrus (SMG). In this patient, we investigated the effects of focal repetitive transcranial magnetic stimulation (rTMS) given as theta burst stimulation (TBS) over the left SMG, corresponding to the Brodmann area (BA) 40. The patient…

  10. Quadri-Pulse Theta Burst Stimulation using Ultra-High Frequency Bursts – A New Protocol to Induce Changes in Cortico-Spinal Excitability in Human Motor Cortex

    PubMed Central

    Jung, Nikolai H.; Gleich, Bernhard; Gattinger, Norbert; Hoess, Catrina; Haug, Carolin; Siebner, Hartwig R.; Mall, Volker

    2016-01-01

    Patterned transcranial magnetic stimulation (TMS) such as theta burst stimulation (TBS) or quadri-pulse stimulation (QPS) can induce changes in cortico-spinal excitability, commonly referred to as long-term potentiation (LTP)-like and long-term depression (LTD)-like effects in human motor cortex (M1). Here, we aimed to test the plasticity-inducing capabilities of a novel protocol that merged TBS and QPS. 360 bursts of quadri-pulse TBS (qTBS) were continuously given to M1 at 90% of active motor threshold (1440 full-sine pulses). In a first experiment, stimulation frequency of each burst was set to 666 Hz to mimic the rhythmicity of the descending cortico-spinal volleys that are elicited by TMS (i.e., I-wave periodicity). In a second experiment, burst frequency was set to 200 Hz to maximize postsynaptic Ca2+ influx using a temporal pattern unrelated to I-wave periodicity. The second phase of sinusoidal TMS pulses elicited either a posterior-anterior (PA) or anterior-posterior (AP) directed current in M1. Motor evoked potentials (MEPs) were recorded before and after qTBS to probe changes in cortico-spinal excitability. PA-qTBS at 666 Hz caused a decrease in PA-MEP amplitudes, whereas AP-qTBS at 666 Hz induced an increase in mean AP-MEP amplitudes. At a burst frequency of 200 Hz, PA-qTBS and AP-qTBS produced an increase in cortico-spinal excitability outlasting for at least 60 minutes in PA- and AP-MEP amplitudes, respectively. Continuous qTBS at 666 Hz or 200 Hz can induce lasting changes in cortico-spinal excitability. Induced current direction in the brain appears to be relevant when qTBS targets I-wave periodicity, corroborating that high-fidelity spike timing mechanisms are critical for inducing bi-directional plasticity in human M1. PMID:27977758

  11. High amplitude theta wave bursts: a novel electroencephalographic feature of rem sleep and cataplexy.

    PubMed

    Lo Martire, Viviana Carmen; Bastianini, Stefano; Berteotti, Chiara; Silvani, Alessandro; Zoccoli, Giovanna

    2015-01-01

    High amplitude theta wave bursts (HATs) were originally described during REMS and cataplexy in ORX-deficient mice as a novel neurophysiological correlate of narcolepsy (Bastianini et al., 2012). This finding was replicated the following year by Vassalli et al. in both ORX-deficient narcoleptic mice and narcoleptic children during cataplexy episodes (Vassalli et al., 2013). The relationship between HATs and narcolepsy-cataplexy in mice and patients indicates that the lack of ORX peptides is responsible for this abnormal EEG activity, the physiological meaning of which is still unknown. This review aimed to explore different phasic EEG events previously described in the published literature in order to find analogies and differences with HATs observed in narcoleptic mice and patients. We found similarities in terms of morphology, frequency and duration between HATs and several physiological (mu and wicket rhythms, sleep spindles, saw-tooth waves) or pathological (SWDs, HVSs, bursts of polyphasic complexes EEG complexes reported in a mouse model of CJD, and BSEs) EEG events. However, each of these events also shows significant differences from HATs, and thus cannot be equaled to them. The available evidence thus suggests that HATs are a novel neurophysiological phenomenon. Further investigations on HATs are required in order to investigate their physiological meaning, to individuate their brain structure(s) of origin, and to clarify the neural circuits involved in their manifestation.

  12. Effects of intermittent theta burst stimulation on spasticity after spinal cord injury.

    PubMed

    Nardone, Raffaele; Langthaler, Patrick B; Orioli, Andrea; Höller, Peter; Höller, Yvonne; Frey, Vanessa N; Brigo, Francesco; Trinka, Eugen

    2017-01-01

    Spasticity is a common disorder in patients with spinal cord injury (SCI). The aim of this study was to investigate whether intermittent theta burst stimulation (iTBS), a safe, non-invasive and well-tolerated protocol of excitatory repetitive transcranial magnetic stimulation (rTMS), is effective in modulating spasticity in SCI patients. In this randomized, double-blind, crossover, sham-controlled study, ten subjects with incomplete cervical or thoracic SCI received 10 days of daily sessions of real or sham iTBS. The H/M amplitude ratio of the Soleus H reflex, the amplitude of the motor evoked potentials (MEPs) at rest and during background contraction, as well as Modified Ashworth Scale (MAS) and the Spinal Cord Injury Assessment Tool for Spasticity (SCAT) were compared before and after the stimulation protocols. Patients receiving real iTBS showed significant increased resting and active MEPs amplitude and a significant reduction of the H/M amplitude ratio. In these patients also the MAS and SCAT scores were significantly reduced after treatment. These changes persisted up to 1 week after the end of the iTBS treatment, and were not observed under the sham-TBS condition. These findings suggest that iTBS may be a promising therapeutic tool for the spasticity in SCI patients.

  13. Interhemispheric Plasticity following Intermittent Theta Burst Stimulation in Chronic Poststroke Aphasia

    PubMed Central

    Griffis, Joseph C.; Nenert, Rodolphe; Allendorfer, Jane B.; Szaflarski, Jerzy P.

    2016-01-01

    The effects of noninvasive neurostimulation on brain structure and function in chronic poststroke aphasia are poorly understood. We investigated the effects of intermittent theta burst stimulation (iTBS) applied to residual language-responsive cortex in chronic patients using functional and anatomical MRI data acquired before and after iTBS. Lateralization index (LI) analyses, along with comparisons of inferior frontal gyrus (IFG) activation and connectivity during covert verb generation, were used to assess changes in cortical language function. Voxel-based morphometry (VBM) was used to assess effects on regional grey matter (GM). LI analyses revealed a leftward shift in IFG activity after treatment. While left IFG activation increased, right IFG activation decreased. Changes in right to left IFG connectivity during covert verb generation also decreased after iTBS. Behavioral correlations revealed a negative relationship between changes in right IFG activation and improvements in fluency. While anatomical analyses did not reveal statistically significant changes in grey matter volume, the fMRI results provide evidence for changes in right and left IFG function after iTBS. The negative relationship between post-iTBS changes in right IFG activity during covert verb generation and improvements in fluency suggests that iTBS applied to residual left-hemispheric language areas may reduce contralateral responses related to language production and facilitate recruitment of residual language areas after stroke. PMID:26881111

  14. Associative Recognition Memory Awareness Improved by Theta-Burst Stimulation of Frontopolar Cortex

    PubMed Central

    Ryals, Anthony J.; Rogers, Lynn M.; Gross, Evan Z.; Polnaszek, Kelly L.; Voss, Joel L.

    2016-01-01

    Neuroimaging and lesion studies have implicated specific prefrontal cortex locations in subjective memory awareness. Based on this evidence, a rostrocaudal organization has been proposed whereby increasingly anterior prefrontal regions are increasingly involved in memory awareness. We used theta-burst transcranial magnetic stimulation (TBS) to temporarily modulate dorsolateral versus frontopolar prefrontal cortex to test for distinct causal roles in memory awareness. In three sessions, participants received TBS bilaterally to frontopolar cortex, dorsolateral prefrontal cortex, or a control location prior to performing an associative-recognition task involving judgments of memory awareness. Objective memory performance (i.e., accuracy) did not differ based on stimulation location. In contrast, frontopolar stimulation significantly influenced several measures of memory awareness. During study, judgments of learning were more accurate such that lower ratings were given to items that were subsequently forgotten selectively following frontopolar TBS. Confidence ratings during test were also higher for correct trials following frontopolar TBS. Finally, trial-by-trial correspondence between overt performance and subjective awareness during study demonstrated a linear increase across control, dorsolateral, and frontopolar TBS locations, supporting a rostrocaudal hierarchy of prefrontal contributions to memory awareness. These findings indicate that frontopolar cortex contributes causally to memory awareness, which was improved selectively by anatomically targeted TBS. PMID:25577574

  15. Cerebellar theta burst stimulation modulates the neural activity of interconnected parietal and motor areas

    PubMed Central

    Casula, Elias Paolo; Pellicciari, Maria Concetta; Ponzo, Viviana; Stampanoni Bassi, Mario; Veniero, Domenica; Caltagirone, Carlo; Koch, Giacomo

    2016-01-01

    Voluntary movement control and execution are regulated by the influence of the cerebellar output over different interconnected cortical areas, through dentato-thalamo connections. In the present study we applied transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to directly assess the effects of cerebellar theta-burst stimulation (TBS) over the controlateral primary motor cortex (M1) and posterior parietal cortex (PPC) in a group of healthy volunteers. We found a TBS-dependent bidirectional modulation over TMS-evoked activity; specifically, cTBS increased whereas iTBS decreased activity between 100 and 200 ms after TMS, in a similar manner over both M1 and PPC areas. On the oscillatory domain, TBS induced specific changes over M1 natural frequencies of oscillation: TMS-evoked alpha activity was decreased by cTBS whereas beta activity was enhanced by iTBS. No effects were observed after sham stimulation. Our data provide novel evidence showing that the cerebellum exerts its control on the cortex likely by impinging on specific set of interneurons dependent on GABA-ergic activity. We show that cerebellar TBS modulates cortical excitability of distant interconnected cortical areas by acting through common temporal, spatial and frequency domains. PMID:27796359

  16. Use of theta-burst stimulation in changing excitability of motor cortex: A systematic review and meta-analysis.

    PubMed

    Chung, Sung Wook; Hill, Aron T; Rogasch, Nigel C; Hoy, Kate E; Fitzgerald, Paul B

    2016-04-01

    Noninvasive brain stimulation has been demonstrated to modulate cortical activity in humans. In particular, theta burst stimulation (TBS) has gained notable attention due to its ability to induce lasting physiological changes after short stimulation durations. The present study aimed to provide a comprehensive meta-analytic review of the efficacy of two TBS paradigms; intermittent (iTBS) and continuous (cTBS), on corticospinal excitability in healthy individuals. Literature searches yielded a total of 87 studies adhering to the inclusion criteria. iTBS yielded moderately large MEP increases lasting up to 30 min with a pooled SMD of 0.71 (p<0.00001). cTBS produced a reduction in MEP amplitudes lasting up to 60 min, with the largest effect size seen at 5 min post stimulation (SMD=-0.9, P<0.00001). The collected studies were of heterogeneous nature, and a series of tests conducted indicated a degree of publication bias. No significant change in SICI and ICF was observed, with exception to decrease in SICI with cTBS at the early time point (SMD=0.42, P=0.00036). The results also highlight several factors contributing to TBS efficacy, including the number of pulses, frequency of stimulation and BDNF polymorphisms. Further research investigating optimal TBS stimulation parameters, particularly for iTBS, is needed in order for these paradigms to be successfully translated into clinical settings.

  17. Does the inferior frontal sulcus play a functional role in deception? A neuronavigated theta-burst transcranial magnetic stimulation study.

    PubMed

    Verschuere, Bruno; Schuhmann, Teresa; Sack, Alexander T

    2012-01-01

    By definition, lying involves withholding the truth. Response inhibition may therefore be the cognitive function at the heart of deception. Neuroimaging research has shown that the same brain region that is activated during response inhibition tasks, namely the inferior frontal region, is also activated during deception paradigms. This led to the hypothesis that the inferior frontal region is the neural substrate critically involved in withholding the truth. In the present study, we critically examine the functional necessity of the inferior frontal region in withholding the truth during deception. We experimentally manipulated the neural activity level in right inferior frontal sulcus (IFS) by means of neuronavigated continuous theta-burst stimulation (cTBS). Individual structural magnetic resonance brain images (MRI) were used to allow precise stimulation in each participant. Twenty-six participants answered autobiographical questions truthfully or deceptively before and after sham and real cTBS. Deception was reliably associated with more errors, longer and more variable response times than truth telling. Despite the potential role of IFS in deception as suggested by neuroimaging data, the cTBS-induced disruption of right IFS did not affect response times or error rates, when compared to sham stimulation. The present findings do not support the hypothesis that the right IFS is critically involved in deception.

  18. Intensity sensitive modulation effect of theta burst form of median nerve stimulation on the monosynaptic spinal reflex.

    PubMed

    Yeh, Kuei-Lin; Fong, Po-Yu; Huang, Ying-Zu

    2015-01-01

    The effects of electrical stimulation of median nerve with a continuous theta burst pattern (EcTBS) on the spinal H-reflex were studied. Different intensities and durations of EcTBS were given to the median nerve to 11 healthy individuals. The amplitude ratio of the H-reflex to maximum M wave (H/M ratio), corticospinal excitability and inhibition measured using motor evoked potentials (MEPs), short-interval intracortical inhibition and facilitation (SICI/ICF), spinal reciprocal inhibition (RI), and postactivation depression (PAD) were measured before and after EcTBS. In result, the H/M ratio was reduced followed by EcTBS at 90% H-reflex threshold, and the effect lasted longer after 1200 pulses than after 600 pulses of EcTBS. In contrast, EcTBS at 110% threshold facilitated the H/M ratio, while at 80% threshold it had no effect. Maximum M wave, MEPs, SICI/ICF, RI, and PAD all remained unchanged after EcTBS. In conclusion, EcTBS produced lasting effects purely on the H-reflex, probably, through effects on postsynaptic plasticity. The effect of EcTBS depends on the intensity and duration of stimulation. EcTBS is beneficial to research on mechanisms of human plasticity. Moreover, its ability to modulate spinal excitability is expected to have therapeutic benefits on neurological disorders involving spinal cord dysfunction.

  19. An improvement in perception of self-generated tactile stimuli following theta-burst stimulation of primary motor cortex

    PubMed Central

    Voss, Martin; Bays, Paul M.; Rothwell, John C.; Wolpert, Daniel M.

    2007-01-01

    Recent studies have shown that self-generated tactile sensations are perceived as weaker than the same sensations externally generated. This has been linked to a central comparator mechanism that uses efference copy to attenuate the predictable component of sensory inputs arising from one's own actions in order to enhance the salience of external stimuli. To provide a quantitative measure of this attenuation, a force-matching task was developed in which subjects experience a force applied to their finger and are then required to match the perceived force by actively pushing on the finger using their other hand. The attenuation of predictable sensory input results in subjects producing a larger active force than was experienced passively. Here, we have examined the effects of a novel rTMS protocol, theta-burst stimulation (TBS), over primary motor cortex on this attenuation. TBS can alter the excitability of motor cortex to incoming activity. We show that application of a 20 s continuous train of TBS, that depresses motor cortex, significantly improves performance in a force-matching task. This suggests that the TBS intervention disturbed the predictive process that uses efference copy signals to attenuate predictable sensory input. A possible explanation for the effect is that TBS has a differential effect on the populations of neurones that generate motor output in M1 than on those neural structures that are involved in generating an efference copy of the motor command. PMID:17560617

  20. Transcranial theta-burst stimulation alters GLT-1 and vGluT1 expression in rat cerebellar cortex.

    PubMed

    Mancic, Bojana; Stevanovic, Ivana; Ilic, Tihomir V; Djuric, Ana; Stojanovic, Ivana; Milanovic, Sladjan; Ninkovic, Milica

    2016-11-01

    Repetitive transcranial magnetic stimulation (rTMS) induces changes in expression of proteins engaged in activity of excitatory and inhibitory systems as well as redox homeostasis. Our aim was to investigate the effect of single (SS) and repeated session (RS) of intermittent and continuous theta-burst stimulation (iTBS; cTBS) on the expression of vesicular and plasmatic glutamate transporters 1 (vGluT1 and GLT-1), glial fibrillary acidic protein (GFAP) and influence on oxidative status in rats cerebellar tissue and plasma. Redox state parameters in cerebellar tissue and plasma were assessed 24 h after single and 48 h after the last TBS session. Molecular changes were examined by immunofluorescence. Stimulation significantly increased thiol groups (SH) in tissue of SS iTBS group, and decreased in iTBS RS. Activity of glucose-6-phosphate-dehydrogenase (G6PD) was increased markedly in cTBS RS. Immunoreactivity of vGluT1 in cTBS RS decreased, while GLT-1 increased in cTBS SS and cTBS RS, compared to control. Present study gives insight in molecular and biochemical mechanisms by which iTBS and cTBS exerts its effects on rats cerebellar cortex.

  1. Theta Burst Stimulation of the Cerebellum Modifies the TMS-Evoked N100 Potential, a Marker of GABA Inhibition

    PubMed Central

    2015-01-01

    Theta burst stimulation (TBS) of the cerebellum, a potential therapy for neurological disease, can modulate corticospinal excitability via the dentato-thalamo-cortical pathway, but it is uncertain whether its effects are mediated via inhibitory or facilitatory networks. The aim of this study was to investigate the effects of 30Hz cerebellar TBS on the N100 waveform of the TMS-evoked potential (TEP), a marker of intracortical GABAB-mediated inhibition. 16 healthy participants (aged 18–30 years; 13 right handed and 3 left handed) received 30Hz intermittent TBS (iTBS), continuous TBS (cTBS) or sham stimulation over the right cerebellum, in three separate sessions. The first 8 participants received TBS at a stimulus intensity of 80% of active motor threshold (AMT), while the remainder received 90% of AMT. Motor evoked potentials (MEP) and TEP were recorded before and after each treatment, by stimulating the first dorsal interosseus area of the left motor cortex. Analysis of the 13 right handed participants showed that iTBS at 90% of AMT increased the N100 amplitude compared to sham and cTBS, without significantly altering MEP amplitude. cTBS at 80% of active motor threshold decreased the N100 amplitude and cTBS overall reduced resting MEP amplitude. The study demonstrates effects of 30Hz cerebellar TBS on inhibitory cortical networks that may be useful for treatment of neurological conditions associated with dysfunctional intracortical inhibition. PMID:26529225

  2. Intermittent theta burst stimulation over left BA10 enhances virtual reality-based prospective memory in healthy aged subjects.

    PubMed

    Debarnot, Ursula; Crépon, Benoît; Orriols, Eric; Abram, Maria; Charron, Sylvain; Lion, Stéphanie; Roca, Pauline; Oppenheim, Catherine; Gueguen, Bernard; Ergis, Anne-Marie; Baron, Jean-Claude; Piolino, Pascale

    2015-08-01

    Prospective memory (PM) refers to a complex cognitive ability that underpins the delayed execution of previously formulated intentions. PM performance declines early in normal aging and this process is accentuated in Alzheimer's disease. The left frontopolar cortex (BA10) has been consistently assigned a major role in PM functioning, but whether it can be noninvasively modulated to enhance PM performance in aged people has not been addressed so far. Here, we investigated the effects of modulating left BA10 by means of theta burst stimulation (TBS), using either excitatory (intermittent TBS), inhibitory (continuous TBS) or control (vertex) TBS in healthy aged subjects. The behavioral effects were assessed using a reliable and ecological virtual reality PM task that included both event- and time-based retrievals. As compared with vertex stimulation, event-based PM performance significantly improved after excitatory stimulation, whereas inhibitory stimulation had no significant effect. Additionally, and across the different types of stimulation, performance for congruent links between the event-based PM cue and the action to be performed was significantly better as compared with incongruent links. In conclusion, intermittent TBS might provide a relevant interventional strategy to counteract the decline of cognitive functions and memory abilities in normal aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Theta-burst transcranial magnetic stimulation to the prefrontal or parietal cortex does not impair metacognitive visual awareness

    PubMed Central

    Bor, Daniel; Schwartzman, David J.; Barrett, Adam B.; Seth, Anil K.

    2017-01-01

    Neuroimaging studies commonly associate dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex with conscious perception. However, such studies only investigate correlation, rather than causation. In addition, many studies conflate objective performance with subjective awareness. In an influential recent paper, Rounis and colleagues addressed these issues by showing that continuous theta burst transcranial magnetic stimulation (cTBS) applied to the DLPFC impaired metacognitive (subjective) awareness for a perceptual task, while objective performance was kept constant. We attempted to replicate this finding, with minor modifications, including an active cTBS control site. Using a between-subjects design for both DLPFC and posterior parietal cortices, we found no evidence of a cTBS-induced metacognitive impairment. In a second experiment, we devised a highly rigorous within-subjects cTBS design for DLPFC, but again failed to find any evidence of metacognitive impairment. One crucial difference between our results and the Rounis study is our strict exclusion of data deemed unsuitable for a signal detection theory analysis. Indeed, when we included this unstable data, a significant, though invalid, metacognitive impairment was found. These results cast doubt on previous findings relating metacognitive awareness to DLPFC, and inform the current debate concerning whether or not prefrontal regions are preferentially implicated in conscious perception. PMID:28192502

  4. Theta-burst transcranial magnetic stimulation to the prefrontal or parietal cortex does not impair metacognitive visual awareness.

    PubMed

    Bor, Daniel; Schwartzman, David J; Barrett, Adam B; Seth, Anil K

    2017-01-01

    Neuroimaging studies commonly associate dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex with conscious perception. However, such studies only investigate correlation, rather than causation. In addition, many studies conflate objective performance with subjective awareness. In an influential recent paper, Rounis and colleagues addressed these issues by showing that continuous theta burst transcranial magnetic stimulation (cTBS) applied to the DLPFC impaired metacognitive (subjective) awareness for a perceptual task, while objective performance was kept constant. We attempted to replicate this finding, with minor modifications, including an active cTBS control site. Using a between-subjects design for both DLPFC and posterior parietal cortices, we found no evidence of a cTBS-induced metacognitive impairment. In a second experiment, we devised a highly rigorous within-subjects cTBS design for DLPFC, but again failed to find any evidence of metacognitive impairment. One crucial difference between our results and the Rounis study is our strict exclusion of data deemed unsuitable for a signal detection theory analysis. Indeed, when we included this unstable data, a significant, though invalid, metacognitive impairment was found. These results cast doubt on previous findings relating metacognitive awareness to DLPFC, and inform the current debate concerning whether or not prefrontal regions are preferentially implicated in conscious perception.

  5. Differential effects of facilitatory and inhibitory theta burst stimulation of the primary motor cortex on motor learning.

    PubMed

    Jelić, Milan B; Milanović, Sladjan D; Filipović, Saša R

    2015-05-01

    To evaluate the differential effects on motor learning of two types of theta burst stimulation (TBS), the excitatory intermittent TBS (iTBS) and inhibitory continuous TBS (cTBS), if TBS is applied in an early stage of learning process. Thirty right handed healthy people were randomly allocated into one of the three groups according to the intervention applied, iTBS, cTBS or placebo. The interventions and measurements targeted the non-dominant side. The reaction time task (RTT) and Purdue pegboard task (PPT) were used. Measurements and motor tasks were carried out at baseline (T0), immediately after the intervention (T1), and 30 min later (T2). Compared to placebo, following cTBS M1 excitability went down and PPT learning was slowed. Following iTBS M1 excitability increased temporarily and PPT learning pattern changed, but learning was not improved. The MEP and PPT changes induced during the T0-T1 time interval correlated significantly. The early consolidation of the learned material was much more influenced by the TBS induced promotion/suppression of the M1 functional plasticity reserves than by the absolute level of the M1 activation. The results may help to better define the use of TBS in promotion of motor learning in neurorehabilitation and cognitive enhancement. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease

    PubMed Central

    Berman, B.D.; Houdayer, E.; Pal, N.; Luckenbaugh, D.A.; Schneider, L.; Miranda, S.; Hallett, M.

    2011-01-01

    Objective: To investigate the safety and efficacy of intermittent theta-burst stimulation (iTBS) in the treatment of motor symptoms in Parkinson disease (PD). Background: Progression of PD is characterized by the emergence of motor deficits, which eventually respond less to dopaminergic therapy and pose a therapeutic challenge. Repetitive transcranial magnetic stimulation (rTMS) has shown promising results in improving gait, a major cause of disability, and may provide a therapeutic alternative. iTBS is a novel type of rTMS that may be more efficacious than conventional rTMS. Methods: In this randomized, double-blind, sham-controlled study, we investigated safety and efficacy of iTBS of the motor and dorsolateral prefrontal cortices in 8 sessions over 2 weeks (evidence Class I). Assessment of safety and clinical efficacy over a 1-month period included timed tests of gait and bradykinesia, Unified Parkinson's Disease Rating Scale (UPDRS), and additional clinical, neuropsychological, and neurophysiologic measures. Results: We investigated 26 patients with mild to moderate PD: 13 received iTBS and 13 sham stimulation. We found beneficial effects of iTBS on mood, but no improvement of gait, bradykinesia, UPDRS, and other measures. EEG/EMG monitoring recorded no pathologic increase of cortical excitability or epileptic activity. Few reported discomfort or pain and one experienced tinnitus during real stimulation. Conclusion: iTBS of the motor and prefrontal cortices appears safe and improves mood, but failed to improve motor performance and functional status in PD. Classification of evidence: This study provides Class I evidence that iTBS was not effective for gait, upper extremity bradykinesia, or other motor symptoms in PD. PMID:21321333

  7. Remote effects of intermittent theta burst stimulation of the human pharyngeal motor system

    PubMed Central

    Mistry, Satish; Michou, Emilia; Rothwell, John; Hamdy, Shaheen

    2015-01-01

    Intermittent theta burst stimulation (iTBS) is a novel, non-invasive form of brain stimulation capable of facilitating excitability of the human primary motor cortex with therapeutic potential in the treatment of neurological conditions, such as multiple sclerosis. The objectives of this study were to evaluate the effects of iTBS on cortical properties in the human pharyngeal motor system. Transcranial magnetic stimulation (TMS)-evoked pharyngeal motor responses were recorded via a swallowed intra-luminal catheter and used to assess motor cortical pathways to the pharynx in both hemispheres before and for up to 90 min after iTBS in 15 healthy adults (nine male/six female, 22–59 years old). Active/sham iTBS comprised 600 intermittent repetitive TMS pulses, delivered in a double-blind pseudo-randomised order over each hemisphere on separate days at least 1 week apart. Abductor pollicis brevis (APB) recordings were used as control. Hemispheric interventional data were compared with sham using repeated-measures anova. iTBS was delivered at an average intensity of 43 ± 1% of stimulator output. Compared with sham, iTBS to the hemisphere with stronger pharyngeal projections induced increased responses only in the contralateral weaker projection 60–90 min post-iTBS (maximum 54 ± 19%, P ≤ 0.007), with no change in stronger hemisphere responses. By contrast, iTBS to weaker projections had no significant effects (P = 0.39) on either hemisphere. APB responses similarly did not change significantly (P = 0.78) across all study arms. We conclude that iTBS can induce remote changes in corticobulbar excitability. While further studies will clarify the extent of these changes, iTBS holds promise as a potential treatment for dysphagia after unilateral brain damage. PMID:22640033

  8. Theta Burst Transcranial Magnetic Stimulation for Auditory Verbal Hallucinations: Negative Findings From a Double-Blind-Randomized Trial

    PubMed Central

    Koops, Sanne; van Dellen, Edwin; Schutte, Maya J. L.; Nieuwdorp, Wendy; Neggers, Sebastiaan F. W.; Sommer, Iris E. C.

    2016-01-01

    Background. Auditory verbal hallucinations (AVH) in schizophrenia are resistant to antipsychotic medication in approximately 25% of patients. Treatment with repetitive transcranial magnetic stimulation (rTMS) for refractory AVH has shown varying results. A stimulation protocol using continuous theta burst rTMS (TB-rTMS) showed high efficacy in open label studies. We tested TB-rTMS as a treatment strategy for refractory AVH in a double-blind, placebo-controlled trial. Methods. Seventy-one patients with AVH were randomly allocated to TB-rTMS or placebo treatment. They received 10 TB-rTMS or sham treatments over the left temporoparietal cortex in consecutive days. AVH severity was assessed at baseline, end of treatment and follow-up using the Psychotic Symptom Rating Scale (PSYRATS) and the Auditory Hallucinations Rating Scale (AHRS). Other schizophrenia-related symptoms were assessed with the Positive and Negative Syndrome Scale (PANSS). Results. Seven patients dropped out before completing the study. In the remaining 64, AVH improved significantly after treatment in both groups as measured with both PSYRATS and AHRS. PANSS positive and general subscores also decreased, but the negative subscores did not. However, improvement did not differ significantly between the TB-rTMS and the placebo group on any outcome measure. Conclusions. Symptom reduction could be achieved in patients with medication-resistant hallucinations, even within 1 week time. However, as both groups showed similar improvement, effects were general (ie, placebo-effects) rather than specific to treatment with continuous TB-rTMS. Our findings highlight the importance of double-blind trials including a sham-control condition to assess efficacy of new treatments such as TMS. PMID:26221051

  9. Does a single session of theta-burst transcranial magnetic stimulation of inferior temporal cortex affect tinnitus perception?

    PubMed Central

    Poreisz, Csaba; Paulus, Walter; Moser, Tobias; Lang, Nicolas

    2009-01-01

    Background Cortical excitability changes as well as imbalances in excitatory and inhibitory circuits play a distinct pathophysiological role in chronic tinnitus. Repetitive transcranial magnetic stimulation (rTMS) over the temporoparietal cortex was recently introduced to modulate tinnitus perception. In the current study, the effect of theta-burst stimulation (TBS), a novel rTMS paradigm was investigated in chronic tinnitus. Twenty patients with chronic tinnitus completed the study. Tinnitus severity and loudness were monitored using a tinnitus questionnaire (TQ) and a visual analogue scale (VAS) before each session. Patients received 600 pulses of continuous TBS (cTBS), intermittent TBS (iTBS) and intermediate TBS (imTBS) over left inferior temporal cortex with an intensity of 80% of the individual active or resting motor threshold. Changes in subjective tinnitus perception were measured with a numerical rating scale (NRS). Results TBS applied to inferior temporal cortex appeared to be safe. Although half of the patients reported a slight attenuation of tinnitus perception, group analysis resulted in no significant difference when comparing the three specific types of TBS. Converting the NRS into the VAS allowed us to compare the time-course of aftereffects. Only cTBS resulted in a significant short-lasting improvement of the symptoms. In addition there was no significant difference when comparing the responder and non-responder groups regarding their anamnestic and audiological data. The TQ score correlated significantly with the VAS, lower loudness indicating less tinnitus distress. Conclusion TBS does not offer a promising outcome for patients with tinnitus in the presented study. PMID:19480651

  10. TMS: using the theta-burst protocol to explore mechanism of plasticity in individuals with Fragile X syndrome and autism.

    PubMed

    Oberman, Lindsay M; Horvath, Jared C; Pascual-Leone, Alvaro

    2010-12-28

    Fragile X Syndrome (FXS), also known as Martin-Bell Syndrome, is a genetic abnormality found on the X chromosome. Individuals suffering from FXS display abnormalities in the expression of FMR1--a protein required for typical, healthy neural development. Recent data has suggested that the loss of this protein can cause the cortex to be hyperexcitable thereby affecting overall patterns of neural plasticity. In addition, Fragile X shows a strong comorbidity with autism: in fact, 30% of children with FXS are diagnosed with autism, and 2-5% of autistic children suffer from FXS. Transcranial Magnetic Stimulation (a non-invasive neurostimulatory and neuromodulatory technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses) represents a unique method of exploring plasticity and the manifestations of FXS within affected individuals. More specifically, Theta-Burst Stimulation (TBS), a specific stimulatory protocol shown to modulate cortical plasticity for a duration up to 30 minutes after stimulation cessation in healthy populations, has already proven an efficacious tool in the exploration of abnormal plasticity. Recent studies have shown the effects of TBS last considerably longer in individuals on the autistic spectrum--up to 90 minutes. This extended effect-duration suggests an underlying abnormality in the brain's natural plasticity state in autistic individuals, similar to the hyperexcitability induced by Fragile X Syndrome. In this experiment, utilizing single-pulse motor-evoked potentials (MEPs) as our benchmark, we will explore the effects of both intermittent and continuous TBS on cortical plasticity in individuals suffering from FXS and individuals on the Autistic Spectrum.

  11. Visual-spatial memory may be enhanced with theta burst deep brain stimulation of the fornix: a preliminary investigation with four cases.

    PubMed

    Miller, Jonathan P; Sweet, Jennifer A; Bailey, Christopher M; Munyon, Charles N; Luders, Hans O; Fastenau, Philip S

    2015-07-01

    Memory loss after brain injury can be a source of considerable morbidity, but there are presently few therapeutic options for restoring memory function. We have previously demonstrated that burst stimulation of the fornix is able to significantly improve memory in a rodent model of traumatic brain injury. The present study is a preliminary investigation with a small group of cases to explore whether theta burst stimulation of the fornix might improve memory in humans. Four individuals undergoing stereo-electroencephalography evaluation for drug-resistant epilepsy were enrolled. All participants were implanted with an electrode into the proximal fornix and dorsal hippocampal commissure on the language dominant (n = 3) or language non-dominant (n = 1) side, and stimulation of this electrode reliably produced a diffuse evoked potential in the head and body of the ipsilateral hippocampus. Each participant underwent testing of verbal memory (Rey Auditory-Verbal Learning Test), visual-spatial memory (Medical College of Georgia Complex Figure Test), and visual confrontational naming (Boston Naming Test Short Form) once per day over at least two consecutive days using novel test forms each day. For 50% of the trials, the fornix electrode was continuously stimulated using a burst pattern (200 Hz in 100 ms trains, five trains per second, 100 µs, 7 mA) and was compared with sham stimulation. Participants and examiners were blinded to whether stimulation was active or not, and the order of stimulation was randomized. The small sample size precluded use of inferential statistics; therefore, data were analysed using descriptive statistics and graphic analysis. Burst stimulation of the fornix was not perceived by any of the participants but was associated with a robust reversible improvement in immediate and delayed performance on the Medical College of Georgia Complex Figure Test. There were no apparent differences on either Rey Auditory-Verbal Learning Test or Boston Naming

  12. 5 kHz Transcranial Alternating Current Stimulation: Lack of Cortical Excitability Changes When Grouped in a Theta Burst Pattern.

    PubMed

    Kunz, Patrik; Antal, Andrea; Hewitt, Manuel; Neef, Andreas; Opitz, Alexander; Paulus, Walter

    2016-01-01

    Background: Suprathreshold transcranial single pulse electrical stimulation (tES) is painful and not applicable in a repetitive mode to induce plastic after-effects. Objective: In order to circumvent this pain problem, we applied here a 5 kHz transcranial alternating current stimulation (tACS) theta burst protocol with a field intensity of up to 10 mA to the primary motor cortex (M1). Furthermore, we were interested in finding out whether electrical theta burst stimulation (eTBS) is able to induce lasting after-effects on cortical plasticity. Methods: Three different eTBS protocols were applied at 5 mA in a sham controlled, double blinded cross-over design on the M1 region of seventeen healthy subjects during the first part of the study. The second study part consists of three different eTBS protocols ranging from 5 mA to 10 mA and 1 ms to 5 ms sinusoidal bursts, applied to the M1 region of 14 healthy subjects. Results: We were able to apply all eTBS protocols in a safe manner, with only six subjects reporting mild side effects related to the stimulation. However, no eTBS protocol induced lasting effects on muscle- evoked potential (MEP) amplitudes when compared to sham stimulation. Significant inhibition of MEP amplitude was only seen in the lower intensity protocols as compared to baseline. Conclusion: eTBS is a safe method to apply high frequency tACS with up to 10 mA intensity. Future studies need to explore the parameter space to a larger extent in order to assure efficacy.

  13. 5 kHz Transcranial Alternating Current Stimulation: Lack of Cortical Excitability Changes When Grouped in a Theta Burst Pattern

    PubMed Central

    Kunz, Patrik; Antal, Andrea; Hewitt, Manuel; Neef, Andreas; Opitz, Alexander; Paulus, Walter

    2017-01-01

    Background: Suprathreshold transcranial single pulse electrical stimulation (tES) is painful and not applicable in a repetitive mode to induce plastic after-effects. Objective: In order to circumvent this pain problem, we applied here a 5 kHz transcranial alternating current stimulation (tACS) theta burst protocol with a field intensity of up to 10 mA to the primary motor cortex (M1). Furthermore, we were interested in finding out whether electrical theta burst stimulation (eTBS) is able to induce lasting after-effects on cortical plasticity. Methods: Three different eTBS protocols were applied at 5 mA in a sham controlled, double blinded cross-over design on the M1 region of seventeen healthy subjects during the first part of the study. The second study part consists of three different eTBS protocols ranging from 5 mA to 10 mA and 1 ms to 5 ms sinusoidal bursts, applied to the M1 region of 14 healthy subjects. Results: We were able to apply all eTBS protocols in a safe manner, with only six subjects reporting mild side effects related to the stimulation. However, no eTBS protocol induced lasting effects on muscle- evoked potential (MEP) amplitudes when compared to sham stimulation. Significant inhibition of MEP amplitude was only seen in the lower intensity protocols as compared to baseline. Conclusion: eTBS is a safe method to apply high frequency tACS with up to 10 mA intensity. Future studies need to explore the parameter space to a larger extent in order to assure efficacy. PMID:28119589

  14. Utility of intracerebral theta burst electrical stimulation to attenuate interhemispheric inhibition and to promote motor recovery after cortical injury in an animal model.

    PubMed

    Barry, Melissa D; Boddington, Laura J; Igelström, Kajsa M; Gray, Jason P; Shemmell, Jon; Tseng, Kuei Y; Oorschot, Dorothy E; Reynolds, John N J

    2014-11-01

    Following a cerebral cortex injury such as stroke, excessive inhibition around the core of the injury is thought to reduce the potential for new motor learning. In part, this may be caused by an imbalance of interhemispheric inhibition (IHI); therefore, treatments that relieve the inhibitory drive from the healthy hemisphere to the peri-lesional area may enhance motor recovery. Theta burst stimulation delivered by transcranial magnetic stimulation has been tested as a means of normalizing IHI, but clinical results have been variable. Here we use a new rat model of synaptic IHI to demonstrate that electrical intracranial theta burst stimulation causes long-lasting changes in motor cortex excitability. Further, we show that contralateral intermittent theta burst stimulation (iTBS) blocks IHI via a mechanism involving cannabinoid receptors. Finally, we show that contralesional iTBS applied during recovery from cortical injury in rats improves the recovery of motor function. These findings suggest that theta burst stimulation delivered through implanted electrodes may be a promising avenue to explore for augmenting rehabilitation from brain injury.

  15. Theta Burst Firing Recruits BDNF Release and Signaling in Postsynaptic CA1 Neurons in Spike-Timing-Dependent LTP.

    PubMed

    Edelmann, Elke; Cepeda-Prado, Efrain; Franck, Martin; Lichtenecker, Petra; Brigadski, Tanja; Leßmann, Volkmar

    2015-05-20

    Timing-dependent LTP (t-LTP) is a physiologically relevant type of synaptic plasticity that results from repeated sequential firing of action potentials (APs) in pre- and postsynaptic neurons. t-LTP can be observed in vivo and is proposed to be a cellular correlate of memory formation. While brain-derived neurotrophic factor (BDNF) is essential to high-frequency stimulation-induced LTP in many brain areas, the role of BDNF in t-LTP is largely unknown. Here, we demonstrate a striking change in the expression mechanism of t-LTP in CA1 of the hippocampus following two distinct modes of synaptic activation. Single postsynaptic APs paired with presynaptic stimulation activated a BDNF-independent canonical t-LTP. In contrast, a theta burst of postsynaptic APs preceded by presynaptic stimulation elicited BDNF-dependent postsynaptic t-LTP that relied on postsynaptic BDNF secretion. This suggests that BDNF release during burst-like patterns of activity typically observed in vivo may play a crucial role during memory formation.

  16. Demonstration of short-term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: A TMS-EEG study.

    PubMed

    Chung, Sung Wook; Lewis, Benjamin P; Rogasch, Nigel C; Saeki, Takashi; Thomson, Richard H; Hoy, Kate E; Bailey, Neil W; Fitzgerald, Paul B

    2017-07-01

    To examine the effects of intermittent TBS (iTBS) and continuous TBS (cTBS) on cortical reactivity in the dorsolateral prefrontal cortex. 10 healthy participants were stimulated with either iTBS, cTBS or sham at F3 electrode. Single- and paired-pulse TMS and concurrent electroencephalography (EEG) were used to assess change in cortical reactivity and long-interval intracortical inhibition (LICI) via TMS-evoked potentials (TEPs) and TMS-evoked oscillations. Significant increases in N120 amplitudes (p<0.01) were observed following iTBS over prefrontal cortex. Changes in TMS-evoked theta oscillations and LICI of theta oscillations were also observed following iTBS (increase) and cTBS (decrease). Change in LICI of theta oscillations correlated with change in N120 amplitude following TBS (r=-0.670, p=0.001). This study provides preliminary evidence that TBS produces direct changes in cortical reactivity in the prefrontal cortex. Combining TBS with TMS-EEG may be a useful approach to optimise stimulation paradigms prior to the conduct of clinical trials. TBS is able to modulate cortical reactivity and cortical inhibition in the prefrontal cortex. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. A Comparative Study of the Impact of Theta-Burst and High-Frequency Stimulation on Memory Performance

    PubMed Central

    Zhu, Yating; Wang, Rubin; Wang, Yihong

    2016-01-01

    The transformation of the information stored in the working memory into the system of long-term memory depends on the physiological mechanism, long-term potential (LTP). In a large number of experimental studies, theta-burst stimulation (TBS) and high-frequency stimulation (HFS) are LTP induction protocols. However, they have not been adapted to the model related to memory. In this paper, the improved Camperi–Wang (C–W) model with Ca2+ subsystem-induced bi-stability was adopted, and TBS and HFS were simulated to act as the initial stimuli of this working memory model. Evaluating the influence of stimuli properties (cycle, amplitude, duty ration) on memory mechanism of the model, it is found that both TBS and HFS can be adopted to activate working memory model and produce long-term memory. Moreover, the different impacts of two types of stimuli on the formation of long-term memory were analyzed as well. Thus, the importance of this study lies firstly in describing the link and interaction between working memory and long-term memory from the quantitative view, which provides a theoretical basis for the study of neural dynamics mechanism of long-term memory formation in the future. PMID:26869903

  18. Intermittent theta-burst stimulation rescues dopamine-dependent corticostriatal synaptic plasticity and motor behavior in experimental parkinsonism: Possible role of glial activity.

    PubMed

    Cacace, Fabrizio; Mineo, Desirèe; Viscomi, Maria Teresa; Latagliata, Emanuele Claudio; Mancini, Maria; Sasso, Valeria; Vannelli, Anna; Pascucci, Tiziana; Pendolino, Valentina; Marcello, Elena; Pelucchi, Silvia; Puglisi-Allegra, Stefano; Molinari, Marco; Picconi, Barbara; Calabresi, Paolo; Ghiglieri, Veronica

    2017-07-01

    Recent studies support the therapeutic utility of repetitive transcranial magnetic stimulation in Parkinson's disease (PD), whose progression is correlated with loss of corticostriatal long-term potentiation and long-term depression. Glial cell activation is also a feature of PD that is gaining increasing attention in the field because astrocytes play a role in chronic neuroinflammatory responses but are also able to manage dopamine (DA) levels. Intermittent theta-burst stimulation protocol was applied to study the effect of therapeutic neuromodulation on striatal DA levels measured by means of in vivo microdialysis in 6-hydroxydopamine-hemilesioned rats. Effects on corticostriatal synaptic plasticity were studied through in vitro intracellular and whole-cell patch clamp recordings while stepping test and CatWalk were used to test motor behavior. Immunohistochemical analyses were performed to analyze morphological changes in neurons and glial cells. Acute theta-burst stimulation induced an increase in striatal DA levels in hemiparkinsonian rats, 80 minutes post-treatment, correlated with full recovery of plasticity and amelioration of motor performances. With the same timing, immediate early gene activation was restricted to striatal spiny neurons. Intense astrocytic and microglial responses were also significantly reduced 80 minutes following theta-burst stimulation. Taken together, these results provide a first glimpse on physiological adaptations that occur in the parkinsonian striatum following intermittent theta-burst stimulation and may help to disclose the real potential of this technique in treating PD and preventing DA replacement therapy-associated disturbances. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  19. Improvement of language functions in a chronic non-fluent post-stroke aphasic patient following bilateral sequential theta burst magnetic stimulation.

    PubMed

    Vuksanović, Jasmina; Jelić, Milan B; Milanović, Sladjan D; Kačar, Katarina; Konstantinović, Ljubica; Filipović, Saša R

    2015-01-01

    In chronic non-fluent aphasia patients, inhibition of the intact right hemisphere (RH), by transcranial magnetic stimulation (TMS) or similar methods, can induce improvement in language functions. The supposed mechanism behind this improvement is a release of preserved left hemisphere (LH) language networks from RH transcallosal inhibition. Direct stimulation of the damaged LH can sometimes bring similar results too. Therefore, we developed a novel treatment approach that combined direct LH (Broca's area (BA)) stimulation, by intermittent theta burst stimulation (TBS), with homologue RH area's inhibition, by continuous TBS. We present the results of application of 15 daily sessions of the described treatment approach in a right-handed patient with chronic post-stroke non-fluent aphasia. The intervention appeared to improve several language functions, but most notably propositional speech, semantic fluency, short-term verbal memory, and verbal learning. Bilateral TBS modulation of activation of the language-related areas of both hemispheres seems to be a feasible and promising way to induce recovery in chronic aphasic patients. Due to potentially cumulative physiological effects of bilateral stimulation, the improvements may be even greater than following unilateral interventions.

  20. Bilateral primary motor cortex circuitry is modulated due to theta burst stimulation to left dorsal premotor cortex and bimanual training.

    PubMed

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2015-08-27

    Motor preparatory and execution activity is enhanced after a single session of bimanual visuomotor training (BMT). Recently, we have shown that increased primary motor cortex (M1) excitability occurs when BMT involves simultaneous activation of homologous muscles and these effects are enhanced when BMT is preceded by intermittent theta burst stimulation (iTBS) to the left dorsal premotor cortex (lPMd). The neural mechanisms underlying these modulations are unclear, but may include interhemispheric interactions between homologous M1s and connectivity with premotor regions. The purpose of this study was to investigate the possible intracortical and interhemispheric modulations of the extensor carpi radials (ECR) representation in M1 bilaterally due to: (1) BMT, (2) iTBS to lPMd, and (3) iTBS to lPMd followed by BMT. This study tests three related hypotheses: (1) BMT will enhance excitability within and between M1 bilaterally, (2) iTBS to lPMd will primarily enhance left M1 (lM1) excitability, and (3) the combination of these interventions will cause a greater enhancement of bilateral M1 excitability. We used single and paired-pulse transcranial magnetic stimulation (TMS) to quantify M1 circuitry bilaterally. The results demonstrate the neural mechanisms underlying the early markers of rapid functional plasticity associated with BMT and iTBS to lPMd primarily relate to modulations of long-interval inhibitory (i.e. GABAB-mediated) circuitry within and between M1s. This work provides novel insight into the underlying neural mechanisms involved in M1 excitability changes associated with BMT and iTBS to lPMd. Critically, this work may inform rehabilitation training and stimulation techniques that modulate cortical plasticity after brain injury.

  1. Effect of 30 Hz theta burst transcranial magnetic stimulation on the primary motor cortex in children and adolescents

    PubMed Central

    Pedapati, Ernest V.; Gilbert, Donald L.; Horn, Paul S.; Huddleston, David A.; Laue, Cameron S.; Shahana, Nasrin; Wu, Steve W.

    2015-01-01

    Fourteen healthy children (13.8 ± 2.2 years, range 10–16; M:F = 5:9) received 30 Hz intermittent theta burst transcranial magnetic stimulation (iTBS) with a stimulation intensity of 70% of resting motor threshold (RMT) with a total of 300 (iTBS300) pulses. All volunteers were free of neurologic, psychiatric and serious medical illnesses, not taking any neuropsychiatric medications, and did not have any contraindications to transcranial magnetic stimulation. Changes in the mean amplitudes of motor-evoked potentials from baseline following iTBS were expressed as a ratio and assessed from 1 to 10 min (BLOCK1) and 1–30 min (BLOCK2) using repeated-measures analysis of variance. All 14 subjects completed iTBS300 over the dominant primary motor cortex (M1) without any clinically reported adverse events. ITBS300 produced significant M1 facilitation [F(5, 65) = 3.165, p = 0.01] at BLOCK1 and trend level M1 facilitation at BLOCK2 [F(10, 129) = 1.69, p = 0.089]. Although iTBS300 (stimulation duration of 92 s at 70% RMT) delivered over M1 in typically developed children was well-tolerated and produced on average significant facilitatory changes in cortical excitability, the post-iTBS300 neurophysiologic response was variable in our small sample. ITBS300-induced changes may represent a potential neuroplastic biomarker in healthy children and those with neuro-genetic or neuro-psychiatric disorders. However, a larger sample size is needed to address safety and concerns of response variability. PMID:25762919

  2. Exposure to a theta-burst patterned magnetic field impairs memory acquisition and consolidation for contextual but not discrete conditioned fear in rats.

    PubMed

    McKay, B E; Persinger, M A; Koren, S A

    2000-10-06

    Preceding or immediately following fear-conditioning rats were exposed for 30 min to either a sham field, one of two symmetrical (sine-wave 7, 20 Hz) magnetic fields or to one of two complex magnetic fields whose waveforms were modeled after salient electrophysiological patterns within either the hippocampal formation (theta-burst) or the amygdaloid complex (burst-firing). The magnetic fields were presented in successive 2s intervals through each of the three spatial planes and then simultaneously within all three planes. Field strengths ranged between 0.5 and 1 microTesla. Only the group exposed after the conditioning to the theta-burst (hippocampal) magnetic fields displayed evidence of forgetting, as inferred by their marked attenuation of freezing behavior, during contextual extinction 24h later. This powerful treatment explained 75% of the variance in the extinction scores. Behavioral responses to the discrete conditioned stimulus were not affected. These findings are consistent with the involvement of the hippocampus in learned fear to contextual stimuli but not to discrete auditory stimuli and suggest that physiologically relevant stimuli may be delivered to the brain by weak, complex magnetic fields whose intensities are ubiquitous within modern environments.

  3. Genetic Disruption of Protein Kinase A Anchoring Reveals a Role for Compartmentalized Kinase Signaling in Theta-Burst Long-Term Potentiation and Spatial Memory

    PubMed Central

    Nie, Ting; McDonough, Conor B.; Huang, Ted; Nguyen, Peter V.; Abel, Ted

    2010-01-01

    Studies of hippocampal long-term potentiation (LTP), a cellular model of memory storage, implicate cAMP-dependent protein kinase (PKA) in presynaptic and postsynaptic mechanisms of LTP. The anchoring of PKA to AKAPs (A kinase-anchoring proteins) creates compartmentalized pools of PKA, but the roles of presynaptically and postsynaptically anchored forms of PKA in late-phase LTP are unclear. In this study, we have created genetically modified mice that conditionally express Ht31, an inhibitor of PKA anchoring, to probe the roles of anchored PKA in hippocampal LTP and spatial memory. Our findings show that at hippocampal Schaffer collateral CA3–CA1 synapses, theta-burst LTP requires presynaptically anchored PKA. In addition, a pool of anchored PKA in hippocampal area CA3 is required for spatial memory. These findings reveal a novel and significant role for anchored PKA signaling in cellular mechanisms underlying memory storage. PMID:17881534

  4. Structural Organization of the Corpus Callosum Predicts Attentional Shifts after Continuous Theta Burst Stimulation

    PubMed Central

    Humphreys, Glyn W.; Sotiropoulos, Stamatios N.; Kennard, Christopher; Cazzoli, Dario

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space contralateral to the brain injury. Transcranial magnetic stimulation over the PPC is used to study cognitive mechanisms of spatial attention and to examine the potential of this technique to treat neglect. However, large individual differences in behavioral responses to stimulation have been reported. We demonstrate that the variability in the structural organization of the corpus callosum accounts for these differences. Our findings suggest novel dual mechanism of the corpus callosum function in spatial attention and have broader implications for the use of stimulation in neglect rehabilitation. PMID:26586822

  5. LTP in Hippocampal Area CA1 Is Induced by Burst Stimulation over a Broad Frequency Range Centered around Delta

    ERIC Educational Resources Information Center

    Grover, Lawrence M.; Kim, Eunyoung; Cooke, Jennifer D.; Holmes, William R.

