van Rosmalen, Joost; Toy, Mehlika; O'Mahony, James F
2013-08-01
Markov models are a simple and powerful tool for analyzing the health and economic effects of health care interventions. These models are usually evaluated in discrete time using cohort analysis. The use of discrete time assumes that changes in health states occur only at the end of a cycle period. Discrete-time Markov models only approximate the process of disease progression, as clinical events typically occur in continuous time. The approximation can yield biased cost-effectiveness estimates for Markov models with long cycle periods and if no half-cycle correction is made. The purpose of this article is to present an overview of methods for evaluating Markov models in continuous time. These methods use mathematical results from stochastic process theory and control theory. The methods are illustrated using an applied example on the cost-effectiveness of antiviral therapy for chronic hepatitis B. The main result is a mathematical solution for the expected time spent in each state in a continuous-time Markov model. It is shown how this solution can account for age-dependent transition rates and discounting of costs and health effects, and how the concept of tunnel states can be used to account for transition rates that depend on the time spent in a state. The applied example shows that the continuous-time model yields more accurate results than the discrete-time model but does not require much computation time and is easily implemented. In conclusion, continuous-time Markov models are a feasible alternative to cohort analysis and can offer several theoretical and practical advantages.
Statistical Analysis of Notational AFL Data Using Continuous Time Markov Chains
Meyer, Denny; Forbes, Don; Clarke, Stephen R.
2006-01-01
Animal biologists commonly use continuous time Markov chain models to describe patterns of animal behaviour. In this paper we consider the use of these models for describing AFL football. In particular we test the assumptions for continuous time Markov chain models (CTMCs), with time, distance and speed values associated with each transition. Using a simple event categorisation it is found that a semi-Markov chain model is appropriate for this data. This validates the use of Markov Chains for future studies in which the outcomes of AFL matches are simulated. Key Points A comparison of four AFL matches suggests similarity in terms of transition probabilities for events and the mean times, distances and speeds associated with each transition. The Markov assumption appears to be valid. However, the speed, time and distance distributions associated with each transition are not exponential suggesting that semi-Markov model can be used to model and simulate play. Team identified events and directions associated with transitions are required to develop the model into a tool for the prediction of match outcomes. PMID:24357946
Statistical Analysis of Notational AFL Data Using Continuous Time Markov Chains.
Meyer, Denny; Forbes, Don; Clarke, Stephen R
2006-01-01
Animal biologists commonly use continuous time Markov chain models to describe patterns of animal behaviour. In this paper we consider the use of these models for describing AFL football. In particular we test the assumptions for continuous time Markov chain models (CTMCs), with time, distance and speed values associated with each transition. Using a simple event categorisation it is found that a semi-Markov chain model is appropriate for this data. This validates the use of Markov Chains for future studies in which the outcomes of AFL matches are simulated. Key PointsA comparison of four AFL matches suggests similarity in terms of transition probabilities for events and the mean times, distances and speeds associated with each transition.The Markov assumption appears to be valid.However, the speed, time and distance distributions associated with each transition are not exponential suggesting that semi-Markov model can be used to model and simulate play.Team identified events and directions associated with transitions are required to develop the model into a tool for the prediction of match outcomes.
CTPPL: A Continuous Time Probabilistic Programming Language
2009-07-01
recent years there has been a flurry of interest in continuous time models, mostly focused on continuous time Bayesian networks ( CTBNs ) [Nodelman, 2007... CTBNs are built on homogenous Markov processes. A homogenous Markov pro- cess is a finite state, continuous time process, consisting of an initial...q1 : xn()] ... Some state transitions can produce emissions. In a CTBN , each variable has a conditional inten- sity matrix Qu for every combination of
Open Markov Processes and Reaction Networks
ERIC Educational Resources Information Center
Swistock Pollard, Blake Stephen
2017-01-01
We begin by defining the concept of "open" Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain "boundary" states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow…
Efficient Learning of Continuous-Time Hidden Markov Models for Disease Progression
Liu, Yu-Ying; Li, Shuang; Li, Fuxin; Song, Le; Rehg, James M.
2016-01-01
The Continuous-Time Hidden Markov Model (CT-HMM) is an attractive approach to modeling disease progression due to its ability to describe noisy observations arriving irregularly in time. However, the lack of an efficient parameter learning algorithm for CT-HMM restricts its use to very small models or requires unrealistic constraints on the state transitions. In this paper, we present the first complete characterization of efficient EM-based learning methods for CT-HMM models. We demonstrate that the learning problem consists of two challenges: the estimation of posterior state probabilities and the computation of end-state conditioned statistics. We solve the first challenge by reformulating the estimation problem in terms of an equivalent discrete time-inhomogeneous hidden Markov model. The second challenge is addressed by adapting three approaches from the continuous time Markov chain literature to the CT-HMM domain. We demonstrate the use of CT-HMMs with more than 100 states to visualize and predict disease progression using a glaucoma dataset and an Alzheimer’s disease dataset. PMID:27019571
Cao, Qi; Buskens, Erik; Feenstra, Talitha; Jaarsma, Tiny; Hillege, Hans; Postmus, Douwe
2016-01-01
Continuous-time state transition models may end up having large unwieldy structures when trying to represent all relevant stages of clinical disease processes by means of a standard Markov model. In such situations, a more parsimonious, and therefore easier-to-grasp, model of a patient's disease progression can often be obtained by assuming that the future state transitions do not depend only on the present state (Markov assumption) but also on the past through time since entry in the present state. Despite that these so-called semi-Markov models are still relatively straightforward to specify and implement, they are not yet routinely applied in health economic evaluation to assess the cost-effectiveness of alternative interventions. To facilitate a better understanding of this type of model among applied health economic analysts, the first part of this article provides a detailed discussion of what the semi-Markov model entails and how such models can be specified in an intuitive way by adopting an approach called vertical modeling. In the second part of the article, we use this approach to construct a semi-Markov model for assessing the long-term cost-effectiveness of 3 disease management programs for heart failure. Compared with a standard Markov model with the same disease states, our proposed semi-Markov model fitted the observed data much better. When subsequently extrapolating beyond the clinical trial period, these relatively large differences in goodness-of-fit translated into almost a doubling in mean total cost and a 60-d decrease in mean survival time when using the Markov model instead of the semi-Markov model. For the disease process considered in our case study, the semi-Markov model thus provided a sensible balance between model parsimoniousness and computational complexity. © The Author(s) 2015.
ERIC Educational Resources Information Center
Kayser, Brian D.
The fit of educational aspirations of Illinois rural high school youths to 3 related one-parameter mathematical models was investigated. The models used were the continuous-time Markov chain model, the discrete-time Markov chain, and the Poisson distribution. The sample of 635 students responded to questionnaires from 1966 to 1969 as part of an…
Generalization bounds of ERM-based learning processes for continuous-time Markov chains.
Zhang, Chao; Tao, Dacheng
2012-12-01
Many existing results on statistical learning theory are based on the assumption that samples are independently and identically distributed (i.i.d.). However, the assumption of i.i.d. samples is not suitable for practical application to problems in which samples are time dependent. In this paper, we are mainly concerned with the empirical risk minimization (ERM) based learning process for time-dependent samples drawn from a continuous-time Markov chain. This learning process covers many kinds of practical applications, e.g., the prediction for a time series and the estimation of channel state information. Thus, it is significant to study its theoretical properties including the generalization bound, the asymptotic convergence, and the rate of convergence. It is noteworthy that, since samples are time dependent in this learning process, the concerns of this paper cannot (at least straightforwardly) be addressed by existing methods developed under the sample i.i.d. assumption. We first develop a deviation inequality for a sequence of time-dependent samples drawn from a continuous-time Markov chain and present a symmetrization inequality for such a sequence. By using the resultant deviation inequality and symmetrization inequality, we then obtain the generalization bounds of the ERM-based learning process for time-dependent samples drawn from a continuous-time Markov chain. Finally, based on the resultant generalization bounds, we analyze the asymptotic convergence and the rate of convergence of the learning process.
Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.
Serebrinsky, Santiago A
2011-03-01
We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.
Fast-slow asymptotics for a Markov chain model of fast sodium current
NASA Astrophysics Data System (ADS)
Starý, Tomáš; Biktashev, Vadim N.
2017-09-01
We explore the feasibility of using fast-slow asymptotics to eliminate the computational stiffness of discrete-state, continuous-time deterministic Markov chain models of ionic channels underlying cardiac excitability. We focus on a Markov chain model of fast sodium current, and investigate its asymptotic behaviour with respect to small parameters identified in different ways.
Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium.
Kapfer, Sebastian C; Krauth, Werner
2017-12-15
We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.
Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium
NASA Astrophysics Data System (ADS)
Kapfer, Sebastian C.; Krauth, Werner
2017-12-01
We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.
Parallel algorithms for simulating continuous time Markov chains
NASA Technical Reports Server (NTRS)
Nicol, David M.; Heidelberger, Philip
1992-01-01
We have previously shown that the mathematical technique of uniformization can serve as the basis of synchronization for the parallel simulation of continuous-time Markov chains. This paper reviews the basic method and compares five different methods based on uniformization, evaluating their strengths and weaknesses as a function of problem characteristics. The methods vary in their use of optimism, logical aggregation, communication management, and adaptivity. Performance evaluation is conducted on the Intel Touchstone Delta multiprocessor, using up to 256 processors.
Caliber Corrected Markov Modeling (C2M2): Correcting Equilibrium Markov Models.
Dixit, Purushottam D; Dill, Ken A
2018-02-13
Rate processes are often modeled using Markov State Models (MSMs). Suppose you know a prior MSM and then learn that your prediction of some particular observable rate is wrong. What is the best way to correct the whole MSM? For example, molecular dynamics simulations of protein folding may sample many microstates, possibly giving correct pathways through them while also giving the wrong overall folding rate when compared to experiment. Here, we describe Caliber Corrected Markov Modeling (C 2 M 2 ), an approach based on the principle of maximum entropy for updating a Markov model by imposing state- and trajectory-based constraints. We show that such corrections are equivalent to asserting position-dependent diffusion coefficients in continuous-time continuous-space Markov processes modeled by a Smoluchowski equation. We derive the functional form of the diffusion coefficient explicitly in terms of the trajectory-based constraints. We illustrate with examples of 2D particle diffusion and an overdamped harmonic oscillator.
NASA Astrophysics Data System (ADS)
Julie, Hongki; Pasaribu, Udjianna S.; Pancoro, Adi
2015-12-01
This paper will allow Markov Chain's application in genome shared identical by descent by two individual at full sibs model. The full sibs model was a continuous time Markov Chain with three state. In the full sibs model, we look for the cumulative distribution function of the number of sub segment which have 2 IBD haplotypes from a segment of the chromosome which the length is t Morgan and the cumulative distribution function of the number of sub segment which have at least 1 IBD haplotypes from a segment of the chromosome which the length is t Morgan. This cumulative distribution function will be developed by the moment generating function.
NASA Technical Reports Server (NTRS)
Smith, R. M.
1991-01-01
Numerous applications in the area of computer system analysis can be effectively studied with Markov reward models. These models describe the behavior of the system with a continuous-time Markov chain, where a reward rate is associated with each state. In a reliability/availability model, upstates may have reward rate 1 and down states may have reward rate zero associated with them. In a queueing model, the number of jobs of certain type in a given state may be the reward rate attached to that state. In a combined model of performance and reliability, the reward rate of a state may be the computational capacity, or a related performance measure. Expected steady-state reward rate and expected instantaneous reward rate are clearly useful measures of the Markov reward model. More generally, the distribution of accumulated reward or time-averaged reward over a finite time interval may be determined from the solution of the Markov reward model. This information is of great practical significance in situations where the workload can be well characterized (deterministically, or by continuous functions e.g., distributions). The design process in the development of a computer system is an expensive and long term endeavor. For aerospace applications the reliability of the computer system is essential, as is the ability to complete critical workloads in a well defined real time interval. Consequently, effective modeling of such systems must take into account both performance and reliability. This fact motivates our use of Markov reward models to aid in the development and evaluation of fault tolerant computer systems.
Markov Chain Models for Stochastic Behavior in Resonance Overlap Regions
NASA Astrophysics Data System (ADS)
McCarthy, Morgan; Quillen, Alice
2018-01-01
We aim to predict lifetimes of particles in chaotic zoneswhere resonances overlap. A continuous-time Markov chain model isconstructed using mean motion resonance libration timescales toestimate transition times between resonances. The model is applied todiffusion in the co-rotation region of a planet. For particles begunat low eccentricity, the model is effective for early diffusion, butnot at later time when particles experience close encounters to the planet.
The Embedding Problem for Markov Models of Nucleotide Substitution
Verbyla, Klara L.; Yap, Von Bing; Pahwa, Anuj; Shao, Yunli; Huttley, Gavin A.
2013-01-01
Continuous-time Markov processes are often used to model the complex natural phenomenon of sequence evolution. To make the process of sequence evolution tractable, simplifying assumptions are often made about the sequence properties and the underlying process. The validity of one such assumption, time-homogeneity, has never been explored. Violations of this assumption can be found by identifying non-embeddability. A process is non-embeddable if it can not be embedded in a continuous time-homogeneous Markov process. In this study, non-embeddability was demonstrated to exist when modelling sequence evolution with Markov models. Evidence of non-embeddability was found primarily at the third codon position, possibly resulting from changes in mutation rate over time. Outgroup edges and those with a deeper time depth were found to have an increased probability of the underlying process being non-embeddable. Overall, low levels of non-embeddability were detected when examining individual edges of triads across a diverse set of alignments. Subsequent phylogenetic reconstruction analyses demonstrated that non-embeddability could impact on the correct prediction of phylogenies, but at extremely low levels. Despite the existence of non-embeddability, there is minimal evidence of violations of the local time homogeneity assumption and consequently the impact is likely to be minor. PMID:23935949
NASA Astrophysics Data System (ADS)
Lopes, Artur O.; Neumann, Adriana
2015-05-01
In the present paper, we consider a family of continuous time symmetric random walks indexed by , . For each the matching random walk take values in the finite set of states ; notice that is a subset of , where is the unitary circle. The infinitesimal generator of such chain is denoted by . The stationary probability for such process converges to the uniform distribution on the circle, when . Here we want to study other natural measures, obtained via a limit on , that are concentrated on some points of . We will disturb this process by a potential and study for each the perturbed stationary measures of this new process when . We disturb the system considering a fixed potential and we will denote by the restriction of to . Then, we define a non-stochastic semigroup generated by the matrix , where is the infinifesimal generator of . From the continuous time Perron's Theorem one can normalized such semigroup, and, then we get another stochastic semigroup which generates a continuous time Markov Chain taking values on . This new chain is called the continuous time Gibbs state associated to the potential , see (Lopes et al. in J Stat Phys 152:894-933, 2013). The stationary probability vector for such Markov Chain is denoted by . We assume that the maximum of is attained in a unique point of , and from this will follow that . Thus, here, our main goal is to analyze the large deviation principle for the family , when . The deviation function , which is defined on , will be obtained from a procedure based on fixed points of the Lax-Oleinik operator and Aubry-Mather theory. In order to obtain the associated Lax-Oleinik operator we use the Varadhan's Lemma for the process . For a careful analysis of the problem we present full details of the proof of the Large Deviation Principle, in the Skorohod space, for such family of Markov Chains, when . Finally, we compute the entropy of the invariant probabilities on the Skorohod space associated to the Markov Chains we analyze.
Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Piunovskiy, A. B., E-mail: piunov@liv.ac.uk
2016-08-15
In this paper, we investigate an optimization problem for continuous-time Markov decision processes with both impulsive and continuous controls. We consider the so-called constrained problem where the objective of the controller is to minimize a total expected discounted optimality criterion associated with a cost rate function while keeping other performance criteria of the same form, but associated with different cost rate functions, below some given bounds. Our model allows multiple impulses at the same time moment. The main objective of this work is to study the associated linear program defined on a space of measures including the occupation measures ofmore » the controlled process and to provide sufficient conditions to ensure the existence of an optimal control.« less
Markov-modulated Markov chains and the covarion process of molecular evolution.
Galtier, N; Jean-Marie, A
2004-01-01
The covarion (or site specific rate variation, SSRV) process of biological sequence evolution is a process by which the evolutionary rate of a nucleotide/amino acid/codon position can change in time. In this paper, we introduce time-continuous, space-discrete, Markov-modulated Markov chains as a model for representing SSRV processes, generalizing existing theory to any model of rate change. We propose a fast algorithm for diagonalizing the generator matrix of relevant Markov-modulated Markov processes. This algorithm makes phylogeny likelihood calculation tractable even for a large number of rate classes and a large number of states, so that SSRV models become applicable to amino acid or codon sequence datasets. Using this algorithm, we investigate the accuracy of the discrete approximation to the Gamma distribution of evolutionary rates, widely used in molecular phylogeny. We show that a relatively large number of classes is required to achieve accurate approximation of the exact likelihood when the number of analyzed sequences exceeds 20, both under the SSRV and among site rate variation (ASRV) models.
Zhao, Zhibiao
2011-06-01
We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.
Hybrid Discrete-Continuous Markov Decision Processes
NASA Technical Reports Server (NTRS)
Feng, Zhengzhu; Dearden, Richard; Meuleau, Nicholas; Washington, Rich
2003-01-01
This paper proposes a Markov decision process (MDP) model that features both discrete and continuous state variables. We extend previous work by Boyan and Littman on the mono-dimensional time-dependent MDP to multiple dimensions. We present the principle of lazy discretization, and piecewise constant and linear approximations of the model. Having to deal with several continuous dimensions raises several new problems that require new solutions. In the (piecewise) linear case, we use techniques from partially- observable MDPs (POMDPS) to represent value functions as sets of linear functions attached to different partitions of the state space.
Application of Markov Models for Analysis of Development of Psychological Characteristics
ERIC Educational Resources Information Center
Kuravsky, Lev S.; Malykh, Sergey B.
2004-01-01
A technique to study combined influence of environmental and genetic factors on the base of changes in phenotype distributions is presented. Histograms are exploited as base analyzed characteristics. A continuous time, discrete state Markov process with piece-wise constant interstate transition rates is associated with evolution of each histogram.…
Machine learning in sentiment reconstruction of the simulated stock market
NASA Astrophysics Data System (ADS)
Goykhman, Mikhail; Teimouri, Ali
2018-02-01
In this paper we continue the study of the simulated stock market framework defined by the driving sentiment processes. We focus on the market environment driven by the buy/sell trading sentiment process of the Markov chain type. We apply the methodology of the Hidden Markov Models and the Recurrent Neural Networks to reconstruct the transition probabilities matrix of the Markov sentiment process and recover the underlying sentiment states from the observed stock price behavior. We demonstrate that the Hidden Markov Model can successfully recover the transition probabilities matrix for the hidden sentiment process of the Markov Chain type. We also demonstrate that the Recurrent Neural Network can successfully recover the hidden sentiment states from the observed simulated stock price time series.
Nonparametric model validations for hidden Markov models with applications in financial econometrics
Zhao, Zhibiao
2011-01-01
We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise. PMID:21750601
Snipas, Mindaugas; Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Paulauskas, Nerijus; Bukauskas, Feliksas F
2015-01-01
The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ~20 times.
Dependability and performability analysis
NASA Technical Reports Server (NTRS)
Trivedi, Kishor S.; Ciardo, Gianfranco; Malhotra, Manish; Sahner, Robin A.
1993-01-01
Several practical issues regarding specifications and solution of dependability and performability models are discussed. Model types with and without rewards are compared. Continuous-time Markov chains (CTMC's) are compared with (continuous-time) Markov reward models (MRM's) and generalized stochastic Petri nets (GSPN's) are compared with stochastic reward nets (SRN's). It is shown that reward-based models could lead to more concise model specifications and solution of a variety of new measures. With respect to the solution of dependability and performability models, three practical issues were identified: largeness, stiffness, and non-exponentiality, and a variety of approaches are discussed to deal with them, including some of the latest research efforts.
Three real-time architectures - A study using reward models
NASA Technical Reports Server (NTRS)
Sjogren, J. A.; Smith, R. M.
1990-01-01
Numerous applications in the area of computer system analysis can be effectively studied with Markov reward models. These models describe the evolutionary behavior of the computer system by a continuous-time Markov chain, and a reward rate is associated with each state. In reliability/availability models, upstates have reward rate 1, and down states have reward rate zero associated with them. In a combined model of performance and reliability, the reward rate of a state may be the computational capacity, or a related performance measure. Steady-state expected reward rate and expected instantaneous reward rate are clearly useful measures which can be extracted from the Markov reward model. The diversity of areas where Markov reward models may be used is illustrated with a comparative study of three examples of interest to the fault tolerant computing community.
Structure and Randomness of Continuous-Time, Discrete-Event Processes
NASA Astrophysics Data System (ADS)
Marzen, Sarah E.; Crutchfield, James P.
2017-10-01
Loosely speaking, the Shannon entropy rate is used to gauge a stochastic process' intrinsic randomness; the statistical complexity gives the cost of predicting the process. We calculate, for the first time, the entropy rate and statistical complexity of stochastic processes generated by finite unifilar hidden semi-Markov models—memoryful, state-dependent versions of renewal processes. Calculating these quantities requires introducing novel mathematical objects (ɛ -machines of hidden semi-Markov processes) and new information-theoretic methods to stochastic processes.
Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Bukauskas, Feliksas F.
2015-01-01
The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ∼20 times. PMID:25705700
Nonequilibrium thermodynamic potentials for continuous-time Markov chains.
Verley, Gatien
2016-01-01
We connect the rare fluctuations of an equilibrium (EQ) process and the typical fluctuations of a nonequilibrium (NE) stationary process. In the framework of large deviation theory, this observation allows us to introduce NE thermodynamic potentials. For continuous-time Markov chains, we identify the relevant pairs of conjugated variables and propose two NE ensembles: one with fixed dynamics and fluctuating time-averaged variables, and another with fixed time-averaged variables, but a fluctuating dynamics. Accordingly, we show that NE processes are equivalent to conditioned EQ processes ensuring that NE potentials are Legendre dual. We find a variational principle satisfied by the NE potentials that reach their maximum in the NE stationary state and whose first derivatives produce the NE equations of state and second derivatives produce the NE Maxwell relations generalizing the Onsager reciprocity relations.
Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes
Nakamura, Tomoaki; Nagai, Takayuki; Mochihashi, Daichi; Kobayashi, Ichiro; Asoh, Hideki; Kaneko, Masahide
2017-01-01
Humans divide perceived continuous information into segments to facilitate recognition. For example, humans can segment speech waves into recognizable morphemes. Analogously, continuous motions are segmented into recognizable unit actions. People can divide continuous information into segments without using explicit segment points. This capacity for unsupervised segmentation is also useful for robots, because it enables them to flexibly learn languages, gestures, and actions. In this paper, we propose a Gaussian process-hidden semi-Markov model (GP-HSMM) that can divide continuous time series data into segments in an unsupervised manner. Our proposed method consists of a generative model based on the hidden semi-Markov model (HSMM), the emission distributions of which are Gaussian processes (GPs). Continuous time series data is generated by connecting segments generated by the GP. Segmentation can be achieved by using forward filtering-backward sampling to estimate the model's parameters, including the lengths and classes of the segments. In an experiment using the CMU motion capture dataset, we tested GP-HSMM with motion capture data containing simple exercise motions; the results of this experiment showed that the proposed GP-HSMM was comparable with other methods. We also conducted an experiment using karate motion capture data, which is more complex than exercise motion capture data; in this experiment, the segmentation accuracy of GP-HSMM was 0.92, which outperformed other methods. PMID:29311889
From empirical data to time-inhomogeneous continuous Markov processes.
Lencastre, Pedro; Raischel, Frank; Rogers, Tim; Lind, Pedro G
2016-03-01
We present an approach for testing for the existence of continuous generators of discrete stochastic transition matrices. Typically, existing methods to ascertain the existence of continuous Markov processes are based on the assumption that only time-homogeneous generators exist. Here a systematic extension to time inhomogeneity is presented, based on new mathematical propositions incorporating necessary and sufficient conditions, which are then implemented computationally and applied to numerical data. A discussion concerning the bridging between rigorous mathematical results on the existence of generators to its computational implementation is presented. Our detection algorithm shows to be effective in more than 60% of tested matrices, typically 80% to 90%, and for those an estimate of the (nonhomogeneous) generator matrix follows. We also solve the embedding problem analytically for the particular case of three-dimensional circulant matrices. Finally, a discussion of possible applications of our framework to problems in different fields is briefly addressed.
A compositional framework for Markov processes
NASA Astrophysics Data System (ADS)
Baez, John C.; Fong, Brendan; Pollard, Blake S.
2016-03-01
We define the concept of an "open" Markov process, or more precisely, continuous-time Markov chain, which is one where probability can flow in or out of certain states called "inputs" and "outputs." One can build up a Markov process from smaller open pieces. This process is formalized by making open Markov processes into the morphisms of a dagger compact category. We show that the behavior of a detailed balanced open Markov process is determined by a principle of minimum dissipation, closely related to Prigogine's principle of minimum entropy production. Using this fact, we set up a functor mapping open detailed balanced Markov processes to open circuits made of linear resistors. We also describe how to "black box" an open Markov process, obtaining the linear relation between input and output data that holds in any steady state, including nonequilibrium steady states with a nonzero flow of probability through the system. We prove that black boxing gives a symmetric monoidal dagger functor sending open detailed balanced Markov processes to Lagrangian relations between symplectic vector spaces. This allows us to compute the steady state behavior of an open detailed balanced Markov process from the behaviors of smaller pieces from which it is built. We relate this black box functor to a previously constructed black box functor for circuits.
Lindeberg theorem for Gibbs-Markov dynamics
NASA Astrophysics Data System (ADS)
Denker, Manfred; Senti, Samuel; Zhang, Xuan
2017-12-01
A dynamical array consists of a family of functions \\{ fn, i: 1≤slant i≤slant k_n, n≥slant 1\\} and a family of initial times \\{τn, i: 1≤slant i≤slant k_n, n≥slant 1\\} . For a dynamical system (X, T) we identify distributional limits for sums of the form for suitable (non-random) constants s_n>0 and an, i\\in { R} . We derive a Lindeberg-type central limit theorem for dynamical arrays. Applications include new central limit theorems for functions which are not locally Lipschitz continuous and central limit theorems for statistical functions of time series obtained from Gibbs-Markov systems. Our results, which hold for more general dynamics, are stated in the context of Gibbs-Markov dynamical systems for convenience.
Susceptible-infected-susceptible epidemics on networks with general infection and cure times.
Cator, E; van de Bovenkamp, R; Van Mieghem, P
2013-06-01
The classical, continuous-time susceptible-infected-susceptible (SIS) Markov epidemic model on an arbitrary network is extended to incorporate infection and curing or recovery times each characterized by a general distribution (rather than an exponential distribution as in Markov processes). This extension, called the generalized SIS (GSIS) model, is believed to have a much larger applicability to real-world epidemics (such as information spread in online social networks, real diseases, malware spread in computer networks, etc.) that likely do not feature exponential times. While the exact governing equations for the GSIS model are difficult to deduce due to their non-Markovian nature, accurate mean-field equations are derived that resemble our previous N-intertwined mean-field approximation (NIMFA) and so allow us to transfer the whole analytic machinery of the NIMFA to the GSIS model. In particular, we establish the criterion to compute the epidemic threshold in the GSIS model. Moreover, we show that the average number of infection attempts during a recovery time is the more natural key parameter, instead of the effective infection rate in the classical, continuous-time SIS Markov model. The relative simplicity of our mean-field results enables us to treat more general types of SIS epidemics, while offering an easier key parameter to measure the average activity of those general viral agents.
Susceptible-infected-susceptible epidemics on networks with general infection and cure times
NASA Astrophysics Data System (ADS)
Cator, E.; van de Bovenkamp, R.; Van Mieghem, P.
2013-06-01
The classical, continuous-time susceptible-infected-susceptible (SIS) Markov epidemic model on an arbitrary network is extended to incorporate infection and curing or recovery times each characterized by a general distribution (rather than an exponential distribution as in Markov processes). This extension, called the generalized SIS (GSIS) model, is believed to have a much larger applicability to real-world epidemics (such as information spread in online social networks, real diseases, malware spread in computer networks, etc.) that likely do not feature exponential times. While the exact governing equations for the GSIS model are difficult to deduce due to their non-Markovian nature, accurate mean-field equations are derived that resemble our previous N-intertwined mean-field approximation (NIMFA) and so allow us to transfer the whole analytic machinery of the NIMFA to the GSIS model. In particular, we establish the criterion to compute the epidemic threshold in the GSIS model. Moreover, we show that the average number of infection attempts during a recovery time is the more natural key parameter, instead of the effective infection rate in the classical, continuous-time SIS Markov model. The relative simplicity of our mean-field results enables us to treat more general types of SIS epidemics, while offering an easier key parameter to measure the average activity of those general viral agents.
Mapping of uncertainty relations between continuous and discrete time
NASA Astrophysics Data System (ADS)
Chiuchiú, Davide; Pigolotti, Simone
2018-03-01
Lower bounds on fluctuations of thermodynamic currents depend on the nature of time, discrete or continuous. To understand the physical reason, we compare current fluctuations in discrete-time Markov chains and continuous-time master equations. We prove that current fluctuations in the master equations are always more likely, due to random timings of transitions. This comparison leads to a mapping of the moments of a current between discrete and continuous time. We exploit this mapping to obtain uncertainty bounds. Our results reduce the quests for uncertainty bounds in discrete and continuous time to a single problem.
Mapping of uncertainty relations between continuous and discrete time.
Chiuchiù, Davide; Pigolotti, Simone
2018-03-01
Lower bounds on fluctuations of thermodynamic currents depend on the nature of time, discrete or continuous. To understand the physical reason, we compare current fluctuations in discrete-time Markov chains and continuous-time master equations. We prove that current fluctuations in the master equations are always more likely, due to random timings of transitions. This comparison leads to a mapping of the moments of a current between discrete and continuous time. We exploit this mapping to obtain uncertainty bounds. Our results reduce the quests for uncertainty bounds in discrete and continuous time to a single problem.
A Systematic Approach to Determining the Identifiability of Multistage Carcinogenesis Models.
Brouwer, Andrew F; Meza, Rafael; Eisenberg, Marisa C
2017-07-01
Multistage clonal expansion (MSCE) models of carcinogenesis are continuous-time Markov process models often used to relate cancer incidence to biological mechanism. Identifiability analysis determines what model parameter combinations can, theoretically, be estimated from given data. We use a systematic approach, based on differential algebra methods traditionally used for deterministic ordinary differential equation (ODE) models, to determine identifiable combinations for a generalized subclass of MSCE models with any number of preinitation stages and one clonal expansion. Additionally, we determine the identifiable combinations of the generalized MSCE model with up to four clonal expansion stages, and conjecture the results for any number of clonal expansion stages. The results improve upon previous work in a number of ways and provide a framework to find the identifiable combinations for further variations on the MSCE models. Finally, our approach, which takes advantage of the Kolmogorov backward equations for the probability generating functions of the Markov process, demonstrates that identifiability methods used in engineering and mathematics for systems of ODEs can be applied to continuous-time Markov processes. © 2016 Society for Risk Analysis.
Hidden Markov models for evolution and comparative genomics analysis.
Bykova, Nadezda A; Favorov, Alexander V; Mironov, Andrey A
2013-01-01
The problem of reconstruction of ancestral states given a phylogeny and data from extant species arises in a wide range of biological studies. The continuous-time Markov model for the discrete states evolution is generally used for the reconstruction of ancestral states. We modify this model to account for a case when the states of the extant species are uncertain. This situation appears, for example, if the states for extant species are predicted by some program and thus are known only with some level of reliability; it is common for bioinformatics field. The main idea is formulation of the problem as a hidden Markov model on a tree (tree HMM, tHMM), where the basic continuous-time Markov model is expanded with the introduction of emission probabilities of observed data (e.g. prediction scores) for each underlying discrete state. Our tHMM decoding algorithm allows us to predict states at the ancestral nodes as well as to refine states at the leaves on the basis of quantitative comparative genomics. The test on the simulated data shows that the tHMM approach applied to the continuous variable reflecting the probabilities of the states (i.e. prediction score) appears to be more accurate then the reconstruction from the discrete states assignment defined by the best score threshold. We provide examples of applying our model to the evolutionary analysis of N-terminal signal peptides and transcription factor binding sites in bacteria. The program is freely available at http://bioinf.fbb.msu.ru/~nadya/tHMM and via web-service at http://bioinf.fbb.msu.ru/treehmmweb.
A toolbox for safety instrumented system evaluation based on improved continuous-time Markov chain
NASA Astrophysics Data System (ADS)
Wardana, Awang N. I.; Kurniady, Rahman; Pambudi, Galih; Purnama, Jaka; Suryopratomo, Kutut
2017-08-01
Safety instrumented system (SIS) is designed to restore a plant into a safe condition when pre-hazardous event is occur. It has a vital role especially in process industries. A SIS shall be meet with safety requirement specifications. To confirm it, SIS shall be evaluated. Typically, the evaluation is calculated by hand. This paper presents a toolbox for SIS evaluation. It is developed based on improved continuous-time Markov chain. The toolbox supports to detailed approach of evaluation. This paper also illustrates an industrial application of the toolbox to evaluate arch burner safety system of primary reformer. The results of the case study demonstrates that the toolbox can be used to evaluate industrial SIS in detail and to plan the maintenance strategy.
Avian seasonal productivity is often modeled as a time-limited stochastic process. Many mathematical formulations have been proposed, including individual based models, continuous-time differential equations, and discrete Markov models. All such models typically include paramete...
Sensitivity Study for Long Term Reliability
NASA Technical Reports Server (NTRS)
White, Allan L.
2008-01-01
This paper illustrates using Markov models to establish system and maintenance requirements for small electronic controllers where the goal is a high probability of continuous service for a long period of time. The system and maintenance items considered are quality of components, various degrees of simple redundancy, redundancy with reconfiguration, diagnostic levels, periodic maintenance, and preventive maintenance. Markov models permit a quantitative investigation with comparison and contrast. An element of special interest is the use of conditional probability to study the combination of imperfect diagnostics and periodic maintenance.
Canonical Structure and Orthogonality of Forces and Currents in Irreversible Markov Chains
NASA Astrophysics Data System (ADS)
Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes
2018-03-01
We discuss a canonical structure that provides a unifying description of dynamical large deviations for irreversible finite state Markov chains (continuous time), Onsager theory, and Macroscopic Fluctuation Theory (MFT). For Markov chains, this theory involves a non-linear relation between probability currents and their conjugate forces. Within this framework, we show how the forces can be split into two components, which are orthogonal to each other, in a generalised sense. This splitting allows a decomposition of the pathwise rate function into three terms, which have physical interpretations in terms of dissipation and convergence to equilibrium. Similar decompositions hold for rate functions at level 2 and level 2.5. These results clarify how bounds on entropy production and fluctuation theorems emerge from the underlying dynamical rules. We discuss how these results for Markov chains are related to similar structures within MFT, which describes hydrodynamic limits of such microscopic models.
A novel grey-fuzzy-Markov and pattern recognition model for industrial accident forecasting
NASA Astrophysics Data System (ADS)
Edem, Inyeneobong Ekoi; Oke, Sunday Ayoola; Adebiyi, Kazeem Adekunle
2017-10-01
Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey-fuzzy-Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey-fuzzy-Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.
Stochastic Games for Continuous-Time Jump Processes Under Finite-Horizon Payoff Criterion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qingda, E-mail: weiqd@hqu.edu.cn; Chen, Xian, E-mail: chenxian@amss.ac.cn
In this paper we study two-person nonzero-sum games for continuous-time jump processes with the randomized history-dependent strategies under the finite-horizon payoff criterion. The state space is countable, and the transition rates and payoff functions are allowed to be unbounded from above and from below. Under the suitable conditions, we introduce a new topology for the set of all randomized Markov multi-strategies and establish its compactness and metrizability. Then by constructing the approximating sequences of the transition rates and payoff functions, we show that the optimal value function for each player is a unique solution to the corresponding optimality equation andmore » obtain the existence of a randomized Markov Nash equilibrium. Furthermore, we illustrate the applications of our main results with a controlled birth and death system.« less
Chevalier, Michael W.; El-Samad, Hana
2014-01-01
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled. PMID:25481130
NASA Astrophysics Data System (ADS)
Chevalier, Michael W.; El-Samad, Hana
2014-12-01
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.
Hidden Semi-Markov Models and Their Application
NASA Astrophysics Data System (ADS)
Beyreuther, M.; Wassermann, J.
2008-12-01
In the framework of detection and classification of seismic signals there are several different approaches. Our choice for a more robust detection and classification algorithm is to adopt Hidden Markov Models (HMM), a technique showing major success in speech recognition. HMM provide a powerful tool to describe highly variable time series based on a double stochastic model and therefore allow for a broader class description than e.g. template based pattern matching techniques. Being a fully probabilistic model, HMM directly provide a confidence measure of an estimated classification. Furthermore and in contrast to classic artificial neuronal networks or support vector machines, HMM are incorporating the time dependence explicitly in the models thus providing a adequate representation of the seismic signal. As the majority of detection algorithms, HMM are not based on the time and amplitude dependent seismogram itself but on features estimated from the seismogram which characterize the different classes. Features, or in other words characteristic functions, are e.g. the sonogram bands, instantaneous frequency, instantaneous bandwidth or centroid time. In this study we apply continuous Hidden Semi-Markov Models (HSMM), an extension of continuous HMM. The duration probability of a HMM is an exponentially decaying function of the time, which is not a realistic representation of the duration of an earthquake. In contrast HSMM use Gaussians as duration probabilities, which results in an more adequate model. The HSMM detection and classification system is running online as an EARTHWORM module at the Bavarian Earthquake Service. Here the signals that are to be classified simply differ in epicentral distance. This makes it possible to easily decide whether a classification is correct or wrong and thus allows to better evaluate the advantages and disadvantages of the proposed algorithm. The evaluation is based on several month long continuous data and the results are additionally compared to the previously published discrete HMM, continuous HMM and a classic STA/LTA. The intermediate evaluation results are very promising.