    2009-01-01

    Long-term potentiation (LTP) is typically studied using either continuous high-frequency stimulation or theta burst stimulation. Previous studies emphasized the physiological relevance of theta frequency; however, synchronized hippocampal activity occurs over a broader frequency range. We therefore tested burst stimulation at intervals from 100…

  6. LTP in Hippocampal Area CA1 Is Induced by Burst Stimulation over a Broad Frequency Range Centered around Delta

    ERIC Educational Resources Information Center

    Grover, Lawrence M.; Kim, Eunyoung; Cooke, Jennifer D.; Holmes, William R.

    2009-01-01

    Long-term potentiation (LTP) is typically studied using either continuous high-frequency stimulation or theta burst stimulation. Previous studies emphasized the physiological relevance of theta frequency; however, synchronized hippocampal activity occurs over a broader frequency range. We therefore tested burst stimulation at intervals from 100…

  7. CA1 Pyramidal Cell Theta-Burst Firing Triggers Endocannabinoid-Mediated Long-Term Depression at Both Somatic and Dendritic Inhibitory Synapses

    PubMed Central

    Younts, Thomas J.; Chevaleyre, Vivien

    2013-01-01

    Endocannabinoids (eCBs) are retrograde lipid messengers that, by targeting presynaptic type 1 cannabinoid receptors (CB1Rs), mediate short- and long-term synaptic depression of neurotransmitter release throughout the brain. Short-term depression is typically triggered by postsynaptic, depolarization-induced calcium rises, whereas long-term depression is induced by synaptic activation of Gq/11 protein-coupled receptors. Here we report that a physiologically relevant pattern of postsynaptic activity, in the form of theta-burst firing (TBF) of hippocampal CA1 pyramidal neurons, can trigger long-term depression of inhibitory transmission (iLTD) in rat hippocampal slices. Paired recordings between CA1 interneurons and pyramidal cells, followed by post hoc morphological reconstructions of the interneurons' axon, revealed that somatic and dendritic inhibitory synaptic inputs equally expressed TBF-induced iLTD. Simultaneous recordings from neighboring pyramidal cells demonstrated that eCB signaling triggered by TBF was highly restricted to only a single, active cell. Furthermore, pairing submaximal endogenous activation of metabotropic glutamate or muscarinic acetylcholine receptors with submaximal TBF unmasked associative iLTD. Although CB1Rs are also expressed at Schaffer-collateral excitatory terminals, long-term plasticity under various recording conditions was spared at these synapses. Consistent with this observation, TBF also shifted the balance of excitation and inhibition in favor of excitatory throughput, thereby altering information flow through the CA1 circuit. Given the near ubiquity of burst-firing activity patterns and CB1R expression in the brain, the properties described here may be a general means by which neurons fine tune the strength of their inputs in a cell-wide and cell-specific manner. PMID:23966696

  8. Intermittent Theta-Burst Stimulation of the Right Dorsolateral Prefrontal Cortex to Promote Metaphor Comprehension in Parkinson Disease: A Case Study.

    PubMed

    Tremblay, Christina; Monetta, Laura; Langlois, Mélanie; Schneider, Cyril

    2016-01-01

    This single-case research-designed study explored whether intermittent theta-burst stimulation (iTBS) of the right dorsolateral prefrontal cortex (DLPFC) could improve metaphor comprehension in people with Parkinson disease (PD) and language impairments. A right-handed participant with PD diagnosed 9 years ago, receiving long-term treatment with levodopa, and with metaphor comprehension impairment was recruited to undergo 10 sessions of sham stimulation (in 2wk), a washout period (6wk), and then 10 sessions of iTBS (in 2wk). Clinical scores of metaphor comprehension and motor evaluation (Unified Parkinson Disease Rating Scale part III) and transcranial magnetic stimulation to test the excitability of the primary motor cortex (M1) were used at baseline, postsham, post-iTBS, and at 3 follow-ups (8, 14, and 20wk post-iTBS). Metaphor comprehension was improved after iTBS, and the highest scores were obtained 8 weeks later (P=.01). This improvement was correlated with the increase of the right M1 excitability (r=-.86, P=.03) and with the decrease of transcallosal inhibition latency from the left to the right hemisphere (r=-.88, P=.02). Sham yielded no effect (P>.05). Administration of iTBS over the right DLPFC improved metaphor comprehension likely by a long-term influence on brain synaptic plasticity, including improvement of interhemispheric dialogue. More studies are warranted to confirm these findings in larger samples of participants with PD.

  9. Intermittent Theta Burst Over M1 May Increase Peak Power of a Wingate Anaerobic Test and Prevent the Reduction of Voluntary Activation Measured with Transcranial Magnetic Stimulation

    PubMed Central

    Giboin, Louis-Solal; Thumm, Patrick; Bertschinger, Raphael; Gruber, Markus

    2016-01-01

    Despite the potential of repetitive transcranial magnetic stimulation (rTMS) to improve performances in patients suffering from motor neuronal afflictions, its effect on motor performance enhancement in healthy subjects during a specific sport task is still unknown. We hypothesized that after an intermittent theta burst (iTBS) treatment, performance during the Wingate Anaerobic Test (WAnT) will increase and supraspinal fatigue following the exercise will be lower in comparison to a control treatment. Ten subjects participated in two randomized experiments consisting of a WAnT 5 min after either an iTBS or a control treatment. We determined voluntary activation (VA) of the right knee extensors with TMS (VATMS) and with peripheral nerve stimulation (VAPNS) of the femoral nerve, before and after the WAnT. T-tests were applied to the WAnT results and a two way within subject ANOVA was applied to VA results. The iTBS treatment increased the peak power and the maximum pedalling cadence and suppressed the reduction of VATMS following the WAnT compared to the control treatment. No behavioral changes related to fatigue (mean power and fatigue index) were observed. These results indicate for the first time that iTBS could be used as a potential intervention to improve anaerobic performance in a sport specific task. PMID:27486391

  10. Intermittent Theta Burst Over M1 May Increase Peak Power of a Wingate Anaerobic Test and Prevent the Reduction of Voluntary Activation Measured with Transcranial Magnetic Stimulation.

    PubMed

    Giboin, Louis-Solal; Thumm, Patrick; Bertschinger, Raphael; Gruber, Markus

    2016-01-01

    Despite the potential of repetitive transcranial magnetic stimulation (rTMS) to improve performances in patients suffering from motor neuronal afflictions, its effect on motor performance enhancement in healthy subjects during a specific sport task is still unknown. We hypothesized that after an intermittent theta burst (iTBS) treatment, performance during the Wingate Anaerobic Test (WAnT) will increase and supraspinal fatigue following the exercise will be lower in comparison to a control treatment. Ten subjects participated in two randomized experiments consisting of a WAnT 5 min after either an iTBS or a control treatment. We determined voluntary activation (VA) of the right knee extensors with TMS (VATMS) and with peripheral nerve stimulation (VAPNS) of the femoral nerve, before and after the WAnT. T-tests were applied to the WAnT results and a two way within subject ANOVA was applied to VA results. The iTBS treatment increased the peak power and the maximum pedalling cadence and suppressed the reduction of VATMS following the WAnT compared to the control treatment. No behavioral changes related to fatigue (mean power and fatigue index) were observed. These results indicate for the first time that iTBS could be used as a potential intervention to improve anaerobic performance in a sport specific task.

  11. Reversed Effects of Intermittent Theta Burst Stimulation following Motor Training That Vary as a Function of Training-Induced Changes in Corticospinal Excitability

    PubMed Central

    Stöckel, Tino; Summers, Jeffery J.; Hinder, Mark R.

    2015-01-01

    Intermittent theta burst stimulation (iTBS) has the potential to enhance corticospinal excitability (CSE) and subsequent motor learning. However, the effects of iTBS following motor learning are unknown. The purpose of the present study was to explore the effect of iTBS on CSE and performance following motor learning. Therefore twenty-four healthy participants practiced a ballistic motor task for a total of 150 movements. iTBS was subsequently applied to the trained motor cortex (STIM group) or the vertex (SHAM group). Performance and CSE were assessed before motor learning and before and after iTBS. Training significantly increased performance and CSE in both groups. In STIM group participants, subsequent iTBS significantly reduced motor performance with smaller reductions in CSE. CSE changes as a result of motor learning were negatively correlated with both the CSE changes and performance changes as a result of iTBS. No significant effects of iTBS were found for SHAM group participants. We conclude that iTBS has the potential to degrade prior motor learning as a function of training-induced CSE changes. That means the expected LTP-like effects of iTBS are reversed following motor learning. PMID:26167305

  12. Investigations of motor-cortex cortical plasticity following facilitatory and inhibitory transcranial theta-burst stimulation in schizophrenia: a proof-of-concept study.

    PubMed

    Hasan, Alkomiet; Brinkmann, Caroline; Strube, Wolfgang; Palm, Ulrich; Malchow, Berend; Rothwell, John C; Falkai, Peter; Wobrock, Thomas

    2015-02-01

    Impaired neural plasticity has been proposed as an important pathophysiological feature underlying the neurobiology and symptomatology of schizophrenia. In this proof-of-concept study, we aimed to explore cortical plasticity in schizophrenia patients with two different transcranial theta-burst (TBS) paradigms. TBS induces Ca(2+)-dependent long-term-potentiation (LTP)-like and long-term-depression (LTP)-like plasticity in the human motor cortex. A total of 10 schizophrenia patients and 10 healthy controls were included in this study. Cortical excitability was investigated using transcranial magnetic stimulation in each study participant before and after TBS applied to the left primary motor-cortex on two different days. cTBS600 was used to induce LTD-like and cTBS300 was used to induce LTP-like plasticity in the absence of any prior motor-cortex activation. Repeated measures ANOVAs showed a significant interaction between the timecourse, the study group and the stimulation paradigm (cTBS600 vs. cTBS300) for the left, but not for the right hemisphere. Healthy controls showed an MEP amplitude decrease at a trend level following cTBS600 and a numeric, but not significant, increase in MEP amplitudes following cTBS300. Schizophrenia patients did not show an MEP amplitude decrease following cTBS600, but surprisingly a significant MEP decrease following cTBS300. The proportion of subjects showing the expected changes in motor-cortex excitability following both cTBS paradigms was higher in healthy controls. These preliminary results indicate differences in cortical plasticity following two different cTBS protocols in schizophrenia patients compared to healthy controls. However, the incomplete plasticity response in the healthy controls and the proof-of-concept nature of this study need to be considered as important limitations.

  13. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion

    PubMed Central

    Hoppenrath, Kathrin; Härtig, Wolfgang; Funke, Klaus

    2016-01-01

    Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS) appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS) applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV) fast-spiking interneurons (FSIs), evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs) of FSIs start to grow around postnatal day (PD) 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo—in vitro whole-cell patch clamp recordings from pre-labeled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29–38, evident as higher rates of induced action potential firing at low current injections (100–200 pA) and a more depolarized resting membrane potential. This effect was absent in younger (PD26–28) and older animals (PD40–62). Slices of verum iTBS-treated rats further showed higher rates of spontaneous excitatory postsynaptic currents (sEPSCs). Based on these and previous findings we conclude that FSIs are particularly sensitive to TBS during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits. PMID:27065812

  14. Enhanced motor skill acquisition in the non-dominant upper extremity using intermittent theta burst stimulation and transcranial direct current stimulation

    PubMed Central

    Butts, Raymond J.; Kolar, Melissa B.; Newman-Norlund, Roger D.

    2014-01-01

    Individuals suffering from motor impairments often require physical therapy (PT) to help improve their level of function. Previous investigations suggest that both intermittent theta burst stimulation (iTBS) and bihemispheric transcranial direct current stimulation (tDCS) may increase the speed and extent of motor learning/relearning. The purpose of the current study was to explore the feasibility and effectiveness of a novel, non-invasive brain stimulation approach that combined an iTBS primer, and bihemispheric stimulation coupled with motor training. We hypothesized that individuals exposed to this novel treatment would make greater functional improvements than individuals undergoing sham stimulation when tested immediately following, 24-h, and 7-days post-training. A total of 26 right-handed, healthy young adults were randomly assigned to either a treatment (n = 15) or control group (n = 12). iTBS (20 trains of 10 pulse triplets each delivered at 80% active motor threshold (AMT) / 50 Hz over 191.84 s) and bihemispheric tDCS (1.0 ma for 20 min) were used as a primer to, and in conjunction with, 20 min of motor training, respectively. Our primary outcome measure was performance on the Jebsen-Taylor Hand Function (JTHF) test. Participants tolerated the combined iTBS/bihemispheric stimulation treatment without complaint. While performance gains in the sham and stimulation group were not significant immediately after training, they were nearly significant 24-h post training (p = 0.055), and were significant at 7-days post training (p < 0.05). These results suggest that the combined iTBS/bihemispheric stimulation protocol is both feasible and effective. Future research should examine the mechanistic explanation of this approach as well as the potential of using this approach in clinical populations. PMID:25002842

  15. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion.

    PubMed

    Hoppenrath, Kathrin; Härtig, Wolfgang; Funke, Klaus

    2016-01-01

    Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS) appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS) applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV) fast-spiking interneurons (FSIs), evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs) of FSIs start to grow around postnatal day (PD) 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo-in vitro whole-cell patch clamp recordings from pre-labeled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29-38, evident as higher rates of induced action potential firing at low current injections (100-200 pA) and a more depolarized resting membrane potential. This effect was absent in younger (PD26-28) and older animals (PD40-62). Slices of verum iTBS-treated rats further showed higher rates of spontaneous excitatory postsynaptic currents (sEPSCs). Based on these and previous findings we conclude that FSIs are particularly sensitive to TBS during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits.

  16. Reduction in cortical parvalbumin expression due to intermittent theta-burst stimulation correlates with maturation of the perineuronal nets in young rats.

    PubMed

    Mix, Annika; Hoppenrath, Kathrin; Funke, Klaus

    2015-01-01

    We recently showed that intermittent theta-burst stimulation (iTBS) using transcranial magnetic stimulation strongly reduces the number of rat neocortical interneurons expressing glutamic acid decarboxylase 67 kDa (GAD67) and parvalbumin (PV), indicating changed activity of fast-spiking (FS) interneurons. In advance of in vitro studies intended to characterize changes in electrical properties of FS interneurons under these conditions, we tested whether the iTBS effect is age-dependent. Conscious Sprague-Dawley rats aged between 28 and 90 days received three blocks of iTBS at 15 min intervals. We found that iTBS-related reduction in PV+ cells was absent up to an age of 32 days, then gradually increased, and approached a maximum of about 40% reduction at an age of about 40 days. The relative number of cells expressing PV (PV+, 8-9%) did not change with age in sham-controls and also the increase in cortical c-Fos expression induced by iTBS was not principally age-dependent. However, a prominent growth of the perineuronal nets, typically surrounding the PV+ cells, exactly paralleled the increase in the iTBS effect. Based on these findings, we conclude that the functional development of the inhibitory network of PV+ interneurons with regard to intracortical synaptic connectivity is not sufficiently matured in rats younger than 35 d to enable activity-dependent modifications during iTBS. Outgrowth of the perineuronal nets and associated maturation of excitatory cortical inputs, as is characteristic for the critical cortical period, may take place before PV+ interneurons can be sufficiently activated via repetitive transcranial magnetic stimulation, allowing plastic changes of molecular phenotype and likely also synaptic plasticity.

  17. Dose-Dependent Effects of Theta Burst rTMS on Cortical Excitability and Resting-State Connectivity of the Human Motor System

    PubMed Central

    Nettekoven, Charlotte; Volz, Lukas J.; Kutscha, Martha; Pool, Eva-Maria; Rehme, Anne K.; Eickhoff, Simon B.; Fink, Gereon R.

    2014-01-01

    Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity. PMID:24828639

  18. Augmenting saturated LTP by broadly spaced episodes of theta-burst stimulation in hippocampal area CA1 of adult rats and mice

    PubMed Central

    Cao, Guan

    2014-01-01

    Hippocampal long-term potentiation (LTP) is a model system for studying cellular mechanisms of learning and memory. Recent interest in mechanisms underlying the advantage of spaced over massed learning has prompted investigation into the effects of distributed episodes of LTP induction. The amount of LTP induced in hippocampal area CA1 by one train (1T) of theta-burst stimulation (TBS) in young Sprague-Dawley rats was further enhanced by additional bouts of 1T given at 1-h intervals. However, in young Long-Evans (LE) rats, 1T did not initially saturate LTP. Instead, a stronger LTP induction paradigm using eight trains of TBS (8T) induced saturated LTP in hippocampal slices from both young and adult LE rats as well as adult mice. The saturated LTP induced by 8T could be augmented by another episode of 8T following an interval of at least 90 min. The success rate across animals and slices in augmenting LTP by an additional episode of 8T increased significantly with longer intervals between the first and last episodes, ranging from 0% at 30- and 60-min intervals to 13–66% at 90- to 180-min intervals to 90–100% at 240-min intervals. Augmentation above initially saturated LTP was blocked by the N-methyl-d-aspartate (NMDA) glutamate receptor antagonist d-2-amino-5-phosphonovaleric acid (d-APV). These findings suggest that the strength of induction and interval between episodes of TBS, as well as the strain and age of the animal, are important components in the augmentation of LTP. PMID:25057146

  19. Synaptic Correlates Of Increased Cognitive Vulnerability With Aging: Peripheral Immune Challenge and Aging Interact to Disrupt Theta-Burst L-LTP in Hippocampal Area CA1

    PubMed Central

    Chapman, Timothy R.; Barrientos, Ruth M.; Ahrendsen, Jared T.; Maier, Steven F.; Patterson, Susan L.

    2010-01-01

    Variability in cognitive functioning increases markedly with age, as does cognitive vulnerability to physiological and psychological challenges. Exploring the basis of this vulnerability may provide important insights into the mechanisms underlying aging-associated cognitive decline. As we have previously reported, the cognitive abilities of aging (24-month-old) F344xBN rats are generally good, but are more vulnerable to the consequences of a peripheral immune challenge (an i.p. injection of live E. coli) than those of their younger (3-month-old) counterparts. Four days after the injection, the aging, but not the young rats show profound memory deficits, specific to the consolidation of hippocampus-dependent memory processes. Here, we have extended these observations, using hippocampal slices to examine for the first time the combined effects of aging and a recent infection on several forms of synaptic plasticity. We have found that the specific deficit in long-lasting memory observed in the aged animals following infection is mirrored by a specific deficit in a form of long-lasting synaptic plasticity. The late-phase long-term potentiation (L-LTP) induced in area CA1 using theta burst stimulation is particularly compromised by the combined effects of aging and infection – a deficit that can be ameliorated by intra-cisterna magna administration of the naturally occurring anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1Ra). These data support the idea that the combination of aging and a negative life event such as an infection might produce selective, early-stage failures of synaptic plasticity in the hippocampus, with corresponding selective deficits in memory. PMID:20519534

  20. Current direction specificity of continuous θ-burst stimulation in modulating human motor cortex excitability when applied to somatosensory cortex.

    PubMed

    Jacobs, Mark F; Zapallow, Christopher M; Tsang, Philemon; Lee, Kevin G H; Asmussen, Michael J; Nelson, Aimee J

    2012-11-14

    The present study examines the influence of primary somatosensory cortex (SI) on corticospinal excitability within primary motor cortex (M1) using repetitive transcranial magnetic stimulation. Two groups of subjects participated and both received continuous theta-burst stimulation (cTBS) over SI. One group received cTBS oriented to induce anterior-to-posterior (AP) followed by posterior-to-anterior (PA) current flow in the cortex and the other group received cTBS in the opposite direction (PA-AP). Motor evoked potentials (MEPs) were measured from the first dorsal interosseous muscle of the left and right hand before and at three time points (5, 25, 45 min) following cTBS over left-hemisphere SI. CTBS over SI in the AP-PA direction increased contralateral MEPs at 5 and 45 min with a near significant increase at 25 min. In contrast, PA-AP cTBS decreased contralateral MEPs at 25 min. We conclude that cTBS over SI modulates neural output directed to the hand with effects that depend on the direction of induced current.

  1. Star Formation in Ultrafaint Dwarfs: Continuous or Single-Age Bursts?

    NASA Astrophysics Data System (ADS)

    Webster, David; Bland-Hawthorn, Joss; Sutherland, Ralph

    2015-02-01

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass ({{M}vir}∼ {{10}7} M⊙), rather than being stripped remnants of much larger systems.

  2. STAR FORMATION IN ULTRA-FAINT DWARFS: CONTINUOUS OR SINGLE-AGE BURSTS?

    SciTech Connect

    Webster, David; Bland-Hawthorn, Joss; Sutherland, Ralph

    2015-01-30

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass (M{sub vir}∼10{sup 7} M{sub ⊙}), rather than being stripped remnants of much larger systems.

  3. Damage detection and locating using tone burst and continuous excitation modulation method

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Wang, Zhi; Xiao, Li; Qu, Wenzhong

    2014-03-01

    Among structural health monitoring techniques, nonlinear ultrasonic spectroscopy methods are found to be effective diagnostic approach to detecting nonlinear damage such as fatigue crack, due to their sensitivity to incipient structural changes. In this paper, a nonlinear ultrasonic modulation method was developed to detect and locate a fatigue crack on an aluminum plate. The method is different with nonlinear wave modulation method which recognizes the modulation of low-frequency vibration and high-frequency ultrasonic wave; it recognizes the modulation of tone burst and high-frequency ultrasonic wave. In the experiment, a Hanning window modulated sinusoidal tone burst and a continuous sinusoidal excitation were simultaneously imposed on the PZT array which was bonded on the surface of an aluminum plate. The modulations of tone burst and continuous sinusoidal excitation was observed in different actuator-sensor paths, indicating the presence and location of fatigue crack. The results of experiments show that the proposed method is capable of detecting and locating the fatigue crack successfully.

  4. Role of Broca's Area in Implicit Motor Skill Learning: Evidence from Continuous Theta-Burst Magnetic Stimulation

    ERIC Educational Resources Information Center

    Clerget, Emeline; Poncin, William; Fadiga, Luciano; Olivier, Etienne

    2012-01-01

    Complex actions can be regarded as a concatenation of simple motor acts, arranged according to specific rules. Because the caudal part of the Broca's region (left Brodmann's area 44, BA 44) is involved in processing hierarchically organized behaviors, we aimed to test the hypothesis that this area may also play a role in learning structured motor…

  5. Role of Broca's Area in Implicit Motor Skill Learning: Evidence from Continuous Theta-Burst Magnetic Stimulation

    ERIC Educational Resources Information Center

    Clerget, Emeline; Poncin, William; Fadiga, Luciano; Olivier, Etienne

    2012-01-01

    Complex actions can be regarded as a concatenation of simple motor acts, arranged according to specific rules. Because the caudal part of the Broca's region (left Brodmann's area 44, BA 44) is involved in processing hierarchically organized behaviors, we aimed to test the hypothesis that this area may also play a role in learning structured motor…

  6. Stochastic theory of early viral infection: continuous versus burst production of virions.

    PubMed

    Pearson, John E; Krapivsky, Paul; Perelson, Alan S

    2011-02-03

    Viral production from infected cells can occur continuously or in a burst that generally kills the cell. For HIV infection, both modes of production have been suggested. Standard viral dynamic models formulated as sets of ordinary differential equations can not distinguish between these two modes of viral production, as the predicted dynamics is identical as long as infected cells produce the same total number of virions over their lifespan. Here we show that in stochastic models of viral infection the two modes of viral production yield different early term dynamics. Further, we analytically determine the probability that infections initiated with any number of virions and infected cells reach extinction, the state when both the population of virions and infected cells vanish, and show this too has different solutions for continuous and burst production. We also compute the distributions of times to establish infection as well as the distribution of times to extinction starting from both a single virion as well as from a single infected cell for both modes of virion production.

  7. Derivation of continuous wave mode output power from burst mode measurements in high-intensity ultrasound applications.

    PubMed

    Haller, Julian; Wilkens, Volker

    2014-03-01

    Measurement of the acoustic output power of transducers in burst mode and derivation of the results to the continuous wave (CW) case reduces heating problems during power measurements with radiation force balances and absorbing targets at high power levels, but requires the knowledge of an "effective duty factor," DReff. In this work, an alternative method for determining DReff is presented that allows the determination at any input voltage amplitude as it can be calculated from the input voltage rf signal in burst mode. Thus with this method, it is not necessary to apply CW signals at all.

  8. Improved dichotomous search frequency offset estimator for burst-mode continuous phase modulation

    NASA Astrophysics Data System (ADS)

    Zhai, Wen-Chao; Li, Zan; Si, Jiang-Bo; Bai, Jun

    2015-11-01

    A data-aided technique for carrier frequency offset estimation with continuous phase modulation (CPM) in burst-mode transmission is presented. The proposed technique first exploits a special pilot sequence, or training sequence, to form a sinusoidal waveform. Then, an improved dichotomous search frequency offset estimator is introduced to determine the frequency offset using the sinusoid. Theoretical analysis and simulation results indicate that our estimator is noteworthy in the following aspects. First, the estimator can operate independently of timing recovery. Second, it has relatively low outlier, i.e., the minimum signal-to-noise ratio (SNR) required to guarantee estimation accuracy. Finally, the most important property is that our estimator is complexity-reduced compared to the existing dichotomous search methods: it eliminates the need for fast Fourier transform (FFT) and modulation removal, and exhibits faster convergence rate without accuracy degradation. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education, China (Grant No. 20110203110011), and the Programme of Introducing Talents of Discipline to Universities, China (Grant No. B08038).

  9. Synaptic correlates of increased cognitive vulnerability with aging: peripheral immune challenge and aging interact to disrupt theta-burst late-phase long-term potentiation in hippocampal area CA1.

    PubMed

    Chapman, Timothy R; Barrientos, Ruth M; Ahrendsen, Jared T; Maier, Steven F; Patterson, Susan L

    2010-06-02

    Variability in cognitive functioning increases markedly with age, as does cognitive vulnerability to physiological and psychological challenges. Exploring the basis of this vulnerability may provide important insights into the mechanisms underlying aging-associated cognitive decline. As we have previously reported, the cognitive abilities of aging (24-month-old) F344 x BN rats are generally good, but are more vulnerable to the consequences of a peripheral immune challenge (an intraperitoneal injection of live Escherichia coli) than those of their younger (3-month-old) counterparts. Four days after the injection, the aging, but not the young rats show profound memory deficits, specific to the consolidation of hippocampus-dependent memory processes. Here, we have extended these observations, using hippocampal slices to examine for the first time the combined effects of aging and a recent infection on several forms of synaptic plasticity. We have found that the specific deficit in long-lasting memory observed in the aged animals after infection is mirrored by a specific deficit in a form of long-lasting synaptic plasticity. The late-phase long-term potentiation induced in area CA1 using theta-burst stimulation is particularly compromised by the combined effects of aging and infection-a deficit that can be ameliorated by intra-cisterna magna administration of the naturally occurring antiinflammatory cytokine IL-1Ra (interleukin-1 receptor antagonist). These data support the idea that the combination of aging and a negative life event such as an infection might produce selective, early-stage failures of synaptic plasticity in the hippocampus, with corresponding selective deficits in memory.

  10. An effective sampling clock synchronization method for continuous- and burst-mode transmission in OFDMA-PONs

    NASA Astrophysics Data System (ADS)

    Cai, Yufeng; Zhang, Qianwu; Chen, Rongrong; Kuang, Caixia; Zhang, Zhen; Li, Yingchun; Chen, Jian

    2017-02-01

    A sampling frequency offset (SFO) estimation and compensation method based on frequency domain correlation of long training symbols for orthogonal frequency division multiple access passive optical network (OFDMA-PON) is experimentally demonstrated, which shows excellent performances in transmissions of continuous- and burst-mode. For continuous-mode transmission under a certain SFO, the proposed scheme can perform effectively in a wide received optical power (RoP) range from -8 dBm to -2 dBm and has high estimation veracity and a large applicable range as large as 100 ppm at a certain RoP. Similar behavior is also demonstrated under burst-mode transmission with tiny performance degradation caused by the fact that the algorithm needs time to reach a stable status of synchronization.

  11. A Search for Nontriggered Gamma-Ray Bursts in the BATSE Continuous Records: First Results

    NASA Astrophysics Data System (ADS)

    Stern, B. E.; Tikhomirova, Ya.; Stepanov, M.; Kompaneets, D.; Berezhnoy, A.; Svensson, R.

    2000-09-01

    An off-line scan for nontriggered gamma-ray bursts (GRBs) in the BATSE daily records at 1024 ms time resolution covering about 7 yr of observations gave 1353 nontriggered and 1581 triggered GRBs. The scan efficiency was measured by adding artificial test bursts to the data. The logN-logP distribution could be extended down to peak fluxes, P~0.1 photons cm-2 s-1. Previous indications of a turnover at small P are not confirmed. The logN-logP distribution cannot be fitted with a standard candle model with a nonevolving GRB source population, assuming that there are no large non-GRB contaminations. It is likely that the intrinsic luminosity function of GRBs is wide.

  12. Quasi-continuous burst-mode laser for high-speed planar imaging.

    PubMed

    Slipchenko, Mikhail N; Miller, Joseph D; Roy, Sukesh; Gord, James R; Danczyk, Stephen A; Meyer, Terrence R

    2012-04-15

    The pulse-burst duration of a compact burst-mode Nd:YAG laser is extended by one order of magnitude compared to previous flashlamp-pumped designs by incorporating a fiber oscillator and diode-pumped solid-state amplifiers. The laser has a linewidth of <2 GHz at 1064.3 nm with 150 mJ per individual pulse at 10 kHz. The performance of the system is evaluated by using the third-harmonic output at 354.8 nm for high-speed planar laser-induced fluorescence of formaldehyde in a lifted methane-air diffusion flame. A total of 100 and 200 sequential images of unsteady fluid-flame interactions are acquired at repetition rates of 10 kHz and 20 kHz, respectively.

  13. Identification of an Intracranial Pressure (ICP) Response Function from Continuously Acquired Electroencephalographic and ICP Signals in Burst-Suppressed Patients.

    PubMed

    Connolly, Mark; Liou, Raymond; Vespa, Paul; Hu, Xiao

    2016-01-01

    Continuous intracranial pressure (ICP) and electroencephalographic (EEG) monitoring are used in the management of patients with brain injury. It is possible that these two signals could be related through neurovascular coupling. To explore this mechanism, we modeled the ICP response to brain activity by treating spontaneous burst activity in burst-suppressed patients as an impulse, and identified the ICP response function (ICPRF) as the subsequent change in ICP.Segments of ICP were filtered, classified as elevating or stable, and suitable ICPRFs were identified. After calibration, each ICPRF was convolved with the EEG to produce the estimated ICP. The mean error (ME) versus distance from the selected ICPRF was calculated and the elevating and stable ICP segments compared.Eighty-four ICPRFs were identified from 15 data segments. The ME of the elevating segments increased at an average rate of 57 mmHg/min, whereas the average ME of the stable segments increased at a rate of 0.05 mmHg/min.These findings demonstrate that deriving an ICPRF from a burst-suppressed patient is a suitable approach for stable segments. To completely model the ICP response to EEG activity, a more robust model should be developed.

  14. Theta vocabulary I

    NASA Astrophysics Data System (ADS)

    Kharchev, S.; Zabrodin, A.

    2015-08-01

    This paper is an annotated list of transformation properties and identities satisfied by the four theta functions θ1, θ2, θ3, θ4 of one complex variable, presented in a ready-to-use form. An attempt is made to reveal a pattern behind various identities for the theta-functions. It is shown that all possible 3, 4 and 5-term identities of degree four emerge as algebraic consequences of the six fundamental bilinear 3-term identities connecting the theta-functions with modular parameters τ and 2 τ.

  15. Parvalbumin Interneurons of Hippocampus Tune Population Activity at Theta Frequency.

    PubMed

    Amilhon, Bénédicte; Huh, Carey Y L; Manseau, Frédéric; Ducharme, Guillaume; Nichol, Heather; Adamantidis, Antoine; Williams, Sylvain

    2015-06-03

    Hippocampal theta rhythm arises from a combination of recently described intrinsic theta oscillators and inputs from multiple brain areas. Interneurons expressing the markers parvalbumin (PV) and somatostatin (SOM) are leading candidates to participate in intrinsic rhythm generation and principal cell (PC) coordination in distal CA1 and subiculum. We tested their involvement by optogenetically activating and silencing PV or SOM interneurons in an intact hippocampus preparation that preserves intrinsic connections and oscillates spontaneously at theta frequencies. Despite evidence suggesting that SOM interneurons are crucial for theta, optogenetic manipulation of these interneurons modestly influenced theta rhythm. However, SOM interneurons were able to strongly modulate temporoammonic inputs. In contrast, activation of PV interneurons powerfully controlled PC network and rhythm generation optimally at 8 Hz, while continuously silencing them disrupted theta. Our results thus demonstrate a pivotal role of PV but not SOM interneurons for PC synchronization and the emergence of intrinsic hippocampal theta.

  16. Muscle plasticity: comparison of a 30-Hz burst with 10-Hz continuous stimulation.

    PubMed

    Ferguson, A S; Stone, H E; Roessmann, U; Burke, M; Tisdale, E; Mortimer, J T

    1989-03-01

    The changes in the contractile properties induced by a 30-Hz phasic stimulation paradigm were measured and compared with the changes induced by a 10-Hz continuous stimulation paradigm. The study was performed on the tibialis anterior muscles of cats with one paradigm applied to one hindlimb muscle and the other to the contralateral limb. Both hindlimb muscles received the same number of stimuli in a day, making the average stimulation frequency 10 Hz. Two periods of daily stimulation were studied, 8 and 24 h/day. Muscles stimulated at 30 Hz produced greater overall tetanic tension and, during a prolonged stimulation test, exerted a greater mean tension than muscles stimulated at 10 Hz (50 and 32% increase for animals stimulated for 8 and 24 h/day, respectively). Muscle mass was least reduced and fewer pathological abnormalities were observed in the muscles stimulated at 30 Hz. There were no apparent differences in the histochemistry or biochemistry between muscles stimulated at 10 and 30 Hz, which could account for these differences in muscle properties. These results indicate the 30-Hz paradigm may be better suited than 10 Hz continuous stimulation for applications requiring sustained muscle tension such as correction of scoliosis or muscle conditioning for motor prostheses.

  17. Mechanisms of Theta Plasmid Replication.

    PubMed

    Lilly, Joshua; Camps, Manel

    2015-02-01

    Plasmids are autonomously replicating pieces of DNA. This article discusses theta plasmid replication, which is a class of circular plasmid replication that includes ColE1-like origins of replication popular with expression vectors. All modalities of theta plasmid replication initiate synthesis with the leading strand at a predetermined site and complete replication through recruitment of the host's replisome, which extends the leading strand continuously while synthesizing the lagging strand discontinuously. There are clear differences between different modalities of theta plasmid replication in mechanisms of DNA duplex melting and in priming of leading- and lagging-strand synthesis. In some replicons duplex melting depends on transcription, while other replicons rely on plasmid-encoded trans-acting proteins (Reps); primers for leading-strand synthesis can be generated through processing of a transcript or in other replicons by the action of host- or plasmid-encoded primases. None of these processes require DNA breaks. The frequency of replication initiation is tightly regulated to facilitate establishment in permissive hosts and to achieve a steady state. The last section of the article reviews how plasmid copy number is sensed and how this feedback modulates the frequency of replication.

  18. Rapid deactivation of NADPH oxidase in neutrophils: continuous replacement by newly activated enzyme sustains the respiratory burst.

    PubMed

    Akard, L P; English, D; Gabig, T G

    1988-07-01

    The cell-free system for activation of the neutrophil NADPH oxidase allowed us to examine activation of the oxidase in the absence of its NADPH-dependent turnover. The covalent sulfhydryl-modifying reagent N-ethylmaleimide completely inhibited the activation step (Ki = 40 mumol/L) in the cell-free system but had no effect on turnover of the preactivated particulate NADPH oxidase (up to 1 mmol/L). When N-ethylmaleimide was added to intact neutrophils during the period of maximal O2 generation in response to stimuli that activate the respiratory burst (phorbol myristate acetate, f-Met-Leu-Phe, opsonized zymosan, arachidonic acid), O2- generation ceased within seconds. Study of components of the cell-free activation system indicated that the cytosolic cofactor was irreversibly inhibited by N-ethylmaleimide whereas the N-ethylmaleimide-treated, membrane-associated oxidase could be activated by arachidonate and control cytosolic cofactor. Likewise, the cell-free system prepared from intact neutrophils that had been briefly exposed to N-ethylmaleimide and then washed reflected the effects of N-ethylmaleimide on the isolated cell-free components: cytosolic cofactor activity was absent, but the membrane oxidase remained fully activatable. Thus inhibition of oxidase activation by N-ethylamaleimide unmasked a rapid deactivation step that was operative in intact neutrophils but not in isolated particulate NADPH oxidase preparations. The demonstrated specificity of N-ethylmaleimide for oxidase activation and lack of effect on turnover of the NADPH oxidase suggested that sustained O2- generation by intact neutrophils was a result of continued replenishment of a small pool of active oxidase. The existence of an inactive pool of NADPH oxidase molecules in particulate preparations from stimulated neutrophils was supported more directly by activating these preparations again in the cell-free system.

  19. Understanding the theta aurora

    NASA Astrophysics Data System (ADS)

    Fear, Robert; Milan, Steve; Carter, Jennifer; Maggiolo, Romain; Fazakerley, Andrew; Dandouras, Iannis; Mende, Stephen

    2015-04-01

    The theta aurora, first observed by Dynamics Explorer in the 1980s, is a configuration of the Earth's aurora in which auroral emissions extend into and across the polar cap in the form of a transpolar arc. It is well established that the theta aurora occurs predominantly when the interplanetary magnetic field has a northward component, but over the last thirty years various mechanisms have been put forward to explain this intriguing phenomenon. In the last couple of years, a range of evidence has accumulated which strongly suggests that the transpolar arc is formed as proposed by Milan et al. (2005): magnetotail reconnection occurs during intervals of northward IMF, which results in a local "wedge" of closed magnetospheric flux that remains trapped in the magnetotail. Precipitation on these closed field lines results in the transpolar arc analogously to the formation of the aurora in the main oval. Evidence for magnetotail reconnection as the cause of the theta aurora includes the timescales necessary to influence the location at which the transpolar arc forms, and the presence of characteristic ionospheric flows which are excited by magnetotail reconnection and which are statistically associated with transpolar arcs (Fear & Milan, 2012a,b). Most recently, direct observation has been made of a localised wedge of closed magnetic flux, "trapped" in the lobe, which was observed to move back and forth in a manner which (to our knowledge) can only be explained by the magnetotail reconnection mechanism (Fear et al., 2014). In this talk, we summarise the evidence for the formation of the theta aurora by magnetotail reconnection, and discuss the remaining challenges in obtaining a comprehensive understanding of this spectacular phenomenon.

  20. A continued search for transient events in the COBE DMR database simultaneous with cosmic gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Stacy, J. Gregory; Jackson, Peter D.; Bontekoe, Tj. Romke; Winkler, Christoph

    1996-08-01

    We report on the status of our ongoing project to search the database of the COBE Differential Microwave Radiometer (DMR) experiment for transient signals at microwave wavelengths simultaneous with cosmic gamma-ray bursts (GRBs). To date we have carried out a complete search of the DMR database using burst positions taken from the original BATSE 1B catalog for the eight-month period of overlap (May-December 1991) corresponding to the first public release of COBE data. We are currently repeating our original search of the COBE DMR database using the revised burst positions of the newly-released BATSE 3B catalog. Using BATSE 1B positions, at least two apparent simultaneous observations of GRBs by the COBE DMR occurred in 1991, along with a number of ``near misses'' within 30 seconds in time. At present, only upper limits to burst microwave emission are indicated. Even in the event of a non-detection of a GRB by the COBE DMR, unprecedented observational limits will still be obtained, constraining the predictions of the many theoretical models proposed to explain the origin of GRBs.

  1. Analytical Insights on Theta-Gamma Coupled Neural Oscillators

    PubMed Central

    2013-01-01

    In this paper, we study the dynamics of a quadratic integrate-and-fire neuron, spiking in the gamma (30–100 Hz) range, coupled to a delta/theta frequency (1–8 Hz) neural oscillator. Using analytical and semianalytical methods, we were able to derive characteristic spiking times for the system in two distinct regimes (depending on parameter values): one regime where the gamma neuron is intrinsically oscillating in the absence of theta input, and a second one in which gamma spiking is directly gated by theta input, i.e., windows of gamma activity alternate with silence periods depending on the underlying theta phase. In the former case, we transform the equations such that the system becomes analogous to the Mathieu differential equation. By solving this equation, we can compute numerically the time to the first gamma spike, and then use singular perturbation theory to find successive spike times. On the other hand, in the excitable condition, we make direct use of singular perturbation theory to obtain an approximation of the time to first gamma spike, and then extend the result to calculate ensuing gamma spikes in a recursive fashion. We thereby give explicit formulas for the onset and offset of gamma spike burst during a theta cycle, and provide an estimation of the total number of spikes per theta cycle both for excitable and oscillator regimes. PMID:23945442

  2. Theta-rhythmic drive between medial septum and hippocampus in slow-wave sleep and microarousal: a Granger causality analysis.

    PubMed

    Kang, D; Ding, M; Topchiy, I; Shifflett, L; Kocsis, B

    2015-11-01

    Medial septum (MS) plays a critical role in controlling the electrical activity of the hippocampus (HIPP). In particular, theta-rhythmic burst firing of MS neurons is thought to drive lasting HIPP theta oscillations in rats during waking motor activity and REM sleep. Less is known about MS-HIPP interactions in nontheta states such as non-REM sleep, in which HIPP theta oscillations are absent but theta-rhythmic burst firing in subsets of MS neurons is preserved. The present study used Granger causality (GC) to examine the interaction patterns between MS and HIPP in slow-wave sleep (SWS, a nontheta state) and during its short interruptions called microarousals (a transient theta state). We found that during SWS, while GC revealed a unidirectional MS→HIPP influence over a wide frequency band (2-12 Hz, maximum: ∼8 Hz), there was no theta peak in the hippocampal power spectra, indicating a lack of theta activity in HIPP. In contrast, during microarousals, theta peaks were seen in both MS and HIPP power spectra and were accompanied by bidirectional GC with MS→HIPP and HIPP→MS theta drives being of equal magnitude. Thus GC in a nontheta state (SWS) vs. a theta state (microarousal) primarily differed in the level of HIPP→MS. The present findings suggest a modification of our understanding of the role of MS as the theta generator in two regards. First, a MS→HIPP theta drive does not necessarily induce theta field oscillations in the hippocampus, as found in SWS. Second, HIPP theta oscillations entail bidirectional theta-rhythmic interactions between MS and HIPP.

  3. The broken light curves of gamma-ray bursts GRB 990123 and GRB 990510

    NASA Astrophysics Data System (ADS)

    Holland, S.; Björnsson, G.; Hjorth, J.; Thomsen, B.

    2000-12-01

    We have collected all of the published photometry for GRB 990123 and GRB 990510, the first two gamma-ray bursts where breaks were seen in the light curves of their optical afterglows, and determined the shapes of their light curves and the break times. These parameters were used to investigate the physical mechanisms responsible for the breaks and the nature of the ambient medium that the bursts occurred in. The light curve for GRB 990123 is best fit by a broken power law with a break 1.68 +/- 0.19 days after the burst, a slope of alpha_1 = -1.12 +/- 0.08 before the break, and a slope of alpha_2 = -1.69 +/- 0.06 after the break. This is consistent with a collimated outflow with a fixed opening angle of theta_0 ~ 5degr . In this case the break in the light curve is due to the relativistic fireball slowing to Gamma ~ 1/theta_0 . The light curve for GRB 990510 is best fit by a continuous function with an early-time slope of alpha_1 = -0.54 +/- 0.14, a late-time slope of alpha_2 = -1.98 +/- 0.19, and a slow transition between the two regimes approximately one day after the burst. This is consistent with a collimated outflow with theta_0 ~ 5degr that is initially radiative, but undergoes a sideways expansion that begins approximately one day after the burst. This sideways expansion is responsible for the slow break in the light curve. Partly based on observations collected with the 6m telescope of the Special Astrophysical Observatory (SAO) of the Russian Academy of Sciences (RAS) which is operated under the financial support of Science Department of Russia (registration number 01-43) and on data from the ING Archive and the HST Archive.

  4. Theta vocabulary II. Multidimensional case

    NASA Astrophysics Data System (ADS)

    Kharchev, S.; Zabrodin, A.

    2016-06-01

    It is shown that the Jacobi and Riemann identities of degree four for the multidimensional theta functions as well as the Weierstrass identities emerge as algebraic consequences of the fundamental multidimensional binary identities connecting the theta functions with Riemann matrices τ and 2 τ.

  5. Magnetar Bursts

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2014-01-01

    The Fermi/Gamma-ray Burst Monitor (GBM) was launched in June 2008. During the last five years the instrument has observed several hundreds of bursts from 8 confirmed magnetars and 19 events from unconfirmed sources. I will discuss the results of the GBM magnetar burst catalog, expand on the different properties of their diverse source population, and compare these results with the bursting activity of past sources. I will then conclude with thoughts of how these properties fit the magnetar theoretical models.

  6. All-diode-pumped quasi-continuous burst-mode laser for extended high-speed planar imaging.

    PubMed

    Slipchenko, Mikhail N; Miller, Joseph D; Roy, Sukesh; Gord, James R; Meyer, Terrence R

    2013-01-14

    An all-diode-pumped, multistage Nd:YAG amplifier is investigated as a means of extending the duration of high-power, burst-mode laser pulse sequences to an unprecedented 30 ms or more. The laser generates 120 mJ per pulse at 1064.3 nm with a repetition rate of 10 kHz, which is sufficient for a wide range of planar laser diagnostics based on fluorescence, Raman scattering, and Rayleigh scattering, among others. The utility of the technique is evaluated for image sequences of formaldehyde fluorescence in a lifted methane-air diffusion flame. The advantages and limitations of diode pumping are discussed, along with long-pulse diode-bar performance characteristics to guide future designs.

  7. Permutation symmetry for theta functions

    SciTech Connect

    Carlson, B.C.

    2011-01-21

    This paper does for combinations of theta functions most of what Carlson (2004) [1] did for Jacobian elliptic functions. In each case the starting point is the symmetric elliptic integral R{sub F} of the first kind. Its three arguments (formerly squared Jacobian elliptic functions but now squared combinations of theta functions) differ by constants. Symbols designating the constants can often be used to replace 12 equations by three with permutation symmetry (formerly in the letters c, d, n for the Jacobian case but now in the subscripts 2, 3, 4 for theta functions). Such equations include derivatives and differential equations, bisection and duplication relations, addition formulas (apparently new for theta functions), and an example of pseudoaddition formulas.

  8. Search for Theta+ at CLAS in gamma n ---> Theta+ K-.

    SciTech Connect

    N.A. Baltzell; D.J. Tedeschi

    2006-06-01

    The existence of pentaquarks is being studied in recent experiments at Jefferson Lab. This analysis investigates the reaction gamma d --> Theta^+K^-(p) with the Theta^+ decaying to pK^0. Produced with a tagged photon beam of endpoint energy 3.6 GeV incident on a 24 cm liquid deuterium target, the pK^0_sK^-(p) final state is measured exclusively. With well defined strangeness and no neutral meson background, this channel is an important place to look for the Theta^+. However, it contains large contributions from hyperons produced via gamma n --> Y*K^0, and the effects of mesons are also present in the K^0K^- system. The current focus is on understanding these backgrounds.

  9. Mass gap in the 2D O(3) nonlinear sigma model with a {theta}={pi} term

    SciTech Connect

    Alles, B.; Papa, A.

    2008-03-01

    By analytic continuation to real {theta} of data obtained from numerical simulation at imaginary {theta} we study the Haldane conjecture and show that the O(3) nonlinear sigma model with a {theta} term in two dimensions becomes massless at {theta}=3.10(5). A modified cluster algorithm has been introduced to simulate the model with imaginary {theta}. Two different definitions of the topological charge on the lattice have been used; one of them needs renormalization to match the continuum operator. Our work also offers a successful test for numerical methods based on analytic continuation.

  10. A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations

    PubMed Central

    Lin, Shih-Chieh; Nicolelis, Miguel A. L.

    2011-01-01

    The medial septum-vertical limb of the diagonal band of Broca (MSvDB) is important for normal hippocampal functions and theta oscillations. Although many previous studies have focused on understanding how MSVDB neurons fire rhythmic bursts to pace hippocampal theta oscillations, a significant portion of MSVDB neurons are slow-firing and thus do not pace theta oscillations. The function of these MSVDB neurons, especially their role in modulating hippocampal activity, remains unknown. We recorded MSVDB neuronal ensembles in behaving rats, and identified a distinct physiologically homogeneous subpopulation of slow-firing neurons (overall firing <4 Hz) that shared three features: 1) much higher firing rate during rapid eye movement sleep than during slow-wave (SW) sleep; 2) temporary activation associated with transient arousals during SW sleep; 3) brief responses (latency 15∼30 ms) to auditory stimuli. Analysis of the fine temporal relationship of their spiking and theta oscillations showed that unlike the theta-pacing neurons, the firing of these “pro-arousal” neurons follows theta oscillations. However, their activity precedes short-term increases in hippocampal oscillation power in the theta and gamma range lasting for a few seconds. Together, these results suggest that these pro-arousal slow-firing MSvDB neurons may function collectively to promote hippocampal activation. PMID:21865435

  11. Heterogeneity in Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  12. HETEROGENEITY IN SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Norris, Jay P.; Gehrels, Neil

    2011-07-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of {approx}2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts ({approx}6x10{sup -10} erg cm{sup -2} s{sup -1}) is {approx}>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts ({approx}60,000 s) is {approx}30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  13. swot: Super W Of Theta

    NASA Astrophysics Data System (ADS)

    Coupon, Jean; Leauthaud, Alexie; Kilbinger, Martin; Medezinski, Elinor

    2017-07-01

    SWOT (Super W Of Theta) computes two-point statistics for very large data sets, based on “divide and conquer” algorithms, mainly, but not limited to data storage in binary trees, approximation at large scale, parellelization (open MPI), and bootstrap and jackknife resampling methods “on the fly”. It currently supports projected and 3D galaxy auto and cross correlations, galaxy-galaxy lensing, and weighted histograms.

  14. Pentaquark spectroscopy: exotic {theta} baryons

    SciTech Connect

    Bijker, R.; Giannini, M.M.; Santopinto, E.

    2004-09-13

    We propose a collective stringlike model of q4q-bar pentaquarks with the geometry of an equilateral tetrahedron in which the four quarks are located at the four corners and the antiquark in its center. The nonplanar equilibrium configuration is a consequence of the permutation symmetry of the four quarks. In an application to the spectrum of exotic {theta} baryons, we find that the ground state pentaquark has angular momentum and parity Jp 1/2- and a small magnetic moment of 0.382 {mu}N. The decay width is suppressed by the spatial overlap with the decay products.

  15. Ketamine disrupts theta modulation of gamma in a computer model of hippocampus

    PubMed Central

    Neymotin, Samuel A.; Lazarewicz, Maciej T.; Sherif, Mohamed; Contreras, Diego; Finkel, Leif H.; Lytton, William W.

    2011-01-01

    Abnormalities in oscillations have been suggested to play a role in schizophrenia. We studied theta-modulated gamma oscillations in a computer model of hippocampal CA3 in vivo with and without simulated application of ketamine, an NMDA receptor antagonist and psychotomimetic. Networks of 1200 multi-compartment neurons (pyramidal, basket and oriens-lacunosum moleculare, OLM, cells) generated theta and gamma oscillations from intrinsic network dynamics: basket cells primarily generated gamma and amplified theta, while OLM cells strongly contributed to theta. Extrinsic medial septal inputs paced theta and amplified both theta and gamma oscillations. Exploration of NMDA receptor reduction across all location combinations demonstrated that the experimentally-observed ketamine effect occurred only with isolated reduction of NMDA receptors on OLMs. In the ketamine simulations, lower OLM activity reduced theta power and disinhibited pyramidal cells, resulting in increased basket cell activation and gamma power. Our simulations predict: ketamine increases firing rates;oscillations can be generated by intrinsic hippocampal circuits;medial septum inputs pace and augment oscillations;pyramidal cells lead basket cells at the gamma peak but lag at trough;basket cells amplify theta rhythms;ketamine alters oscillations due to primary blockade at OLM NMDA receptors;ketamine alters phase relationships of cell firing;ketamine reduces network responsivity to the environmentketamine effect could be reversed by providing a continuous inward current to OLM cells. We suggest that this last prediction has implications for a possible novel treatment for cognitive deficits of schizophrenia by targeting OLM cells. PMID:21832203

  16. The Burst of the Century

    NASA Astrophysics Data System (ADS)

    Fruchter, Andrew

    2014-09-01

    The extraordinarily bright GRB 130427A has provided a multiwavelength data set unprecedented in the history of the field. However the light curve of this burst, like that of the large majority of LAT bursts, shows a puzzling lack of a jet break (the hallmark of a collimated outflow). We propose to continue our long-term monitoring of this GRB through to the end of 2015. A detection of a jet break will give us a direct measure of the absolute energy of the burst; its absence will effectively rule out a rotating neutron star as the central engine of the GRB.

  17. Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat.

    PubMed

    Villette, Vincent; Poindessous-Jazat, Frédérique; Simon, Axelle; Léna, Clément; Roullot, Elodie; Bellessort, Brice; Epelbaum, Jacques; Dutar, Patrick; Stéphan, Aline

    2010-08-18

    The memory deficits associated with Alzheimer's disease result to a great extent from hippocampal network dysfunction. The coordination of this network relies on theta (symbol) oscillations generated in the medial septum. Here, we investigated in rats the impact of hippocampal amyloid beta (Abeta) injections on the physiological and cognitive functions that depend on the septohippocampal system. Hippocampal Abeta injections progressively impaired behavioral performances, the associated hippocampal theta power, and theta frequency response in a visuospatial recognition test. These alterations were associated with a specific reduction in the firing of the identified rhythmic bursting GABAergic neurons responsible for the propagation of the theta rhythm to the hippocampus, but without loss of medial septal neurons. Such results indicate that hippocampal Abeta treatment leads to a specific functional depression of inhibitory projection neurons of the medial septum, resulting in the functional impairment of the temporal network.

  18. Traveling Theta Waves in the Human Hippocampus

    PubMed Central

    Zhang, Honghui

    2015-01-01

    The hippocampal theta oscillation is strongly correlated with behaviors such as memory and spatial navigation, but we do not understand its specific functional role. One hint of theta's function came from the discovery in rodents that theta oscillations are traveling waves that allow parts of the hippocampus to simultaneously exhibit separate oscillatory phases. Because hippocampal theta oscillations in humans have different properties compared with rodents, we examined these signals directly using multielectrode recordings from neurosurgical patients. Our findings confirm that human hippocampal theta oscillations are traveling waves, but also show that these oscillations appear at a broader range of frequencies compared with rodents. Human traveling waves showed a distinctive pattern of spatial propagation such that there is a consistent phase spread across the hippocampus regardless of the oscillations' frequency. This suggests that traveling theta oscillations are important functionally in humans because they coordinate phase coding throughout the hippocampus in a consistent manner. SIGNIFICANCE STATEMENT We show for the first time in humans that hippocampal theta oscillations are traveling waves, moving along the length of the hippocampus in a posterior–anterior direction. The existence of these traveling theta waves is important for understanding hippocampal neural coding because they cause neurons at separate positions in the hippocampus to experience different theta phases simultaneously. The theta phase that a neuron measures is a key factor in how that cell represents behavioral information. Therefore, the existence of traveling theta waves indicates that, to fully understand how a hippocampal neuron represents information, it is vital to also account for that cell's location in addition to conventional measures of neural activity. PMID:26354915

  19. Reduction Formulae for Products of Theta Functions

    PubMed Central

    Walker, P. L.

    2012-01-01

    In four cases it is already known that the product of two distinct Jacobian theta functions having the same variable z and the same nome q is a multiple of a single Jacobian theta function, with the multiple independent of z. The main purpose of the present note is to show that this property also applies in the remaining two cases. PMID:26900529

  20. Photographic observations of Theta-1 Orionis

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Gull, T. R.

    1979-01-01

    Photographic observations of the eclipsing binary Theta-1 Ori A suggest a secondary minimum near phase 0.64 of its 65.43233-day period. This minimum may be wavelength dependent. The star Theta-1 Ori E is suspected of being variable.

  1. The GLAST Burst Monitor (GBM)

    NASA Astrophysics Data System (ADS)

    Lichti, G. G.; Briggs, M. S.; Diehl, R.; Fishman, G.; Georgii, R.; Kippen, R. M.; Kouveliotou, C.; Meegan, C.; Paciesas, W.; Preece, R.; Schönfelder, V.; von Kienlin, A.

    The selection of the GLAST burst monitor (GBM) by NASA will allow the investigation of the relation between the keV and the MeV-GeV emission from γ-ray bursts. The GBM consists of 12 NaI and 2 BGO crystals allowing a continuous measurement of the energy spectra of γ-ray bursts from ˜ 5 keV to ˜ 30 MeV. One feature of the GBM is its high time resolution for time-resolved γ-ray spectroscopy. Moreover the arrangement of the NaI-crystals allows a rapid on-board location ( < 15°) of a γ-ray burst within a FoV of ˜ 8.6 sr. This position will be communicated to the main instrument of GLAST making follow-up observations at high energies possible.

  2. Galactic dual population models of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.; Lingenfelter, R. E.

    1994-01-01

    We investigate in more detail the properties of two-population models for gamma-ray bursts in the galactic disk and halo. We calculate the gamma-ray burst statistical properties, mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), as functions of the detection flux threshold for bursts coming from both Galactic disk and massive halo populations. We consider halo models inferred from the observational constraints on the large-scale Galactic structure and we compare the expected values of mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), with those measured by Burst and Transient Source Experiment (BATSE) and other detectors. We find that the measured values are consistent with solely Galactic populations having a range of halo distributions, mixed with local disk distributions, which can account for as much as approximately 25% of the observed BATSE bursts. M31 does not contribute to these modeled bursts. We also demonstrate, contrary to recent arguments, that the size-frequency distributions of dual population models are quite consistent with the BATSE observations.

  3. Characterizing Oscillatory Bursts in Single-Trial EEG Data

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Lakatos, P.; Schroeder, C. E.

    2004-01-01

    Oscillatory bursts in numerous bands ranging from low (theta) to high frequencies (e.g., gamma) undoubtedly play an important role in cortical dynamics. Largely because of the inadequacy of existing analytic techniques. however, oscillatory bursts and their role in cortical processing remains poorly understood. To study oscillatory bursts effectively one must be able to isolate them and characterize them in the single trial. We describe a series of straightforward analysis techniques that produce useful indices of burst characteristics. First, stimulus-evoked responses are estimated using Differentially Variable Component Analysis (dVCA), and are subtracted from the single-trial. The single-trial characteristics of the evoked responses are stored to identify possible correlations with burst activity. Time-frequency (T-F), or wavelet, analyses are then applied to the single trial residuals. While T-F plots have been used in recent studies to identify and isolate bursts, we go further by fitting each burst in the T-F plot with a two-dimensional Gaussian. This provides a set of burst characteristics, such as, center time. burst duration, center frequency. frequency dispersion. and amplitude, all of which contribute to the accurate characterization of the individual burst. The burst phase can also be estimated. Burst characteristics can be quantified with several standard techniques (e.g.. histogramming and clustering), as well as Bayesian techniques (e.g., blocking) to allow a more parametric description analysis of the characteristics of oscillatory bursts, and the relationships of specific parameters to cortical excitability and stimulus integration.

  4. Characterizing Oscillatory Bursts in Single-Trial EEG Data

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Lakatos, P.; Schroeder, C. E.

    2004-01-01

    Oscillatory bursts in numerous bands ranging from low (theta) to high frequencies (e.g., gamma) undoubtedly play an important role in cortical dynamics. Largely because of the inadequacy of existing analytic techniques. however, oscillatory bursts and their role in cortical processing remains poorly understood. To study oscillatory bursts effectively one must be able to isolate them and characterize them in the single trial. We describe a series of straightforward analysis techniques that produce useful indices of burst characteristics. First, stimulus-evoked responses are estimated using Differentially Variable Component Analysis (dVCA), and are subtracted from the single-trial. The single-trial characteristics of the evoked responses are stored to identify possible correlations with burst activity. Time-frequency (T-F), or wavelet, analyses are then applied to the single trial residuals. While T-F plots have been used in recent studies to identify and isolate bursts, we go further by fitting each burst in the T-F plot with a two-dimensional Gaussian. This provides a set of burst characteristics, such as, center time. burst duration, center frequency. frequency dispersion. and amplitude, all of which contribute to the accurate characterization of the individual burst. The burst phase can also be estimated. Burst characteristics can be quantified with several standard techniques (e.g.. histogramming and clustering), as well as Bayesian techniques (e.g., blocking) to allow a more parametric description analysis of the characteristics of oscillatory bursts, and the relationships of specific parameters to cortical excitability and stimulus integration.

  5. On a Quantization of the Classical theta-Functions

    NASA Astrophysics Data System (ADS)

    Brezhnev, Yurii V.

    2015-04-01

    The Jacobi theta-functions admit a definition through the autonomous differential equations (dynamical system); not only through the famous Fourier theta-series. We study this system in the framework of Hamiltonian dynamics and find corresponding Poisson brackets. Availability of these ingredients allows us to state the problem of a canonical quantization to these equations and disclose some important problems. In a particular case the problem is completely solvable in the sense that spectrum of the Hamiltonian can be found. The spectrum is continuous, has a band structure with infinite number of lacunae, and is determined by the Mathieu equation: the Schrödinger equation with a periodic cos-type potential.

  6. Hippocampal theta sequences reflect current goals.

    PubMed

    Wikenheiser, Andrew M; Redish, A David

    2015-02-01

    Hippocampal information processing is discretized by oscillations, and the ensemble activity of place cells is organized into temporal sequences bounded by theta cycles. Theta sequences represent time-compressed trajectories through space. Their forward-directed nature makes them an intuitive candidate mechanism for planning future trajectories, but their connection to goal-directed behavior remains unclear. As rats performed a value-guided decision-making task, the extent to which theta sequences projected ahead of the animal's current location varied on a moment-by-moment basis depending on the rat's goals. Look-ahead extended farther on journeys to distant goals than on journeys to more proximal goals and was predictive of the animal's destination. On arrival at goals, however, look-ahead was similar regardless of where the animal began its journey from. Together, these results provide evidence that hippocampal theta sequences contain information related to goals or intentions, pointing toward a potential spatial basis for planning.

  7. Movement Enhances the Nonlinearity of Hippocampal Theta

    PubMed Central

    Sheremet, Alex; Burke, Sara N.

    2016-01-01

    The nonlinear, metastable dynamics of the brain are essential for large-scale integration of smaller components and for the rapid organization of neurons in support of behavior. Therefore, understanding the nonlinearity of the brain is paramount for understanding the relationship between brain dynamics and behavior. Explicit quantitative descriptions of the properties and consequences of nonlinear neural networks, however, are rare. Because the local field potential (LFP) reflects the total activity across a population of neurons, nonlinearites of the nervous system should be quantifiable by examining oscillatory structure. We used high-order spectral analysis of LFP recorded from the dorsal and intermediate regions of the rat hippocampus to show that the nonlinear character of the hippocampal theta rhythm is directly related to movement speed of the animal. In the time domain, nonlinearity is expressed as the development of skewness and asymmetry in the theta shape. In the spectral domain, nonlinear dynamics manifest as the development of a chain of harmonics statistically phase coupled to the theta oscillation. This evolution was modulated across hippocampal regions, being stronger in the dorsal CA1 relative to more intermediate areas. The intensity and timing of the spiking activity of pyramidal cells and interneurons was strongly correlated to theta nonlinearity. Because theta is known to propagate from dorsal to ventral regions of the hippocampus, these data suggest that the nonlinear character of theta decreases as it travels and supports a hypothesis that activity dissipates along the longitudinal axis of the hippocampus. SIGNIFICANCE STATEMENT We describe the first explicit quantification regarding how behavior enhances the nonlinearity of the nervous system. Our findings demonstrate uniquely how theta changes with increasing speed due to the altered underlying neuronal dynamics and open new directions of research on the relationship between single

  8. Resting EEG theta activity predicts cognitive performance in attention-deficit hyperactivity disorder.

    PubMed

    Hermens, Daniel F; Soei, Eleonore X C; Clarke, Simon D; Kohn, Michael R; Gordon, Evian; Williams, Leanne M

    2005-04-01

    Quantitative electroencephalography has contributed significantly to elucidating the neurobiologic mechanisms of attention-deficit hyperactivity disorder. The most consistent and robust electroencephalographic disturbance in attention-deficit hyperactivity disorder has been abnormally increased theta band during resting conditions. Separate research using attention-demanding tests has elucidated cognitive disturbances that differentiate attention-deficit hyperactivity disorder. This study attempts to integrate electroencephalographic and neuropsychological indices to determine whether cognitive performance is specifically related to increased theta. Theta activity was recorded during a resting condition for 46 children/adolescents with attention-deficit hyperactivity disorder and their sex- and age-matched control subjects. Accuracy and reaction time during an auditory oddball and a visual continuous performance test were then recorded. Compared with control subjects, the attention-deficit hyperactivity disorder group manifested significantly increased (primarily left) frontal theta. Furthermore, the attention-deficit hyperactivity disorder group scored significantly delayed reaction time and decreased accuracy in both tasks. Correlation analysis revealed a significant relationship between frontal (primarily left) theta and oddball accuracy for the attention-deficit hyperactivity disorder group compared with a significant relationship between posterior (primarily right) theta and reaction time in the continuous performance test for the control group. These results indicate that spatial neurophysiologic deficits in attention-deficit hyperactivity disorder may be related to disturbances in signal detection. This observation has important implications for the role of trait-like biologic deficits in attention-deficit hyperactivity disorder predicting performance in information processing.

  9. Lattice theta constants vs Riemann theta constants and NSR superstring measures

    NASA Astrophysics Data System (ADS)

    Dunin-Barkowski, P.; Morozov, A.; Sleptsov, A.

    2009-10-01

    We discuss relations between two different representations of hypothetical holomorphic NSR measures, based on two different ways of constructing the semi-modular forms of weight 8. One of these ways is to build forms from the ordinary Riemann theta constants and another — from the lattice theta constants. We discuss unexpectedly elegant relations between lattice theta constants, corresponding to 16-dimensional self-dual lattices, and Riemann theta constants and present explicit formulae expressing the former ones through the latter. Starting from genus 5 the modular-form approach to construction of NSR measures is clearly sick and it seems to fail completely already at genus 6.

  10. Respiratory cycle entrainment of septal neurons mediates the fast coupling of sniffing rate and hippocampal theta rhythm

    PubMed Central

    Tsanov, Marian; Chah, Ehsan; Reilly, Richard; O∼Mara, Shane M

    2014-01-01

    Memory for odour information may result from temporal coupling between the olfactory and hippocampal systems. Respiration defines the frequency of olfactory perception, but how the respiratory rate affects hippocampal oscillations remains poorly understood. The afferent connectivity of the medial septum/diagonal band of Broca complex (MS/DB) proposes this region as a crossroads between respiratory and limbic pathways. Here we investigate if the firing rates of septal neurons integrate respiratory rate signals. We demonstrate that approximately 50% of MS/DB neurons are temporally correlated with sniffing frequency. Moreover, a group of slow-spiking septal neurons are phase-locked to the sniffing cycle. We show that inter-burst intervals of MS/DB theta cells relate to the sniff rate. Intranasal odour infusion evokes sniff phase preference for the activity of fast-spiking MS/DB neurons. Concurrently, the infusion augments the correlation between sniffing and limbic theta oscillations. During periods of sniffing–theta correlation, CA1 place cells fired preferentially during the inhalation phase, suggesting the theta cycle as a coherent time frame for central olfactory processing. Furthermore, injection of the GABAergic agonist muscimol into medial septum induces a parallel decrease of sniffing and theta frequencies. Our findings provide experimental evidence that MS/DB does not merely generate theta rhythm, but actively integrates sensorimotor stimuli that reflect sniffing rate. Such integration may provide temporal oscillatory synchronisation of MS/DB-innervated limbic structures with the sniffing cycle. PMID:24329896

  11. Respiratory cycle entrainment of septal neurons mediates the fast coupling of sniffing rate and hippocampal theta rhythm.

    PubMed

    Tsanov, Marian; Chah, Ehsan; Reilly, Richard; O'Mara, Shane M

    2014-03-01

    Memory for odour information may result from temporal coupling between the olfactory and hippocampal systems. Respiration defines the frequency of olfactory perception, but how the respiratory rate affects hippocampal oscillations remains poorly understood. The afferent connectivity of the medial septum/diagonal band of Broca complex (MS/DB) proposes this region as a crossroads between respiratory and limbic pathways. Here we investigate if the firing rates of septal neurons integrate respiratory rate signals. We demonstrate that approximately 50% of MS/DB neurons are temporally correlated with sniffing frequency. Moreover, a group of slow-spiking septal neurons are phase-locked to the sniffing cycle. We show that inter-burst intervals of MS/DB theta cells relate to the sniff rate. Intranasal odour infusion evokes sniff phase preference for the activity of fast-spiking MS/DB neurons. Concurrently, the infusion augments the correlation between sniffing and limbic theta oscillations. During periods of sniffing-theta correlation, CA1 place cells fired preferentially during the inhalation phase, suggesting the theta cycle as a coherent time frame for central olfactory processing. Furthermore, injection of the GABAergic agonist muscimol into medial septum induces a parallel decrease of sniffing and theta frequencies. Our findings provide experimental evidence that MS/DB does not merely generate theta rhythm, but actively integrates sensorimotor stimuli that reflect sniffing rate. Such integration may provide temporal oscillatory synchronisation of MS/DB-innervated limbic structures with the sniffing cycle.

  12. Frontal theta overrides pavlovian learning biases.

    PubMed

    Cavanagh, James F; Eisenberg, Ian; Guitart-Masip, Marc; Huys, Quentin; Frank, Michael J

    2013-05-08

    Pavlovian biases influence learning and decision making by intricately coupling reward seeking with action invigoration and punishment avoidance with action suppression. This bias is not always adaptive-it can often interfere with instrumental requirements. The prefrontal cortex is thought to help resolve such conflict between motivational systems, but the nature of this control process remains unknown. EEG recordings of midfrontal theta band power are sensitive to conflict and predictive of adaptive control over behavior, but it is not clear whether this signal reflects control over conflict between motivational systems. Here we used a task that orthogonalized action requirements and outcome valence while recording concurrent EEG in human participants. By applying a computational model of task performance, we derived parameters reflective of the latent influence of Pavlovian bias and how it was modulated by midfrontal theta power during motivational conflict. Between subjects, those who performed better under Pavlovian conflict exhibited higher midfrontal theta power. Within subjects, trial-to-trial variance in theta power was predictive of ability to overcome the influence of the Pavlovian bias, and this effect was most pronounced in subjects with higher midfrontal theta to conflict. These findings demonstrate that midfrontal theta is not only a sensitive index of prefrontal control, but it can also reflect the application of top-down control over instrumental processes.

  13. Grid cells without theta oscillations in the entorhinal cortex of bats.

    PubMed

    Yartsev, Michael M; Witter, Menno P; Ulanovsky, Nachum

    2011-11-02

    Grid cells provide a neural representation of space, by discharging when an animal traverses through the vertices of a periodic hexagonal grid spanning the environment. Although grid cells have been characterized in detail in rats, the fundamental question of what neural dynamics give rise to the grid structure remains unresolved. Two competing classes of models were proposed: network models, based on attractor dynamics, and oscillatory interference models, which propose that interference between somatic and dendritic theta-band oscillations (4-10 Hz) in single neurons transforms a temporal oscillation into a spatially periodic grid. So far, these models could not be dissociated experimentally, because rodent grid cells always co-exist with continuous theta oscillations. Here we used a novel animal model, the Egyptian fruit bat, to refute the proposed causal link between grids and theta oscillations. On the basis of our previous finding from bat hippocampus, of spatially tuned place cells in the absence of continuous theta oscillations, we hypothesized that grid cells in bat medial entorhinal cortex might also exist without theta oscillations. Indeed, we found grid cells in bat medial entorhinal cortex that shared remarkable similarities to rodent grid cells. Notably, the grids existed in the absence of continuous theta-band oscillations, and with almost no theta modulation of grid-cell spiking--both of which are essential prerequisites of the oscillatory interference models. Our results provide a direct demonstration of grid cells in a non-rodent species. Furthermore, they strongly argue against a major class of computational models of grid cells.

  14. Bursts in discontinuous Aeolian saltation

    PubMed Central

    Carneiro, M. V.; Rasmussen, K. R.; Herrmann, H. J.

    2015-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of discontinuous flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the fluid threshold Shields number θc. The time delay between each burst decreases on average with the increase of the Shields number until sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain discontinuous flux even below the fluid threshold. PMID:26073305

  15. Serotonergic modulation of septo-hippocampal and septo-mammillary theta activity during spatial learning, in the rat.

    PubMed

    Gutiérrez-Guzmán, Blanca Erika; Hernández-Pérez, J Jesús; Olvera-Cortés, María Esther

    2017-02-15

    Theta activity has been related to the processing of spatial information and the formation of hippocampus-dependent memory. The medial septum (MS) plays an important role in the control and coordination of theta activity, as well as in the modulation of learning. It has been established that increased serotonergic activity may desynchronize theta activity, while reduced serotonergic activity produces continuous and persistent theta activity in the hippocampus. We investigate whether serotonin acting on the medial septum could modify spatial learning and the functional relationship between septo-hippocampal and septo-mammillary theta activity. The serotonin was depleted (5HT-D) from the medial septum by the injection of 5,7 DHT (5,7- dihydroxytryptamine). Theta activity was recorded in the dorsal hippocampus, MS and mammillary nuclei (SUM, MM) of Sprague-Dawley male rats during spatial learning in the Morris water maze. Spatial learning was facilitated, and the frequency of the hippocampal theta activity during the first days of training increased (to 8.5Hz) in the 5HT-D group, unlike the vehicle group. Additionally, the coherence between the MS-hippocampus and the MS-mammillary nuclei was higher during the second day of the test compared to the vehicle group. We demonstrated that septal serotonin depletion facilitates the acquisition of spatial information in association with a higher functional coupling of the medial septum with the hippocampus and mammillary nuclei. Serotonin, acting in the medial septum, modulates hippocampal theta activity and spatial learning.

  16. [The effect of anesthetic concentration on burst-suppression of the EEG in rats].

    PubMed

    Zhang, Dandan; Jia, Xiaofeng; Ding, Haiyan

    2012-04-01

    The term "burst-suppression" is used to describe the electroencephalogram (EEG) pattern characterized by theta or delta waves, at times intermixed with faster waves, and intervening periods of relative quiescence. Burst-suppression pattern can reflect the seriously suppressed brain activity under deep anesthesia. To investigate the relationship between burst-suppression features and anesthetic concentration, we adopted four straightforward indexes, i. e., burst-suppression ratio (BSR), burst frequency, burst amplitude and suppression amplitude, and used them to analyze the EEG recordings in ten isoflurane-anesthetized rats. It was found that all the four burst-suppression indexes changed along with anesthetic concentration, that BSR and burst amplitude increased with higher concentration of isoflurane while burst frequency and suppression amplitude decreased, and that BSR was the most sensitive and consistent measurement to indicate isoflurane concentration so it constituted a valuable tool for timely evaluation of burst-suppression feature under deep anesthesia. The result also showed that the composition of carrier gas (i. e. pure oxygen vs. mixed oxygen) did not influence the effect of anesthesia significantly; and the four indexes of burst-suppression features could keep relatively stable within 60 min under the isoflurane concentration of 2%. The present study provides quantitative information of burst-suppression features under different anesthetic depth and may help to develop a clinically satisfied system that could quantify the characteristics of EEG and rigorously evaluate the cerebral state of patients.

  17. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex

    PubMed Central

    2011-01-01

    Background How oscillatory brain rhythms alone, or in combination, influence cortical information processing to support learning has yet to be fully established. Local field potential and multi-unit neuronal activity recordings were made from 64-electrode arrays in the inferotemporal cortex of conscious sheep during and after visual discrimination learning of face or object pairs. A neural network model has been developed to simulate and aid functional interpretation of learning-evoked changes. Results Following learning the amplitude of theta (4-8 Hz), but not gamma (30-70 Hz) oscillations was increased, as was the ratio of theta to gamma. Over 75% of electrodes showed significant coupling between theta phase and gamma amplitude (theta-nested gamma). The strength of this coupling was also increased following learning and this was not simply a consequence of increased theta amplitude. Actual discrimination performance was significantly correlated with theta and theta-gamma coupling changes. Neuronal activity was phase-locked with theta but learning had no effect on firing rates or the magnitude or latencies of visual evoked potentials during stimuli. The neural network model developed showed that a combination of fast and slow inhibitory interneurons could generate theta-nested gamma. By increasing N-methyl-D-aspartate receptor sensitivity in the model similar changes were produced as in inferotemporal cortex after learning. The model showed that these changes could potentiate the firing of downstream neurons by a temporal desynchronization of excitatory neuron output without increasing the firing frequencies of the latter. This desynchronization effect was confirmed in IT neuronal activity following learning and its magnitude was correlated with discrimination performance. Conclusions Face discrimination learning produces significant increases in both theta amplitude and the strength of theta-gamma coupling in the inferotemporal cortex which are correlated with

  18. Measuring Theta_13 at Daya Bay

    SciTech Connect

    Lau, Kwong

    2014-03-14

    We measured the neutrino mixing angle, theta13, presumably related to the preponderance of matter over antimatter in our universe with high precision. We determined theta13 by measuring the disappearance of neutrinos from a group of six nuclear reactors. The target, located inside a mountain at about 2 km from the reactors, is 80 tons of liquid scintillator doped with trace amount of Gadolinium to increase its neutron detection efficiency. The neutrino flux is measured by the inverse beta-decay reaction where the final-state particles are detected by the liquid scintillator. The measured value of theta13, based on data collected over 3 years, is large, around 8 degrees, rendering the measurement of the parameter related to matter-antimatter asymmetry in future long baseline neutrino experiments easier.

  19. Gamma-ray burst jets: uniform or structured?

    NASA Astrophysics Data System (ADS)

    Salafia, O. S.; Pescalli, A.; Nappo, F.; Ghisellini, G.; Ghirlanda, G.; Salvaterra, R.; Tagliaferri, G.

    The structure of Gamma-Ray Burst (GRB) jets impacts on their prompt and afterglow emission properties. Insights into the still unknown structure of GRBs can be achieved by studying how different structures impact on the luminosity function (LF): i) we show that low ($10^{46} < L_{\\rm iso} < 10^{48}$ erg/s) and high (i.e. with $L_{\\rm iso} > 10^{50}$ erg/s) luminosity GRBs can be described by a unique LF; ii) we find that a uniform jet (seen on- and off-axis) as well as a very steep structured jet (i.e. $\\epsilon(\\theta) \\propto \\theta^{-s}$ with $s > 4$) can reproduce the current LF data; iii) taking into account the emission from the whole jet (i.e. including contributions from mildly relativistic, off-axis jet elements) we find that $E_{\\rm iso}(\\theta_{\\rm v})$ (we dub this quantity "apparent structure") can be very different from the intrinsic structure $\\epsilon(\\theta)$: in particular, a jet with a Gaussian intrinsic structure has an apparent structure which is more similar to a power law. This opens a new viewpoint on the quasi-universal structured jet hypothesis.

  20. How Long does a Burst Burst?

    NASA Astrophysics Data System (ADS)

    Zhang, Bin-Bin; Zhang, Bing; Murase, Kohta; Connaughton, Valerie; Briggs, Michael S.

    2014-05-01

    Several gamma-ray bursts (GRBs) last much longer (~hours) in γ-rays than typical long GRBs (~minutes), and it has recently been proposed that these "ultra-long GRBs" may form a distinct population, probably with a different (e.g., blue supergiant) progenitor than typical GRBs. However, Swift observations suggest that many GRBs have extended central engine activities manifested as flares and internal plateaus in X-rays. We perform a comprehensive study on a large sample of Swift GRBs with X-Ray Telescope observations to investigate GRB central engine activity duration and to determine whether ultra-long GRBs are unusual events. We define burst duration t burst based on both γ-ray and X-ray light curves rather than using γ-ray observations alone. We find that t burst can be reliably measured in 343 GRBs. Within this "good" sample, 21.9% GRBs have t burst >~ 103 s and 11.5% GRBs have t burst >~ 104 s. There is an apparent bimodal distribution of t burst in this sample. However, when we consider an "undetermined" sample (304 GRBs) with t burst possibly falling in the gap between GRB duration T 90 and the first X-ray observational time, as well as a selection effect against t burst falling into the first Swift orbital "dead zone" due to observation constraints, the intrinsic underlying t burst distribution is consistent with being a single component distribution. We found that the existing evidence for a separate ultra-long GRB population is inconclusive, and further multi-wavelength observations are needed to draw a firmer conclusion. We also discuss the theoretical implications of our results. In particular, the central engine activity duration of GRBs is generally much longer than the γ-ray T 90 duration and it does not even correlate with T 90. It would be premature to make a direct connection between T 90 and the size of the progenitor star.

  1. Cerebellar theta oscillations are synchronized during hippocampal theta-contingent trace conditioning

    PubMed Central

    Hoffmann, Loren C.; Berry, Stephen D.

    2009-01-01

    The hippocampus and cerebellum are critically involved in trace eyeblink classical conditioning (EBCC). The mechanisms underlying the hippocampal-cerebellar interaction during this task are not well-understood, although hippocampal theta (3–7 Hz) oscillations are known to reflect a favorable state for EBCC. Two groups of rabbits received trace EBCC in which a brain-computer interface administered trials in either the explicit presence or absence of naturally occurring hippocampal theta. A high percentage of robust theta led to a striking enhancement of learning accompanied by rhythmic theta-band (6–7 Hz) oscillations in the interpositus nucleus (IPN) and cerebellar cortex that were time-locked both to hippocampal rhythms and sensory stimuli during training. Rhythmic oscillations were absent in the cerebellum of the non-theta group. These data strongly suggest a beneficial impact of theta-based coordination of hippocampus and cerebellum and, importantly, demonstrate that hippocampal theta oscillations can be used to index, and perhaps modulate, the functional properties of the cerebellum. PMID:19940240

  2. Gamma-Ray Bursts in the Swift Era

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Ramirez-Ruiz, E.; Fox, D. B.

    2010-01-01

    With its rapid-response capability and multiwavelength complement of instruments, the Swift satellite has transformed our physical understanding of gamma-ray bursts. Providing high-quality observations of hundreds of bursts, and facilitating a wide range of follow-up observations within seconds of each event, Swift has revealed an unforeseen richness in observed burst properties, shed light on the nature of short-duration bursts, and helped realize the promise of gamma-ray bursts as probes of the processes and environments of star formation out to the earliest cosmic epochs. These advances have opened new perspectives on the nature and properties of burst central engines, interactions with the burst environment from microparsec to gigaparsec scales, and the possibilities for non-photonic signatures. Our understanding of these extreme cosmic sources has thus advanced substantially; yet more than forty years after their discovery, gamma-ray bursts continue to present major challenges on both observational and theoretical fronts.

  3. Spectral Tests of the Homogeneity of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Band, David L.

    1999-01-01

    We proposed to determine whether the spectral-hardness-intensity relation found when comparing dim and bright bursts is also found within the set of bright bursts. In the simplest cosmological burst paradigm all bursts have the same intrinsic brightness (they are "standard candles") and the faintest BATSE bursts are at a redshift of approx. 1. The cumulative intensity distribution, which is a -3/2 power law at the bright end but flatter at the low intensity end, is explained by the cosmological curvature of space. Thus bursts at the bright end should be at such low redshifts that they do not suffer cosmological redshifting of their spectra or time dilation of their lightcurves. The spectral-hardness and burst intensity are correlated when dim and bright bursts are compared, consistent with cosmological redshifting. However, the actual redshifts of a number of bursts have been determined, showing that bursts are not standard candles, and that their redshifts are frequently greater than approx. 1; the maximum redshift is 3.4! Consequently many bright bursts are at redshifts where cosmological effects are significant. We had proposed to determine A,hether the redshifting effect continued into the bright bursts; even moderately bright bursts should be at cosmological distances.

  4. Spectral Tests of the Homogeneity of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Band, David L.

    1999-01-01

    We proposed to determine whether the spectral-hardness-intensity relation found when comparing dim and bright bursts is also found within the set of bright bursts. In the simplest cosmological burst paradigm all bursts have the same intrinsic brightness (they are "standard candles") and the faintest BATSE bursts are at a redshift of approx. 1. The cumulative intensity distribution, which is a -3/2 power law at the bright end but flatter at the low intensity end, is explained by the cosmological curvature of space. Thus bursts at the bright end should be at such low redshifts that they do not suffer cosmological redshifting of their spectra or time dilation of their lightcurves. The spectral-hardness and burst intensity are correlated when dim and bright bursts are compared, consistent with cosmological redshifting. However, the actual redshifts of a number of bursts have been determined, showing that bursts are not standard candles, and that their redshifts are frequently greater than approx. 1; the maximum redshift is 3.4! Consequently many bright bursts are at redshifts where cosmological effects are significant. We had proposed to determine A,hether the redshifting effect continued into the bright bursts; even moderately bright bursts should be at cosmological distances.

  5. Holomorphic projections and Ramanujan's mock theta functions.

    PubMed

    Imamoğlu, Özlem; Raum, Martin; Richter, Olav K

    2014-03-18

    We use spectral methods of automorphic forms to establish a holomorphic projection operator for tensor products of vector-valued harmonic weak Maass forms and vector-valued modular forms. We apply this operator to discover simple recursions for Fourier series coefficients of Ramanujan's mock theta functions.

  6. The Burst Mode of Protostellar Accretion

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.; Basu, Shantanu

    2006-10-01

    We present new numerical simulations in the thin disk approximation that characterize the burst mode of protostellar accretion. The burst mode begins upon the formation of a centrifugally balanced disk around a newly formed protostar. It comprises prolonged quiescent periods of low accretion rate (typically <~10-7 Msolar yr-1) that are punctuated by intense bursts of accretion (typically >~10-4 Msolar yr-1, with duration <~100 yr) during which most of the protostellar mass is accumulated. The accretion bursts are associated with the formation of dense protostellar/protoplanetary embryos, which are later driven onto the protostar by the gravitational torques that develop in the disk. Gravitational instability in the disk, driven by continuing infall from the envelope, is shown to be an effective means of transporting angular momentum outward and mass inward to the protostar. We show that the disk mass always remains significantly less than the central protostar's mass throughout this process. The burst phenomenon is robust enough to occur for a variety of initial values of rotation rate and frozen-in (supercritical) magnetic field and a variety of density-temperature relations. Even in cases where the bursts are nearly entirely suppressed, a moderate increase in cloud size or rotation rate can lead to vigorous burst activity. We conclude that most (if not all) protostars undergo a burst mode of evolution during their early accretion history, as inferred empirically from observations of FU Orionis variables.

  7. Better than sleep: theta neurofeedback training accelerates memory consolidation.

    PubMed

    Reiner, Miriam; Rozengurt, Roman; Barnea, Anat

    2014-01-01

    Consistent empirical results showed that both night and day sleep enhanced memory consolidation. In this study we explore processes of consolidation of memory during awake hours. Since theta oscillations have been shown to play a central role in exchange of information, we hypothesized that elevated theta during awake hours will enhance memory consolidation. We used a neurofeedback protocol, to enhance the relative power of theta or beta oscillations. Participants trained on a tapping task, were divided into three groups: neurofeedback theta; neurofeedback beta; control. We found a significant improvement in performance in the theta group, relative to the beta and control groups, immediately after neurofeedback. Performance was further improved after night sleep in all groups, with a significant advantage favoring the theta group. Theta power during training was correlated with the level of improvement, indicating a clear relationship between memory consolidation, and theta neurofeedback.

  8. Hippocampal theta, gamma, and theta-gamma coupling: effects of aging, environmental change, and cholinergic activation

    PubMed Central

    Jacobson, Tara K.; Howe, Matthew D.; Schmidt, Brandy; Hinman, James R.; Escabí, Monty A.

    2013-01-01

    Hippocampal theta and gamma oscillations coordinate the timing of multiple inputs to hippocampal neurons and have been linked to information processing and the dynamics of encoding and retrieval. One major influence on hippocampal rhythmicity is from cholinergic afferents. In both humans and rodents, aging is linked to impairments in hippocampus-dependent function along with degradation of cholinergic function. Cholinomimetics can reverse some age-related memory impairments and modulate oscillations in the hippocampus. Therefore, one would expect corresponding changes in these oscillations and possible rescue with the cholinomimetic physostigmine. Hippocampal activity was recorded while animals explored a familiar or a novel maze configuration. Reexposure to a familiar situation resulted in minimal aging effects or changes in theta or gamma oscillations. In contrast, exploration of a novel maze configuration increased theta power; this was greater in adult than old animals, although the deficit was reversed with physostigmine. In contrast to the theta results, the effects of novelty, age, and/or physostigmine on gamma were relatively weak. Unrelated to the behavioral situation were an age-related decrease in the degree of theta-gamma coupling and the fact that physostigmine lowered the frequency of theta in both adult and old animals. The results indicate that age-related changes in gamma and theta modulation of gamma, while reflecting aging changes in hippocampal circuitry, seem less related to aging changes in information processing. In contrast, the data support a role for theta and the cholinergic system in encoding and that hippocampal aging is related to impaired encoding of new information. PMID:23303862

  9. The Swift Burst Alert Telescope

    NASA Astrophysics Data System (ADS)

    Parsons, A.; Barthelmy, S.; Barbier, L.; Gehrels, N.; Palmer, D.; Tueller, J.; Fenimore, E.; BAT Engineering Team

    2000-10-01

    The Swift Gamma Ray Burst MIDEX is a multiwavelength observatory scheduled to be launched in September 2003 to study gamma-ray bursts (GRBs) and their x-ray and optical afterglow emission. Swift will exploit these newly discovered GRB afterglow characteristics to make a comprehensive study of ~ 1000 GRBs and use the afterglow phenomenon as a tool for probing their source and evolution. Swift will also be able to use GRBs to probe the early Universe. The Burst Alert Telescope (BAT), a large coded aperture instrument with a wide field-of-view (FOV), provides the gamma-ray burst triggers and locations for the Swift Mission. BAT will observe and locate hundreds of bursts per year to better than 4 arc minutes accuracy. Using this prompt burst location information, Swift can slew quickly (within 20 - 70 s) to point on-board x-ray (XRT) and optical (UVOT) instrumentation at the burst for continued afterglow studies. The BAT instrument consists of a large (5200 cm2) hard x-ray detector plane positioned one meter away from an even larger (2.6 m2) coded aperture mask. The BAT detector plane consists of 128 CdZnTe semiconductor detector modules each containing 256 individual, planar 4 mm x 4 mm x 2 mm CdZnTe detectors that are read out by a pair of XA1 Application Specific Integrated Circuits (ASICs). The BAT mask will be constructed using 5 mm x 5 mm x 1 mm lead tiles attached to a self-supporting 0.4 g/cm2 substrate fabricated from Kevlar fiber/honeycomb materials. With 4 mm square focal plane detector elements and 5 mm square mask pixels, BAT will have angular resolution better than 22 arc minutes and will determine GRB source locations to ~ 4 arc minutes for bursts detected at 5 sigma or brighter. A full description of the BAT instrument and its capabilities will be presented along with results from performance tests of prototype detector modules.

  10. Self-generated theta oscillations in the hippocampus.

    PubMed

    Goutagny, Romain; Jackson, Jesse; Williams, Sylvain

    2009-12-01

    Hippocampal theta rhythm is crucial for spatial memory and is thought to be generated by extrinsic inputs. In contrast, using a complete rat hippocampus in vitro, we found several intrinsic, atropine-resistant theta generators in CA1. These oscillators were organized along the septotemporal axis and arose independently from CA3. Our results suggest that CA1 theta rhythm can emerge from the coupling of multiple autonomous hippocampal theta oscillators.

  11. Burst-by-burst laser frequency monitor

    NASA Technical Reports Server (NTRS)

    Esproles, Carlos (Inventor)

    1994-01-01

    The invention is a system for real-time frequency monitoring and display of an RF burst where the burst frequency is analyzed and displayed on a burst-by-burst basis in order to allow for frequency control. Although the invention was made for monitoring the laser frequency of a LIDAR system, it has other applications where realtime monitoring is required. The novelty of the invention resides in the use of a counter that is reset at the beginning of each unit time of monitoring and then gated for a unit of time. The invention also has an LED bar graph for displaying the measure of frequency at the end of each unit time in either a bar length mode or a moving dot mode. In the latter mode, the operator makes necessary adjustments to maintain the dot at the center of the bar graph.

  12. THE FERMI-GBM X-RAY BURST MONITOR: THERMONUCLEAR BURSTS FROM 4U 0614+09

    SciTech Connect

    Linares, M.; Chakrabarty, D.; Connaughton, V.; Bhat, P. N.; Briggs, M. S.; Preece, R.; Jenke, P.; Kouveliotou, C.; Wilson-Hodge, C. A.; Camero-Arranz, A.; Finger, M.; Paciesas, W. S.; Beklen, E.; Von Kienlin, A.

    2012-12-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 {+-} 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  13. Theta phase locking across the neocortex reflects cortico-hippocampal recursive communication during goal conflict resolution.

    PubMed

    Moore, Roger A; Gale, Anthony; Morris, Paul H; Forrester, Dave

    2006-06-01

    EEG theta coherence, EEG theta power and subjective levels of response were examined in a continuous monitoring target detection task where periodic goal conflicts were introduced as 34 participants progressed through a stimulus sequence leading to response. EEG theta coherence revealed increases in phase locking between cortical areas at specific task stages involving goal conflict. Theta power also increased at points of goal conflict. The temporal characteristics of subjective response (measured continuously throughout the task) indicated a delay between participants actually experiencing goal conflict and overt indications of conflict. The starting point for the study was based on a specific aspect of Gray and McNaughton's [Gray, J.A., McNaughton, N., 2000. The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal System, 2nd ed. Oxford University Press, Oxford] behavioural inhibition system model-namely, septo-hippocampal system involvement in the resolution of goal conflicts. We drew on Gray and McNaughton's [Gray, J.A., McNaughton, N., 2000. The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal system, 2nd ed. Oxford University Press, Oxford] suggestion that septo-hippocampal involvement in this process is reflected by EEG theta. While their theory explains many of our findings, we also drew upon Given's [Givens, B., 1996. Stimulus-evoked reseting of the dentate theta rhythm: relation to working memory. Neuroreport 8 (1), 159-163] proposal that the dentate theta rhythm is reset by behaviourally relevant stimuli. We made further proposals based on Makeig et al.'s [Makeig, S., Westerfield, M., Jung, T.-P., Enghoff, S., Townsend, J., Courchesne, E., Sejnowski, T.J., 2002. Dynamic brain sources of visual evoked responses. Science 295, 690-694] view that specific stimulus events invoke concurrent phase resetting and transient frequency domain coherence across different areas of neocortex. Relations

  14. A Non-Triggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, J.; Lewin, W. H.; Kouveliotou, C.; vanParadijs, J.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.

    1998-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the onboard burst trigger. For example, the burst may be too faint to exceed the onboard detection threshold, or it may occur while the onboard burst trigger is disabled for technical reasons. This paper is a catalog of such "non-triggered" GRBs that were detected in a search of the archival continuous data from BATSE. It lists 873 non-triggered bursts that were recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  15. A Non-Triggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, J.; Lewin, W. H.; Kouveliotou, C.; vanParadijs, J.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.

    1998-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the onboard burst trigger. For example, the burst may be too faint to exceed the onboard detection threshold, or it may occur while the onboard burst trigger is disabled for technical reasons. This paper is a catalog of such "non-triggered" GRBs that were detected in a search of the archival continuous data from BATSE. It lists 873 non-triggered bursts that were recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  16. A Neocortical Delta Rhythm Facilitates Reciprocal Interlaminar Interactions via Nested Theta Rhythms

    PubMed Central

    Carracedo, Lucy M.; Kjeldsen, Henrik; Cunnington, Leonie; Jenkins, Alastair; Schofield, Ian; Cunningham, Mark O.; Davies, Ceri H.; Traub, Roger D.

    2013-01-01

    Delta oscillations (1–4 Hz) associate with deep sleep and are implicated in memory consolidation and replay of cortical responses elicited during wake states. A potent local generator has been characterized in thalamus, and local generators in neocortex have been suggested. Here we demonstrate that isolated rat neocortex generates delta rhythms in conditions mimicking the neuromodulatory state during deep sleep (low cholinergic and dopaminergic tone). The rhythm originated in an NMDA receptor-driven network of intrinsic bursting (IB) neurons in layer 5, activating a source of GABAB receptor-mediated inhibition. In contrast, regular spiking (RS) neurons in layer 5 generated theta-frequency outputs. In layer 2/3 principal cells, outputs from IB cells associated with IPSPs, whereas those from layer 5 RS neurons related to nested bursts of theta-frequency EPSPs. Both interlaminar spike and field correlations revealed a sequence of events whereby sparse spiking in layer 2/3 was partially reflected back from layer 5 on each delta period. We suggest that these reciprocal, interlaminar interactions may represent a “Helmholtz machine”-like process to control synaptic rescaling during deep sleep. PMID:23804097

  17. Speech encoding by coupled cortical theta and gamma oscillations

    PubMed Central

    Hyafil, Alexandre; Fontolan, Lorenzo; Kabdebon, Claire; Gutkin, Boris; Giraud, Anne-Lise

    2015-01-01

    Many environmental stimuli present a quasi-rhythmic structure at different timescales that the brain needs to decompose and integrate. Cortical oscillations have been proposed as instruments of sensory de-multiplexing, i.e., the parallel processing of different frequency streams in sensory signals. Yet their causal role in such a process has never been demonstrated. Here, we used a neural microcircuit model to address whether coupled theta–gamma oscillations, as observed in human auditory cortex, could underpin the multiscale sensory analysis of speech. We show that, in continuous speech, theta oscillations can flexibly track the syllabic rhythm and temporally organize the phoneme-level response of gamma neurons into a code that enables syllable identification. The tracking of slow speech fluctuations by theta oscillations, and its coupling to gamma-spiking activity both appeared as critical features for accurate speech encoding. These results demonstrate that cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and encoding. DOI: http://dx.doi.org/10.7554/eLife.06213.001 PMID:26023831

  18. The GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Meegan, Charles; Bhat, Narayana; Connaughton, Valerie; Briggs, Michael; Diehl, Roland; Fishman, Gerald; Greiner, Jochen; Kippen, R. Marc; vonKienlin, Andreas; Kouveliotou, Chryssa; Lichti, Giselher; Paciesas, William; Preece, Robert; Steinle, Helmut; Wilson-Hodge, Colleen

    2007-01-01

    The GLAST Burst Monitor (GBM) comprises an array of NaI and BGO scintillation detectors designed to enhance the scientific return from GLAST in the study of gamma-ray bursts (GRBs). By observing in the 10 keV to 30 MeV energy range, GBM extends the spectral coverage of GRBs more than 3 decades below the LAT energy threshold. GBM computes burst locations on-board, allowing repointing of the GLAST Observatory to place strong bursts within the LAT field-of-view to observe delayed high-energy emission.

  19. Propeller tone bursts

    NASA Technical Reports Server (NTRS)

    Succi, G. P.; Munro, D. H.; Ingard, K. U.

    1983-01-01

    Intense high frequency (25-38 kHz) tone bursts have been observed in acoustic tests of a scale model of a general aviation propeller. The amplitude of the tone burst is approximately equal to the amplitude of the propeller noise signature. The conditions necessary for the production of these tone bursts are described. The experiments indicate that the origin of these bursts is a periodic flow oscillation on the suction surface of the propeller blade tips which may be due to the interaction between an oscillating shock wave and a laminar boundary layer.

  20. The GLAST Burst Monitor

    SciTech Connect

    Meegan, Charles; Fishman, Gerald; Kouveliotou, Chryssa; Wilson-Hodge, Colleen; Bhat, Narayana; Connaughton, Valerie; Briggs, Michael; Paciesas, William; Preece, Robert; Diehl, Roland; Greiner, Jochen; Kienlin, Andreas von; Lichti, Giselher; Steinle, Helmut; Kippen, R. Marc

    2007-07-12

    The GLAST Burst Monitor (GBM) comprises an array of NaI and BGO scintillation detectors designed to enhance the scientific return from GLAST in the study of gamma-ray bursts (GRBs). By observing in the 10 keV to 30 MeV energy range, GBM extends the spectral coverage of GRBs more than 3 decades below the LAT energy threshold. GBM computes burst locations on-board, allowing repointing of the GLAST Observatory to place strong bursts within the LAT field-of-view to observe delayed high-energy emission.

  1. Neutrino bursts from gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan; Xu, Guohong

    1994-01-01

    If gamma-ray bursts originate at cosmological distances, as strongly indicated by the results from Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory (CGRO), then ultrarelativistic ejecta are the likely consequence of the highly super-Eddington luminosity of the sources. If the energy injection rate varies with time, then the Lorentz factor of the wind also varies, and the shells of ejected matter collide with each other. The collisions between baryons produce pions which decay into high-energy photons, electrons, electron positron pairs, and neutrino pairs. The bulk Lorentz factor of approximately 300 is required if our model is to be compatible with the observed millisecond variability. The strongest gamma-ray bursts are observed to deliver approximately 10(exp -4) ergs/sq cm in 100-200 keV photons. In our scenario more energy may be delivered in a neutrino burst. Typical neutrinos may be approximately 30 GeV if the protons have a Maxwellian energy distribution, and up to approximately TeV if the protons have a power-law distribution. Such neutrino bursts are close to the detection limit of the DUMAND II experiment.

  2. [Quantitative evaluation of inhibitory effects of epileptic spikes on theta rhythms in the network of hippocampal CA3 and entorhinal cortex in patients with temporal lobe epilepsy].

    PubMed

    Ge, Man-Ling; Guo, Jun-Dan; Chen, Sheng-Hua; Zhang, Ji-Chang; Fu, Xiao-Xuan; Chen, Yu-Min

    2017-02-25

    Epileptic spike is an indicator of hyper-excitability and hyper-synchrony in the neural networks. The inhibitory effects of spikes on theta rhythms (4-8 Hz) might be helpful to understand the mechanism of epileptic damage on the cognitive functions. To quantitatively evaluate the inhibitory effects of spikes on theta rhythms, intracerebral electroencephalogram (EEG) recordings with both sporadic spikes (SSs) and spike-free transient period between adjacent spikes were selected in 4 patients in the status of rapid eyes movement (REM) sleep with temporal lobe epilepsy (TLE) under the pre-surgical monitoring. The electrodes of hippocampal CA3 and entorhinal cortex (EC) were employed, since CA3 and EC built up one of key loops to investigate cognition and epilepsy. These SSs occurred only in CA3, only in EC, or in both CA3 and EC synchronously. Theta power was respectively estimated around SSs and during the spike-free transient period by Gabor wavelet transform and Hilbert transform. The intermittent extent was then estimated to represent for the loss of theta rhythms during the spike-free transient period. The following findings were obtained: (1) The prominent rhythms were in theta frequency band; (2) The spikes could transiently reduce theta power, and the inhibitory effect was severer around SSs in both CA3 and EC synchronously than that around either SSs only in EC or SSs only in CA3; (3) During the spike-free transient period, theta rhythms were interrupted with the intermittent theta rhythms left and theta power level continued dropping, implying the inhibitory effect was sustained. Additionally, the intermittent extent of theta rhythms was converged to the inhibitory extent around SSs; (4) The average theta power level during the spike-free transient period might not be in line with the inhibitory extent of theta rhythms around SSs. It was concluded that the SSs had negative effects on theta rhythms transiently and directly, the inhibitory effects aroused by

  3. The nature of the X-ray flash of August 24 2005. Photometric evidence for an on-axis z = 0.83 burst with continuous energy injection and an associated supernova?

    NASA Astrophysics Data System (ADS)

    Sollerman, J.; Fynbo, J. P. U.; Gorosabel, J.; Halpern, J. P.; Hjorth, J.; Jakobsson, P.; Mirabal, N.; Watson, D.; Xu, D.; Castro-Tirado, A. J.; Féron, C.; Jaunsen, A. O.; Jelínek, M.; Jensen, B. L.; Kann, D. A.; Ovaldsen, J. E.; Pozanenko, A.; Stritzinger, M.; Thöne, C. C.; de Ugarte Postigo, A.; Guziy, S.; Ibrahimov, M.; Järvinen, S. P.; Levan, A.; Rumyantsev, V.; Tanvir, N.