Chen, Rui; Hyrien, Ollivier
2011-01-01
This article deals with quasi- and pseudo-likelihood estimation in a class of continuous-time multi-type Markov branching processes observed at discrete points in time. “Conventional” and conditional estimation are discussed for both approaches. We compare their properties and identify situations where they lead to asymptotically equivalent estimators. Both approaches possess robustness properties, and coincide with maximum likelihood estimation in some cases. Quasi-likelihood functions involving only linear combinations of the data may be unable to estimate all model parameters. Remedial measures exist, including the resort either to non-linear functions of the data or to conditioning the moments on appropriate sigma-algebras. The method of pseudo-likelihood may also resolve this issue. We investigate the properties of these approaches in three examples: the pure birth process, the linear birth-and-death process, and a two-type process that generalizes the previous two examples. Simulations studies are conducted to evaluate performance in finite samples. PMID:21552356
Exact Solutions to Time-dependent Mdps
NASA Technical Reports Server (NTRS)
Boyan, Justin A.; Littman, Michael L.
2000-01-01
We describe an extension of the Markov decision process model in which a continuous time dimension is included in the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.
A variational method for analyzing limit cycle oscillations in stochastic hybrid systems
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; MacLaurin, James
2018-06-01
Many systems in biology can be modeled through ordinary differential equations, which are piece-wise continuous, and switch between different states according to a Markov jump process known as a stochastic hybrid system or piecewise deterministic Markov process (PDMP). In the fast switching limit, the dynamics converges to a deterministic ODE. In this paper, we develop a phase reduction method for stochastic hybrid systems that support a stable limit cycle in the deterministic limit. A classic example is the Morris-Lecar model of a neuron, where the switching Markov process is the number of open ion channels and the continuous process is the membrane voltage. We outline a variational principle for the phase reduction, yielding an exact analytic expression for the resulting phase dynamics. We demonstrate that this decomposition is accurate over timescales that are exponential in the switching rate ɛ-1 . That is, we show that for a constant C, the probability that the expected time to leave an O(a) neighborhood of the limit cycle is less than T scales as T exp (-C a /ɛ ) .
Wei, Shaoceng; Kryscio, Richard J.
2015-01-01
Continuous-time multi-state stochastic processes are useful for modeling the flow of subjects from intact cognition to dementia with mild cognitive impairment and global impairment as intervening transient, cognitive states and death as a competing risk (Figure 1). Each subject's cognition is assessed periodically resulting in interval censoring for the cognitive states while death without dementia is not interval censored. Since back transitions among the transient states are possible, Markov chains are often applied to this type of panel data. In this manuscript we apply a Semi-Markov process in which we assume that the waiting times are Weibull distributed except for transitions from the baseline state, which are exponentially distributed and in which we assume no additional changes in cognition occur between two assessments. We implement a quasi-Monte Carlo (QMC) method to calculate the higher order integration needed for likelihood estimation. We apply our model to a real dataset, the Nun Study, a cohort of 461 participants. PMID:24821001
Wei, Shaoceng; Kryscio, Richard J
2016-12-01
Continuous-time multi-state stochastic processes are useful for modeling the flow of subjects from intact cognition to dementia with mild cognitive impairment and global impairment as intervening transient cognitive states and death as a competing risk. Each subject's cognition is assessed periodically resulting in interval censoring for the cognitive states while death without dementia is not interval censored. Since back transitions among the transient states are possible, Markov chains are often applied to this type of panel data. In this manuscript, we apply a semi-Markov process in which we assume that the waiting times are Weibull distributed except for transitions from the baseline state, which are exponentially distributed and in which we assume no additional changes in cognition occur between two assessments. We implement a quasi-Monte Carlo (QMC) method to calculate the higher order integration needed for likelihood estimation. We apply our model to a real dataset, the Nun Study, a cohort of 461 participants. © The Author(s) 2014.
ModFossa: A library for modeling ion channels using Python.
Ferneyhough, Gareth B; Thibealut, Corey M; Dascalu, Sergiu M; Harris, Frederick C
2016-06-01
The creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, most are GUI based, and none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, we have developed ModFossa, a Python library supporting easy model creation and stimulus definition, complete with a fast numerical solver, and attractive vector graphics plotting.
A Markov chain technique for determining the acquisition behavior of a digital tracking loop
NASA Technical Reports Server (NTRS)
Chadwick, H. D.
1972-01-01
An iterative procedure is presented for determining the acquisition behavior of discrete or digital implementations of a tracking loop. The technique is based on the theory of Markov chains and provides the cumulative probability of acquisition in the loop as a function of time in the presence of noise and a given set of initial condition probabilities. A digital second-order tracking loop to be used in the Viking command receiver for continuous tracking of the command subcarrier phase was analyzed using this technique, and the results agree closely with experimental data.
A Graph-Algorithmic Approach for the Study of Metastability in Markov Chains
NASA Astrophysics Data System (ADS)
Gan, Tingyue; Cameron, Maria
2017-06-01
Large continuous-time Markov chains with exponentially small transition rates arise in modeling complex systems in physics, chemistry, and biology. We propose a constructive graph-algorithmic approach to determine the sequence of critical timescales at which the qualitative behavior of a given Markov chain changes, and give an effective description of the dynamics on each of them. This approach is valid for both time-reversible and time-irreversible Markov processes, with or without symmetry. Central to this approach are two graph algorithms, Algorithm 1 and Algorithm 2, for obtaining the sequences of the critical timescales and the hierarchies of Typical Transition Graphs or T-graphs indicating the most likely transitions in the system without and with symmetry, respectively. The sequence of critical timescales includes the subsequence of the reciprocals of the real parts of eigenvalues. Under a certain assumption, we prove sharp asymptotic estimates for eigenvalues (including pre-factors) and show how one can extract them from the output of Algorithm 1. We discuss the relationship between Algorithms 1 and 2 and explain how one needs to interpret the output of Algorithm 1 if it is applied in the case with symmetry instead of Algorithm 2. Finally, we analyze an example motivated by R. D. Astumian's model of the dynamics of kinesin, a molecular motor, by means of Algorithm 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemons, Don S.
2012-01-15
We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitchmore » angle scattering of high-energy electrons into the geomagnetic loss cone.« less
How old is this bird? The age distribution under some phase sampling schemes.
Hautphenne, Sophie; Massaro, Melanie; Taylor, Peter
2017-12-01
In this paper, we use a finite-state continuous-time Markov chain with one absorbing state to model an individual's lifetime. Under this model, the time of death follows a phase-type distribution, and the transient states of the Markov chain are known as phases. We then attempt to provide an answer to the simple question "What is the conditional age distribution of the individual, given its current phase"? We show that the answer depends on how we interpret the question, and in particular, on the phase observation scheme under consideration. We then apply our results to the computation of the age pyramid for the endangered Chatham Island black robin Petroica traversi during the monitoring period 2007-2014.
Integrated Thermal Response Modeling System For Hypersonic Entry Vehicles
NASA Technical Reports Server (NTRS)
Chen, Y.-K.; Milos, F. S.; Partridge, Harry (Technical Monitor)
2000-01-01
We describe all extension of the Markov decision process model in which a continuous time dimension is included ill the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.
ERIC Educational Resources Information Center
Wedel, Michel; Pieters, Rik; Liechty, John
2008-01-01
Eye movements across advertisements express a temporal pattern of bursts of respectively relatively short and long saccades, and this pattern is systematically influenced by activated scene perception goals. This was revealed by a continuous-time hidden Markov model applied to eye movements of 220 participants exposed to 17 ads under a…
Meng, Tianhui; Li, Xiaofan; Zhang, Sha; Zhao, Yubin
2016-09-28
Wireless sensor networks (WSNs) have recently gained popularity for a wide spectrum of applications. Monitoring tasks can be performed in various environments. This may be beneficial in many scenarios, but it certainly exhibits new challenges in terms of security due to increased data transmission over the wireless channel with potentially unknown threats. Among possible security issues are timing attacks, which are not prevented by traditional cryptographic security. Moreover, the limited energy and memory resources prohibit the use of complex security mechanisms in such systems. Therefore, balancing between security and the associated energy consumption becomes a crucial challenge. This paper proposes a secure scheme for WSNs while maintaining the requirement of the security-performance tradeoff. In order to proceed to a quantitative treatment of this problem, a hybrid continuous-time Markov chain (CTMC) and queueing model are put forward, and the tradeoff analysis of the security and performance attributes is carried out. By extending and transforming this model, the mean time to security attributes failure is evaluated. Through tradeoff analysis, we show that our scheme can enhance the security of WSNs, and the optimal rekeying rate of the performance and security tradeoff can be obtained.
Tataru, Paula; Hobolth, Asger
2011-12-05
Continuous time Markov chains (CTMCs) is a widely used model for describing the evolution of DNA sequences on the nucleotide, amino acid or codon level. The sufficient statistics for CTMCs are the time spent in a state and the number of changes between any two states. In applications past evolutionary events (exact times and types of changes) are unaccessible and the past must be inferred from DNA sequence data observed in the present. We describe and implement three algorithms for computing linear combinations of expected values of the sufficient statistics, conditioned on the end-points of the chain, and compare their performance with respect to accuracy and running time. The first algorithm is based on an eigenvalue decomposition of the rate matrix (EVD), the second on uniformization (UNI), and the third on integrals of matrix exponentials (EXPM). The implementation in R of the algorithms is available at http://www.birc.au.dk/~paula/. We use two different models to analyze the accuracy and eight experiments to investigate the speed of the three algorithms. We find that they have similar accuracy and that EXPM is the slowest method. Furthermore we find that UNI is usually faster than EVD.
Meng, Tianhui; Li, Xiaofan; Zhang, Sha; Zhao, Yubin
2016-01-01
Wireless sensor networks (WSNs) have recently gained popularity for a wide spectrum of applications. Monitoring tasks can be performed in various environments. This may be beneficial in many scenarios, but it certainly exhibits new challenges in terms of security due to increased data transmission over the wireless channel with potentially unknown threats. Among possible security issues are timing attacks, which are not prevented by traditional cryptographic security. Moreover, the limited energy and memory resources prohibit the use of complex security mechanisms in such systems. Therefore, balancing between security and the associated energy consumption becomes a crucial challenge. This paper proposes a secure scheme for WSNs while maintaining the requirement of the security-performance tradeoff. In order to proceed to a quantitative treatment of this problem, a hybrid continuous-time Markov chain (CTMC) and queueing model are put forward, and the tradeoff analysis of the security and performance attributes is carried out. By extending and transforming this model, the mean time to security attributes failure is evaluated. Through tradeoff analysis, we show that our scheme can enhance the security of WSNs, and the optimal rekeying rate of the performance and security tradeoff can be obtained. PMID:27690042
The Markov process admits a consistent steady-state thermodynamic formalism
NASA Astrophysics Data System (ADS)
Peng, Liangrong; Zhu, Yi; Hong, Liu
2018-01-01
The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.
Feynman-Kac formula for stochastic hybrid systems.
Bressloff, Paul C
2017-01-01
We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.
NASA Astrophysics Data System (ADS)
Frey, Alexander
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevalier, Michael W., E-mail: Michael.Chevalier@ucsf.edu; El-Samad, Hana, E-mail: Hana.El-Samad@ucsf.edu
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation timesmore » of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.« less
Open Markov Processes and Reaction Networks
NASA Astrophysics Data System (ADS)
Swistock Pollard, Blake Stephen
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Zhu, L.
2006-11-01
The Utah State University Gauss-Markov Kalman Filter (GMKF) was developed as part of the Global Assimilation of Ionospheric Measurements (GAIM) program. The GMKF uses a physics-based model of the ionosphere and a Gauss-Markov Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) observations. The physics-based model is the Ionospheric Forecast Model (IFM), which accounts for five ion species and covers the E region, F region, and the topside from 90 to 1400 km altitude. Within the GMKF, the IFM derived ionospheric densities constitute a background density field on which perturbations are superimposed based on the available data and their errors. In the current configuration, the GMKF assimilates slant total electron content (TEC) from a variable number of global positioning satellite (GPS) ground sites, bottomside electron density (Ne) profiles from a variable number of ionosondes, in situ Ne from four Defense Meteorological Satellite Program (DMSP) satellites, and nighttime line-of-sight ultraviolet (UV) radiances measured by satellites. To test the GMKF for real-time operations and to validate its ionospheric density specifications, we have tested the model performance for a variety of geophysical conditions. During these model runs various combination of data types and data quantities were assimilated. To simulate real-time operations, the model ran continuously and automatically and produced three-dimensional global electron density distributions in 15 min increments. In this paper we will describe the Gauss-Markov Kalman filter model and present results of our validation study, with an emphasis on comparisons with independent observations.
Statistical Inference on Memory Structure of Processes and Its Applications to Information Theory
2016-05-12
valued times series from a sample. (A practical algorithm to compute the estimator is a work in progress.) Third, finitely-valued spatial processes...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 mathematical statistics; time series ; Markov chains; random...proved. Second, a statistical method is developed to estimate the memory depth of discrete- time and continuously-valued times series from a sample. (A
Hobolth, Asger; Stone, Eric A
2009-09-01
Analyses of serially-sampled data often begin with the assumption that the observations represent discrete samples from a latent continuous-time stochastic process. The continuous-time Markov chain (CTMC) is one such generative model whose popularity extends to a variety of disciplines ranging from computational finance to human genetics and genomics. A common theme among these diverse applications is the need to simulate sample paths of a CTMC conditional on realized data that is discretely observed. Here we present a general solution to this sampling problem when the CTMC is defined on a discrete and finite state space. Specifically, we consider the generation of sample paths, including intermediate states and times of transition, from a CTMC whose beginning and ending states are known across a time interval of length T. We first unify the literature through a discussion of the three predominant approaches: (1) modified rejection sampling, (2) direct sampling, and (3) uniformization. We then give analytical results for the complexity and efficiency of each method in terms of the instantaneous transition rate matrix Q of the CTMC, its beginning and ending states, and the length of sampling time T. In doing so, we show that no method dominates the others across all model specifications, and we give explicit proof of which method prevails for any given Q, T, and endpoints. Finally, we introduce and compare three applications of CTMCs to demonstrate the pitfalls of choosing an inefficient sampler.
A discrete Markov metapopulation model for persistence and extinction of species.
Thompson, Colin J; Shtilerman, Elad; Stone, Lewi
2016-09-07
A simple discrete generation Markov metapopulation model is formulated for studying the persistence and extinction dynamics of a species in a given region which is divided into a large number of sites or patches. Assuming a linear site occupancy probability from one generation to the next we obtain exact expressions for the time evolution of the expected number of occupied sites and the mean-time to extinction (MTE). Under quite general conditions we show that the MTE, to leading order, is proportional to the logarithm of the initial number of occupied sites and in precise agreement with similar expressions for continuous time-dependent stochastic models. Our key contribution is a novel application of generating function techniques and simple asymptotic methods to obtain a second order asymptotic expression for the MTE which is extremely accurate over the entire range of model parameter values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stochastic Adaptive Estimation and Control.
1994-10-26
Marcus, "Language Stability and Stabilizability of Discrete Event Dynamical Systems ," SIAM Journal on Control and Optimization, 31, September 1993...in the hierarchical control of flexible manufacturing systems ; in this problem, the model involves a hybrid process in continuous time whose state is...of the average cost control problem for discrete- time Markov processes. Our exposition covers from finite to Borel state and action spaces and
Benoit, Julia S; Chan, Wenyaw; Doody, Rachelle S
2015-01-01
Parameter dependency within data sets in simulation studies is common, especially in models such as Continuous-Time Markov Chains (CTMC). Additionally, the literature lacks a comprehensive examination of estimation performance for the likelihood-based general multi-state CTMC. Among studies attempting to assess the estimation, none have accounted for dependency among parameter estimates. The purpose of this research is twofold: 1) to develop a multivariate approach for assessing accuracy and precision for simulation studies 2) to add to the literature a comprehensive examination of the estimation of a general 3-state CTMC model. Simulation studies are conducted to analyze longitudinal data with a trinomial outcome using a CTMC with and without covariates. Measures of performance including bias, component-wise coverage probabilities, and joint coverage probabilities are calculated. An application is presented using Alzheimer's disease caregiver stress levels. Comparisons of joint and component-wise parameter estimates yield conflicting inferential results in simulations from models with and without covariates. In conclusion, caution should be taken when conducting simulation studies aiming to assess performance and choice of inference should properly reflect the purpose of the simulation.
NASA Astrophysics Data System (ADS)
Fan, Tai-Fang
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Magneto - Optical Imaging of Superconducting MgB2 Thin Films
NASA Astrophysics Data System (ADS)
Hummert, Stephanie Maria
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Boron Carbide Filled Neutron Shielding Textile Polymers
NASA Astrophysics Data System (ADS)
Manzlak, Derrick Anthony
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Parallel Unstructured Grid Generation for Complex Real-World Aerodynamic Simulations
NASA Astrophysics Data System (ADS)
Zagaris, George
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Schiavone, Clinton Cleveland
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Processing and Conversion of Algae to Bioethanol
NASA Astrophysics Data System (ADS)
Kampfe, Sara Katherine
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
The Development of the CALIPSO LiDAR Simulator
NASA Astrophysics Data System (ADS)
Powell, Kathleen A.
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Exploring a Novel Approach to Technical Nuclear Forensics Utilizing Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Peeke, Richard Scot
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Scully, Malcolm E.
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Production of Cyclohexylene-Containing Diamines in Pursuit of Novel Radiation Shielding Materials
NASA Astrophysics Data System (ADS)
Bate, Norah G.
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Development of Boron-Containing Polyimide Materials and Poly(arylene Ether)s for Radiation Shielding
NASA Astrophysics Data System (ADS)
Collins, Brittani May
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Magnetization Dynamics and Anisotropy in Ferromagnetic/Antiferromagnetic Ni/NiO Bilayers
NASA Astrophysics Data System (ADS)
Petersen, Andreas
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Derivation of Markov processes that violate detailed balance
NASA Astrophysics Data System (ADS)
Lee, Julian
2018-03-01
Time-reversal symmetry of the microscopic laws dictates that the equilibrium distribution of a stochastic process must obey the condition of detailed balance. However, cyclic Markov processes that do not admit equilibrium distributions with detailed balance are often used to model systems driven out of equilibrium by external agents. I show that for a Markov model without detailed balance, an extended Markov model can be constructed, which explicitly includes the degrees of freedom for the driving agent and satisfies the detailed balance condition. The original cyclic Markov model for the driven system is then recovered as an approximation at early times by summing over the degrees of freedom for the driving agent. I also show that the widely accepted expression for the entropy production in a cyclic Markov model is actually a time derivative of an entropy component in the extended model. Further, I present an analytic expression for the entropy component that is hidden in the cyclic Markov model.
NASA Astrophysics Data System (ADS)
Santillán, Moisés; Qian, Hong
2013-01-01
We investigate the internal consistency of a recently developed mathematical thermodynamic structure across scales, between a continuous stochastic nonlinear dynamical system, i.e., a diffusion process with Langevin and Fokker-Planck equations, and its emergent discrete, inter-attractoral Markov jump process. We analyze how the system’s thermodynamic state functions, e.g. free energy F, entropy S, entropy production ep, free energy dissipation Ḟ, etc., are related when the continuous system is described with coarse-grained discrete variables. It is shown that the thermodynamics derived from the underlying, detailed continuous dynamics gives rise to exactly the free-energy representation of Gibbs and Helmholtz. That is, the system’s thermodynamic structure is the same as if one only takes a middle road and starts with the natural discrete description, with the corresponding transition rates empirically determined. By natural we mean in the thermodynamic limit of a large system, with an inherent separation of time scales between inter- and intra-attractoral dynamics. This result generalizes a fundamental idea from chemistry, and the theory of Kramers, by incorporating thermodynamics: while a mechanical description of a molecule is in terms of continuous bond lengths and angles, chemical reactions are phenomenologically described by a discrete representation, in terms of exponential rate laws and a stochastic thermodynamics.
On Markov parameters in system identification
NASA Technical Reports Server (NTRS)
Phan, Minh; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.
Hidden Markov model tracking of continuous gravitational waves from young supernova remnants
NASA Astrophysics Data System (ADS)
Sun, L.; Melatos, A.; Suvorova, S.; Moran, W.; Evans, R. J.
2018-02-01
Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova remnants are computationally challenging because of rapid stellar braking. We describe a practical, efficient, semicoherent search based on a hidden Markov model tracking scheme, solved by the Viterbi algorithm, combined with a maximum likelihood matched filter, the F statistic. The scheme is well suited to analyzing data from advanced detectors like the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). It can track rapid phase evolution from secular stellar braking and stochastic timing noise torques simultaneously without searching second- and higher-order derivatives of the signal frequency, providing an economical alternative to stack-slide-based semicoherent algorithms. One implementation tracks the signal frequency alone. A second implementation tracks the signal frequency and its first time derivative. It improves the sensitivity by a factor of a few upon the first implementation, but the cost increases by 2 to 3 orders of magnitude.
The algebra of the general Markov model on phylogenetic trees and networks.
Sumner, J G; Holland, B R; Jarvis, P D
2012-04-01
It is known that the Kimura 3ST model of sequence evolution on phylogenetic trees can be extended quite naturally to arbitrary split systems. However, this extension relies heavily on mathematical peculiarities of the associated Hadamard transformation, and providing an analogous augmentation of the general Markov model has thus far been elusive. In this paper, we rectify this shortcoming by showing how to extend the general Markov model on trees to include incompatible edges; and even further to more general network models. This is achieved by exploring the algebra of the generators of the continuous-time Markov chain together with the “splitting” operator that generates the branching process on phylogenetic trees. For simplicity, we proceed by discussing the two state case and then show that our results are easily extended to more states with little complication. Intriguingly, upon restriction of the two state general Markov model to the parameter space of the binary symmetric model, our extension is indistinguishable from the Hadamard approach only on trees; as soon as any incompatible splits are introduced the two approaches give rise to differing probability distributions with disparate structure. Through exploration of a simple example, we give an argument that our extension to more general networks has desirable properties that the previous approaches do not share. In particular, our construction allows for convergent evolution of previously divergent lineages; a property that is of significant interest for biological applications.
Cai, Chao-Ran; Wu, Zhi-Xi; Guan, Jian-Yue
2014-11-01
Recently, Gómez et al. proposed a microscopic Markov-chain approach (MMCA) [S. Gómez, J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Phys. Rev. E 84, 036105 (2011)PLEEE81539-375510.1103/PhysRevE.84.036105] to the discrete-time susceptible-infected-susceptible (SIS) epidemic process and found that the epidemic prevalence obtained by this approach agrees well with that by simulations. However, we found that the approach cannot be straightforwardly extended to a susceptible-infected-recovered (SIR) epidemic process (due to its irreversible property), and the epidemic prevalences obtained by MMCA and Monte Carlo simulations do not match well when the infection probability is just slightly above the epidemic threshold. In this contribution we extend the effective degree Markov-chain approach, proposed for analyzing continuous-time epidemic processes [J. Lindquist, J. Ma, P. Driessche, and F. Willeboordse, J. Math. Biol. 62, 143 (2011)JMBLAJ0303-681210.1007/s00285-010-0331-2], to address discrete-time binary-state (SIS) or three-state (SIR) epidemic processes on uncorrelated complex networks. It is shown that the final epidemic size as well as the time series of infected individuals obtained from this approach agree very well with those by Monte Carlo simulations. Our results are robust to the change of different parameters, including the total population size, the infection probability, the recovery probability, the average degree, and the degree distribution of the underlying networks.
Markov and semi-Markov processes as a failure rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabski, Franciszek
2016-06-08
In this paper the reliability function is defined by the stochastic failure rate process with a non negative and right continuous trajectories. Equations for the conditional reliability functions of an object, under assumption that the failure rate is a semi-Markov process with an at most countable state space are derived. A proper theorem is presented. The linear systems of equations for the appropriate Laplace transforms allow to find the reliability functions for the alternating, the Poisson and the Furry-Yule failure rate processes.
Discrete Latent Markov Models for Normally Distributed Response Data
ERIC Educational Resources Information Center
Schmittmann, Verena D.; Dolan, Conor V.; van der Maas, Han L. J.; Neale, Michael C.
2005-01-01
Van de Pol and Langeheine (1990) presented a general framework for Markov modeling of repeatedly measured discrete data. We discuss analogical single indicator models for normally distributed responses. In contrast to discrete models, which have been studied extensively, analogical continuous response models have hardly been considered. These…
Policy Transfer via Markov Logic Networks
NASA Astrophysics Data System (ADS)
Torrey, Lisa; Shavlik, Jude
We propose using a statistical-relational model, the Markov Logic Network, for knowledge transfer in reinforcement learning. Our goal is to extract relational knowledge from a source task and use it to speed up learning in a related target task. We show that Markov Logic Networks are effective models for capturing both source-task Q-functions and source-task policies. We apply them via demonstration, which involves using them for decision making in an initial stage of the target task before continuing to learn. Through experiments in the RoboCup simulated-soccer domain, we show that transfer via Markov Logic Networks can significantly improve early performance in complex tasks, and that transferring policies is more effective than transferring Q-functions.
Kogan, J A; Margoliash, D
1998-04-01
The performance of two techniques is compared for automated recognition of bird song units from continuous recordings. The advantages and limitations of dynamic time warping (DTW) and hidden Markov models (HMMs) are evaluated on a large database of male songs of zebra finches (Taeniopygia guttata) and indigo buntings (Passerina cyanea), which have different types of vocalizations and have been recorded under different laboratory conditions. Depending on the quality of recordings and complexity of song, the DTW-based technique gives excellent to satisfactory performance. Under challenging conditions such as noisy recordings or presence of confusing short-duration calls, good performance of the DTW-based technique requires careful selection of templates that may demand expert knowledge. Because HMMs are trained, equivalent or even better performance of HMMs can be achieved based only on segmentation and labeling of constituent vocalizations, albeit with many more training examples than DTW templates. One weakness in HMM performance is the misclassification of short-duration vocalizations or song units with more variable structure (e.g., some calls, and syllables of plastic songs). To address these and other limitations, new approaches for analyzing bird vocalizations are discussed.
Identifying and correcting non-Markov states in peptide conformational dynamics
NASA Astrophysics Data System (ADS)
Nerukh, Dmitry; Jensen, Christian H.; Glen, Robert C.
2010-02-01
Conformational transitions in proteins define their biological activity and can be investigated in detail using the Markov state model. The fundamental assumption on the transitions between the states, their Markov property, is critical in this framework. We test this assumption by analyzing the transitions obtained directly from the dynamics of a molecular dynamics simulated peptide valine-proline-alanine-leucine and states defined phenomenologically using clustering in dihedral space. We find that the transitions are Markovian at the time scale of ≈50 ps and longer. However, at the time scale of 30-40 ps the dynamics loses its Markov property. Our methodology reveals the mechanism that leads to non-Markov behavior. It also provides a way of regrouping the conformations into new states that now possess the required Markov property of their dynamics.
Utilization of two web-based continuing education courses evaluated by Markov chain model.
Tian, Hao; Lin, Jin-Mann S; Reeves, William C
2012-01-01
To evaluate the web structure of two web-based continuing education courses, identify problems and assess the effects of web site modifications. Markov chain models were built from 2008 web usage data to evaluate the courses' web structure and navigation patterns. The web site was then modified to resolve identified design issues and the improvement in user activity over the subsequent 12 months was quantitatively evaluated. Web navigation paths were collected between 2008 and 2010. The probability of navigating from one web page to another was analyzed. The continuing education courses' sequential structure design was clearly reflected in the resulting actual web usage models, and none of the skip transitions provided was heavily used. The web navigation patterns of the two different continuing education courses were similar. Two possible design flaws were identified and fixed in only one of the two courses. Over the following 12 months, the drop-out rate in the modified course significantly decreased from 41% to 35%, but remained unchanged in the unmodified course. The web improvement effects were further verified via a second-order Markov chain model. The results imply that differences in web content have less impact than web structure design on how learners navigate through continuing education courses. Evaluation of user navigation can help identify web design flaws and guide modifications. This study showed that Markov chain models provide a valuable tool to evaluate web-based education courses. Both the results and techniques in this study would be very useful for public health education and research specialists.
Utilization of two web-based continuing education courses evaluated by Markov chain model
Lin, Jin-Mann S; Reeves, William C
2011-01-01
Objectives To evaluate the web structure of two web-based continuing education courses, identify problems and assess the effects of web site modifications. Design Markov chain models were built from 2008 web usage data to evaluate the courses' web structure and navigation patterns. The web site was then modified to resolve identified design issues and the improvement in user activity over the subsequent 12 months was quantitatively evaluated. Measurements Web navigation paths were collected between 2008 and 2010. The probability of navigating from one web page to another was analyzed. Results The continuing education courses' sequential structure design was clearly reflected in the resulting actual web usage models, and none of the skip transitions provided was heavily used. The web navigation patterns of the two different continuing education courses were similar. Two possible design flaws were identified and fixed in only one of the two courses. Over the following 12 months, the drop-out rate in the modified course significantly decreased from 41% to 35%, but remained unchanged in the unmodified course. The web improvement effects were further verified via a second-order Markov chain model. Conclusions The results imply that differences in web content have less impact than web structure design on how learners navigate through continuing education courses. Evaluation of user navigation can help identify web design flaws and guide modifications. This study showed that Markov chain models provide a valuable tool to evaluate web-based education courses. Both the results and techniques in this study would be very useful for public health education and research specialists. PMID:21976027
Sebastian, Tunny; Jeyaseelan, Visalakshi; Jeyaseelan, Lakshmanan; Anandan, Shalini; George, Sebastian; Bangdiwala, Shrikant I
2018-01-01
Hidden Markov models are stochastic models in which the observations are assumed to follow a mixture distribution, but the parameters of the components are governed by a Markov chain which is unobservable. The issues related to the estimation of Poisson-hidden Markov models in which the observations are coming from mixture of Poisson distributions and the parameters of the component Poisson distributions are governed by an m-state Markov chain with an unknown transition probability matrix are explained here. These methods were applied to the data on Vibrio cholerae counts reported every month for 11-year span at Christian Medical College, Vellore, India. Using Viterbi algorithm, the best estimate of the state sequence was obtained and hence the transition probability matrix. The mean passage time between the states were estimated. The 95% confidence interval for the mean passage time was estimated via Monte Carlo simulation. The three hidden states of the estimated Markov chain are labelled as 'Low', 'Moderate' and 'High' with the mean counts of 1.4, 6.6 and 20.2 and the estimated average duration of stay of 3, 3 and 4 months, respectively. Environmental risk factors were studied using Markov ordinal logistic regression analysis. No significant association was found between disease severity levels and climate components.
Sumner, Jeremy G; Taylor, Amelia; Holland, Barbara R; Jarvis, Peter D
2017-12-01
Recently there has been renewed interest in phylogenetic inference methods based on phylogenetic invariants, alongside the related Markov invariants. Broadly speaking, both these approaches give rise to polynomial functions of sequence site patterns that, in expectation value, either vanish for particular evolutionary trees (in the case of phylogenetic invariants) or have well understood transformation properties (in the case of Markov invariants). While both approaches have been valued for their intrinsic mathematical interest, it is not clear how they relate to each other, and to what extent they can be used as practical tools for inference of phylogenetic trees. In this paper, by focusing on the special case of binary sequence data and quartets of taxa, we are able to view these two different polynomial-based approaches within a common framework. To motivate the discussion, we present three desirable statistical properties that we argue any invariant-based phylogenetic method should satisfy: (1) sensible behaviour under reordering of input sequences; (2) stability as the taxa evolve independently according to a Markov process; and (3) explicit dependence on the assumption of a continuous-time process. Motivated by these statistical properties, we develop and explore several new phylogenetic inference methods. In particular, we develop a statistically bias-corrected version of the Markov invariants approach which satisfies all three properties. We also extend previous work by showing that the phylogenetic invariants can be implemented in such a way as to satisfy property (3). A simulation study shows that, in comparison to other methods, our new proposed approach based on bias-corrected Markov invariants is extremely powerful for phylogenetic inference. The binary case is of particular theoretical interest as-in this case only-the Markov invariants can be expressed as linear combinations of the phylogenetic invariants. A wider implication of this is that, for models with more than two states-for example DNA sequence alignments with four-state models-we find that methods which rely on phylogenetic invariants are incapable of satisfying all three of the stated statistical properties. This is because in these cases the relevant Markov invariants belong to a class of polynomials independent from the phylogenetic invariants.
NASA Astrophysics Data System (ADS)
Auslander, Joseph Simcha
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Mountz, Elizabeth M.
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Abelard, Joshua Erold Robert
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Harbert, Emily Grace
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Cumulative Reports and Publications through December 31, 1992
1993-04-01
periodls of time , and by consultants. Members of NASA’s research staff also may be residenit at l( ASE for limited pieriodls. The major categories of the...To appear in Theoretical and Computational Fluid Dynamics. Nicol, David M.: Optimistic Barricr Synchronization . I(CASE Report No. 92-34, July 27, 1992...continuous time Markov chains. ICASE Report No. 92-60, November 18, 1992, 23 pages. Submitted to the 7th Annual Workshop on Parallel and Distributed
Le modèle stochastique SIS pour une épidémie dans un environnement aléatoire.
Bacaër, Nicolas
2016-10-01
The stochastic SIS epidemic model in a random environment. In a random environment that is a two-state continuous-time Markov chain, the mean time to extinction of the stochastic SIS epidemic model grows in the supercritical case exponentially with respect to the population size if the two states are favorable, and like a power law if one state is favorable while the other is unfavorable.
Eternal non-Markovianity: from random unitary to Markov chain realisations.
Megier, Nina; Chruściński, Dariusz; Piilo, Jyrki; Strunz, Walter T
2017-07-25
The theoretical description of quantum dynamics in an intriguing way does not necessarily imply the underlying dynamics is indeed intriguing. Here we show how a known very interesting master equation with an always negative decay rate [eternal non-Markovianity (ENM)] arises from simple stochastic Schrödinger dynamics (random unitary dynamics). Equivalently, it may be seen as arising from a mixture of Markov (semi-group) open system dynamics. Both these approaches lead to a more general family of CPT maps, characterized by a point within a parameter triangle. Our results show how ENM quantum dynamics can be realised easily in the laboratory. Moreover, we find a quantum time-continuously measured (quantum trajectory) realisation of the dynamics of the ENM master equation based on unitary transformations and projective measurements in an extended Hilbert space, guided by a classical Markov process. Furthermore, a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) representation of the dynamics in an extended Hilbert space can be found, with a remarkable property: there is no dynamics in the ancilla state. Finally, analogous constructions for two qubits extend these results from non-CP-divisible to non-P-divisible dynamics.
Markov chain aggregation and its applications to combinatorial reaction networks.
Ganguly, Arnab; Petrov, Tatjana; Koeppl, Heinz
2014-09-01
We consider a continuous-time Markov chain (CTMC) whose state space is partitioned into aggregates, and each aggregate is assigned a probability measure. A sufficient condition for defining a CTMC over the aggregates is presented as a variant of weak lumpability, which also characterizes that the measure over the original process can be recovered from that of the aggregated one. We show how the applicability of de-aggregation depends on the initial distribution. The application section is devoted to illustrate how the developed theory aids in reducing CTMC models of biochemical systems particularly in connection to protein-protein interactions. We assume that the model is written by a biologist in form of site-graph-rewrite rules. Site-graph-rewrite rules compactly express that, often, only a local context of a protein (instead of a full molecular species) needs to be in a certain configuration in order to trigger a reaction event. This observation leads to suitable aggregate Markov chains with smaller state spaces, thereby providing sufficient reduction in computational complexity. This is further exemplified in two case studies: simple unbounded polymerization and early EGFR/insulin crosstalk.
The application of Markov decision process in restaurant delivery robot
NASA Astrophysics Data System (ADS)
Wang, Yong; Hu, Zhen; Wang, Ying
2017-05-01
As the restaurant delivery robot is often in a dynamic and complex environment, including the chairs inadvertently moved to the channel and customers coming and going. The traditional path planning algorithm is not very ideal. To solve this problem, this paper proposes the Markov dynamic state immediate reward (MDR) path planning algorithm according to the traditional Markov decision process. First of all, it uses MDR to plan a global path, then navigates along this path. When the sensor detects there is no obstructions in front state, increase its immediate state reward value; when the sensor detects there is an obstacle in front, plan a global path that can avoid obstacle with the current position as the new starting point and reduce its state immediate reward value. This continues until the target is reached. When the robot learns for a period of time, it can avoid those places where obstacles are often present when planning the path. By analyzing the simulation experiment, the algorithm has achieved good results in the global path planning under the dynamic environment.
Markov stochasticity coordinates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliazar, Iddo, E-mail: iddo.eliazar@intel.com
Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.
Markov chains and semi-Markov models in time-to-event analysis.
Abner, Erin L; Charnigo, Richard J; Kryscio, Richard J
2013-10-25
A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes are of interest. Markov chain models can accommodate censored data, competing risks (informative censoring), multiple outcomes, recurrent outcomes, frailty, and non-constant survival probabilities. Markov chain models, though often overlooked by investigators in time-to-event analysis, have long been used in clinical studies and have widespread application in other fields.
Markov chains and semi-Markov models in time-to-event analysis
Abner, Erin L.; Charnigo, Richard J.; Kryscio, Richard J.
2014-01-01
A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes are of interest. Markov chain models can accommodate censored data, competing risks (informative censoring), multiple outcomes, recurrent outcomes, frailty, and non-constant survival probabilities. Markov chain models, though often overlooked by investigators in time-to-event analysis, have long been used in clinical studies and have widespread application in other fields. PMID:24818062
Open Quantum Systems and Classical Trajectories
NASA Astrophysics Data System (ADS)
Rebolledo, Rolando
2004-09-01
A Quantum Markov Semigroup consists of a family { T} = ({ T}t)_{t ∈ B R+} of normal ω*- continuous completely positive maps on a von Neumann algebra 𝔐 which preserve the unit and satisfy the semigroup property. This class of semigroups has been extensively used to represent open quantum systems. This article is aimed at studying the existence of a { T} -invariant abelian subalgebra 𝔄 of 𝔐. When this happens, the restriction of { T}t to 𝔄 defines a classical Markov semigroup T = (Tt)
Sampling rare fluctuations of discrete-time Markov chains
NASA Astrophysics Data System (ADS)
Whitelam, Stephen
2018-03-01
We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions (and upper bounds on such functions) for dynamical quantities extensive in the length of the Markov chain. We illustrate the method using a series of simple examples, and use it to study the fluctuations of a lattice-based model of active matter that can undergo motility-induced phase separation.
Sampling rare fluctuations of discrete-time Markov chains.
Whitelam, Stephen
2018-03-01
We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions (and upper bounds on such functions) for dynamical quantities extensive in the length of the Markov chain. We illustrate the method using a series of simple examples, and use it to study the fluctuations of a lattice-based model of active matter that can undergo motility-induced phase separation.
Maximum Kolmogorov-Sinai Entropy Versus Minimum Mixing Time in Markov Chains
NASA Astrophysics Data System (ADS)
Mihelich, M.; Dubrulle, B.; Paillard, D.; Kral, Q.; Faranda, D.
2018-01-01
We establish a link between the maximization of Kolmogorov Sinai entropy (KSE) and the minimization of the mixing time for general Markov chains. Since the maximisation of KSE is analytical and easier to compute in general than mixing time, this link provides a new faster method to approximate the minimum mixing time dynamics. It could be interesting in computer sciences and statistical physics, for computations that use random walks on graphs that can be represented as Markov chains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesin, Y.; Weiss, H.
1997-01-01
In this paper we establish the complete multifractal formalism for equilibrium measures for Holder continuous conformal expanding maps and expanding Markov Moran-like geometric constructions. Examples include Markov maps of an interval, beta transformations of an interval, rational maps with hyperbolic Julia sets, and conformal total endomorphisms. We also construct a Holder continuous homeomorphism of a compact metric space with an ergodic invariant measure of positive entropy for which the dimension spectrum is not convex, and hence the multifractal formalism fails.
Dynamic Programming for Structured Continuous Markov Decision Problems
NASA Technical Reports Server (NTRS)
Dearden, Richard; Meuleau, Nicholas; Washington, Richard; Feng, Zhengzhu
2004-01-01
We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, using techniques from POMDPs to represent and reason about linear surfaces efficiently. We show that for complex, structured problems, our approach exploits the natural structure so that optimal solutions can be computed efficiently.
Linear system identification via backward-time observer models
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh Q.
1992-01-01
Presented here is an algorithm to compute the Markov parameters of a backward-time observer for a backward-time model from experimental input and output data. The backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) for the backward-time system identification. The identified backward-time system Markov parameters are used in the Eigensystem Realization Algorithm to identify a backward-time state-space model, which can be easily converted to the usual forward-time representation. If one reverses time in the model to be identified, what were damped true system modes become modes with negative damping, growing as the reversed time increases. On the other hand, the noise modes in the identification still maintain the property that they are stable. The shift from positive damping to negative damping of the true system modes allows one to distinguish these modes from noise modes. Experimental results are given to illustrate when and to what extent this concept works.
A class of generalized Ginzburg-Landau equations with random switching
NASA Astrophysics Data System (ADS)
Wu, Zheng; Yin, George; Lei, Dongxia
2018-09-01
This paper focuses on a class of generalized Ginzburg-Landau equations with random switching. In our formulation, the nonlinear term is allowed to have higher polynomial growth rate than the usual cubic polynomials. The random switching is modeled by a continuous-time Markov chain with a finite state space. First, an explicit solution is obtained. Then properties such as stochastic-ultimate boundedness and permanence of the solution processes are investigated. Finally, two-time-scale models are examined leading to a reduction of complexity.
The explicit form of the rate function for semi-Markov processes and its contractions
NASA Astrophysics Data System (ADS)
Sughiyama, Yuki; Kobayashi, Testuya J.
2018-03-01
We derive the explicit form of the rate function for semi-Markov processes. Here, the ‘random time change trick’ plays an essential role. Also, by exploiting the contraction principle of large deviation theory to the explicit form, we show that the fluctuation theorem (Gallavotti-Cohen symmetry) holds for semi-Markov cases. Furthermore, we elucidate that our rate function is an extension of the level 2.5 rate function for Markov processes to semi-Markov cases.
A high-fidelity weather time series generator using the Markov Chain process on a piecewise level
NASA Astrophysics Data System (ADS)
Hersvik, K.; Endrerud, O.-E. V.
2017-12-01
A method is developed for generating a set of unique weather time-series based on an existing weather series. The method allows statistically valid weather variations to take place within repeated simulations of offshore operations. The numerous generated time series need to share the same statistical qualities as the original time series. Statistical qualities here refer mainly to the distribution of weather windows available for work, including durations and frequencies of such weather windows, and seasonal characteristics. The method is based on the Markov chain process. The core new development lies in how the Markov Process is used, specifically by joining small pieces of random length time series together rather than joining individual weather states, each from a single time step, which is a common solution found in the literature. This new Markov model shows favorable characteristics with respect to the requirements set forth and all aspects of the validation performed.
Markov Analysis of Sleep Dynamics
NASA Astrophysics Data System (ADS)
Kim, J. W.; Lee, J.-S.; Robinson, P. A.; Jeong, D.-U.
2009-05-01
A new approach, based on a Markov transition matrix, is proposed to explain frequent sleep and wake transitions during sleep. The matrix is determined by analyzing hypnograms of 113 obstructive sleep apnea patients. Our approach shows that the statistics of sleep can be constructed via a single Markov process and that durations of all states have modified exponential distributions, in contrast to recent reports of a scale-free form for the wake stage and an exponential form for the sleep stage. Hypnograms of the same subjects, but treated with Continuous Positive Airway Pressure, are analyzed and compared quantitatively with the pretreatment ones, suggesting potential clinical applications.
NASA Astrophysics Data System (ADS)
Sun, Wei; Ding, Wei; Yan, Huifang; Duan, Shunli
2018-06-01
Shoe-mounted pedestrian navigation systems based on micro inertial sensors rely on zero velocity updates to correct their positioning errors in time, which effectively makes determining the zero velocity interval play a key role during normal walking. However, as walking gaits are complicated, and vary from person to person, it is difficult to detect walking gaits with a fixed threshold method. This paper proposes a pedestrian gait classification method based on a hidden Markov model. Pedestrian gait data are collected with a micro inertial measurement unit installed at the instep. On the basis of analyzing the characteristics of the pedestrian walk, a single direction angular rate gyro output is used to classify gait features. The angular rate data are modeled into a univariate Gaussian mixture model with three components, and a four-state left–right continuous hidden Markov model (CHMM) is designed to classify the normal walking gait. The model parameters are trained and optimized using the Baum–Welch algorithm and then the sliding window Viterbi algorithm is used to decode the gait. Walking data are collected through eight subjects walking along the same route at three different speeds; the leave-one-subject-out cross validation method is conducted to test the model. Experimental results show that the proposed algorithm can accurately detect different walking gaits of zero velocity interval. The location experiment shows that the precision of CHMM-based pedestrian navigation improved by 40% when compared to the angular rate threshold method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghil, M.; Kravtsov, S.; Robertson, A. W.
2008-10-14
This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influencemore » large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.« less
Irreversible Markov chains in spin models: Topological excitations
NASA Astrophysics Data System (ADS)
Lei, Ze; Krauth, Werner
2018-01-01
We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z∼ 2 at the critical temperature to z∼ 0 in the limit of zero temperature. We confirm the event-chain algorithm's fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.
Continuous-time discrete-space models for animal movement
Hanks, Ephraim M.; Hooten, Mevin B.; Alldredge, Mat W.
2015-01-01
The processes influencing animal movement and resource selection are complex and varied. Past efforts to model behavioral changes over time used Bayesian statistical models with variable parameter space, such as reversible-jump Markov chain Monte Carlo approaches, which are computationally demanding and inaccessible to many practitioners. We present a continuous-time discrete-space (CTDS) model of animal movement that can be fit using standard generalized linear modeling (GLM) methods. This CTDS approach allows for the joint modeling of location-based as well as directional drivers of movement. Changing behavior over time is modeled using a varying-coefficient framework which maintains the computational simplicity of a GLM approach, and variable selection is accomplished using a group lasso penalty. We apply our approach to a study of two mountain lions (Puma concolor) in Colorado, USA.
Li, Michael; Dushoff, Jonathan; Bolker, Benjamin M
2018-07-01
Simple mechanistic epidemic models are widely used for forecasting and parameter estimation of infectious diseases based on noisy case reporting data. Despite the widespread application of models to emerging infectious diseases, we know little about the comparative performance of standard computational-statistical frameworks in these contexts. Here we build a simple stochastic, discrete-time, discrete-state epidemic model with both process and observation error and use it to characterize the effectiveness of different flavours of Bayesian Markov chain Monte Carlo (MCMC) techniques. We use fits to simulated data, where parameters (and future behaviour) are known, to explore the limitations of different platforms and quantify parameter estimation accuracy, forecasting accuracy, and computational efficiency across combinations of modeling decisions (e.g. discrete vs. continuous latent states, levels of stochasticity) and computational platforms (JAGS, NIMBLE, Stan).
Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition.
Janko, Vito; Luštrek, Mitja
2017-12-29
The recognition of the user's context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system's energy expenditure and the system's accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Etienne, Z. B.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Suvorova, S.; Moran, W.; Evans, R. J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-06-01
Results are presented from a semicoherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run. The search combines a frequency domain matched filter (Bessel-weighted F -statistic) with a hidden Markov model to track wandering of the neutron star spin frequency. No evidence of gravitational waves is found in the frequency range 60-650 Hz. Frequentist 95% confidence strain upper limits, h095 %=4.0 ×1 0-25, 8.3 ×1 0-25, and 3.0 ×1 0-25 for electromagnetically restricted source orientation, unknown polarization, and circular polarization, respectively, are reported at 106 Hz. They are ≤10 times higher than the theoretical torque-balance limit at 106 Hz.
Linear system identification via backward-time observer models
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh
1993-01-01
This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.
Indexed semi-Markov process for wind speed modeling.
NASA Astrophysics Data System (ADS)
Petroni, F.; D'Amico, G.; Prattico, F.
2012-04-01
The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. In a previous work we proposed different semi-Markov models, showing their ability to reproduce the autocorrelation structures of wind speed data. In that paper we showed also that the autocorrelation is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in this paper we propose an indexed semi-Markov model. More precisely we assume that wind speed is described by a discrete time homogeneous semi-Markov process. We introduce a memory index which takes into account the periods of different wind activities. With this model the statistical characteristics of wind speed are faithfully reproduced. The wind is a very unstable phenomenon characterized by a sequence of lulls and sustained speeds, and a good wind generator must be able to reproduce such sequences. To check the validity of the predictive semi-Markovian model, the persistence of synthetic winds were calculated, then averaged and computed. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy 28 (2003) 1787-1802.
Markov switching multinomial logit model: An application to accident-injury severities.
Malyshkina, Nataliya V; Mannering, Fred L
2009-07-01
In this study, two-state Markov switching multinomial logit models are proposed for statistical modeling of accident-injury severities. These models assume Markov switching over time between two unobserved states of roadway safety as a means of accounting for potential unobserved heterogeneity. The states are distinct in the sense that in different states accident-severity outcomes are generated by separate multinomial logit processes. To demonstrate the applicability of the approach, two-state Markov switching multinomial logit models are estimated for severity outcomes of accidents occurring on Indiana roads over a four-year time period. Bayesian inference methods and Markov Chain Monte Carlo (MCMC) simulations are used for model estimation. The estimated Markov switching models result in a superior statistical fit relative to the standard (single-state) multinomial logit models for a number of roadway classes and accident types. It is found that the more frequent state of roadway safety is correlated with better weather conditions and that the less frequent state is correlated with adverse weather conditions.
Milne, R K; Yeo, G F; Edeson, R O; Madsen, B W
1988-04-22
Stochastic models of ion channels have been based largely on Markov theory where individual states and transition rates must be specified, and sojourn-time densities for each state are constrained to be exponential. This study presents an approach based on random-sum methods and alternating-renewal theory, allowing individual states to be grouped into classes provided the successive sojourn times in a given class are independent and identically distributed. Under these conditions Markov models form a special case. The utility of the approach is illustrated by considering the effects of limited time resolution (modelled by using a discrete detection limit, xi) on the properties of observable events, with emphasis on the observed open-time (xi-open-time). The cumulants and Laplace transform for a xi-open-time are derived for a range of Markov and non-Markov models; several useful approximations to the xi-open-time density function are presented. Numerical studies show that the effects of limited time resolution can be extreme, and also highlight the relative importance of the various model parameters. The theory could form a basis for future inferential studies in which parameter estimation takes account of limited time resolution in single channel records. Appendixes include relevant results concerning random sums and a discussion of the role of exponential distributions in Markov models.
NASA Astrophysics Data System (ADS)
Figueiredo, Danilo Zucolli; Costa, Oswaldo Luiz do Valle
2017-10-01
This paper deals with the H2 optimal control problem of discrete-time Markov jump linear systems (MJLS) considering the case in which the Markov chain takes values in a general Borel space ?. It is assumed that the controller has access only to an output variable and to the jump parameter. The goal, in this case, is to design a dynamic Markov jump controller such that the H2-norm of the closed-loop system is minimised. It is shown that the H2-norm can be written as the sum of two H2-norms, such that one of them does not depend on the control, and the other one is obtained from the optimal filter for an infinite-horizon filtering problem. This result can be seen as a separation principle for MJLS with Markov chain in a Borel space ? considering the infinite time horizon case.
Communication: Introducing prescribed biases in out-of-equilibrium Markov models
NASA Astrophysics Data System (ADS)
Dixit, Purushottam D.
2018-03-01
Markov models are often used in modeling complex out-of-equilibrium chemical and biochemical systems. However, many times their predictions do not agree with experiments. We need a systematic framework to update existing Markov models to make them consistent with constraints that are derived from experiments. Here, we present a framework based on the principle of maximum relative path entropy (minimum Kullback-Leibler divergence) to update Markov models using stationary state and dynamical trajectory-based constraints. We illustrate the framework using a biochemical model network of growth factor-based signaling. We also show how to find the closest detailed balanced Markov model to a given Markov model. Further applications and generalizations are discussed.
Markov Chain Model with Catastrophe to Determine Mean Time to Default of Credit Risky Assets
NASA Astrophysics Data System (ADS)
Dharmaraja, Selvamuthu; Pasricha, Puneet; Tardelli, Paola
2017-11-01
This article deals with the problem of probabilistic prediction of the time distance to default for a firm. To model the credit risk, the dynamics of an asset is described as a function of a homogeneous discrete time Markov chain subject to a catastrophe, the default. The behaviour of the Markov chain is investigated and the mean time to the default is expressed in a closed form. The methodology to estimate the parameters is given. Numerical results are provided to illustrate the applicability of the proposed model on real data and their analysis is discussed.
Estimation of sojourn time in chronic disease screening without data on interval cases.
Chen, T H; Kuo, H S; Yen, M F; Lai, M S; Tabar, L; Duffy, S W
2000-03-01
Estimation of the sojourn time on the preclinical detectable period in disease screening or transition rates for the natural history of chronic disease usually rely on interval cases (diagnosed between screens). However, to ascertain such cases might be difficult in developing countries due to incomplete registration systems and difficulties in follow-up. To overcome this problem, we propose three Markov models to estimate parameters without using interval cases. A three-state Markov model, a five-state Markov model related to regional lymph node spread, and a five-state Markov model pertaining to tumor size are applied to data on breast cancer screening in female relatives of breast cancer cases in Taiwan. Results based on a three-state Markov model give mean sojourn time (MST) 1.90 (95% CI: 1.18-4.86) years for this high-risk group. Validation of these models on the basis of data on breast cancer screening in the age groups 50-59 and 60-69 years from the Swedish Two-County Trial shows the estimates from a three-state Markov model that does not use interval cases are very close to those from previous Markov models taking interval cancers into account. For the five-state Markov model, a reparameterized procedure using auxiliary information on clinically detected cancers is performed to estimate relevant parameters. A good fit of internal and external validation demonstrates the feasibility of using these models to estimate parameters that have previously required interval cancers. This method can be applied to other screening data in which there are no data on interval cases.
Clustering Multivariate Time Series Using Hidden Markov Models
Ghassempour, Shima; Girosi, Federico; Maeder, Anthony
2014-01-01
In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs), where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers. PMID:24662996
First and second order semi-Markov chains for wind speed modeling
NASA Astrophysics Data System (ADS)
Prattico, F.; Petroni, F.; D'Amico, G.
2012-04-01
The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [3] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [1], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. Semi-Markov processes (SMP) are a wide class of stochastic processes which generalize at the same time both Markov chains and renewal processes. Their main advantage is that of using whatever type of waiting time distribution for modeling the time to have a transition from one state to another one. This major flexibility has a price to pay: availability of data to estimate the parameters of the model which are more numerous. Data availability is not an issue in wind speed studies, therefore, semi-Markov models can be used in a statistical efficient way. In this work we present three different semi-Markov chain models: the first one is a first-order SMP where the transition probabilities from two speed states (at time Tn and Tn-1) depend on the initial state (the state at Tn-1), final state (the state at Tn) and on the waiting time (given by t=Tn-Tn-1), the second model is a second order SMP where we consider the transition probabilities as depending also on the state the wind speed was before the initial state (which is the state at Tn-2) and the last one is still a second order SMP where the transition probabilities depends on the three states at Tn-2,Tn-1 and Tn and on the waiting times t_1=Tn-1-Tn-2 and t_2=Tn-Tn-1. The three models are used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy, 28/2003 1787-1802. [2] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30/2005 693-708. [3] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29/2004, 1407-1418.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granita, E-mail: granitafc@gmail.com; Bahar, A.
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.
A Langevin equation for the rates of currency exchange based on the Markov analysis
NASA Astrophysics Data System (ADS)
Farahpour, F.; Eskandari, Z.; Bahraminasab, A.; Jafari, G. R.; Ghasemi, F.; Sahimi, Muhammad; Reza Rahimi Tabar, M.
2007-11-01
We propose a method for analyzing the data for the rates of exchange of various currencies versus the U.S. dollar. The method analyzes the return time series of the data as a Markov process, and develops an effective equation which reconstructs it. We find that the Markov time scale, i.e., the time scale over which the data are Markov-correlated, is one day for the majority of the daily exchange rates that we analyze. We derive an effective Langevin equation to describe the fluctuations in the rates. The equation contains two quantities, D and D, representing the drift and diffusion coefficients, respectively. We demonstrate how the two coefficients are estimated directly from the data, without using any assumptions or models for the underlying stochastic time series that represent the daily rates of exchange of various currencies versus the U.S. dollar.
Markovian prediction of future values for food grains in the economic survey
NASA Astrophysics Data System (ADS)
Sathish, S.; Khadar Babu, S. K.
2017-11-01
Now-a-days prediction and forecasting are plays a vital role in research. For prediction, regression is useful to predict the future value and current value on production process. In this paper, we assume food grain production exhibit Markov chain dependency and time homogeneity. The economic generative performance evaluation the balance time artificial fertilization different level in Estrusdetection using a daily Markov chain model. Finally, Markov process prediction gives better performance compare with Regression model.
NASA Technical Reports Server (NTRS)
English, Thomas
2005-01-01
A standard tool of reliability analysis used at NASA-JSC is the event tree. An event tree is simply a probability tree, with the probabilities determining the next step through the tree specified at each node. The nodal probabilities are determined by a reliability study of the physical system at work for a particular node. The reliability study performed at a node is typically referred to as a fault tree analysis, with the potential of a fault tree existing.for each node on the event tree. When examining an event tree it is obvious why the event tree/fault tree approach has been adopted. Typical event trees are quite complex in nature, and the event tree/fault tree approach provides a systematic and organized approach to reliability analysis. The purpose of this study was two fold. Firstly, we wanted to explore the possibility that a semi-Markov process can create dependencies between sojourn times (the times it takes to transition from one state to the next) that can decrease the uncertainty when estimating time to failures. Using a generalized semi-Markov model, we studied a four element reliability model and were able to demonstrate such sojourn time dependencies. Secondly, we wanted to study the use of semi-Markov processes to introduce a time variable into the event tree diagrams that are commonly developed in PRA (Probabilistic Risk Assessment) analyses. Event tree end states which change with time are more representative of failure scenarios than are the usual static probability-derived end states.
Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model.
Sampid, Marius Galabe; Hasim, Haslifah M; Dai, Hongsheng
2018-01-01
In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student's-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over time and allows the GARCH parameters to vary over time following a Markov process, is combined with copula functions and EVT to formulate the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is then used to forecast the level of risk on financial asset returns. We further propose a new method for threshold selection in EVT analysis, which we term the hybrid method. Empirical and back-testing results show that the proposed VaR models capture VaR reasonably well in periods of calm and in periods of crisis.
Oncology Modeling for Fun and Profit! Key Steps for Busy Analysts in Health Technology Assessment.
Beca, Jaclyn; Husereau, Don; Chan, Kelvin K W; Hawkins, Neil; Hoch, Jeffrey S
2018-01-01
In evaluating new oncology medicines, two common modeling approaches are state transition (e.g., Markov and semi-Markov) and partitioned survival. Partitioned survival models have become more prominent in oncology health technology assessment processes in recent years. Our experience in conducting and evaluating models for economic evaluation has highlighted many important and practical pitfalls. As there is little guidance available on best practices for those who wish to conduct them, we provide guidance in the form of 'Key steps for busy analysts,' who may have very little time and require highly favorable results. Our guidance highlights the continued need for rigorous conduct and transparent reporting of economic evaluations regardless of the modeling approach taken, and the importance of modeling that better reflects reality, which includes better approaches to considering plausibility, estimating relative treatment effects, dealing with post-progression effects, and appropriate characterization of the uncertainty from modeling itself.
Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition †
Janko, Vito
2017-01-01
The recognition of the user’s context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system’s energy expenditure and the system’s accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy. PMID:29286301
Nested Interrupt Analysis of Low Cost and High Performance Embedded Systems Using GSPN Framework
NASA Astrophysics Data System (ADS)
Lin, Cheng-Min
Interrupt service routines are a key technology for embedded systems. In this paper, we introduce the standard approach for using Generalized Stochastic Petri Nets (GSPNs) as a high-level model for generating CTMC Continuous-Time Markov Chains (CTMCs) and then use Markov Reward Models (MRMs) to compute the performance for embedded systems. This framework is employed to analyze two embedded controllers with low cost and high performance, ARM7 and Cortex-M3. Cortex-M3 is designed with a tail-chaining mechanism to improve the performance of ARM7 when a nested interrupt occurs on an embedded controller. The Platform Independent Petri net Editor 2 (PIPE2) tool is used to model and evaluate the controllers in terms of power consumption and interrupt overhead performance. Using numerical results, in spite of the power consumption or interrupt overhead, Cortex-M3 performs better than ARM7.
Modeling carbachol-induced hippocampal network synchronization using hidden Markov models
NASA Astrophysics Data System (ADS)
Dragomir, Andrei; Akay, Yasemin M.; Akay, Metin
2010-10-01
In this work we studied the neural state transitions undergone by the hippocampal neural network using a hidden Markov model (HMM) framework. We first employed a measure based on the Lempel-Ziv (LZ) estimator to characterize the changes in the hippocampal oscillation patterns in terms of their complexity. These oscillations correspond to different modes of hippocampal network synchronization induced by the cholinergic agonist carbachol in the CA1 region of mice hippocampus. HMMs are then used to model the dynamics of the LZ-derived complexity signals as first-order Markov chains. Consequently, the signals corresponding to our oscillation recordings can be segmented into a sequence of statistically discriminated hidden states. The segmentation is used for detecting transitions in neural synchronization modes in data recorded from wild-type and triple transgenic mice models (3xTG) of Alzheimer's disease (AD). Our data suggest that transition from low-frequency (delta range) continuous oscillation mode into high-frequency (theta range) oscillation, exhibiting repeated burst-type patterns, occurs always through a mode resembling a mixture of the two patterns, continuous with burst. The relatively random patterns of oscillation during this mode may reflect the fact that the neuronal network undergoes re-organization. Further insight into the time durations of these modes (retrieved via the HMM segmentation of the LZ-derived signals) reveals that the mixed mode lasts significantly longer (p < 10-4) in 3xTG AD mice. These findings, coupled with the documented cholinergic neurotransmission deficits in the 3xTG mice model, may be highly relevant for the case of AD.
Driving style recognition method using braking characteristics based on hidden Markov model
Wu, Chaozhong; Lyu, Nengchao; Huang, Zhen
2017-01-01
Since the advantage of hidden Markov model in dealing with time series data and for the sake of identifying driving style, three driving style (aggressive, moderate and mild) are modeled reasonably through hidden Markov model based on driver braking characteristics to achieve efficient driving style. Firstly, braking impulse and the maximum braking unit area of vacuum booster within a certain time are collected from braking operation, and then general braking and emergency braking characteristics are extracted to code the braking characteristics. Secondly, the braking behavior observation sequence is used to describe the initial parameters of hidden Markov model, and the generation of the hidden Markov model for differentiating and an observation sequence which is trained and judged by the driving style is introduced. Thirdly, the maximum likelihood logarithm could be implied from the observable parameters. The recognition accuracy of algorithm is verified through experiments and two common pattern recognition algorithms. The results showed that the driving style discrimination based on hidden Markov model algorithm could realize effective discriminant of driving style. PMID:28837580
Fuzzy Markov random fields versus chains for multispectral image segmentation.
Salzenstein, Fabien; Collet, Christophe
2006-11-01
This paper deals with a comparison of recent statistical models based on fuzzy Markov random fields and chains for multispectral image segmentation. The fuzzy scheme takes into account discrete and continuous classes which model the imprecision of the hidden data. In this framework, we assume the dependence between bands and we express the general model for the covariance matrix. A fuzzy Markov chain model is developed in an unsupervised way. This method is compared with the fuzzy Markovian field model previously proposed by one of the authors. The segmentation task is processed with Bayesian tools, such as the well-known MPM (Mode of Posterior Marginals) criterion. Our goal is to compare the robustness and rapidity for both methods (fuzzy Markov fields versus fuzzy Markov chains). Indeed, such fuzzy-based procedures seem to be a good answer, e.g., for astronomical observations when the patterns present diffuse structures. Moreover, these approaches allow us to process missing data in one or several spectral bands which correspond to specific situations in astronomy. To validate both models, we perform and compare the segmentation on synthetic images and raw multispectral astronomical data.
Hybrid stochastic simplifications for multiscale gene networks.
Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu
2009-09-07
Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.
Detection of cough signals in continuous audio recordings using hidden Markov models.
Matos, Sergio; Birring, Surinder S; Pavord, Ian D; Evans, David H
2006-06-01
Cough is a common symptom of many respiratory diseases. The evaluation of its intensity and frequency of occurrence could provide valuable clinical information in the assessment of patients with chronic cough. In this paper we propose the use of hidden Markov models (HMMs) to automatically detect cough sounds from continuous ambulatory recordings. The recording system consists of a digital sound recorder and a microphone attached to the patient's chest. The recognition algorithm follows a keyword-spotting approach, with cough sounds representing the keywords. It was trained on 821 min selected from 10 ambulatory recordings, including 2473 manually labeled cough events, and tested on a database of nine recordings from separate patients with a total recording time of 3060 min and comprising 2155 cough events. The average detection rate was 82% at a false alarm rate of seven events/h, when considering only events above an energy threshold relative to each recording's average energy. These results suggest that HMMs can be applied to the detection of cough sounds from ambulatory patients. A postprocessing stage to perform a more detailed analysis on the detected events is under development, and could allow the rejection of some of the incorrectly detected events.
Bayesian Analysis of Biogeography when the Number of Areas is Large
Landis, Michael J.; Matzke, Nicholas J.; Moore, Brian R.; Huelsenbeck, John P.
2013-01-01
Historical biogeography is increasingly studied from an explicitly statistical perspective, using stochastic models to describe the evolution of species range as a continuous-time Markov process of dispersal between and extinction within a set of discrete geographic areas. The main constraint of these methods is the computational limit on the number of areas that can be specified. We propose a Bayesian approach for inferring biogeographic history that extends the application of biogeographic models to the analysis of more realistic problems that involve a large number of areas. Our solution is based on a “data-augmentation” approach, in which we first populate the tree with a history of biogeographic events that is consistent with the observed species ranges at the tips of the tree. We then calculate the likelihood of a given history by adopting a mechanistic interpretation of the instantaneous-rate matrix, which specifies both the exponential waiting times between biogeographic events and the relative probabilities of each biogeographic change. We develop this approach in a Bayesian framework, marginalizing over all possible biogeographic histories using Markov chain Monte Carlo (MCMC). Besides dramatically increasing the number of areas that can be accommodated in a biogeographic analysis, our method allows the parameters of a given biogeographic model to be estimated and different biogeographic models to be objectively compared. Our approach is implemented in the program, BayArea. [ancestral area analysis; Bayesian biogeographic inference; data augmentation; historical biogeography; Markov chain Monte Carlo.] PMID:23736102
Marathon: An Open Source Software Library for the Analysis of Markov-Chain Monte Carlo Algorithms
Rechner, Steffen; Berger, Annabell
2016-01-01
We present the software library marathon, which is designed to support the analysis of sampling algorithms that are based on the Markov-Chain Monte Carlo principle. The main application of this library is the computation of properties of so-called state graphs, which represent the structure of Markov chains. We demonstrate applications and the usefulness of marathon by investigating the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graphs. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is often several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time. PMID:26824442
Technical manual for basic version of the Markov chain nest productivity model (MCnest)
The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...
User’s manual for basic version of MCnest Markov chain nest productivity model
The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...
Modelling past land use using archaeological and pollen data
NASA Astrophysics Data System (ADS)
Pirzamanbein, Behnaz; Lindström, johan; Poska, Anneli; Gaillard-Lemdahl, Marie-José
2016-04-01
Accurate maps of past land use are necessary for studying the impact of anthropogenic land-cover changes on climate and biodiversity. We develop a Bayesian hierarchical model to reconstruct the land use using Gaussian Markov random fields. The model uses two observations sets: 1) archaeological data, representing human settlements, urbanization and agricultural findings; and 2) pollen-based land estimates of the three land-cover types Coniferous forest, Broadleaved forest and Unforested/Open land. The pollen based estimates are obtained from the REVEALS model, based on pollen counts from lakes and bogs. Our developed model uses the sparse pollen-based estimations to reconstruct the spatial continuous cover of three land cover types. Using the open-land component and the archaeological data, the extent of land-use is reconstructed. The model is applied on three time periods - centred around 1900 CE, 1000 and, 4000 BCE over Sweden for which both pollen-based estimates and archaeological data are available. To estimate the model parameters and land use, a block updated Markov chain Monte Carlo (MCMC) algorithm is applied. Using the MCMC posterior samples uncertainties in land-use predictions are computed. Due to lack of good historic land use data, model results are evaluated by cross-validation. Keywords. Spatial reconstruction, Gaussian Markov random field, Fossil pollen records, Archaeological data, Human land-use, Prediction uncertainty
A comparison between MS-VECM and MS-VECMX on economic time series data
NASA Astrophysics Data System (ADS)
Phoong, Seuk-Wai; Ismail, Mohd Tahir; Sek, Siok-Kun
2014-07-01
Multivariate Markov switching models able to provide useful information on the study of structural change data since the regime switching model can analyze the time varying data and capture the mean and variance in the series of dependence structure. This paper will investigates the oil price and gold price effects on Malaysia, Singapore, Thailand and Indonesia stock market returns. Two forms of Multivariate Markov switching models are used namely the mean adjusted heteroskedasticity Markov Switching Vector Error Correction Model (MSMH-VECM) and the mean adjusted heteroskedasticity Markov Switching Vector Error Correction Model with exogenous variable (MSMH-VECMX). The reason for using these two models are to capture the transition probabilities of the data since real financial time series data always exhibit nonlinear properties such as regime switching, cointegrating relations, jumps or breaks passing the time. A comparison between these two models indicates that MSMH-VECM model able to fit the time series data better than the MSMH-VECMX model. In addition, it was found that oil price and gold price affected the stock market changes in the four selected countries.
Assessment of variations in control of asthma over time.
Combescure, C; Chanez, P; Saint-Pierre, P; Daurès, J P; Proudhon, H; Godard, P
2003-08-01
Control and severity of asthma are two different but complementary concepts. The severity of asthma could influence the control over time. The aim of this study was to demonstrate this relationship. A total 365 patients with persistent asthma (severity) were enrolled and followed-up prospectively. Data were analysed using a continuous time homogeneous Markov model of the natural history of asthma. Control of asthma was defined according to three health states which were qualified: optimal, suboptimal and unacceptable control (states 1, 2 and 3). Transition forces (denoted lambda(ij) from state i to state j) and transition probabilities between control states were assessed and the results stratified by asthma severity were compared. Models were validated by comparing expected and observed numbers of patients in the different states. Transition probabilities stabilised between 100-250 days and more rapidly in patients with mild-to-moderate asthma. Patients with mild-to-moderate asthma in suboptimal or unacceptable control had a high probability of transition directly to optimal control. Patients with severe asthma had a tendency to remain in unacceptable control. A Markov model is a useful tool to model the control of asthma over time. Severity modified clearly the health states. It could be used to compare the performance of different approaches to asthma management.
Crawford, Forrest W.; Suchard, Marc A.
2011-01-01
A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with n current particles, a new particle is born with instantaneous rate λn and a particle dies with instantaneous rate μn. Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics. PMID:21984359
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es
We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.
NASA Astrophysics Data System (ADS)
Lismawati, Eka; Respatiwulan; Widyaningsih, Purnami
2017-06-01
The SIS epidemic model describes the pattern of disease spread with characteristics that recovered individuals can be infected more than once. The number of susceptible and infected individuals every time follows the discrete time Markov process. It can be represented by the discrete time Markov chains (DTMC) SIS. The DTMC SIS epidemic model can be developed for two pathogens in two patches. The aims of this paper are to reconstruct and to apply the DTMC SIS epidemic model with two pathogens in two patches. The model was presented as transition probabilities. The application of the model obtain that the number of susceptible individuals decreases while the number of infected individuals increases for each pathogen in each patch.
A dynamic multi-scale Markov model based methodology for remaining life prediction
NASA Astrophysics Data System (ADS)
Yan, Jihong; Guo, Chaozhong; Wang, Xing
2011-05-01
The ability to accurately predict the remaining life of partially degraded components is crucial in prognostics. In this paper, a performance degradation index is designed using multi-feature fusion techniques to represent deterioration severities of facilities. Based on this indicator, an improved Markov model is proposed for remaining life prediction. Fuzzy C-Means (FCM) algorithm is employed to perform state division for Markov model in order to avoid the uncertainty of state division caused by the hard division approach. Considering the influence of both historical and real time data, a dynamic prediction method is introduced into Markov model by a weighted coefficient. Multi-scale theory is employed to solve the state division problem of multi-sample prediction. Consequently, a dynamic multi-scale Markov model is constructed. An experiment is designed based on a Bently-RK4 rotor testbed to validate the dynamic multi-scale Markov model, experimental results illustrate the effectiveness of the methodology.
Markov models in dentistry: application to resin-bonded bridges and review of the literature.
Mahl, Dominik; Marinello, Carlo P; Sendi, Pedram
2012-10-01
Markov models are mathematical models that can be used to describe disease progression and evaluate the cost-effectiveness of medical interventions. Markov models allow projecting clinical and economic outcomes into the future and are therefore frequently used to estimate long-term outcomes of medical interventions. The purpose of this paper is to demonstrate its use in dentistry, using the example of resin-bonded bridges to replace missing teeth, and to review the literature. We used literature data and a four-state Markov model to project long-term outcomes of resin-bonded bridges over a time horizon of 60 years. In addition, the literature was searched in PubMed Medline for research articles on the application of Markov models in dentistry.
NASA Astrophysics Data System (ADS)
Saakian, David B.
2012-03-01
We map the Markov-switching multifractal model (MSM) onto the random energy model (REM). The MSM is, like the REM, an exactly solvable model in one-dimensional space with nontrivial correlation functions. According to our results, four different statistical physics phases are possible in random walks with multifractal behavior. We also introduce the continuous branching version of the model, calculate the moments, and prove multiscaling behavior. Different phases have different multiscaling properties.
Modelling Faculty Replacement Strategies Using a Time-Dependent Finite Markov-Chain Process.
ERIC Educational Resources Information Center
Hackett, E. Raymond; Magg, Alexander A.; Carrigan, Sarah D.
1999-01-01
Describes the use of a time-dependent Markov-chain model to develop faculty-replacement strategies within a college at a research university. The study suggests that a stochastic modelling approach can provide valuable insight when planning for personnel needs in the immediate (five-to-ten year) future. (MSE)
Hybrid stochastic simplifications for multiscale gene networks
Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu
2009-01-01
Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach. PMID:19735554
Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.
Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine
2010-09-01
Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.
Guerrier, Claire; Holcman, David
2016-10-18
Binding of molecules, ions or proteins to small target sites is a generic step of cell activation. This process relies on rare stochastic events where a particle located in a large bulk has to find small and often hidden targets. We present here a hybrid discrete-continuum model that takes into account a stochastic regime governed by rare events and a continuous regime in the bulk. The rare discrete binding events are modeled by a Markov chain for the encounter of small targets by few Brownian particles, for which the arrival time is Poissonian. The large ensemble of particles is described by mass action laws. We use this novel model to predict the time distribution of vesicular release at neuronal synapses. Vesicular release is triggered by the binding of few calcium ions that can originate either from the synaptic bulk or from the entry through calcium channels. We report here that the distribution of release time is bimodal although it is triggered by a single fast action potential. While the first peak follows a stimulation, the second corresponds to the random arrival over much longer time of ions located in the synaptic terminal to small binding vesicular targets. To conclude, the present multiscale stochastic modeling approach allows studying cellular events based on integrating discrete molecular events over several time scales.
Inference of epidemiological parameters from household stratified data
Walker, James N.; Ross, Joshua V.
2017-01-01
We consider a continuous-time Markov chain model of SIR disease dynamics with two levels of mixing. For this so-called stochastic households model, we provide two methods for inferring the model parameters—governing within-household transmission, recovery, and between-household transmission—from data of the day upon which each individual became infectious and the household in which each infection occurred, as might be available from First Few Hundred studies. Each method is a form of Bayesian Markov Chain Monte Carlo that allows us to calculate a joint posterior distribution for all parameters and hence the household reproduction number and the early growth rate of the epidemic. The first method performs exact Bayesian inference using a standard data-augmentation approach; the second performs approximate Bayesian inference based on a likelihood approximation derived from branching processes. These methods are compared for computational efficiency and posteriors from each are compared. The branching process is shown to be a good approximation and remains computationally efficient as the amount of data is increased. PMID:29045456
NASA Astrophysics Data System (ADS)
Attaluri, Pavan K.; Chen, Zhengxin; Weerakoon, Aruna M.; Lu, Guoqing
Multiple criteria decision making (MCDM) has significant impact in bioinformatics. In the research reported here, we explore the integration of decision tree (DT) and Hidden Markov Model (HMM) for subtype prediction of human influenza A virus. Infection with influenza viruses continues to be an important public health problem. Viral strains of subtype H3N2 and H1N1 circulates in humans at least twice annually. The subtype detection depends mainly on the antigenic assay, which is time-consuming and not fully accurate. We have developed a Web system for accurate subtype detection of human influenza virus sequences. The preliminary experiment showed that this system is easy-to-use and powerful in identifying human influenza subtypes. Our next step is to examine the informative positions at the protein level and extend its current functionality to detect more subtypes. The web functions can be accessed at http://glee.ist.unomaha.edu/.