    2007-05-01

    Aims:Our aim is to investigate the nature of the X-Ray Flash (XRF) of August 24, 2005. Methods: We present comprehensive photometric R-band observations of the fading optical afterglow of XRF 050824, from 11 min to 104 days after the burst. In addition we present observations taken during the first day in the BRIK bands and two epochs of spectroscopy. We also analyse available X-ray data. Results: The R-band lightcurve of the afterglow resembles the lightcurves of long duration Gamma-Ray Bursts (GRBs), i.e., a power-law, albeit with a rather shallow slope of α=0.6 (Fν ∝ t-α). Our late R-band images reveal the host galaxy. The rest-frame B-band luminosity is 0.5 L*. The star-formation rate as determined from the [O II] emission line is 1.8 M⊙ yr-1. When accounting for the host contribution, the slope is α=0.65 ± 0.01 and a break in the lightcurve is suggested. A potential lightcurve bump at 2 weeks can be interpreted as a supernova only if this is a supernova with a fast rise and a fast decay. However, the overall fit still shows excess scatter in the lightcurve in the form of wiggles and bumps. The flat lightcurves in the optical and X-rays could be explained by a continuous energy injection scenario, with an on-axis viewing angle and a wide jet opening angle (θj ⪆ 10°). If the energy injections are episodic this could potentially help explain the bumps and wiggles. Spectroscopy of the afterglow gives a redshift of z=0.828 ± 0.005 from both absorption and emission lines. The spectral energy distribution (SED) of the afterglow has a power-law (Fν ∝ ν -β) shape with slope β=0.56 ± 0.04. This can be compared to the X-ray spectral index which is {β_X}=1.0 ± 0.1. The curvature of the SED constrains the dust reddening towards the burst to A_v<0.5 mag. This paper is based on observations from a multitude of telescopes, for example on observations made with ESO Telescopes at the Paranal Observatory (programme ID 075.D-0270) and with the NTT and ESO

  4. Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa; Wijers, Ralph A. M. J.; Woosley, Stan

    2012-11-01

    Prologue C. Kouveliotou, R. A . M. J. Wijers and S. E. Woosley; 1. The discovery of the gamma-ray burst phenomenon R. W. Klebesadel; 2. Instrumental principles E. E. Fenimore; 3. The BATSE era G. J. Fishman and C. A. Meegan; 4. The cosmological era L. Piro and K. Hurley; 5. The Swift era N. Gehrels and D. N. Burrows; 6. Discoveries enabled by multi-wavelength afterglow observations of gamma-ray bursts J. Greiner; 7. Prompt emission from gamma-ray bursts T. Piran, R. Sari and R. Mochkovitch; 8. Basic gamma-ray burst afterglows P. Mészáros and R. A. M. J. Wijers; 9. The GRB-supernova connection J. Hjorth and J. S. Bloom; 10. Models for gamma-ray burst progenitors and central engines S. E. Woosley; 11. Jets and gamma-ray burst unification schemes J. Granot and E. Ramirez-Ruiz; 12. High-energy cosmic rays and neutrinos E. Waxman; 13. Long gamma-ray burst host galaxies and their environments J. P. U. Fynbo, D. Malesani and P. Jakobsson; 14. Gamma-ray burst cosmology V. Bromm and A. Loeb; 15. Epilogue R. D. Blandford; Index.

  5. Progressive Fracture of [0/90/ + or - Theta]s Composite Structure Under Uniform Pressure Load

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascalis K.; Chamis, Christos C.; Gotsis, Christos K.; Mouratidis, Ericos

    2007-01-01

    S-Glass/epoxy [0/90/plus or minus theta]s for theta =45 deg., 60 deg., and 75 deg. laminated fiber-reinforced composite stiffened plate was simulated to investigated for damage and fracture progression under uniform pressure. An integrated computer code was augmented for the simulation of the damage initiation, growth, accumulation, and propagation to fracture and to structural collapse. Results show in detail the damage progression sequence and structural fracture resistance during different degradation stages. Damage through the thickness of the laminate initiated first at [0/90/plus or minus 45]s at 15.168 MPa (2200 psi), followed by [0/90/plus or minus 60]s at 16.96 MPa (2460 psi) and finally by [0/90/plus or minus 75]s at 19.3 MPa (2800 psi). After damage initiation happened the cracks propagate rapidly to structural fracture.

  6. A Nontriggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, Jefferson M.; Lewin, Walter H. G.; Kouveliotou, Chryssa; vanParadijs, Jan; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.

    2001-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the on-board burst trigger. For example, the burst may be too faint to exceed the on-board detection threshold, or it may occur while the on-board burst trigger is disabled for technical reasons. This paper describes a catalog of 873 "nontriggered" GRBs that were detected in a search of the archival continuous data from BATSE recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  7. A Nontriggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, Jefferson M.; Lewin, Walter H. G.; Kouveliotou, Chryssa; vanParadijs, Jan; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.

    2001-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the on-board burst trigger. For example, the burst may be too faint to exceed the on-board detection threshold, or it may occur while the on-board burst trigger is disabled for technical reasons. This paper describes a catalog of 873 "nontriggered" GRBs that were detected in a search of the archival continuous data from BATSE recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  8. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  9. Temporal alternative classification of Gamma Ray Burst and spectral properties

    NASA Astrophysics Data System (ADS)

    Vasquez, N.; Bernal, S.

    2017-07-01

    After decades of the discovery of Gamma Ray Bursts (GRBs) there is not common consensus on their classification and progenitors. With no correlation with barionic matter their origin continues being a mystery. Using a large sample of the third Fermi burst catalog (2016) we will extract the emission time and canonical duration time to explore alternative classifications in the spectral properties and temporal estimator plane in the observer frame to extend the study in the burst frame. Among the 1405 bursts detected in the third catalog, 1175 are classified as long-soft bursts and 191 were simultaneously detected by Swift. Our analysis is centered only in the long-soft bursts detected by GBM Fermi detector in the energy range 50 - 300 keV. We aim to compare the results with a previous similar analysis done with Swift burst data, which suggest a bimodal distribution of long soft burst in the rest frame. This work will be done in three steps, first the analysis of burst simultaneously detected by both observatories. Second the analysis of the sample of long soft burst and then the selection of burst with redshift. We would like to explore the temporal distribution of two temporal estimators of GRBs, the canonical t90 and the emission time introduced by Mitrofanov (1997) in the observer frame and rest frame.

  10. Characterizing the roles of alpha and theta oscillations in multisensory attention.

    PubMed

    Keller, Arielle S; Payne, Lisa; Sekuler, Robert

    2017-03-01

    Cortical alpha oscillations (8-13Hz) appear to play a role in suppressing distractions when just one sensory modality is being attended, but do they also contribute when attention is distributed over multiple sensory modalities? For an answer, we examined cortical oscillations in human subjects who were dividing attention between auditory and visual sequences. In Experiment 1, subjects performed an oddball task with auditory, visual, or simultaneous audiovisual sequences in separate blocks, while the electroencephalogram was recorded using high-density scalp electrodes. Alpha oscillations were present continuously over posterior regions while subjects were attending to auditory sequences. This supports the idea that the brain suppresses processing of visual input in order to advantage auditory processing. During a divided-attention audiovisual condition, an oddball (a rare, unusual stimulus) occurred in either the auditory or the visual domain, requiring that attention be divided between the two modalities. Fronto-central theta band (4-7Hz) activity was strongest in this audiovisual condition, when subjects monitored auditory and visual sequences simultaneously. Theta oscillations have been associated with both attention and with short-term memory. Experiment 2 sought to distinguish these possible roles of fronto-central theta activity during multisensory divided attention. Using a modified version of the oddball task from Experiment 1, Experiment 2 showed that differences in theta power among conditions were independent of short-term memory load. Ruling out theta's association with short-term memory, we conclude that fronto-central theta activity is likely a marker of multisensory divided attention.

  11. Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms

    PubMed Central

    Constantinou, Maria; Gonzalo Cogno, Soledad; Elijah, Daniel H.; Kropff, Emilio; Gigg, John; Samengo, Inés; Montemurro, Marcelo A.

    2016-01-01

    Burst spike patterns are common in regions of the hippocampal formation such as the subiculum and medial entorhinal cortex (MEC). Neurons in these areas are immersed in extracellular electrical potential fluctuations often recorded as the local field potential (LFP). LFP rhythms within different frequency bands are linked to different behavioral states. For example, delta rhythms are often associated with slow-wave sleep, inactivity and anesthesia; whereas theta rhythms are prominent during awake exploratory behavior and REM sleep. Recent evidence suggests that bursting neurons in the hippocampal formation can encode LFP features. We explored this hypothesis using a two-compartment model of a bursting pyramidal neuron driven by time-varying input signals containing spectral peaks at either delta or theta rhythms. The model predicted a neural code in which bursts represented the instantaneous value, phase, slope and amplitude of the driving signal both in their timing and size (spike number). To verify whether this code is employed in vivo, we examined electrophysiological recordings from the subiculum of anesthetized rats and the MEC of a behaving rat containing prevalent delta or theta rhythms, respectively. In both areas, we found bursting cells that encoded information about the instantaneous voltage, phase, slope and/or amplitude of the dominant LFP rhythm with essentially the same neural code as the simulated neurons. A fraction of the cells encoded part of the information in burst size, in agreement with model predictions. These results provide in-vivo evidence that the output of bursting neurons in the mammalian brain is tuned to features of the LFP. PMID:28082890

  12. Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors.

    PubMed

    Korotkova, Tatiana; Ponomarenko, Alexey; Monaghan, Caitlin K; Poulter, Steven L; Cacucci, Francesca; Wills, Tom; Hasselmo, Michael E; Lever, Colin

    2017-09-05

    The theta oscillation (5-10Hz) is a prominent behavior-specific brain rhythm. This review summarizes studies showing the multifaceted role of theta rhythm in cognitive functions, including spatial coding, time coding and memory, exploratory locomotion and anxiety-related behaviors. We describe how activity of hippocampal theta rhythm generators - medial septum, nucleus incertus and entorhinal cortex, links theta with specific behaviors. We review evidence for functions of the theta-rhythmic signaling to subcortical targets, including lateral septum. Further, we describe functional associations of theta oscillation properties - phase, frequency and amplitude - with memory, locomotion and anxiety, and outline how manipulations of these features, using optogenetics or pharmacology, affect associative and innate behaviors. We discuss work linking cognition to the slope of the theta frequency to running speed regression, and emotion-sensitivity (anxiolysis) to its y-intercept. Finally, we describe parallel emergence of theta oscillations, theta-mediated neuronal activity and behaviors during development. This review highlights a complex interplay of neuronal circuits and synchronization features, which enables an adaptive regulation of multiple behaviors by theta-rhythmic signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Ramanujan’s mock theta functions

    PubMed Central

    Griffin, Michael; Ono, Ken; Rolen, Larry

    2013-01-01

    In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. Recent work by Zwegers [Zwegers S (2001) Contemp Math 291:268–277 and Zwegers S (2002) PhD thesis (Univ of Utrecht, Utrecht, The Netherlands)] has elucidated the theory encompassing these examples. They are holomorphic parts of special harmonic weak Maass forms. Despite this understanding, little attention has been given to Ramanujan’s original definition. Here, we prove that Ramanujan’s examples do indeed satisfy his original definition. PMID:23536292

  14. The GLAST burst monitor

    NASA Astrophysics Data System (ADS)

    von Kienlin, Andreas; Meegan, Charles A.; Lichti, Giselher G.; Bhat, Narayana P.; Briggs, Michael S.; Connaughton, Valerie; Diehl, Roland; Fishman, Gerald J.; Greiner, Jochen; Hoover, Andrew S.; Kippen, R. M.; Kouveliotou, Chryssa; Paciesas, William S.; Preece, Robert D.; Schönfelder, Volker; Steinle, Helmut; Wilson, Robert B.

    2004-10-01

    The next large NASA mission in the field of gamma-ray astronomy, GLAST, is scheduled for launch in 2007. Aside from the main instrument LAT (Large-Area Telescope), a gamma-ray telescope for the energy range between 20 MeV and > 100GeV, a secondary instrument, the GLAST burst monitor (GBM), is foreseen. With this monitor one of the key scientific objectives of the mission, the determination of the high-energy behaviour of gamma-ray bursts and transients can be ensured. Its task is to increase the detection rate of gamma-ray bursts for the LAT and to extend the energy range to lower energies (from ~10 keV to ~30 MeV). It will provide real-time burst locations over a wide FoV with sufficient accuracy to allow repointing the GLAST spacecraft. Time-resolved spectra of many bursts recorded with LAT and the burst monitor will allow the investigation of the relation between the keV and the MeV-GeV emission from GRBs over unprecedented seven decades of energy. This will help to advance our understanding of the mechanisms by which gamma-rays are generated in gamma-ray bursts

  15. Type III burst pair

    NASA Astrophysics Data System (ADS)

    Ning, Zongjun; Fu, Qijun; Lu, Quankang

    2000-05-01

    We present a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0-2.0 GHz) of the Beijing Astronomical Observatory (BAO). Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. We call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is a nice interpretation of type III burst pair since the plasma beta β~=0.01 is much less than 1 and the beams have velocity of about 1.07×10^8 cm s^-1 after leaving the reconnection region if we assume that the ambient magnetic field strength is about 100 G.

  16. Type III burst pair.

    NASA Astrophysics Data System (ADS)

    Zongjun, Ning; Fu, Qijun; Quankang, Lu

    2000-05-01

    Presents a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0 - 2.0 GHz) of the Beijing Astronomical Observatory. Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. The authors call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is an interpretation of type III burst pair.

  17. On vortex bursting

    NASA Technical Reports Server (NTRS)

    Werle, H.

    1984-01-01

    Vortex bursting is studied by means of visualization. The physical behavior of the phenomenon is emphasized, and its similarity with boundary layer separation or wake bursting becomes apparent. The essential influence of an increasing pressure gradient on the initiation, the position and the type of bursting is clearly confirmed. The evolution of the phenomena as a function of several parameters is analyzed in the case of delta wings, alone or installed on aircraft models, and compared with the results of similar wind tunnel or flight tests.

  18. INTEGRAL burst alert service

    NASA Technical Reports Server (NTRS)

    Pedersen, H.; Jennings, D.; Mereghetti, S.; Teegarden, B.

    1997-01-01

    The detection, accurate positioning, and spectral analysis of cosmic gamma ray bursts is an objective of the International Gamma Ray Astrophysics Laboratory (INTEGRAL) mission. Due to their unpredictable nature, gamma ray bursts can only be observed in serendipity mode. In order to allow and promote multiwavelength follow-up observations of such events, it is desirable to make the information available to the astrophysics community with a minimum delay through the use of Internet. Ideally, the data dissemination should occur within a few seconds of the start of the burst event so that follow up observations can proceed while gamma rays are still being emitted. The technical feasibility of building such a system to disseminate INTEGRAL burst alerts in real time is currently under consideration, the preliminary results of which are presented. It is concluded that such an alert service is technically feasible.

  19. INTEGRAL burst alert service

    NASA Technical Reports Server (NTRS)

    Pedersen, H.; Jennings, D.; Mereghetti, S.; Teegarden, B.

    1997-01-01

    The detection, accurate positioning, and spectral analysis of cosmic gamma ray bursts is an objective of the International Gamma Ray Astrophysics Laboratory (INTEGRAL) mission. Due to their unpredictable nature, gamma ray bursts can only be observed in serendipity mode. In order to allow and promote multiwavelength follow-up observations of such events, it is desirable to make the information available to the astrophysics community with a minimum delay through the use of Internet. Ideally, the data dissemination should occur within a few seconds of the start of the burst event so that follow up observations can proceed while gamma rays are still being emitted. The technical feasibility of building such a system to disseminate INTEGRAL burst alerts in real time is currently under consideration, the preliminary results of which are presented. It is concluded that such an alert service is technically feasible.

  20. GLAST's GBM Burst Trigger

    NASA Technical Reports Server (NTRS)

    Band, D.; Briggs, M.; Connaughton, V.; Kippen, M.; Preece, R.

    2003-01-01

    The GLAST Burst Monitor (GBM) will detect and localize bursts for the GLAST mission, and provide the spectral and temporal context in the traditional 10 keV to 25 MeV band for the high energy observations by the Large Area Telescope (LAT). The GBM will use traditional rate triggers in up to three energy bands, and on a variety of timescales between 16 ms and 16 s.

  1. The Glast Burst Monitor

    NASA Astrophysics Data System (ADS)

    Meegan, C.; Fishman, G.; Kouveliotou, C.; Paciesas, W.; Kippen, R.; Briggs, M.; Preece, R.; Lichti, G.; von Kienlin, A.; Georgii, R.; Diehl, R.; Schöenfelder, V.

    2002-12-01

    The Gamma-Ray Large Area Space Telescope (GLAST) will include a secondary instrument to augment the observatory's capabilities for GRB studies. The GLAST Burst Monitor (GBM) will extend energy coverage from the main instrument's lower limit of ~ 20 MeV down to ~ 10 keV, and will provide an on-board burst trigger and approximate location. The instrument consists of twelve NaI detectors and two BGO detectors.

  2. Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Rane, Akshaya; Lorimer, Duncan

    2017-09-01

    We summarize our current state of knowledge of fast radio bursts (FRBs) which were first discovered a decade ago. Following an introduction to radio transients in general, including pulsars and rotating radio transients, we discuss the discovery of FRBs. We then discuss FRB follow-up observations in the context of repeat bursts before moving on to review propagation effects on FRB signals, FRB progenitor models and an outlook on FRBs as potential cosmological tools.

  3. GLAST's GBM Burst Trigger

    NASA Technical Reports Server (NTRS)

    Band, D.; Briggs, M.; Connaughton, V.; Kippen, M.; Preece, R.

    2003-01-01

    The GLAST Burst Monitor (GBM) will detect and localize bursts for the GLAST mission, and provide the spectral and temporal context in the traditional 10 keV to 25 MeV band for the high energy observations by the Large Area Telescope (LAT). The GBM will use traditional rate triggers in up to three energy bands, and on a variety of timescales between 16 ms and 16 s.

  4. GLAST's GBM Burst Trigger

    SciTech Connect

    Band, D.; Kippen, M.

    2004-09-28

    The GLAST Burst Monitor (GBM) will detect and localize bursts for the GLAST mission, and provide the spectral and temporal context in the traditional 10 keV to 25 MeV band for the high energy observations by the Large Area Telescope (LAT). The GBM will use traditional rate triggers in up to three energy bands, and on a variety of timescales between 16 ms and 16 s.

  5. Parietal theta burst TMS: Functional fractionation observed during bistable perception not evident in attention tasks.

    PubMed

    Schauer, Georg; Kanai, Ryota; Brascamp, Jan W

    2016-02-01

    When visual input is ambiguous, perception spontaneously alternates between interpretations: bistable perception. Studies have identified two distinct sites near the right intraparietal sulcus where inhibitory transcranial magnetic stimulation (TMS) affects the frequency of occurrence of these alternations, but strikingly with opposite directions of effect for the two sites. Lesion and TMS studies on spatial and sustained attention have also indicated a parcellation of right parietal cortex, into areas serving distinct attentional functions. We used the exact TMS procedure previously employed to affect bistable perception, yet measured its effect on spatial and sustained attention tasks. Although there was a trend for TMS to affect performance, trends were consistently similar for both parietal sites, with no indication of opposite effects. We interpret this as signifying that the previously observed parietal fractionation of function regarding the perception of ambiguous stimuli is not due to TMS-induced modification of spatial or sustained attention. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. EEG Characteristics of Successful Burst Suppression for Refractory Status Epilepticus.

    PubMed

    Johnson, Emily L; Martinez, Nirma Carballido; Ritzl, Eva K

    2016-12-01

    Refractory status epilepticus (RSE) is often treated with continuous intravenous medications with the goal of EEG burst suppression. Standard advice is to titrate medications to at least 10-s interburst intervals; however, this has not been shown to improve outcome. We examined EEG characteristics in patients treated with IV anesthetic therapy (IVAT) for RSE to determine which EEG characteristics were associated with successful lifting of IVAT (i.e., without recurrence of status epilepticus). We screened the clinical continuous EEG database for adult patients treated with IVAT for RSE (excluding patients with anoxic injury). We measured the length of bursts and interburst intervals for each patient, calculated EEG burst suppression ratios, and graded bursts for the amount of epileptiform activity. We compared these characteristics in successful versus unsuccessful IVAT lifting attempts. We included 17 successful and 20 unsuccessful lifting attempts in 19 patients (5 used as a holdout validation set). The interburst intervals, burst suppression ratios, and length of bursts did not differentiate successful and unsuccessful lifting attempts; the amount of epileptiform activity in bursts correlated with success or failure to wean IVAT (p = 0.008). Maximum burst amplitude <125 μV had 84.6 % sensitivity and 61.1 % specificity for predicting successful lifting. The length of interburst intervals and burst suppression did not predict successful termination of RSE in this small cohort. This may suggest that EEG characteristics, rather a strict interburst interval goal, could guide IVAT for RSE.

  7. Hippocampo-cerebellar theta band phase synchrony in rabbits.

    PubMed

    Wikgren, J; Nokia, M S; Penttonen, M

    2010-02-17

    Hippocampal functioning, in the form of theta band oscillation, has been shown to modulate and predict cerebellar learning of which rabbit eyeblink conditioning is perhaps the most well-known example. The contribution of hippocampal neural activity to cerebellar learning is only possible if there is a functional connection between the two structures. Here, in the context of trace eyeblink conditioning, we show (1) that, in addition to the hippocampus, prominent theta oscillation also occurs in the cerebellum, and (2) that cerebellar theta oscillation is synchronized with that in the hippocampus. Further, the degree of phase synchrony (PS) increased both as a response to the conditioning stimuli and as a function of the relative power of hippocampal theta oscillation. However, the degree of PS did not change as a function of either training or learning nor did it predict learning rate as the hippocampal theta ratio did. Nevertheless, theta band synchronization might reflect the formation of transient neural assemblies between the hippocampus and the cerebellum. These findings help us understand how hippocampal function can affect eyeblink conditioning, during which the critical plasticity occurs in the cerebellum. Future studies should examine cerebellar unit activity in relation to hippocampal theta oscillations in order to discover the detailed mechanisms of theta-paced neural activity.

  8. Reversal of theta rhythm flow through intact hippocampal circuits.

    PubMed

    Jackson, Jesse; Amilhon, Bénédicte; Goutagny, Romain; Bott, Jean-Bastien; Manseau, Frédéric; Kortleven, Christian; Bressler, Steven L; Williams, Sylvain

    2014-10-01

    Activity flow through the hippocampus is thought to arise exclusively from unidirectional excitatory synaptic signaling from CA3 to CA1 to the subiculum. Theta rhythms are important for hippocampal synchronization during episodic memory processing; thus, it is assumed that theta rhythms follow these excitatory feedforward circuits. To the contrary, we found that theta rhythms generated in the rat subiculum flowed backward to actively modulate spike timing and local network rhythms in CA1 and CA3. This reversed signaling involved GABAergic mechanisms. However, when hippocampal circuits were physically limited to a lamellar slab, CA3 outputs synchronized CA1 and the subiculum using excitatory mechanisms, as predicted by classic hippocampal models. Finally, analysis of in vivo recordings revealed that this reversed theta flow was most prominent during REM sleep. These data demonstrate that communication between CA3, CA1 and the subiculum is not exclusively unidirectional or excitatory and that reversed inhibitory theta signaling also contributes to intrahippocampal synchrony.

  9. Learning to learn: theta oscillations predict new learning, which enhances related learning and neurogenesis.

    PubMed

    Nokia, Miriam S; Sisti, Helene M; Choksi, Monica R; Shors, Tracey J

    2012-01-01

    Animals in the natural world continuously encounter learning experiences of varying degrees of novelty. New neurons in the hippocampus are especially responsive to learning associations between novel events and more cells survive if a novel and challenging task is learned. One might wonder whether new neurons would be rescued from death upon each new learning experience or whether there is an internal control system that limits the number of cells that are retained as a function of learning. In this experiment, it was hypothesized that learning a task that was similar in content to one already learned previously would not increase cell survival. We further hypothesized that in situations in which the cells are rescued hippocampal theta oscillations (3-12 Hz) would be involved and perhaps necessary for increasing cell survival. Both hypotheses were disproved. Adult male Sprague-Dawley rats were trained on two similar hippocampus-dependent tasks, trace and very-long delay eyeblink conditioning, while recording hippocampal local-field potentials. Cells that were generated after training on the first task were labeled with bromodeoxyuridine and quantified after training on both tasks had ceased. Spontaneous theta activity predicted performance on the first task and the conditioned stimulus induced a theta-band response early in learning the first task. As expected, performance on the first task correlated with performance on the second task. However, theta activity did not increase during training on the second task, even though more cells were present in animals that had learned. Therefore, as long as learning occurs, relatively small changes in the environment are sufficient to increase the number of surviving neurons in the adult hippocampus and they can do so in the absence of an increase in theta activity. In conclusion, these data argue against an upper limit on the number of neurons that can be rescued from death by learning.

  10. An integrative model of the intrinsic hippocampal theta rhythm

    PubMed Central

    2017-01-01

    Hippocampal theta oscillations (4–12 Hz) are consistently recorded during memory tasks and spatial navigation. Despite several known circuits and structures that generate hippocampal theta locally in vitro, none of them were found to be critical in vivo, and the hippocampal theta rhythm is severely attenuated by disruption of external input from medial septum or entorhinal cortex. We investigated these discrepancies that question the sufficiency and robustness of hippocampal theta generation using a biophysical spiking network model of the CA3 region of the hippocampus that included an interconnected network of pyramidal cells, inhibitory basket cells (BC) and oriens-lacunosum moleculare (OLM) cells. The model was developed by matching biological data characterizing neuronal firing patterns, synaptic dynamics, short-term synaptic plasticity, neuromodulatory inputs, and the three-dimensional organization of the hippocampus. The model generated theta power robustly through five cooperating generators: spiking oscillations of pyramidal cells, recurrent connections between them, slow-firing interneurons and pyramidal cells subnetwork, the fast-spiking interneurons and pyramidal cells subnetwork, and non-rhythmic structured external input from entorhinal cortex to CA3. We used the modeling framework to quantify the relative contributions of each of these generators to theta power, across different cholinergic states. The largest contribution to theta power was that of the divergent input from the entorhinal cortex to CA3, despite being constrained to random Poisson activity. We found that the low cholinergic states engaged the recurrent connections in generating theta activity, whereas high cholinergic states utilized the OLM-pyramidal subnetwork. These findings revealed that theta might be generated differently across cholinergic states, and demonstrated a direct link between specific theta generators and neuromodulatory states. PMID:28787026

  11. Exploratory depth-of-burst experiments

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.

    1991-12-12

    This report describes the first small-scale explosion experiments with aerated grout (i.e., YTONG). Apart from data referring to crater depth and volume versus depth of burst (DOB), isobaric DOB curves in the range of 1.5 psi {le} p {le} 15 psi were established. The comparison with previous HOB values shows that the ground range to a given overpressure is considerably reduced with increasing depth of burst. The authors plan to continue the airblast investigations with different types of soil materials.

  12. SELECTION EFFECTS ON THE OBSERVED REDSHIFT DEPENDENCE OF GAMMA-RAY BURST JET OPENING ANGLES

    SciTech Connect

    Lu Ruijing; Wei Junjie; Liang Enwei; Qin Shufu

    2012-02-01

    An apparent redshift dependence of the jet opening angles ({theta}{sub j}) of gamma-ray bursts (GRBs) is observed from the current GRB sample. We investigate whether this dependence can be explained with instrumental selection effects and observational biases by a bootstrapping method. Assuming that (1) the GRB rate follows the star formation history and the cosmic metallicity history and (2) the intrinsic distributions of the jet-corrected luminosity (L{sub {gamma}}) and {theta}{sub j} are a Gaussian or a power-law function, we generate a mock Swift/Burst Alert Telescope (BAT) sample by considering various instrumental selection effects, including the flux threshold and the trigger probability of BAT, the probabilities of a GRB jet pointing to the instrument solid angle, and the probability of redshift measurement. Our results reproduce the observed {theta}{sub j} - z dependence well. We find that in the case of L{sub {gamma}}{proportional_to}{theta}{sup 2}{sub j} good consistency between the mock and observed samples can be obtained, indicating that both L{sub {gamma}} and {theta}{sub j} are degenerate for a flux-limited sample. The parameter set (L{sub {gamma}}, {theta}{sub j}) = (4.9 Multiplication-Sign 10{sup 49} erg s{sup -1}, 0.054 rad) gives the best consistency for the current Swift GRB sample. Considering the beaming effect, the derived intrinsic local GRB rate is accordingly 2.85 Multiplication-Sign 10{sup 2} Gpc{sup -3} yr{sup -1}, inferring that {approx}0.59% of Type Ib/c supernovae may be accompanied by a GRB.

  13. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, E.A.; Fisher, W.G.

    1998-04-28

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time. 12 figs.

  14. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  15. The GLAST Burst Monitor

    NASA Astrophysics Data System (ADS)

    Meegan, C.; Lichti, G.; Briggs, M.; Diehl, R.; Fishman, G.; Kippen, R.; Kouveliotou, C.; von Kienlin, A.; Paciesas, W.; Preece, R.; Schönfelder, V.

    2003-04-01

    The Gamma Ray Large Area Space Telescope (GLAST), scheduled for launch in 2006, comprises a Large Area Telescope (LAT) and a GLAST Burst Monitor (GBM). The LAT is a pair telescope with unprecedented sensitivity in the 20 MeV to 300 GeV energy range. The GLAST Burst Monitor consists of an array of NaI and BGO scintillation detectors operating in the 10 keV to 25 MeV range and covering a wide field of view. The GBM will enhance LAT observations of GRBs by extending the spectral coverage into the range of current GRB databases, and will provide a trigger for repointing the spacecraft to observe delayed emission from bursts outside the LAT field of view.

  16. Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria M.

    2017-01-01

    Fast Radio Bursts (FRBs) are a recently discovered phenomenon consisting of short (few ms) bursts of radio waves that have dispersion measures that strongly suggest an extragalactic and possibly cosmological origin. Current best estimates for the rate of FRBs is several thousand per sky per day at radio frequencies near 1.4 GHz. Even with so high a rate, to date, fewer than 20 FRBs have been reported, with one source showing repeated bursts. In this talk I will describe known FRB properties including what is known about the lone repeating source, as well as models for the origin of these mysterious events. I will also describe the CHIME radio telescope, currently under construction in Canada. Thanks to its great sensitivity and unprecedented field-of-view, CHIME promises major progress on FRBs.

  17. A Burst to See

    NASA Astrophysics Data System (ADS)

    2008-04-01

    On 19 March, Nature was particularly generous and provided astronomers with the wealth of four gamma-ray bursts on the same day. But that was not all: one of them is the most luminous object ever observed in the Universe. Despite being located in a distant galaxy, billions of light years away, it was so bright that it could have been seen, for a brief while, with the unaided eye. ESO PR Photo 08a/08 ESO PR Photo 08a/08 The REM Telescope and TORTORA Camera Gamma-ray bursts (GRBs) are short flashes of energetic gamma-rays lasting from less than a second to several minutes. They release a tremendous quantity of energy in this short time making them the most powerful events since the Big Bang. It is now widely accepted that the majority of the gamma-ray bursts signal the explosion of very massive, highly evolved stars that collapse into black holes. Gamma-ray bursts, which are invisible to our eyes, are discovered by telescopes in space. After releasing their intense burst of high-energy radiation, they become detectable for a short while in the optical and in the near-infrared. This 'afterglow' fades very rapidly, making detailed analysis possible for only a few hours after the gamma-ray detection. This analysis is important in particular in order to determine the GRB's distance and, hence, intrinsic brightness. The gamma-ray burst GRB 080319B was detected by the NASA/STFC/ASI Swift satellite. "It was so bright that it almost blinded the Swift instruments for a while," says Guido Chincarini, Italian principal investigator of the mission. A bright optical counterpart was soon identified in the Boötes Constellation (the "Bear Driver" or "Herdsman"). A host of ground-based telescopes reacted promptly to study this new object in the sky. In particular, the optical emission was detected by a few wide-field cameras on telescopes that constantly monitor a large fraction of the sky, including the TORTORA camera in symbiosis with the 0.6-m REM telescope located at La Silla

  18. Phase-locking of bursting neuronal firing to dominant LFP frequency components

    PubMed Central

    Constantinou, Maria; Elijah, Daniel H.; Squirrell, Daniel; Gigg, John; Montemurro, Marcelo A.

    2015-01-01

    Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP phase are not completely understood. We investigated phase-locking properties of bursting neurons using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also provide initial support for the model results by analysing example data of spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that neurons can use bursts to encode timing information contained in LFP phase into a spike-count code. PMID:26305338

  19. The Glast Burst Monitor

    NASA Technical Reports Server (NTRS)

    Meegan, Charles

    2000-01-01

    The Gamma-Ray Large Area Space Telescope (GLAST) will include a secondary instrument to augment the observatory's capabilities for GRB studies. The GLAST Burst Monitor (GBK is a collaboration between Marshall Space Flight Center, the University of Huntsville, Alabama, and the Max Plank Institute for Extraterrestrial Physics. The purpose of the GBM is to extend energy coverage below the main instrument's lower limit of about 20 MeV, and to provide an on-board burst trigger and approximate location. The instrument consists of twelve NaI detectors and two BGO detectors. This combination provides energy coverage from a few keV up to about 30 MeV.

  20. Interplanetary Type IV Bursts

    NASA Astrophysics Data System (ADS)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  1. Analysis of the energetic parameters of a theta pinch

    NASA Astrophysics Data System (ADS)

    Cavalcanti, G. H.; Farias, E. E.

    2009-12-01

    This work is devoted to study experimentally the performance of a theta pinch when the number of capacitors and turns of magnetic coil and the diameter of the glass tube are changed. To model the theta pinch a simple RLC circuit is used and the measurement of energy transmission from the bank of capacitors to the plasma is made using few experimental resources. In this work it was analyzed more than 2500 curves with a nonlinear procedure. Our results show that it is possible to design an optimized theta pinch making the appropriated choice of energetic parameters and therefore to reduce the stress of the system.

  2. Paired Burst Stimulation Causes GABAA Receptor-Dependent Spike Firing Facilitation in CA1 of Rat Hippocampal Slices

    PubMed Central

    Tominaga, Takashi; Tominaga, Yoko

    2016-01-01

    The theta oscillation (4–8 Hz) is a pivotal form of oscillatory activity in the hippocampus that is intermittently concurrent with gamma (25–100 Hz) burst events. In in vitro preparation, a stimulation protocol that mimics the theta oscillation, theta burst stimulation (TBS), is used to induce long-term potentiation. Thus, TBS is thought to have a distinct role in the neural network of the hippocampal slice preparation. However, the specific mechanisms that make TBS induce such neural circuit modifications are still unknown. Using electrophysiology and voltage-sensitive dye imaging (VSDI), we have found that TBS induces augmentation of spike firing. The augmentation was apparent in the first couple of brief burst stimulation (100 Hz four pulses) on a TBS-train in a presence of NMDA receptor blocker (APV 50 μM). In this study, we focused on the characterizes of the NMDA independent augmentation caused by a pair of the brief burst stimulation (the first pair of the TBS; paired burst stimulation-PBS). We found that PBS enhanced membrane potential responses on VSDI signal and intracellular recordings while it was absent in the current recording under whole-cell clamp condition. The enhancement of the response accompanied the augmentation of excitatory postsynaptic potential (EPSP) to spike firing (E-S) coupling. The paired burst facilitation (PBF) reached a plateau when the number of the first burst stimulation (priming burst) exceeds three. The interval between the bursts of 150 ms resulted in the maximum PBF. Gabazine (a GABAA receptor antagonist) abolished PBF. The threshold for spike generation of the postsynaptic cells measured with a current injection to cells was not lowered by the priming burst of PBS. These results indicate that PBS activates the GABAergic system to cause short-term E-S augmentation without raising postsynaptic excitability. We propose that a GABAergic system of area CA1 of the hippocampus produce the short-term E-S plasticity that could

  3. The GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    2004-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) observatory, scheduled for launch in 2007, comprises the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM). spectral changes that are known to occur within GRBs. between the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and the Max Planck Institute for Extraterrestrial Physics. It consists of an array of NaI and BGO scintillation detectors operating in the 10 kev to 25 MeV range. The field of view includes the entire unocculted sky when the observatory is pointing close to the zenith. The GBM will enhance LAT observations of GRBs by extending the spectral coverage into the range of current GRB databases, and will provide a trigger for reorienting the spacecraft to observe delayed emission from bursts outside the LAT field of view. GBM is expected to trigger on about 200 bursts per year, and will provide on-board locations of strong bursts accurate to better than 10 degrees.

  4. The GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    2004-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) observatory, scheduled for launch in 2007, comprises the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM). spectral changes that are known to occur within GRBs. between the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and the Max Planck Institute for Extraterrestrial Physics. It consists of an array of NaI and BGO scintillation detectors operating in the 10 kev to 25 MeV range. The field of view includes the entire unocculted sky when the observatory is pointing close to the zenith. The GBM will enhance LAT observations of GRBs by extending the spectral coverage into the range of current GRB databases, and will provide a trigger for reorienting the spacecraft to observe delayed emission from bursts outside the LAT field of view. GBM is expected to trigger on about 200 bursts per year, and will provide on-board locations of strong bursts accurate to better than 10 degrees.

  5. Theta Pinch Coil Design for SSX

    NASA Astrophysics Data System (ADS)

    Shrock, J. E.; Han, J.; Kaur, M.; Brown, M. R.; Schaffner, D. A.

    2016-10-01

    We present the essential physics and design parameters behind a theta pinch coil used on SSX. The coil is used as an accelerator to drive flux behind a Taylor plume traveling about 30 km/sec. Operating between 25 and 40 kV on a time scale < 10 μs , the design focuses on minimizing the quarter cycle rise time (π/2√{ LC }) of the coil while maintaining the necessary precautions for working at high voltage. Our design works with 1.1 and 3.3 μF capacitors and a maximum stored electrical energy of U =1/2 CV2 = 880 J (at the lower capacitance). This electrical energy is converted into kinetic energy in the plume. Each plume has a mass greater than 30 μg , giving an initial kinetic energy of at least 14 J . At perfect efficiency, the upper bound of the plume velocity will be 240 km/sec using the lower capacitance circuit. Work supported by DOE OFES and ARPA-E ALPHA programs.

  6. Local cortical dynamics of burst suppression in the anaesthetized brain.

    PubMed

    Lewis, Laura D; Ching, Shinung; Weiner, Veronica S; Peterfreund, Robert A; Eskandar, Emad N; Cash, Sydney S; Brown, Emery N; Purdon, Patrick L

    2013-09-01

    Burst suppression is an electroencephalogram pattern that consists of a quasi-periodic alternation between isoelectric 'suppressions' lasting seconds or minutes, and high-voltage 'bursts'. It is characteristic of a profoundly inactivated brain, occurring in conditions including hypothermia, deep general anaesthesia, infant encephalopathy and coma. It is also used in neurology as an electrophysiological endpoint in pharmacologically induced coma for brain protection after traumatic injury and during status epilepticus. Classically, burst suppression has been regarded as a 'global' state with synchronous activity throughout cortex. This assumption has influenced the clinical use of burst suppression as a way to broadly reduce neural activity. However, the extent of spatial homogeneity has not been fully explored due to the challenges in recording from multiple cortical sites simultaneously. The neurophysiological dynamics of large-scale cortical circuits during burst suppression are therefore not well understood. To address this question, we recorded intracranial electrocorticograms from patients who entered burst suppression while receiving propofol general anaesthesia. The electrodes were broadly distributed across cortex, enabling us to examine both the dynamics of burst suppression within local cortical regions and larger-scale network interactions. We found that in contrast to previous characterizations, bursts could be substantially asynchronous across the cortex. Furthermore, the state of burst suppression itself could occur in a limited cortical region while other areas exhibited ongoing continuous activity. In addition, we found a complex temporal structure within bursts, which recapitulated the spectral dynamics of the state preceding burst suppression, and evolved throughout the course of a single burst. Our observations imply that local cortical dynamics are not homogeneous, even during significant brain inactivation. Instead, cortical and, implicitly

  7. Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation.

    PubMed

    Butler, James L; Mendonça, Philipe R F; Robinson, Hugh P C; Paulsen, Ole

    2016-04-13

    Gamma oscillations (30-120 Hz) are thought to be important for various cognitive functions, including perception and working memory, and disruption of these oscillations has been implicated in brain disorders, such as schizophrenia and Alzheimer's disease. The cornu ammonis area 1 (CA1) of the hippocampus receives gamma frequency inputs from upstream regions (cornu ammonis area 3 and medial entorhinal cortex) and generates itself a faster gamma oscillation. The exact nature and origin of the intrinsic CA1 gamma oscillation is still under debate. Here, we expressed channel rhodopsin-2 under the CaMKIIα promoter in mice and prepared hippocampal slices to produce a model of intrinsic CA1 gamma oscillations. Sinusoidal optical stimulation of CA1 at theta frequency was found to induce robust theta-nested gamma oscillations with a temporal and spatial profile similar to CA1 gamma in vivo The results suggest the presence of a single gamma rhythm generator with a frequency range of 65-75 Hz at 32 °C. Pharmacological analysis found that the oscillations depended on both AMPA and GABAA receptors. Cell-attached and whole-cell recordings revealed that excitatory neuron firing slightly preceded interneuron firing within each gamma cycle, suggesting that this intrinsic CA1 gamma oscillation is generated with a pyramidal-interneuron circuit mechanism. This study demonstrates that the cornu ammonis area 1 (CA1) is capable of generating intrinsic gamma oscillations in response to theta input. This gamma generator is independent of activity in the upstream regions, highlighting that CA1 can produce its own gamma oscillation in addition to inheriting activity from the upstream regions. This supports the theory that gamma oscillations predominantly function to achieve local synchrony, and that a local gamma generated in each area conducts the signal to the downstream region. Copyright © 2016 Butler et al.

  8. Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation

    PubMed Central

    Butler, James L.; Mendonça, Philipe R. F.; Robinson, Hugh P. C.

    2016-01-01

    Gamma oscillations (30–120 Hz) are thought to be important for various cognitive functions, including perception and working memory, and disruption of these oscillations has been implicated in brain disorders, such as schizophrenia and Alzheimer's disease. The cornu ammonis area 1 (CA1) of the hippocampus receives gamma frequency inputs from upstream regions (cornu ammonis area 3 and medial entorhinal cortex) and generates itself a faster gamma oscillation. The exact nature and origin of the intrinsic CA1 gamma oscillation is still under debate. Here, we expressed channelrhodopsin-2 under the CaMKIIα promoter in mice and prepared hippocampal slices to produce a model of intrinsic CA1 gamma oscillations. Sinusoidal optical stimulation of CA1 at theta frequency was found to induce robust theta-nested gamma oscillations with a temporal and spatial profile similar to CA1 gamma in vivo. The results suggest the presence of a single gamma rhythm generator with a frequency range of 65–75 Hz at 32°C. Pharmacological analysis found that the oscillations depended on both AMPA and GABAA receptors. Cell-attached and whole-cell recordings revealed that excitatory neuron firing slightly preceded interneuron firing within each gamma cycle, suggesting that this intrinsic CA1 gamma oscillation is generated with a pyramidal–interneuron circuit mechanism. SIGNIFICANCE STATEMENT This study demonstrates that the cornu ammonis area 1 (CA1) is capable of generating intrinsic gamma oscillations in response to theta input. This gamma generator is independent of activity in the upstream regions, highlighting that CA1 can produce its own gamma oscillation in addition to inheriting activity from the upstream regions. This supports the theory that gamma oscillations predominantly function to achieve local synchrony, and that a local gamma generated in each area conducts the signal to the downstream region. PMID:27076416

  9. Optimal Swimming with a Burst-and-Coast Behaviour

    NASA Astrophysics Data System (ADS)

    Akoz, Emre; Moored, Keith

    2014-11-01

    Swimming animals are typically assumed to be continuously adding power to the fluid throughout a period of motion. On the other hand, animals have been observed using a non-continuously powered motion described as a burst-and-coast or burst-and-glide behavior. When animals use a non-continuously powered motion it is estimated that their cost of transport is reduced by as much as 45%. However, there are competing mechanisms in the literature that lead to this conclusion. The present study aims to identify the underlying mechanism of burst-and-coast energy savings and to quantify the scaling of optimal motions. A two-dimensional boundary element method approach is used to quantify the performance and wake structure of a free-swimming pitching panel operating with a burst-and-coast behavior. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.

  10. Theta synchronization and alpha desynchronization in a memory task.

    PubMed

    Klimesch, W; Doppelmayr, M; Schimke, H; Ripper, B

    1997-03-01

    In the present study, we examined the hypothesis that episodic encoding and retrieval processes are primarily reflected by a task-related increase in theta power. Individuals performed a recognition task with a total of 192 words. The electroencephalogram was recorded during the study and recognition phase. The results show that only those words that were later correctly recognized produced a significant increase in theta power during encoding. During the actual recognition processes too, a significant theta synchronization (increase in band power) was found for correctly remembered words only. In contrast to the theta band, remembered and not remembered words revealed a complex pattern of desynchronization in the lower and upper alpha band that was different during encoding and recognition.

  11. Reversed theta sequences of hippocampal cell assemblies during backward travel.

    PubMed

    Cei, Anne; Girardeau, Gabrielle; Drieu, Céline; Kanbi, Karim El; Zugaro, Michaël

    2014-05-01

    Hippocampal cell assemblies coding for past, present and future events form theta-timescale (~100 ms) sequences that represent spatio-temporal episodes. However, the underlying mechanisms remain largely unknown. We recorded hippocampal and entorhinal cortical activity as rats experienced backward travel on a model train. Although the firing fields of place cells remained stable, the order in which they were activated in the theta sequence was reversed during backward travel. Thus, hippocampal cell assemblies coordinated their relative timing to correctly predict the sequential traversal of place fields in reverse order. At the single-cell level, theta phase represented distance traveled through the field, even though the head of the rat was oriented opposite to travel direction and entorhinal head-direction cells maintained their preferred firing direction. Our results challenge most theoretical models of theta sequence generation in the hippocampus.

  12. Modulation of EEG Theta Band Signal Complexity by Music Therapy

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Joydeep; Lee, Eun-Jeong

    The primary goal of this study was to investigate the impact of monochord (MC) sounds, a type of archaic sounds used in music therapy, on the neural complexity of EEG signals obtained from patients undergoing chemotherapy. The secondary goal was to compare the EEG signal complexity values for monochords with those for progressive muscle relaxation (PMR), an alternative therapy for relaxation. Forty cancer patients were randomly allocated to one of the two relaxation groups, MC and PMR, over a period of six months; continuous EEG signals were recorded during the first and last sessions. EEG signals were analyzed by applying signal mode complexity, a measure of complexity of neuronal oscillations. Across sessions, both groups showed a modulation of complexity of beta-2 band (20-29Hz) at midfrontal regions, but only MC group showed a modulation of complexity of theta band (3.5-7.5Hz) at posterior regions. Therefore, the neuronal complexity patterns showed different changes in EEG frequency band specific complexity resulting in two different types of interventions. Moreover, the different neural responses to listening to monochords and PMR were observed after regular relaxation interventions over a short time span.

  13. The Double Firing Burst

    NASA Astrophysics Data System (ADS)

    2008-09-01

    Astronomers from around the world combined data from ground- and space-based telescopes to paint a detailed portrait of the brightest explosion ever seen. The observations reveal that the jets of the gamma-ray burst called GRB 080319B were aimed almost directly at the Earth. Uncovering the disc ESO PR Photo 28/08 A Gamma-Ray Burst with Two Jets Read more on this illuminating blast in the additional story. GRB 080319B was so intense that, despite happening halfway across the Universe, it could have been seen briefly with the unaided eye (ESO 08/08). In a paper to appear in the 11 September issue of Nature, Judith Racusin of Penn State University, Pennsylvania (USA), and a team of 92 co-authors report observations across the electromagnetic spectrum that began 30 minutes before the explosion and followed it for months afterwards. "We conclude that the burst's extraordinary brightness arose from a jet that shot material almost directly towards Earth at almost the speed of light - the difference is only 1 part in 20 000," says Guido Chincarini, a member of the team. Gamma-ray bursts are the Universe's most luminous explosions. Most occur when massive stars run out of fuel. As a star collapses, it creates a black hole or neutron star that, through processes not fully understood, drives powerful gas jets outward. As the jets shoot into space, they strike gas previously shed by the star and heat it, thereby generating bright afterglows. The team believes the jet directed toward Earth contained an ultra-fast component just 0.4 degrees across (this is slightly smaller than the apparent size of the Full Moon). This jet is contained within another slightly less energetic jet about 20 times wider. The broad component is more typical of other bursts. "Perhaps every gamma-ray burst has a narrow jet, but astronomers miss it most of the time," says team member Stefano Covino. "We happened to view this monster down the barrel of the very narrow and energetic jet, and the chance for

  14. Swift Burst Alert Telescope (BAT) Instrument Response

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Hullinger, D.; Markwardt, C.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H.; Tueller, J.; Fenimore, E.; Palmer, D.

    2004-01-01

    The Burst Alert Telescope (BAT), a large coded aperture instrument with a wide field-of-view (FOV), provides the gamma-ray burst triggers and locations for the Swift Gamma-Ray Burst Explorer. In addition to providing this imaging information, BAT will perform a 15 keV - 150 keV all-sky hard x-ray survey based on the serendipitous pointings resulting from the study of gamma-ray bursts and will also monitor the sky for transient hard x-ray sources. For BAT to provide spectral and photometric information for the gamma-ray bursts, the transient sources and the all-sky survey, the BAT instrument response must be determined to an increasingly greater accuracy. In this talk, we describe the BAT instrument response as determined to an accuracy suitable for gamma-ray burst studies. We will also discuss the public data analysis tools developed to calculate the BAT response to sources at different energies and locations in the FOV. The level of accuracy required for the BAT instrument response used for the hard x-ray survey is significantly higher because this response must be used in the iterative clean algorithm for finding fainter sources. Because the bright sources add a lot of coding noise to the BAT sky image, fainter sources can be seen only after the counts due to the bright sources are removed. The better we know the BAT response, the lower the noise in the cleaned spectrum and thus the more sensitive the survey. Since the BAT detector plane consists of 32768 individual, 4 mm square CZT gamma-ray detectors, the most accurate BAT response would include 32768 individual detector response functions to separate mask modulation effects from differences in detector efficiencies! We describe OUT continuing work to improve the accuracy of the BAT instrument response and will present the current results of Monte Carlo simulations as well as BAT ground calibration data.

  15. Swift Burst Alert Telescope (BAT) Instrument Response

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Hullinger, D.; Markwardt, C.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H.; Tueller, J.; Fenimore, E.; Palmer, D.

    2004-01-01

    The Burst Alert Telescope (BAT), a large coded aperture instrument with a wide field-of-view (FOV), provides the gamma-ray burst triggers and locations for the Swift Gamma-Ray Burst Explorer. In addition to providing this imaging information, BAT will perform a 15 keV - 150 keV all-sky hard x-ray survey based on the serendipitous pointings resulting from the study of gamma-ray bursts and will also monitor the sky for transient hard x-ray sources. For BAT to provide spectral and photometric information for the gamma-ray bursts, the transient sources and the all-sky survey, the BAT instrument response must be determined to an increasingly greater accuracy. In this talk, we describe the BAT instrument response as determined to an accuracy suitable for gamma-ray burst studies. We will also discuss the public data analysis tools developed to calculate the BAT response to sources at different energies and locations in the FOV. The level of accuracy required for the BAT instrument response used for the hard x-ray survey is significantly higher because this response must be used in the iterative clean algorithm for finding fainter sources. Because the bright sources add a lot of coding noise to the BAT sky image, fainter sources can be seen only after the counts due to the bright sources are removed. The better we know the BAT response, the lower the noise in the cleaned spectrum and thus the more sensitive the survey. Since the BAT detector plane consists of 32768 individual, 4 mm square CZT gamma-ray detectors, the most accurate BAT response would include 32768 individual detector response functions to separate mask modulation effects from differences in detector efficiencies! We describe OUT continuing work to improve the accuracy of the BAT instrument response and will present the current results of Monte Carlo simulations as well as BAT ground calibration data.

  16. Optogenetic Activation of Septal Glutamatergic Neurons Drive Hippocampal Theta Rhythms.

    PubMed

    Robinson, Jennifer; Manseau, Frédéric; Ducharme, Guillaume; Amilhon, Bénédicte; Vigneault, Erika; El Mestikawy, Salah; Williams, Sylvain

    2016-03-09

    The medial septum and diagonal band of Broca (MS-DBB) has an essential role for theta rhythm generation in the hippocampus and is critical for learning and memory. The MS-DBB contains cholinergic, GABAergic, and recently described glutamatergic neurons, but their specific contribution to theta generation is poorly understood. Here, we examined the role of MS-DBB glutamatergic neurons in theta rhythm using optogenetic activation and electrophysiological recordings performed in in vitro preparations and in freely behaving mice. The experiments in slices suggest that MS-DBB glutamatergic neurons provide prominent excitatory inputs to a majority of local GABAergic and a minority of septal cholinergic neurons. In contrast, activation of MS-DBB glutamatergic fiber terminals in hippocampal slices elicited weak postsynaptic responses in hippocampal neurons. In the in vitro septo-hippocampal preparation, activation of MS-DBB glutamatergic neurons did increase the rhythmicity of hippocampal theta oscillations, whereas stimulation of septo-hippocampal glutamatergic fibers in the fornix did not have an effect. In freely behaving mice, activation of these neurons in the MS-DBB strongly synchronized hippocampal theta rhythms over a wide range of frequencies, whereas activation of their projections to the hippocampus through fornix stimulations had no effect on theta rhythms, suggesting that MS-DBB glutamatergic neurons played a role in theta generation through local modulation of septal neurons. Together, these results provide the first evidence that MS-DBB glutamatergic neurons modulate local septal circuits, which in turn contribute to theta rhythms in the hippocampus. Copyright © 2016 the authors 0270-6474/16/363016-08$15.00/0.