Modelisation de l'historique d'operation de groupes turbine-alternateur
NASA Astrophysics Data System (ADS)
Szczota, Mickael
Because of their ageing fleet, the utility managers are increasingly in needs of tools that can help them to plan efficiently maintenance operations. Hydro-Quebec started a project that aim to foresee the degradation of their hydroelectric runner, and use that information to classify the generating unit. That classification will help to know which generating unit is more at risk to undergo a major failure. Cracks linked to the fatigue phenomenon are a predominant degradation mode and the loading sequences applied to the runner is a parameter impacting the crack growth. So, the aim of this memoir is to create a generator able to generate synthetic loading sequences that are statistically equivalent to the observed history. Those simulated sequences will be used as input in a life assessment model. At first, we describe how the generating units are operated by Hydro-Quebec and analyse the available data, the analysis shows that the data are non-stationnary. Then, we review modelisation and validation methods. In the following chapter a particular attention is given to a precise description of the validation and comparison procedure. Then, we present the comparison of three kind of model : Discrete Time Markov Chains, Discrete Time Semi-Markov Chains and the Moving Block Bootstrap. For the first two models, we describe how to take account for the non-stationnarity. Finally, we show that the Markov Chain is not adapted for our case, and that the Semi-Markov chains are better when they include the non-stationnarity. The final choice between Semi-Markov Chains and the Moving Block Bootstrap depends of the user. But, with a long term vision we recommend the use of Semi-Markov chains for their flexibility. Keywords: Stochastic models, Models validation, Reliability, Semi-Markov Chains, Markov Chains, Bootstrap
Metastable Distributions of Markov Chains with Rare Transitions
NASA Astrophysics Data System (ADS)
Freidlin, M.; Koralov, L.
2017-06-01
In this paper we consider Markov chains X^\\varepsilon _t with transition rates that depend on a small parameter \\varepsilon . We are interested in the long time behavior of X^\\varepsilon _t at various \\varepsilon -dependent time scales t = t(\\varepsilon ). The asymptotic behavior depends on how the point (1/\\varepsilon , t(\\varepsilon )) approaches infinity. We introduce a general notion of complete asymptotic regularity (a certain asymptotic relation between the ratios of transition rates), which ensures the existence of the metastable distribution for each initial point and a given time scale t(\\varepsilon ). The technique of i-graphs allows one to describe the metastable distribution explicitly. The result may be viewed as a generalization of the ergodic theorem to the case of parameter-dependent Markov chains.
Conditioned Limit Theorems for Some Null Recurrent Markov Processes
1976-08-01
Chapter 1 INTRODUCTION 1.1 Summary of Results Let (Vk, k ! 0) be a discrete time Markov process with state space EC(- , ) and let S be...explain our results in some detail. 2 We begin by stating our three basic assumptions: (1) vk s k 2 0 Is a Markov process with state space E C(-o,%); (Ii... 12 n 3. CONDITIONING ON T (, > n.................................1.9 3.1 Preliminary Results
Filtering Using Nonlinear Expectations
2016-04-16
gives a solution to estimating a Markov chain observed in Gaussian noise when the variance of the noise is unkown. This paper is accepted for the IEEE...Optimization, an A* journal. A short third paper discusses how to estimate a change in the transition dynamics of a noisily observed Markov chain ...The change point time is hidden in a hidden Markov chain , so a second level of discovery is involved. This paper is accepted for Communications in
A reward semi-Markov process with memory for wind speed modeling
NASA Astrophysics Data System (ADS)
Petroni, F.; D'Amico, G.; Prattico, F.
2012-04-01
The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. The primary goal of this analysis is the study of the time history of the wind in order to assess its reliability as a source of power and to determine the associated storage levels required. In order to assess this issue we use a probabilistic model based on indexed semi-Markov process [4] to which a reward structure is attached. Our model is used to calculate the expected energy produced by a given turbine and its variability expressed by the variance of the process. Our results can be used to compare different wind farms based on their reward and also on the risk of missed production due to the intrinsic variability of the wind speed process. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and backtesting procedure is used to compare results on first and second oder moments of rewards between real and synthetic data. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic gen- eration of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Re- newable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribu- tion, Renewable Energy 28 (2003) 1787-1802. [4]F. Petroni, G. D'Amico, F. Prattico, Indexed semi-Markov process for wind speed modeling. To be submitted.
Wali, Arvin R; Brandel, Michael G; Santiago-Dieppa, David R; Rennert, Robert C; Steinberg, Jeffrey A; Hirshman, Brian R; Murphy, James D; Khalessi, Alexander A
2018-05-01
OBJECTIVE Markov modeling is a clinical research technique that allows competing medical strategies to be mathematically assessed in order to identify the optimal allocation of health care resources. The authors present a review of the recently published neurosurgical literature that employs Markov modeling and provide a conceptual framework with which to evaluate, critique, and apply the findings generated from health economics research. METHODS The PubMed online database was searched to identify neurosurgical literature published from January 2010 to December 2017 that had utilized Markov modeling for neurosurgical cost-effectiveness studies. Included articles were then assessed with regard to year of publication, subspecialty of neurosurgery, decision analytical techniques utilized, and source information for model inputs. RESULTS A total of 55 articles utilizing Markov models were identified across a broad range of neurosurgical subspecialties. Sixty-five percent of the papers were published within the past 3 years alone. The majority of models derived health transition probabilities, health utilities, and cost information from previously published studies or publicly available information. Only 62% of the studies incorporated indirect costs. Ninety-three percent of the studies performed a 1-way or 2-way sensitivity analysis, and 67% performed a probabilistic sensitivity analysis. A review of the conceptual framework of Markov modeling and an explanation of the different terminology and methodology are provided. CONCLUSIONS As neurosurgeons continue to innovate and identify novel treatment strategies for patients, Markov modeling will allow for better characterization of the impact of these interventions on a patient and societal level. The aim of this work is to equip the neurosurgical readership with the tools to better understand, critique, and apply findings produced from cost-effectiveness research.
Observation uncertainty in reversible Markov chains.
Metzner, Philipp; Weber, Marcus; Schütte, Christof
2010-09-01
In many applications one is interested in finding a simplified model which captures the essential dynamical behavior of a real life process. If the essential dynamics can be assumed to be (approximately) memoryless then a reasonable choice for a model is a Markov model whose parameters are estimated by means of Bayesian inference from an observed time series. We propose an efficient Monte Carlo Markov chain framework to assess the uncertainty of the Markov model and related observables. The derived Gibbs sampler allows for sampling distributions of transition matrices subject to reversibility and/or sparsity constraints. The performance of the suggested sampling scheme is demonstrated and discussed for a variety of model examples. The uncertainty analysis of functions of the Markov model under investigation is discussed in application to the identification of conformations of the trialanine molecule via Robust Perron Cluster Analysis (PCCA+) .
Predicting hepatitis B monthly incidence rates using weighted Markov chains and time series methods.
Shahdoust, Maryam; Sadeghifar, Majid; Poorolajal, Jalal; Javanrooh, Niloofar; Amini, Payam
2015-01-01
Hepatitis B (HB) is a major global mortality. Accurately predicting the trend of the disease can provide an appropriate view to make health policy disease prevention. This paper aimed to apply three different to predict monthly incidence rates of HB. This historical cohort study was conducted on the HB incidence data of Hamadan Province, the west of Iran, from 2004 to 2012. Weighted Markov Chain (WMC) method based on Markov chain theory and two time series models including Holt Exponential Smoothing (HES) and SARIMA were applied on the data. The results of different applied methods were compared to correct percentages of predicted incidence rates. The monthly incidence rates were clustered into two clusters as state of Markov chain. The correct predicted percentage of the first and second clusters for WMC, HES and SARIMA methods was (100, 0), (84, 67) and (79, 47) respectively. The overall incidence rate of HBV is estimated to decrease over time. The comparison of results of the three models indicated that in respect to existing seasonality trend and non-stationarity, the HES had the most accurate prediction of the incidence rates.
Generalized master equation via aging continuous-time random walks.
Allegrini, Paolo; Aquino, Gerardo; Grigolini, Paolo; Palatella, Luigi; Rosa, Angelo
2003-11-01
We discuss the problem of the equivalence between continuous-time random walk (CTRW) and generalized master equation (GME). The walker, making instantaneous jumps from one site of the lattice to another, resides in each site for extended times. The sojourn times have a distribution density psi(t) that is assumed to be an inverse power law with the power index micro. We assume that the Onsager principle is fulfilled, and we use this assumption to establish a complete equivalence between GME and the Montroll-Weiss CTRW. We prove that this equivalence is confined to the case where psi(t) is an exponential. We argue that is so because the Montroll-Weiss CTRW, as recently proved by Barkai [E. Barkai, Phys. Rev. Lett. 90, 104101 (2003)], is nonstationary, thereby implying aging, while the Onsager principle is valid only in the case of fully aged systems. The case of a Poisson distribution of sojourn times is the only one with no aging associated to it, and consequently with no need to establish special initial conditions to fulfill the Onsager principle. We consider the case of a dichotomous fluctuation, and we prove that the Onsager principle is fulfilled for any form of regression to equilibrium provided that the stationary condition holds true. We set the stationary condition on both the CTRW and the GME, thereby creating a condition of total equivalence, regardless of the nature of the waiting-time distribution. As a consequence of this procedure we create a GME that is a bona fide master equation, in spite of being non-Markov. We note that the memory kernel of the GME affords information on the interaction between system of interest and its bath. The Poisson case yields a bath with infinitely fast fluctuations. We argue that departing from the Poisson form has the effect of creating a condition of infinite memory and that these results might be useful to shed light on the problem of how to unravel non-Markov quantum master equations.
Wang, Xin; Su, Xia; Sun, Wentao; Xie, Yanming; Wang, Yongyan
2011-10-01
In post-marketing study of traditional Chinese medicine (TCM), pharmacoeconomic evaluation has an important applied significance. However, the economic literatures of TCM have been unable to fully and accurately reflect the unique overall outcomes of treatment with TCM. For the special nature of TCM itself, we recommend that Markov model could be introduced into post-marketing pharmacoeconomic evaluation of TCM, and also explore the feasibility of model application. Markov model can extrapolate the study time horizon, suit with effectiveness indicators of TCM, and provide measurable comprehensive outcome. In addition, Markov model can promote the development of TCM quality of life scale and the methodology of post-marketing pharmacoeconomic evaluation.
Real-time antenna fault diagnosis experiments at DSS 13
NASA Technical Reports Server (NTRS)
Mellstrom, J.; Pierson, C.; Smyth, P.
1992-01-01
Experimental results obtained when a previously described fault diagnosis system was run online in real time at the 34-m beam waveguide antenna at Deep Space Station (DSS) 13 are described. Experimental conditions and the quality of results are described. A neural network model and a maximum-likelihood Gaussian classifier are compared with and without a Markov component to model temporal context. At the rate of a state update every 6.4 seconds, over a period of roughly 1 hour, the neural-Markov system had zero errors (incorrect state estimates) while monitoring both faulty and normal operations. The overall results indicate that the neural-Markov combination is the most accurate model and has significant practical potential.
2013-03-01
moving average ( ARIMA ) model because the data is not a times series. The best a manpower planner can do at this point is to make an educated assumption...MARKOV MODEL FOR FORECASTING END STRENGTH OF SELECTED MARINE CORPS RESERVE (SMCR) OFFICERS by Anthony D. Licari March 2013 Thesis Advisor...March 2013 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE DEVELOPING A MARKOV MODEL FOR FORECASTING END STRENGTH OF
NASA Astrophysics Data System (ADS)
Birkel, C.; Paroli, R.; Spezia, L.; Tetzlaff, D.; Soulsby, C.
2012-12-01
In this paper we present a novel model framework using the class of Markov Switching Autoregressive Models (MSARMs) to examine catchments as complex stochastic systems that exhibit non-stationary, non-linear and non-Normal rainfall-runoff and solute dynamics. Hereby, MSARMs are pairs of stochastic processes, one observed and one unobserved, or hidden. We model the unobserved process as a finite state Markov chain and assume that the observed process, given the hidden Markov chain, is conditionally autoregressive, which means that the current observation depends on its recent past (system memory). The model is fully embedded in a Bayesian analysis based on Markov Chain Monte Carlo (MCMC) algorithms for model selection and uncertainty assessment. Hereby, the autoregressive order and the dimension of the hidden Markov chain state-space are essentially self-selected. The hidden states of the Markov chain represent unobserved levels of variability in the observed process that may result from complex interactions of hydroclimatic variability on the one hand and catchment characteristics affecting water and solute storage on the other. To deal with non-stationarity, additional meteorological and hydrological time series along with a periodic component can be included in the MSARMs as covariates. This extension allows identification of potential underlying drivers of temporal rainfall-runoff and solute dynamics. We applied the MSAR model framework to streamflow and conservative tracer (deuterium and oxygen-18) time series from an intensively monitored 2.3 km2 experimental catchment in eastern Scotland. Statistical time series analysis, in the form of MSARMs, suggested that the streamflow and isotope tracer time series are not controlled by simple linear rules. MSARMs showed that the dependence of current observations on past inputs observed by transport models often in form of the long-tailing of travel time and residence time distributions can be efficiently explained by non-stationarity either of the system input (climatic variability) and/or the complexity of catchment storage characteristics. The statistical model is also capable of reproducing short (event) and longer-term (inter-event) and wet and dry dynamical "hydrological states". These reflect the non-linear transport mechanisms of flow pathways induced by transient climatic and hydrological variables and modified by catchment characteristics. We conclude that MSARMs are a powerful tool to analyze the temporal dynamics of hydrological data, allowing for explicit integration of non-stationary, non-linear and non-Normal characteristics.
Classification of customer lifetime value models using Markov chain
NASA Astrophysics Data System (ADS)
Permana, Dony; Pasaribu, Udjianna S.; Indratno, Sapto W.; Suprayogi
2017-10-01
A firm’s potential reward in future time from a customer can be determined by customer lifetime value (CLV). There are some mathematic methods to calculate it. One method is using Markov chain stochastic model. Here, a customer is assumed through some states. Transition inter the states follow Markovian properties. If we are given some states for a customer and the relationships inter states, then we can make some Markov models to describe the properties of the customer. As Markov models, CLV is defined as a vector contains CLV for a customer in the first state. In this paper we make a classification of Markov Models to calculate CLV. Start from two states of customer model, we make develop in many states models. The development a model is based on weaknesses in previous model. Some last models can be expected to describe how real characters of customers in a firm.
ERIC Educational Resources Information Center
Stifter, Cynthia A.; Rovine, Michael
2015-01-01
The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at 2 and 6?months of age, used hidden Markov modelling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a…
Transformations based on continuous piecewise-affine velocity fields
Freifeld, Oren; Hauberg, Soren; Batmanghelich, Kayhan; ...
2017-01-11
Here, we propose novel finite-dimensional spaces of well-behaved Rn → Rn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization overmore » monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available.« less
Transformations Based on Continuous Piecewise-Affine Velocity Fields
Freifeld, Oren; Hauberg, Søren; Batmanghelich, Kayhan; Fisher, Jonn W.
2018-01-01
We propose novel finite-dimensional spaces of well-behaved ℝn → ℝn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization over monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available. PMID:28092517
Chauvin, C; Clement, C; Bruneau, M; Pommeret, D
2007-07-16
This article describes the use of Markov chains to explore the time-patterns of antimicrobial exposure in broiler poultry. The transition in antimicrobial exposure status (exposed/not exposed to an antimicrobial, with a distinction between exposures to the different antimicrobial classes) in extensive data collected in broiler chicken flocks from November 2003 onwards, was investigated. All Markov chains were first-order chains. Mortality rate, geographical location and slaughter semester were sources of heterogeneity between transition matrices. Transitions towards a 'no antimicrobial' exposure state were highly predominant, whatever the initial state. From a 'no antimicrobial' exposure state, the transition to beta-lactams was predominant among transitions to an antimicrobial exposure state. Transitions between antimicrobial classes were rare and variable. Switches between antimicrobial classes and repeats of a particular class were both observed. Application of Markov chains analysis to the database of the nation-wide antimicrobial resistance monitoring programme pointed out that transition probabilities between antimicrobial exposure states increased with the number of resistances in Escherichia coli strains.
Huang, Haiying; Du, Qiaosheng; Kang, Xibing
2013-11-01
In this paper, a class of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays is investigated. The jumping parameters are modeled as a continuous-time finite-state Markov chain. At first, the existence of equilibrium point for the addressed neural networks is studied. By utilizing the Lyapunov stability theory, stochastic analysis theory and linear matrix inequality (LMI) technique, new delay-dependent stability criteria are presented in terms of linear matrix inequalities to guarantee the neural networks to be globally exponentially stable in the mean square. Numerical simulations are carried out to illustrate the main results. © 2013 ISA. Published by ISA. All rights reserved.
Global dynamics of a stochastic neuronal oscillator
NASA Astrophysics Data System (ADS)
Yamanobe, Takanobu
2013-11-01
Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.
Global dynamics of a stochastic neuronal oscillator.
Yamanobe, Takanobu
2013-11-01
Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.
An individual-based approach to SIR epidemics in contact networks.
Youssef, Mina; Scoglio, Caterina
2011-08-21
Many approaches have recently been proposed to model the spread of epidemics on networks. For instance, the Susceptible/Infected/Recovered (SIR) compartmental model has successfully been applied to different types of diseases that spread out among humans and animals. When this model is applied on a contact network, the centrality characteristics of the network plays an important role in the spreading process. However, current approaches only consider an aggregate representation of the network structure, which can result in inaccurate analysis. In this paper, we propose a new individual-based SIR approach, which considers the whole description of the network structure. The individual-based approach is built on a continuous time Markov chain, and it is capable of evaluating the state probability for every individual in the network. Through mathematical analysis, we rigorously confirm the existence of an epidemic threshold below which an epidemic does not propagate in the network. We also show that the epidemic threshold is inversely proportional to the maximum eigenvalue of the network. Additionally, we study the role of the whole spectrum of the network, and determine the relationship between the maximum number of infected individuals and the set of eigenvalues and eigenvectors. To validate our approach, we analytically study the deviation with respect to the continuous time Markov chain model, and we show that the new approach is accurate for a large range of infection strength. Furthermore, we compare the new approach with the well-known heterogeneous mean field approach in the literature. Ultimately, we support our theoretical results through extensive numerical evaluations and Monte Carlo simulations. Published by Elsevier Ltd.
Multivariate longitudinal data analysis with mixed effects hidden Markov models.
Raffa, Jesse D; Dubin, Joel A
2015-09-01
Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. © 2015, The International Biometric Society.
Constructing 1/omegaalpha noise from reversible Markov chains.
Erland, Sveinung; Greenwood, Priscilla E
2007-09-01
This paper gives sufficient conditions for the output of 1/omegaalpha noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/omegaalpha condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/omega noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/omegaalpha noise which also has a long memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, H.
In this dissertation we study a procedure which restarts a Markov process when the process is killed by some arbitrary multiplicative functional. The regenerative nature of this revival procedure is characterized through a Markov renewal equation. An interesting duality between the revival procedure and the classical killing operation is found. Under the condition that the multiplicative functional possesses an intensity, the generators of the revival process can be written down explicitly. An intimate connection is also found between the perturbation of the sample path of a Markov process and the perturbation of a generator (in Kato's sense). The applications ofmore » the theory include the study of the processes like piecewise-deterministic Markov process, virtual waiting time process and the first entrance decomposition (taboo probability).« less
Markov and non-Markov processes in complex systems by the dynamical information entropy
NASA Astrophysics Data System (ADS)
Yulmetyev, R. M.; Gafarov, F. M.
1999-12-01
We consider the Markov and non-Markov processes in complex systems by the dynamical information Shannon entropy (DISE) method. The influence and important role of the two mutually dependent channels of entropy alternation (creation or generation of correlation) and anti-correlation (destroying or annihilation of correlation) have been discussed. The developed method has been used for the analysis of the complex systems of various natures: slow neutron scattering in liquid cesium, psychology (short-time numeral and pattern human memory and effect of stress on the dynamical taping-test), random dynamics of RR-intervals in human ECG (problem of diagnosis of various disease of the human cardio-vascular systems), chaotic dynamics of the parameters of financial markets and ecological systems.
NonMarkov Ito Processes with 1- state memory
NASA Astrophysics Data System (ADS)
McCauley, Joseph L.
2010-08-01
A Markov process, by definition, cannot depend on any previous state other than the last observed state. An Ito process implies the Fokker-Planck and Kolmogorov backward time partial differential eqns. for transition densities, which in turn imply the Chapman-Kolmogorov eqn., but without requiring the Markov condition. We present a class of Ito process superficially resembling Markov processes, but with 1-state memory. In finance, such processes would obey the efficient market hypothesis up through the level of pair correlations. These stochastic processes have been mislabeled in recent literature as 'nonlinear Markov processes'. Inspired by Doob and Feller, who pointed out that the ChapmanKolmogorov eqn. is not restricted to Markov processes, we exhibit a Gaussian Ito transition density with 1-state memory in the drift coefficient that satisfies both of Kolmogorov's partial differential eqns. and also the Chapman-Kolmogorov eqn. In addition, we show that three of the examples from McKean's seminal 1966 paper are also nonMarkov Ito processes. Last, we show that the transition density of the generalized Black-Scholes type partial differential eqn. describes a martingale, and satisfies the ChapmanKolmogorov eqn. This leads to the shortest-known proof that the Green function of the Black-Scholes eqn. with variable diffusion coefficient provides the so-called martingale measure of option pricing.
NASA Astrophysics Data System (ADS)
Gliouez, Souhir; Hachicha, Skander; Nasroui, Ikbel
We characterize the support projection of a state evolving under the action of a quantum Markov semigroup with unbounded generator represented in the generalized GKSL form and a quantum version of the classical Lévy-Austin-Ornstein theorem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minjarez-Sosa, J. Adolfo, E-mail: aminjare@gauss.mat.uson.mx; Luque-Vasquez, Fernando
This paper deals with two person zero-sum semi-Markov games with a possibly unbounded payoff function, under a discounted payoff criterion. Assuming that the distribution of the holding times H is unknown for one of the players, we combine suitable methods of statistical estimation of H with control procedures to construct an asymptotically discount optimal pair of strategies.
ERIC Educational Resources Information Center
Nicholls, Miles G.
2007-01-01
In this paper, absorbing markov chains are used to analyse the flows of higher degree by research candidates (doctoral and master) within an Australian faculty of business. The candidates are analysed according to whether they are full time or part time. The need for such analysis stemmed from what appeared to be a rather poor completion rate (as…
Multiscale modelling and analysis of collective decision making in swarm robotics.
Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey
2014-01-01
We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable.
On-Board Real-Time State and Fault Identification for Rovers
NASA Technical Reports Server (NTRS)
Washington, Richard
2000-01-01
For extended autonomous operation, rovers must identify potential faults to determine whether its execution needs to be halted or not. At the same time, rovers present particular challenges for state estimation techniques: they are subject to environmental influences that affect senior readings during normal and anomalous operation, and the sensors fluctuate rapidly both because of noise and because of the dynamics of the rover's interaction with its environment. This paper presents MAKSI, an on-board method for state estimation and fault diagnosis that is particularly appropriate for rovers. The method is based on a combination of continuous state estimation, wing Kalman filters, and discrete state estimation, wing a Markov-model representation.
On the mixing time in the Wang-Landau algorithm
NASA Astrophysics Data System (ADS)
Fadeeva, Marina; Shchur, Lev
2018-01-01
We present preliminary results of the investigation of the properties of the Markov random walk in the energy space generated by the Wang-Landau probability. We build transition matrix in the energy space (TMES) using the exact density of states for one-dimensional and two-dimensional Ising models. The spectral gap of TMES is inversely proportional to the mixing time of the Markov chain. We estimate numerically the dependence of the mixing time on the lattice size, and extract the mixing exponent.
NASA Astrophysics Data System (ADS)
Chen, Yen-Luan; Chang, Chin-Chih; Sheu, Dwan-Fang
2016-04-01
This paper proposes the generalised random and age replacement policies for a multi-state system composed of multi-state elements. The degradation of the multi-state element is assumed to follow the non-homogeneous continuous time Markov process which is a continuous time and discrete state process. A recursive approach is presented to efficiently compute the time-dependent state probability distribution of the multi-state element. The state and performance distribution of the entire multi-state system is evaluated via the combination of the stochastic process and the Lz-transform method. The concept of customer-centred reliability measure is developed based on the system performance and the customer demand. We develop the random and age replacement policies for an aging multi-state system subject to imperfect maintenance in a failure (or unacceptable) state. For each policy, the optimum replacement schedule which minimises the mean cost rate is derived analytically and discussed numerically.
MARKOV: A methodology for the solution of infinite time horizon MARKOV decision processes
Williams, B.K.
1988-01-01
Algorithms are described for determining optimal policies for finite state, finite action, infinite discrete time horizon Markov decision processes. Both value-improvement and policy-improvement techniques are used in the algorithms. Computing procedures are also described. The algorithms are appropriate for processes that are either finite or infinite, deterministic or stochastic, discounted or undiscounted, in any meaningful combination of these features. Computing procedures are described in terms of initial data processing, bound improvements, process reduction, and testing and solution. Application of the methodology is illustrated with an example involving natural resource management. Management implications of certain hypothesized relationships between mallard survival and harvest rates are addressed by applying the optimality procedures to mallard population models.
Allen, Felicity; Montgomery, Stephen; Maruszczak, Maciej; Kusel, Jeanette; Adlard, Nicholas
2015-09-01
Several disease-modifying therapies have marketing authorizations for the treatment of relapsing-remitting multiple sclerosis (RRMS). Given their appraisal by the National Institute for Health and Care Excellence, the objective was to systematically identify and critically evaluate the structures and assumptions used in health economic models of disease-modifying therapies for RRMS in the United Kingdom. Embase, MEDLINE, The Cochrane Library, and the National Institute for Health and Care Excellence Web site were searched systematically on March 3, 2014, to identify articles relating to health economic models in RRMS with a UK perspective. Data sources, techniques, and assumptions of the included models were extracted, compared, and critically evaluated. Of 386 results, 26 full texts were evaluated, leading to the inclusion of 18 articles (relating to 12 models). Early models varied considerably in method and structure, but convergence over time toward a Markov model with states based on disability score, a 1-year cycle length, and a lifetime time horizon was apparent. Recent models also allowed for disability improvement within the natural history of the condition. Considerable variety remains, with increasing numbers of comparators, the need for treatment sequencing, and different assumptions around efficacy waning and treatment withdrawal. Despite convergence over time to a similar Markov structure, there are still significant discrepancies between health economic models of RRMS in the United Kingdom. Differing methods, assumptions, and data sources render the comparison of model implementation and results problematic. The commonly used Markov structure leads to problems such as incapability to deal with heterogeneous populations and multiplying complexity with the addition of treatment sequences; these would best be solved by using alternative models such as discrete event simulations. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Yang, Xinsong; Feng, Zhiguo; Feng, Jianwen; Cao, Jinde
2017-01-01
In this paper, synchronization in an array of discrete-time neural networks (DTNNs) with time-varying delays coupled by Markov jump topologies is considered. It is assumed that the switching information can be collected by a tracker with a certain probability and transmitted from the tracker to controller precisely. Then the controller selects suitable control gains based on the received switching information to synchronize the network. This new control scheme makes full use of received information and overcomes the shortcomings of mode-dependent and mode-independent control schemes. Moreover, the proposed control method includes both the mode-dependent and mode-independent control techniques as special cases. By using linear matrix inequality (LMI) method and designing new Lyapunov functionals, delay-dependent conditions are derived to guarantee that the DTNNs with Markov jump topologies to be asymptotically synchronized. Compared with existing results on Markov systems which are obtained by separately using mode-dependent and mode-independent methods, our result has great flexibility in practical applications. Numerical simulations are finally given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aralis, Hilary; Brookmeyer, Ron
2017-01-01
Multistate models provide an important method for analyzing a wide range of life history processes including disease progression and patient recovery following medical intervention. Panel data consisting of the states occupied by an individual at a series of discrete time points are often used to estimate transition intensities of the underlying continuous-time process. When transition intensities depend on the time elapsed in the current state and back transitions between states are possible, this intermittent observation process presents difficulties in estimation due to intractability of the likelihood function. In this manuscript, we present an iterative stochastic expectation-maximization algorithm that relies on a simulation-based approximation to the likelihood function and implement this algorithm using rejection sampling. In a simulation study, we demonstrate the feasibility and performance of the proposed procedure. We then demonstrate application of the algorithm to a study of dementia, the Nun Study, consisting of intermittently-observed elderly subjects in one of four possible states corresponding to intact cognition, impaired cognition, dementia, and death. We show that the proposed stochastic expectation-maximization algorithm substantially reduces bias in model parameter estimates compared to an alternative approach used in the literature, minimal path estimation. We conclude that in estimating intermittently observed semi-Markov models, the proposed approach is a computationally feasible and accurate estimation procedure that leads to substantial improvements in back transition estimates.
Exact goodness-of-fit tests for Markov chains.
Besag, J; Mondal, D
2013-06-01
Goodness-of-fit tests are useful in assessing whether a statistical model is consistent with available data. However, the usual χ² asymptotics often fail, either because of the paucity of the data or because a nonstandard test statistic is of interest. In this article, we describe exact goodness-of-fit tests for first- and higher order Markov chains, with particular attention given to time-reversible ones. The tests are obtained by conditioning on the sufficient statistics for the transition probabilities and are implemented by simple Monte Carlo sampling or by Markov chain Monte Carlo. They apply both to single and to multiple sequences and allow a free choice of test statistic. Three examples are given. The first concerns multiple sequences of dry and wet January days for the years 1948-1983 at Snoqualmie Falls, Washington State, and suggests that standard analysis may be misleading. The second one is for a four-state DNA sequence and lends support to the original conclusion that a second-order Markov chain provides an adequate fit to the data. The last one is six-state atomistic data arising in molecular conformational dynamics simulation of solvated alanine dipeptide and points to strong evidence against a first-order reversible Markov chain at 6 picosecond time steps. © 2013, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Darnius, O.; Sitorus, S.
2018-03-01
The objective of this study was to determine the pattern of plant calendar of three types of crops; namely, palawija, rice, andbanana, based on rainfall in Deli Serdang Regency. In the first stage, we forecasted rainfall by using time series analysis, and obtained appropriate model of ARIMA (1,0,0) (1,1,1)12. Based on the forecast result, we designed a plant calendar pattern for the three types of plant. Furthermore, the probability of success in the plant types following the plant calendar pattern was calculated by using the Markov process by discretizing the continuous rainfall data into three categories; namely, Below Normal (BN), Normal (N), and Above Normal (AN) to form the probability transition matrix. Finally, the combination of rainfall forecasting models and the Markov process were used to determine the pattern of cropping calendars and the probability of success in the three crops. This research used rainfall data of Deli Serdang Regency taken from the office of BMKG (Meteorologist Climatology and Geophysics Agency), Sampali Medan, Indonesia.
Inferring the parameters of a Markov process from snapshots of the steady state
NASA Astrophysics Data System (ADS)
Dettmer, Simon L.; Berg, Johannes
2018-02-01
We seek to infer the parameters of an ergodic Markov process from samples taken independently from the steady state. Our focus is on non-equilibrium processes, where the steady state is not described by the Boltzmann measure, but is generally unknown and hard to compute, which prevents the application of established equilibrium inference methods. We propose a quantity we call propagator likelihood, which takes on the role of the likelihood in equilibrium processes. This propagator likelihood is based on fictitious transitions between those configurations of the system which occur in the samples. The propagator likelihood can be derived by minimising the relative entropy between the empirical distribution and a distribution generated by propagating the empirical distribution forward in time. Maximising the propagator likelihood leads to an efficient reconstruction of the parameters of the underlying model in different systems, both with discrete configurations and with continuous configurations. We apply the method to non-equilibrium models from statistical physics and theoretical biology, including the asymmetric simple exclusion process (ASEP), the kinetic Ising model, and replicator dynamics.
Liu, Zengkai; Liu, Yonghong; Cai, Baoping
2014-01-01
Reliability analysis of the electrical control system of a subsea blowout preventer (BOP) stack is carried out based on Markov method. For the subsea BOP electrical control system used in the current work, the 3-2-1-0 and 3-2-0 input voting schemes are available. The effects of the voting schemes on system performance are evaluated based on Markov models. In addition, the effects of failure rates of the modules and repair time on system reliability indices are also investigated. PMID:25409010
Sub-seasonal-to-seasonal Reservoir Inflow Forecast using Bayesian Hierarchical Hidden Markov Model
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S.; Arumugam, S.
2017-12-01
Sub-seasonal-to-seasonal (S2S) (15-90 days) streamflow forecasting is an emerging area of research that provides seamless information for reservoir operation from weather time scales to seasonal time scales. From an operational perspective, sub-seasonal inflow forecasts are highly valuable as these enable water managers to decide short-term releases (15-30 days), while holding water for seasonal needs (e.g., irrigation and municipal supply) and to meet end-of-the-season target storage at a desired level. We propose a Bayesian Hierarchical Hidden Markov Model (BHHMM) to develop S2S inflow forecasts for the Tennessee Valley Area (TVA) reservoir system. Here, the hidden states are predicted by relevant indices that influence the inflows at S2S time scale. The hidden Markov model also captures the both spatial and temporal hierarchy in predictors that operate at S2S time scale with model parameters being estimated as a posterior distribution using a Bayesian framework. We present our work in two steps, namely single site model and multi-site model. For proof of concept, we consider inflows to Douglas Dam, Tennessee, in the single site model. For multisite model we consider reservoirs in the upper Tennessee valley. Streamflow forecasts are issued and updated continuously every day at S2S time scale. We considered precipitation forecasts obtained from NOAA Climate Forecast System (CFSv2) GCM as predictors for developing S2S streamflow forecasts along with relevant indices for predicting hidden states. Spatial dependence of the inflow series of reservoirs are also preserved in the multi-site model. To circumvent the non-normality of the data, we consider the HMM in a Generalized Linear Model setting. Skill of the proposed approach is tested using split sample validation against a traditional multi-site canonical correlation model developed using the same set of predictors. From the posterior distribution of the inflow forecasts, we also highlight different system behavior under varied global and local scale climatic influences from the developed BHMM.
Worst error performance of continuous Kalman filters. [for deep space navigation and maneuvers
NASA Technical Reports Server (NTRS)
Nishimura, T.
1975-01-01
The worst error performance of estimation filters is investigated for continuous systems in this paper. The pathological performance study, without assuming any dynamical model such as Markov processes for perturbations, except for its bounded amplitude, will give practical and dependable criteria in establishing the navigation and maneuver strategy in deep space missions.
A queueing theory based model for business continuity in hospitals.
Miniati, R; Cecconi, G; Dori, F; Frosini, F; Iadanza, E; Biffi Gentili, G; Niccolini, F; Gusinu, R
2013-01-01
Clinical activities can be seen as results of precise and defined events' succession where every single phase is characterized by a waiting time which includes working duration and possible delay. Technology makes part of this process. For a proper business continuity management, planning the minimum number of devices according to the working load only is not enough. A risk analysis on the whole process should be carried out in order to define which interventions and extra purchase have to be made. Markov models and reliability engineering approaches can be used for evaluating the possible interventions and to protect the whole system from technology failures. The following paper reports a case study on the application of the proposed integrated model, including risk analysis approach and queuing theory model, for defining the proper number of device which are essential to guarantee medical activity and comply the business continuity management requirements in hospitals.
Spatial generalised linear mixed models based on distances.
Melo, Oscar O; Mateu, Jorge; Melo, Carlos E
2016-10-01
Risk models derived from environmental data have been widely shown to be effective in delineating geographical areas of risk because they are intuitively easy to understand. We present a new method based on distances, which allows the modelling of continuous and non-continuous random variables through distance-based spatial generalised linear mixed models. The parameters are estimated using Markov chain Monte Carlo maximum likelihood, which is a feasible and a useful technique. The proposed method depends on a detrending step built from continuous or categorical explanatory variables, or a mixture among them, by using an appropriate Euclidean distance. The method is illustrated through the analysis of the variation in the prevalence of Loa loa among a sample of village residents in Cameroon, where the explanatory variables included elevation, together with maximum normalised-difference vegetation index and the standard deviation of normalised-difference vegetation index calculated from repeated satellite scans over time. © The Author(s) 2013.
Modeling the coupled return-spread high frequency dynamics of large tick assets
NASA Astrophysics Data System (ADS)
Curato, Gianbiagio; Lillo, Fabrizio
2015-01-01
Large tick assets, i.e. assets where one tick movement is a significant fraction of the price and bid-ask spread is almost always equal to one tick, display a dynamics in which price changes and spread are strongly coupled. We present an approach based on the hidden Markov model, also known in econometrics as the Markov switching model, for the dynamics of price changes, where the latent Markov process is described by the transitions between spreads. We then use a finite Markov mixture of logit regressions on past squared price changes to describe temporal dependencies in the dynamics of price changes. The model can thus be seen as a double chain Markov model. We show that the model describes the shape of the price change distribution at different time scales, volatility clustering, and the anomalous decrease of kurtosis. We calibrate our models based on Nasdaq stocks and we show that this model reproduces remarkably well the statistical properties of real data.
Jia, Chen
2017-09-01
Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.
NASA Astrophysics Data System (ADS)
Jia, Chen
2017-09-01
Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.
Sand, Andreas; Kristiansen, Martin; Pedersen, Christian N S; Mailund, Thomas
2013-11-22
Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models.Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/.
Detecting critical state before phase transition of complex systems by hidden Markov model
NASA Astrophysics Data System (ADS)
Liu, Rui; Chen, Pei; Li, Yongjun; Chen, Luonan
Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e., before-transition state, pre-transition state, and after-transition state, which can be considered as three different Markov processes. Thus, based on this dynamical feature, we present a novel computational method, i.e., hidden Markov model (HMM), to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e., the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin, and HCV-induced dysplasia and hepatocellular carcinoma.
An adaptive multi-level simulation algorithm for stochastic biological systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.
2015-01-14
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the efficiency of our method using a number of examples.« less
Monitoring volcano activity through Hidden Markov Model
NASA Astrophysics Data System (ADS)
Cassisi, C.; Montalto, P.; Prestifilippo, M.; Aliotta, M.; Cannata, A.; Patanè, D.
2013-12-01
During 2011-2013, Mt. Etna was mainly characterized by cyclic occurrences of lava fountains, totaling to 38 episodes. During this time interval Etna volcano's states (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN), whose automatic recognition is very useful for monitoring purposes, turned out to be strongly related to the trend of RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area. Since RMS time series behavior is considered to be stochastic, we can try to model the system generating its values, assuming to be a Markov process, by using Hidden Markov models (HMMs). HMMs are a powerful tool in modeling any time-varying series. HMMs analysis seeks to recover the sequence of hidden states from the observed emissions. In our framework, observed emissions are characters generated by the SAX (Symbolic Aggregate approXimation) technique, which maps RMS time series values with discrete literal emissions. The experiments show how it is possible to guess volcano states by means of HMMs and SAX.
Weber, Juliane; Zachow, Christopher; Witthaut, Dirk
2018-03-01
Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.
NASA Astrophysics Data System (ADS)
Weber, Juliane; Zachow, Christopher; Witthaut, Dirk
2018-03-01
Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.
Analysis of Streamline Separation at Infinity Using Time-Discrete Markov Chains.
Reich, W; Scheuermann, G
2012-12-01
Existing methods for analyzing separation of streamlines are often restricted to a finite time or a local area. In our paper we introduce a new method that complements them by allowing an infinite-time-evaluation of steady planar vector fields. Our algorithm unifies combinatorial and probabilistic methods and introduces the concept of separation in time-discrete Markov-Chains. We compute particle distributions instead of the streamlines of single particles. We encode the flow into a map and then into a transition matrix for each time direction. Finally, we compare the results of our grid-independent algorithm to the popular Finite-Time-Lyapunov-Exponents and discuss the discrepancies.
Multi-category micro-milling tool wear monitoring with continuous hidden Markov models
NASA Astrophysics Data System (ADS)
Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon
2009-02-01
In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.
Many roads to synchrony: natural time scales and their algorithms.
James, Ryan G; Mahoney, John R; Ellison, Christopher J; Crutchfield, James P
2014-04-01
We consider two important time scales-the Markov and cryptic orders-that monitor how an observer synchronizes to a finitary stochastic process. We show how to compute these orders exactly and that they are most efficiently calculated from the ε-machine, a process's minimal unifilar model. Surprisingly, though the Markov order is a basic concept from stochastic process theory, it is not a probabilistic property of a process. Rather, it is a topological property and, moreover, it is not computable from any finite-state model other than the ε-machine. Via an exhaustive survey, we close by demonstrating that infinite Markov and infinite cryptic orders are a dominant feature in the space of finite-memory processes. We draw out the roles played in statistical mechanical spin systems by these two complementary length scales.
Bastian, Mikaël; Sackur, Jérôme
2013-01-01
Research from the last decade has successfully used two kinds of thought reports in order to assess whether the mind is wandering: random thought-probes and spontaneous reports. However, none of these two methods allows any assessment of the subjective state of the participant between two reports. In this paper, we present a step by step elaboration and testing of a continuous index, based on response time variability within Sustained Attention to Response Tasks (N = 106, for a total of 10 conditions). We first show that increased response time variability predicts mind wandering. We then compute a continuous index of response time variability throughout full experiments and show that the temporal position of a probe relative to the nearest local peak of the continuous index is predictive of mind wandering. This suggests that our index carries information about the subjective state of the subject even when he or she is not probed, and opens the way for on-line tracking of mind wandering. Finally we proceed a step further and infer the internal attentional states on the basis of the variability of response times. To this end we use the Hidden Markov Model framework, which allows us to estimate the durations of on-task and off-task episodes. PMID:24046753
Graph transformation method for calculating waiting times in Markov chains.
Trygubenko, Semen A; Wales, David J
2006-06-21
We describe an exact approach for calculating transition probabilities and waiting times in finite-state discrete-time Markov processes. All the states and the rules for transitions between them must be known in advance. We can then calculate averages over a given ensemble of paths for both additive and multiplicative properties in a nonstochastic and noniterative fashion. In particular, we can calculate the mean first-passage time between arbitrary groups of stationary points for discrete path sampling databases, and hence extract phenomenological rate constants. We present a number of examples to demonstrate the efficiency and robustness of this approach.
Modelling breast cancer tumour growth for a stable disease population.
Isheden, Gabriel; Humphreys, Keith
2017-01-01
Statistical models of breast cancer tumour progression have been used to further our knowledge of the natural history of breast cancer, to evaluate mammography screening in terms of mortality, to estimate overdiagnosis, and to estimate the impact of lead-time bias when comparing survival times between screen detected cancers and cancers found outside of screening programs. Multi-state Markov models have been widely used, but several research groups have proposed other modelling frameworks based on specifying an underlying biological continuous tumour growth process. These continuous models offer some advantages over multi-state models and have been used, for example, to quantify screening sensitivity in terms of mammographic density, and to quantify the effect of body size covariates on tumour growth and time to symptomatic detection. As of yet, however, the continuous tumour growth models are not sufficiently developed and require extensive computing to obtain parameter estimates. In this article, we provide a detailed description of the underlying assumptions of the continuous tumour growth model, derive new theoretical results for the model, and show how these results may help the development of this modelling framework. In illustrating the approach, we develop a model for mammography screening sensitivity, using a sample of 1901 post-menopausal women diagnosed with invasive breast cancer.
MC3: Multi-core Markov-chain Monte Carlo code
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Harrington, Joseph; Lust, Nate; Foster, AJ; Stemm, Madison; Loredo, Tom; Stevenson, Kevin; Campo, Chris; Hardin, Matt; Hardy, Ryan
2016-10-01
MC3 (Multi-core Markov-chain Monte Carlo) is a Bayesian statistics tool that can be executed from the shell prompt or interactively through the Python interpreter with single- or multiple-CPU parallel computing. It offers Markov-chain Monte Carlo (MCMC) posterior-distribution sampling for several algorithms, Levenberg-Marquardt least-squares optimization, and uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors. MC3 can share the same value among multiple parameters and fix the value of parameters to constant values, and offers Gelman-Rubin convergence testing and correlated-noise estimation with time-averaging or wavelet-based likelihood estimation methods.
Path integrals and large deviations in stochastic hybrid systems.
Bressloff, Paul C; Newby, Jay M
2014-04-01
We construct a path-integral representation of solutions to a stochastic hybrid system, consisting of one or more continuous variables evolving according to a piecewise-deterministic dynamics. The differential equations for the continuous variables are coupled to a set of discrete variables that satisfy a continuous-time Markov process, which means that the differential equations are only valid between jumps in the discrete variables. Examples of stochastic hybrid systems arise in biophysical models of stochastic ion channels, motor-driven intracellular transport, gene networks, and stochastic neural networks. We use the path-integral representation to derive a large deviation action principle for a stochastic hybrid system. Minimizing the associated action functional with respect to the set of all trajectories emanating from a metastable state (assuming that such a minimization scheme exists) then determines the most probable paths of escape. Moreover, evaluating the action functional along a most probable path generates the so-called quasipotential used in the calculation of mean first passage times. We illustrate the theory by considering the optimal paths of escape from a metastable state in a bistable neural network.
Risk assessment by dynamic representation of vulnerability, exploitation, and impact
NASA Astrophysics Data System (ADS)
Cam, Hasan
2015-05-01
Assessing and quantifying cyber risk accurately in real-time is essential to providing security and mission assurance in any system and network. This paper presents a modeling and dynamic analysis approach to assessing cyber risk of a network in real-time by representing dynamically its vulnerabilities, exploitations, and impact using integrated Bayesian network and Markov models. Given the set of vulnerabilities detected by a vulnerability scanner in a network, this paper addresses how its risk can be assessed by estimating in real-time the exploit likelihood and impact of vulnerability exploitation on the network, based on real-time observations and measurements over the network. The dynamic representation of the network in terms of its vulnerabilities, sensor measurements, and observations is constructed dynamically using the integrated Bayesian network and Markov models. The transition rates of outgoing and incoming links of states in hidden Markov models are used in determining exploit likelihood and impact of attacks, whereas emission rates help quantify the attack states of vulnerabilities. Simulation results show the quantification and evolving risk scores over time for individual and aggregated vulnerabilities of a network.
A Markovian model of evolving world input-output network
Isacchini, Giulio
2017-01-01
The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money. PMID:29065145
Parametric State Space Structuring
NASA Technical Reports Server (NTRS)
Ciardo, Gianfranco; Tilgner, Marco
1997-01-01
Structured approaches based on Kronecker operators for the description and solution of the infinitesimal generator of a continuous-time Markov chains are receiving increasing interest. However, their main advantage, a substantial reduction in the memory requirements during the numerical solution, comes at a price. Methods based on the "potential state space" allocate a probability vector that might be much larger than actually needed. Methods based on the "actual state space", instead, have an additional logarithmic overhead. We present an approach that realizes the advantages of both methods with none of their disadvantages, by partitioning the local state spaces of each submodel. We apply our results to a model of software rendezvous, and show how they reduce memory requirements while, at the same time, improving the efficiency of the computation.
Multiscale Modelling and Analysis of Collective Decision Making in Swarm Robotics
Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey
2014-01-01
We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable. PMID:25369026
Model-based Clustering of Categorical Time Series with Multinomial Logit Classification
NASA Astrophysics Data System (ADS)
Frühwirth-Schnatter, Sylvia; Pamminger, Christoph; Winter-Ebmer, Rudolf; Weber, Andrea
2010-09-01
A common problem in many areas of applied statistics is to identify groups of similar time series in a panel of time series. However, distance-based clustering methods cannot easily be extended to time series data, where an appropriate distance-measure is rather difficult to define, particularly for discrete-valued time series. Markov chain clustering, proposed by Pamminger and Frühwirth-Schnatter [6], is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This model-based clustering method is based on finite mixtures of first-order time-homogeneous Markov chain models. In order to further explain group membership we present an extension to the approach of Pamminger and Frühwirth-Schnatter [6] by formulating a probabilistic model for the latent group indicators within the Bayesian classification rule by using a multinomial logit model. The parameters are estimated for a fixed number of clusters within a Bayesian framework using an Markov chain Monte Carlo (MCMC) sampling scheme representing a (full) Gibbs-type sampler which involves only draws from standard distributions. Finally, an application to a panel of Austrian wage mobility data is presented which leads to an interesting segmentation of the Austrian labour market.
NASA Astrophysics Data System (ADS)
Sinitskiy, Anton V.; Pande, Vijay S.
2018-01-01
Markov state models (MSMs) have been widely used to analyze computer simulations of various biomolecular systems. They can capture conformational transitions much slower than an average or maximal length of a single molecular dynamics (MD) trajectory from the set of trajectories used to build the MSM. A rule of thumb claiming that the slowest implicit time scale captured by an MSM should be comparable by the order of magnitude to the aggregate duration of all MD trajectories used to build this MSM has been known in the field. However, this rule has never been formally proved. In this work, we present analytical results for the slowest time scale in several types of MSMs, supporting the above rule. We conclude that the slowest implicit time scale equals the product of the aggregate sampling and four factors that quantify: (1) how much statistics on the conformational transitions corresponding to the longest implicit time scale is available, (2) how good the sampling of the destination Markov state is, (3) the gain in statistics from using a sliding window for counting transitions between Markov states, and (4) a bias in the estimate of the implicit time scale arising from finite sampling of the conformational transitions. We demonstrate that in many practically important cases all these four factors are on the order of unity, and we analyze possible scenarios that could lead to their significant deviation from unity. Overall, we provide for the first time analytical results on the slowest time scales captured by MSMs. These results can guide further practical applications of MSMs to biomolecular dynamics and allow for higher computational efficiency of simulations.
Zero-state Markov switching count-data models: an empirical assessment.
Malyshkina, Nataliya V; Mannering, Fred L
2010-01-01
In this study, a two-state Markov switching count-data model is proposed as an alternative to zero-inflated models to account for the preponderance of zeros sometimes observed in transportation count data, such as the number of accidents occurring on a roadway segment over some period of time. For this accident-frequency case, zero-inflated models assume the existence of two states: one of the states is a zero-accident count state, which has accident probabilities that are so low that they cannot be statistically distinguished from zero, and the other state is a normal-count state, in which counts can be non-negative integers that are generated by some counting process, for example, a Poisson or negative binomial. While zero-inflated models have come under some criticism with regard to accident-frequency applications - one fact is undeniable - in many applications they provide a statistically superior fit to the data. The Markov switching approach we propose seeks to overcome some of the criticism associated with the zero-accident state of the zero-inflated model by allowing individual roadway segments to switch between zero and normal-count states over time. An important advantage of this Markov switching approach is that it allows for the direct statistical estimation of the specific roadway-segment state (i.e., zero-accident or normal-count state) whereas traditional zero-inflated models do not. To demonstrate the applicability of this approach, a two-state Markov switching negative binomial model (estimated with Bayesian inference) and standard zero-inflated negative binomial models are estimated using five-year accident frequencies on Indiana interstate highway segments. It is shown that the Markov switching model is a viable alternative and results in a superior statistical fit relative to the zero-inflated models.
Constructing 1/ωα noise from reversible Markov chains
NASA Astrophysics Data System (ADS)
Erland, Sveinung; Greenwood, Priscilla E.
2007-09-01
This paper gives sufficient conditions for the output of 1/ωα noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/ωα condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/ω noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/ωα noise which also has a long memory.
A fast exact simulation method for a class of Markov jump processes.
Li, Yao; Hu, Lili
2015-11-14
A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length τ. This paper serves as an introduction to this new SSA method. We introduce the method, demonstrate its implementation, analyze its properties, and compare its performance with three other commonly used SSA methods in four examples. Our performance tests and CPU operation statistics show certain advantages of the HLM for large scale problems.
NASA Astrophysics Data System (ADS)
Sund, Nicole; Porta, Giovanni; Bolster, Diogo; Parashar, Rishi
2017-11-01
Prediction of effective transport for mixing-driven reactive systems at larger scales, requires accurate representation of mixing at small scales, which poses a significant upscaling challenge. Depending on the problem at hand, there can be benefits to using a Lagrangian framework, while in others an Eulerian might have advantages. Here we propose and test a novel hybrid model which attempts to leverage benefits of each. Specifically, our framework provides a Lagrangian closure required for a volume-averaging procedure of the advection diffusion reaction equation. This hybrid model is a LAgrangian Transport Eulerian Reaction Spatial Markov model (LATERS Markov model), which extends previous implementations of the Lagrangian Spatial Markov model and maps concentrations to an Eulerian grid to quantify closure terms required to calculate the volume-averaged reaction terms. The advantage of this approach is that the Spatial Markov model is known to provide accurate predictions of transport, particularly at preasymptotic early times, when assumptions required by traditional volume-averaging closures are least likely to hold; likewise, the Eulerian reaction method is efficient, because it does not require calculation of distances between particles. This manuscript introduces the LATERS Markov model and demonstrates by example its ability to accurately predict bimolecular reactive transport in a simple benchmark 2-D porous medium.
A study on the real-time reliability of on-board equipment of train control system
NASA Astrophysics Data System (ADS)
Zhang, Yong; Li, Shiwei
2018-05-01
Real-time reliability evaluation is conducive to establishing a condition based maintenance system for the purpose of guaranteeing continuous train operation. According to the inherent characteristics of the on-board equipment, the connotation of reliability evaluation of on-board equipment is defined and the evaluation index of real-time reliability is provided in this paper. From the perspective of methodology and practical application, the real-time reliability of the on-board equipment is discussed in detail, and the method of evaluating the realtime reliability of on-board equipment at component level based on Hidden Markov Model (HMM) is proposed. In this method the performance degradation data is used directly to realize the accurate perception of the hidden state transition process of on-board equipment, which can achieve a better description of the real-time reliability of the equipment.
Lotka-Volterra competition models for sessile organisms.
Spencer, Matthew; Tanner, Jason E
2008-04-01
Markov models are widely used to describe the dynamics of communities of sessile organisms, because they are easily fitted to field data and provide a rich set of analytical tools. In typical ecological applications, at any point in time, each point in space is in one of a finite set of states (e.g., species, empty space). The models aim to describe the probabilities of transitions between states. In most Markov models for communities, these transition probabilities are assumed to be independent of state abundances. This assumption is often suspected to be false and is rarely justified explicitly. Here, we start with simple assumptions about the interactions among sessile organisms and derive a model in which transition probabilities depend on the abundance of destination states. This model is formulated in continuous time and is equivalent to a Lotka-Volterra competition model. We fit this model and a variety of alternatives in which transition probabilities do not depend on state abundances to a long-term coral reef data set. The Lotka-Volterra model describes the data much better than all models we consider other than a saturated model (a model with a separate parameter for each transition at each time interval, which by definition fits the data perfectly). Our approach provides a basis for further development of stochastic models of sessile communities, and many of the methods we use are relevant to other types of community. We discuss possible extensions to spatially explicit models.
Memetic Approaches for Optimizing Hidden Markov Models: A Case Study in Time Series Prediction
NASA Astrophysics Data System (ADS)
Bui, Lam Thu; Barlow, Michael
We propose a methodology for employing memetics (local search) within the framework of evolutionary algorithms to optimize parameters of hidden markov models. With this proposal, the rate and frequency of using local search are automatically changed over time either at a population or individual level. At the population level, we allow the rate of using local search to decay over time to zero (at the final generation). At the individual level, each individual is equipped with information of when it will do local search and for how long. This information evolves over time alongside the main elements of the chromosome representing the individual.
NASA Astrophysics Data System (ADS)
Esquível, Manuel L.; Fernandes, José Moniz; Guerreiro, Gracinda R.
2016-06-01
We introduce a schematic formalism for the time evolution of a random population entering some set of classes and such that each member of the population evolves among these classes according to a scheme based on a Markov chain model. We consider that the flow of incoming members is modeled by a time series and we detail the time series structure of the elements in each of the classes. We present a practical application to data from a credit portfolio of a Cape Verdian bank; after modeling the entering population in two different ways - namely as an ARIMA process and as a deterministic sigmoid type trend plus a SARMA process for the residues - we simulate the behavior of the population and compare the results. We get that the second method is more accurate in describing the behavior of the populations when compared to the observed values in a direct simulation of the Markov chain.
Xu, Jason; Minin, Vladimir N
2015-07-01
Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes.
Xu, Jason; Minin, Vladimir N.
2016-01-01
Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes. PMID:26949377
Schmandt, Nicolaus T; Galán, Roberto F
2012-09-14
Markov chains provide realistic models of numerous stochastic processes in nature. We demonstrate that in any Markov chain, the change in occupation number in state A is correlated to the change in occupation number in state B if and only if A and B are directly connected. This implies that if we are only interested in state A, fluctuations in B may be replaced with their mean if state B is not directly connected to A, which shortens computing time considerably. We show the accuracy and efficacy of our approximation theoretically and in simulations of stochastic ion-channel gating in neurons.
Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K
2018-06-01
This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.
NASA Astrophysics Data System (ADS)
Naseri Kouzehgarani, Asal
2009-12-01
Most models of aircraft trajectories are non-linear and stochastic in nature; and their internal parameters are often poorly defined. The ability to model, simulate and analyze realistic air traffic management conflict detection scenarios in a scalable, composable, multi-aircraft fashion is an extremely difficult endeavor. Accurate techniques for aircraft mode detection are critical in order to enable the precise projection of aircraft conflicts, and for the enactment of altitude separation resolution strategies. Conflict detection is an inherently probabilistic endeavor; our ability to detect conflicts in a timely and accurate manner over a fixed time horizon is traded off against the increased human workload created by false alarms---that is, situations that would not develop into an actual conflict, or would resolve naturally in the appropriate time horizon-thereby introducing a measure of probabilistic uncertainty in any decision aid fashioned to assist air traffic controllers. The interaction of the continuous dynamics of the aircraft, used for prediction purposes, with the discrete conflict detection logic gives rise to the hybrid nature of the overall system. The introduction of the probabilistic element, common to decision alerting and aiding devices, places the conflict detection and resolution problem in the domain of probabilistic hybrid phenomena. A hidden Markov model (HMM) has two stochastic components: a finite-state Markov chain and a finite set of output probability distributions. In other words an unobservable stochastic process (hidden) that can only be observed through another set of stochastic processes that generate the sequence of observations. The problem of self separation in distributed air traffic management reduces to the ability of aircraft to communicate state information to neighboring aircraft, as well as model the evolution of aircraft trajectories between communications, in the presence of probabilistic uncertain dynamics as well as partially observable and uncertain data. We introduce the Hybrid Hidden Markov Modeling (HHMM) formalism to enable the prediction of the stochastic aircraft states (and thus, potential conflicts), by combining elements of the probabilistic timed input output automaton and the partially observable Markov decision process frameworks, along with the novel addition of a Markovian scheduler to remove the non-deterministic elements arising from the enabling of several actions simultaneously. Comparisons of aircraft in level, climbing/descending and turning flight are performed, and unknown flight track data is evaluated probabilistically against the tuned model in order to assess the effectiveness of the model in detecting the switch between multiple flight modes for a given aircraft. This also allows for the generation of probabilistic distribution over the execution traces of the hybrid hidden Markov model, which then enables the prediction of the states of aircraft based on partially observable and uncertain data. Based on the composition properties of the HHMM, we study a decentralized air traffic system where aircraft are moving along streams and can perform cruise, accelerate, climb and turn maneuvers. We develop a common decentralized policy for conflict avoidance with spatially distributed agents (aircraft in the sky) and assure its safety properties via correctness proofs.
Sur la vitesse d'extinction d'une population dans un environnement aléatoire.
Bacaër, Nicolas
2017-05-01
This study focuses on the speed of extinction of a population living in a random environment that follows a continuous-time Markov chain. Each individual dies or reproduces at a rate that depends on the environment. The number of offspring during reproduction follows a given probability law that also depends on the environment. In the so-called subcritical case where the population goes for sure to extinction, there is an explicit formula for the speed of extinction. In some sense, environmental stochasticity slows down population extinction. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
ADM-CLE Approach for Detecting Slow Variables in Continuous Time Markov Chains and Dynamic Data
2015-04-01
Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom. E -mail: erban@maths.ox.ac.uk; Radek Erban would like to thank the Royal Society...more e cient than the ADM method for a large class of chemical reaction systems, because it replaces the computationally most expensive step of ADM...i.e., m = 4), given by ∅ k1 −→ X1 k2−→←− k3 X2 k4−→ ∅. (2.2) Throughout the rest of this paper, we shall refer to the chemical system (2.2) as CS-I (i.e
Structured Modeling and Analysis of Stochastic Epidemics with Immigration and Demographic Effects
Baumann, Hendrik; Sandmann, Werner
2016-01-01
Stochastic epidemics with open populations of variable population sizes are considered where due to immigration and demographic effects the epidemic does not eventually die out forever. The underlying stochastic processes are ergodic multi-dimensional continuous-time Markov chains that possess unique equilibrium probability distributions. Modeling these epidemics as level-dependent quasi-birth-and-death processes enables efficient computations of the equilibrium distributions by matrix-analytic methods. Numerical examples for specific parameter sets are provided, which demonstrates that this approach is particularly well-suited for studying the impact of varying rates for immigration, births, deaths, infection, recovery from infection, and loss of immunity. PMID:27010993
Structured Modeling and Analysis of Stochastic Epidemics with Immigration and Demographic Effects.
Baumann, Hendrik; Sandmann, Werner
2016-01-01
Stochastic epidemics with open populations of variable population sizes are considered where due to immigration and demographic effects the epidemic does not eventually die out forever. The underlying stochastic processes are ergodic multi-dimensional continuous-time Markov chains that possess unique equilibrium probability distributions. Modeling these epidemics as level-dependent quasi-birth-and-death processes enables efficient computations of the equilibrium distributions by matrix-analytic methods. Numerical examples for specific parameter sets are provided, which demonstrates that this approach is particularly well-suited for studying the impact of varying rates for immigration, births, deaths, infection, recovery from infection, and loss of immunity.
ERIC Educational Resources Information Center
Bartolucci, Francesco; Solis-Trapala, Ivonne L.
2010-01-01
We demonstrate the use of a multidimensional extension of the latent Markov model to analyse data from studies with repeated binary responses in developmental psychology. In particular, we consider an experiment based on a battery of tests which was administered to pre-school children, at three time periods, in order to measure their inhibitory…
Hidden Markov models for character recognition.
Vlontzos, J A; Kung, S Y
1992-01-01
A hierarchical system for character recognition with hidden Markov model knowledge sources which solve both the context sensitivity problem and the character instantiation problem is presented. The system achieves 97-99% accuracy using a two-level architecture and has been implemented using a systolic array, thus permitting real-time (1 ms per character) multifont and multisize printed character recognition as well as handwriting recognition.
Mulder, Willem H; Crawford, Forrest W
2015-01-07
Efforts to reconstruct phylogenetic trees and understand evolutionary processes depend fundamentally on stochastic models of speciation and mutation. The simplest continuous-time model for speciation in phylogenetic trees is the Yule process, in which new species are "born" from existing lineages at a constant rate. Recent work has illuminated some of the structural properties of Yule trees, but it remains mostly unknown how these properties affect sequence and trait patterns observed at the tips of the phylogenetic tree. Understanding the interplay between speciation and mutation under simple models of evolution is essential for deriving valid phylogenetic inference methods and gives insight into the optimal design of phylogenetic studies. In this work, we derive the probability distribution of interspecies covariance under Brownian motion and Ornstein-Uhlenbeck models of phenotypic change on a Yule tree. We compute the probability distribution of the number of mutations shared between two randomly chosen taxa in a Yule tree under discrete Markov mutation models. Our results suggest summary measures of phylogenetic information content, illuminate the correlation between site patterns in sequences or traits of related organisms, and provide heuristics for experimental design and reconstruction of phylogenetic trees. Copyright © 2014 Elsevier Ltd. All rights reserved.
Distributed memory parallel Markov random fields using graph partitioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinemann, C.; Perciano, T.; Ushizima, D.
Markov random fields (MRF) based algorithms have attracted a large amount of interest in image analysis due to their ability to exploit contextual information about data. Image data generated by experimental facilities, though, continues to grow larger and more complex, making it more difficult to analyze in a reasonable amount of time. Applying image processing algorithms to large datasets requires alternative approaches to circumvent performance problems. Aiming to provide scientists with a new tool to recover valuable information from such datasets, we developed a general purpose distributed memory parallel MRF-based image analysis framework (MPI-PMRF). MPI-PMRF overcomes performance and memory limitationsmore » by distributing data and computations across processors. The proposed approach was successfully tested with synthetic and experimental datasets. Additionally, the performance of the MPI-PMRF framework is analyzed through a detailed scalability study. We show that a performance increase is obtained while maintaining an accuracy of the segmentation results higher than 98%. The contributions of this paper are: (a) development of a distributed memory MRF framework; (b) measurement of the performance increase of the proposed approach; (c) verification of segmentation accuracy in both synthetic and experimental, real-world datasets« less
Bayesian analysis of biogeography when the number of areas is large.
Landis, Michael J; Matzke, Nicholas J; Moore, Brian R; Huelsenbeck, John P
2013-11-01
Historical biogeography is increasingly studied from an explicitly statistical perspective, using stochastic models to describe the evolution of species range as a continuous-time Markov process of dispersal between and extinction within a set of discrete geographic areas. The main constraint of these methods is the computational limit on the number of areas that can be specified. We propose a Bayesian approach for inferring biogeographic history that extends the application of biogeographic models to the analysis of more realistic problems that involve a large number of areas. Our solution is based on a "data-augmentation" approach, in which we first populate the tree with a history of biogeographic events that is consistent with the observed species ranges at the tips of the tree. We then calculate the likelihood of a given history by adopting a mechanistic interpretation of the instantaneous-rate matrix, which specifies both the exponential waiting times between biogeographic events and the relative probabilities of each biogeographic change. We develop this approach in a Bayesian framework, marginalizing over all possible biogeographic histories using Markov chain Monte Carlo (MCMC). Besides dramatically increasing the number of areas that can be accommodated in a biogeographic analysis, our method allows the parameters of a given biogeographic model to be estimated and different biogeographic models to be objectively compared. Our approach is implemented in the program, BayArea.
Hierarchical multistage MCMC follow-up of continuous gravitational wave candidates
NASA Astrophysics Data System (ADS)
Ashton, G.; Prix, R.
2018-05-01
Leveraging Markov chain Monte Carlo optimization of the F statistic, we introduce a method for the hierarchical follow-up of continuous gravitational wave candidates identified by wide-parameter space semicoherent searches. We demonstrate parameter estimation for continuous wave sources and develop a framework and tools to understand and control the effective size of the parameter space, critical to the success of the method. Monte Carlo tests of simulated signals in noise demonstrate that this method is close to the theoretical optimal performance.
Zeng, Xiaohui; Peng, Liubao; Li, Jianhe; Chen, Gannong; Tan, Chongqing; Wang, Siying; Wan, Xiaomin; Ouyang, Lihui; Zhao, Ziying
2013-01-01
Continuation maintenance treatment with pemetrexed is approved by current clinical guidelines as a category 2A recommendation after induction therapy with cisplatin and pemetrexed chemotherapy (CP strategy) for patients with advanced nonsquamous non-small-cell lung cancer (NSCLC). However, the cost-effectiveness of the treatment remains unclear. We completed a trial-based assessment, from the perspective of the Chinese health care system, of the cost-effectiveness of maintenance pemetrexed treatment after a CP strategy for patients with advanced nonsquamous NSCLC. A Markov model was developed to estimate costs and benefits. It was based on a clinical trial that compared continuation maintenance pemetrexed therapy plus best supportive care (BSC) versus placebo plus BSC after a CP strategy for advanced nonsquamous NSCLC. Sensitivity analyses were conducted to assess the stability of the model. The model base case analysis suggested that continuation maintenance pemetrexed therapy after a CP strategy would increase benefits in a 1-, 2-, 5-, or 10-year time horizon, with incremental costs of $183,589.06, $126,353.16, $124,766.68, and $124,793.12 per quality-adjusted life-year gained, respectively. The most sensitive influential variable in the cost-effectiveness analysis was the utility of the progression-free survival state, followed by proportion of patients with postdiscontinuation therapy in both arms, proportion of BSC costs for PFS versus progressed survival state, and cost of pemetrexed. Probabilistic sensitivity analysis indicated that the cost-effective probability of adding continuation maintenance pemetrexed therapy to BSC was zero. One-way and probabilistic sensitivity analyses revealed that the Markov model was robust. Continuation maintenance of pemetrexed after a CP strategy for patients with advanced nonsquamous NSCLC is not cost-effective based on a recent clinical trial. Decreasing the price or adjusting the dosage of pemetrexed may be a better option for meeting the treatment demands of Chinese patients. Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.
Towards early software reliability prediction for computer forensic tools (case study).
Abu Talib, Manar
2016-01-01
Versatility, flexibility and robustness are essential requirements for software forensic tools. Researchers and practitioners need to put more effort into assessing this type of tool. A Markov model is a robust means for analyzing and anticipating the functioning of an advanced component based system. It is used, for instance, to analyze the reliability of the state machines of real time reactive systems. This research extends the architecture-based software reliability prediction model for computer forensic tools, which is based on Markov chains and COSMIC-FFP. Basically, every part of the computer forensic tool is linked to a discrete time Markov chain. If this can be done, then a probabilistic analysis by Markov chains can be performed to analyze the reliability of the components and of the whole tool. The purposes of the proposed reliability assessment method are to evaluate the tool's reliability in the early phases of its development, to improve the reliability assessment process for large computer forensic tools over time, and to compare alternative tool designs. The reliability analysis can assist designers in choosing the most reliable topology for the components, which can maximize the reliability of the tool and meet the expected reliability level specified by the end-user. The approach of assessing component-based tool reliability in the COSMIC-FFP context is illustrated with the Forensic Toolkit Imager case study.
A fast exact simulation method for a class of Markov jump processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yao, E-mail: yaoli@math.umass.edu; Hu, Lili, E-mail: lilyhu86@gmail.com
2015-11-14
A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length τ. This paper serves as an introduction to this new SSA method. We introduce the method, demonstrate its implementation, analyze itsmore » properties, and compare its performance with three other commonly used SSA methods in four examples. Our performance tests and CPU operation statistics show certain advantages of the HLM for large scale problems.« less
Stochastic nature of series of waiting times.
Anvari, Mehrnaz; Aghamohammadi, Cina; Dashti-Naserabadi, H; Salehi, E; Behjat, E; Qorbani, M; Nezhad, M Khazaei; Zirak, M; Hadjihosseini, Ali; Peinke, Joachim; Tabar, M Reza Rahimi
2013-06-01
Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the "waiting times" series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2
Analysis of single ion channel data incorporating time-interval omission and sampling
The, Yu-Kai; Timmer, Jens
2005-01-01
Hidden Markov models are widely used to describe single channel currents from patch-clamp experiments. The inevitable anti-aliasing filter limits the time resolution of the measurements and therefore the standard hidden Markov model is not adequate anymore. The notion of time-interval omission has been introduced where brief events are not detected. The developed, exact solutions to this problem do not take into account that the measured intervals are limited by the sampling time. In this case the dead-time that specifies the minimal detectable interval length is not defined unambiguously. We show that a wrong choice of the dead-time leads to considerably biased estimates and present the appropriate equations to describe sampled data. PMID:16849220
Assessing significance in a Markov chain without mixing.
Chikina, Maria; Frieze, Alan; Pegden, Wesley
2017-03-14
We present a statistical test to detect that a presented state of a reversible Markov chain was not chosen from a stationary distribution. In particular, given a value function for the states of the Markov chain, we would like to show rigorously that the presented state is an outlier with respect to the values, by establishing a [Formula: see text] value under the null hypothesis that it was chosen from a stationary distribution of the chain. A simple heuristic used in practice is to sample ranks of states from long random trajectories on the Markov chain and compare these with the rank of the presented state; if the presented state is a [Formula: see text] outlier compared with the sampled ranks (its rank is in the bottom [Formula: see text] of sampled ranks), then this observation should correspond to a [Formula: see text] value of [Formula: see text] This significance is not rigorous, however, without good bounds on the mixing time of the Markov chain. Our test is the following: Given the presented state in the Markov chain, take a random walk from the presented state for any number of steps. We prove that observing that the presented state is an [Formula: see text]-outlier on the walk is significant at [Formula: see text] under the null hypothesis that the state was chosen from a stationary distribution. We assume nothing about the Markov chain beyond reversibility and show that significance at [Formula: see text] is best possible in general. We illustrate the use of our test with a potential application to the rigorous detection of gerrymandering in Congressional districting.
Assessing significance in a Markov chain without mixing
Chikina, Maria; Frieze, Alan; Pegden, Wesley
2017-01-01
We present a statistical test to detect that a presented state of a reversible Markov chain was not chosen from a stationary distribution. In particular, given a value function for the states of the Markov chain, we would like to show rigorously that the presented state is an outlier with respect to the values, by establishing a p value under the null hypothesis that it was chosen from a stationary distribution of the chain. A simple heuristic used in practice is to sample ranks of states from long random trajectories on the Markov chain and compare these with the rank of the presented state; if the presented state is a 0.1% outlier compared with the sampled ranks (its rank is in the bottom 0.1% of sampled ranks), then this observation should correspond to a p value of 0.001. This significance is not rigorous, however, without good bounds on the mixing time of the Markov chain. Our test is the following: Given the presented state in the Markov chain, take a random walk from the presented state for any number of steps. We prove that observing that the presented state is an ε-outlier on the walk is significant at p=2ε under the null hypothesis that the state was chosen from a stationary distribution. We assume nothing about the Markov chain beyond reversibility and show that significance at p≈ε is best possible in general. We illustrate the use of our test with a potential application to the rigorous detection of gerrymandering in Congressional districting. PMID:28246331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intravaia, F.; Behunin, R. O.; Henkel, C.
Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.
Passive synchronization for Markov jump genetic oscillator networks with time-varying delays.
Lu, Li; He, Bing; Man, Chuntao; Wang, Shun
2015-04-01
In this paper, the synchronization problem of coupled Markov jump genetic oscillator networks with time-varying delays and external disturbances is investigated. By introducing the drive-response concept, a novel mode-dependent control scheme is proposed, which guarantees that the synchronization can be achieved. By applying the Lyapunov-Krasovskii functional method and stochastic analysis, sufficient conditions are established based on passivity theory in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of our theoretical results. Copyright © 2015 Elsevier Inc. All rights reserved.
Numerical solutions for patterns statistics on Markov chains.
Nuel, Gregory
2006-01-01
We propose here a review of the methods available to compute pattern statistics on text generated by a Markov source. Theoretical, but also numerical aspects are detailed for a wide range of techniques (exact, Gaussian, large deviations, binomial and compound Poisson). The SPatt package (Statistics for Pattern, free software available at http://stat.genopole.cnrs.fr/spatt) implementing all these methods is then used to compare all these approaches in terms of computational time and reliability in the most complete pattern statistics benchmark available at the present time.
Stochastic nature of series of waiting times
NASA Astrophysics Data System (ADS)
Anvari, Mehrnaz; Aghamohammadi, Cina; Dashti-Naserabadi, H.; Salehi, E.; Behjat, E.; Qorbani, M.; Khazaei Nezhad, M.; Zirak, M.; Hadjihosseini, Ali; Peinke, Joachim; Tabar, M. Reza Rahimi
2013-06-01
Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the “waiting times” series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2
Limiting Distributions of Functionals of Markov Chains.
1984-08-01
limiting distributions; periodic * nonhomoger.,!ous Poisson processes . 19 ANS? MACY IConuui oe nonoe’ee if necorglooy and edern thty by block numbers...homogeneous Poisson processes is of interest in itself. The problem considered in this paper is of interest in the theory of partially observable...where we obtain the limiting distribution of the interevent times. Key Words: Markov Chains, Limiting Distributions, Periodic Nonhomogeneous Poisson
SfM with MRFs: discrete-continuous optimization for large-scale structure from motion.
Crandall, David J; Owens, Andrew; Snavely, Noah; Huttenlocher, Daniel P
2013-12-01
Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.
Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula
NASA Astrophysics Data System (ADS)
Sarhadi, Ali; Burn, Donald H.; Concepción Ausín, María.; Wiper, Michael P.