  17. Burst Populations and Detector Sensitivity

    NASA Technical Reports Server (NTRS)

    Band, David L.

    2003-01-01

    The F(sub T) (peak bolometric photon flux) vs. E(sub p) (peak energy) plane is a powerful tool to compare the burst populations detected by different detectors. Detector sensitivity curves in this plane demonstrate which burst populations the detectors will detect. For example, future CZT-based detectors will show the largest increase in sensitivity for soft bursts, and will be particularly well- suited to study X-ray rich bursts and X-ray Flashes. Identical bursts at different redshifts describe a track in the F(sub T)-E(sub p) plane.

  18. Burst Populations and Detector Sensitivity

    NASA Technical Reports Server (NTRS)

    Band, David L.

    2003-01-01

    The F(sub T) (peak bolometric photon flux) vs. E(sub p) (peak energy) plane is a powerful tool to compare the burst populations detected by different detectors. Detector sensitivity curves in this plane demonstrate which burst populations the detectors will detect. For example, future CZT-based detectors will show the largest increase in sensitivity for soft bursts, and will be particularly well- suited to study X-ray rich bursts and X-ray Flashes. Identical bursts at different redshifts describe a track in the F(sub T)-E(sub p) plane.

  19. Electroencephalographic theta activity and cognition in schizophrenia: preliminary results.

    PubMed

    Wichniak, Adam; Okruszek, Łukasz; Linke, Magdalena; Jarkiewicz, Michał; Jędrasik-Styła, Małgorzata; Ciołkiewicz, Agnieszka; Wierzbicka, Aleksandra; Jernajczyk, Wojciech; Jarema, Marek

    2015-04-01

    MATRICS Consensus Cognitive Battery (MCCB) is a contemporary standard for assessment of cognitive functions in schizophrenia. The aim of the study was to examine the association between electroencephalographic spectral power and a wide range of cognitive functions measured with MCCB. Thirty-nine patients with schizophrenia (27 male, mean age 28.2 ± 5.2 years) underwent EEG recordings and were assessed with MCCB. The EEG recordings were visually inspected and manually cleaned from artifacts and subjected to spectral analysis with EEGlab. Absolute and relative power as percentage of total spectral power were computed for frequency ranges from 0.5 to 30 Hz. To compare spectral power in patients with various cognitive functioning, patients from best and worst MCCB quartiles were selected. Superior cognitive performance was associated with less power of theta waves. Six MCCB cognitive tests showed significant correlations with absolute theta power and three tests with relative theta power. The correlation coefficients between MCCB composite score and theta power were rp = -0.45 for absolute and rp = -0.36 for relative values. Increased theta power was linked especially to memory deficits. These preliminary results suggest that electroencephalographic resting state theta power is an indicator of cognitive deficit in patients with schizophrenia.

  20. Flexible theta sequence compression mediated via phase precessing interneurons

    PubMed Central

    Chadwick, Angus; van Rossum, Mark CW; Nolan, Matthew F

    2016-01-01

    Encoding of behavioral episodes as spike sequences during hippocampal theta oscillations provides a neural substrate for computations on events extended across time and space. However, the mechanisms underlying the numerous and diverse experimentally observed properties of theta sequences remain poorly understood. Here we account for theta sequences using a novel model constrained by the septo-hippocampal circuitry. We show that when spontaneously active interneurons integrate spatial signals and theta frequency pacemaker inputs, they generate phase precessing action potentials that can coordinate theta sequences in place cell populations. We reveal novel constraints on sequence generation, predict cellular properties and neural dynamics that characterize sequence compression, identify circuit organization principles for high capacity sequential representation, and show that theta sequences can be used as substrates for association of conditioned stimuli with recent and upcoming events. Our results suggest mechanisms for flexible sequence compression that are suited to associative learning across an animal’s lifespan. DOI: http://dx.doi.org/10.7554/eLife.20349.001 PMID:27929374

  1. Modeling synchronous theta activity in the medial septum: key role of local communications between different cell populations.

    PubMed

    Mysin, Ivan E; Kitchigina, Valentina F; Kazanovich, Yakov

    2015-08-01

    It is widely believed that the theta rhythm in the hippocampus is caused by the rhythmic input from the medial septum-diagonal band of Broca (MSDB). The main MSDB output is formed by GABAergic projection neurons which are divided into two subpopulations and fire at different phases of the hippocampal theta rhythm. The MSDB also contains projection cholinergic, glutamatergic, and non-projection GABAergic neurons. These cell populations innervate each other and also GABAergic projection neurons and participate in the formation of the synchronous rhythmic output to the hippocampus. The purpose of this study is to work out a model of interactions between all neural populations of the MSDB that underlie the formation of the synchronous septal theta signal. The model is built from biologically plausible neurons of the Hodgkin-Huxley type and its architecture reflects modern data on the morphology of neural connections in the MSDB. The model satisfies the following requirements: (1) a large portion of neurons is fast-spiking; (2) the subpopulations of GABAergic projection neurons contain endogenous pacemaker neurons; (3) the phase shift of activity between subpopulations of GABAergic projection neurons is equal to about 150°; and (4) the strengths of bidirectional connections between the subpopulations of GABAergic projection cells are different. It is shown that the theta rhythm generation can be performed by a system of glutamatergic and GABAergic non-projection neurons. We also show that bursting pacemaker neurons in the subpopulation of projection GABAergic neurons play a significant role in the formation of stable antiphase outputs from the MSDB to the hippocampus.

  2. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  3. A repeating fast radio burst

    NASA Astrophysics Data System (ADS)

    Spitler, L. G.; Scholz, P.; Hessels, J. W. T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Lazarus, P.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Seymour, A.; Stairs, I. H.; Stappers, B. W.; van Leeuwen, J.; Zhu, W. W.

    2016-03-01

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  4. Jovian type III radio bursts

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.

    1989-01-01

    Radio bursts have been observed in the Voyager plasma wave data from Jupiter that bear a striking resemblance to solar type III radio bursts. The emissions lie in the frequency range near 10 kHz, have durations of a minute or so, and occur in a set of periodically spaced bursts. The spacing between primary bursts is typically 15 min, but the bursts may have additional components which recur on time scales of about 3 min. The similarity with solar type III radio bursts suggests a source mechanism involving the movement of energetic electrons through a density gradient in the plasma surrounding Jupiter. The periodicity of bursts suggests Io may be involved in the generation of waves, since the timing is similar to the Alfven wave travel time from one hemisphere to the other through the Io torus.

  5. Interpretation of the Theta+ as an isotensor pentaquark with weakly decaying partners

    SciTech Connect

    Simon Capstick; Philip R. Page; Winston Roberts

    2003-09-25

    The {Theta}{sup +}(1540), recently observed at LEPS, DIANA and CLAS, is hypothesized to be an isotensor resonance. This implies the existence of a multiplet where the {Theta}{sup ++}, {Theta}{sup +} and {Theta}{sup 0} have isospin-violating strong decays, and the {Theta}{sup +++} and {Theta}{sup -} have weak decays and so are long-lived. Production mechanisms for these states are discussed. The J{sup P} assignment of the {Theta} is most likely 1/2{sup -} or 3/2{sup -} or 5/2{sup -}.

  6. The GLAST Burst Monitor

    NASA Astrophysics Data System (ADS)

    Bhat, P. N.; Meegan, C. A.; Lichti, G. G.; Briggs, M. S.; Connaughton, V.; Diehl, R.; Fishman, G. J.; Greiner, J.; Kippen, R. M.; Kouveliotou, C.; Paciesas, W. S.; Preece, R. D.; Schönfelder, V.; Wilson, R. B.; von Kienlin, A.

    2004-09-01

    The Gamma Ray Large Area Space Telescope (GLAST) mission is a followup to the successful EGRET experiment onboard the Compton Gamma Ray Observatory (CGRO). It will provide a high-sensitivity survey of the sky in high-energy γ-rays, and will perform detailed observations of persistent and transient sources. There are two experiments onboard the GLAST - the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM). The primary mission of the GBM instrument is to support the LAT in observing γ-ray bursts (GRBs) by providing low-energy measurements with high time resolution and rapid burst locations over a large field-of-view (>= 8 sr). The GBM will complement the LAT measurements by observing GRBs in the energy range 10 keV to 30 MeV, the region of the spectral turnover in most GRBs. An important objective of the GBM is to compute the locations of GRB sources on-board the spacecraft and quickly communicate them to the LAT and to the ground to allow rapid followup observations. This information may be used to re-point the LAT towards particularly interesting burst sources that occurred outside its field-of-view. The GBM consists of 14 uncollimated scintillation detectors coupled to phototubes to measure γ-ray energies and time profiles. Two types of detectors are used to obtain spectral information over a wide energy range: 12 NaI(Tl) detectors (10 keV to 1 MeV), and 2 BGO detectors (150 keV to 30 MeV). The detectors are distributed around the GLAST spacecraft to provide a large, unobstructed field of view. The 12 NaI(Tl) detectors are mounted with different orientations for use in locating GRB sources.

  7. The GLAST Burst Monitor

    SciTech Connect

    Bhat, P.N.; Briggs, M.S.; Connaughton, V.; Paciesas, W.S.; Preece, R.D.; Meegan, C.A.; Fishman, G.J.; Wilson, R.B.; Lichti, G.G.; Diehl, R.; Greiner, J.; Schoenfelder, V.; Kienlin, A. von; Kippen, R.M.; Kouveliotou, C.

    2004-09-28

    The Gamma Ray Large Area Space Telescope (GLAST) mission is a followup to the successful EGRET experiment onboard the Compton Gamma Ray Observatory (CGRO). It will provide a high-sensitivity survey of the sky in high-energy {gamma}-rays, and will perform detailed observations of persistent and transient sources. There are two experiments onboard the GLAST - the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM).The primary mission of the GBM instrument is to support the LAT in observing {gamma}-ray bursts (GRBs) by providing low-energy measurements with high time resolution and rapid burst locations over a large field-of-view ({>=} 8 sr). The GBM will complement the LAT measurements by observing GRBs in the energy range 10 keV to 30 MeV, the region of the spectral turnover in most GRBs. An important objective of the GBM is to compute the locations of GRB sources on-board the spacecraft and quickly communicate them to the LAT and to the ground to allow rapid followup observations. This information may be used to re-point the LAT towards particularly interesting burst sources that occurred outside its field-of-view. The GBM consists of 14 uncollimated scintillation detectors coupled to phototubes to measure {gamma}-ray energies and time profiles. Two types of detectors are used to obtain spectral information over a wide energy range: 12 NaI(Tl) detectors (10 keV to 1 MeV), and 2 BGO detectors (150 keV to 30 MeV). The detectors are distributed around the GLAST spacecraft to provide a large, unobstructed field of view. The 12 NaI(Tl) detectors are mounted with different orientations for use in locating GRB sources.

  8. Analysis of Burst Observations by GLAST'S LAT

    SciTech Connect

    Band, D

    2003-12-17

    Analyzing data from GLAST's Large Area Telescope (LAT) will require sophisticated techniques. The PSF and effective area are functions of both photon energy and the position in the field-of-view. During most of the mission the observatory will survey the sky continuously and thus the LAT will detect each count from a source at a different detector orientation; each count requires its own response function. The likelihood as a function of celestial position and photon energy will be the foundation of the standard analysis techniques. However the 20 MeV-300 GeV emission at the time of the {approx}100 keV burst emission (timescale of {approx}10 s) can be isolated and analyzed because essentially no non-burst counts are expected within a PSF radius of the burst location during the burst. Both binned and unbinned (in energy) spectral fitting will be possible. Longer timescale afterglow emission will require the likelihood analysis that will be used for persistent sources.

  9. Search for bursts in air shower data

    NASA Technical Reports Server (NTRS)

    Bruce, T. E. G.; Clay, R. W.; Dawson, B. R.; Protheroe, R. J.; Blair, D. G.; Cinquini, P.

    1985-01-01

    There have been reports in recent years of the possible observation of bursts in air shower data. If such events are truly of an astrophysical nature then, they represent an important new class of phemonenon since no other bursts have been observed above the MeV level. The spectra of conventional gamma ray bursts are unknown at higher energies but their observed spectra at MeV energies appear generally to exhibit a steepening in the higher MeV range and are thus unlikely to extrapolate to measurable fluxes at air shower energies. An attempt has been made to look for deviations from randomness in the arrival times of air showers above approx. 10 to the 14th power eV with a number of systems and results so far are presented here. This work will be continued for a substantial period of ime with a system capable of recording bursts with multiple events down to a spacing of 4 microns. Earlier data have also been searched for the possible association of air shower events with a glitch of the Vela pulsar.

  10. Bursts of seizures in long-term recordings of human focal epilepsy.

    PubMed

    Karoly, Philippa J; Nurse, Ewan S; Freestone, Dean R; Ung, Hoameng; Cook, Mark J; Boston, Ray

    2017-03-01

    We report on temporally clustered seizures detected from continuous long-term ambulatory human electroencephalographic data. The objective was to investigate short-term seizure clustering, which we have termed bursting, and consider implications for patient care, seizure prediction, and evaluating therapies. Chronic ambulatory intracranial electroencephalography (EEG) data collected for the purpose of seizure prediction were annotated to identify seizure events. A detection algorithm was used to identify bursts of events. Burst events were compared to nonburst events to evaluate event dispersion, duration and dynamics. Bursts of seizures were present in 6 of 15 subjects, and detections were consistent over long-term monitoring (>2 years). Subjects with bursts of seizures had highly overdispersed seizure rates, compared to other subjects. There was a complicated relationship between bursts and clinical seizures, although bursts were associated with multimodal distributions of seizure duration, and poorer predictive outcomes. For three subjects, bursts demonstrated distinctive preictal dynamics compared to clinical seizures. We have previously hypothesized that there are distinct physiologic pathways underlying short- and long-duration seizures. Herein we show that burst seizures fall almost exclusively within the short population of seizure durations; however, a short duration event was not sufficient to induce or imply bursting. We can therefore conclude that in addition to distinct mechanisms underlying seizure duration, there are separate factors regulating bursts of seizures. We show that bursts were a robust phenomenon in our patient cohort, which were consistent with overdispersed seizure rates, suggesting long-memory dynamics. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  11. Optothermally actuated capillary burst valve

    NASA Astrophysics Data System (ADS)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders; Marie, Rodolphe

    2017-04-01

    We demonstrate the optothermal actuation of individual capillary burst valves in an all-polymer microfluidic device. The capillary burst valves are realised in a planar design by introducing a fluidic constriction in a microfluidic channel of constant depth. We show that a capillary burst valve can be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett. 10, 826-832 (2010)]. An individual valve is burst by focusing the laser in its vicinity. We demonstrate the capture of single polystyrene 7 μm beads in the constriction triggered by the bursting of the valve.

  12. Quantum modular forms, mock modular forms, and partial theta functions

    NASA Astrophysics Data System (ADS)

    Kimport, Susanna

    Defined by Zagier in 2010, quantum modular forms have been the subject of an explosion of recent research. Many of these results are aimed at discovering examples of these functions, which are defined on the rational numbers and have "nice" modularity properties. Though the subject is in its early stages, numerous results (including Zagier's original examples) show these objects naturally arising from many areas of mathematics as limits of other modular-like functions. One such family of examples is due to Folsom, Ono, and Rhoades, who connected these new objects to partial theta functions (introduced by Rogers in 1917) and mock modular forms (about which there is a rich theory, whose origins date back to Ramanujan in 1920). In this thesis, we build off of the work of Folsom, Ono, and Rhoades by providing an infinite family of quantum modular forms of arbitrary positive half-integral weight. Further, this family of quantum modular forms "glues" mock modular forms to partial theta functions and is constructed from a so-called "universal" mock theta function by extending a method of Eichler and Zagier (originally defined for holomorphic Jacobi forms) into a non-holomorphic setting. In addition to the infinite family, we explore the weight 1/2 and 3/2 functions in more depth. For both of these weights, we are able to explicitly write down the quantum modular form, as well as the corresponding "errors to modularity," which can be shown to be Mordell integrals of specific theta functions and, as a consequence, are real-analytic functions. Finally, we turn our attention to the partial theta functions associated with these low weight examples. Berndt and Kim provide asymptotic expansions for a certain class of partial theta functions as q approaches 1 radially within the unit disk. Here, we extend this work to not only obtain asymptotic expansions for this class of functions as q approaches any root of unity, but also for a certain class of derivatives of these functions

  13. Septal serotonin depletion in rats facilitates working memory in the radial arm maze and increases hippocampal high-frequency theta activity.

    PubMed

    López-Vázquez, Miguel Ángel; López-Loeza, Elisa; Lajud Ávila, Naima; Gutiérrez-Guzmán, Blanca Erika; Hernández-Pérez, J Jesús; Reyes, Yoana Estrada; Olvera-Cortés, María Esther

    2014-07-05

    Hippocampal theta activity, which is strongly modulated by the septal medial/Broca׳s diagonal band neurons, has been linked to information processing of the hippocampus. Serotonin from the medial raphe nuclei desynchronises hippocampal theta activity, whereas inactivation or a lesion of this nucleus induces continuous and persistent theta activity in the hippocampus. Hippocampal serotonin depletion produces an increased expression of high-frequency theta activity concurrent with the facilitation of place learning in the Morris maze. The medial septum-diagonal band of Broca complex (MS/DBB) has been proposed as a key structure in the serotonin modulation of theta activity. We addressed whether serotonin depletion of the MS/DBB induces changes in the characteristics of hippocampal theta activity and whether the depletion is associated with learning in a working memory spatial task in the radial arm maze. Sprague Dawley rats were depleted of 5HT with the infusion of 5,7-dihydroxytriptamine (5,7-DHT) in MS/DBB and were subsequently trained in the standard test (win-shift) in the radial arm, while the CA1 EEG activity was simultaneously recorded through telemetry. The MS/DBB serotonin depletion induced a low level of expression of low-frequency (4.5-6.5Hz) and a higher expression of high-frequency (6.5-9.5Hz) theta activity concomitant to a minor number of errors committed by rats on the working memory test. Thus, the depletion of serotonin in the MS/DBB caused a facilitator effect on working memory and a predominance of high-frequency theta activity.

  14. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning

    PubMed Central

    Hoffmann, Loren C.; Cicchese, Joseph J.; Berry, Stephen D.

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3–12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3–7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning. PMID:25918501

  15. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

    PubMed Central

    Gutiérrez-Lerma, Armando I.; Ordaz, Benito; Peña-Ortega, Fernando

    2013-01-01

    Soluble amyloid beta peptide (Aβ) is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ25−35 and Aβ1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM). We found that Aβ25−35 reduces, with less potency than Aβ1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ25−35 but was reduced by Aβ1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function. PMID:23878547

  16. Modulation of frontal-midline theta by neurofeedback.

    PubMed

    Enriquez-Geppert, Stefanie; Huster, René J; Scharfenort, Robert; Mokom, Zacharais N; Zimmermann, Jörg; Herrmann, Christoph S

    2014-01-01

    Cortical oscillations demonstrate a relationship with cognition. Moreover, they also exhibit associations with task performance and psychiatric mental disorders. This being the case, the modification of oscillations has become one of the key interests of neuroscientific approaches for cognitive enhancement. For such kind of alterations, neurofeedback (NF) of brain activity constitutes a promising tool. Concerning specific higher cognitive functions, frontal-midline theta (fm-theta) has been suggested as an important indicator of relevant brain processes. This paper presents a novel approach for an individualized, eight-session NF training to enhance fm-theta. An individual's dominant fm-theta frequency was determined based on experiments tapping executive functions. Effects of the actual NF training were compared to a pseudo-NF training. Participants of the pseudo-NF training experienced a comparable degree of motivation and commitment as the subjects of the actual NF training, but found the "training" slightly easier. In comparison to the pseudo-NF training, proper NF training significantly enhanced fm-theta amplitude in the actual training sessions, as well as during the whole course of training. However, unspecific changes in the alpha and beta frequency ranges found with both the actual NF and the pseudo-NF training groups emphasize the relevance of active control groups for neurofeedback studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Recognition memory and theta-gamma interactions in the hippocampus.

    PubMed

    Trimper, John B; Stefanescu, Roxana A; Manns, Joseph R

    2014-03-01

    Neuronal oscillations and cross-frequency interactions in the rat hippocampus relate in important ways to memory processes and serve as a model for studying oscillatory activity in cognition more broadly. We report here that hippocampal synchrony (CA3-CA1 coherence) increased markedly in the low gamma range as rats were exploring novel objects, particularly those for which the rat subsequently showed good memory. The gamma synchrony varied across phases of the theta rhythm such that coherence was highest at the falling slope and trough of the theta wave. Further, the shape of the theta wave was more asymmetric and elongated at the falling slope during exploration of objects for which the rat subsequently showed good memory as compared with objects for which the rat subsequently showed poor memory. The results showed a strong association between event-related gamma synchrony in rat hippocampus and memory encoding for novel objects. In addition, a novel potential mechanism of cross-frequency interactions was observed whereby dynamic alterations in the shape of theta wave related to memory in correspondence with the strength of gamma synchrony. These findings add to our understanding of how theta and gamma oscillations interact in the hippocampus in the service of memory. Copyright © 2013 Wiley Periodicals, Inc.

  18. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  19. UWB dual burst transmit driver

    SciTech Connect

    Dallum, Gregory E; Pratt, Garth C; Haugen, Peter C; Zumstein, James M; Vigars, Mark L; Romero, Carlos E

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  20. Distributed Attention Is Implemented through Theta-Rhythmic Gamma Modulation.

    PubMed

    Landau, Ayelet Nina; Schreyer, Helene Marianne; van Pelt, Stan; Fries, Pascal

    2015-08-31

    When subjects monitor a single location, visual target detection depends on the pre-target phase of an ∼8 Hz brain rhythm. When multiple locations are monitored, performance decrements suggest a division of the 8 Hz rhythm over the number of locations, indicating that different locations are sequentially sampled. Indeed, when subjects monitor two locations, performance benefits alternate at a 4 Hz rhythm. These performance alternations were revealed after a reset of attention to one location. Although resets are common and important events for attention, it is unknown whether, in the absence of resets, ongoing attention samples stimuli in alternation. Here, we examined whether spatially specific attentional sampling can be revealed by ongoing pre-target brain rhythms. Visually induced gamma-band activity plays a role in spatial attention. Therefore, we hypothesized that performance on two simultaneously monitored stimuli can be predicted by a 4 Hz modulation of gamma-band activity. Brain rhythms were assessed with magnetoencephalography (MEG) while subjects monitored bilateral grating stimuli for a unilateral target event. The corresponding contralateral gamma-band responses were subtracted from each other to isolate spatially selective, target-related fluctuations. The resulting lateralized gamma-band activity (LGA) showed opposite pre-target 4 Hz phases for detected versus missed targets. The 4 Hz phase of pre-target LGA accounted for a 14.5% modulation in performance. These findings suggest that spatial attention is a theta-rhythmic sampling process that is continuously ongoing, with each sampling cycle being implemented through gamma-band synchrony.

  1. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway.

    PubMed

    Bender, Franziska; Gorbati, Maria; Cadavieco, Marta Carus; Denisova, Natalia; Gao, Xiaojie; Holman, Constance; Korotkova, Tatiana; Ponomarenko, Alexey

    2015-10-12

    Hippocampal theta oscillations support encoding of an animal's position during spatial navigation, yet longstanding questions about their impact on locomotion remain unanswered. Combining optogenetic control of hippocampal theta oscillations with electrophysiological recordings in mice, we show that hippocampal theta oscillations regulate locomotion. In particular, we demonstrate that their regularity underlies more stable and slower running speeds during exploration. More regular theta oscillations are accompanied by more regular theta-rhythmic spiking output of pyramidal cells. Theta oscillations are coordinated between the hippocampus and its main subcortical output, the lateral septum (LS). Chemo- or optogenetic inhibition of this pathway reveals its necessity for the hippocampal regulation of running speed. Moreover, theta-rhythmic stimulation of LS projections to the lateral hypothalamus replicates the reduction of running speed induced by more regular hippocampal theta oscillations. These results suggest that changes in hippocampal theta synchronization are translated into rapid adjustment of running speed via the LS.

  2. Collective Dynamics for Heterogeneous Networks of Theta Neurons

    NASA Astrophysics Data System (ADS)

    Luke, Tanushree

    Collective behavior in neural networks has often been used as an indicator of communication between different brain areas. These collective synchronization and desynchronization patterns are also considered an important feature in understanding normal and abnormal brain function. To understand the emergence of these collective patterns, I create an analytic model that identifies all such macroscopic steady-states attainable by a network of Type-I neurons. This network, whose basic unit is the model "theta'' neuron, contains a mixture of excitable and spiking neurons coupled via a smooth pulse-like synapse. Applying the Ott-Antonsen reduction method in the thermodynamic limit, I obtain a low-dimensional evolution equation that describes the asymptotic dynamics of the macroscopic mean field of the network. This model can be used as the basis in understanding more complicated neuronal networks when additional dynamical features are included. From this reduced dynamical equation for the mean field, I show that the network exhibits three collective attracting steady-states. The first two are equilibrium states that both reflect partial synchronization in the network, whereas the third is a limit cycle in which the degree of network synchronization oscillates in time. In addition to a comprehensive identification of all possible attracting macro-states, this analytic model permits a complete bifurcation analysis of the collective behavior of the network with respect to three key network features: the degree of excitability of the neurons, the heterogeneity of the population, and the overall coupling strength. The network typically tends towards the two macroscopic equilibrium states when the neuron's intrinsic dynamics and the network interactions reinforce each other. In contrast, the limit cycle state, bifurcations, and multistability tend to occur when there is competition between these network features. I also outline here an extension of the above model where the

  3. Quantum Theta Functions and Gabor Frames for Modulation Spaces

    NASA Astrophysics Data System (ADS)

    Luef, Franz; Manin, Yuri I.

    2009-06-01

    Representations of the celebrated Heisenberg commutation relations in quantum mechanics (and their exponentiated versions) form the starting point for a number of basic constructions, both in mathematics and mathematical physics (geometric quantization, quantum tori, classical and quantum theta functions) and signal analysis (Gabor analysis). In this paper we will try to bridge the two communities, represented by the two co-authors: that of noncommutative geometry and that of signal analysis. After providing a brief comparative dictionary of the two languages, we will show, e.g. that the Janssen representation of Gabor frames with generalized Gaussians as Gabor atoms yields in a natural way quantum theta functions, and that the Rieffel scalar product and associativity relations underlie both the functional equations for quantum thetas and the Fundamental Identity of Gabor analysis.

  4. Frontal theta as a mechanism for cognitive control

    PubMed Central

    Cavanagh, James F.; Frank, Michael J.

    2014-01-01

    Recent advancements in cognitive neuroscience have afforded a description of neural responses in terms of latent algorithmic operations. However, the adoption of this approach to human scalp EEG has been more limited, despite the ability of this methodology to quantify canonical neuronal processes. Here we provide evidence that theta band activities over the mid-frontal cortex appear to reflect a common computation used for realizing the need for cognitive control. Moreover, by virtue of inherent properties of field oscillations, these theta band processes may be used to communicate this need and subsequently implement such control across disparate brain regions. Frontal theta is thus a compelling candidate mechanism by which emergent processes such as ‘cognitive control’ may be biophysically realized. PMID:24835663

  5. Some aspects on the structure and reaction of {theta}+

    SciTech Connect

    Hosaka, Atsushi

    2006-11-02

    In this report, we discuss some aspects of the present theoretical status of the pentaquarks. In the first part we discuss the importance of the pion interaction due to spontaneous symmetry breaking of chiral symmetry, which affects the basic property such as the parity of {theta}+. In the second part we show some calculations for the photoproduction of {theta}+ and {lambda}(1520) in the effective Lagrangian approach. Within the minimal setup of the model, we make comments in comparison with the present controversial experimental results.

  6. Burst Mode ASIC-Based Modem

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center is sponsoring the Advanced Communication Technology Insertion (ACTION) for Commercial Space Applications program. The goal of the program is to expedite the development of new technology with a clear path towards productization and enhancing the competitiveness of U.S. manufacturers. The industry has made significant investment in developing ASIC-based modem technology for continuous-mode applications and has made investigations into East, reliable acquisition of burst-mode digital communication signals. With rapid advances in analog and digital communications ICs, it is expected that more functions will be integrated onto these parts in the near future. In addition custom ASIC's can also be developed to address the areas not covered by the other IC's. Using the commercial chips and custom ASIC's, lower-cost, compact, reliable, and high-performance modems can be built for demanding satellite communication application. This report outlines a frequency-hop burst modem design based on commercially available chips.

  7. Search for gamma ray bursts with coincident balloon flights

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Schmidt, W. K. H.; Teegarden, B. J.

    1976-01-01

    A search was conducted for cosmic gamma ray bursts of small size and of sufficient frequency of occurrence to be detected during a one day observation program. Two similar detectors, successfully balloon-borne from launch sites in South Dakota and Texas, achieved about 20 hours of simultaneous operation at several millibars atmospheric depth, with continuous separation of over 1,500 km. Fluctuations of the counting rates of less than 150 keV photons with temporal structures from microseconds to several minutes were compared in order to detect coincident or associated responses from the two instruments. No coincident gamma-ray burst events were detected. The resulting integral size spectrum of small bursts, from this and from all other searches, remains a spectrum of upper limits, consistent with an extrapolation of the size spectrum of the largest known bursts, fitting a power low of index -1.5.

  8. Swift's 500th Gamma Ray Burst

    NASA Image and Video Library

    On April 13, 2010, NASA's Swift Gamma-ray Burst Explorer satellite discovered its 500th burst. Swift's main job is to quickly localize each gamma-ray burst (GRB), report its position so that others...

  9. Bursts de raios gama

    NASA Astrophysics Data System (ADS)

    Braga, J.

    2003-02-01

    Nos últimos anos, graças principalmente aos dados obtidos pelo Compton Gamma-Ray Observatory e pelo satélite ítalo-holandês BeppoSAX, grandes avanços foram obtidos no nosso conhecimento sobre os fascinantes e enigmáticos fenômenos conhecidos por "bursts"de raios gama. Neste trabalho é feita uma revisão sobre a fenomenologia desses misteriosos objetos e são apresentados os desenvolvimentos recentes nessa área palpitante da astrofísica moderna, ressaltando tanto os resultados observacionais obtidos até o momento quanto os modelos teóricos propostos para explixá-los.

  10. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    PubMed Central

    Balamurugan, A. M.; Sivasubramanian, A.

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks. PMID:24578663

  11. Quantum key based burst confidentiality in optical burst switched networks.

    PubMed

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  12. Burst Detector Sensitivity: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Band, David L.

    2005-01-01

    I compare the burst detection sensitivity of CGRO's BATSE, Swift's BAT, the GLAST Burst Monitor (GBM) and EXIST as a function of a burst s spectrum and duration. A detector's overall burst sensitivity depends on its energy sensitivity and set of accumulations times (Delta)t; these two factors shape the detected burst population. For example, relative to BATSE, the BAT s softer energy band decreases the detection rate of short, hard bursts, while the BAT s longer accumulation times increase the detection rate of long, soft bursts. Consequently, Swift is detecting long, low fluence bursts (2-3 x fainter than BATSE).

  13. Presence of state transitions in the cryptophyte alga Guillardia theta

    PubMed Central

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ondřej; Schröder, Wolfgang P.; Kaňa, Radek; Funk, Christiane

    2015-01-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions. PMID:26254328

  14. Oscillatory frontal theta responses are increased upon bisensory stimulation.

    PubMed

    Sakowitz, O W; Schürmann, M; Başar, E

    2000-05-01

    To investigate the functional correlation of oscillatory EEG components with the interaction of sensory modalities following simultaneous audio-visual stimulation. In an experimental study (15 subjects) we compared auditory evoked potentials (AEPs) and visual evoked potentials (VEPs) to bimodal evoked potentials (BEPs; simultaneous auditory and visual stimulation). BEPs were assumed to be brain responses to complex stimuli as a marker for intermodal associative functioning. Frequency domain analysis of these EPs showed marked theta-range components in response to bimodal stimulation. These theta components could not be explained by linear addition of the unimodal responses in the time domain. Considering topography the increased theta-response showed a remarkable frontality in proximity to multimodal association cortices. Referring to methodology we try to demonstrate that, even if various behavioral correlates of brain oscillations exist, common patterns can be extracted by means of a systems-theoretical approach. Serving as an example of functionally relevant brain oscillations, theta responses could be interpreted as an indicator of associative information processing.

  15. Classical Conditioning of Hippocampal Theta Patterns in the Rat.

    DTIC Science & Technology

    1976-08-01

    associated with changes in performance of learned tasks , 1,4,5, 8,9 there have been very few studies of neurona l plasticity of the hippocampus It self...rapid development of a conditioned hippocampal theta response to a visual sti mulus demonstrates tha t there is considerable neurona l plasticity in the

  16. Presence of state transitions in the cryptophyte alga Guillardia theta.

    PubMed

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ondřej; Schröder, Wolfgang P; Kaňa, Radek; Funk, Christiane

    2015-10-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions.

  17. Interindividual Differences in Alpha and Theta Power Reflect Memory Performance.

    ERIC Educational Resources Information Center

    Klimesch, W.; Vogt, F.; Doppelmayr, M.

    1999-01-01

    Tested whether tonic EEG power is related to memory performance by analyzing ongoing EEG for 60 subjects in 5 experimental conditions. Subjects with good memory performance had significantly larger upper alpha power, but less theta and lower alpha power. Also discusses findings for subjects good at calculation. (SLD)

  18. A Low energy neutrino factory for large theta(13)

    SciTech Connect

    Geer, Steve; Mena, Olga; Pascoli, Silvia; /Durham U., IPPP

    2007-01-01

    If the value of {theta}{sub 13} is within the reach of the upcoming generation of long-baseline experiments, T2K and NOvA, they show that a low-energy neutrino factory, with peak energy in the few GeV range, would provide a sensitive tool to explore CP-violation and the neutrino mass hierarchy. They consider baselines with typical length 1000-1500 km. The unique performance of the low energy neutrino factory is due to the rich neutrino oscillation pattern at energies between 1 and 4 GeV at baselines {Omicron}(1000) km. They perform both a semi-analytical study of the sensitivities and a numerical analysis to explore how well this setup can measure {theta}{sub 13}, CP-violation, and determine the type of mass hierarchy and the {theta}{sub 23} quadrant. A low energy neutrino factory provides a powerful tool to resolve ambiguities and make precise parameter determinations, for both large and fairly small values of the mixing parameter {theta}{sub 13}.

  19. Can prefrontal theta cordance differentiate between depression recovery and dissimulation?

    PubMed

    Kopecek, Miloslav; Sos, Peter; Brunovsky, Martin; Bares, Martin; Stopkova, Pavla; Krajca, Vladimir

    2007-08-01

    We present a case report of a 37-year old woman diagnosed with depressive disorder, first episode, who was admitted into a psychiatric hospital after a failed suicidal attempt. She responded to antidepressant therapy, as evidenced by a >50% reduction in MADRS total score. She was discharged after 4 weeks of treatment, denying any suicidal ideations. The following day the patient committed suicide; she burned herself to death. It is very likely that the patient dissimulated her symptoms and ideations. Subsequently, her quantitative EEG records were retrospectively analyzed. An increase of prefrontal theta cordance value after the first week of mirtazapine therapy was found. Recently three small studies have revealed that decrease of prefrontal theta cordance after 1 week of antidepressant administration can predict clinical response in patients with unipolar depression. In our previous study the absence of a decreased theta prefrontal cordance was associated with lack of treatment response with NPV 1.0 (Bares et al., 2007). Thus, we hypothesize that prefrontal theta cordance could become an objective marker of change of depressive symptoms, independent of patients' compliance and symptom dissimulation, more precise than objective and self-rated depression rating scales.

  20. Theta oscillations locked to intended actions rhythmically modulate perception

    PubMed Central

    Tomassini, Alice; Ambrogioni, Luca; Medendorp, W Pieter; Maris, Eric

    2017-01-01

    Ongoing brain oscillations are known to influence perception, and to be reset by exogenous stimulations. Voluntary action is also accompanied by prominent rhythmic activity, and recent behavioral evidence suggests that this might be coupled with perception. Here, we reveal the neurophysiological underpinnings of this sensorimotor coupling in humans. We link the trial-by-trial dynamics of EEG oscillatory activity during movement preparation to the corresponding dynamics in perception, for two unrelated visual and motor tasks. The phase of theta oscillations (~4 Hz) predicts perceptual performance, even >1 s before movement. Moreover, theta oscillations are phase-locked to the onset of the movement. Remarkably, the alignment of theta phase and its perceptual relevance unfold with similar non-monotonic profiles, suggesting their relatedness. The present work shows that perception and movement initiation are automatically synchronized since the early stages of motor planning through neuronal oscillatory activity in the theta range. DOI: http://dx.doi.org/10.7554/eLife.25618.001 PMID:28686161

  1. Theta-Coupled Periodic Replay in Working Memory

    PubMed Central

    Fuentemilla, Lluís; Penny, Will D.; Cashdollar, Nathan; Bunzeck, Nico; Düzel, Emrah

    2010-01-01

    Summary Working memory allows information from transient events to persist as active neural representations [1] that can be used for goal-directed behaviors such as decision making and learning [2, 3]. Computational modeling based on neuronal firing patterns in animals suggests that one putative mechanism enabling working memory is periodic reactivation (henceforth termed “replay”) of the maintained information coordinated by neural oscillations at theta (4–8 Hz) and gamma (30–80 Hz) frequency [4–6]. To investigate this possibility, we trained multivariate pattern classifier decoding algorithms on oscillatory brain responses to images depicting natural scenes, recorded with high temporal resolution via magnetoencephalography. These classifiers were applied to brain activity recorded during the subsequent five second maintenance of the scenes. This decoding revealed replay during the entire maintenance interval. Replay was specific to whether an indoor or an outdoor scene was maintained and whether maintenance centered on configural associations of scene elements or just single scene elements. Replay was coordinated by the phase of theta and the amount of theta coordination was correlated with working memory performance. By confirming the predictions of a mechanistic model and linking these to behavioral performance in humans, these findings identify theta-coupled replay as a mechanism of working memory maintenance. PMID:20303266

  2. Holomorphic projections and Ramanujan’s mock theta functions

    PubMed Central

    Imamoğlu, Özlem; Raum, Martin; Richter, Olav K.

    2014-01-01

    We use spectral methods of automorphic forms to establish a holomorphic projection operator for tensor products of vector-valued harmonic weak Maass forms and vector-valued modular forms. We apply this operator to discover simple recursions for Fourier series coefficients of Ramanujan’s mock theta functions. PMID:24591582

  3. Frontal theta reflects uncertainty and unexpectedness during exploration and exploitation.

    PubMed

    Cavanagh, James F; Figueroa, Christina M; Cohen, Michael X; Frank, Michael J

    2012-11-01

    In order to understand the exploitation/exploration trade-off in reinforcement learning, previous theoretical and empirical accounts have suggested that increased uncertainty may precede the decision to explore an alternative option. To date, the neural mechanisms that support the strategic application of uncertainty-driven exploration remain underspecified. In this study, electroencephalography (EEG) was used to assess trial-to-trial dynamics relevant to exploration and exploitation. Theta-band activities over middle and lateral frontal areas have previously been implicated in EEG studies of reinforcement learning and strategic control. It was hypothesized that these areas may interact during top-down strategic behavioral control involved in exploratory choices. Here, we used a dynamic reward-learning task and an associated mathematical model that predicted individual response times. This reinforcement-learning model generated value-based prediction errors and trial-by-trial estimates of exploration as a function of uncertainty. Mid-frontal theta power correlated with unsigned prediction error, although negative prediction errors had greater power overall. Trial-to-trial variations in response-locked frontal theta were linearly related to relative uncertainty and were larger in individuals who used uncertainty to guide exploration. This finding suggests that theta-band activities reflect prefrontal-directed strategic control during exploratory choices.

  4. The theta-related firing activity of parvalbumin-positive neurons in the medial septum-diagonal band of Broca complex and their response to 5-HT1A receptor stimulation in a rat model of Parkinson's disease.

    PubMed

    Li, Li-Bo; Han, Ling-Na; Zhang, Qiao-Jun; Sun, Yi-Na; Wang, Yong; Feng, Jie; Zhang, Li; Wang, Tao; Chen, Li; Liu, Jian

    2014-03-01

    The parvalbumin (PV)-positive neurons in the medial septum-diagonal band of Broca complex (MS-DB) play an important role in the generation of hippocampal theta rhythm involved in cognitive functions. These neurons in this region express a high density of 5-HT1A receptors which regulate the neuronal activity and consequently affect the theta rhythm. In this study, we examined changes in the theta-related firing activity of PV-positive neurons in the MS-DB, their response to 5-HT1A receptor stimulation and the corresponding hippocampal theta rhythm, and the density of PV-positive neurons and their co-localization with 5-HT1A receptors in rats with 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc). The lesion of the SNc decreased the rhythmically bursting activity of PV-positive neurons and the peak frequency of hippocampal theta rhythm. Systemic administration of 5-HT1A receptor agonist 8-OH-DPAT (0.5-128 µg/kg, i.v.) inhibited the firing rate of PV-positive neurons and disrupted rhythmically bursting activity of the neurons and the theta rhythm in sham-operated and the lesioned rats, respectively. The cumulative doses producing inhibition and disruption in the lesioned rats were higher than that of sham-operated rats. Furthermore, local application of 8-OH-DPAT (0.005 μg) in the MS-DB also inhibited the firing rate of PV-positive neurons and disrupted their rhythmically bursting activity in sham-operated rats, while having no effect on PV-positive neurons in the lesioned rats. The lesion of the SNc decreased the density of PV-positive neurons in the MS-DB, and percentage of PV-positive neurons expressing 5-HT1A receptors. These results indicate that the lesion of the SNc leads to suppression of PV-positive neurons in the MS-DB and hippocampal theta rhythm. Furthermore, the lesion decreases the response of these neurons to 5-HT1A receptor stimulation, which attributes to dysfunction and/or down-regulation of 5-HT1A receptor expression on these

  5. Hierarchical Organization of Gamma and Theta Oscillatory Dynamics in Schizophrenia

    PubMed Central

    Kirihara, Kenji; Rissling, Anthony J.; Swerdlow, Neal R.; Braff, David L.; Light, Gregory A.

    2012-01-01

    Background Schizophrenia patients have deficits across a broad range of important cognitive and clinical domains. Synchronization of oscillations in the gamma frequency range (~40 Hz) is associated with many normal cognitive functions and underlies at least some of the deficits observed in schizophrenia patients. Recent studies have demonstrated that gamma oscillations are modulated by the phase of theta waves, and this cross-frequency coupling indicates that a complex and hierarchical organization governs neural oscillatory dynamics. The aims of the present study were to determine if schizophrenia patients have abnormalities in the amplitude, synchrony, and cross-frequency coupling of gamma and theta oscillations in response to gamma-frequency steady-state stimulation and if abnormal neural oscillatory dynamics are associated with cognitive deficits in schizophrenia. Methods Schizophrenia patients (n = 234) and healthy control subjects (n = 188) underwent EEG testing in response to 40-Hz auditory steady-state stimulation. Cognitive functions were assessed with a battery of neuropsychological tests. Results Schizophrenia patients had significantly reduced gamma intertrial phase coherence, increased theta amplitude, and intact cross-frequency coupling relative to healthy control subjects. In schizophrenia patients, increased theta amplitude was associated with poor verbal memory performance. Conclusions Results suggest that schizophrenia patients have specific alterations in both gamma and theta oscillations but these deficits occur in the context of an intact hierarchical organization of their cross-frequency modulation in response to 40 Hz steady-state stimulation. Cortical oscillatory dynamics may be useful for understanding the neural mechanisms that underlie the disparate cognitive and functional impairments of schizophrenia. PMID:22361076

  6. Hierarchical organization of gamma and theta oscillatory dynamics in schizophrenia.

    PubMed

    Kirihara, Kenji; Rissling, Anthony J; Swerdlow, Neal R; Braff, David L; Light, Gregory A

    2012-05-15

    Schizophrenia patients have deficits across a broad range of important cognitive and clinical domains. Synchronization of oscillations in the gamma frequency range (~40 Hz) is associated with many normal cognitive functions and underlies at least some of the deficits observed in schizophrenia patients. Recent studies have demonstrated that gamma oscillations are modulated by the phase of theta waves, and this cross-frequency coupling indicates that a complex and hierarchical organization governs neural oscillatory dynamics. The aims of the present study were to determine if schizophrenia patients have abnormalities in the amplitude, synchrony, and cross-frequency coupling of gamma and theta oscillations in response to gamma-frequency steady-state stimulation and if abnormal neural oscillatory dynamics are associated with cognitive deficits in schizophrenia. Schizophrenia patients (n = 234) and healthy control subjects (n = 188) underwent electroencephalography testing in response to 40-Hz auditory steady-state stimulation. Cognitive functions were assessed with a battery of neuropsychological tests. Schizophrenia patients had significantly reduced gamma intertrial phase coherence, increased theta amplitude, and intact cross-frequency coupling relative to healthy control subjects. In schizophrenia patients, increased theta amplitude was associated with poor verbal memory performance. Results suggest that schizophrenia patients have specific alterations in both gamma and theta oscillations, but these deficits occur in the context of an intact hierarchical organization of their cross-frequency modulation in response to 40-Hz steady-state stimulation. Cortical oscillatory dynamics may be useful for understanding the neural mechanisms that underlie the disparate cognitive and functional impairments of schizophrenia. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. The GLAST burst monitor (GBM)

    NASA Astrophysics Data System (ADS)

    Kippen, R. M.; Briggs, M. S.; Diehl, R.; Fishman, G. J.; Georgii, R. H.; Kouveliotou, C.; Lichti, G. G.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Schönfelder, V.; von Kienlin, A.

    2001-10-01

    The study of gamma-ray bursts (GRBs) is one of the primary scientific objectives of the Gamma-ray Large Area Space Telescope (GLAST) mission. With its high sensitivity to prompt and extended 20 MeV to 300 GeV burst emission, GLAST's Large Area Telescope (LAT) is expected to yield significant progress in the understanding of GRB physics. To tie these breakthrough high-energy measurements to the known properties of GRBs at lower energies, the GLAST Burst Monitor (GBM) will provide spectra and timing in the 10 keV to 25 MeV energy range. The GBM will also have the capability to quickly localize burst sources to ~15° over more than half the sky, allowing the LAT to re-point at particularly interesting bursts which occur outside its field of view. With combined LAT/GBM measurements GLAST will be able to characterize the spectral behavior of many bursts over nearly six decades in energy. This will allow the unknown aspects of high-energy burst emission to be explored in the context of well-known low-energy properties. In this paper, we present an overview of the GBM instrument, including its technical design, scientific goals, and expected performance. .

  8. Burst Oscillation Studies with NICER

    NASA Astrophysics Data System (ADS)

    Mahmoodifar, Simin; Strohmayer, Tod E.

    2017-08-01

    Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars in Low Mass X-ray Binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. Here we present the results of our computations of the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. For the cooling phase of the burst we use two simple phenomenological models. The first considers asymmetric cooling that can achieve high amplitudes in the tail. The second considers a sustained temperature pattern on the stellar surface that is produced by r-modes propagating in the surface fluid ocean of the star. We will present some simulated burst light curves/spectra using these models and NICER response files, and will show the capabilities of NICER to detect and study burst oscillations. NICER will enable us to study burst oscillations in the energy band below ~3 keV, where there has been no previous measurements of these phenomena.

  9. Gamma-ray burst populations

    NASA Astrophysics Data System (ADS)

    Virgili, Francisco Javier

    Over the last fifty years the field of gamma-ray bursts has shown incredible growth, but the amassing of data has also left observers and theorists alike wondering about some of the basic questions surrounding these phenomena. Additionally, these events show remarkable individuality and extrema, ranging in redshift throughout the observable universe and over ten orders of magnitude in energy. This work focuses on analyzing groups of bursts that are different from the general trend and trying to understand whether these bursts are from different intrinsic populations and if so, what can be said about their progenitors. This is achieved through numerical Monte Carlo simulations and statistical inference in conjunction with current GRB observations. Chapter 1 gives a general introduction of gamma-ray burst theory and observations in a semi-historical context. Chapter 2 provides an introduction to the theory and practical issues surrounding the numerical simulations and statistics. Chapters 3--5 are each dedicated to a specific problem relating to a different type of GRB population: high-luminosity v. low-luminosity bursts, constraints from high-redshift bursts, and Type I v. Type II bursts. Chapter 6 follows with concluding remarks.

  10. Role of transcriptional bursts in cellular oscillations.

    PubMed

    Almeira, N; Risau-Gusman, S

    2017-08-07

    Genetic oscillators are present in the cells of many organisms and control several biological processes. The common feature of such oscillators is the presence of a protein which represses the transcription of its own gene. Recently, it has been shown that for many genes transcription is not a continuous process, but that it proceeds in bursts. We study here the relationship between bursty transcription and the robustness of protein oscillations. We concentrate on the temporal profile of mRNA production by studying regimes where this profile changes but the amount of mRNA produced is kept fixed. For systems with different degrees of cooperativity we show that in general bursts are associated with more robust oscillations, but when they are too short and intense they can have the opposite effect. In other words, we show that, in terms of the regularity of the oscillations generated, there is an optimal value for the intensity of the bursts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Type 2 and type 3 burst theory

    NASA Technical Reports Server (NTRS)

    Smith, D. F.

    1973-01-01

    The present state of the theory of type 3 bursts is reviewed by dividing the problem into the exciting agency, radiation source, and propagation of radiation between the source and the observer. In-situ measurements indicate that the excitors are electron streams of energy about 40 keV which are continuously relaxing. An investigation of neutralization of an electron stream indicates that n sub s is much less than 100,000 n sub e, where n sub s is the stream density and n sub e the coronal electron density. In situ observations are consistent with this result. An analysis of propagation of electrons in the current sheets of coronal streamers shows that such propagation at heights greater than 1 solar radius is impossible. The mechanisms for radiation are reviewed; it is shown that fundamental radiation at high frequencies (approximately 100 MHz) is highly beamed in the radial direction and that near the earth second harmonic radiation must be dominant. Because of beaming of the fundamental at high frequencies, it can often be quite weak near the limb so that the second harmonic is dominant. In considering propagation to the observer, the results of scattering of radiation are discussed. The present state of the theory of type 2 bursts is reviewed in the same manner as type 3 bursts.

  12. Concept for LEU Burst Reactor

    SciTech Connect

    Klein, Steven Karl; Kimpland, Robert Herbert

    2016-03-07

    Design and performance of a proposed LEU burst reactor are sketched. Salient conclusions reached are the following: size would be ~1,500 kg or greater, depending on the size of the central cavity; internal stresses during burst require split rings for relief; the reactor would likely require multiple control and safety rods for fine control; the energy spectrum would be comparable to that of HEU machines; and burst yields and steady-state power levels will be significantly greater in an LEU reactor.

  13. Hippocampal theta (3-8Hz) activity during classical eyeblink conditioning in rabbits.

    PubMed

    Nokia, Miriam S; Penttonen, Markku; Korhonen, Tapani; Wikgren, Jan

    2008-07-01

    In 1978, Berry and Thompson showed that the amount of theta (3-8Hz) activity in the spontaneous hippocampal EEG predicted learning rate in subsequent eyeblink conditioning in rabbits. More recently, the absence of theta activity during the training trial has been shown to have a detrimental effect on learning rate. Here, we aimed to further explore the relationship between theta activity and classical eyeblink conditioning by determining how the relative power of hippocampal theta activity [theta/(theta+delta) ratio] changes during both unpaired control and paired training phases. We found that animals with a higher hippocampal theta ratio immediately before conditioning learned faster and also that in these animals the theta ratio was higher throughout both experimental phases. In fact, while the hippocampal theta ratio remained stable in the fast learners as a function of training, it decreased in the slow learners already during unpaired training. In addition, the presence of hippocampal theta activity enhanced the hippocampal model of the conditioned response (CR) and seemed to be beneficial for CR performance in terms of peak latency during conditioning, but did not have any effect when the animals showed asymptotic learning. Together with earlier findings, these results imply that the behavioral state in which hippocampal theta activity is absent is detrimental for learning, and that the behavioral state in which hippocampal theta activity dominates is beneficial for learning, at least before a well-learned state is achieved.