2016-03-01
A time-varying risk analysis is proposed for an adaptive design framework in nonstationary conditions arising from climate change. A Bayesian, dynamic conditional copula is developed for modeling the time-varying dependence structure between mixed continuous and discrete multiattributes of multidimensional hydrometeorological phenomena. Joint Bayesian inference is carried out to fit the marginals and copula in an illustrative example using an adaptive, Gibbs Markov Chain Monte Carlo (MCMC) sampler. Posterior mean estimates and credible intervals are provided for the model parameters and the Deviance Information Criterion (DIC) is used to select the model that best captures different forms of nonstationarity over time. This study also introduces a fully Bayesian, time-varying joint return period for multivariate time-dependent risk analysis in nonstationary environments. The results demonstrate that the nature and the risk of extreme-climate multidimensional processes are changed over time under the impact of climate change, and accordingly the long-term decision making strategies should be updated based on the anomalies of the nonstationary environment.
Density Control of Multi-Agent Systems with Safety Constraints: A Markov Chain Approach
NASA Astrophysics Data System (ADS)
Demirer, Nazli
The control of systems with autonomous mobile agents has been a point of interest recently, with many applications like surveillance, coverage, searching over an area with probabilistic target locations or exploring an area. In all of these applications, the main goal of the swarm is to distribute itself over an operational space to achieve mission objectives specified by the density of swarm. This research focuses on the problem of controlling the distribution of multi-agent systems considering a hierarchical control structure where the whole swarm coordination is achieved at the high-level and individual vehicle/agent control is managed at the low-level. High-level coordination algorithms uses macroscopic models that describes the collective behavior of the whole swarm and specify the agent motion commands, whose execution will lead to the desired swarm behavior. The low-level control laws execute the motion to follow these commands at the agent level. The main objective of this research is to develop high-level decision control policies and algorithms to achieve physically realizable commanding of the agents by imposing mission constraints on the distribution. We also make some connections with decentralized low-level motion control. This dissertation proposes a Markov chain based method to control the density distribution of the whole system where the implementation can be achieved in a decentralized manner with no communication between agents since establishing communication with large number of agents is highly challenging. The ultimate goal is to guide the overall density distribution of the system to a prescribed steady-state desired distribution while satisfying desired transition and safety constraints. Here, the desired distribution is determined based on the mission requirements, for example in the application of area search, the desired distribution should match closely with the probabilistic target locations. The proposed method is applicable for both systems with a single agent and systems with large number of agents due to the probabilistic nature, where the probability distribution of each agent's state evolves according to a finite-state and discrete-time Markov chain (MC). Hence, designing proper decision control policies requires numerically tractable solution methods for the synthesis of Markov chains. The synthesis problem has the form of a Linear Matrix Inequality Problem (LMI), with LMI formulation of the constraints. To this end, we propose convex necessary and sufficient conditions for safety constraints in Markov chains, which is a novel result in the Markov chain literature. In addition to LMI-based, offline, Markov matrix synthesis method, we also propose a QP-based, online, method to compute a time-varying Markov matrix based on the real-time density feedback. Both problems are convex optimization problems that can be solved in a reliable and tractable way, utilizing existing tools in the literature. A Low Earth Orbit (LEO) swarm simulations are presented to validate the effectiveness of the proposed algorithms. Another problem tackled as a part of this research is the generalization of the density control problem to autonomous mobile agents with two control modes: ON and OFF. Here, each mode consists of a (possibly overlapping) finite set of actions, that is, there exist a set of actions for the ON mode and another set for the OFF mode. We give formulation for a new Markov chain synthesis problem, with additional measurements for the state transitions, where a policy is designed to ensure desired safety and convergence properties for the underlying Markov chain.
Effective pore-scale dispersion upscaling with a correlated continuous time random walk approach
NASA Astrophysics Data System (ADS)
Le Borgne, T.; Bolster, D.; Dentz, M.; de Anna, P.; Tartakovsky, A.
2011-12-01
We investigate the upscaling of dispersion from a pore-scale analysis of Lagrangian velocities. A key challenge in the upscaling procedure is to relate the temporal evolution of spreading to the pore-scale velocity field properties. We test the hypothesis that one can represent Lagrangian velocities at the pore scale as a Markov process in space. The resulting effective transport model is a continuous time random walk (CTRW) characterized by a correlated random time increment, here denoted as correlated CTRW. We consider a simplified sinusoidal wavy channel model as well as a more complex heterogeneous pore space. For both systems, the predictions of the correlated CTRW model, with parameters defined from the velocity field properties (both distribution and correlation), are found to be in good agreement with results from direct pore-scale simulations over preasymptotic and asymptotic times. In this framework, the nontrivial dependence of dispersion on the pore boundary fluctuations is shown to be related to the competition between distribution and correlation effects. In particular, explicit inclusion of spatial velocity correlation in the effective CTRW model is found to be important to represent incomplete mixing in the pore throats.
Reliability Evaluation for Clustered WSNs under Malware Propagation
Shen, Shigen; Huang, Longjun; Liu, Jianhua; Champion, Adam C.; Yu, Shui; Cao, Qiying
2016-01-01
We consider a clustered wireless sensor network (WSN) under epidemic-malware propagation conditions and solve the problem of how to evaluate its reliability so as to ensure efficient, continuous, and dependable transmission of sensed data from sensor nodes to the sink. Facing the contradiction between malware intention and continuous-time Markov chain (CTMC) randomness, we introduce a strategic game that can predict malware infection in order to model a successful infection as a CTMC state transition. Next, we devise a novel measure to compute the Mean Time to Failure (MTTF) of a sensor node, which represents the reliability of a sensor node continuously performing tasks such as sensing, transmitting, and fusing data. Since clustered WSNs can be regarded as parallel-serial-parallel systems, the reliability of a clustered WSN can be evaluated via classical reliability theory. Numerical results show the influence of parameters such as the true positive rate and the false positive rate on a sensor node’s MTTF. Furthermore, we validate the method of reliability evaluation for a clustered WSN according to the number of sensor nodes in a cluster, the number of clusters in a route, and the number of routes in the WSN. PMID:27294934
Reliability Evaluation for Clustered WSNs under Malware Propagation.
Shen, Shigen; Huang, Longjun; Liu, Jianhua; Champion, Adam C; Yu, Shui; Cao, Qiying
2016-06-10
We consider a clustered wireless sensor network (WSN) under epidemic-malware propagation conditions and solve the problem of how to evaluate its reliability so as to ensure efficient, continuous, and dependable transmission of sensed data from sensor nodes to the sink. Facing the contradiction between malware intention and continuous-time Markov chain (CTMC) randomness, we introduce a strategic game that can predict malware infection in order to model a successful infection as a CTMC state transition. Next, we devise a novel measure to compute the Mean Time to Failure (MTTF) of a sensor node, which represents the reliability of a sensor node continuously performing tasks such as sensing, transmitting, and fusing data. Since clustered WSNs can be regarded as parallel-serial-parallel systems, the reliability of a clustered WSN can be evaluated via classical reliability theory. Numerical results show the influence of parameters such as the true positive rate and the false positive rate on a sensor node's MTTF. Furthermore, we validate the method of reliability evaluation for a clustered WSN according to the number of sensor nodes in a cluster, the number of clusters in a route, and the number of routes in the WSN.
Markov Chain Ontology Analysis (MCOA)
2012-01-01
Background Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. Results In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. Conclusion A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches. PMID:22300537
Markov Chain Ontology Analysis (MCOA).
Frost, H Robert; McCray, Alexa T
2012-02-03
Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches.
Clustered Numerical Data Analysis Using Markov Lie Monoid Based Networks
NASA Astrophysics Data System (ADS)
Johnson, Joseph
2016-03-01
We have designed and build an optimal numerical standardization algorithm that links numerical values with their associated units, error level, and defining metadata thus supporting automated data exchange and new levels of artificial intelligence (AI). The software manages all dimensional and error analysis and computational tracing. Tables of entities verses properties of these generalized numbers (called ``metanumbers'') support a transformation of each table into a network among the entities and another network among their properties where the network connection matrix is based upon a proximity metric between the two items. We previously proved that every network is isomorphic to the Lie algebra that generates continuous Markov transformations. We have also shown that the eigenvectors of these Markov matrices provide an agnostic clustering of the underlying patterns. We will present this methodology and show how our new work on conversion of scientific numerical data through this process can reveal underlying information clusters ordered by the eigenvalues. We will also show how the linking of clusters from different tables can be used to form a ``supernet'' of all numerical information supporting new initiatives in AI.
A method of hidden Markov model optimization for use with geophysical data sets
NASA Technical Reports Server (NTRS)
Granat, R. A.
2003-01-01
Geophysics research has been faced with a growing need for automated techniques with which to process large quantities of data. A successful tool must meet a number of requirements: it should be consistent, require minimal parameter tuning, and produce scientifically meaningful results in reasonable time. We introduce a hidden Markov model (HMM)-based method for analysis of geophysical data sets that attempts to address these issues.
Intelligent classifier for dynamic fault patterns based on hidden Markov model
NASA Astrophysics Data System (ADS)
Xu, Bo; Feng, Yuguang; Yu, Jinsong
2006-11-01
It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.
Modeling Land Use/Cover Changes in an African Rural Landscape
NASA Astrophysics Data System (ADS)
Kamusoko, C.; Aniya, M.
2006-12-01
Land use/cover changes are analyzed in the Bindura district of Zimbabwe, Africa through the integration of data from a time series of Landsat imagery (1973, 1989 and 2000), a household survey and GIS coverages. We employed a hybrid supervised/unsupervised classification approach to generate land use/cover maps from which landscape metrics were calculated. Population and other household variables were derived from a sample of surveyed villages, while road accessibility and slope were obtained from topographic maps and digital elevation model, respectively. Markov-cellular automata modeling approach that incorporates Markov chain analysis, cellular automata and multi-criteria evaluation (MCE) / multi-objective allocation (MOLA) procedures was used to simulate land use/cover changes. A GIS-based MCE technique computed transition potential maps, whereas transition areas were derived from the 1973-2000 land use/cover maps using the Markov chain analysis. A 5 x 5 cellular automata filter was used to develop a spatially explicit contiguity- weighting factor to change the cells based on its previous state and those of its neighbors, while MOLA resolved land use/cover class allocation conflicts. The kappa index of agreement was used for model validation. Observed trends in land use/cover changes indicate that deforestation and the encroachment of cultivation in woodland areas is a continuous trend in the study area. This suggests that economic activities driven by agricultural expansion were the main causes of landscape fragmentation, leading to landscape degradation. Rigorous calibration of transition potential maps done by a MCE algorithm and Markovian transition probabilities produced accurate inputs for the simulation of land use/cover changes. Overall standard kappa index of agreement ranged from 0.73 to 0.83, which is sufficient for simulating land use/cover changes in the study area. Land use/cover simulations under the 1989 and 2000 scenario indicated further landscape degradation in the rural areas of the Bindura district. Keywords: Zimbabwe, land use/cover changes, landscape fragmentation, GIS, land use/cover change modeling, multi-criteria evaluation/multi-objective allocation procedures, Markov-cellular automata
NASA Astrophysics Data System (ADS)
Gudder, Stanley
2008-07-01
A new approach to quantum Markov chains is presented. We first define a transition operation matrix (TOM) as a matrix whose entries are completely positive maps whose column sums form a quantum operation. A quantum Markov chain is defined to be a pair (G,E) where G is a directed graph and E =[Eij] is a TOM whose entry Eij labels the edge from vertex j to vertex i. We think of the vertices of G as sites that a quantum system can occupy and Eij is the transition operation from site j to site i in one time step. The discrete dynamics of the system is obtained by iterating the TOM E. We next consider a special type of TOM called a transition effect matrix. In this case, there are two types of dynamics, a state dynamics and an operator dynamics. Although these two types are not identical, they are statistically equivalent. We next give examples that illustrate various properties of quantum Markov chains. We conclude by showing that our formalism generalizes the usual framework for quantum random walks.
Huang, Jie; Zeng, Xiaoping; Jian, Xin; Tan, Xiaoheng; Zhang, Qi
2017-01-01
The spectrum allocation for cognitive radio sensor networks (CRSNs) has received considerable research attention under the assumption that the spectrum environment is static. However, in practice, the spectrum environment varies over time due to primary user/secondary user (PU/SU) activity and mobility, resulting in time-varied spectrum resources. This paper studies resource allocation for chunk-based multi-carrier CRSNs with time-varied spectrum resources. We present a novel opportunistic capacity model through a continuous time semi-Markov chain (CTSMC) to describe the time-varied spectrum resources of chunks and, based on this, a joint power and chunk allocation model by considering the opportunistically available capacity of chunks is proposed. To reduce the computational complexity, we split this model into two sub-problems and solve them via the Lagrangian dual method. Simulation results illustrate that the proposed opportunistic capacity-based resource allocation algorithm can achieve better performance compared with traditional algorithms when the spectrum environment is time-varied. PMID:28106803
NASA Astrophysics Data System (ADS)
Yulmetyev, Renat; Demin, Sergey; Emelyanova, Natalya; Gafarov, Fail; Hänggi, Peter
2003-03-01
In this work we develop a new method of diagnosing the nervous system diseases and a new approach in studying human gait dynamics with the help of the theory of discrete non-Markov random processes (Phys. Rev. E 62 (5) (2000) 6178, Phys. Rev. E 64 (2001) 066132, Phys. Rev. E 65 (2002) 046107, Physica A 303 (2002) 427). The stratification of the phase clouds and the statistical non-Markov effects in the time series of the dynamics of human gait are considered. We carried out the comparative analysis of the data of four age groups of healthy people: children (from 3 to 10 year olds), teenagers (from 11 to 14 year olds), young people (from 21 up to 29 year olds), elderly persons (from 71 to 77 year olds) and Parkinson patients. The full data set are analyzed with the help of the phase portraits of the four dynamic variables, the power spectra of the initial time correlation function and the memory functions of junior orders, the three first points in the spectra of the statistical non-Markov parameter. The received results allow to define the predisposition of the probationers to deflections in the central nervous system caused by Parkinson's disease. We have found out distinct differences between the five submitted groups. On this basis we offer a new method of diagnostics and forecasting Parkinson's disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malikopoulos, Andreas; Djouadi, Seddik M; Kuruganti, Teja
We consider the optimal stochastic control problem for home energy systems with solar and energy storage devices when the demand is realized from the grid. The demand is subject to Brownian motions with both drift and variance parameters modulated by a continuous-time Markov chain that represents the regime of electricity price. We model the systems as pure stochastic differential equation models, and then we follow the completing square technique to solve the stochastic home energy management problem. The effectiveness of the efficiency of the proposed approach is validated through a simulation example. For practical situations with constraints consistent to thosemore » studied here, our results imply the proposed framework could reduce the electricity cost from short-term purchase in peak hour market.« less
Deterministic and stochastic CTMC models from Zika disease transmission
NASA Astrophysics Data System (ADS)
Zevika, Mona; Soewono, Edy
2018-03-01
Zika infection is one of the most important mosquito-borne diseases in the world. Zika virus (ZIKV) is transmitted by many Aedes-type mosquitoes including Aedes aegypti. Pregnant women with the Zika virus are at risk of having a fetus or infant with a congenital defect and suffering from microcephaly. Here, we formulate a Zika disease transmission model using two approaches, a deterministic model and a continuous-time Markov chain stochastic model. The basic reproduction ratio is constructed from a deterministic model. Meanwhile, the CTMC stochastic model yields an estimate of the probability of extinction and outbreaks of Zika disease. Dynamical simulations and analysis of the disease transmission are shown for the deterministic and stochastic models.
Supercomputer optimizations for stochastic optimal control applications
NASA Technical Reports Server (NTRS)
Chung, Siu-Leung; Hanson, Floyd B.; Xu, Huihuang
1991-01-01
Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations.
Non-Markovianity in atom-surface dispersion forces
Intravaia, F.; Behunin, R. O.; Henkel, C.; ...
2016-10-18
Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.
Markov Chain Analysis of Musical Dice Games
NASA Astrophysics Data System (ADS)
Volchenkov, D.; Dawin, J. R.
2012-07-01
A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.
NASA Astrophysics Data System (ADS)
Volchenkov, Dima; Dawin, Jean René
A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.
Non-Markovianity in atom-surface dispersion forces
NASA Astrophysics Data System (ADS)
Intravaia, F.; Behunin, R. O.; Henkel, C.; Busch, K.; Dalvit, D. A. R.
2016-10-01
We discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. In particular, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. Our findings highlight the importance of non-Markovian effects in dispersion interactions.
An 'adding' algorithm for the Markov chain formalism for radiation transfer
NASA Technical Reports Server (NTRS)
Esposito, L. W.
1979-01-01
An adding algorithm is presented, that extends the Markov chain method and considers a preceding calculation as a single state of a new Markov chain. This method takes advantage of the description of the radiation transport as a stochastic process. Successive application of this procedure makes calculation possible for any optical depth without increasing the size of the linear system used. It is determined that the time required for the algorithm is comparable to that for a doubling calculation for homogeneous atmospheres. For an inhomogeneous atmosphere the new method is considerably faster than the standard adding routine. It is concluded that the algorithm is efficient, accurate, and suitable for smaller computers in calculating the diffuse intensity scattered by an inhomogeneous planetary atmosphere.
Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems
NASA Astrophysics Data System (ADS)
Antown, Fadi; Dragičević, Davor; Froyland, Gary
2018-03-01
The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.
Estimation in a semi-Markov transformation model
Dabrowska, Dorota M.
2012-01-01
Multi-state models provide a common tool for analysis of longitudinal failure time data. In biomedical applications, models of this kind are often used to describe evolution of a disease and assume that patient may move among a finite number of states representing different phases in the disease progression. Several authors developed extensions of the proportional hazard model for analysis of multi-state models in the presence of covariates. In this paper, we consider a general class of censored semi-Markov and modulated renewal processes and propose the use of transformation models for their analysis. Special cases include modulated renewal processes with interarrival times specified using transformation models, and semi-Markov processes with with one-step transition probabilities defined using copula-transformation models. We discuss estimation of finite and infinite dimensional parameters of the model, and develop an extension of the Gaussian multiplier method for setting confidence bands for transition probabilities. A transplant outcome data set from the Center for International Blood and Marrow Transplant Research is used for illustrative purposes. PMID:22740583
Large deviations and mixing for dissipative PDEs with unbounded random kicks
NASA Astrophysics Data System (ADS)
Jakšić, V.; Nersesyan, V.; Pillet, C.-A.; Shirikyan, A.
2018-02-01
We study the problem of exponential mixing and large deviations for discrete-time Markov processes associated with a class of random dynamical systems. Under some dissipativity and regularisation hypotheses for the underlying deterministic dynamics and a non-degeneracy condition for the driving random force, we discuss the existence and uniqueness of a stationary measure and its exponential stability in the Kantorovich-Wasserstein metric. We next turn to the large deviations principle (LDP) and establish its validity for the occupation measures of the Markov processes in question. The proof is based on Kifer’s criterion for non-compact spaces, a result on large-time asymptotics for generalised Markov semigroup, and a coupling argument. These tools combined together constitute a new approach to LDP for infinite-dimensional processes without strong Feller property in a non-compact space. The results obtained can be applied to the two-dimensional Navier-Stokes system in a bounded domain and to the complex Ginzburg-Landau equation.
Bozkaya, A Gonca; Balcik, Filiz Bektas; Goksel, Cigdem; Esbah, Hayriye
2015-03-01
Human activities in many parts of the world have greatly affected natural areas. Therefore, monitoring and forecasting of land-cover changes are important components for sustainable utilization, conservation, and development of these areas. This research has been conducted on Igneada, a legally protected area on the northwest coast of Turkey, which is famous for its unique, mangrove forests. The main focus of this study was to apply a land use and cover model that could quantitatively and graphically present the changes and its impacts on Igneada landscapes in the future. In this study, a Markov chain-based, stochastic Markov model and cellular automata Markov model were used. These models were calibrated using a time series of developed areas derived from Landsat Thematic Mapper (TM) imagery between 1990 and 2010 that also projected future growth to 2030. The results showed that CA Markov yielded reliable information better than St. Markov model. The findings displayed constant but overall slight increase of settlement and forest cover, and slight decrease of agricultural lands. However, even the slightest unsustainable change can put a significant pressure on the sensitive ecosystems of Igneada. Therefore, the management of the protected area should not only focus on the landscape composition but also pay attention to landscape configuration.
Markov switching of the electricity supply curve and power prices dynamics
NASA Astrophysics Data System (ADS)
Mari, Carlo; Cananà, Lucianna
2012-02-01
Regime-switching models seem to well capture the main features of power prices behavior in deregulated markets. In a recent paper, we have proposed an equilibrium methodology to derive electricity prices dynamics from the interplay between supply and demand in a stochastic environment. In particular, assuming that the supply function is described by a power law where the exponent is a two-state strictly positive Markov process, we derived a regime switching dynamics of power prices in which regime switches are induced by transitions between Markov states. In this paper, we provide a dynamical model to describe the random behavior of power prices where the only non-Brownian component of the motion is endogenously introduced by Markov transitions in the exponent of the electricity supply curve. In this context, the stochastic process driving the switching mechanism becomes observable, and we will show that the non-Brownian component of the dynamics induced by transitions from Markov states is responsible for jumps and spikes of very high magnitude. The empirical analysis performed on three Australian markets confirms that the proposed approach seems quite flexible and capable of incorporating the main features of power prices time-series, thus reproducing the first four moments of log-returns empirical distributions in a satisfactory way.
On the use of hidden Markov models for gaze pattern modeling
NASA Astrophysics Data System (ADS)
Mannaru, Pujitha; Balasingam, Balakumar; Pattipati, Krishna; Sibley, Ciara; Coyne, Joseph
2016-05-01
Some of the conventional metrics derived from gaze patterns (on computer screens) to study visual attention, engagement and fatigue are saccade counts, nearest neighbor index (NNI) and duration of dwells/fixations. Each of these metrics has drawbacks in modeling the behavior of gaze patterns; one such drawback comes from the fact that some portions on the screen are not as important as some other portions on the screen. This is addressed by computing the eye gaze metrics corresponding to important areas of interest (AOI) on the screen. There are some challenges in developing accurate AOI based metrics: firstly, the definition of AOI is always fuzzy; secondly, it is possible that the AOI may change adaptively over time. Hence, there is a need to introduce eye-gaze metrics that are aware of the AOI in the field of view; at the same time, the new metrics should be able to automatically select the AOI based on the nature of the gazes. In this paper, we propose a novel way of computing NNI based on continuous hidden Markov models (HMM) that model the gazes as 2D Gaussian observations (x-y coordinates of the gaze) with the mean at the center of the AOI and covariance that is related to the concentration of gazes. The proposed modeling allows us to accurately compute the NNI metric in the presence of multiple, undefined AOI on the screen in the presence of intermittent casual gazing that is modeled as random gazes on the screen.
A Real-Time Cardiac Arrhythmia Classification System with Wearable Sensor Networks
Hu, Sheng; Wei, Hongxing; Chen, Youdong; Tan, Jindong
2012-01-01
Long term continuous monitoring of electrocardiogram (ECG) in a free living environment provides valuable information for prevention on the heart attack and other high risk diseases. This paper presents the design of a real-time wearable ECG monitoring system with associated cardiac arrhythmia classification algorithms. One of the striking advantages is that ECG analog front-end and on-node digital processing are designed to remove most of the noise and bias. In addition, the wearable sensor node is able to monitor the patient's ECG and motion signal in an unobstructive way. To realize the real-time medical analysis, the ECG is digitalized and transmitted to a smart phone via Bluetooth. On the smart phone, the ECG waveform is visualized and a novel layered hidden Markov model is seamlessly integrated to classify multiple cardiac arrhythmias in real time. Experimental results demonstrate that the clean and reliable ECG waveform can be captured in multiple stressed conditions and the real-time classification on cardiac arrhythmia is competent to other workbenches. PMID:23112746
Optimal regulation in systems with stochastic time sampling
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Lee, P. S.
1980-01-01
An optimal control theory that accounts for stochastic variable time sampling in a distributed microprocessor based flight control system is presented. The theory is developed by using a linear process model for the airplane dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved for the control law that minimizes the expected value of a quadratic cost function. The optimal cost obtained with a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained with a known and uniform information update interval.
Mori-Zwanzig theory for dissipative forces in coarse-grained dynamics in the Markov limit
NASA Astrophysics Data System (ADS)
Izvekov, Sergei
2017-01-01
We derive alternative Markov approximations for the projected (stochastic) force and memory function in the coarse-grained (CG) generalized Langevin equation, which describes the time evolution of the center-of-mass coordinates of clusters of particles in the microscopic ensemble. This is done with the aid of the Mori-Zwanzig projection operator method based on the recently introduced projection operator [S. Izvekov, J. Chem. Phys. 138, 134106 (2013), 10.1063/1.4795091]. The derivation exploits the "generalized additive fluctuating force" representation to which the projected force reduces in the adopted projection operator formalism. For the projected force, we present a first-order time expansion which correctly extends the static fluctuating force ansatz with the terms necessary to maintain the required orthogonality of the projected dynamics in the Markov limit to the space of CG phase variables. The approximant of the memory function correctly accounts for the momentum dependence in the lowest (second) order and indicates that such a dependence may be important in the CG dynamics approaching the Markov limit. In the case of CG dynamics with a weak dependence of the memory effects on the particle momenta, the expression for the memory function presented in this work is applicable to non-Markov systems. The approximations are formulated in a propagator-free form allowing their efficient evaluation from the microscopic data sampled by standard molecular dynamics simulations. A numerical application is presented for a molecular liquid (nitromethane). With our formalism we do not observe the "plateau-value problem" if the friction tensors for dissipative particle dynamics (DPD) are computed using the Green-Kubo relation. Our formalism provides a consistent bottom-up route for hierarchical parametrization of DPD models from atomistic simulations.
Translation from UML to Markov Model: A Performance Modeling Framework
NASA Astrophysics Data System (ADS)
Khan, Razib Hayat; Heegaard, Poul E.
Performance engineering focuses on the quantitative investigation of the behavior of a system during the early phase of the system development life cycle. Bearing this on mind, we delineate a performance modeling framework of the application for communication system that proposes a translation process from high level UML notation to Continuous Time Markov Chain model (CTMC) and solves the model for relevant performance metrics. The framework utilizes UML collaborations, activity diagrams and deployment diagrams to be used for generating performance model for a communication system. The system dynamics will be captured by UML collaboration and activity diagram as reusable specification building blocks, while deployment diagram highlights the components of the system. The collaboration and activity show how reusable building blocks in the form of collaboration can compose together the service components through input and output pin by highlighting the behavior of the components and later a mapping between collaboration and system component identified by deployment diagram will be delineated. Moreover the UML models are annotated to associate performance related quality of service (QoS) information which is necessary for solving the performance model for relevant performance metrics through our proposed framework. The applicability of our proposed performance modeling framework in performance evaluation is delineated in the context of modeling a communication system.
DIM SUM: demography and individual migration simulated using a Markov chain.
Brown, Jeremy M; Savidge, Kevin; McTavish, Emily Jane B
2011-03-01
An increasing number of studies seek to infer demographic history, often jointly with genetic relationships. Despite numerous analytical methods for such data, few simulations have investigated the methods' power and robustness, especially when underlying assumptions have been violated. DIM SUM (Demography and Individual Migration Simulated Using a Markov chain) is a stand-alone Java program for the simulation of population demography and individual migration while recording ancestor-descendant relationships. It does not employ coalescent assumptions or discrete population boundaries. It is extremely flexible, allowing the user to specify border positions, reactions of organisms to borders, local and global carrying capacities, individual dispersal kernels, rates of reproduction and strategies for sampling individuals. Spatial variables may be specified using image files (e.g., as exported from gis software) and may vary through time. In combination with software for genetic marker simulation, DIM SUM will be useful for testing phylogeographic (e.g., nested clade phylogeographic analysis, coalescent-based tests and continuous-landscape frameworks) and landscape-genetic methods, specifically regarding violations of coalescent assumptions. It can also be used to explore the qualitative features of proposed demographic scenarios (e.g. regarding biological invasions) and as a pedagogical tool. DIM SUM (with user's manual) can be downloaded from http://code.google.com/p/bio-dimsum. © 2010 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Gac, J. M.; Żebrowski, J. J.
A chaotic transition occurs when a continuous change of one of the parameters of the system causes a discontinuous change in the properties of the chaotic attractor of the system. Such phenomena are present in many dynamical systems, in which a chaotic behavior occurs. The best known of these transitions are: the period-doubling bifurcation cascade, intermittency and crises. The effect of dichotomous Markov noise (DMN) on the properties of systems with chaotic transitions is discussed. DMN is a very simple two-valued stochastic process, with constant transition rates between the two states. In spite of its simplicity, this kind of noise is a very powerful tool to describe various phenomena present in many physical, chemical or biological systems. Many interesting phenomena induced by DMN are known. However, there is no research on the effect of this kind of noise on intermittency or crises. We present the change of the mean laminar phase length and of laminar phase length distribution caused by DMN modulating the parameters of a system with intermittency and the modification of the mean life time on the pre-crisis attractor in the case of a boundary crisis. The results obtained analytically are compared with numerical simulations for several simple dynamical systems.
Bayesian posterior distributions without Markov chains.
Cole, Stephen R; Chu, Haitao; Greenland, Sander; Hamra, Ghassan; Richardson, David B
2012-03-01
Bayesian posterior parameter distributions are often simulated using Markov chain Monte Carlo (MCMC) methods. However, MCMC methods are not always necessary and do not help the uninitiated understand Bayesian inference. As a bridge to understanding Bayesian inference, the authors illustrate a transparent rejection sampling method. In example 1, they illustrate rejection sampling using 36 cases and 198 controls from a case-control study (1976-1983) assessing the relation between residential exposure to magnetic fields and the development of childhood cancer. Results from rejection sampling (odds ratio (OR) = 1.69, 95% posterior interval (PI): 0.57, 5.00) were similar to MCMC results (OR = 1.69, 95% PI: 0.58, 4.95) and approximations from data-augmentation priors (OR = 1.74, 95% PI: 0.60, 5.06). In example 2, the authors apply rejection sampling to a cohort study of 315 human immunodeficiency virus seroconverters (1984-1998) to assess the relation between viral load after infection and 5-year incidence of acquired immunodeficiency syndrome, adjusting for (continuous) age at seroconversion and race. In this more complex example, rejection sampling required a notably longer run time than MCMC sampling but remained feasible and again yielded similar results. The transparency of the proposed approach comes at a price of being less broadly applicable than MCMC.
Distributions-per-level: a means of testing level detectors and models of patch-clamp data.
Schröder, I; Huth, T; Suitchmezian, V; Jarosik, J; Schnell, S; Hansen, U P
2004-01-01
Level or jump detectors generate the reconstructed time series from a noisy record of patch-clamp current. The reconstructed time series is used to create dwell-time histograms for the kinetic analysis of the Markov model of the investigated ion channel. It is shown here that some additional lines in the software of such a detector can provide a powerful new means of patch-clamp analysis. For each current level that can be recognized by the detector, an array is declared. The new software assigns every data point of the original time series to the array that belongs to the actual state of the detector. From the data sets in these arrays distributions-per-level are generated. Simulated and experimental time series analyzed by Hinkley detectors are used to demonstrate the benefits of these distributions-per-level. First, they can serve as a test of the reliability of jump and level detectors. Second, they can reveal beta distributions as resulting from fast gating that would usually be hidden in the overall amplitude histogram. Probably the most valuable feature is that the malfunctions of the Hinkley detectors turn out to depend on the Markov model of the ion channel. Thus, the errors revealed by the distributions-per-level can be used to distinguish between different putative Markov models of the measured time series.
Quantifying Differential Privacy under Temporal Correlations.
Cao, Yang; Yoshikawa, Masatoshi; Xiao, Yonghui; Xiong, Li
2017-04-01
Differential Privacy (DP) has received increasing attention as a rigorous privacy framework. Many existing studies employ traditional DP mechanisms (e.g., the Laplace mechanism) as primitives, which assume that the data are independent, or that adversaries do not have knowledge of the data correlations. However, continuous generated data in the real world tend to be temporally correlated, and such correlations can be acquired by adversaries. In this paper, we investigate the potential privacy loss of a traditional DP mechanism under temporal correlations in the context of continuous data release. First, we model the temporal correlations using Markov model and analyze the privacy leakage of a DP mechanism when adversaries have knowledge of such temporal correlations. Our analysis reveals that the privacy loss of a DP mechanism may accumulate and increase over time . We call it temporal privacy leakage . Second, to measure such privacy loss, we design an efficient algorithm for calculating it in polynomial time. Although the temporal privacy leakage may increase over time, we also show that its supremum may exist in some cases. Third, to bound the privacy loss, we propose mechanisms that convert any existing DP mechanism into one against temporal privacy leakage. Experiments with synthetic data confirm that our approach is efficient and effective.
NASA Astrophysics Data System (ADS)
Khanbaghi, Maryam
Increasing closure of white water circuits is making mill productivity and quality of paper produced increasingly affected by the occurrence of paper breaks. In this thesis the main objective is the development of white water and broke recirculation policies. The thesis consists of three main parts, respectively corresponding to the synthesis of a statistical model of paper breaks in a paper mill, the basic mathematical setup for the formulation of white water and broke recirculation policies in the mill as a jump linear quadratic regulation problem, and finally the tuning of the control law based on first passage-time theory, and its extension to the case of control sensitive paper break rates. More specifically, in the first part a statistical model of paper machine breaks is developed. We start from the hypothesis that the breaks process is a Markov chain with three states: the first state is the operational one, while the two others are associated with the general types of paper-breaks that can take place in the mill (wet breaks and dry breaks). The Markovian hypothesis is empirically validated. We also establish how paper-break rates are correlated with machine speed and broke recirculation ratio. Subsequently, we show how the obtained Markov chain model of paper-breaks can be used to formulate a machine operating speed parameter optimization problem. In the second part, upon recognizing that paper breaks can be modelled as a Markov chain type of process which, when interacting with the continuous mill dynamics, yields a jump Markov model, jump linear theory is proposed as a means of constructing white water and broke recirculation strategies which minimize process variability. Reduced process variability comes at the expense of relatively large swings in white water and broke tanks level. Since the linear design does not specifically account for constraints on the state-space, under the resulting law, damaging events of tank overflow or emptiness can occur. A heuristic simulation-based approach is proposed to choose the performance measure design parameters to keep the mean time between incidents of fluid in broke and white water tanks either overflowing, or reaching dangerously low levels, sufficiently long. In the third part, a methodology, mainly founded on the first passage-time theory of stochastic processes, is proposed to choose the performance measure design parameters to limit process variability while accounting for the possibility of undesirable tank overflows or tank emptiness. The heart of the approach is an approximation technique for evaluating mean first passage-times of the controlled tanks levels. This technique appears to have an applicability which largely exceeds the problem area it was designed for. Furthermore, the introduction of control sensitive break rates and the analysis of the ensuing control problem are presented. This is to account for the experimentally observed increase in breaks concomitant with flow rate variability.
2017-09-01
seeks to quantify the deterrence value of a CSG using a game - theoretic framework. Consider a region with several nations, where two major players stand...develop a Markov game to model the interactions between the two players and these other nations over a period of time. The game starts in Notional...establishing diplomatic advantage are equally important in deterring aggression. 14. SUBJECT TERMS carrier strike group, CSG, deterrence, Markov game
The cutoff phenomenon in finite Markov chains.
Diaconis, P
1996-01-01
Natural mixing processes modeled by Markov chains often show a sharp cutoff in their convergence to long-time behavior. This paper presents problems where the cutoff can be proved (card shuffling, the Ehrenfests' urn). It shows that chains with polynomial growth (drunkard's walk) do not show cutoffs. The best general understanding of such cutoffs (high multiplicity of second eigenvalues due to symmetry) is explored. Examples are given where the symmetry is broken but the cutoff phenomenon persists. PMID:11607633
Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions
NASA Astrophysics Data System (ADS)
Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard
2014-09-01
Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.
Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de
Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlapmore » with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.« less
Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions
Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard
2014-01-01
Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space. PMID:25240340
Enrollment Planning Using Computer Decision Model: A Case Study at Grambling State University.
ERIC Educational Resources Information Center
Ghosh, Kalyan; Lundy, Harold W.
Achieving enrollment goals continues to be a major administrative concern in higher education. Enrollment management can be assisted through the use of computerized planning and forecast models. Although commercially available Markov transition type curve fitting models have been developed and used, a microcomputer-based decision planning model…
Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant
NASA Astrophysics Data System (ADS)
Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram; Garg, Tarun Kr.
2015-12-01
This paper deals with the Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant. This system was modeled using Markov birth-death process with the assumption that the failure and repair rates of each subsystem follow exponential distribution. The first-order Chapman-Kolmogorov differential equations are developed with the use of mnemonic rule and these equations are solved with Runga-Kutta fourth-order method. The long-run availability, reliability and mean time between failures are computed for various choices of failure and repair rates of subsystems of the system. The findings of the paper are discussed with the plant personnel to adopt and practice suitable maintenance policies/strategies to enhance the performance of the urea synthesis system of the fertilizer plant.
Predictive Rate-Distortion for Infinite-Order Markov Processes
NASA Astrophysics Data System (ADS)
Marzen, Sarah E.; Crutchfield, James P.
2016-06-01
Predictive rate-distortion analysis suffers from the curse of dimensionality: clustering arbitrarily long pasts to retain information about arbitrarily long futures requires resources that typically grow exponentially with length. The challenge is compounded for infinite-order Markov processes, since conditioning on finite sequences cannot capture all of their past dependencies. Spectral arguments confirm a popular intuition: algorithms that cluster finite-length sequences fail dramatically when the underlying process has long-range temporal correlations and can fail even for processes generated by finite-memory hidden Markov models. We circumvent the curse of dimensionality in rate-distortion analysis of finite- and infinite-order processes by casting predictive rate-distortion objective functions in terms of the forward- and reverse-time causal states of computational mechanics. Examples demonstrate that the resulting algorithms yield substantial improvements.
Strelioff, Christopher C; Crutchfield, James P; Hübler, Alfred W
2007-07-01
Markov chains are a natural and well understood tool for describing one-dimensional patterns in time or space. We show how to infer kth order Markov chains, for arbitrary k , from finite data by applying Bayesian methods to both parameter estimation and model-order selection. Extending existing results for multinomial models of discrete data, we connect inference to statistical mechanics through information-theoretic (type theory) techniques. We establish a direct relationship between Bayesian evidence and the partition function which allows for straightforward calculation of the expectation and variance of the conditional relative entropy and the source entropy rate. Finally, we introduce a method that uses finite data-size scaling with model-order comparison to infer the structure of out-of-class processes.