  14. Modulation of Hippocampal Theta Oscillations and Spatial Memory by Relaxin-3 Neurons of the Nucleus Incertus

    ERIC Educational Resources Information Center

    Ma, Sherie; Olucha-Bordonau, Francisco E.; Hossain, M. Akhter; Lin, Feng; Kuei, Chester; Liu, Changlu; Wade, John D.; Sutton, Steven W.; Nunez, Angel; Gundlach, Andrew L.

    2009-01-01

    Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that "pacemaker" neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the…

  15. Modulation of Hippocampal Theta Oscillations and Spatial Memory by Relaxin-3 Neurons of the Nucleus Incertus

    ERIC Educational Resources Information Center

    Ma, Sherie; Olucha-Bordonau, Francisco E.; Hossain, M. Akhter; Lin, Feng; Kuei, Chester; Liu, Changlu; Wade, John D.; Sutton, Steven W.; Nunez, Angel; Gundlach, Andrew L.

    2009-01-01

    Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that "pacemaker" neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the…

  16. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 3 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z greater than 5 and one at z=6.3 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  17. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2009-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 4 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=6.7 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  18. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 3 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from - 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type I1 and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=6.3 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  19. Successive X-ray bursts from accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.; Woosley, S. E.; Weaver, T. A.; Lamb, D. Q.

    1993-01-01

    The evolution of a neutron star undergoing a series of thermonuclear flashes in its accreted hydrogen-rich layer has been numerically followed to determine the effects of the history of the neutron star's thermal and compositional structure on the properties of the emitted X-ray bursts. Burst characteristics are studied for a range of mass accretion rates, CNO abundances in the accreted matter, and initial thermal states of the underlying neutron star core; the bursts exhibit erratic behavior for low CNO metal abundances and cool neutron star cores, with the burst recurrence time scales varying by 1-2 orders of magnitude. There is typically a continued presence of a substantial amount of unburnt hydrogen in the accreted layer throughout the series of the X-ray burst events. Convective mixing during the quiescent phase leads to the inward transport of helium to high densities and eventually to the initiation of the next outburst. The resulting bursts can be weak and, in such cases, are characterized by short recurrence time scales (1-2 hr), low peak luminosities (0.1-0.2 times the Eddington value), and low alpha-values (about 20).

  20. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2009-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 4 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=6.7 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  1. Successive X-ray bursts from accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.; Woosley, S. E.; Weaver, T. A.; Lamb, D. Q.

    1993-01-01

    The evolution of a neutron star undergoing a series of thermonuclear flashes in its accreted hydrogen-rich layer has been numerically followed to determine the effects of the history of the neutron star's thermal and compositional structure on the properties of the emitted X-ray bursts. Burst characteristics are studied for a range of mass accretion rates, CNO abundances in the accreted matter, and initial thermal states of the underlying neutron star core; the bursts exhibit erratic behavior for low CNO metal abundances and cool neutron star cores, with the burst recurrence time scales varying by 1-2 orders of magnitude. There is typically a continued presence of a substantial amount of unburnt hydrogen in the accreted layer throughout the series of the X-ray burst events. Convective mixing during the quiescent phase leads to the inward transport of helium to high densities and eventually to the initiation of the next outburst. The resulting bursts can be weak and, in such cases, are characterized by short recurrence time scales (1-2 hr), low peak luminosities (0.1-0.2 times the Eddington value), and low alpha-values (about 20).

  2. D2 receptor block abolishes θ burst stimulation-induced neuroplasticity in the human motor cortex.

    PubMed

    Monte-Silva, Katia; Ruge, Diane; Teo, James T; Paulus, Walter; Rothwell, John C; Nitsche, Michael A

    2011-09-01

    Dopamine (DA) is a neurotransmitter with an important influence on learning and memory, which is thought to be due to its modulatory effect on plasticity at central synapses, which in turn depends on activation of D1 and D2 receptors. Methods of brain stimulation (transcranial direct current stimulation, tDCS; paired associative stimulation, PAS) lead to after-effects on cortical excitability that are thought to resemble long-term potentization (LTP)/long-term depression (LTD) in reduced preparations. In a previous study we found that block of D2 receptors abolished plasticity induced by tDCS but had no effect on the facilitatory plasticity induced by PAS. We postulated that the different effect of D2 receptor block on tDCS- and PAS-induced plasticity may be due to the different focality and associativity of the stimulation techniques. However, alternative explanations for this difference could not be ruled out. tDCS also differs from PAS in other aspects, as tDCS induces plasticity by subthreshold neuronal activation, modulating spontaneous activity, whereas PAS induces plasticity via phasic suprathreshold stimulation. The present study in 12 volunteers examined effects of D2 receptor blockade (sulpiride (SULP) 400 mg), on the LTP/LTD-like effects of theta burst transcranial magnetic stimulation (TBS), which has less restricted effects on cortical synapses than that of PAS, and does not induce associative plasticity, similar to tDCS, but on the other hand induces cortical excitability shifts by suprathreshold (rhythmic) activation of cortical neurons similarly to PAS. Administration of SULP blocked both the excitatory and inhibitory effects of intermittent (iTBS) and continuous TBS (cTBS), respectively. As the reduced response to TBS following SULP resembles its effect on tDCS, the results support an effect of DA on plasticity, which might be related to the focality and associativity of the plasticity induced.

  3. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  4. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  5. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  6. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  7. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  8. Connection Between the CME Velocities and Decameter Radio Bursts Parameters from URAN-4 Observations

    NASA Astrophysics Data System (ADS)

    Galanin, V. V.; Isaeva, E. A.; Kravetz, R. O.

    The paper reports the results of the research of connection between the coronal mass ejections (CME) with the IV type continual decameter bursts parameters. As the parameters characterizing the CME velocity, we used the integrated flux of the radio bursts and background intensity on 20 and 25 MHz frequencies. The analysis demonstrated that the connection between the CME velocity and IV type bursts increases, if we take into account the intensity of the radio bursts and background on two polarizations at a given frequency. In this case, the correlation coefficient is ≍ 0.75.

  9. Burst interference in TDMA radio systems

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Chen, M.-X.; Feher, K.

    1985-12-01

    Burst interference is inherent in TDMA subscriber radio and satellite communications systems. Spectral and interference properties of burst modulated signals are investigated. Owing to the burst mode operation of the TDMA system its spectrum spreads; this spread increases with the increase of burst gating rate and the decrease of the burst length. A theoretical derivation of the Pe = f(Eb/N0; I) performance, computer simulation and experimental results of IJF-OQPSK and conventional QPSK burst operated systems are presented. The performance of these systems in the presence of burst mode TDMA co-channel and adjacent channel interference (I) is evaluated.

  10. Prestimulus theta in the human hippocampus predicts subsequent recognition but not recall.

    PubMed

    Merkow, Maxwell B; Burke, John F; Stein, Joel M; Kahana, Michael J

    2014-12-01

    Human theta (4-8 Hz) activity in the medial temporal lobe correlates with memory formation; however, the precise role that theta plays in the memory system remains elusive (Hanslmayr and Staudigl, ). Recently, prestimulus theta activity has been associated with successful memory formation, although its specific cognitive role remains unknown (e.g., Fell et al., 2011). In this report, we demonstrate that prestimulus theta in the hippocampus indexes encoding that supports old-new recognition memory but not recall. These findings suggest that human hippocampal prestimulus theta may preferentially participate in the encoding of item information, as opposed to associative information.

  11. Prestimulus theta in the human hippocampus predicts subsequent recognition but not recall

    PubMed Central

    Merkow, Maxwell B.; Burke, John F.; Stein, Joel M.; Kahana, Michael J.

    2014-01-01

    Human theta (4−8 Hz) activity in the medial temporal lobe correlates with memory formation; however, the precise role that theta plays in the memory system remains elusive (Hanslmayr and Staudigl, 2013). Recently, prestimulus theta activity has been associated with successful memory formation, although its specific cognitive role remains unknown (e.g. Fell et al., 2011). In this report, we demonstrate that prestimulus theta in the hippocampus indexes encoding that supports old–new recognition memory but not recall. These findings suggest that human hippocampal prestimulus theta may preferentially participate in the encoding of item information, as opposed to associative information. PMID:25074395

  12. Experimental observation of transition from chaotic bursting to chaotic spiking in a neural pacemaker

    NASA Astrophysics Data System (ADS)

    Gu, Huaguang

    2013-06-01

    The transition from chaotic bursting to chaotic spiking has been simulated and analyzed in theoretical neuronal models. In the present study, we report experimental observations in a neural pacemaker of a transition from chaotic bursting to chaotic spiking within a bifurcation scenario from period-1 bursting to period-1 spiking. This was induced by adjusting extracellular calcium or potassium concentrations. The bifurcation scenario began from period-doubling bifurcations or period-adding sequences of bursting pattern. This chaotic bursting is characterized by alternations between multiple continuous spikes and a long duration of quiescence, whereas chaotic spiking is comprised of fast, continuous spikes without periods of quiescence. Chaotic bursting changed to chaotic spiking as long interspike intervals (ISIs) of quiescence disappeared within bursting patterns, drastically decreasing both ISIs and the magnitude of the chaotic attractors. Deterministic structures of the chaotic bursting and spiking patterns are also identified by a short-term prediction. The experimental observations, which agree with published findings in theoretical neuronal models, demonstrate the existence and reveal the dynamics of a neuronal transition from chaotic bursting to chaotic spiking in the nervous system.

  13. Theta oscillations predict the detrimental effects of memory retrieval.

    PubMed

    Hanslmayr, Simon; Staudigl, Tobias; Aslan, Alp; Bäuml, Karl-Heinz

    2010-09-01

    Retrieving a target item from episodic memory typically enhances later memory for the retrieved item but causes forgetting of competing irrelevant memories. This finding is termed retrieval-induced forgetting (RIF) and is assumed to be the consequence of an inhibitory mechanism resolving retrieval competition. In the present study, we examined brain oscillatory processes related to RIF, as induced by competitive memory retrieval. Contrasting a competitive with a noncompetitive retrieval condition, we found a stronger increase in early evoked theta (4-7 Hz) activity, which specifically predicted RIF, but not retrieval-induced enhancement. Within the cognitive framework of RIF, these findings suggest that theta oscillations reflect arising interference and its resolution during competitive retrieval in episodic memory. Supplemental materials for this article may be downloaded from http://cabn.psychonomic-journals.org/content/supplemental.

  14. A model code for the radiative theta pinch

    SciTech Connect

    Lee, S.; Saw, S. H.; Lee, P. C. K.; Akel, M.; Damideh, V.; Khattak, N. A. D.; Mongkolnavin, R.; Paosawatyanyong, B.

    2014-07-15

    A model for the theta pinch is presented with three modelled phases of radial inward shock phase, reflected shock phase, and a final pinch phase. The governing equations for the phases are derived incorporating thermodynamics and radiation and radiation-coupled dynamics in the pinch phase. A code is written incorporating correction for the effects of transit delay of small disturbing speeds and the effects of plasma self-absorption on the radiation. Two model parameters are incorporated into the model, the coupling coefficient f between the primary loop current and the induced plasma current and the mass swept up factor f{sub m}. These values are taken from experiments carried out in the Chulalongkorn theta pinch.

  15. A model code for the radiative theta pinch

    NASA Astrophysics Data System (ADS)

    Lee, S.; Saw, S. H.; Lee, P. C. K.; Akel, M.; Damideh, V.; Khattak, N. A. D.; Mongkolnavin, R.; Paosawatyanyong, B.

    2014-07-01

    A model for the theta pinch is presented with three modelled phases of radial inward shock phase, reflected shock phase, and a final pinch phase. The governing equations for the phases are derived incorporating thermodynamics and radiation and radiation-coupled dynamics in the pinch phase. A code is written incorporating correction for the effects of transit delay of small disturbing speeds and the effects of plasma self-absorption on the radiation. Two model parameters are incorporated into the model, the coupling coefficient f between the primary loop current and the induced plasma current and the mass swept up factor fm. These values are taken from experiments carried out in the Chulalongkorn theta pinch.

  16. REM Sleep Theta Changes in Frequent Nightmare Recallers.

    PubMed

    Marquis, Louis-Philippe; Paquette, Tyna; Blanchette-Carrière, Cloé; Dumel, Gaëlle; Nielsen, Tore

    2017-09-01

    To replicate and expand upon past research by evaluating sleep and wake electroencephalographic spectral activity in samples of frequent nightmare (NM) recallers and healthy controls. Computation of spectral activity for sleep (non-REM and REM) and wake electroencephalogram recordings from 18 frequent NM recallers and 15 control participants. There was higher "slow-theta" (2-5 Hz) for NM recallers than for controls during wake, non-REM sleep and REM sleep. Differences were clearest for frontal and central derivations and for REM sleep cycles 2-4. There was also higher beta activity during NREM sleep for NM recallers. Findings partially replicate past research by demonstrating higher relative "slow-theta" (3-4Hz) for NM recallers than for controls. Findings are consistent with a neurocognitive model of nightmares that stipulates cross-state anomalies in emotion processing in NM-prone individuals.

  17. X-ray bursts: Observation versus theory

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1981-01-01

    Results of various observations of common type I X-ray bursts are discussed with respect to the theory of thermonuclear flashes in the surface layers of accreting neutron stars. Topics covered include burst profiles; irregular burst intervals; rise and decay times and the role of hydrogen; the accuracy of source distances; accuracy in radii determination; radius increase early in the burst; the super Eddington limit; temperatures at burst maximum; and the role of the magnetic field.

  18. Correlation of hippocampal theta rhythm with changes in cutaneous temperature

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Saleh, M. A.; Karem, R. D.

    1974-01-01

    Investigation of the possibility that the hippocampus performs the function of alerting an animal to changes in cutaneous temperature, using unanesthetized, loosely restrained rabbits. The results indicate that the hippocampal theta rhythm, which appears to be evoked by changes in cutaneous temperature, can be related to a specific type of hyppocampal neuron which is, in turn, connected with other areas of the brain involved in temperature regulation.

  19. Correlation of hippocampal theta rhythm with changes in cutaneous temperature

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Saleh, M. A.; Karem, R. D.

    1974-01-01

    Investigation of the possibility that the hippocampus performs the function of alerting an animal to changes in cutaneous temperature, using unanesthetized, loosely restrained rabbits. The results indicate that the hippocampal theta rhythm, which appears to be evoked by changes in cutaneous temperature, can be related to a specific type of hyppocampal neuron which is, in turn, connected with other areas of the brain involved in temperature regulation.

  20. Theta Coordinated Error-Driven Learning in the Hippocampus

    PubMed Central

    Ketz, Nicholas; Morkonda, Srinimisha G.; O'Reilly, Randall C.

    2013-01-01

    The learning mechanism in the hippocampus has almost universally been assumed to be Hebbian in nature, where individual neurons in an engram join together with synaptic weight increases to support facilitated recall of memories later. However, it is also widely known that Hebbian learning mechanisms impose significant capacity constraints, and are generally less computationally powerful than learning mechanisms that take advantage of error signals. We show that the differential phase relationships of hippocampal subfields within the overall theta rhythm enable a powerful form of error-driven learning, which results in significantly greater capacity, as shown in computer simulations. In one phase of the theta cycle, the bidirectional connectivity between CA1 and entorhinal cortex can be trained in an error-driven fashion to learn to effectively encode the cortical inputs in a compact and sparse form over CA1. In a subsequent portion of the theta cycle, the system attempts to recall an existing memory, via the pathway from entorhinal cortex to CA3 and CA1. Finally the full theta cycle completes when a strong target encoding representation of the current input is imposed onto the CA1 via direct projections from entorhinal cortex. The difference between this target encoding and the attempted recall of the same representation on CA1 constitutes an error signal that can drive the learning of CA3 to CA1 synapses. This CA3 to CA1 pathway is critical for enabling full reinstatement of recalled hippocampal memories out in cortex. Taken together, these new learning dynamics enable a much more robust, high-capacity model of hippocampal learning than was available previously under the classical Hebbian model. PMID:23762019

  1. Cold iron cos THETA magnet option for the SSC

    SciTech Connect

    Reardon, P.

    1985-01-01

    We review first the evolution over the past several years of a cold iron, high field cos THETA magnet design option for the SSC. We note the collaborative approach pursued by BNL and LBL on the 2-in-1 option, and the culmination of this effort in the tests of the BNL 4.5 m model magnets. Next, we discuss the subsequent 1-in-1 option being pursued jointly by BNL, Fermilab and LBL.

  2. The role of REM sleep theta activity in emotional memory

    PubMed Central

    Hutchison, Isabel C.; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity—which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex—is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus. PMID:26483709

  3. The role of REM sleep theta activity in emotional memory.

    PubMed

    Hutchison, Isabel C; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity-which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex-is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus.

  4. Comet Bursting Through Relaxation

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2012-10-01

    Comets may be excited and occupy non-principal axis (complex) rotation states for a large fraction of their lifetimes. Many comet nuclei have been identified or are suspected to occupy non-principal axis (complex) rotation [Belton 2005, etc.] as well as have evolving rotation rates [Belton 2011, etc.]. Comet orbits drive these rotation states through cycles of excitation due to surface jets and relaxation due to time variable internal stresses that dissipate energy in the anelastic comet interior. Furthermore, relaxation from complex rotation can increase the loads along the symmetry axis of prolate comets. These loads stretch the body along the symmetry axis and may be the cause of the characteristic ``bowling pin’’ shape and eventually may lead to failure. This is an alternative model for comet bursting. Each cycle deposits only a small amount of energy and stress along the axis, but this process is repeated every orbit during which jets are activated. Our model for the evolution of comet nuclei includes torques due to a number of discrete jets located on the surface based on Neishtadt et al. [2002]. The model also includes internal dissipation using an approach developed by Sharma et al. [2005] and Vokrouhlicky et al. [2009]. These equations are averaged over the instantaneous spin state and the heliocentric orbit so the long-term evolution of the comet can be determined. We determine that even after the inclusion of internal dissipation there still exist non-principal axis equilibrium states for certain jet geometries. For ranges of dissipation factors and jet geometries, prolate comets are found to occupy states that have time variable internal loads over long time periods. These periodic loadings along the symmetry axis may lead to ``necking’’ as the body extends along the axis to release the stress and eventually disruption.

  5. Bursting at the seams

    NASA Image and Video Library

    2016-06-27

    This NASA/ESA Hubble Space Telescope image reveals the iridescent interior of one of the most active galaxies in our local neighbourhood — NGC 1569, a small galaxy located about eleven million light-years away in the constellation of Camelopardalis (The Giraffe). This galaxy is currently a hotbed of vigorous star formation. NGC 1569 is a starburst galaxy, meaning that — as the name suggests — it is bursting at the seams with stars, and is currently producing them at a rate far higher than that observed in most other galaxies. For almost 100 million years, NGC 1569 has pumped out stars over 100 times faster than the Milky Way! As a result, this glittering galaxy is home to super star clusters, three of which are visible in this image — one of the two bright clusters is actually  the superposition of two massive clusters. Each containing more than a million stars, these brilliant blue clusters reside within a large cavity of gas carved out by multiple supernovae, the energetic remnants of massive stars. In 2008, Hubble observed the galaxy's cluttered core and sparsely populated outer fringes. By pinpointing individual red giant stars, Hubble’s Advanced Camera for Surveys enabled astronomers to calculate a new — and much more precise — estimate for NGC 1569’s distance. This revealed that the galaxy is actually one and a half times further away than previously thought, and a member of the IC 342 galaxy group. Astronomers suspect that the IC 342 cosmic congregation is responsible for the star-forming frenzy observed in NGC 1569. Gravitational interactions between this galactic group are believed to be compressing the gas within NGC 1569. As it is compressed, the gas collapses, heats up and forms new stars.

  6. Laminar profile of spontaneous and evoked theta: Rhythmic modulation of cortical processing during word integration.

    PubMed

    Halgren, Eric; Kaestner, Erik; Marinkovic, Ksenija; Cash, Sydney S; Wang, Chunmao; Schomer, Donald L; Madsen, Joseph R; Ulbert, Istvan

    2015-09-01

    Theta may play a central role during language understanding and other extended cognitive processing, providing an envelope for widespread integration of participating cortical areas. We used linear microelectrode arrays in epileptics to define the circuits generating theta in inferotemporal, perirhinal, entorhinal, prefrontal and anterior cingulate cortices. In all locations, theta was generated by excitatory current sinks in middle layers which receive predominantly feedforward inputs, alternating with sinks in superficial layers which receive mainly feedback/associative inputs. Baseline and event-related theta were generated by indistinguishable laminar profiles of transmembrane currents and unit-firing. Word presentation could reset theta phase, permitting theta to contribute to late event-related potentials, even when theta power decreases relative to baseline. Limited recordings during sentence reading are consistent with rhythmic theta activity entrained by a given word modulating the neural background for the following word. These findings show that theta occurs spontaneously, and can be momentarily suppressed, reset and synchronized by words. Theta represents an alternation between feedforward/divergent and associative/convergent processing modes that may temporally organize sustained processing and optimize the timing of memory formation. We suggest that words are initially encoded via a ventral feedforward stream which is lexicosemantic in the anteroventral temporal lobe; its arrival may trigger a widespread theta rhythm which integrates the word within a larger context.

  7. A Modified Theta Projection Model for Creep Behavior of Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Singh, I. V.; Mishra, B. K.; Ahmad, S.; Venugopal Rao, A.; Kumar, Vikas

    2016-09-01

    In this work, a modified theta projection model is proposed for the constitutive modeling of creep behavior of metals and alloys. In the conventional theta projection model, strain hardening exponent is a function of time and theta, whereas in the modified theta projection model, the exponent is taken as a function of time, theta, and applied stress. The results obtained by the modified theta projection model for Al 2124 T851 alloy at constant uniaxial tensile stress are compared with the experimental results and with the predictions of the conventional theta projection method. The creep behavior of Al 7075 T651 alloy is also predicted using modified and conventional theta projection model and compared with the available experimental data. It is observed that the modified theta projection model captures the creep behavior more accurately as compared to the conventional theta projection model. The modified theta projection model can be used to predict the creep strain of pure metals and class M alloys (similar creep behavior to pure metals) for intermediate range of stress and temperature.

  8. Decameter Type III-Like Bursts

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.; Konovalenko, A. A.; Rutkevych, B. P.; Rucker, H. O.; Dorovskyy, V. V.; Abranin, E. P.; Lecacheux, A.; Brazhenko, A. I.; Stanislavskyy, A. A.

    2007-12-01

    Starting from 1960s Type III-like bursts (Type III bursts with high drift rates) in a wide frequency range from 300 to 950MHz have been observed. These new bursts observed at certain frequency being compared to the usual Type III bursts at the same frequency show similar behaviour but feature frequency drift 2-6 times higher than the normal bursts. In this paper we report the first observations of Type III-like bursts in decameter range, carried out during summer campaigns 2002 - 2004 at UTR-2 radio telescope. The circular polarization of the bursts was measured by the radio telescope URAN-2 in 2004. The observed bursts are analyzed and compared with usual Type III bursts in the decameter range. From the analysis of over 1100 Type III-like bursts, their main parameters have been found. Characteristic feature of the observed bursts is similar to Type III-like bursts at other frequencies, i.e. measured drift rates (5-10 MHz/s) of this bursts are few times larger than that for usual Type III bursts, and their durations (1-2 s) are few times smaller than that for usual Type III bursts in this frequency band.

  9. Theta Series, Wall-Crossing and Quantum Dilogarithm Identities

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Pioline, Boris

    2016-08-01

    Motivated by mathematical structures which arise in string vacua and gauge theories with N=2 supersymmetry, we study the properties of certain generalized theta series which appear as Fourier coefficients of functions on a twisted torus. In Calabi-Yau string vacua, such theta series encode instanton corrections from k Neveu-Schwarz five-branes. The theta series are determined by vector-valued wave-functions, and in this work we obtain the transformation of these wave-functions induced by Kontsevich-Soibelman symplectomorphisms. This effectively provides a quantum version of these transformations, where the quantization parameter is inversely proportional to the five-brane charge k. Consistency with wall-crossing implies a new five-term relation for Faddeev's quantum dilogarithm {Φ_b} at b = 1, which we prove. By allowing the torus to be non-commutative, we obtain a more general five-term relation valid for arbitrary b and k, which may be relevant for the physics of five-branes at finite chemical potential for angular momentum.

  10. Impaired theta-gamma coupling in APP-deficient mice

    PubMed Central

    Zhang, Xiaomin; Zhong, Wewei; Brankačk, Jurij; Weyer, Sascha W.; Müller, Ulrike C.; Tort, Adriano B. L.; Draguhn, Andreas

    2016-01-01

    Amyloid precursor protein (APP) is critically involved in the pathophysiology of Alzheimer’s disease, but its physiological functions remain elusive. Importantly, APP knockout (APP-KO) mice exhibit cognitive deficits, suggesting that APP plays a role at the neuronal network level. To investigate this possibility, we recorded local field potentials (LFPs) from the posterior parietal cortex, dorsal hippocampus and lateral prefrontal cortex of freely moving APP-KO mice. Spectral analyses showed that network oscillations within the theta- and gamma-frequency bands were not different between APP-KO and wild-type mice. Surprisingly, however, while gamma amplitude coupled to theta phase in all recorded regions of wild-type animals, in APP-KO mice theta-gamma coupling was strongly diminished in recordings from the parietal cortex and hippocampus, but not in LFPs recorded from the prefrontal cortex. Thus, lack of APP reduces oscillatory coupling in LFP recordings from specific brain regions, despite not affecting the amplitude of the oscillations. Together, our findings reveal reduced cross-frequency coupling as a functional marker of APP deficiency at the network level. PMID:26905287

  11. Brain Responses to a 6-Hz Binaural Beat: Effects on General Theta Rhythm and Frontal Midline Theta Activity

    PubMed Central

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2017-01-01

    A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG) was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS) before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state. PMID:28701912

  12. Brain Responses to a 6-Hz Binaural Beat: Effects on General Theta Rhythm and Frontal Midline Theta Activity.

    PubMed

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2017-01-01

    A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG) was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS) before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state.

  13. Comparison of numerical techniques for the evaluation of the Doppler broadening functions psi(x,theta) and chi(x,theta)

    NASA Technical Reports Server (NTRS)

    Canright, R. B., Jr.; Semler, T. T.

    1972-01-01

    Several approximations to the Doppler broadening functions psi(x, theta) and chi(x, theta) are compared with respect to accuracy and speed of evaluation. A technique, due to A. M. Turning (1943), is shown to be at least as accurate as direct numerical quadrature and somewhat faster than Gaussian quadrature. FORTRAN 4 listings are included.

  14. Amplitude-Modulated Bursting: A Novel Class of Bursting Rhythms

    NASA Astrophysics Data System (ADS)

    Vo, Theodore; Kramer, Mark A.; Kaper, Tasso J.

    2016-12-01

    We report on the discovery of a novel class of bursting rhythms, called amplitude-modulated bursting (AMB), in a model for intracellular calcium dynamics. We find that these rhythms are robust and exist on open parameter sets. We develop a new mathematical framework with broad applicability to detect, classify, and rigorously analyze AMB. Here we illustrate this framework in the context of AMB in a model of intracellular calcium dynamics. In the process, we discover a novel family of singularities, called toral folded singularities, which are the organizing centers for the amplitude modulation and exist generically in slow-fast systems with two or more slow variables.

  15. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  16. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or

  17. A TYPE II RADIO BURST WITHOUT A CORONAL MASS EJECTION

    SciTech Connect

    Su, W.; Cheng, X.; Ding, M. D.; Chen, P. F.; Sun, J. Q. E-mail: dmd@nju.edu.cn

    2015-05-10

    Type II radio bursts are thought to be a signature of coronal shocks. In this paper, we analyze a short-lived type II burst that started at 07:40 UT on 2011 February 28. By carefully checking white-light images, we find that the type II radio burst is not accompanied by a coronal mass ejection, only by a C2.4 class flare and narrow jet. However, in the EUV images provided by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we find a wave-like structure that propagated at a speed of ∼600 km s{sup −1} during the burst. The relationship between the type II radio burst and the wave-like structure is, in particular, explored. For this purpose, we first derive the density distribution under the wave by the differential emission measure method, which is used to restrict the empirical density model. We then use the restricted density model to invert the speed of the shock that produces the observed frequency drift rate in the dynamic spectrum. The inverted shock speed is similar to the speed of the wave-like structure. This implies that the wave-like structure is most likely a coronal shock that produces the type II radio burst. We also examine the evolution of the magnetic field in the flare-associated active region and find continuous flux emergence and cancellation taking place near the flare site. Based on these facts, we propose a new mechanism for the formation of the type II radio burst, i.e., the expansion of the strongly inclined magnetic loops after reconnecting with a nearby emerging flux acts as a piston to generate the shock wave.

  18. Chimera states in bursting neurons

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2016-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global, and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of the stability function in the incoherent (i.e., disorder), coherent, chimera, and multichimera states. Surprisingly, we find that chimera and multichimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is in contrast with the existence of chimera states in populations of nonlocally or globally coupled oscillators. A chemical synaptic coupling function is used which plays a key role in the emergence of chimera states in bursting neurons. The existence of chimera, multichimera, coherent, and disordered states is confirmed by means of the recently introduced statistical measures and mean phase velocity.

  19. Search for associations of radio pulses and gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Inzani, P.; Sironi, G.; Mandolesi, N.; Morigi, G.

    Continuous radio records obtained between July 1976 and May 1979 by automatic radiometers operating at 151 and 408 MHz from Medicina (Italy) are scanned for radio pulses associated with gamma ray bursts. In all, 65 gamma events are examined. For none of them is a definite association possible with a particular radio pulse detected within plus or minus 10 min from the burst onset. A statistical analysis of the delays between each gamma event and the nearest radio pulse, however, suggests to an 89 percent confidence level that approximately 20 percent of the bursts are associated with a weak radio precursor with a flux density greater than or equal to 10 to the -13th erg/sec sq cm MHz.

  20. On the relation between X-ray burst properties and the persistent X-ray luminosity

    NASA Technical Reports Server (NTRS)

    Van Paradijs, J.; Penninx, W.; Lewin, W. H. G.

    1988-01-01

    Published data on X-ray bursts is analyzed, assuming that the peak luminosity of X-ray bursts with radius expansion is a standard candle and that the ratio of the anisotropy factors, xi(b) and xi(p) (Sztajno et al., 1987) is the same for all burst sources. It is shown that the effective burst duration, defined as the ratio of burst fluence to maximum burst flux, is strongly anticorrelated with the persistent luminosity. A positive correlation with the persistent luminosity of the ratio of the average persistent flux to the time-averaged burst flux is found. It is concluded that, independent of the accretion rate, after a given waiting time burst sources produce bursts with approximately the same (average) energy. This suggests that continuous stable burning of a sizeable fraction of the nuclear fuel is a general phenomenon on the surface of accreting neutron stars. It is suggested that this fraction is a gradually increasing function of the accretion rate.

  1. Dissociable effects of local inhibitory and excitatory theta-burst stimulation on large-scale brain dynamics

    PubMed Central

    Sale, Martin V.; Lord, Anton; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B.

    2015-01-01

    Normal brain function depends on a dynamic balance between local specialization and large-scale integration. It remains unclear, however, how local changes in functionally specialized areas can influence integrated activity across larger brain networks. By combining transcranial magnetic stimulation with resting-state functional magnetic resonance imaging, we tested for changes in large-scale integration following the application of excitatory or inhibitory stimulation on the human motor cortex. After local inhibitory stimulation, regions encompassing the sensorimotor module concurrently increased their internal integration and decreased their communication with other modules of the brain. There were no such changes in modular dynamics following excitatory stimulation of the same area of motor cortex nor were there changes in the configuration and interactions between core brain hubs after excitatory or inhibitory stimulation of the same area. These results suggest the existence of selective mechanisms that integrate local changes in neural activity, while preserving ongoing communication between brain hubs. PMID:25717162

  2. Mapping the after-effects of theta burst stimulation on the human auditory cortex with functional imaging.

    PubMed

    Andoh, Jamila; Zatorre, Robert J

    2012-09-12

    Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses, and represents a unique method of exploring plasticity and connectivity. It has only recently begun to be applied to understand auditory cortical function. An important issue in using TMS is that the physiological consequences of the stimulation are difficult to establish. Although many TMS studies make the implicit assumption that the area targeted by the coil is the area affected, this need not be the case, particularly for complex cognitive functions which depend on interactions across many brain regions. One solution to this problem is to combine TMS with functional Magnetic resonance imaging (fMRI). The idea here is that fMRI will provide an index of changes in brain activity associated with TMS. Thus, fMRI would give an independent means of assessing which areas are affected by TMS and how they are modulated. In addition, fMRI allows the assessment of functional connectivity, which represents a measure of the temporal coupling between distant regions. It can thus be useful not only to measure the net activity modulation induced by TMS in given locations, but also the degree to which the network properties are affected by TMS, via any observed changes in functional connectivity. Different approaches exist to combine TMS and functional imaging according to the temporal order of the methods. Functional MRI can be applied before, during, after, or both before and after TMS. Recently, some studies interleaved TMS and fMRI in order to provide online mapping of the functional changes induced by TMS. However, this online combination has many technical problems, including the static artifacts resulting from the presence of the TMS coil in the scanner room, or the effects of TMS pulses on the process of MR image formation. But more importantly, the loud acoustic noise induced by TMS (increased compared with standard use because of the resonance of the scanner bore) and the increased TMS coil vibrations (caused by the strong mechanical forces due to the static magnetic field of the MR scanner) constitute a crucial problem when studying auditory processing. This is one reason why fMRI was carried out before and after TMS in the present study. Similar approaches have been used to target the motor cortex, premotor cortex, primary somatosensory cortex and language-related areas, but so far no combined TMS-fMRI study has investigated the auditory cortex. The purpose of this article is to provide details concerning the protocol and considerations necessary to successfully combine these two neuroscientific tools to investigate auditory processing. Previously we showed that repetitive TMS (rTMS) at high and low frequencies (resp. 10 Hz and 1 Hz) applied over the auditory cortex modulated response time (RT) in a melody discrimination task. We also showed that RT modulation was correlated with functional connectivity in the auditory network assessed using fMRI: the higher the functional connectivity between left and right auditory cortices during task performance, the higher the facilitatory effect (i.e. decreased RT) observed with rTMS. However those findings were mainly correlational, as fMRI was performed before rTMS. Here, fMRI was carried out before and immediately after TMS to provide direct measures of the functional organization of the auditory cortex, and more specifically of the plastic reorganization of the auditory neural network occurring after the neural intervention provided by TMS. Combined fMRI and TMS applied over the auditory cortex should enable a better understanding of brain mechanisms of auditory processing, providing physiological information about functional effects of TMS. This knowledge could be useful for many cognitive neuroscience applications, as well as for optimizing therapeutic applications of TMS, particularly in auditory-related disorders.

  3. Auditory Evoked Bursts in Mouse Visual Cortex during Isoflurane Anesthesia

    PubMed Central

    Land, Rüdiger; Engler, Gerhard

    2012-01-01

    General anesthesia is not a uniform state of the brain. Ongoing activity differs between light and deep anesthesia and cortical response properties are modulated in dependence of anesthetic dosage. We investigated how anesthesia level affects cross-modal interactions in primary sensory cortex. To examine this, we continuously measured the effects of visual and auditory stimulation during increasing and decreasing isoflurane level in the mouse visual cortex and the subiculum (from baseline at 0.7 to 2.5 vol % and reverse). Auditory evoked burst activity occurred in visual cortex after a transition during increase of anesthesia level. At the same time, auditory and visual evoked bursts occurred in the subiculum, even though the subiculum was unresponsive to both stimuli previous to the transition. This altered sensory excitability was linked to the presence of burst suppression activity in cortex, and to a regular slow burst suppression rhythm (∼0.2 Hz) in the subiculum. The effect disappeared during return to light anesthesia. The results show that pseudo-heteromodal sensory burst responses can appear in brain structures as an effect of an anesthesia induced state change. PMID:23185462

  4. Fast and slow frequency-drifting millisecond bursts in Jovian decametric radio emissions

    NASA Astrophysics Data System (ADS)

    Ryabov, V. B.; Zarka, P.; Hess, S.; Konovalenko, A.; Litvinenko, G.; Zakharenko, V.; Shevchenko, V. A.; Cecconi, B.

    2014-08-01

    We present an analysis of several Jovian Io-related decametric radio storms recorded in 2004-2012 at the Ukrainian array UTR-2 using the new generation of baseband digital receivers. Continuous baseband sampling within sessions lasting for several hours enabled us to study the evolution of multiscale spectral patterns during the whole storm at varying time and frequency resolutions and trace the temporal transformation of burst structures in unprecedented detail. In addition to the well-known frequency drifting millisecond patterns known as S bursts we detected two other classes of events that often look like S bursts at low resolution but reveal a more complicated structure in high resolution dynamic spectra. The emissions of the first type (LS bursts, superposition of L and S type emissions) have a much lower frequency drift rate than the usual quasi linearly drifting S bursts (QS) and often occur within a frequency band where L emission is simultaneously present, suggesting that both LS and at least part of L emissions may come from the same source. The bursts of the second type (modulated S bursts called MS) are formed by a wideband frequency-modulated envelope that can mimic S bursts with very steep negative (or even positive) drift rates. Observed with insufficient time-frequency resolution, MS look like S bursts with complex shapes and varying drifts; MS patterns often occur in association with (i) narrowband emission; (ii) S burst trains; or (iii) sequences of fast drift shadow events. We propose a phenomenological description for various types of S emissions, that should include at least three components: high- and low-frequency limitation of the overall frequency band of the emission, fast frequency modulation of emission structures within this band, and emergence of elementary S burst substructures, that we call "forking" structures. All together, these three components can produce most of the observed spectral structures, including S bursts with

  5. BATSE Observations of the Large-Scale Isotropy of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.; Horack, John M.; Brock, Martin N.; Kouveliotou, Chryssa; Hartmann, Dieter H.; Hakkila, Jon

    1996-01-01

    We use dipole and quadrupole statistics to test the large-scale isotropy of the first 1005 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE). In addition to the entire sample of 1005 gamma-ray bursts, many subsets are examined. We use a variety of dipole and quadrupole statistics to search for Galactic and other predicted anisotropies and for anisotropies in a coordinate-system independent manner. We find the gamma-ray burst locations to be consistent with isotropy, e.g., for the total sample the observed Galactic dipole moment (cos theta) differs from the value predicted for isotropy by 0.9 sigma and the observed Galactic quadrupole moment (sin(exp 2) b - 1/3) by 0.3 sigma. We estimate for various models the anisotropies that could have been detected. If one-half of the locations were within 86 deg of the Galactic center, or within 28 deg of the Galactic plane, the ensuing dipole or quadrupole moment would have typically been detected at the 99% confidence level. We compare the observations with the dipole and quadrupole moments of various Galactic models. Several Galactic gamma-ray bursts models have moments within 2 sigma of the observations; most of the Galactic models proposed to date are no longer in acceptable agreement with the data. Although a spherical dark matter halo distribution could be consistent with the data, the required core radius is larger than the core radius of the dark matter halo used to explain the Galaxy's rotation curve. Gamma-ray bursts are much more isotropic than any observed Galactic population, strongly favoring but not requiring an origin at cosmological distances.

  6. Languages evolve in punctuational bursts.

    PubMed

    Atkinson, Quentin D; Meade, Andrew; Venditti, Chris; Greenhill, Simon J; Pagel, Mark

    2008-02-01

    Linguists speculate that human languages often evolve in rapid or punctuational bursts, sometimes associated with their emergence from other languages, but this phenomenon has never been demonstrated. We used vocabulary data from three of the world's major language groups-Bantu, Indo-European, and Austronesian-to show that 10 to 33% of the overall vocabulary differences among these languages arose from rapid bursts of change associated with language-splitting events. Our findings identify a general tendency for increased rates of linguistic evolution in fledgling languages, perhaps arising from a linguistic founder effect or a desire to establish a distinct social identity.

  7. The effect of continuous veno-venous hemofiltration or direct hemoperfusion with polymyxin B-immobilized fiber on neutrophil respiratory oxidative burst in patients with sepsis and septic shock.

    PubMed

    Naka, Toshio; Shinozaki, Masahiro; Akizawa, Tadao; Shima, Yukihiro; Takaesu, Hideki; Nasu, Hideki

    2006-02-01

    Neutrophil activates and injures tissues and organs during sepsis or septic shock. Blood purification therapies such as continuous veno-venous hemofiltration (CVVH) and direct hemoperfusion with polymyxin-immobilized fiber (PMX-DHP) have been used for the treatment of sepsis and septic shock, however, the effects of such therapies on neutrophil activation have previously been poorly understood. We sought to evaluate neutrophil reactive oxygen species (ROS), especially H2O2 production, in the pathophysiology of sepsis or septic shock and the effect of CVVH or PMX-DHP on neutrophil ROS. Seven critically ill septic patients requiring CVVH (and 12 matched septic patients who did not require CVVH as control) and seven septic shock patients treated with PMX-DHP were studied. We found that patients with sepsis or septic shock had significantly higher levels of neutrophil ROS compared with normal volunteers (183 +/- 42, 292 +/- 90, and 103 +/- 30) (P < 0.05, and < 0.005). Neutrophil ROS did not change over time in patients treated either with CVVH or without CVVH. In contrast, neutrophil ROS significantly inhibited PMX-DHP treatment in patients with septic shock (pretreatment; 292 +/- 88 vs. post-treatment; 205 +/- 93, P < 0.05). In conclusion, neutrophil ROS was significantly enhanced in the sepsis or septic shock affected patients. CVVH did not affect neutrophil ROS while PMX-DHP significant inhibited neutrophil ROS.

  8. On the origin of gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Vahia, M. N.; Rao, A. R.

    1988-03-01

    It is argued that observations of gamma ray bursts show that the neutron star model is not tenable. A similarity between gamma ray burst characteristics and solar hard X-ray flares is established. The temporal and spectral features observed in the gamma ray bursts are also seen in the solar hard X-ray flares. The only distinction is in the energy contents of the two. Gamma ray bursts may originate from sources which have Sun-like activity. Large scale Sun-like activity is observed in flare stars, RS CVn binaries, and cataclysmic variables, grouped together as magnetically active stellar systems. These systems have enough energy to produce gamma ray bursts. Positional identification between the gamma ray burst error boxes and the magnetically active stellar systems produces an association of 46 objects with 36 error boxes with a probability of chance coincidence of 10 to the minus 10th power. A gamma ray burst that has a spatial and temporal correlation to a soft X-ray flare associated with a magnetically active stellar system and another time coincidence where the gamma ray burst location is not known to be found. Gamma ray bursts should be considered the stellar equivalent of the solar hard X-ray burst. gamma ray burst location is not known are found. Gamma ray bursts should be considered as stellar equivalents of solar hard X-ray bursts.

  9. Resource Sharing Controls Gene Expression Bursting.

    PubMed

    Caveney, Patrick M; Norred, S Elizabeth; Chin, Charles W; Boreyko, Jonathan B; Razooky, Brandon S; Retterer, Scott T; Collier, C Patrick; Simpson, Michael L

    2017-02-17

    Episodic gene expression, with periods of high expression separated by periods of no expression, is a pervasive biological phenomenon. This bursty pattern of expression draws from a finite reservoir of expression machinery in a highly time variant way, i.e., requiring no resources most of the time but drawing heavily on them during short intense bursts, that intimately links expression bursting and resource sharing. Yet, most recent investigations have focused on specific molecular mechanisms intrinsic to the bursty behavior of individual genes, while little is known about the interplay between resource sharing and global expression bursting behavior. Here, we confine Escherichia coli cell extract in both cell-sized microfluidic chambers and lipid-based vesicles to explore how resource sharing influences expression bursting. Interestingly, expression burst size, but not burst frequency, is highly sensitive to the size of the shared transcription and translation resource pools. The intriguing implication of these results is that expression bursts are more readily amplified than initiated, suggesting that burst formation occurs through positive feedback or cooperativity. When extrapolated to prokaryotic cells, these results suggest that large translational bursts may be correlated with large transcriptional bursts. This correlation is supported by recently reported transcription and translation bursting studies in E. coli. The results reported here demonstrate a strong intimate link between global expression burst patterns and resource sharing, and they suggest that bursting plays an important role in optimizing the use of limited, shared expression resources.

  10. AOS: adaptive offset time scheduling for TCP fairness in optical burst-switched network

    NASA Astrophysics Data System (ADS)

    Zheng, Hongyun; Zhao, Yongxiang; Chen, Changjia

    2005-11-01

    Optical Burst-switched (OBS) is a promising switching technology and expected to support the future Internet backbone with dramatically increasing bandwidth demand. In an OBS network, burst contention causes burst loss due to bufferless nature of OBS core network. This kind of burst loss will interact with the above TCP layer. In this paper, we study the impact of this interaction on TCP fairness. We find significant unfairness among TCP flows that share the OBS core network, i.e. one flow obtains higher throughput while any others with much lower throughputs. The cause is the phenomenon called "the bigger eats the smaller (BES)", in which a TCP flow with higher rate occasionally will "see" less burst contentions and increase its rate further, while a TCP with lower rate will see more burst contentions and decrease its rate continually. Discuss a simple model to explain BES and verify that a continuous sequence of bursts will enhance BES. Then observe that offset time will be a good choice to control TCP fairness by a curve of unfairness control with offset time adjustment. Finally an adaptive offset time scheduling (AOS) algorithm is proposed. AOS assigns burst offset time value adaptive to the rate of TCP flow. The simulation results show that the fairness can be significantly improved by our AOS scheme.

  11. Theta-Pinch Thruster for Piloted Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    LaPointe, Mike R.; Reddy, Dhanireddy (Technical Monitor)

    2000-01-01

    A new high-power propulsion concept that combines a rapidly pulsed theta-pinch discharge with upstream particle reflection by a magnetic mirror was evaluated under a Phase 1 grant awarded through the NASA Institute for Advanced Concepts. Analytic and numerical models were developed to predict the performance of a theta-pinch thruster operated over a wide range of initial gas pressures and discharge periods. The models indicate that a 1 m radius, 10 m long thruster operated with hydrogen propellant could provide impulse-bits ranging from 1 N-s to 330 N-s with specific impulse values of 7,500 s to 2,500 s, respectively. A pulsed magnetic field strength of 2 T is required to compress and heat the preionized hydrogen over a 10(exp -3) second discharge period, with about 60% of the heated plasma exiting the chamber each period to produce thrust. The unoptimized thruster efficiency is low, peaking at approximately 16% for an initial hydrogen chamber pressure of 100 Torr. The specific impulse and impulse-bit at this operating condition are 3,500 s and 90 N-s, respectively, and the required discharge energy is approximately 9x10(exp 6) J. For a pulse repetition rate of 10 Hz, the engine would produce an average thrust of 900 N at 3,500 s specific impulse. Combined with the electrodeless nature of the device, these performance parameters indicate that theta-pinch thrusters could provide unique, long-life propulsion systems for piloted deep space mission applications.

  12. Search for Theta++ pentaquarks in the exclusive reaction gammap-->K+K-p.

    PubMed

    Kubarovsky, V; Battaglieri, M; De Vita, R; Goett, J; Guo, L; Mutchler, G S; Stoler, P; Weygand, D P; Ambrozewicz, P; Anghinolfi, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Batourine, V; Bedlinskiy, I; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Bültmann, S; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Chen, S; Clinton, E; Cole, P L; Collins, P; Coltharp, P; Crabb, D; Crannell, H; Crede, V; Cummings, J P; De Masi, R; Dale, D; De Sanctis, E; Degtyarenko, P V; Deur, A; Dharmawardane, K V; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dugger, M; Dzyubak, O P; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Eugenio, P; Fedotov, G; Funsten, H; Gabrielyan, M Y; Gan, L; Garçon, M; Gasparian, A; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Glamazdin, O; Goetz, J T; Golovach, E; Gonenc, A; Gordon, C I O; Gothe, R W; Griffioen, K A; Guidal, M; Guler, N; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, R S; Hardie, J; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Joo, K; Juengst, H G; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Kossov, M; Kramer, L H; Kuhn, J; Kuhn, S E; Kuleshov, S V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Lee, T; Li, Ji; Livingston, K; Lu, H; MacCormick, M; Markov, N; McKinnon, B; Mecking, B A; Melone, J J; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Mochalov, V; Mokeev, V; Morand, L; Morrow, S A; Moteabbed, M; Nadel-Turonski, P; Nakagawa, I; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Pozdniakov, S; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Sabatié, F; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabian, Y G; Shvedunov, N V; Smith, E S; Smith, L C; Sober, D I; Stavinsky, A; Stepanyan, S S; Stepanyan, S; Stokes, B E; Strakovsky, I I; Strauch, S; Taiuti, M; Tedeschi, D J; Teymurazyan, A; Thoma, U; Tkabladze, A; Tkachenko, S; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Weinstein, L B; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Zana, L; Zhang, J; Zhao, B

    2006-09-08

    The reaction gammap --> pK+K- was studied at Jefferson Lab with photon energies from 1.8 to 3.8 GeV using a tagged photon beam. The goal was to search for a Theta++ pentaquark, a narrow, doubly charged baryon state having strangeness S=+1 and isospin I=1, in the pK+ invariant mass spectrum. No statistically significant evidence of a Theta++ was found. Upper limits on the total and differential cross section for the reaction gammap --> K-Theta++ were obtained in the mass range from 1.5 to 2.0 GeV/c2, with an upper limit for a narrow resonance with a mass M(Theta++) = 1.54 GeV/c2 of about 0.15 nb, 95% C.L.. This result places a stringent upper limit on the Theta++ width Gamma(Theta++) <0.1 MeV/c2.

  13. Cosmology: Home of a fast radio burst

    NASA Astrophysics Data System (ADS)

    Lorimer, Duncan

    2016-02-01

    Our understanding of fast radio bursts -- intense pulses of radio waves -- and their use as cosmic probes promises to be transformed now that one burst has been associated with a galaxy of known distance from Earth. See Letter p.453

  14. Respiratory burst oxidase of fertilization.

    PubMed Central

    Heinecke, J W; Shapiro, B M

    1989-01-01

    Partially reduced oxygen species are toxic, yet sea urchin eggs synthesize H2O2 in a "respiratory burst" at fertilization, as an extracellular oxidant to crosslink their protective surface envelopes. To study the biochemical mechanism for H2O2 production, we have isolated an NADPH-specific oxidase fraction from homogenates of unfertilized Strongylocentrotus purpuratus eggs that produces H2O2 when stimulated with Ca2+ and MgATP2-. Concentrations of free Ca2+ previously implicated in regulation of egg activation modulate the activity of the oxidase. Inhibitors were used to test the relevance of this oxidase to the respiratory burst of fertilization. Procaine, two phenothiazines, and N-ethylmaleimide (but not iodoacetamide) inhibited H2O2 production by the oxidase fraction and oxygen consumption by activated eggs. The ATP requirement suggested that protein kinase activity might regulate the respiratory burst of fertilization; consonant with this hypothesis, H-7 and staurosporine were inhibitory. The respiratory burst oxidase of fertilization is an NADPH:O2 oxidoreductase that appears to be regulated by a protein kinase; although it bears a remarkable resemblance to the neutrophil oxidase, unlike the latter it does not form O2- as its initial product. PMID:2537493

  15. Gamma-ray burst observations

    NASA Technical Reports Server (NTRS)

    Atteia, J.-L.

    1993-01-01

    The most important observational characteristics of gamma-ray bursts are reviewed, with emphasis on X-ray and gamma-ray data. The observations are used to derive some basic properties of the sources. The sources are found to be isotropically distributed; the burster population is limited in space, and the edge of the distribution is visible.

  16. Dark gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  17. Correlation of the Hippocampal theta rhythm to changes in hypothalamic temperature

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Horowitz, J. M.; Hsieh, A. C. L.

    1974-01-01

    Warming and cooling the preoptic anterior hypothalamic area in awake, loosely restrained rabbits was found to evoke theta rhythm. This is consistent with previous studies indicating that theta rhythm is a nonspecific response evoked by stimulation of several sensory modalities. Several studies have correlated theta rhythm with alertness. A neural pathway involving the hypothalamus, the hippocampus, the septal area, and the reticular formation is proposed. Thus, a role of this pathway may be to alert the animal to changes in its body temperature.

  18. Hippocampal theta phase-contingent memory retrieval in delay and trace eyeblink conditioning.

    PubMed

    Waselius, Tomi; Pöllänen, Eveliina; Wikgren, Jan; Penttonen, Markku; Nokia, Miriam S

    2017-09-04

    Hippocampal theta oscillations (3-12Hz) play a prominent role in learning. It has been suggested that encoding and retrieval of memories are supported by different phases of the theta cycle. Our previous study on trace eyeblink conditioning in rabbits suggests that the timing of the conditioned stimulus (CS) in relation to theta phase affects encoding but not retrieval of the memory trace. Here, we directly tested the effects of hippocampal theta phase on memory retrieval in two experiments conducted on adult female New Zealand White rabbits. In Experiment 1, animals were trained in trace eyeblink conditioning followed by extinction, and memory retrieval was tested by presenting the CS at troughs and peaks of the theta cycle during different stages of learning. In Experiment 2, animals were trained in delay conditioning either contingent on a high level of theta or at a random neural state. Conditioning was then followed by extinction conducted either at a random state, contingent on theta trough or contingent on theta peak. Our current results indicate that the phase of theta at CS onset has no effect on the performance of the behavioral learned response at any stage of classical eyeblink conditioning or extinction. In addition, theta-contingent trial presentation does not improve learning during delay eyeblink conditioning. The results are consistent with our earlier findings and suggest that the theta phase alone is not sufficient to affect learning at the behavioral level. It seems that the retrieval of recently acquired memories and consequently performing a learned response is moderated by neural mechanisms other than hippocampal theta. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Photon burst mass spectrometry technique.] Final report

    SciTech Connect

    Fairbank, W.M. Jr

    1996-04-01

    The basic tools have been developed and demonstrated for selective detection of Kr isotopes in the Photon Burst Mass Spectrometry technique. The effort is divided into: photon burst measurements on Mg{sup +} demonstrating high isotopic selectivity, charge exchange of Kr{sup +} with Cs and Rb to produce metastable Kr atoms, development of a diode laser system for photon burst detection of Kr{sup +}, and measurements of photon bursts detection of Kr.

  20. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1998-01-01

    Gamma-ray bursts remain on of the greatest mysteries in astrophysics in spite of recent observational advances and intense theoretical work. Although some of the basic properties of bursts were known 25 years ago, new and more detailed observations have been made by the BATSE (Burst and Transient Source Experiment) experiment on the Compton Gamma Ray Observatory in the past five years. Recent observations of bursts and some proposed models will be discussed.

  1. Pentaquark {Theta}{sup +} production from the reaction {gamma}p {yields} {pi}{sup +} K{sup -} {Theta}{sup +}

    SciTech Connect

    W. Liu; C. M. Ko; V. Kubarovsky

    2004-02-01

    The cross section for {Theta}{sup +} production from the reaction {gamma}p {yields} {pi}{sup +} K{sup -} {Theta}{sup +}, which was observed in the CLAS experiment at the Jefferson National Laboratory, is evaluated in a hadronic model that includes couplings of {Theta}{sup +} to both KN and K*N. With their coupling constants determined from the empirical {pi} NN(1710) and {rho} NN(1710) coupling constants using the SU(3) symmetry, the cross section for this reaction has been evaluated by taking {Theta}{sup +} to have spin 1/2 and isospin 0 but either positive or negative parity. We find that the cross section is 10-15 nb if {Theta}{sup +} has positive parity as predicted by the chiral soliton model. The cross section is reduced by more than a factor of 10 if {Theta}{sup +} has negative parity as given by lattice QCD studies. For both parities, the differential distribution peaks at small negative four momentum transfer as expected from the dominating t-channel kaon-exchange diagram that involves only the coupling of {Theta}{sup +} to KN.

  2. Cyclotron line strength variations in gamma-ray burst GB870303 - Possible evidence of neutron star rotation

    NASA Technical Reports Server (NTRS)

    Graziani, Carlo; Fenimore, Edward E.; Murakami, Toshio; Yoshida, Atsumasa; Lamb, D. Q.; Wang, John C. L.; Loredo, Thomas J.

    1992-01-01

    An exhaustive search of the Ginga data on gamma-ray burst GB870303 reveals two separate time intervals during which statistically significant line features are evident. One interval shows a single prominent line feature at about 20 keV; a second, shows two line features at about 20 and 40 keV. From model fits to the data, we find that both sets of lines are well-described by cyclotron resonant scattering in a magnetic field B about 1.8 x 10 exp 12 G, and that the differences in the line strengths between the two intervals are significant. The variations are qualitatively similar to those produced by a change in the viewing angle theta relative to the magnetic field. We conjecture that the change in theta is due to rotation of the neutron star, and derive limits P = 45-180 sec on the rotation period P.

  3. Cyclotron line strength variations in gamma-ray burst GB870303 - Possible evidence of neutron star rotation

    NASA Technical Reports Server (NTRS)

    Graziani, Carlo; Fenimore, Edward E.; Murakami, Toshio; Yoshida, Atsumasa; Lamb, D. Q.; Wang, John C. L.; Loredo, Thomas J.

    1992-01-01

    An exhaustive search of the Ginga data on gamma-ray burst GB870303 reveals two separate time intervals during which statistically significant line features are evident. One interval shows a single prominent line feature at about 20 keV; a second, shows two line features at about 20 and 40 keV. From model fits to the data, we find that both sets of lines are well-described by cyclotron resonant scattering in a magnetic field B about 1.8 x 10 exp 12 G, and that the differences in the line strengths between the two intervals are significant. The variations are qualitatively similar to those produced by a change in the viewing angle theta relative to the magnetic field. We conjecture that the change in theta is due to rotation of the neutron star, and derive limits P = 45-180 sec on the rotation period P.

  4. Cholinergic Blockade Reduces Theta-Gamma Phase Amplitude Coupling and Speed Modulation of Theta Frequency Consistent with Behavioral Effects on Encoding

    PubMed Central

    Gillet, Shea N.; Climer, Jason R.; Hasselmo, Michael E.

    2013-01-01

    Large-scale neural activation dynamics in the hippocampal-entorhinal circuit local field potential, observable as theta and gamma rhythms and coupling between these rhythms, is predictive of encoding success. Behavioral studies show that systemic administration of muscarinic acetylcholine receptor antagonists selectively impairs encoding, suggesting that they may also disrupt the coupling between the theta and gamma bands. Here, we tested the hypothesis that muscarinic antagonists selectively disrupt coupling between theta and gamma. Specifically, we characterized the effects of systemically administered scopolamine on movement-induced theta and gamma rhythms recorded in the superficial layers of the medial entorhinal cortex (MEC) of freely moving rats. We report the novel result that gamma power at the peak of theta was most reduced following muscarinic blockade, significantly shifting the phase of maximal gamma power to occur at later phases of theta. We also characterize the existence of multiple distinct gamma bands in the superficial layers of the MEC. Further, we observed that theta frequency was significantly less modulated by movement speed following muscarinic blockade. Finally, the slope relating speed to theta frequency, a correlate of familiarity with a testing enclosure, increased significantly less between the preinjection and recovery trials when scopolamine was administered during the intervening injection session than when saline was administered, suggesting that scopolamine reduced encoding of the testing enclosure. These data are consistent with computational models suggesting that encoding and retrieval occur during the peak and trough of theta, respectively, and support the theory that acetylcholine regulates the balance between encoding versus retrieval. PMID:24336727

  5. Peak Frequency in the Theta and Alpha Bands Correlates with Human Working Memory Capacity

    PubMed Central

    Moran, Rosalyn J.; Campo, Pablo; Maestu, Fernando; Reilly, Richard B.; Dolan, Raymond J.; Strange, Bryan A.

    2010-01-01

    Theta oscillations in the local field potential of neural ensembles are considered key mediators of human working memory. Theoretical accounts arising from animal hippocampal recordings propose that the phase of theta oscillations serves to instantiate sequential neuronal firing to form discrete representations of items held online. Human evidence of phase relationships in visual working memory has enhanced this theory, implicating long theta cycles in supporting greater memory capacity. Here we use human magnetoencephalographic recordings to examine a novel, alternative principle of theta functionality. The principle we hypothesize is derived from information theory and predicts that rather than long (low frequency) theta cycles, short (high frequency) theta cycles are best suited to support high information capacity. From oscillatory activity recorded during the maintenance period of a visual working memory task we show that a network of brain regions displays an increase in peak 4–12 Hz frequency with increasing memory load. Source localization techniques reveal that this network comprises bilateral prefrontal and right parietal cortices. Further, the peak of oscillation along this theta–alpha frequency axis is significantly higher in high capacity individuals compared to low capacity individuals. Importantly while we observe the adherence of cortical neuronal oscillations to our novel principle of theta functioning, we also observe the traditional inverse effect of low frequency theta maintaining high loads, where critically this was located in medial temporal regions suggesting parallel, dissociable hippocampal-centric, and prefrontal-centric theta mechanisms. PMID:21206531

  6. Expected reward modulates encoding-related theta activity before an event.

    PubMed

    Gruber, Matthias J; Watrous, Andrew J; Ekstrom, Arne D; Ranganath, Charan; Otten, Leun J

    2013-01-01

    Oscillatory brain activity in the theta frequency range (4-8 Hz) before the onset of an event has been shown to affect the likelihood of successfully encoding the event into memory. Recent work has also indicated that frontal theta activity might be modulated by reward, but it is not clear how reward expectancy, anticipatory theta activity, and memory formation might be related. Here, we used scalp electroencephalography (EEG) to assess the relationship between these factors. EEG was recorded from healthy adults while they memorized a series of words. Each word was preceded by a cue that indicated whether a high or low monetary reward would be earned if the word was successfully remembered in a later recognition test. Frontal theta power between the presentation of the reward cue and the onset of a word was predictive of later memory for the word, but only in the high reward condition. No theta differences were observed before word onset following low reward cues. The magnitude of prestimulus encoding-related theta activity in the high reward condition was correlated with the number of high reward words that were later confidently recognized. These findings provide strong evidence for a link between reward expectancy, theta activity, and memory encoding. Theta activity before event onset seems to be especially important for the encoding of motivationally significant stimuli. One possibility is that dopaminergic activity during reward anticipation mediates frontal theta activity related to memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Frontal theta is a signature of successful working memory manipulation

    PubMed Central

    Itthipuripat, Sirawaj; Wessel, Jan R.; Aron, Adam R.

    2012-01-01

    It has been proposed that working memory (WM) is updated/manipulated via a fronto-basal-ganglia circuit. One way that this could happen is via the synchronization of neural oscillations. A first step towards testing this hypothesis is to clearly establish a frontal scalp EEG signature of WM manipulation. Although many EEG studies have indeed revealed frontal EEG signatures for WM, especially in the theta frequency band (3–8 Hz), few of them required subjects to manipulate WM, and of those that did, none specifically tied the EEG signature to the manipulation process per se. Here we employed a WM manipulation task that has been shown with imaging to engage the prefrontal cortex and the striatum. We adapted this task to titrate the success of WM manipulation to approximately 50%. Using time-frequency analysis of EEG, we showed that theta power is increased over frontal cortex for successful versus failed WM manipulation, specifically at the time of the manipulation event. This establishes a clear-cut EEG signature of WM manipulation. Future studies could employ this to test the fronto-basal-ganglia hypothesis of WM updating/manipulation. PMID:23109082

  8. Increased oscillatory theta activation evoked by violent digital game events.

    PubMed

    Salminen, Mikko; Ravaja, Niklas

    2008-04-11

    The authors examined electroencephalographic (EEG) oscillatory responses to two violent events, the player character wounding and killing an opponent character with a gun, in the digital game James Bond 007: NightFire. EEG was recorded from 25 (16 male) right-handed healthy young adults. EEG data were segmented into one 1-s baseline epoch before each event and two 1-s epochs after event onset. Power estimates (microV(2)) were derived with the fast Fourier transform (FFT) for each artefact free event. Both of the studied events evoked increased occipital theta (4-6Hz) responses as compared to the pre-event baseline. The wounding event evoked also increased occipital high theta (6-8Hz) response and the killing event evoked low alpha (8-10Hz) asymmetry over the central electrodes, both relative to the pre-event baseline. The results are discussed in light of facial electromyographic and electrodermal activity responses evoked by these same events, and it is suggested that the reported EEG responses may be attributable to affective processes related to these violent game events.

  9. Frontal beta-theta network during REM sleep

    PubMed Central

    Vijayan, Sujith; Lepage, Kyle Q; Kopell, Nancy J; Cash, Sydney S

    2017-01-01

    We lack detailed knowledge about the spatio-temporal physiological signatures of REM sleep, especially in humans. By analyzing intracranial electrode data from humans, we demonstrate for the first time that there are prominent beta (15–35 Hz) and theta (4–8 Hz) oscillations in both the anterior cingulate cortex (ACC) and the DLPFC during REM sleep. We further show that these theta and beta activities in the ACC and the DLPFC, two relatively distant but reciprocally connected regions, are coherent. These findings suggest that, counter to current prevailing thought, the DLPFC is active during REM sleep and likely interacting with other areas. Since the DLPFC and the ACC are implicated in memory and emotional regulation, and the ACC has motor areas and is thought to be important for error detection, the dialogue between these two areas could play a role in the regulation of emotions and in procedural motor and emotional memory consolidation. DOI: http://dx.doi.org/10.7554/eLife.18894.001 PMID:28121613

  10. D3-instantons, mock theta series and twistors

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Manschot, Jan; Pioline, Boris

    2013-04-01

    The D-instanton corrected hypermultiplet moduli space of type II string theory compactified on a Calabi-Yau threefold is known in the type IIA picture to be determined in terms of the generalized Donaldson-Thomas invariants, through a twistorial construction. At the same time, in the mirror type IIB picture, and in the limit where only D3-D1-D(-1)-instanton corrections are retained, it should carry an isometric action of the S-duality group SL(2, {Z} ). We prove that this is the case in the one-instanton approximation, by constructing a holomorphic action of SL(2, {Z} ) on the linearized twistor space. Using the modular invariance of the D4-D2-D0 black hole partition function, we show that the standard Darboux coordinates in twistor space have modular anomalies controlled by period integrals of a Siegel-Narain theta series, which can be canceled by a contact transformation generated by a holomorphic mock theta series.

  11. 100 kHz thousand-frame burst-mode planar imaging in turbulent flames.

    PubMed

    Michael, James B; Venkateswaran, Prabhakar; Miller, Joseph D; Slipchenko, Mikhail N; Gord, James R; Roy, Sukesh; Meyer, Terrence R

    2014-02-15

    High-repetition-rate, burst-mode lasers can achieve higher energies per pulse compared with continuously pulsed systems, but the relatively few number of laser pulses in each burst has limited the temporal dynamic range of measurements in unsteady flames. A fivefold increase in the range of timescales that can be resolved by burst-mode laser-based imaging systems is reported in this work by extending a hybrid diode- and flashlamp-pumped Nd:YAG-based amplifier system to nearly 1000 pulses at 100 kHz during a 10 ms burst. This enables an unprecedented burst-mode temporal dynamic range to capture turbulent fluctuations from 0.1 to 50 kHz in flames of practical interest. High pulse intensity enables efficient conversion to the ultraviolet for planar laser-induced fluorescence imaging of nascent formaldehyde and other potential flame radicals.

  12. Posttranslationally caused bioluminescence burst of the Escherichia coli luciferase reporter strain.

    PubMed

    Ideguchi, Yamato; Oshikoshi, Yuta; Ryo, Masashi; Motoki, Shogo; Kuwano, Takashi; Tezuka, Takafumi; Aoki, Setsuyuki

    2016-01-01

    We continuously monitored bioluminescence from a wild-type reporter strain of Escherichia coli (lacp::luc+/WT), which carries the promoter of the lac operon (lacp) fused with the firefly luciferase gene (luc+). This strain showed a bioluminescence burst when shifted into the stationary growth phase. Bioluminescence profiles of other wild-type reporter strains (rpsPp::luc+ and argAp::luc+) and gene-deletion reporter strains (lacp::luc+/crp- and lacp::luc+/lacI-) indicate that transcriptional regulation is not responsible for generation of the burst. Consistently, changes in the luciferase protein levels did not recapitulate the profile of the burst. On the other hand, dissolved oxygen levels increased over the period across the burst, suggesting that the burst is, at least partially, caused by an increase in intracellular oxygen levels. We discuss limits of the firefly luciferase when used as a reporter for gene expression and its potential utility for monitoring metabolic changes in cells.

  13. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  14. Increased Entorhinal–Prefrontal Theta Synchronization Parallels Decreased Entorhinal–Hippocampal Theta Synchronization during Learning and Consolidation of Associative Memory

    PubMed Central

    Takehara-Nishiuchi, Kaori; Maal-Bared, Geith; Morrissey, Mark D.

    2012-01-01

    Memories are thought to be encoded as a distributed representation in the neocortex. The medial prefrontal cortex (mPFC) has been shown to support the expression of memories that initially depend on the hippocampus (HPC), yet the mechanisms by which the HPC and mPFC access the distributed representations in the neocortex are unknown. By measuring phase synchronization of local field potential (LFP) oscillations, we found that learning initiated changes in neuronal communication of the HPC and mPFC with the lateral entorhinal cortex (LEC), an area that is connected with many other neocortical regions. LFPs were recorded simultaneously from the three brain regions while rats formed an association between an auditory stimulus (CS) and eyelid stimulation (US) in a trace eyeblink conditioning paradigm, as well as during retention 1 month following learning. Over the course of learning, theta oscillations in the LEC and mPFC became strongly synchronized following presentation of the CS on trials in which rats exhibited a conditioned response (CR), and this strengthened synchronization was also observed during remote retention. In contrast, CS-evoked theta synchronization between the LEC and HPC decreased with learning. Our results suggest that communication between the LEC and mPFC are strengthened with learning whereas the communication between the LEC and HPC are concomitantly weakened, suggesting that enhanced LEC–mPFC communication may be a neuronal correlate for theoretically proposed neocortical reorganization accompanying encoding and consolidation of a memory. PMID:22319482

  15. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  16. Solar Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  17. On burst-and-coast swimming performance in fish-like locomotion.

    PubMed

    Chung, M-H

    2009-09-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  18. Spectral evolution of a subclass of gamma-ray bursts observed by batse

    NASA Technical Reports Server (NTRS)

    Bhat, P. N.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Kouveliotou, Chryssa; Paciesas, William S.; Pendleton, Geoffrey N.; Schaefer, Bradley E.

    1994-01-01

    Among the gamma-ray bursts (GRBs) observed by the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory we define a subclass of bursts based on similar morphology: a sharp rise followed by a longer decay time. About 7% of all the gamma-ray bursts observed by BATSE fall into this subclass. We study the spectral evolution of these bursts by fitting models to time-segmented burst spectra and find no clear distinction between the spectral evolutionary properties of this subclass and those of other bursts. Further, we study the high time resolution spectral evolution of this subclass of GRBs using their spectral hardness ratios. A majority of the bursts show hardness ratio leading the counting rate and also display a continuous hard to soft evolution. The time lag between the counting rate and the hardness ratio is found to be directly correlated with the rise time of the counting rate profile. We also find, for the first time, evidence for spectral variation in a timescale of 64 ms.

  19. Continuous Tuning and Calibration of Vibratory Gyroscopes

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken

    2003-01-01

    A method of control and operation of an inertial reference unit (IRU) based on vibratory gyroscopes provides for continuously repeated cycles of tuning and calibration. The method is intended especially for application to an IRU containing vibratory gyroscopes that are integral parts of microelectromechanical systems (MEMS) and that have cloverleaf designs, as described in several previous NASA Tech Briefs articles. The method provides for minimization of several measures of spurious gyroscope output, including zero-rate offset (ZRO), angle random walk (ARW), and rate drift. These benefits are afforded both at startup and thereafter during continuing operation, in the presence of unknown rotation rates and changes in temperature. A vibratory gyroscope contains a precision mechanically resonant structure containing two normal modes of vibration nominally degenerate in frequency and strongly coupled via a Coriolis term. In the case of the cloverleaf design MEMS gyro, these normal modes of vibration are plate rocking modes. The rocking motion of the plate is described by giving two angles, theta(sub 1) and theta(sub 2). A proof mass consisting of a post orthogonal to the plate ensures a high degree of Coriolis coupling of vibratory energy from one mode into the other under inertial rotation. The plate is driven and sensed capacitively across a few-microns-wide gap, and the normal mode frequencies can be tuned electrostatically by DC voltages applied across this gap. In order to sense rotation, the resonator plate is caused to rock in the theta(sub 1) direction, then any small motions in the theta(sub 2) direction are sensed, rebalanced, and interpreted as inertial rotation. In this scenario, the "drive" has been assigned to the theta(sub 1) direction, and the "sense" has been assigned to the theta(sub 2) direction.

  20. Intensity distributions of gamma-ray bursts

    SciTech Connect

    Band, D. L.

    2001-01-01

    Observations of individual bursts chosen by the vagaries of telescope availability demonstrated that bursts are not standard candles and that their apparent energy can be as great as 10{sup 54} erg. However, determining the distribution of their apparent energy (and of other burst properties) requires the statistical analysis of a well-defined burst sample; the sample definition includes the threshold for including a burst in the sample. Thus optical groups need to the criteria behind the decision to search for a spectroscopic redshift. Currently the burst samples are insufficient to choose between lognormal and power law functional forms of the distribution, and the parameter values for these functional forms differ between burst samples. Similarly, the actual intensity distribution may be broader than observed, with a low energy tail extending below the detection threshold.

  1. Do gamma-ray burst sources repeat?

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.; Hartmann, Dieter H.; Brainerd, J. J.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey; Kouveliotou, Chryssa; Fishman, Gerald; Blumenthal, George; Brock, Martin

    1995-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports (Quashnock and Lamb, 1993; Wang and Lingenfelter, 1993) of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al., 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic and the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the observed bursts cannot be excluded.

  2. Predicting rock bursts in mines

    USGS Publications Warehouse

    Spall, H.

    1979-01-01

    The microseismic method relies on observational data, amply demonstrated in laboratory experiments, that acoustic noise occurs in rocks subjected to high differential stresses. Acoustic emission becomes most pronounced as the breaking strength of the rock is reached. Laboratory studies have shown that the acoustic emission is linked with the release of stored strain energy as the rock mass undergoes small-scale adjustments such as the formation of cracks. Studies in actual mines have shown that acoustic noises often precede failure of rock masses in rock bursts or in coal bumps. Seismologists are, therefore, very interested in whether these results can be applied to large-scale failures; that is, earthquakes. An active research program in predicting rock bursts in mines is being conducted by Brian T. Brady and his colleagues at the U.S Bureau of Mines, Denver Colo.  

  3. Theta Dynamics in Rat: Speed and Acceleration across the Septotemporal Axis

    PubMed Central

    Long, Lauren L.; Hinman, James R.; Chen, Chi-Ming; Escabi, Monty A.; Chrobak, James J.

    2014-01-01

    Theta (6–12 Hz) rhythmicity in the local field potential (LFP) reflects a clocking mechanism that brings physically isolated neurons together in time, allowing for the integration and segregation of distributed cell assemblies. Variation in the theta signal has been linked to locomotor speed, sensorimotor integration as well as cognitive processing. Previously, we have characterized the relationship between locomotor speed and theta power and how that relationship varies across the septotemporal (long) axis of the hippocampus (HPC). The current study investigated the relationship between whole body acceleration, deceleration and theta indices at CA1 and dentate gyrus (DG) sites along the septotemporal axis of the HPC in rats. Results indicate that whole body acceleration and deceleration predicts a significant amount of variability in the theta signal beyond variation in locomotor speed. Furthermore, deceleration was more predictive of variation in theta amplitude as compared to acceleration as rats traversed a linear track. Such findings highlight key variables that systematically predict the variability in the theta signal across the long axis of the HPC. A better understanding of the relative contribution of these quantifiable variables and their variation as a function of experience and environmental conditions should facilitate our understanding of the relationship between theta and sensorimotor/cognitive functions. PMID:24842406

  4. The Estimation of Theta in the Integrated Moving Average Time-Series Model.

    ERIC Educational Resources Information Center

    Martin, Gerald R.

    Through Monte Carlo procedures, three different techniques for estimating the parameter theta (proportion of the "shocks" remaining in the system) in the Integrated Moving Average (0,1,1) time-series model are compared in terms of (1) the accuracy of the estimates, (2) the independence of the estimates from the true value of theta, and…

  5. The Durations and Spectral Hardness Ratios of Swift BAT Gamma-Ray Bursts in the Co-Moving Frame

    NASA Astrophysics Data System (ADS)

    Curtis, Jason L.; Butler, N.; Bloom, J.; Kocevski, D.

    2006-12-01

    We have carefully determined the durations with error bars for 155 Swift BAT bursts with a uniform method. We experimented with two methods for transforming the hardness ratio from the observer frame to the co-moving frame. We present the hardness duration plot for 47 Swift bursts with known redshift in the observer frame and, for the first time, in the co-moving frame. We discuss a clear evolution with energy of the T90 durations in the overall populations of the short and long Swift bursts and derive the dividing times separating the short and long bursts in the four BAT energy bands. From Kolmogorov-Smirnov tests, we find that short and long Swift bursts and the short and long BATSE bursts are consistent with having been drawn from the same parent populations, provided that we introduce energy dependent scaling factors and adopt a lower efficiency of detection for short bursts for Swift BAT than for BATSE. With these scaling factors, we are able to continue the trend of decreasing durations in the overall populations of short and long bursts with increasing energy to include the set of BATSE bursts. Finally, we discuss the implications our conclusions have for understanding the nature of short and long gamma-ray bursts.

  6. Aggregation of theta-polymers in spherical confinement.

    PubMed

    Zierenberg, Johannes; Mueller, Marco; Schierz, Philipp; Marenz, Martin; Janke, Wolfhard

    2014-09-21

    We investigate the aggregation transition of theta polymers in spherical confinement with multicanonical simulations. This allows for a systematic study of the effect of density on the aggregation transition temperature for up to 24 monodisperse polymers. Our results for solutions in the dilute regime show that polymers can be considered isolated for all temperatures larger than the aggregation temperature, which is shown to be a function of the density. The resulting competition between single-polymer collapse and aggregation yields the lower temperature bound of the isolated chain approximation. We provide entropic and energetic arguments to describe the density dependence and finite-size effects of the aggregation transition for monodisperse solutions in finite systems. This allows us to estimate the aggregation transition temperature of dilute systems in a spherical cavity, using a few simulations of small, sufficiently dilute polymer systems.

  7. A Light Curve of Theta-1 Orionis A

    NASA Astrophysics Data System (ADS)

    Robertson, J. R.; Stutts, S. C.; Caton, D. B.

    2002-12-01

    Theta-1 Orionis A (V1016 Ori), a member of the Trapezium, was only discovered to be an eclipsing binary system in 1974. The study of this system has been recently summarized by Strickland and Lloyd (The Observatory, 120, 2000, pp. 141-149). We are obtaining a complete light curve in VBRI using a CCD on the 18-inch telescope at Appalachian State University's Dark Sky Observatory. We have obtained new times of primary minimum and are searching for the undiscovered secondary eclipse as well. A status update on this project will be presented. We gratefully acknowledge the support of the National Science Foundation, through grant AST-9731062, and the Dunham Fund for Astrophysical Research. We would also like to thank the staff of the U.S. Naval Observatory Library and acknowledge the use of the Simbad Astronomical Data Base. The instrumentation help provided by Lee Hawkins and Robert Miller is appreciated as well.

  8. Bursts of star formation in computer simulations of dwarf galaxies

    SciTech Connect

    Comins, N.F.

    1984-09-01

    A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing bursts rather than continuous, nonbursting low-level star formation activity.

  9. Burns from a Stove Burst: Analysis of 34 Cases

    PubMed Central

    Ahmad, M.; Hussain, S.S.; Malik, S.A.

    2007-01-01

    Summary Burns continue to be a major environmental factor responsible for significant morbidity and mortality in developing countries and, in particular, burns due to stove bursts are a major problem. Two types of stoves are available in Pakistan: gas stoves and kerosene stoves. The state is considered of patients burned by stove bursts in general, and also with specific reference to 34 adult patients admitted with stove burns to our hospital in Pakistan. Various treatment options were used, and the patients' treatment and outcome are reported. The continued commercialization of such stoves, and especially of the gas stove, is is a cause of serious and permanent consequences that represent a danger for the population. Proper care should be observed when handling them because, as always, prevention is better than cure. PMID:21991092

  10. Symmetric Fold/Super-Hopf Bursting, Chaos and Mixed-Mode Oscillations in Pernarowski Model of Pancreatic Beta-Cells

    NASA Astrophysics Data System (ADS)

    Fallah, Haniyeh

    Pancreatic beta-cells produce insulin to regularize the blood glucose level. Bursting is important in beta cells due to its relation to the release of insulin. Pernarowski model is a simple polynomial model of beta-cell activities indicating bursting oscillations in these cells. This paper presents bursting behaviors of symmetric type in this model. In addition, it is shown that the current system exhibits the phenomenon of period doubling cascades of canards which is a route to chaos. Canards are also observed symmetrically near folds of slow manifold which results in a chaotic transition between n and n + 1 spikes symmetric bursting. Furthermore, mixed-mode oscillations (MMOs) and combination of symmetric bursting together with MMOs are illustrated during the transition between symmetric bursting and continuous spiking.

  11. R-process in Supernovae and Gamma-Ray Bursts

    SciTech Connect

    Kajino, T.; Harikae, S.; Yoshida, T.; Nakamura, K.; Aoki, W.

    2010-05-12

    We study r-process nucleosynthesis in neutrino-driven winds of Type II supernovae (SNe), binary neutron-star mergers, and magneto-hydrodynamic jets in view of recent astronomical observations of r-process elements in metal-deficient stars and new nuclear reaction data. Universality in observed abundance pattern and total ejected yields of the r-elements from single episode of each candidate site are used to identify the astrophysical site of the r-process. Neutrinos play the critical roles in light element synthesis as well as r-process. Elemental abundances are affected strongly by neutrino oscillations (MSW effect) through the SN nu-process nucleosynthesis. We find that unknown neutrino oscillation parameters, i.e. mass hierarchy and mixing angle theta{sub 13}, are simultaneously constrained by the Li/B ratio from SN nucleosynthesis. Gamma ray burst (GRB) nucleosynthesis in contrast is expected to be relatively free from thermal neutrino effects because of black hole (BH) formation instead of neutron star. We find that the abundance pattern is totally different from ordinary SN nucleosynthesis.

  12. Destructive power dynamics of alpha-theta oscillations via spike and wave in CA3.

    PubMed

    Dong, Guoya; Chen, Xiaogang; Li, Wenwen; Cheng, Zhishuang; Ge, Manling

    2010-01-01

    The power dynamics of alpha-theta oscillations via inter-ictal spikes and waves (SWs) in CA3 is investigated by means of Hilbert transform and the statistical method based on CA3 channel of LFP(Local Field Potention) data sampled on total 6 rats in resting with sniffing and of iEEG data on total 10 patients in quiet wakefulness. The comparison of alpha-theta power is done between the inter-ictal groups and control groups. It is concluded that the inter-ictal SWs can disrupt the power of alpha-theta oscillations, leading to the decreased power after SW. Because the alpha-theta oscillations are related with the cognition, it is estimated that the inter-ictal SWs can negatively affecte the cognitive function during the inter-ictal dynamics, although the alpha-theta power will be recoverable in some days after injections, even exceed over the power level before injections.

  13. Hints of theta13>0 from global neutrino data analysis.

    PubMed

    Fogli, G L; Lisi, E; Marrone, A; Palazzo, A; Rotunno, A M

    2008-10-03

    Nailing down the unknown neutrino mixing angle theta{13} is one of the most important goals in current lepton physics. In this context, we perform a global analysis of neutrino oscillation data, focusing on theta{13}, and including recent results [ (unpublished)]. We discuss two converging hints of theta{13}>0, each at the level of approximately 1sigma: an older one coming from atmospheric neutrino data, and a newer one coming from the combination of solar and long-baseline reactor neutrino data. Their combination provides the global estimate sin{2}theta{13}=0.016+/-0.010(1sigma), implying a preference for theta{13}>0 with non-negligible statistical significance ( approximately 90% C.L.). We discuss possible refinements of the experimental data analyses, which might sharpen such intriguing indications.

  14. Adults with dyslexia: theta power changes during performance of a sequential motor task.

    PubMed

    Coombes, Stephen A; Janelle, Christopher M; Duley, Aaron R; Conway, Timothy

    2005-04-01

    Performance deficits during cerebellar intensive motor tasks maybe reflected by discrepant theta activity in the cerebral cortex. The present experiment examined the relationship between performance on a novel motor task and theta activity in adults with developmental dyslexia (DD) and an age- and IQ-matched control group (CG). Time-locked tonic and phasic lower and upper theta measures were derived and separate event-related theta band power (ERBP) scores were calculated for each of three experimental trials. The DD made significantly more errors than CG during Trials 1 and 2 of the motor task. Tonic theta did not differ between groups; however, the DD group displayed a significant decrease in ERBP across all trials and sites, specifically in central and parietal regions during Trial 3. No significant behavioral or physiological evidence supported the notion of conscious compensation (CC). Rather, deficient task performance in the DD group was associated with a general inability to recruit sufficient working memory processes.

  15. Environmental novelty elicits a later theta phase of firing in CA1 but not subiculum

    PubMed Central

    Lever, Colin; Burton, Stephen; Jeewajee, Ali; Wills, Thomas J.; Cacucci, Francesca; Burgess, Neil; O’Keefe, John

    2011-01-01

    The mechanism supporting the role of the hippocampal formation in novelty detection remains controversial. A comparator function has been variously ascribed to CA1 or subiculum, while the theta rhythm has been suggested to separate neural firing into encoding and retrieval phases. We investigated theta phase of firing in principal cells in subiculum and CA1 as rats foraged in familiar and novel environments. We found that the preferred theta phase of firing in CA1, but not subiculum, was shifted to a later phase of the theta cycle during environmental novelty. Furthermore, the amount of phase shift elicited by environmental change correlated with the extent of place cell remapping in CA1. Our results support a relationship between theta phase and novelty-induced plasticity in CA1. PMID:19623610

  16. Gamma Ray Burst 150518a measured at different wavelengths

    NASA Astrophysics Data System (ADS)

    Apala, Ellizabeth Ann; Soderberg, Alicia Margarita; West, Michael

    2016-01-01

    Gamma Ray Burst (GRB's), extremely energetic flashes of Gamma Rays, are caused by either deaths of massive unstable stars or colliding binary neutron stars. A unique burst, GRB 150518a, had two recorded bursts fifteen minutes apart which is very rare and is considered to be ultra-long, lasting around thirty minutes total and is associated with a Supernova explosion. GBR 150518a is also extremely close compared to the average burst being measured to have a redshift of .2, this is important to note because GRB's measuring less than a redshift of .3 only are seen every ten years. Gamma rays are emitted by supernovae, neutron stars, black holes, and quasars and by studying GRB's it allows us to see more deeply into how these objects function. The first few days of GRB 150518as' detected afterglow was plotted in different wavelengths, including optical, x-ray, radio, and infrared, in flux verses time. Data is continuously being added as time goes on. This research is funded by the NSF, grant number 1358990.

  17. Analysis of Burst Observations by GLAST's LAT Detector

    NASA Technical Reports Server (NTRS)

    Band, David L.; Digel, Seth W.

    2003-01-01

    Analyzing data from GLAST's Large Area Telescope (LAT) will require sophisticated techniques. The PSF and effective area are functions of both photon energy and the position in the field-of-view. During most of the mission the observatory will survey the sky continuously and thus the LAT will detect each count from a source at a different detector orientation; each count requires its own response function! The likelihood as a function of celestial position and photon energy will be the foundation of the standard analysis techniques. However the 20 MeV-300 GeV emission at the time of the approx.100 keV burst emission (timescale of approx.10 s) can be isolated and analyzed because essentially no non-burst counts are expected within a PSF radius of the burst location during the burst. Both binned and unbinned (in energy) spectral fitting will be possible. Longer timescale afterglow emission will require the likelihood analysis that will be used for persistent sources.

  18. A bursting phenomenon in a vortex-gas boundary layer

    NASA Astrophysics Data System (ADS)

    Sekaran, Aarthi; Narasimha, Roddam; Govindarajan, Rama

    2014-11-01

    Bursts are a central phenomenon in turbulent boundary layers as they are an integral part of turbulent energy and stress production. They have consequently been a continuing area of interest since the 1970s following the detailed investigations of Kline et al. (1967). Despite several attempts to understand their dynamics, it has been difficult to arrive at a consensus even on the scaling of the burst frequency. The present investigation simulates the outer part of a plane turbulent boundary layer using the vortex-gas model, in a first step towards understanding the role of the outer layer in boundary layer dynamics. Preliminary results indicate the formation of regions of concentrated vorticity near the wall, at a frequency that is independent of the initial vortex configuration but a function of the mean velocity profile. Further, comparisons with existing experimental data indicate a burst frequency which when scaled on outer variables, is within the range of scatter among different studies. Quadrant occupancy statistics are also related to those in conventional boundary layers. It appears as if a bursting phenomenon of some kind may be a general feature of an inviscid, wall-bounded shear flow, and does not necessitate inclusion of either viscosity or three-dimensionality.

  19. Stimulus induced bursts in severe postanoxic encephalopathy.

    PubMed

    Tjepkema-Cloostermans, Marleen C; Wijers, Elisabeth T; van Putten, Michel J A M

    2016-11-01

    To report on a distinct effect of auditory and sensory stimuli on the EEG in comatose patients with severe postanoxic encephalopathy. In two comatose patients admitted to the Intensive Care Unit (ICU) with severe postanoxic encephalopathy and burst-suppression EEG, we studied the effect of external stimuli (sound and touch) on the occurrence of bursts. In patient A bursts could be induced by either auditory or sensory stimuli. In patient B bursts could only be induced by touching different facial regions (forehead, nose and chin). When stimuli were presented with relatively long intervals, bursts persistently followed the stimuli, while stimuli with short intervals (<1s) did not induce bursts. In both patients bursts were not accompanied by myoclonia. Both patients deceased. Bursts in patients with a severe postanoxic encephalopathy can be induced by external stimuli, resulting in stimulus-dependent burst-suppression. Stimulus induced bursts should not be interpreted as prognostic favourable EEG reactivity. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome?

    PubMed

    Arns, Martijn; Etkin, Amit; Hegerl, Ulrich; Williams, Leanne M; DeBattista, Charles; Palmer, Donna M; Fitzgerald, Paul B; Harris, Anthony; deBeuss, Roger; Gordon, Evian

    2015-08-01

    In major depressive disorder (MDD), elevated theta current density in the rostral anterior cingulate (rACC), as estimated by source localization of scalp-recorded electroencenphalogram (EEG), has been associated with response to antidepressant treatments, whereas elevated frontal theta has been linked to non-response. This study used source localization to attempt to integrate these apparently opposite results and test, whether antidepressant response is associated with elevated rACC theta and non-response with elevated frontal theta and whether theta activity is a differential predictor of response to different types of commonly used antidepressants. In the international Study to Predict Optimized Treatment in Depression (iSPOT-D), a multi-center, international, randomized, prospective practical trial, 1008 MDD participants were randomized to escitalopram, sertraline or venlafaxine-XR. The study also recruited 336 healthy controls. Treatment response and remission were established after eight weeks using the 17-item Hamilton Rating Scale for Depression (HRSD17). The resting-state EEG was assessed at baseline with eyes closed and source localization (eLORETA) was employed to extract theta from the rACC and frontal cortex. Patients with MDD had elevated theta in both frontal cortex and rACC, with small effect sizes. High frontal and rACC theta were associated with treatment non-response, but not with non-remission, and this effect was most pronounced in a subgroup with previous treatment failures. Low theta in frontal cortex and rACC are found in responders to antidepressant treatments with a small effect size. Future studies should investigate in more detail the role of previous treatment (failure) in the association between theta and treatment outcome. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  1. Fluctuating Inhibitory Inputs Promote Reliable Spiking at Theta Frequencies in Hippocampal Interneurons

    PubMed Central

    Sritharan, Duluxan; Skinner, Frances K.

    2012-01-01

    Theta-frequency (4–12 Hz) rhythms in the hippocampus play important roles in learning and memory. CA1 interneurons located at the stratum lacunosum-moleculare and radiatum junction (LM/RAD) are thought to contribute to hippocampal theta population activities by rhythmically pacing pyramidal cells with inhibitory postsynaptic potentials. This implies that LM/RAD cells need to fire reliably at theta frequencies in vivo. To determine whether this could occur, we use biophysically based LM/RAD model cells and apply different cholinergic and synaptic inputs to simulate in vivo-like network environments. We assess spike reliabilities and spiking frequencies, identifying biophysical properties and network conditions that best promote reliable theta spiking. We find that synaptic background activities that feature large inhibitory, but not excitatory, fluctuations are essential. This suggests that strong inhibitory input to these cells is vital for them to be able to contribute to population theta activities. Furthermore, we find that Type I-like oscillator models produced by augmented persistent sodium currents (INaP) or diminished A-type potassium currents (IA) enhance reliable spiking at lower theta frequencies. These Type I-like models are also the most responsive to large inhibitory fluctuations and can fire more reliably under such conditions. In previous work, we showed that INaP and IA are largely responsible for establishing LM/RAD cells’ subthreshold activities. Taken together with this study, we see that while both these currents are important for subthreshold theta fluctuations and reliable theta spiking, they contribute in different ways – INaP to reliable theta spiking and subthreshold activity generation, and IA to subthreshold activities at theta frequencies. This suggests that linking subthreshold and suprathreshold activities should be done with consideration of both in vivo contexts and biophysical specifics. PMID:22654751

  2. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum.

    PubMed

    Varga, Viktor; Hangya, Balázs; Kránitz, Kinga; Ludányi, Anikó; Zemankovics, Rita; Katona, István; Shigemoto, Ryuichi; Freund, Tamás F; Borhegyi, Zsolt

    2008-08-15

    The medial septum (MS) is an indispensable component of the subcortical network which synchronizes the hippocampus at theta frequency during specific stages of information processing. GABAergic neurons exhibiting highly regular firing coupled to the hippocampal theta rhythm are thought to form the core of the MS rhythm-generating network. In recent studies the hyperpolarization-activated, cyclic nucleotide-gated non-selective cation (HCN) channel was shown to participate in theta synchronization of the medial septum. Here, we tested the hypothesis that HCN channel expression correlates with theta modulated firing behaviour of MS neurons by a combined anatomical and electrophysiological approach. HCN-expressing neurons represented a subpopulation of GABAergic cells in the MS partly overlapping with parvalbumin (PV)-containing neurons. Rhythmic firing in the theta frequency range was characteristic of all HCN-expressing neurons. In contrast, only a minority of HCN-negative cells displayed theta related activity. All HCN cells had tight phase coupling to hippocampal theta waves. As a group, PV-expressing HCN neurons had a marked bimodal phase distribution, whereas PV-immunonegative HCN neurons did not show group-level phase preference despite significant individual phase coupling. Microiontophoretic blockade of HCN channels resulted in the reduction of discharge frequency, but theta rhythmic firing was perturbed only in a few cases. Our data imply that HCN-expressing GABAergic neurons provide rhythmic drive in all phases of the hippocampal theta activity. In most MS theta cells rhythm genesis is apparently determined by interactions at the level of the network rather than by the pacemaking property of HCN channels alone.

  3. Experimental search for radiative decays of the pentaquark baryon {Theta}{sup +}(1540)

    SciTech Connect

    Barmin, V. V.; Asratyan, A. E.; Borisov, V. S.; Curceanu, C.; Davidenko, G. V.; Dolgolenko, A. G.; Guaraldo, C.; Kubantsev, M. A.; Larin, I. F.; Matveev, V. A.; Shebanov, V. A.; Shishov, N. N.; Sokolov, L. I.; Tumanov, G. K.; Verebryusov, V. S.

    2010-07-15

    The data on the reactions K{sup +}Xe {sup {yields}}K{sup 0{gamma}}X and K{sup +}Xe {sup {yields}}K{sup +{gamma}}X, obtained with the bubble chamber DIANA, have been analyzed for possible radiative decays of the {Theta}{sup +}(1540) baryon: {Theta}{sup +} {sup {yields}}K{sup 0}p{gamma} and {Theta}{sup +} {sup {yields}}K{sup +}n{gamma}. No signals have been observed, and we derive the upper limits {Gamma}({Theta}{sup +} {sup {yields}}K{sup 0}p{gamma})/{Gamma}({Theta}{sup +} {sup {yields}}K{sup 0}p) < 0.032 and {Gamma}({Theta}{sup +} {sup {yields}}K{sup +}n{gamma})/{Gamma}({Theta}{sup +} {sup {yields}}K{sup +}n{gamma}) < 0.041 which, using our previous measurement of {Gamma}({Theta}{sup +} {sup {yields}}KN) = 0.39 {+-} 0.10 MeV, translate to {Gamma}({Theta}{sup +} {sup {yields}}K{sup 0}p{gamma}) < 8 keV and {Gamma}({Theta}{sup +} {sup {yields}}K{sup +}n{gamma}) < 11 keV at 90% confidence level. We have also measured the cross sections of K{sup +}-induced reactions involving emission of a neutral pion: {sigma}(K{sup +}n {sup {yields}}K{sup 0}p{pi}{sup 0}) = 68 {+-} 18 {mu}b and {sigma}(K{sup +}N {sup {yields}}K{sup +}N{pi}{sup 0}) = 30 {+-} 8 {mu}b for incident K{sup +} momentum of 640 MeV.

  4. Different systems in the posterior hypothalamic nucleus of rats control theta frequency and trigger movement.

    PubMed

    Woodnorth, Mary-Anne; McNaughton, Neil

    2005-08-30

    Reduced frequency of theta activity is thought to compromise hippocampal function and so behavioural inhibition. The anxiolytic benzodiazepine chlordiazepoxide (CDP) reduces theta frequency when injected into the medial supramammillary nucleus (mSuM), posterior hypothalamic nucleus (PH) and dorsomedial hypothalamic nucleus (DMH). These hypothalamic effects on theta could underlie at least some behavioural effects of benzodiazepines. We have previously shown that in a fixed interval 60-s schedule (FI60), CDP injected into mSuM reduced both theta frequency and behavioural inhibition. The present experiments test the effect of injections into PH and DMH on theta and hippocampal-sensitive behaviour (FI60 and open field ambulation). Systemic CDP (5mg/kg i.p.) released, but PH/CDP (20microg in 0.5microl vehicle) suppressed FI responding, though they both reduced FI theta frequency. In the open field, both CDP i.p. and PH/CDP reduced ambulation, but only the systemic injection reduced ambulation theta frequency. Taken together with previous research, these results support a role for PH in the control of voluntary behaviour. They imply that this function may be suppressed, independently of theta, by benzodiazepines. An anxiolytic effect of PH/CDP in FI60 may, therefore, have been masked by a concurrent action of CDP on the PH motor system. DMH/CDP did not affect behaviour or theta in either experiment, despite the fact that this nucleus is involved in benzodiazepine mediation of risk assessment and the flight response. This suggests that, like the control of theta frequency by the hypothalamus, the neural mechanisms underlying anxiety are distributed in complex networks.

  5. Movement-Related Theta Rhythm in Humans: Coordinating Self-Directed Hippocampal Learning

    PubMed Central

    Kaplan, Raphael; Doeller, Christian F.; Barnes, Gareth R.; Litvak, Vladimir; Düzel, Emrah; Bandettini, Peter A.; Burgess, Neil

    2012-01-01

    The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG) to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI) to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods). These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating exploratory

  6. Movement-related theta rhythm in humans: coordinating self-directed hippocampal learning.

    PubMed

    Kaplan, Raphael; Doeller, Christian F; Barnes, Gareth R; Litvak, Vladimir; Düzel, Emrah; Bandettini, Peter A; Burgess, Neil

    2012-01-01

    The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG) to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI) to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods). These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating exploratory

  7. Pressure vessel burst test program. II

    NASA Technical Reports Server (NTRS)

    Cain, Maurice R.; Sharp, Douglas E.; Coleman, Michael D.

    1991-01-01

    The current status is disucssed of a program to study the characteristics of blast waves and fragmentation generated by ruptured gas-filled pressure vessels. Current methods for assessing vessel safety and burst parameters are briefly reviewed, and pneumatic burst testing operations and testing results are examined. A comparison is made with current methods for burst assessment. It is tentatively concluded that, at close distances, vessel burst overpressures are less than those of high-explosive (HE) blasts with equivalent energy and are greater than HE far from the vessel. The impulse appears to be the same for both vessel bursts and equivalent energy HE blasts. The functional relationship between shock velocity and overpressure ratio appears to be the same for vessel bursts as for HE blasts. The initial shock overpressure appears to be much less than vessel pressure and may be found using the one-dimensional shock tube equation.

  8. Hardness/intensity correlations among BATSE bursts

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.; Pendleton, Geoffrey N.; Kouveliotou, Chryssa; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.

    1992-01-01

    Conclusions about the nature of gamma-ray bursts derived from the size-frequency distribution may be altered if a significant correlation exists between burst intensity and spectral shape. Moreover, if gamma-ray bursts have a cosmological origin, such a correlation may be expected to result from the expansion of the universe. We have performed a rudimentary search of the BATSE bursts for hardness/intensity correlations. The range of spectral shapes was determined for each burst by computing the ratio of the intensity in the range 100-300 keV to that in 55-300 keV. We find weak evidence for the existence of a correlation, the strongest effect being present when comparing the maximum hardness ratio for each burst with its maximum rate.

  9. Stirling Colgate and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  10. Stirling Colgate and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  11. Burst interference in TDMA radio systems

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Chen, M.-X.; Feher, K.

    Analytical and experimental studies show that burst interference in TDMA systems causes spectral spreading, which depends on the gating rate and duty cycle of the burst. A probability-of-error performance study of IJF (intersymbol and jitter-free) OQPSK systems in the presence of burst interference signals shows that the higher gating rate or smaller duty cycle of the burst will introduce more degradation because of increased spectral spreading. It is concluded that the transmitted power of the burst signal should be limited more strictly than that of CW signals, because the burst interference causes more degradation in the performance of the desired channel than nonburst interference with the same (C/I)mean.

  12. Swift Burst Alert Telescope (BAT) Instrument Response

    SciTech Connect

    Parsons, A.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Hullinger, D.; Krimm, H.; Markwardt, C.; Tueller, J.; Sato, G.; Takahashi, T.; Nakazawa, K.; Okada, Y.; Takahashi, H.; Suzuki, M.; Tashiro, M.

    2004-09-28

    The Burst Alert Telescope (BAT), a large coded aperture instrument with a wide field-of-view (FOV), provides the gamma-ray burst triggers and locations for the Swift Gamma-Ray Burst Explorer. In addition to providing this imaging information, BAT will perform a 15 keV - 150 keV all-sky hard x-ray survey based on the serendipitous pointings resulting from the study of gamma-ray bursts, and will also monitor the sky for transient hard x-ray sources. For BAT to provide spectral and photometric information for the gamma-ray bursts, the transient sources and the all-sky survey, the BAT instrument response must be determined to an increasingly greater accuracy. This paper describes the spectral models and the ground calibration experiments used to determine the BAT response to an accuracy suitable for gamma-ray burst studies.

  13. Transitions to Synchrony in Coupled Bursting Neurons

    NASA Astrophysics Data System (ADS)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding, Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony.

  14. Auto power and coherence analysis of delta-theta band EEG during the waking-sleeping transition period.

    PubMed

    Morikawa, T; Hayashi, M; Hori, T

    1997-12-01

    To evaluate the spatio-temporal variation of delta and theta band EEGs during the waking-sleeping transition period, auto power and coherence analyses of scalp EEGs were carried out on 12 male subjects. The 7 auto power and 21 coherence values obtained from the 7 areas were studied every 20 s from 5 min before stage 1 onset to 24 min after stage 1 onset. The consecutive samples of spectra were computed for two frequency bands (delta: 2.5-3.5 Hz; theta: 4.0-7.5 Hz). Auto power started to increase after stage 1 onset and terminated 8.4 min after stage 2 onset. Topograms of each band power changed with progression towards deep sleep from the flat or relatively low voltage pattern without any focus to the frontopolar-parietal pattern or the fronto-parietal dominant pattern. Principal component analysis of the coherence values revealed generalized and localized components in each band. The generalized component was distributed across scalp areas, while the localized component was distributed in frontopolar-frontal areas. The generalized component decreased to the plateau level of non-rapid eye movement (NREM) sleep 5.4 min after stage 2 onset. The localized component started to increase after stage 1 onset and reached the plateau level of NREM sleep 2.4 min after stage 2 onset. These results indicate that the delta-theta band EEG structures of the waking-sleeping transition period may not be uniform across the scalp areas and the hypnagogic period may start after stage 1 onset and continue for 8.4 min after stage 2 onset.

  15. Ballerina - pirouettes in search of gamma bursts

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Lund, N.; Pedersen, H.; Hjorth, J.; BALLERINA Collaboration

    1999-09-01

    The cosmological origin of gamma ray bursts has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX.