NASA Astrophysics Data System (ADS)
Rahman, P. A.; D'K Novikova Freyre Shavier, G.
2018-03-01
This scientific paper is devoted to the analysis of the mean time to data loss of redundant disk arrays RAID-6 with alternation of data considering different failure rates of disks both in normal state of the disk array and in degraded and rebuild states, and also nonzero time of the disk replacement. The reliability model developed by the authors on the basis of the Markov chain and obtained calculation formula for estimation of the mean time to data loss (MTTDL) of the RAID-6 disk arrays are also presented. At last, the technique of estimation of the initial reliability parameters and examples of calculation of the MTTDL of the RAID-6 disk arrays for the different numbers of disks are also given.
Twelve years of succession on sandy substrates in a post-mining landscape: a Markov chain analysis.
Baasch, Annett; Tischew, Sabine; Bruelheide, Helge
2010-06-01
Knowledge of succession rates and pathways is crucial for devising restoration strategies for highly disturbed ecosystems such as surface-mined land. As these processes have often only been described in qualitative terms, we used Markov models to quantify transitions between successional stages. However, Markov models are often considered not attractive for some reasons, such as model assumptions (e.g., stationarity in space and time, or the high expenditure of time required to estimate successional transitions in the field). Here we present a solution for converting multivariate ecological time series into transition matrices and demonstrate the applicability of this approach for a data set that resulted from monitoring the succession of sandy dry grassland in a post-mining landscape. We analyzed five transition matrices, four one-step matrices referring to specific periods of transition (1995-1998, 1998-2001, 2001-2004, 2004-2007), and one matrix for the whole study period (stationary model, 1995-2007). Finally, the stationary model was enhanced to a partly time-variable model. Applying the stationary and the time-variable models, we started a prediction well outside our calibration period, beginning with 100% bare soil in 1974 as the known start of the succession, and generated the coverage of 12 predefined vegetation types in three-year intervals. Transitions among vegetation types changed significantly in space and over time. While the probability of colonization was almost constant over time, the replacement rate tended to increase, indicating that the speed of succession accelerated with time or fluctuations became stronger. The predictions of both models agreed surprisingly well with the vegetation data observed more than two decades later. This shows that our dry grassland succession in a post-mining landscape can be adequately described by comparably simple types of Markov models, although some model assumptions have not been fulfilled and within-plot transitions have not been observed with point exactness. The major achievement of our proposed way to convert vegetation time series into transition matrices is the estimation of probability of events--a strength not provided by other frequently used statistical methods in vegetation science.
Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan
2016-12-28
The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.
A coupled hidden Markov model for disease interactions
Sherlock, Chris; Xifara, Tatiana; Telfer, Sandra; Begon, Mike
2013-01-01
To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six different parasites measured repeatedly. Although trapping sessions were regular, a different set of voles was caught at each session, leading to incomplete profiles for all subjects. We use a discrete time hidden Markov model for each disease with transition probabilities dependent on covariates via a set of logistic regressions. For each disease the hidden states for each of the other diseases at a given time point form part of the covariate set for the Markov transition probabilities from that time point. This allows us to gauge the influence of each parasite species on the transition probabilities for each of the other parasite species. Inference is performed via a Gibbs sampler, which cycles through each of the diseases, first using an adaptive Metropolis–Hastings step to sample from the conditional posterior of the covariate parameters for that particular disease given the hidden states for all other diseases and then sampling from the hidden states for that disease given the parameters. We find evidence for interactions between several pairs of parasites and of an acquired immune response for two of the parasites. PMID:24223436
Hayashi, Hideaki; Shibanoki, Taro; Shima, Keisuke; Kurita, Yuichi; Tsuji, Toshio
2015-12-01
This paper proposes a probabilistic neural network (NN) developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model with a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into an NN, which is named a time-series discriminant component network (TSDCN), so that parameters of dimensionality reduction and classification can be obtained simultaneously as network coefficients according to a backpropagation through time-based learning algorithm with the Lagrange multiplier method. The TSDCN is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. The validity of the TSDCN is demonstrated for high-dimensional artificial data and electroencephalogram signals in the experiments conducted during the study.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Wang, Jun
2017-09-01
In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.
Kilinc, Deniz; Demir, Alper
2017-08-01
The brain is extremely energy efficient and remarkably robust in what it does despite the considerable variability and noise caused by the stochastic mechanisms in neurons and synapses. Computational modeling is a powerful tool that can help us gain insight into this important aspect of brain mechanism. A deep understanding and computational design tools can help develop robust neuromorphic electronic circuits and hybrid neuroelectronic systems. In this paper, we present a general modeling framework for biological neuronal circuits that systematically captures the nonstationary stochastic behavior of ion channels and synaptic processes. In this framework, fine-grained, discrete-state, continuous-time Markov chain models of both ion channels and synaptic processes are treated in a unified manner. Our modeling framework features a mechanism for the automatic generation of the corresponding coarse-grained, continuous-state, continuous-time stochastic differential equation models for neuronal variability and noise. Furthermore, we repurpose non-Monte Carlo noise analysis techniques, which were previously developed for analog electronic circuits, for the stochastic characterization of neuronal circuits both in time and frequency domain. We verify that the fast non-Monte Carlo analysis methods produce results with the same accuracy as computationally expensive Monte Carlo simulations. We have implemented the proposed techniques in a prototype simulator, where both biological neuronal and analog electronic circuits can be simulated together in a coupled manner.
Modeling and Properties of Nonlinear Stochastic Dynamical System of Continuous Culture
NASA Astrophysics Data System (ADS)
Wang, Lei; Feng, Enmin; Ye, Jianxiong; Xiu, Zhilong
The stochastic counterpart to the deterministic description of continuous fermentation with ordinary differential equation is investigated in the process of glycerol bio-dissimilation to 1,3-propanediol by Klebsiella pneumoniae. We briefly discuss the continuous fermentation process driven by three-dimensional Brownian motion and Lipschitz coefficients, which is suitable for the factual fermentation. Subsequently, we study the existence and uniqueness of solutions for the stochastic system as well as the boundedness of the Two-order Moment and the Markov property of the solution. Finally stochastic simulation is carried out under the Stochastic Euler-Maruyama method.
Shi, Wei; Xia, Jun
2017-02-01
Water quality risk management is a global hot research linkage with the sustainable water resource development. Ammonium nitrogen (NH 3 -N) and permanganate index (COD Mn ) as the focus indicators in Huai River Basin, are selected to reveal their joint transition laws based on Markov theory. The time-varying moments model with either time or land cover index as explanatory variables is applied to build the time-varying marginal distributions of water quality time series. Time-varying copula model, which takes the non-stationarity in the marginal distribution and/or the time variation in dependence structure between water quality series into consideration, is constructed to describe a bivariate frequency analysis for NH 3 -N and COD Mn series at the same monitoring gauge. The larger first-order Markov joint transition probability indicates water quality state Class V w , Class IV and Class III will occur easily in the water body of Bengbu Sluice. Both marginal distribution and copula models are nonstationary, and the explanatory variable time yields better performance than land cover index in describing the non-stationarities in the marginal distributions. In modelling the dependence structure changes, time-varying copula has a better fitting performance than the copula with the constant or the time-trend dependence parameter. The largest synchronous encounter risk probability of NH 3 -N and COD Mn simultaneously reaching Class V is 50.61%, while the asynchronous encounter risk probability is largest when NH 3 -N and COD Mn is inferior to class V and class IV water quality standards, respectively.
Nonlinear Markov Control Processes and Games
2012-11-15
the analysis of a new class of stochastic games , nonlinear Markov games , as they arise as a ( competitive ) controlled version of nonlinear Markov... competitive interests) a nonlinear Markov game that we are investigating. I 0. :::tUt::JJt:.l.. I I t:t11VI;:, nonlinear Markov game , nonlinear Markov...corresponding stochastic game Γ+(T, h). In a slightly different setting one can assume that changes in a competitive control process occur as a
Zipf exponent of trajectory distribution in the hidden Markov model
NASA Astrophysics Data System (ADS)
Bochkarev, V. V.; Lerner, E. Yu
2014-03-01
This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different.
Takayasu, Hideki; Takayasu, Misako
2017-01-01
We extend the concept of statistical symmetry as the invariance of a probability distribution under transformation to analyze binary sign time series data of price difference from the foreign exchange market. We model segments of the sign time series as Markov sequences and apply a local hypothesis test to evaluate the symmetries of independence and time reversion in different periods of the market. For the test, we derive the probability of a binary Markov process to generate a given set of number of symbol pairs. Using such analysis, we could not only segment the time series according the different behaviors but also characterize the segments in terms of statistical symmetries. As a particular result, we find that the foreign exchange market is essentially time reversible but this symmetry is broken when there is a strong external influence. PMID:28542208
Stochastic Calculus and Differential Equations for Physics and Finance
NASA Astrophysics Data System (ADS)
McCauley, Joseph L.
2013-02-01
1. Random variables and probability distributions; 2. Martingales, Markov, and nonstationarity; 3. Stochastic calculus; 4. Ito processes and Fokker-Planck equations; 5. Selfsimilar Ito processes; 6. Fractional Brownian motion; 7. Kolmogorov's PDEs and Chapman-Kolmogorov; 8. Non Markov Ito processes; 9. Black-Scholes, martingales, and Feynman-Katz; 10. Stochastic calculus with martingales; 11. Statistical physics and finance, a brief history of both; 12. Introduction to new financial economics; 13. Statistical ensembles and time series analysis; 14. Econometrics; 15. Semimartingales; References; Index.
Markov Property of the Conformal Field Theory Vacuum and the a Theorem.
Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo
2017-06-30
We use strong subadditivity of entanglement entropy, Lorentz invariance, and the Markov property of the vacuum state of a conformal field theory to give new proof of the irreversibility of the renormalization group in d=4 space-time dimensions-the a theorem. This extends the proofs of the c and F theorems in dimensions d=2 and d=3 based on vacuum entanglement entropy, and gives a unified picture of all known irreversibility theorems in relativistic quantum field theory.
[Birth and death process of computer viruses].
Segawa, Katsunori; Nakano, Tatsuya; Nakata, Kotoko; Hayashi, Yuzuru
2006-01-01
The daily variations in the number of computer viruses found attaching to e-mails and the number of accesses to the home page of a national institute in Japan are examined. The power spectral densities (PSD) of the variation in the computer viruses show a time-correlation characteristic of Markov process, but the daily access number does not (identified as white noise). Like biological viruses, the variation in the computer viruses can be described by the birth-and-death model known as a Markov process.
Affective State Level Recognition in Naturalistic Facial and Vocal Expressions.
Meng, Hongying; Bianchi-Berthouze, Nadia
2014-03-01
Naturalistic affective expressions change at a rate much slower than the typical rate at which video or audio is recorded. This increases the probability that consecutive recorded instants of expressions represent the same affective content. In this paper, we exploit such a relationship to improve the recognition performance of continuous naturalistic affective expressions. Using datasets of naturalistic affective expressions (AVEC 2011 audio and video dataset, PAINFUL video dataset) continuously labeled over time and over different dimensions, we analyze the transitions between levels of those dimensions (e.g., transitions in pain intensity level). We use an information theory approach to show that the transitions occur very slowly and hence suggest modeling them as first-order Markov models. The dimension levels are considered to be the hidden states in the Hidden Markov Model (HMM) framework. Their discrete transition and emission matrices are trained by using the labels provided with the training set. The recognition problem is converted into a best path-finding problem to obtain the best hidden states sequence in HMMs. This is a key difference from previous use of HMMs as classifiers. Modeling of the transitions between dimension levels is integrated in a multistage approach, where the first level performs a mapping between the affective expression features and a soft decision value (e.g., an affective dimension level), and further classification stages are modeled as HMMs that refine that mapping by taking into account the temporal relationships between the output decision labels. The experimental results for each of the unimodal datasets show overall performance to be significantly above that of a standard classification system that does not take into account temporal relationships. In particular, the results on the AVEC 2011 audio dataset outperform all other systems presented at the international competition.
NASA Astrophysics Data System (ADS)
Lenoir, Guillaume; Crucifix, Michel
2018-03-01
Geophysical time series are sometimes sampled irregularly along the time axis. The situation is particularly frequent in palaeoclimatology. Yet, there is so far no general framework for handling the continuous wavelet transform when the time sampling is irregular. Here we provide such a framework. To this end, we define the scalogram as the continuous-wavelet-transform equivalent of the extended Lomb-Scargle periodogram defined in Part 1 of this study (Lenoir and Crucifix, 2018). The signal being analysed is modelled as the sum of a locally periodic component in the time-frequency plane, a polynomial trend, and a background noise. The mother wavelet adopted here is the Morlet wavelet classically used in geophysical applications. The background noise model is a stationary Gaussian continuous autoregressive-moving-average (CARMA) process, which is more general than the traditional Gaussian white and red noise processes. The scalogram is smoothed by averaging over neighbouring times in order to reduce its variance. The Shannon-Nyquist exclusion zone is however defined as the area corrupted by local aliasing issues. The local amplitude in the time-frequency plane is then estimated with least-squares methods. We also derive an approximate formula linking the squared amplitude and the scalogram. Based on this property, we define a new analysis tool: the weighted smoothed scalogram, which we recommend for most analyses. The estimated signal amplitude also gives access to band and ridge filtering. Finally, we design a test of significance for the weighted smoothed scalogram against the stationary Gaussian CARMA background noise, and provide algorithms for computing confidence levels, either analytically or with Monte Carlo Markov chain methods. All the analysis tools presented in this article are available to the reader in the Python package WAVEPAL.
Stifter, Cynthia A; Rovine, Michael
2015-01-01
The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at two and six months of age, used hidden Markov modeling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a 4-state model for the dyadic responses to a two-month inoculation whereas a 6-state model best described the dyadic process at six months. Two of the states at two months and three of the states at six months suggested a progression from high intensity crying to no crying with parents using vestibular and auditory soothing methods. The use of feeding and/or pacifying to soothe the infant characterized one two-month state and two six-month states. These data indicate that with maturation and experience, the mother-infant dyad is becoming more organized around the soothing interaction. Using hidden Markov modeling to describe individual differences, as well as normative processes, is also presented and discussed.
Stifter, Cynthia A.; Rovine, Michael
2016-01-01
The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at two and six months of age, used hidden Markov modeling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a 4-state model for the dyadic responses to a two-month inoculation whereas a 6-state model best described the dyadic process at six months. Two of the states at two months and three of the states at six months suggested a progression from high intensity crying to no crying with parents using vestibular and auditory soothing methods. The use of feeding and/or pacifying to soothe the infant characterized one two-month state and two six-month states. These data indicate that with maturation and experience, the mother-infant dyad is becoming more organized around the soothing interaction. Using hidden Markov modeling to describe individual differences, as well as normative processes, is also presented and discussed. PMID:27284272
Markov Chains for Investigating and Predicting Migration: A Case from Southwestern China
NASA Astrophysics Data System (ADS)
Qin, Bo; Wang, Yiyu; Xu, Haoming
2018-03-01
In order to accurately predict the population’s happiness, this paper conducted two demographic surveys on a new district of a city in western China, and carried out a dynamic analysis using related mathematical methods. This paper argues that the migration of migrants in the city will change the pattern of spatial distribution of human resources in the city and thus affect the social and economic development in all districts. The migration status of the population will change randomly with the passage of time, so it can be predicted and analyzed through the Markov process. The Markov process provides the local government and decision-making bureau a valid basis for the dynamic analysis of the mobility of migrants in the city as well as the ways for promoting happiness of local people’s lives.
Metastates in Mean-Field Models with Random External Fields Generated by Markov Chains
NASA Astrophysics Data System (ADS)
Formentin, M.; Külske, C.; Reichenbachs, A.
2012-01-01
We extend the construction by Külske and Iacobelli of metastates in finite-state mean-field models in independent disorder to situations where the local disorder terms are a sample of an external ergodic Markov chain in equilibrium. We show that for non-degenerate Markov chains, the structure of the theorems is analogous to the case of i.i.d. variables when the limiting weights in the metastate are expressed with the aid of a CLT for the occupation time measure of the chain. As a new phenomenon we also show in a Potts example that for a degenerate non-reversible chain this CLT approximation is not enough, and that the metastate can have less symmetry than the symmetry of the interaction and a Gaussian approximation of disorder fluctuations would suggest.
Markov modulated Poisson process models incorporating covariates for rainfall intensity.
Thayakaran, R; Ramesh, N I
2013-01-01
Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.
An Overview of Markov Chain Methods for the Study of Stage-Sequential Developmental Processes
ERIC Educational Resources Information Center
Kapland, David
2008-01-01
This article presents an overview of quantitative methodologies for the study of stage-sequential development based on extensions of Markov chain modeling. Four methods are presented that exemplify the flexibility of this approach: the manifest Markov model, the latent Markov model, latent transition analysis, and the mixture latent Markov model.…
Survival time of the susceptible-infected-susceptible infection process on a graph.
van de Bovenkamp, Ruud; Van Mieghem, Piet
2015-09-01
The survival time T is the longest time that a virus, a meme, or a failure can propagate in a network. Using the hitting time of the absorbing state in an uniformized embedded Markov chain of the continuous-time susceptible-infected-susceptible (SIS) Markov process, we derive an exact expression for the average survival time E[T] of a virus in the complete graph K_{N} and the star graph K_{1,N-1}. By using the survival time, instead of the average fraction of infected nodes, we propose a new method to approximate the SIS epidemic threshold τ_{c} that, at least for K_{N} and K_{1,N-1}, correctly scales with the number of nodes N and that is superior to the epidemic threshold τ_{c}^{(1)}=1/λ_{1} of the N-intertwined mean-field approximation, where λ_{1} is the spectral radius of the adjacency matrix of the graph G. Although this new approximation of the epidemic threshold offers a more intuitive understanding of the SIS process, it remains difficult to compare outbreaks in different graph types. For example, the survival in an arbitrary graph seems upper bounded by the complete graph and lower bounded by the star graph as a function of the normalized effective infection rate τ/τ_{c}^{(1)}. However, when the average fraction of infected nodes is used as a basis for comparison, the virus will survive in the star graph longer than in any other graph, making the star graph the worst-case graph instead of the complete graph. Finally, in non-Markovian SIS, the distribution of the spreading attempts over the infectious period of a node influences the survival time, even if the expected number of spreading attempts during an infectious period (the non-Markovian equivalent of the effective infection rate) is kept constant. Both early and late infection attempts lead to shorter survival times. Interestingly, just as in Markovian SIS, the survival times appear to be exponentially distributed, regardless of the infection and curing time distributions.
[Succession caused by beaver (Castor fiber L.) life activity: II. A refined Markov model].
Logofet; Evstigneev, O I; Aleinikov, A A; Morozova, A O
2015-01-01
The refined Markov model of cyclic zoogenic successions caused by beaver (Castor fiber L.) life activity represents a discrete chain of the following six states: flooded forest, swamped forest, pond, grassy swamp, shrubby swamp, and wet forest, which correspond to certain stages of succession. Those stages are defined, and a conceptual scheme of probable transitions between them for one time step is constructed from the knowledge of beaver behaviour in small river floodplains of "Bryanskii Les" Reserve. We calibrated the corresponding matrix of transition probabilities according to the optimization principle: minimizing differences between the model outcome and reality; the model generates a distribution of relative areas corresponding to the stages of succession, that has to be compared to those gained from case studies in the Reserve during 2002-2006. The time step is chosen to equal 2 years, and the first-step data in the sum of differences are given various weights, w (between 0 and 1). The value of w = 0.2 is selected due to its optimality and for some additional reasons. By the formulae of finite homogeneous Markov chain theory, we obtained the main results of the calibrated model, namely, a steady-state distribution of stage areas, indexes of cyclicity, and the mean durations (M(j)) of succession stages. The results of calibration give an objective quantitative nature to the expert knowledge of the course of succession and get a proper interpretation. The 2010 data, which are not involved in the calibration procedure, enabled assessing the quality of prediction by the homogeneous model in short-term (from the 2006 situation): the error of model area distribution relative to the distribution observed in 2010 falls into the range of 9-17%, the best prognosis being given by the least optimal matrices (rejected values of w). This indicates a formally heterogeneous nature of succession processes in time. Thus, the refined version of the homogeneous Markov chain has not eliminated all the contradictions between the model results and expert knowledge, which suggests a further model development towards a "logically inhomogeneous" version or/and refusal to postulate the Markov property in the conceptual scheme of succession.
Burroughs, N J; Pillay, D; Mutimer, D
1999-01-01
Bayesian analysis using a virus dynamics model is demonstrated to facilitate hypothesis testing of patterns in clinical time-series. Our Markov chain Monte Carlo implementation demonstrates that the viraemia time-series observed in two sets of hepatitis B patients on antiviral (lamivudine) therapy, chronic carriers and liver transplant patients, are significantly different, overcoming clinical trial design differences that question the validity of non-parametric tests. We show that lamivudine-resistant mutants grow faster in transplant patients than in chronic carriers, which probably explains the differences in emergence times and failure rates between these two sets of patients. Incorporation of dynamic models into Bayesian parameter analysis is of general applicability in medical statistics. PMID:10643081
The exit-time problem for a Markov jump process
NASA Astrophysics Data System (ADS)
Burch, N.; D'Elia, M.; Lehoucq, R. B.
2014-12-01
The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.
Mixture Hidden Markov Models in Finance Research
NASA Astrophysics Data System (ADS)
Dias, José G.; Vermunt, Jeroen K.; Ramos, Sofia
Finite mixture models have proven to be a powerful framework whenever unobserved heterogeneity cannot be ignored. We introduce in finance research the Mixture Hidden Markov Model (MHMM) that takes into account time and space heterogeneity simultaneously. This approach is flexible in the sense that it can deal with the specific features of financial time series data, such as asymmetry, kurtosis, and unobserved heterogeneity. This methodology is applied to model simultaneously 12 time series of Asian stock markets indexes. Because we selected a heterogeneous sample of countries including both developed and emerging countries, we expect that heterogeneity in market returns due to country idiosyncrasies will show up in the results. The best fitting model was the one with two clusters at country level with different dynamics between the two regimes.
Effects of tour boats on dolphin activity examined with sensitivity analysis of Markov chains.
Dans, Silvana Laura; Degrati, Mariana; Pedraza, Susana Noemí; Crespo, Enrique Alberto
2012-08-01
In Patagonia, Argentina, watching dolphins, especially dusky dolphins (Lagenorhynchus obscurus), is a new tourist activity. Feeding time decreases and time to return to feeding after feeding is abandoned and time it takes a group of dolphins to feed increase in the presence of boats. Such effects on feeding behavior may exert energetic costs on dolphins and thus reduce an individual's survival and reproductive capacity or maybe associated with shifts in distribution. We sought to predict which behavioral changes modify the activity pattern of dolphins the most. We modeled behavioral sequences of dusky dolphins with Markov chains. We calculated transition probabilities from one activity to another and arranged them in a stochastic matrix model. The proportion of time dolphins dedicated to a given activity (activity budget) and the time it took a dolphin to resume that activity after it had been abandoned (recurrence time) were calculated. We used a sensitivity analysis of Markov chains to calculate the sensitivity of the time budget and the activity-resumption time to changes in behavioral transition probabilities. Feeding-time budget was most sensitive to changes in the probability of dolphins switching from traveling to feeding behavior and of maintaining feeding behavior. Thus, an increase in these probabilities would be associated with the largest reduction in the time dedicated to feeding. A reduction in the probability of changing from traveling to feeding would also be associated with the largest increases in the time it takes dolphins to resume feeding. To approach dolphins when they are traveling would not affect behavior less because presence of the boat may keep dolphins from returning to feeding. Our results may help operators of dolphin-watching vessels minimize negative effects on dolphins. ©2012 Society for Conservation Biology.
The mean field theory in EM procedures for blind Markov random field image restoration.
Zhang, J
1993-01-01
A Markov random field (MRF) model-based EM (expectation-maximization) procedure for simultaneously estimating the degradation model and restoring the image is described. The MRF is a coupled one which provides continuity (inside regions of smooth gray tones) and discontinuity (at region boundaries) constraints for the restoration problem which is, in general, ill posed. The computational difficulty associated with the EM procedure for MRFs is resolved by using the mean field theory from statistical mechanics. An orthonormal blur decomposition is used to reduce the chances of undesirable locally optimal estimates. Experimental results on synthetic and real-world images show that this approach provides good blur estimates and restored images. The restored images are comparable to those obtained by a Wiener filter in mean-square error, but are most visually pleasing.
A Modularized Efficient Framework for Non-Markov Time Series Estimation
NASA Astrophysics Data System (ADS)
Schamberg, Gabriel; Ba, Demba; Coleman, Todd P.
2018-06-01
We present a compartmentalized approach to finding the maximum a-posteriori (MAP) estimate of a latent time series that obeys a dynamic stochastic model and is observed through noisy measurements. We specifically consider modern signal processing problems with non-Markov signal dynamics (e.g. group sparsity) and/or non-Gaussian measurement models (e.g. point process observation models used in neuroscience). Through the use of auxiliary variables in the MAP estimation problem, we show that a consensus formulation of the alternating direction method of multipliers (ADMM) enables iteratively computing separate estimates based on the likelihood and prior and subsequently "averaging" them in an appropriate sense using a Kalman smoother. As such, this can be applied to a broad class of problem settings and only requires modular adjustments when interchanging various aspects of the statistical model. Under broad log-concavity assumptions, we show that the separate estimation problems are convex optimization problems and that the iterative algorithm converges to the MAP estimate. As such, this framework can capture non-Markov latent time series models and non-Gaussian measurement models. We provide example applications involving (i) group-sparsity priors, within the context of electrophysiologic specrotemporal estimation, and (ii) non-Gaussian measurement models, within the context of dynamic analyses of learning with neural spiking and behavioral observations.
Modular techniques for dynamic fault-tree analysis
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Dugan, Joanne B.
1992-01-01
It is noted that current approaches used to assess the dependability of complex systems such as Space Station Freedom and the Air Traffic Control System are incapable of handling the size and complexity of these highly integrated designs. A novel technique for modeling such systems which is built upon current techniques in Markov theory and combinatorial analysis is described. It enables the development of a hierarchical representation of system behavior which is more flexible than either technique alone. A solution strategy which is based on an object-oriented approach to model representation and evaluation is discussed. The technique is virtually transparent to the user since the fault tree models can be built graphically and the objects defined automatically. The tree modularization procedure allows the two model types, Markov and combinatoric, to coexist and does not require that the entire fault tree be translated to a Markov chain for evaluation. This effectively reduces the size of the Markov chain required and enables solutions with less truncation, making analysis of longer mission times possible. Using the fault-tolerant parallel processor as an example, a model is built and solved for a specific mission scenario and the solution approach is illustrated in detail.
Towards automatic Markov reliability modeling of computer architectures
NASA Technical Reports Server (NTRS)
Liceaga, C. A.; Siewiorek, D. P.
1986-01-01
The analysis and evaluation of reliability measures using time-varying Markov models is required for Processor-Memory-Switch (PMS) structures that have competing processes such as standby redundancy and repair, or renewal processes such as transient or intermittent faults. The task of generating these models is tedious and prone to human error due to the large number of states and transitions involved in any reasonable system. Therefore model formulation is a major analysis bottleneck, and model verification is a major validation problem. The general unfamiliarity of computer architects with Markov modeling techniques further increases the necessity of automating the model formulation. This paper presents an overview of the Automated Reliability Modeling (ARM) program, under development at NASA Langley Research Center. ARM will accept as input a description of the PMS interconnection graph, the behavior of the PMS components, the fault-tolerant strategies, and the operational requirements. The output of ARM will be the reliability of availability Markov model formulated for direct use by evaluation programs. The advantages of such an approach are (a) utility to a large class of users, not necessarily expert in reliability analysis, and (b) a lower probability of human error in the computation.
Copula-based prediction of economic movements
NASA Astrophysics Data System (ADS)
García, J. E.; González-López, V. A.; Hirsh, I. D.
2016-06-01
In this paper we model the discretized returns of two paired time series BM&FBOVESPA Dividend Index and BM&FBOVESPA Public Utilities Index using multivariate Markov models. The discretization corresponds to three categories, high losses, high profits and the complementary periods of the series. In technical terms, the maximal memory that can be considered for a Markov model, can be derived from the size of the alphabet and dataset. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination, of the partitions corresponding to the two marginal processes and the partition corresponding to the multivariate Markov chain. In order to estimate the transition probabilities, all the partitions are linked using a copula. In our application this strategy provides a significant improvement in the movement predictions.
SVM-based multisensor data fusion for phase concentration measurement in biomass-coal co-combustion
NASA Astrophysics Data System (ADS)
Wang, Xiaoxin; Hu, Hongli; Jia, Huiqin; Tang, Kaihao
2018-05-01
In this paper, the electrical method combines the electrostatic sensor and capacitance sensor to measure the phase concentration of pulverized coal/biomass/air three-phase flow through data fusion technology. In order to eliminate the effects of flow regimes and improve the accuracy of the phase concentration measurement, the mel frequency cepstrum coefficient features extracted from electrostatic signals are used to train the Continuous Gaussian Mixture Hidden Markov Model (CGHMM) for flow regime identification. Support Vector Machine (SVM) is introduced to establish the concentration information fusion model under identified flow regimes. The CGHMM models and SVM models are transplanted on digital signal processing (DSP) to realize on-line accurate measurement. The DSP flow regime identification time is 1.4 ms, and the concentration predict time is 164 μs, which can fully meet the real-time requirement. The average absolute value of the relative error of the pulverized coal is about 1.5% and that of the biomass is about 2.2%.
Bayesian inference for dynamic transcriptional regulation; the Hes1 system as a case study.
Heron, Elizabeth A; Finkenstädt, Bärbel; Rand, David A
2007-10-01
In this study, we address the problem of estimating the parameters of regulatory networks and provide the first application of Markov chain Monte Carlo (MCMC) methods to experimental data. As a case study, we consider a stochastic model of the Hes1 system expressed in terms of stochastic differential equations (SDEs) to which rigorous likelihood methods of inference can be applied. When fitting continuous-time stochastic models to discretely observed time series the lengths of the sampling intervals are important, and much of our study addresses the problem when the data are sparse. We estimate the parameters of an autoregulatory network providing results both for simulated and real experimental data from the Hes1 system. We develop an estimation algorithm using MCMC techniques which are flexible enough to allow for the imputation of latent data on a finer time scale and the presence of prior information about parameters which may be informed from other experiments as well as additional measurement error.
Rudmik, Luke; Soler, Zachary M.; Mace, Jess C.; Schlosser, Rodney J.; Smith, Timothy L.
2014-01-01
Objective To evaluate the long-term cost-effectiveness of endoscopic sinus surgery (ESS) compared to continued medical therapy for patients with refractory chronic rhinosinusitis (CRS). Study Design Cohort-style Markov decision tree economic evaluation Methods The economic perspective was the US third party payer with a 30 year time horizon. The two comparative treatment strategies were: 1) ESS followed by appropriate postoperative medical therapy and 2) continued medical therapy alone. Primary outcome was the incremental cost per quality adjusted life year (QALY). Costs were discounted at a rate of 3.5% in the reference case. Multiple sensitivity analyses were performed including differing time-horizons, discounting scenarios, and a probabilistic sensitivity analysis (PSA). Results The reference case demonstrated that the ESS strategy cost a total of $48,838.38 and produced a total of 20.50 QALYs. The medical therapy alone strategy cost a total of $28,948.98 and produced a total of 17.13 QALYs. The incremental cost effectiveness ratio (ICER) for ESS versus medical therapy alone is $5,901.90 per QALY. The cost-effectiveness acceptability curve from the PSA demonstrated that there is 74% certainty that the ESS strategy is the most cost-effective decision for any willingness to pay threshold greater then $25,000. The time horizon analysis suggests that ESS becomes the cost-effective intervention within the 3rd year after surgery. Conclusion Results from this study suggest that employing an ESS treatment strategy is the most cost-effective intervention compared to continued medical therapy alone for the long-term management of patients with refractory CRS. PMID:25186499
Scalable approximate policies for Markov decision process models of hospital elective admissions.
Zhu, George; Lizotte, Dan; Hoey, Jesse
2014-05-01
To demonstrate the feasibility of using stochastic simulation methods for the solution of a large-scale Markov decision process model of on-line patient admissions scheduling. The problem of admissions scheduling is modeled as a Markov decision process in which the states represent numbers of patients using each of a number of resources. We investigate current state-of-the-art real time planning methods to compute solutions to this Markov decision process. Due to the complexity of the model, traditional model-based planners are limited in scalability since they require an explicit enumeration of the model dynamics. To overcome this challenge, we apply sample-based planners along with efficient simulation techniques that given an initial start state, generate an action on-demand while avoiding portions of the model that are irrelevant to the start state. We also propose a novel variant of a popular sample-based planner that is particularly well suited to the elective admissions problem. Results show that the stochastic simulation methods allow for the problem size to be scaled by a factor of almost 10 in the action space, and exponentially in the state space. We have demonstrated our approach on a problem with 81 actions, four specialities and four treatment patterns, and shown that we can generate solutions that are near-optimal in about 100s. Sample-based planners are a viable alternative to state-based planners for large Markov decision process models of elective admissions scheduling. Copyright © 2014 Elsevier B.V. All rights reserved.
Noise can speed convergence in Markov chains.
Franzke, Brandon; Kosko, Bart
2011-10-01
A new theorem shows that noise can speed convergence to equilibrium in discrete finite-state Markov chains. The noise applies to the state density and helps the Markov chain explore improbable regions of the state space. The theorem ensures that a stochastic-resonance noise benefit exists for states that obey a vector-norm inequality. Such noise leads to faster convergence because the noise reduces the norm components. A corollary shows that a noise benefit still occurs if the system states obey an alternate norm inequality. This leads to a noise-benefit algorithm that requires knowledge of the steady state. An alternative blind algorithm uses only past state information to achieve a weaker noise benefit. Simulations illustrate the predicted noise benefits in three well-known Markov models. The first model is a two-parameter Ehrenfest diffusion model that shows how noise benefits can occur in the class of birth-death processes. The second model is a Wright-Fisher model of genotype drift in population genetics. The third model is a chemical reaction network of zeolite crystallization. A fourth simulation shows a convergence rate increase of 64% for states that satisfy the theorem and an increase of 53% for states that satisfy the corollary. A final simulation shows that even suboptimal noise can speed convergence if the noise applies over successive time cycles. Noise benefits tend to be sharpest in Markov models that do not converge quickly and that do not have strong absorbing states.
Lahodny, G E; Gautam, R; Ivanek, R
2015-01-01
Indirect transmission through the environment, pathogen shedding by infectious hosts, replication of free-living pathogens within the environment, and environmental decontamination are suspected to play important roles in the spread and control of environmentally transmitted infectious diseases. To account for these factors, the classic Susceptible-Infectious-Recovered-Susceptible epidemic model is modified to include a compartment representing the amount of free-living pathogen within the environment. The model accounts for host demography, direct and indirect transmission, replication of free-living pathogens in the environment, and removal of free-living pathogens by natural death or environmental decontamination. Based on the assumptions of the deterministic model, a continuous-time Markov chain model is developed. An estimate for the probability of disease extinction or a major outbreak is obtained by approximating the Markov chain with a multitype branching process. Numerical simulations illustrate important differences between the deterministic and stochastic counterparts, relevant for outbreak prevention, that depend on indirect transmission, pathogen shedding by infectious hosts, replication of free-living pathogens, and environmental decontamination. The probability of a major outbreak is computed for salmonellosis in a herd of dairy cattle as well as cholera in a human population. An explicit expression for the probability of disease extinction or a major outbreak in terms of the model parameters is obtained for systems with no direct transmission or replication of free-living pathogens.
The stochastic dynamics of intermittent porescale particle motion
NASA Astrophysics Data System (ADS)
Dentz, Marco; Morales, Veronica; Puyguiraud, Alexandre; Gouze, Philippe; Willmann, Matthias; Holzner, Markus
2017-04-01
Numerical and experimental data for porescale particle dynamics show intermittent patterns in Lagrangian velocities and accelerations, which manifest in long time intervals of low and short durations of high velocities [1, 2]. This phenomenon is due to the spatial persistence of particle velocities on characteristic heterogeneity length scales. In order to systematically quantify these behaviors and extract the stochastic dynamics of particle motion, we focus on the analysis of Lagrangian velocities sampled equidistantly along trajectories [3]. This method removes the intermittency observed under isochrone sampling. The space-Lagrangian velocity series can be quantified by a Markov process that is continuous in distance along streamline. It is fully parameterized in terms of the flux-weighted Eulerian velocity PDF and the characteristic pore-length. The resulting stochastic particle motion describes a continuous time random walk (CTRW). This approach allows for the process based interpretation of experimental and numerical porescale velocity, acceleration and displacement data. It provides a framework for the characterization and upscaling of particle transport and dispersion from the pore to the Darcy-scale based on the medium geometry and Eulerian flow attributes. [1] P. De Anna, T. Le Borgne, M. Dentz, A.M. Tartakovsky, D. Bolster, and P. Davy, "Flow intermittency, dispersion, and correlated continuous time random walks in porous media," Phys. Rev. Lett. 110, 184502 (2013). [2] M. Holzner, V. L. Morales, M. Willmann, and M. Dentz, "Intermittent Lagrangian velocities and accelerations in three- dimensional porous medium flow," Phys. Rev. E 92, 013015 (2015). [3] M. Dentz, P. K. Kang, A. Comolli, T. Le Borgne, and D. R. Lester, "Continuous time random walks for the evolution of Lagrangian velocities," Phys. Rev. Fluids (2016).