  16. A Gamma-Ray Burst Trigger Toolkit

    NASA Technical Reports Server (NTRS)

    Band, David L.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The detection rate of a gamma-ray burst detector can be increased by using a count rate trigger with many accumulation times DELTAt and energy bands DELTAE Because a burst's peak flux varies when averaged over different DELTAt and DELTAE the nominal sensitivity (the numerical value of the peak flux) of a trigger system is less important than how much fainter a burst could be at the detection threshold as DELTAt and DELTAE are changed. The relative sensitivity of different triggers can be quantified by referencing the detection threshold back to the peak flux for a fiducial value of DELTAt and DELTA E. This mapping between peak flux values for different sets of DELTAt and DELTAE varies from burst to burst. Quantitative estimates of the burst detection rate for a given detector and trigger system can be based on the observed rate at a measured peak flux value in this fiducial trigger. Predictions of a proposed trigger's burst detection rate depend on the assumed burst population, and these predictions can be wildly in error for triggers that differ significantly from previous missions. I base the fiducial rate on the BATSE observations: 550 bursts per sky above a peak flux of 0.3 ph per square centimeter per second averaged over DELTAt=1.024 sec and DELTAE=50-300 keV. Using a sample of 100 burst lightcurves I find that triggering on any value of DELTAt that is a multiple of 0.064 sec decreases the average threshold peak flux on the 1.024 sec timescale by a factor of 0.6. Extending DELTAE to lower energies includes the large flux of the X-ray background, increasing the background count rate. Consequently a low energy DELTAE is advantageous only for very soft bursts. Whether a large fraction of the population of bright bursts is soft is disputed; the new population of X-ray Flashes is soft but relatively faint.

  17. Ceramic Matrix Composite Vane Subelement Burst Testing

    NASA Technical Reports Server (NTRS)

    Brewer, David N.; Verrilli, Michael; Calomino, Anthony

    2006-01-01

    Burst tests were performed on Ceramic Matrix Composite (CMC) vane specimens, manufactured by two vendors, under the Ultra Efficient Engine Technology (UEET) project. Burst specimens were machined from the ends of 76mm long vane sub-elements blanks and from High Pressure Burner Rig (HPBR) tested specimens. The results of burst tests will be used to compare virgin specimens with specimens that have had an Environmental Barrier Coating (EBC) applied, both HPBR tested and untested, as well as a comparison between vendors.

  18. Spectral features of solar gradual microwave bursts.

    NASA Astrophysics Data System (ADS)

    Yao, J.-X.

    The author presents data and spectral analysis of five solar gradual microwave bursts (GMB's), which are associated with the gradual hard X-ray bursts (GHB's). The durations of GMB's are about tens of minutes and are longer than that of impulsive bursts (5 min.) and the sources of GMB's are high in the corona. Therefore, one may attribute the long durations and spectral index decrease to the high radio sources.

  19. The Jovian S-bursts. I - Occurrence with L-bursts and frequency limit

    NASA Astrophysics Data System (ADS)

    Leblanc, Y.; Genova, F.; de La Noe, J.

    1980-06-01

    The first spectra of Jovian radio emission in which S bursts can be observed over a wide range of frequencies (20 MHz) during storms lasting two or three hours are examined. It is shown that the S bursts occur only in two regions (Io-controlled emission) of the Io-CML plane with a probability of occurrence reaching 60 percent. The association of the S bursts with the more lasting and broad band L bursts is closely related to the Io-CML configuration, as is the maximum frequency of emission which has not been observed to exceed 33 MHz. Three sections are defined in the Io B-region, in which the S bursts occur alone with a maximum frequency of emission lower than 25 MHz, the S bursts occur superimposed on the L bursts, and the L bursts occur alone.

  20. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  1. Bursts in inclined layer convection

    NASA Astrophysics Data System (ADS)

    Busse, F. H.; Clever, R. M.

    2000-08-01

    A new instability of longitudinal rolls in an inclined fluid layer heated from below is analyzed in the case of the Prandtl number P=0.71. The instability assumes the form of subharmonic undulations and evolves into a spatially chaotic pattern when the angle of inclination is of the order of 20°. The chaotic state rapidly decays and longitudinal rolls recover until the next burst of chaotic convection occurs. The theoretical findings closely correspond to recent experimental observations by Daniels et al. [Phys. Rev. Lett. (to be published)].

  2. Hippocampal theta-band activity and trace eyeblink conditioning in rabbits.

    PubMed

    Nokia, Miriam S; Penttonen, Markku; Korhonen, Tapani; Wikgren, Jan

    2009-06-01

    The authors examined the relationship between hippocampal theta activity and trace eyeblink conditioning. Hippocampal electrophysiological local field potentials were recorded before, during, and after conditioning or explicitly unpaired training sessions in adult male New Zealand White rabbits. As expected, a high relative power of theta activity (theta ratio) in the hippocampus predicted faster acquisition of the conditioned response during trace conditioning but, contrary to previous results obtained using the delay paradigm, only in the initial stage of learning. The presentation of the conditioned stimulus overall elicited an increase in the hippocampal theta ratio. The theta ratio decreased in the unpaired group as a function of training, remained high throughout conditioning in the fast learners, and rapidly increased in the slow learners initially showing a low theta ratio. Our results indicate a reciprocal connection between the hippocampal oscillatory activity and associative learning. The hippocampal theta ratio seems to reflect changes and differences in the subjects' alertness and responsiveness to external stimuli, which affect the rate of learning and are, in turn, affected by both conditioning and unpaired training.

  3. Someone has to give in: theta oscillations correlate with adaptive behavior in social bargaining.

    PubMed

    Billeke, Pablo; Zamorano, Francisco; López, Tamara; Rodriguez, Carlos; Cosmelli, Diego; Aboitiz, Francisco

    2014-12-01

    During social bargain, one has to both figure out the others' intentions and behave strategically in such a way that the others' behaviors will be consistent with one's expectations. To understand the neurobiological mechanisms underlying these behaviors, we used electroencephalography while subjects played as proposers in a repeated ultimatum game. We found that subjects adapted their offers to obtain more acceptances in the last round and that this adaptation correlated negatively with prefrontal theta oscillations. People with higher prefrontal theta activity related to a rejection did not adapt their offers along the game to maximize their earning. Moreover, between-subject variation in posterior theta oscillations correlated positively with how individual theta activity influenced the change of offer after a rejection, reflecting a process of behavioral adaptation to the others' demands. Interestingly, people adapted better their offers when they knew that they where playing against a computer, although the behavioral adaptation did not correlate with prefrontal theta oscillation. Behavioral changes between human and computer games correlated with prefrontal theta activity, suggesting that low adaptation in human games could be a strategy. Taken together, these results provide evidence for specific roles of prefrontal and posterior theta oscillations in social bargaining. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Someone has to give in: theta oscillations correlate with adaptive behavior in social bargaining

    PubMed Central

    Zamorano, Francisco; López, Tamara; Rodriguez, Carlos; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    During social bargain, one has to both figure out the others’ intentions and behave strategically in such a way that the others’ behaviors will be consistent with one’s expectations. To understand the neurobiological mechanisms underlying these behaviors, we used electroencephalography while subjects played as proposers in a repeated ultimatum game. We found that subjects adapted their offers to obtain more acceptances in the last round and that this adaptation correlated negatively with prefrontal theta oscillations. People with higher prefrontal theta activity related to a rejection did not adapt their offers along the game to maximize their earning. Moreover, between-subject variation in posterior theta oscillations correlated positively with how individual theta activity influenced the change of offer after a rejection, reflecting a process of behavioral adaptation to the others’ demands. Interestingly, people adapted better their offers when they knew that they where playing against a computer, although the behavioral adaptation did not correlate with prefrontal theta oscillation. Behavioral changes between human and computer games correlated with prefrontal theta activity, suggesting that low adaptation in human games could be a strategy. Taken together, these results provide evidence for specific roles of prefrontal and posterior theta oscillations in social bargaining. PMID:24493841

  5. Resting-state EEG theta activity and risk learning: sensitivity to reward or punishment?

    PubMed

    Massar, Stijn A A; Kenemans, J Leon; Schutter, Dennis J L G

    2014-03-01

    Increased theta (4-7 Hz)-beta (13-30 Hz) power ratio in resting state electroencephalography (EEG) has been associated with risky disadvantageous decision making and with impaired reinforcement learning. However, the specific contributions of theta and beta power in risky decision making remain unclear. The first aim of the present study was to replicate the earlier found relationship and examine the specific contributions of theta and beta power in risky decision making using the Iowa Gambling Task. The second aim of the study was to examine whether the relation were associated with differences in reward or punishment sensitivity. We replicated the earlier found relationship by showing a positive association between theta/beta ratio and risky decision making. This correlation was mainly driven by theta oscillations. Furthermore, theta power correlated with reward motivated learning, but not with punishment learning. The present results replicate and extend earlier findings by providing novel insights into the relation between thetabeta ratios and risky decision making. Specifically, findings show that resting-state theta activity is correlated with reinforcement learning, and that this association may be explained by differences in reward sensitivity.

  6. Hippocampal strata theta oscillations change their frequency and coupling during spatial learning.

    PubMed

    Hernández-Pérez, J Jesús; Gutiérrez-Guzmán, Blanca E; Olvera-Cortés, María E

    2016-11-19

    The theta rhythm is necessary for hippocampal-dependent spatial learning. It has been proposed that each hippocampal stratum can generate a current theta dipole. Therefore, considering that each hippocampal circuit (CA1, CA3, and Dentate Gyrus (DG)) contributes differently to distinct aspects of a spatial memory, the theta oscillations on each stratum and their couplings may exhibit oscillatory dynamics associated with different stages of learning. To test this hypothesis, the theta oscillations from five hippocampal strata were recorded in the rat during different stages of learning in a Morris maze. The peak power, the relative power (RP) and the coherence between hippocampal strata were analyzed. The early acquisition stage of the Morris task was characterized by the predominance of slow frequency theta activity and high coupling between specific hippocampal strata at slow frequencies. However, on the last training day, the theta oscillations were faster in all hippocampal strata, with tighter coupling at fast frequencies between the CA3 pyramidal stratum and other strata. Our results suggest that modifications to the theta frequency and its coupling can be a means by which the hippocampus differentially operates during acquisition and retrieval states.

  7. Frontal Theta Dynamics during Response Conflict in Long-Term Mindfulness Meditators

    PubMed Central

    Jo, Han-Gue; Malinowski, Peter; Schmidt, Stefan

    2017-01-01

    Mindfulness meditators often show greater efficiency in resolving response conflicts than non-meditators. However, the neural mechanisms underlying the improved behavioral efficiency are unclear. Here, we investigated frontal theta dynamics—a neural mechanism involved in cognitive control processes—in long-term mindfulness meditators. The dynamics of EEG theta oscillations (4–8 Hz) recorded over the medial frontal cortex (MFC) were examined in terms of their power (MFC theta power) and their functional connectivity with other brain areas (the MFC-centered theta network). Using a flanker-type paradigm, EEG data were obtained from 22 long-term mindfulness meditators and compared to those from 23 matched controls without meditation experience. Meditators showed more efficient cognitive control after conflicts, evidenced by fewer error responses irrespective of response timing. Furthermore, meditators exhibited enhanced conflict modulations of the MFC-centered theta network shortly before the response, in particular for the functional connection between the MFC and the motor cortex. In contrast, MFC theta power was comparable between groups. These results suggest that the higher behavioral efficiency after conflicts in mindfulness meditators could be a function of increased engagement to control the motor system in association with the MFC-centered theta network. PMID:28638334

  8. Behavioral inhibition during a conflict state elicits a transient decline in hippocampal theta power.

    PubMed

    Sakimoto, Yuya; Sakata, Shogo

    2015-09-01

    Although it has been shown that hippocampal theta power transiently declines during response inhibition in a simultaneous feature negative (FN: A+, AB-) task, observations of additional changes after this initial decline have been inconsistent across subjects. We hypothesized that the cause of these inconsistencies might be that variations in the learning speed for the FN task differentially affect the changes in hippocampal theta activity observed during the task. In this study, we classified rats into three groups (fast, intermediate, and slow FN-learning groups) based on the number of sessions required to complete learning of the FN task. We then examined whether there was a difference in hippocampal theta power among the fast, intermediate, and slow FN-learning groups, and rats that learned a simple discrimination task (SD group). We observed that compared to the SD group, the slow FN-learning group, but not the fast FN-learning group, showed an increase in hippocampal theta power. In addition, a transient decline of hippocampal theta power occurred in the fast FN-learning group, but not in the slow FN-learning group. These results indicate that the hippocampal theta activity during response inhibition in the FN task differed between fast- and slow-learning rats. Thus, we propose that a difference in learning speed affected hippocampal theta activity during response inhibition under a conflict state.

  9. Cortico-pontine theta synchronization phase shift following monoaminergic lesion in rat.

    PubMed

    Kalauzi, A; Kesic, S; Saponjic, J

    2009-12-01

    The experiments were performed in 14 adult, male Sprague Dawley rats chronically instrumented for sleep recording and recorded during baseline condition, following sham injection (saline i.p. 1 ml/kg), and every week for 5 weeks following injection of the systemic neurotoxins (DSP-4 or PCA; 1 ml/kg, i.p.) for chemical axotomy of the locus coeruleus (LC) and dorsal raphe (DR) axon terminals. In our former study we demonstrated that the systemically induced lesion of the noradrenergic or serotonergic axon terminals did not affect the sleep-wake distribution from control condition. In this study, by using spectral analysis and phase shift spectra of the cortical and pontine EEG we analyzed cortico-pontine theta oscillation synchronization phase shift on 6-hour recordings in control condition and 28 days following the monoaminergic lesions, as a time for permanently established DR or LC chemical axotomy. Our results demonstrated for the first time that chronically decreased brain monoamines in freely moving rats changed cortico-pontine theta synchronization phase shift. Pons became a leading theta oscillator. We assume that deficit of monoamines induced predominance of the NREM/REM transitions, characterized with phasic theta oscillations (the increased density of clustered P waves which intrinsic frequency corresponds to theta frequency oscillations), and may produced preceding phasic theta versus tonic theta oscillation drive.

  10. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Supid

    2007-01-01

    This viewgraph presentation describes neutron stars and thermonuclear x ray bursts. The contents include: 1) Neutron Stars: why do we care?; 2) Thermonuclear Bursts: why do we care?; 3) Neutron Stars: Mass, Radius and Spin: a. Continuum Spectroscopy of Bursts b. Spectral Lines from Bursts c. Timing Properties of Bursts; 4) Neutron Star Atmosphere: Thermonuclear Flame Spreading; and 5) Future Prospects and Conclusions.

  11. Hippocampal Non-Theta-Contingent Eyeblink Classical Conditioning: A Model System for Neurobiological Dysfunction

    PubMed Central

    Cicchese, Joseph J.; Berry, Stephen D.

    2016-01-01

    Typical information processing is thought to depend on the integrity of neurobiological oscillations that may underlie coordination and timing of cells and assemblies within and between structures. The 3–7 Hz bandwidth of hippocampal theta rhythm is associated with cognitive processes essential to learning and depends on the integrity of cholinergic, GABAergic, and glutamatergic forebrain systems. Since several significant psychiatric disorders appear to result from dysfunction of medial temporal lobe (MTL) neurochemical systems, preclinical studies on animal models may be an important step in defining and treating such syndromes. Many studies have shown that the amount of hippocampal theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning and attainment of asymptotic performance. Our lab has developed a brain–computer interface that makes eyeblink training trials contingent upon the explicit presence or absence of hippocampal theta. The behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to fourfold increase in learning speed over non-theta states. The non-theta behavioral impairment is accompanied by disruption of the amplitude and synchrony of hippocampal local field potentials, multiple-unit excitation, and single-unit response patterns dependent on theta state. Our findings indicate a significant electrophysiological and behavioral impact of the pretrial state of the hippocampus that suggests an important role for this MTL system in associative learning and a significant deleterious impact in the absence of theta. Here, we focus on the impairments in the non-theta state, integrate them into current models of psychiatric disorders, and suggest how improvement in our understanding of neurobiological oscillations is critical for theories and treatment of psychiatric

  12. Theta synchronization between the hippocampus and the nucleus incertus in urethane-anesthetized rats.

    PubMed

    Cervera-Ferri, Ana; Guerrero-Martínez, Juan; Bataller-Mompeán, Manuel; Taberner-Cortes, Alida; Martínez-Ricós, Joana; Ruiz-Torner, Amparo; Teruel-Martí, Vicent

    2011-06-01

    Oscillatory coupling between distributed areas can constitute a mechanism for neuronal integration. Theta oscillations provide temporal windows for hippocampal processing and only appear during certain active states of animals. Since previous studies have demonstrated that nucleus incertus (NI) contributes to the generation of hippocampal theta activity, in this paper, we evaluated the oscillatory coupling between both structures. We compared hippocampal and NI field potentials that were simultaneously recorded in urethane-anesthetized rats. Electrical and cholinergic stimulations of the reticularis pontis oralis nucleus have been used as hippocampal theta generation models. The spectral analyses reveal that electrical stimulation induced an increase in theta oscillations in both channels, whose frequencies depended on the intensity of stimulation. The intensity range used simultaneously increased the normalized spectral energy in the fast theta band (6-12 Hz) in HPC and NI. Frequencies within the theta range were found to be very similar in both channels. In order to validate coupling, spectral coherence was inspected. The data reveal that coherence in the high theta band also increased while stimuli were applied. Cholinergic activation progressively increased the main frequency in both structures to reach an asymptotic period with stable peak frequency in the low theta range (3-6 Hz), which could be first observed in NI and lasted about 1,500 s. Coherence in this band reached values close to 1. Taken together, these results support an electrophysiological and functional coupling between the hippocampus and the reticular formation, suggesting NI to be part of a distributed network working at theta frequencies.

  13. Medial Prefrontal-Medial Temporal Theta Phase Coupling in Dynamic Spatial Imagery.

    PubMed

    Kaplan, Raphael; Bush, Daniel; Bisby, James A; Horner, Aidan J; Meyer, Sofie S; Burgess, Neil

    2017-03-01

    Hippocampal-medial prefrontal interactions are thought to play a crucial role in mental simulation. Notably, the frontal midline/medial pFC (mPFC) theta rhythm in humans has been linked to introspective thought and working memory. In parallel, theta rhythms have been proposed to coordinate processing in the medial temporal cortex, retrosplenial cortex (RSc), and parietal cortex during the movement of viewpoint in imagery, extending their association with physical movement in rodent models. Here, we used noninvasive whole-head MEG to investigate theta oscillatory power and phase-locking during the 18-sec postencoding delay period of a spatial working memory task, in which participants imagined previously learned object sequences either on a blank background (object maintenance), from a first-person viewpoint in a scene (static imagery), or moving along a path past the objects (dynamic imagery). We found increases in 4- to 7-Hz theta power in mPFC when comparing the delay period with a preencoding baseline. We then examined whether the mPFC theta rhythm was phase-coupled with ongoing theta oscillations elsewhere in the brain. The same mPFC region showed significantly higher theta phase coupling with the posterior medial temporal lobe/RSc for dynamic imagery versus either object maintenance or static imagery. mPFC theta phase coupling was not observed with any other brain region. These results implicate oscillatory coupling between mPFC and medial temporal lobe/RSc theta rhythms in the dynamic mental exploration of imagined scenes.

  14. Activation of 5-HT6 receptors modulates sleep-wake activity and hippocampal theta oscillation.

    PubMed

    Ly, Susanna; Pishdari, Bano; Lok, Ling Ling; Hajos, Mihaly; Kocsis, Bernat

    2013-01-16

    The modulatory role of 5-HT neurons and a number of different 5-HT receptor subtypes has been well documented in the regulation of sleep-wake cycles and hippocampal activity. A high level of 5-HT(6) receptor expression is present in the rat hippocampus. Further, hippocampal function has been shown to be modulated by both 5-HT(6) agonists and antagonists. In the current study, the potential involvement of 5-HT(6) receptors in the control of hippocampal theta rhythms and sleep-wake cycles has been investigated. Hippocampal activity was recorded by intracranial hippocampal electrodes both in anesthetized (n = 22) and in freely moving rats (n = 9). Theta rhythm was monitored in different sleep-wake states in freely moving rats and was elicited by stimulation of the brainstem reticular formation under anesthesia. Changes in theta frequency and power were analyzed before and after injection of the 5-HT(6) antagonist (SAM-531) and the 5-HT(6) agonist (EMD386088). In freely moving rats, EMD386088 suppressed sleep for several hours and significantly decreased theta peak frequency, while, in anesthetized rats, EMD386088 had no effect on theta power but significantly decreased theta frequency, which could be blocked by coadministration of SAM-531. SAM-531 alone did not change sleep-wake patterns and had no effect on theta parameters in both unanesthetized and anesthetized rats. Decreases in theta frequency induced by the 5-HT(6) receptor agonist correspond to previously described electrophysiological patterns shared by all anxiolytic drugs, and it is in line with its behavioral anxiolytic profile. The 5-HT(6) antagonist, however, failed to potentiate theta power, which is characteristic of many pro-cognitive substances, indicating that 5-HT(6) receptors might not tonically modulate hippocampal oscillations and sleep-wake patterns.

  15. Role of CA3 theta-modulated interneurons during the transition to spontaneous seizures.

    PubMed

    Karunakaran, Suganya; Grasse, Dane W; Moxon, Karen A

    2016-09-01

    Multiple studies have observed heterogeneous neuronal firing patterns as a local network transitions to spontaneous seizures. We demonstrated that separately examining interneurons and pyramidal cells during this transition in a rat model of temporal lobe epilepsy elucidates some of this heterogeneity. Recently, it was demonstrated that classifying cells into specific theta-related subtypes further clarified the heterogeneity. Moreover, changes in neuronal synchrony with the local field potential were identified and determined to be specific to interneurons during the transition to seizures. To extend our understanding of the chronic changes in epileptic networks, we examined field potentials and single neuron activity in the CA3 hippocampus of pilocarpine-treated rats during interictal periods and compared these to neuronal activity in healthy controls and during preictal periods. Neurons were classified into theta-subtypes based on changes in firing patterns during theta periods. As previously reported, we find a high probability of theta oscillations before seizure onset and a selective increase in theta-on interneuron firing rate immediately preceding seizure onset. However, we also find overall slower theta rhythm and a general decrease in subtype-specific firing during interictal periods compared to that in control animals. The decrease in subtype specific interneuron activity is accompanied by increases in synchrony. Exceptionally, theta-on interneurons, that selectively increase their firing rate at seizure onset, maintain similar firing rates and synchrony as controls during interictal period. These data suggest that increased synchrony during interictal periods may compensate for low firing rates creating instability during theta that is prone to seizure initiation via a transition to hyper-synchronous activation of theta-on interneurons.

  16. Nicotine induction of theta frequency oscillations in rodent hippocampus in vitro.

    PubMed

    Lu, C B; Henderson, Z

    2010-03-10

    The hippocampus is an area important for learning and memory and exhibits prominent and behaviourally relevant theta (4-12 Hz) and gamma (30-100 Hz) frequency oscillations in vivo. Hippocampal slices produce similar types of oscillatory activity in response to bath-application of neurotransmitter receptor agonists. The medial septum diagonal band area (MS/DB) provides both a cholinergic and GABAergic projection to the hippocampus, and although it plays a major role in the generation and maintenance of the hippocampal theta rhythm in vivo, there is evidence for intrinsic theta generation mechanisms in the hippocampus, especially in area CA3. The aim of this study was to examine the role of the nicotinic receptor (nAChR) in the induction of oscillatory field activity in the in vitro preparation of the rat hippocampus. Bath-application of a low concentration of nicotine (1 muM) to transversely-cut hippocampal slices produced persistent theta-frequency oscillations in area CA3 of the hippocampus. These oscillations were reduced by both GABA(A) receptor antagonists and ionotropic glutamate receptor antagonists, indicating the involvement of local GABAergic and glutamatergic neurons in the production of the rhythmic theta activity. The nicotine-induced theta activity was inhibited by non-selective nAChR antagonists and partially by an alpha7* nAChR antagonist. The induction of theta frequency oscillations in CA3 by nicotine was mimicked alpha7* nAChR agonists but not by non-alpha7* nAChR agonists. In conclusion, theta activity in the hippocampus may be promoted by tonic stimulation of alpha7* nAChRs, possibly via selective stimulation of theta-preferring interneurons in the hippocampus that express post-synaptic alpha7* nAChRs.

  17. GRB 050717: A Long, Short-Lag Burst Observed by Swift and Konus

    SciTech Connect

    Krimm, H. A.; Hurkett, C.; Osborne, J. P.; Pal'shin, V.; Golenetskii, S.; Norris, J. P.; Barthelmy, S. D.; Gehrels, N.; Parsons, A. M.; Zhang, B.; Burrows, D. N.; Perri, M.

    2006-05-19

    The long burst GRB 050717 was observed simultaneously by the Burst Alert Telescope (BAT) on Swift and the Konus instrument on Wind. Significant hard to soft spectral evolution was seen. Early gamma-ray and X-ray emission was detected by both BAT and the X-Ray Telescope (XRT) on Swift. The XRT continued to observe the burst for 7.1 days and detect it for 1.4 days. The X-ray light curve showed a classic decay pattern including evidence of the onset of the external shock emission at {approx} 45 s after the trigger; the afterglow was too faint for a jet break to be detected. No optical, infrared or ultraviolet counterpart was discovered despite deep searches within 14 hours of the burst. The spectral lag for GRB 050717 was determined to be 2.5 {+-} 2.6 ms, consistent with zero and unusually short for a long burst. This lag measurement suggests that this burst has a high intrinsic luminosity and hence is at high redshift (z > 2.7). GRB 050717 provides a good example of classic prompt and afterglow behavior for a gamma-ray burst.

  18. GRB 050717: A Long, Short-Lag Burst Observed by Swift and Konus

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Hurkett, C.; Pal'shin, V.; Norris, J. P.; Zhang, B.; Barthelmy, S. D.; Burrows, D. N.; Gehrels, N.; Golenetskii, S.; Osborne, J. P.; Parsons, A. M.; Perri, M.; Willingale, R.

    2005-01-01

    The long burst GRB 050717 was observed simultaneously by the Burst Alert Telescope (BAT) on Swift and the Konus instrument on Wind. Significant hard to soft spectral evolution was seen. Early gamma-ray and X-ray emission was detected by both BAT and the X-Ray Telescope (XRT) on Swift. The XRT continued to observe the burst for 7.1 days and detect it for 1.4 days. The X-ray light curve showed a classic decay pattern including evidence of the onset of the external shock emission at approx. 50 s after the trigger; the afterglow was too faint for a jet break to be detected. No optical, infrared or ultraviolet counterpart was discovered despite deep searches within 14 hours of the burst. The spectral lag for GRB 050717 was determined to be 2.5 +/- 2.6 ms, consistent, with zero and unusually short for a long burst. This lag measurement suggests that this burst has a high intrinsic luminosity and hence is at high redshift (z > 2.7). 050717 provides a good example of classic prompt and afterglow behavior for a gamma-ray burst.

  19. Controlling Bursting in Cortical Cultures with Closed-Loop Multi-Electrode Stimulation

    PubMed Central

    Wagenaar, Daniel A.; Madhavan, Radhika; Pine, Jerome; Potter, Steve M.

    2009-01-01

    One of the major modes of activity of high-density cultures of dissociated neurons is globally synchronized bursting. Unlike in vivo, neuronal ensembles in culture maintain activity patterns dominated by global bursts for the lifetime of the culture (up to 2 years). We hypothesize that persistence of bursting is caused by a lack of input from other brain areas. To study this hypothesis, we grew small but dense monolayer cultures of cortical neurons and glia from rat embryos on multi-electrode arrays and used electrical stimulation to substitute for afferents. We quantified the burstiness of the firing of the cultures in spontaneous activity and during several stimulation protocols. Although slow stimulation through individual electrodes increased burstiness as a result of burst entrainment, rapid stimulation reduced burstiness. Distributing stimuli across several electrodes, as well as continuously fine-tuning stimulus strength with closed-loop feedback, greatly enhanced burst control. We conclude that externally applied electrical stimulation can substitute for natural inputs to cortical neuronal ensembles in transforming burst-dominated activity to dispersed spiking, more reminiscent of the awake cortex in vivo. This nonpharmacological method of controlling bursts will be a critical tool for exploring the information processing capacities of neuronal ensembles in vitro and has potential applications for the treatment of epilepsy. PMID:15659605

  20. Novel bursting patterns in a Van der pol-Duffing oscillator with slow varying external force

    NASA Astrophysics Data System (ADS)

    Yu, Yue; Zhao, Min; Zhang, Zhengdi

    2017-09-01

    In this paper, we investigate the emergence of bursting dynamics with complex waveforms and their relation to periodic behavior in typical Van der pol-Duffing equation with fifth order polynomial stiffness nonlinearity, when the external force changes slowly with the variation of time. We exploit bifurcation characteristics of the fast subsystem using the slowly changing periodic excitation as a bifurcation parameter to show how the bursting oscillations are created in this model. We also identify that some regimes of bursting patterns are related to codimension two bifurcation type over a wide range of parameters. A subsequent two-parameter continuation reveals a transition in the bursting behavior from fold/fold hysteresis cycle to sup-Hopf/sup-Hopf or limit point cycle/sub-Hopf bursting type. Furthermore, the effects of external forcing item on bursting oscillations are investigated. For instance, the time interval between two adjacent spikes of bursting oscillations is dependent on the forcing frequency. Some numerical simulations are included to illustrate the validity of our study.

  1. Transcriptional burst frequency and burst size are equally modulated across the human genome

    SciTech Connect

    Dar, Roy D.; Simpson, Michael L; Weinberger, Leor S.; Razooky, B; Cox, Chris D.; McCollum, James M.; Trimeloni, Tom; Singh, A

    2012-01-01

    Gene expression occurs either as an episodic process, characterized by pulsatile bursts or as a constitutive, Poisson-like accumulation of gene products. It is not clear which mode of gene expression (constitutive versus bursty) predominates across a genome or how transcriptional dynamics are influenced by genomic position and promoter sequence. Here, we use time-lapse fluorescence microscopy, building off of theoretical studies that exploit the time-resolved structure of stochastic fluctuations in gene expression, to develop a three-dimensional method for mapping underlying gene-regulatory mechanisms. Over 8,000 individual human genomic loci were analyzed, and at virtually all loci, episodic bursting as opposed to constitutive expression was found to be the predominant mode of expression. Quantitative analysis of the expression dynamics at these 8,000 loci indicates that both frequency and size of transcriptional bursts vary equally across the human genome independent of promoter sequence. Strikingly, weaker expression loci modulate burst frequency to increase activity, while stronger expression loci modulate burst size to increase activity. Transcriptional activators, such as TNF, generate similar patterns of change in burst frequency and burst size. In summary, transcriptional bursting dominates across the human genome, both burst frequency and burst size vary by chromosomal location, and transcriptional activators alter burst frequency and burst size, depending on the expression level of the locus.

  2. EEG oscillations and recognition memory: theta correlates of memory retrieval and decision making.

    PubMed

    Jacobs, Joshua; Hwang, Grace; Curran, Tim; Kahana, Michael J

    2006-08-15

    Studies of memory retrieval have identified electroencephalographic (EEG) correlates of a test item's old-new status, reaction time, and memory load. In the current study, we used a multivariate analysis to disentangle the effects of these correlated variables. During retrieval, power of left-parietal theta (4-8 Hz) oscillations increased in proportion to how well a test item was remembered, and theta in central regions correlated with decision making. We also studied how these oscillatory dynamics complemented event-related potentials. These findings are the first to demonstrate that distinct patterns of theta oscillations can simultaneously relate to different aspects of behavior.

  3. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  4. Frontal midline theta oscillations during mental arithmetic: effects of stress.

    PubMed

    Gärtner, Matti; Grimm, Simone; Bajbouj, Malek

    2015-01-01

    Complex cognitive tasks such as mental arithmetic heavily rely on intact, well-coordinated prefrontal cortex (PFC) function. Converging evidence suggests that frontal midline theta (FMT) oscillations play an important role during the execution of such PFC-dependent tasks. Additionally, it is well-established that acute stress impairs PFC function, and recent evidence suggests that FMT is decreased under stress. In this EEG study, we investigated FMT oscillations during a mental arithmetic task that was carried out in a stressful and a neutral control condition. Our results show late-onset, sustained FMT increases during mental arithmetic. In the neutral condition FMT started to increase earlier than in the stress condition. Direct comparison of the conditions quantified this difference by showing stronger FMT increases in the neutral condition in an early time window. Between-subject correlation analysis showed that attenuated FMT under stress was related to slowed reaction times. Our results suggest that FMT is associated with stimulus independent mental processes during the natural and complex PFC-dependent task of mental arithmetic, and is a possible marker for intact PFC function that is disrupted under stress.

  5. Geometric Calibration of Full Spherical Panoramic Ricoh-Theta Camera

    NASA Astrophysics Data System (ADS)

    Aghayari, S.; Saadatseresht, M.; Omidalizarandi, M.; Neumann, I.

    2017-05-01

    A novel calibration process of RICOH-THETA, full-view fisheye camera, is proposed which has numerous applications as a low cost sensor in different disciplines such as photogrammetry, robotic and machine vision and so on. Ricoh Company developed this camera in 2014 that consists of two lenses and is able to capture the whole surrounding environment in one shot. In this research, each lens is calibrated separately and interior/relative orientation parameters (IOPs and ROPs) of the camera are determined on the basis of designed calibration network on the central and side images captured by the aforementioned lenses. Accordingly, designed calibration network is considered as a free distortion grid and applied to the measured control points in the image space as correction terms by means of bilinear interpolation. By performing corresponding corrections, image coordinates are transformed to the unit sphere as an intermediate space between object space and image space in the form of spherical coordinates. Afterwards, IOPs and EOPs of each lens are determined separately through statistical bundle adjustment procedure based on collinearity condition equations. Subsequently, ROPs of two lenses is computed from both EOPs. Our experiments show that by applying 3*3 free distortion grid, image measurements residuals diminish from 1.5 to 0.25 degrees on aforementioned unit sphere.

  6. Frontal midline theta oscillations during mental arithmetic: effects of stress

    PubMed Central

    Gärtner, Matti; Grimm, Simone; Bajbouj, Malek

    2015-01-01

    Complex cognitive tasks such as mental arithmetic heavily rely on intact, well-coordinated prefrontal cortex (PFC) function. Converging evidence suggests that frontal midline theta (FMT) oscillations play an important role during the execution of such PFC-dependent tasks. Additionally, it is well-established that acute stress impairs PFC function, and recent evidence suggests that FMT is decreased under stress. In this EEG study, we investigated FMT oscillations during a mental arithmetic task that was carried out in a stressful and a neutral control condition. Our results show late-onset, sustained FMT increases during mental arithmetic. In the neutral condition FMT started to increase earlier than in the stress condition. Direct comparison of the conditions quantified this difference by showing stronger FMT increases in the neutral condition in an early time window. Between-subject correlation analysis showed that attenuated FMT under stress was related to slowed reaction times. Our results suggest that FMT is associated with stimulus independent mental processes during the natural and complex PFC-dependent task of mental arithmetic, and is a possible marker for intact PFC function that is disrupted under stress. PMID:25941479

  7. The Theta 2 Tau campaign by the Delta Scuti Network

    NASA Astrophysics Data System (ADS)

    Breger, M.

    1995-01-01

    The star Theta 2 Tau had already been studied by the Delta Scuti Network during two previous multisite campaigns (see Breger, M., Garrido, R., Huang Lin, Jiang Shi-Yang, Guo Zi-He, Frueh, M., Paparo M. Astron. Astrophys. 214, 209, 1989). The star offers a chance to study nonradial modes of different degrees and similar radial orders. The previous multisite campaigns have detected five frequencies from the photometric data. However, these data also show that there exist a number of additional, presently unidentified pulsation modes in the 10 to 15 c/d and the 25 to 30 c/d range. These new frequencies could be detected and confirmed in an additional campaign. Dziembowski and Goode (Astrophys. J.394, 670,1992) have successfully modelled the five previously identified modes, but the theoretical challenge will be provided by the frequencies of the additional modes. The star seems to differ from 4 CVn in that no variability of amplitudes could be detected so far, but the data are limited. Furthermore, during 1994 a spectroscopic MUSICOS campaign was undertaken. A new multisite photometric campaign was carried out with the Delta Scuti Network during 1994 November and December. Data has already been obtained from the McDonald, Lowell, Sierra Nevada, Xing-Long and Tien-Shan Observatories. Approximately 40 nights of photometric observations are presently being reduced.

  8. Theta gun, a multistage, coaxial, magnetic induction projectile accelerator

    NASA Astrophysics Data System (ADS)

    Burgess, T. J.; Duggin, B. W.; Cowan, M., Jr.

    1985-11-01

    We experimentally and theoretically studied a multistage coaxial magnetic induction projectile accelerator. We call this system a theta gun to differentiate it from other coaxial accelerator concepts such as the mass driver. We conclude that this system can theoretically attain railgun performance only for large caliber or very high injection velocity and, even then, only for long coil geometry. Our experiments with a three-stage, capacitor bank-driven accelerator are described. The experiments are modeled with a 1-1/2 dimensional equivalent circuit-hydrodynamics code which is also described. We derive an expression for the conditions of coaxial accelerator-railgun velocity breakeven in the absence of ohmic and hydrodynamic effects. This, in conjunction with an expression for the magnetic coupling coefficient, defines a set of geometric relations which the coaxial system must simultaneously satisfy. Conclusions concerning both the existence and configuration of a breakeven coaxial system follow from this requirement. The relative advantages and disadvantages of the coaxial induction projectile accelerator, previously cited in the literature, are critiqued from the viewpoint of our analysis and experimental results. We find that the advantages vis-a-vis the railgun have been overstated.

  9. Central burst of simultaneously rotating and gravitating body

    NASA Astrophysics Data System (ADS)

    Golubyatnikov, A. N.; Chilachava, T. I.

    1984-04-01

    The astrophysical problem of bursts in simultaneously rotating and gravitating celestial bodies is treated as an axisymmetric one for a homogeneous ellipsoid bursting at the center. It is formulated in a system of spherical coordinates with the sought distributions of pressure and gravitational potential appropriately stipulated. The corresponding equations of steady axisymmetric adiabatic motion of a gas during the initial stage, before the shock wave reaches the surface, are formulated in Lagrange variables and by the asymptotic method of a thin shock layer with epsilon = upsilon -1 as the small parameter upsilon- adiabatic exponent) and with appropriate boundary conditions at the shock wave front. Consideration is taken of the law of momentum conservation and the condition of continuity for the tangential velocity component as well as for Euler and Lagrange variables. Emergence of the shock wave at the body surface, at the poles first, results in formation of jets associated with expansion of a gas into vacuum.

  10. The Spectral Evolution of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Band, David L.

    1999-01-01

    The proposed project was a continuation of our work on the spectral evolution of gamma-ray bursts begun when the Co-I on this proposal. Lyle Ford, was my graduate student. In the proposal we discussed two projects. The first was finishing and publishing the last chapter of Professor Ford's thesis. In this research effort we looked for correlations in the energies of pairs of counts recorded by the BATSE Spectroscopy Detectors within a short time of each other. A greater correlation within a short time would indicate that the observed broadband spectrum is really composed of narrowband spectral components which last for a short time and which rapidly sum to the observed spectrum. We did not find any evidence for such narrowband emission, and are setting limits on its presence. Professor Ford is revising the last chapter of his thesis for publication with my participation. The second project was a continuation of my study of the cross-correlations between the gamma-ray burst lightcurves in different energy bands. I published a first study with this technique (1997. Ap.J., 486, 928) which showed that "hard-to-soft" spectral evolution is prevalent both within and between the bursts' intensity spikes. I proposed to continue developing this technique. However, I have been somewhat disillusioned about using this methodology quantitatively since it averages the spectral evolution on a given timescale over the entire burst. Nonetheless, I have been applying the technique to new bursts which are scientifically interesting for other reasons. Attached I include the cross-correlations for the burst GRB 990123, the burst during which ROTSE discovered an optical transient. The solid curve is the autocorrelatl'on of BATSE's channel 3 (100-300 keV), while the dashed, dot-dashed and 3 dots-dashed curves are the crosscorrelations of channel 3 with channels 1 (25-50 keV), 2 (50-100 keV), and 4 (300-2000 keV). The order of, and separation between, the curves on the positive lag side

  11. Low-Frequency Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  12. Mechanical manifestations of bursting oscillations in slowly rotating systems

    NASA Astrophysics Data System (ADS)

    Rakaric, Zvonko; Kovacic, Ivana

    2016-12-01

    This study is concerned with certain mechanical systems that comprise discrete masses moving along slowly rotating objects. The corresponding equation of relative motion is derived, with the rotating motion creating slowly varying external excitation. Depending on the system parameters, two cases are distinguished: two-well and single-well potential, i.e. the Duffing bistable oscillator and a pure cubic oscillator. It is illustrated that both systems can exhibit bursting oscillations, consisting of fast oscillations around the slow flow. Their mechanisms are explained in terms of bifurcation theory: the first one with respect to the existence of certain saddle-node bifurcation points, and the second one by creation of a certain hysteresis loop. The exact expressions for the slow flow are derived, in the first case as a discontinuous curve, and in the second one as a continuous curve. The influence of the excitation magnitude, which is a potential control parameter, on the characteristics of bursting oscillations is numerically illustrated.

  13. Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmetic-induced workload.

    PubMed

    Sammer, Gebhard; Blecker, Carlo; Gebhardt, Helge; Bischoff, Matthias; Stark, Rudolf; Morgen, Katrin; Vaitl, Dieter

    2007-08-01

    Theta increases with workload and is associated with numerous processes including working memory, problem solving, encoding, or self monitoring. These processes, in turn, involve numerous structures of the brain. However, the relationship between regional brain activity and the occurrence of theta remains unclear. In the present study, simultaneous EEG-fMRI recordings were used to investigate the functional topography of theta. EEG-theta was enhanced by mental arithmetic-induced workload. For the EEG-constrained fMRI analysis, theta-reference time-series were extracted from the EEG, reflecting the strength of theta occurrence during the time course of the experiment. Theta occurrence was mainly associated with activation of the insular cortex, hippocampus, superior temporal areas, cingulate cortex, superior parietal, and frontal areas. Though observation of temporal and insular activation is in accord with the theory that theta specifically reflects encoding processes, the involvement of several other brain regions implies that surface-recorded theta represents comprehensive functional brain states rather than specific processes in the brain. The results provide further evidence for the concept that emergent theta band oscillations represent dynamic functional binding of widely distributed cortical assemblies, essential for cognitive processing. This binding process may form the source of surface-recorded EEG theta. 2006 Wiley-Liss, Inc.

  14. Astronomy: Radio burst caught red-handed

    NASA Astrophysics Data System (ADS)

    Falcke, Heino

    2017-01-01

    For almost a decade, astronomers have observed intense bursts of radio waves from the distant cosmos whose origins were unknown. The source of one such burst has now been identified, but this has only deepened the mystery. See Letter p.58

  15. Backscattering of solar electron burst distributions

    NASA Astrophysics Data System (ADS)

    Skoug, R. M.; Steinberg, J. T.; Anderson, B. R.; de Koning, C. A.; Gosling, J. T.; McComas, D. J.

    2008-12-01

    Solar electron bursts are frequently observed in the ACE/SWEPAM suprathermal electron measurements at energies below 1.4 keV. Approximately 1/3 of such events show backstreaming electrons, which are typically observed after a 1-2 hour delay following burst onset and travel back towards the Sun along the magnetic field direction. These backstreaming particles are likely produced by scattering of the solar electron burst particles beyond the ~1 AU spacecraft location. Our previous studies have shown that transient solar burst electrons exhibit a greater degree of pitch angle scattering than does the steady-state solar wind electron strahl, which could result in turning back of the burst electrons. From the delays observed between the onset of the bursts and the backstreaming, we infer that burst electrons are turned back sunward at a field-aligned distance of less than 1 AU beyond the spacecraft. In this study we compare the fluxes and energy spectra of backstreaming particles with those of the outgoing burst particles. In addition, we compare the angular widths of the two electron beams. These comparisons provide an indication of the relative importance of magnetic mirroring and focusing, scattering in pitch angle, and scattering in energy for determining the character of the observed electron distributions.

  16. Autaptic Connections Shift Network Excitability and Bursting

    PubMed Central

    Wiles, Laura; Gu, Shi; Pasqualetti, Fabio; Parvesse, Brandon; Gabrieli, David; Bassett, Danielle S.; Meaney, David F.

    2017-01-01

    We examine the role of structural autapses, when a neuron synapses onto itself, in driving network-wide bursting behavior. Using a simple spiking model of neuronal activity, we study how autaptic connections affect activity patterns, and evaluate if controllability significantly affects changes in bursting from autaptic connections. Adding more autaptic connections to excitatory neurons increased the number of spiking events and the number of network-wide bursts. We observed excitatory synapses contributed more to bursting behavior than inhibitory synapses. We evaluated if neurons with high average controllability, predicted to push the network into easily achievable states, affected bursting behavior differently than neurons with high modal controllability, thought to influence the network into difficult to reach states. Results show autaptic connections to excitatory neurons with high average controllability led to higher burst frequencies than adding the same number of self-looping connections to neurons with high modal controllability. The number of autapses required to induce bursting was lowered by adding autapses to high degree excitatory neurons. These results suggest a role of autaptic connections in controlling network-wide bursts in diverse cortical and subcortical regions of mammalian brain. Moreover, they open up new avenues for the study of dynamic neurophysiological correlates of structural controllability. PMID:28266594

  17. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  18. Air bubble bursting effect of lotus leaf.

    PubMed

    Wang, Jingming; Zheng, Yongmei; Nie, Fu-Qiang; Zhai, Jin; Jiang, Lei

    2009-12-15

    In this paper, a phenomenon of air bubbles quickly bursting within several milliseconds on a "self-cleaning" lotus leaf was described. This observation prompted the synthesis of artificial surfaces similar to that of the lotus leaf. The artificial leaf surfaces, prepared by photolithography and wet etching, showed a similar air bubble bursting effect. Smooth and rough silicon surfaces with an ordered nanostructure or patterned microstructure were utilized to study the contribution of the micro/nano hierarchical structures to this phenomenon of air bubble bursting. Air bubbles were found to burst on some superhydrophobic surfaces with microstructure (within 220 ms). However, air bubbles burst much more rapidly (within 13 ms) on similar surfaces with micro/nanostructure. The height, width, and spacing of hierarchical structures could also affect air bubble bursting, and the effect of the height was more obvious. When the height of hierarchical structures was around the height found in natural lotus papillae, the width and spacing were significant for air bubble bursting. An original model was proposed to further evaluate the reason why the micro/nano hierarchical rough structures had an excellent air bubble bursting effect, and the validity of the model was theoretically demonstrated.

  19. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease

    PubMed Central

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling

    2017-01-01

    Abstract Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson’s disease, elevations in beta activity (13–35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson’s disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this

  20. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.

    PubMed

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter

    2017-02-13

    Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could

  1. Effects of nicotine stimulation on spikes, theta frequency oscillations, and spike-theta oscillation relationship in rat medial septum diagonal band Broca slices

    PubMed Central

    Wen, Dong; Peng, Ce; Ou-yang, Gao-xiang; Henderson, Zainab; Li, Xiao-li; Lu, Cheng-biao

    2013-01-01

    Aim: Spiking activities and neuronal network oscillations in the theta frequency range have been found in many cortical areas during information processing. The aim of this study is to determine whether nicotinic acetylcholine receptors (nAChRs) mediate neuronal network activity in rat medial septum diagonal band Broca (MSDB) slices. Methods: Extracellular field potentials were recorded in the slices using an Axoprobe 1A amplifier. Data analysis was performed off-line. Spike sorting and local field potential (LFP) analyses were performed using Spike2 software. The role of spiking activity in the generation of LFP oscillations in the slices was determined by analyzing the phase-time relationship between the spikes and LFP oscillations. Circular statistic analysis based on the Rayleigh test was used to determine the significance of phase relationships between the spikes and LFP oscillations. The timing relationship was examined by quantifying the spike-field coherence (SFC). Results: Application of nicotine (250 nmol/L) induced prominent LFP oscillations in the theta frequency band and both small- and large-amplitude population spiking activity in the slices. These spikes were phase-locked to theta oscillations at specific phases. The Rayleigh test showed a statistically significant relationship in phase-locking between the spikes and theta oscillations. Larger changes in the SFC were observed for large-amplitude spikes, indicating an accurate timing relationship between this type of spike and LFP oscillations. The nicotine-induced spiking activity (large-amplitude population spikes) was suppressed by the nAChR antagonist dihydro-β-erythroidine (0.3 μmol/L). Conclusion: The results demonstrate that large-amplitude spikes are phase-locked to theta oscillations and have a high spike-timing accuracy, which are likely a main contributor to the theta oscillations generated in MSDB during nicotine receptor activation. PMID:23474704

  2. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    NASA Astrophysics Data System (ADS)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  3. Line strength variations in gamma-ray bursts GB870303 - Possible evidence of neutron star rotation

    NASA Technical Reports Server (NTRS)

    Graziani, C.; Fenimore, E. E.; Murakami, T.; Yoshida, A.; Lamb, D. Q.; Wang, J. C. L.; Loredo, T. J.

    1992-01-01

    An exhaustive search of the Ginga data on gamma-ray burst GB870303 reveals two separate time intervals during which statistically significant line features are evident. One (previously unreported) interval shows a single prominent line feature at about 20 keV; a second, corresponding to the interval reported by Murakami et al. (1988), shows two line features at 20 and 40 keV. From model fits to the data, we find that both sets of lines are well-described by cyclotron resonant scattering in a magnetic field B around 1.8 x 10 exp 12 G, and that the differences in the line strengths between the two intervals are significant. The variations are qualitatively similar to those produced by a change in the viewing angle theta relative to the magnetic field. We conjecture that the change in theta is due to rotation of the neutron star, and derive limits of 45-180 sec on the rotation period P.

  4. Line strength variations in gamma-ray bursts GB870303 - Possible evidence of neutron star rotation

    NASA Technical Reports Server (NTRS)

    Graziani, C.; Fenimore, E. E.; Murakami, T.; Yoshida, A.; Lamb, D. Q.; Wang, J. C. L.; Loredo, T. J.

    1992-01-01

    An exhaustive search of the Ginga data on gamma-ray burst GB870303 reveals two separate time intervals during which statistically significant line features are evident. One (previously unreported) interval shows a single prominent line feature at about 20 keV; a second, corresponding to the interval reported by Murakami et al. (1988), shows two line features at 20 and 40 keV. From model fits to the data, we find that both sets of lines are well-described by cyclotron resonant scattering in a magnetic field B around 1.8 x 10 exp 12 G, and that the differences in the line strengths between the two intervals are significant. The variations are qualitatively similar to those produced by a change in the viewing angle theta relative to the magnetic field. We conjecture that the change in theta is due to rotation of the neutron star, and derive limits of 45-180 sec on the rotation period P.

  5. Backstreaming Electrons Associated With Solar Electron Bursts

    NASA Astrophysics Data System (ADS)

    Skoug, R. M.; Steinberg, J. T.; de Koning, C. A.; Gosling, J. T.; McComas, D. J.

    2007-12-01

    Solar electron bursts are frequently observed in the ACE/SWEPAM suprathermal electron measurements at energies below 1.4 keV. A significant fraction of such events show backscattered electrons, beginning after the burst onset and traveling back towards the Sun along the magnetic field direction. Such backscattered particles imply a scattering mechanism beyond the spacecraft location. Some bursts also show backstreaming conic distributions, implying mirroring at magnetic field enhancements beyond the spacecraft. Here we present a study of these backstreaming particles during solar electron events. We examine the occurrence of backstreaming electrons and their relationship to other burst characteristics such as pitch angle width, duration, and energy range. We also investigate the time delay between burst onset and the appearance of backscattered electrons, including energy and pitch-angle dispersion. We examine the pitch angle distribution and energy dependence of backstreaming electrons, and consider possible origins of these electron distributions and their relationship to solar wind structure beyond the spacecraft.

  6. Origin of the gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Vahia, M. N.; Rao, A. R.

    1988-12-01

    The authors establish a similarity between the gamma ray burst characteristics and solar hard X-ray flares. They show that all the temporal and spectral features observed in gamma ray bursts are also seen in solar hard X-ray flares. The only distinction is in the energy contents of the two. The authors suggest that the gamma-ray bursts originate from sources which have Sun like activity. Large scale Sun like activity has been observed in flare stars, RS CVn binaries and cataclysmic variables which are grouped together as the magnetically active stellar systems. The energetics of such systems is discussed and it is shown that these systems have enough energy to produce gamma-ray bursts. The authors then attempt positional identification between gamma-ray burst error boxes and the magnetically active stellar systems and find an association of 34 objects.