Balbi, Pietro; Massobrio, Paolo; Hellgren Kotaleski, Jeanette
2017-09-01
Modelling ionic channels represents a fundamental step towards developing biologically detailed neuron models. Until recently, the voltage-gated ion channels have been mainly modelled according to the formalism introduced by the seminal works of Hodgkin and Huxley (HH). However, following the continuing achievements in the biophysical and molecular comprehension of these pore-forming transmembrane proteins, the HH formalism turned out to carry limitations and inconsistencies in reproducing the ion-channels electrophysiological behaviour. At the same time, Markov-type kinetic models have been increasingly proven to successfully replicate both the electrophysiological and biophysical features of different ion channels. However, in order to model even the finest non-conducting molecular conformational change, they are often equipped with a considerable number of states and related transitions, which make them computationally heavy and less suitable for implementation in conductance-based neurons and large networks of those. In this purely modelling study we develop a Markov-type kinetic model for all human voltage-gated sodium channels (VGSCs). The model framework is detailed, unifying (i.e., it accounts for all ion-channel isoforms) and computationally efficient (i.e. with a minimal set of states and transitions). The electrophysiological data to be modelled are gathered from previously published studies on whole-cell patch-clamp experiments in mammalian cell lines heterologously expressing the human VGSC subtypes (from NaV1.1 to NaV1.9). By adopting a minimum sequence of states, and using the same state diagram for all the distinct isoforms, the model ensures the lightest computational load when used in neuron models and neural networks of increasing complexity. The transitions between the states are described by original ordinary differential equations, which represent the rate of the state transitions as a function of voltage (i.e., membrane potential). The kinetic model, developed in the NEURON simulation environment, appears to be the simplest and most parsimonious way for a detailed phenomenological description of the human VGSCs electrophysiological behaviour.
On spatial mutation-selection models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondratiev, Yuri, E-mail: kondrat@math.uni-bielefeld.de; Kutoviy, Oleksandr, E-mail: kutoviy@math.uni-bielefeld.de, E-mail: kutovyi@mit.edu; Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
2013-11-15
We discuss the selection procedure in the framework of mutation models. We study the regulation for stochastically developing systems based on a transformation of the initial Markov process which includes a cost functional. The transformation of initial Markov process by cost functional has an analytic realization in terms of a Kimura-Maruyama type equation for the time evolution of states or in terms of the corresponding Feynman-Kac formula on the path space. The state evolution of the system including the limiting behavior is studied for two types of mutation-selection models.
Markov Tracking for Agent Coordination
NASA Technical Reports Server (NTRS)
Washington, Richard; Lau, Sonie (Technical Monitor)
1998-01-01
Partially observable Markov decision processes (POMDPs) axe an attractive representation for representing agent behavior, since they capture uncertainty in both the agent's state and its actions. However, finding an optimal policy for POMDPs in general is computationally difficult. In this paper we present Markov Tracking, a restricted problem of coordinating actions with an agent or process represented as a POMDP Because the actions coordinate with the agent rather than influence its behavior, the optimal solution to this problem can be computed locally and quickly. We also demonstrate the use of the technique on sequential POMDPs, which can be used to model a behavior that follows a linear, acyclic trajectory through a series of states. By imposing a "windowing" restriction that restricts the number of possible alternatives considered at any moment to a fixed size, a coordinating action can be calculated in constant time, making this amenable to coordination with complex agents.
Stochastic Dynamics through Hierarchically Embedded Markov Chains
NASA Astrophysics Data System (ADS)
Vasconcelos, Vítor V.; Santos, Fernando P.; Santos, Francisco C.; Pacheco, Jorge M.
2017-02-01
Studying dynamical phenomena in finite populations often involves Markov processes of significant mathematical and/or computational complexity, which rapidly becomes prohibitive with increasing population size or an increasing number of individual configuration states. Here, we develop a framework that allows us to define a hierarchy of approximations to the stationary distribution of general systems that can be described as discrete Markov processes with time invariant transition probabilities and (possibly) a large number of states. This results in an efficient method for studying social and biological communities in the presence of stochastic effects—such as mutations in evolutionary dynamics and a random exploration of choices in social systems—including situations where the dynamics encompasses the existence of stable polymorphic configurations, thus overcoming the limitations of existing methods. The present formalism is shown to be general in scope, widely applicable, and of relevance to a variety of interdisciplinary problems.
Stability Analysis of Multi-Sensor Kalman Filtering over Lossy Networks
Gao, Shouwan; Chen, Pengpeng; Huang, Dan; Niu, Qiang
2016-01-01
This paper studies the remote Kalman filtering problem for a distributed system setting with multiple sensors that are located at different physical locations. Each sensor encapsulates its own measurement data into one single packet and transmits the packet to the remote filter via a lossy distinct channel. For each communication channel, a time-homogeneous Markov chain is used to model the normal operating condition of packet delivery and losses. Based on the Markov model, a necessary and sufficient condition is obtained, which can guarantee the stability of the mean estimation error covariance. Especially, the stability condition is explicitly expressed as a simple inequality whose parameters are the spectral radius of the system state matrix and transition probabilities of the Markov chains. In contrast to the existing related results, our method imposes less restrictive conditions on systems. Finally, the results are illustrated by simulation examples. PMID:27104541
Stochastic Dynamics through Hierarchically Embedded Markov Chains.
Vasconcelos, Vítor V; Santos, Fernando P; Santos, Francisco C; Pacheco, Jorge M
2017-02-03
Studying dynamical phenomena in finite populations often involves Markov processes of significant mathematical and/or computational complexity, which rapidly becomes prohibitive with increasing population size or an increasing number of individual configuration states. Here, we develop a framework that allows us to define a hierarchy of approximations to the stationary distribution of general systems that can be described as discrete Markov processes with time invariant transition probabilities and (possibly) a large number of states. This results in an efficient method for studying social and biological communities in the presence of stochastic effects-such as mutations in evolutionary dynamics and a random exploration of choices in social systems-including situations where the dynamics encompasses the existence of stable polymorphic configurations, thus overcoming the limitations of existing methods. The present formalism is shown to be general in scope, widely applicable, and of relevance to a variety of interdisciplinary problems.
Golightly, Andrew; Wilkinson, Darren J.
2011-01-01
Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network. PMID:23226583
Measurement-based reliability/performability models
NASA Technical Reports Server (NTRS)
Hsueh, Mei-Chen
1987-01-01
Measurement-based models based on real error-data collected on a multiprocessor system are described. Model development from the raw error-data to the estimation of cumulative reward is also described. A workload/reliability model is developed based on low-level error and resource usage data collected on an IBM 3081 system during its normal operation in order to evaluate the resource usage/error/recovery process in a large mainframe system. Thus, both normal and erroneous behavior of the system are modeled. The results provide an understanding of the different types of errors and recovery processes. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A sensitivity analysis is performed to investigate the significance of using a semi-Markov process, as opposed to a Markov process, to model the measured system.
Hidden Markov Item Response Theory Models for Responses and Response Times.
Molenaar, Dylan; Oberski, Daniel; Vermunt, Jeroen; De Boeck, Paul
2016-01-01
Current approaches to model responses and response times to psychometric tests solely focus on between-subject differences in speed and ability. Within subjects, speed and ability are assumed to be constants. Violations of this assumption are generally absorbed in the residual of the model. As a result, within-subject departures from the between-subject speed and ability level remain undetected. These departures may be of interest to the researcher as they reflect differences in the response processes adopted on the items of a test. In this article, we propose a dynamic approach for responses and response times based on hidden Markov modeling to account for within-subject differences in responses and response times. A simulation study is conducted to demonstrate acceptable parameter recovery and acceptable performance of various fit indices in distinguishing between different models. In addition, both a confirmatory and an exploratory application are presented to demonstrate the practical value of the modeling approach.
NASA Astrophysics Data System (ADS)
Yuan, Y.; Meng, Y.; Chen, Y. X.; Jiang, C.; Yue, A. Z.
2018-04-01
In this study, we proposed a method to map urban encroachment onto farmland using satellite image time series (SITS) based on the hierarchical hidden Markov model (HHMM). In this method, the farmland change process is decomposed into three hierarchical levels, i.e., the land cover level, the vegetation phenology level, and the SITS level. Then a three-level HHMM is constructed to model the multi-level semantic structure of farmland change process. Once the HHMM is established, a change from farmland to built-up could be detected by inferring the underlying state sequence that is most likely to generate the input time series. The performance of the method is evaluated on MODIS time series in Beijing. Results on both simulated and real datasets demonstrate that our method improves the change detection accuracy compared with the HMM-based method.
Quantifying Differential Privacy under Temporal Correlations
Cao, Yang; Yoshikawa, Masatoshi; Xiao, Yonghui; Xiong, Li
2017-01-01
Differential Privacy (DP) has received increasing attention as a rigorous privacy framework. Many existing studies employ traditional DP mechanisms (e.g., the Laplace mechanism) as primitives, which assume that the data are independent, or that adversaries do not have knowledge of the data correlations. However, continuous generated data in the real world tend to be temporally correlated, and such correlations can be acquired by adversaries. In this paper, we investigate the potential privacy loss of a traditional DP mechanism under temporal correlations in the context of continuous data release. First, we model the temporal correlations using Markov model and analyze the privacy leakage of a DP mechanism when adversaries have knowledge of such temporal correlations. Our analysis reveals that the privacy loss of a DP mechanism may accumulate and increase over time. We call it temporal privacy leakage. Second, to measure such privacy loss, we design an efficient algorithm for calculating it in polynomial time. Although the temporal privacy leakage may increase over time, we also show that its supremum may exist in some cases. Third, to bound the privacy loss, we propose mechanisms that convert any existing DP mechanism into one against temporal privacy leakage. Experiments with synthetic data confirm that our approach is efficient and effective. PMID:28883711
Tobacco use transitions in the United States: The National Longitudinal Study of Adolescent Health
Kaufman, Annette R.; Land, Stephanie; Parascandola, Mark; Augustson, Erik; Backinger, Cathy L.
2015-01-01
Objectives The purpose of this study is to evaluate and describe transitions in cigarette and smokeless tobacco (ST) use, including dual use, prospectively from adolescence into young adulthood. Methods The current study utilizes four waves of the National Longitudinal Study of Adolescent Health (Add Health) to examine patterns of cigarette and ST use (within 30 days of survey) over time among a cohort in the United States beginning in 7th–12th grade (1995) into young adulthood (2008–2009). Transition probabilities were estimated using Markov modeling. Results Among the cohort (N = 20,774), 48.7% reported using cigarettes, 12.8% reported using ST, and 7.2% reported dual use (cigarettes and ST in the same wave) in at least one wave. In general, the risk for transitioning between cigarettes and ST was higher for males and those who were older. Dual users exhibited a high probability (81%) of continuing dual use over time. Conclusions Findings suggest that adolescents who use multiple tobacco products are likely to continue such use as they move into young adulthood. When addressing tobacco use among adolescents and young adults, multiple forms of tobacco use should be considered. PMID:26361752
The exit-time problem for a Markov jump process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burch, N.; D'Elia, Marta; Lehoucq, Richard B.
2014-12-15
The purpose of our paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developedmore » nonlocal vector calculus. Furthermore, this calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.« less
Chaotic itinerancy and power-law residence time distribution in stochastic dynamical systems.
Namikawa, Jun
2005-08-01
Chaotic itinerant motion among varieties of ordered states is described by a stochastic model based on the mechanism of chaotic itinerancy. The model consists of a random walk on a half-line and a Markov chain with a transition probability matrix. The stability of attractor ruin in the model is investigated by analyzing the residence time distribution of orbits at attractor ruins. It is shown that the residence time distribution averaged over all attractor ruins can be described by the superposition of (truncated) power-law distributions if the basin of attraction for each attractor ruin has a zero measure. This result is confirmed by simulation of models exhibiting chaotic itinerancy. Chaotic itinerancy is also shown to be absent in coupled Milnor attractor systems if the transition probability among attractor ruins can be represented as a Markov chain.
Hidden Markov models for fault detection in dynamic systems
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J. (Inventor)
1995-01-01
The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) (vertical bar)/x), 1 less than or equal to i isless than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.
Hidden Markov models for fault detection in dynamic systems
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J. (Inventor)
1993-01-01
The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) perpendicular to x), 1 less than or equal to i is less than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.
NASA Astrophysics Data System (ADS)
Lu, Jianbo; Li, Dewei; Xi, Yugeng
2013-07-01
This article is concerned with probability-based constrained model predictive control (MPC) for systems with both structured uncertainties and time delays, where a random input delay and multiple fixed state delays are included. The process of input delay is governed by a discrete-time finite-state Markov chain. By invoking an appropriate augmented state, the system is transformed into a standard structured uncertain time-delay Markov jump linear system (MJLS). For the resulting system, a multi-step feedback control law is utilised to minimise an upper bound on the expected value of performance objective. The proposed design has been proved to stabilise the closed-loop system in the mean square sense and to guarantee constraints on control inputs and system states. Finally, a numerical example is given to illustrate the proposed results.
Stochastic models for the Trojan Y-Chromosome eradication strategy of an invasive species.
Wang, Xueying; Walton, Jay R; Parshad, Rana D
2016-01-01
The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we develop a Markov jump process model for this strategy, and we verify that there is a positive probability for wild-type females going extinct within a finite time. Moreover, when sex-reversed Trojan females are introduced at a constant population size, we formulate a stochastic differential equation (SDE) model as an approximation to the proposed Markov jump process model. Using the SDE model, we investigate the probability distribution and expectation of the extinction time of wild-type females by solving Kolmogorov equations associated with these statistics. The results indicate how the probability distribution and expectation of the extinction time are shaped by the initial conditions and the model parameters.
Pyvolve: A Flexible Python Module for Simulating Sequences along Phylogenies.
Spielman, Stephanie J; Wilke, Claus O
2015-01-01
We introduce Pyvolve, a flexible Python module for simulating genetic data along a phylogeny using continuous-time Markov models of sequence evolution. Easily incorporated into Python bioinformatics pipelines, Pyvolve can simulate sequences according to most standard models of nucleotide, amino-acid, and codon sequence evolution. All model parameters are fully customizable. Users can additionally specify custom evolutionary models, with custom rate matrices and/or states to evolve. This flexibility makes Pyvolve a convenient framework not only for simulating sequences under a wide variety of conditions, but also for developing and testing new evolutionary models. Pyvolve is an open-source project under a FreeBSD license, and it is available for download, along with a detailed user-manual and example scripts, from http://github.com/sjspielman/pyvolve.
Wan, Wai-Yin; Chan, Jennifer S K
2009-08-01
For time series of count data, correlated measurements, clustering as well as excessive zeros occur simultaneously in biomedical applications. Ignoring such effects might contribute to misleading treatment outcomes. A generalized mixture Poisson geometric process (GMPGP) model and a zero-altered mixture Poisson geometric process (ZMPGP) model are developed from the geometric process model, which was originally developed for modelling positive continuous data and was extended to handle count data. These models are motivated by evaluating the trend development of new tumour counts for bladder cancer patients as well as by identifying useful covariates which affect the count level. The models are implemented using Bayesian method with Markov chain Monte Carlo (MCMC) algorithms and are assessed using deviance information criterion (DIC).
Semi-Markov adjunction to the Computer-Aided Markov Evaluator (CAME)
NASA Technical Reports Server (NTRS)
Rosch, Gene; Hutchins, Monica A.; Leong, Frank J.; Babcock, Philip S., IV
1988-01-01
The rule-based Computer-Aided Markov Evaluator (CAME) program was expanded in its ability to incorporate the effect of fault-handling processes into the construction of a reliability model. The fault-handling processes are modeled as semi-Markov events and CAME constructs and appropriate semi-Markov model. To solve the model, the program outputs it in a form which can be directly solved with the Semi-Markov Unreliability Range Evaluator (SURE) program. As a means of evaluating the alterations made to the CAME program, the program is used to model the reliability of portions of the Integrated Airframe/Propulsion Control System Architecture (IAPSA 2) reference configuration. The reliability predictions are compared with a previous analysis. The results bear out the feasibility of utilizing CAME to generate appropriate semi-Markov models to model fault-handling processes.
Traffic Video Image Segmentation Model Based on Bayesian and Spatio-Temporal Markov Random Field
NASA Astrophysics Data System (ADS)
Zhou, Jun; Bao, Xu; Li, Dawei; Yin, Yongwen
2017-10-01
Traffic video image is a kind of dynamic image and its background and foreground is changed at any time, which results in the occlusion. In this case, using the general method is more difficult to get accurate image segmentation. A segmentation algorithm based on Bayesian and Spatio-Temporal Markov Random Field is put forward, which respectively build the energy function model of observation field and label field to motion sequence image with Markov property, then according to Bayesian' rule, use the interaction of label field and observation field, that is the relationship of label field’s prior probability and observation field’s likelihood probability, get the maximum posterior probability of label field’s estimation parameter, use the ICM model to extract the motion object, consequently the process of segmentation is finished. Finally, the segmentation methods of ST - MRF and the Bayesian combined with ST - MRF were analyzed. Experimental results: the segmentation time in Bayesian combined with ST-MRF algorithm is shorter than in ST-MRF, and the computing workload is small, especially in the heavy traffic dynamic scenes the method also can achieve better segmentation effect.
NASA Astrophysics Data System (ADS)
Sugiyanto; Zukhronah, E.; Sari, S. P.
2018-05-01
Financial crisis has hit Indonesia for several times resulting the needs for an early detection system to minimize the impact. One of many methods that can be used to detect the crisis is to model the crisis indicators using combination of volatility and Markov switching models [5]. There are some indicators that can be used to detect financial crisis. Three of them are the difference between interest rate on deposit and lending, the real interest rate on deposit, and the difference between real BI rate and real Fed rate which can be referred as banking condition indicators. Volatility model used to overcome the conditional variance that change over time. Combination of volatility and Markov switching models used to detect condition change on the data. The smoothed probability from the combined models can be used to detect the crisis. This research resulted that the best combined volatility and Markov switching models for the three indicators are MS-GARCH(3,1,1) models with three states assumption. Crises in mid of 1997 until 1998 has successfully detected with a certain range of smoothed probability value for the three indicators.
NASA Astrophysics Data System (ADS)
Snyder, Morgan E.; Waldron, John W. F.
2018-03-01
The deformation history of the Upper Paleozoic Maritimes Basin, Atlantic Canada, can be partially unraveled by examining fractures (joints, veins, and faults) that are well exposed on the shorelines of the macrotidal Bay of Fundy, in subsurface core, and on image logs. Data were collected from coastal outcrops and well core across the Windsor-Kennetcook subbasin, a subbasin in the Maritimes Basin, using the circular scan-line and vertical scan-line methods in outcrop, and FMI Image log analysis of core. We use cross-cutting and abutting relationships between fractures to understand relative timing of fracturing, followed by a statistical test (Markov chain analysis) to separate groups of fractures. This analysis, previously used in sedimentology, was modified to statistically test the randomness of fracture timing relationships. The results of the Markov chain analysis suggest that fracture initiation can be attributed to movement along the Minas Fault Zone, an E-W fault system that bounds the Windsor-Kennetcook subbasin to the north. Four sets of fractures are related to dextral strike slip along the Minas Fault Zone in the late Paleozoic, and four sets are related to sinistral reactivation of the same boundary in the Mesozoic.
Logofet, D O; Evstigneev, O I; Aleĭnikov, A A; Morozova, A O
2014-01-01
A homogeneous Markov chain of three aggregated states "pond--swamp--wood" is proposed as a model of cyclic zoogenic successions caused by beaver (Castor fiber L.) life activity in a forest biogeocoenosis. To calibrate the chain transition matrix, the data have appeared sufficient that were gained from field studies undertaken in "Bryanskii Les" Reserve in the years of 2002-2008. Major outcomes of the calibrated model ensue from the formulae of finite homogeneous Markov chain theory: the stationary probability distribution of states, thematrix (T) of mean first passage times, and the mean durations (M(j)) of succession stages. The former illustrates the distribution of relative areas under succession stages if the current trends and transition rates of succession are conserved in the long-term--it has appeared close to the observed distribution. Matrix T provides for quantitative characteristics of the cyclic process, specifying the ranges the experts proposed for the duration of stages in the conceptual scheme of succession. The calculated values of M(j) detect potential discrepancies between empirical data, the expert knowledge that summarizes the data, and the postulates accepted in the mathematical model. The calculated M2 value falls outside the expert range, which gives a reason to doubt the validity of expert estimation proposed, the aggregation mode chosen for chain states, or/and the accuracy-of data available, i.e., to draw certain "lessons" from partially successful calibration. Refusal to postulate the time homogeneity or the Markov property of the chain is also discussed among possible ways to improve the model.
Asymptotic inference in system identification for the atom maser.
Catana, Catalin; van Horssen, Merlijn; Guta, Madalin
2012-11-28
System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.
NASA Astrophysics Data System (ADS)
Taj, D.; Iotti, R. C.; Rossi, F.
2009-11-01
We shall revisit the conventional adiabatic or Markov approximation, which — contrary to the semiclassical case- does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally addressed by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, able to provide a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, our procedure guarantees a positive evolution for a variety of physical subsystem (including the common partial trace), and quantum scattering rates are well defined even for subsystems with internal structure/ continuous energy spectrum. We shall compare the proposed Markov dissipation model with the conventional one also through basic simulations of energy-relaxation versus decoherence channels in prototypical semiconductor nanodevices.
Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy
NASA Astrophysics Data System (ADS)
Sharma, Sanjib
2017-08-01
Markov Chain Monte Carlo based Bayesian data analysis has now become the method of choice for analyzing and interpreting data in almost all disciplines of science. In astronomy, over the last decade, we have also seen a steady increase in the number of papers that employ Monte Carlo based Bayesian analysis. New, efficient Monte Carlo based methods are continuously being developed and explored. In this review, we first explain the basics of Bayesian theory and discuss how to set up data analysis problems within this framework. Next, we provide an overview of various Monte Carlo based methods for performing Bayesian data analysis. Finally, we discuss advanced ideas that enable us to tackle complex problems and thus hold great promise for the future. We also distribute downloadable computer software (available at https://github.com/sanjibs/bmcmc/ ) that implements some of the algorithms and examples discussed here.
Stochastic entrainment of a stochastic oscillator.
Wang, Guanyu; Peskin, Charles S
2015-01-01
In this work, we consider a stochastic oscillator described by a discrete-state continuous-time Markov chain, in which the states are arranged in a circle, and there is a constant probability per unit time of jumping from one state to the next in a specified direction around the circle. At each of a sequence of equally spaced times, the oscillator has a specified probability of being reset to a particular state. The focus of this work is the entrainment of the oscillator by this periodic but stochastic stimulus. We consider a distinguished limit, in which (i) the number of states of the oscillator approaches infinity, as does the probability per unit time of jumping from one state to the next, so that the natural mean period of the oscillator remains constant, (ii) the resetting probability approaches zero, and (iii) the period of the resetting signal approaches a multiple, by a ratio of small integers, of the natural mean period of the oscillator. In this distinguished limit, we use analytic and numerical methods to study the extent to which entrainment occurs.
Poissonian steady states: from stationary densities to stationary intensities.
Eliazar, Iddo
2012-10-01
Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.
Poissonian steady states: From stationary densities to stationary intensities
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2012-10-01
Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.
Dynamical complexity of short and noisy time series. Compression-Complexity vs. Shannon entropy
NASA Astrophysics Data System (ADS)
Nagaraj, Nithin; Balasubramanian, Karthi
2017-07-01
Shannon entropy has been extensively used for characterizing complexity of time series arising from chaotic dynamical systems and stochastic processes such as Markov chains. However, for short and noisy time series, Shannon entropy performs poorly. Complexity measures which are based on lossless compression algorithms are a good substitute in such scenarios. We evaluate the performance of two such Compression-Complexity Measures namely Lempel-Ziv complexity (LZ) and Effort-To-Compress (ETC) on short time series from chaotic dynamical systems in the presence of noise. Both LZ and ETC outperform Shannon entropy (H) in accurately characterizing the dynamical complexity of such systems. For very short binary sequences (which arise in neuroscience applications), ETC has higher number of distinct complexity values than LZ and H, thus enabling a finer resolution. For two-state ergodic Markov chains, we empirically show that ETC converges to a steady state value faster than LZ. Compression-Complexity measures are promising for applications which involve short and noisy time series.
a Probability Model for Drought Prediction Using Fusion of Markov Chain and SAX Methods
NASA Astrophysics Data System (ADS)
Jouybari-Moghaddam, Y.; Saradjian, M. R.; Forati, A. M.
2017-09-01
Drought is one of the most powerful natural disasters which are affected on different aspects of the environment. Most of the time this phenomenon is immense in the arid and semi-arid area. Monitoring and prediction the severity of the drought can be useful in the management of the natural disaster caused by drought. Many indices were used in predicting droughts such as SPI, VCI, and TVX. In this paper, based on three data sets (rainfall, NDVI, and land surface temperature) which are acquired from MODIS satellite imagery, time series of SPI, VCI, and TVX in time limited between winters 2000 to summer 2015 for the east region of Isfahan province were created. Using these indices and fusion of symbolic aggregation approximation and hidden Markov chain drought was predicted for fall 2015. For this purpose, at first, each time series was transformed into the set of quality data based on the state of drought (5 group) by using SAX algorithm then the probability matrix for the future state was created by using Markov hidden chain. The fall drought severity was predicted by fusion the probability matrix and state of drought severity in summer 2015. The prediction based on the likelihood for each state of drought includes severe drought, middle drought, normal drought, severe wet and middle wet. The analysis and experimental result from proposed algorithm show that the product of this algorithm is acceptable and the proposed algorithm is appropriate and efficient for predicting drought using remote sensor data.
NASA Astrophysics Data System (ADS)
Quan, Austin; Osorio, Ivan; Ohira, Toru; Milton, John
2011-12-01
Resonance can occur in bistable dynamical systems due to the interplay between noise and delay (τ) in the absence of a periodic input. We investigate resonance in a two-neuron model with mutual time-delayed inhibitory feedback. For appropriate choices of the parameters and inputs three fixed-point attractors co-exist: two are stable and one is unstable. In the absence of noise, delay-induced transient oscillations (referred to herein as DITOs) arise whenever the initial function is tuned sufficiently close to the unstable fixed-point. In the presence of noisy perturbations, DITOs arise spontaneously. Since the correlation time for the stationary dynamics is ˜τ, we approximated a higher order Markov process by a three-state Markov chain model by rescaling time as t → 2sτ, identifying the states based on whether the sub-intervals were completely confined to one basin of attraction (the two stable attractors) or straddled the separatrix, and then determining the transition probability matrix empirically. The resultant Markov chain model captured the switching behaviors including the statistical properties of the DITOs. Our observations indicate that time-delayed and noisy bistable dynamical systems are prone to generate DITOs as switches between the two attractors occur. Bistable systems arise transiently in situations when one attractor is gradually replaced by another. This may explain, for example, why seizures in certain epileptic syndromes tend to occur as sleep stages change.
On a Result for Finite Markov Chains
ERIC Educational Resources Information Center
Kulathinal, Sangita; Ghosh, Lagnojita
2006-01-01
In an undergraduate course on stochastic processes, Markov chains are discussed in great detail. Textbooks on stochastic processes provide interesting properties of finite Markov chains. This note discusses one such property regarding the number of steps in which a state is reachable or accessible from another state in a finite Markov chain with M…
The Markov blankets of life: autonomy, active inference and the free energy principle
Palacios, Ensor; Friston, Karl; Kiverstein, Julian
2018-01-01
This work addresses the autonomous organization of biological systems. It does so by considering the boundaries of biological systems, from individual cells to Home sapiens, in terms of the presence of Markov blankets under the active inference scheme—a corollary of the free energy principle. A Markov blanket defines the boundaries of a system in a statistical sense. Here we consider how a collective of Markov blankets can self-assemble into a global system that itself has a Markov blanket; thereby providing an illustration of how autonomous systems can be understood as having layers of nested and self-sustaining boundaries. This allows us to show that: (i) any living system is a Markov blanketed system and (ii) the boundaries of such systems need not be co-extensive with the biophysical boundaries of a living organism. In other words, autonomous systems are hierarchically composed of Markov blankets of Markov blankets—all the way down to individual cells, all the way up to you and me, and all the way out to include elements of the local environment. PMID:29343629
Multi-Observation Continuous Density Hidden Markov Models for Anomaly Detection in Full Motion Video
2012-06-01
response profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5 Method for measuring angular movement versus average direction...of movement 49 3.6 Method for calculating Angular Deviation, Θ . . . . . . . . . . . . . . . . . . 50 4.1 HMM produced by K Means Learning for agent H... Angular Deviation. A random variable, the difference in heading (in degrees) from the overall direction of movement over the sequence • S : Speed. A
Mo Zhou; Joseph Buongiorno; Jingjing Liang
2012-01-01
Besides the market value of timber, forests provide substantial nonmarket benefits, especially with continuous-cover silviculture, which have long been acknowledged by forest managers. They include wildlife habitat (e.g. Bevers and Hof 1999), carbon sequestration (e.g. Dewar and Cannell 1992), biodiversity (e.g. Kangas and Kuusipalo 1993; Austin and Meyers 1999),...
NASA Astrophysics Data System (ADS)
Dong, Sheng; Chi, Kun; Zhang, Qiyi; Zhang, Xiangdong
2012-03-01
Compared with traditional real-time forecasting, this paper proposes a Grey Markov Model (GMM) to forecast the maximum water levels at hydrological stations in the estuary area. The GMM combines the Grey System and Markov theory into a higher precision model. The GMM takes advantage of the Grey System to predict the trend values and uses the Markov theory to forecast fluctuation values, and thus gives forecast results involving two aspects of information. The procedure for forecasting annul maximum water levels with the GMM contains five main steps: 1) establish the GM (1, 1) model based on the data series; 2) estimate the trend values; 3) establish a Markov Model based on relative error series; 4) modify the relative errors caused in step 2, and then obtain the relative errors of the second order estimation; 5) compare the results with measured data and estimate the accuracy. The historical water level records (from 1960 to 1992) at Yuqiao Hydrological Station in the estuary area of the Haihe River near Tianjin, China are utilized to calibrate and verify the proposed model according to the above steps. Every 25 years' data are regarded as a hydro-sequence. Eight groups of simulated results show reasonable agreement between the predicted values and the measured data. The GMM is also applied to the 10 other hydrological stations in the same estuary. The forecast results for all of the hydrological stations are good or acceptable. The feasibility and effectiveness of this new forecasting model have been proved in this paper.
Entanglement revival can occur only when the system-environment state is not a Markov state
NASA Astrophysics Data System (ADS)
Sargolzahi, Iman
2018-06-01
Markov states have been defined for tripartite quantum systems. In this paper, we generalize the definition of the Markov states to arbitrary multipartite case and find the general structure of an important subset of them, which we will call strong Markov states. In addition, we focus on an important property of the Markov states: If the initial state of the whole system-environment is a Markov state, then each localized dynamics of the whole system-environment reduces to a localized subdynamics of the system. This provides us a necessary condition for entanglement revival in an open quantum system: Entanglement revival can occur only when the system-environment state is not a Markov state. To illustrate (a part of) our results, we consider the case that the environment is modeled as classical. In this case, though the correlation between the system and the environment remains classical during the evolution, the change of the state of the system-environment, from its initial Markov state to a state which is not a Markov one, leads to the entanglement revival in the system. This shows that the non-Markovianity of a state is not equivalent to the existence of non-classical correlation in it, in general.
Punzo, Antonio; Ingrassia, Salvatore; Maruotti, Antonello
2018-04-22
A time-varying latent variable model is proposed to jointly analyze multivariate mixed-support longitudinal data. The proposal can be viewed as an extension of hidden Markov regression models with fixed covariates (HMRMFCs), which is the state of the art for modelling longitudinal data, with a special focus on the underlying clustering structure. HMRMFCs are inadequate for applications in which a clustering structure can be identified in the distribution of the covariates, as the clustering is independent from the covariates distribution. Here, hidden Markov regression models with random covariates are introduced by explicitly specifying state-specific distributions for the covariates, with the aim of improving the recovering of the clusters in the data with respect to a fixed covariates paradigm. The hidden Markov regression models with random covariates class is defined focusing on the exponential family, in a generalized linear model framework. Model identifiability conditions are sketched, an expectation-maximization algorithm is outlined for parameter estimation, and various implementation and operational issues are discussed. Properties of the estimators of the regression coefficients, as well as of the hidden path parameters, are evaluated through simulation experiments and compared with those of HMRMFCs. The method is applied to physical activity data. Copyright © 2018 John Wiley & Sons, Ltd.
Inferring animal densities from tracking data using Markov chains.
Whitehead, Hal; Jonsen, Ian D
2013-01-01
The distributions and relative densities of species are keys to ecology. Large amounts of tracking data are being collected on a wide variety of animal species using several methods, especially electronic tags that record location. These tracking data are effectively used for many purposes, but generally provide biased measures of distribution, because the starts of the tracks are not randomly distributed among the locations used by the animals. We introduce a simple Markov-chain method that produces unbiased measures of relative density from tracking data. The density estimates can be over a geographical grid, and/or relative to environmental measures. The method assumes that the tracked animals are a random subset of the population in respect to how they move through the habitat cells, and that the movements of the animals among the habitat cells form a time-homogenous Markov chain. We illustrate the method using simulated data as well as real data on the movements of sperm whales. The simulations illustrate the bias introduced when the initial tracking locations are not randomly distributed, as well as the lack of bias when the Markov method is used. We believe that this method will be important in giving unbiased estimates of density from the growing corpus of animal tracking data.
Poisson-Box Sampling algorithms for three-dimensional Markov binary mixtures
NASA Astrophysics Data System (ADS)
Larmier, Coline; Zoia, Andrea; Malvagi, Fausto; Dumonteil, Eric; Mazzolo, Alain
2018-02-01
Particle transport in Markov mixtures can be addressed by the so-called Chord Length Sampling (CLS) methods, a family of Monte Carlo algorithms taking into account the effects of stochastic media on particle propagation by generating on-the-fly the material interfaces crossed by the random walkers during their trajectories. Such methods enable a significant reduction of computational resources as opposed to reference solutions obtained by solving the Boltzmann equation for a large number of realizations of random media. CLS solutions, which neglect correlations induced by the spatial disorder, are faster albeit approximate, and might thus show discrepancies with respect to reference solutions. In this work we propose a new family of algorithms (called 'Poisson Box Sampling', PBS) aimed at improving the accuracy of the CLS approach for transport in d-dimensional binary Markov mixtures. In order to probe the features of PBS methods, we will focus on three-dimensional Markov media and revisit the benchmark problem originally proposed by Adams, Larsen and Pomraning [1] and extended by Brantley [2]: for these configurations we will compare reference solutions, standard CLS solutions and the new PBS solutions for scalar particle flux, transmission and reflection coefficients. PBS will be shown to perform better than CLS at the expense of a reasonable increase in computational time.
Optimized mixed Markov models for motif identification
Huang, Weichun; Umbach, David M; Ohler, Uwe; Li, Leping
2006-01-01
Background Identifying functional elements, such as transcriptional factor binding sites, is a fundamental step in reconstructing gene regulatory networks and remains a challenging issue, largely due to limited availability of training samples. Results We introduce a novel and flexible model, the Optimized Mixture Markov model (OMiMa), and related methods to allow adjustment of model complexity for different motifs. In comparison with other leading methods, OMiMa can incorporate more than the NNSplice's pairwise dependencies; OMiMa avoids model over-fitting better than the Permuted Variable Length Markov Model (PVLMM); and OMiMa requires smaller training samples than the Maximum Entropy Model (MEM). Testing on both simulated and actual data (regulatory cis-elements and splice sites), we found OMiMa's performance superior to the other leading methods in terms of prediction accuracy, required size of training data or computational time. Our OMiMa system, to our knowledge, is the only motif finding tool that incorporates automatic selection of the best model. OMiMa is freely available at [1]. Conclusion Our optimized mixture of Markov models represents an alternative to the existing methods for modeling dependent structures within a biological motif. Our model is conceptually simple and effective, and can improve prediction accuracy and/or computational speed over other leading methods. PMID:16749929
NASA Astrophysics Data System (ADS)
Cassisi, Carmelo; Prestifilippo, Michele; Cannata, Andrea; Montalto, Placido; Patanè, Domenico; Privitera, Eugenio
2016-07-01
From January 2011 to December 2015, Mt. Etna was mainly characterized by a cyclic eruptive behavior with more than 40 lava fountains from New South-East Crater. Using the RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area, an automatic recognition of the different states of volcanic activity (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN) has been applied for monitoring purposes. Since values of the RMS time series calculated on the seismic signal are generated from a stochastic process, we can try to model the system generating its sampled values, assumed to be a Markov process, using Hidden Markov Models (HMMs). HMMs analysis seeks to recover the sequence of hidden states from the observations. In our framework, observations are characters generated by the Symbolic Aggregate approXimation (SAX) technique, which maps RMS time series values with symbols of a pre-defined alphabet. The main advantages of the proposed framework, based on HMMs and SAX, with respect to other automatic systems applied on seismic signals at Mt. Etna, are the use of multiple stations and static thresholds to well characterize the volcano states. Its application on a wide seismic dataset of Etna volcano shows the possibility to guess the volcano states. The experimental results show that, in most of the cases, we detected lava fountains in advance.
NASA Astrophysics Data System (ADS)
Maginnis, P. A.; West, M.; Dullerud, G. E.
2016-10-01
We propose an algorithm to accelerate Monte Carlo simulation for a broad class of stochastic processes. Specifically, the class of countable-state, discrete-time Markov chains driven by additive Poisson noise, or lattice discrete-time Markov chains. In particular, this class includes simulation of reaction networks via the tau-leaping algorithm. To produce the speedup, we simulate pairs of fair-draw trajectories that are negatively correlated. Thus, when averaged, these paths produce an unbiased Monte Carlo estimator that has reduced variance and, therefore, reduced error. Numerical results for three example systems included in this work demonstrate two to four orders of magnitude reduction of mean-square error. The numerical examples were chosen to illustrate different application areas and levels of system complexity. The areas are: gene expression (affine state-dependent rates), aerosol particle coagulation with emission and human immunodeficiency virus infection (both with nonlinear state-dependent rates). Our algorithm views the system dynamics as a ;black-box;, i.e., we only require control of pseudorandom number generator inputs. As a result, typical codes can be retrofitted with our algorithm using only minor changes. We prove several analytical results. Among these, we characterize the relationship of covariances between paths in the general nonlinear state-dependent intensity rates case, and we prove variance reduction of mean estimators in the special case of affine intensity rates.
A Stable Clock Error Model Using Coupled First and Second Order Gauss-Markov Processes
NASA Technical Reports Server (NTRS)
Carpenter, Russell; Lee, Taesul
2008-01-01
Long data outages may occur in applications of global navigation satellite system technology to orbit determination for missions that spend significant fractions of their orbits above the navigation satellite constellation(s). Current clock error models based on the random walk idealization may not be suitable in these circumstances, since the covariance of the clock errors may become large enough to overflow flight computer arithmetic. A model that is stable, but which approximates the existing models over short time horizons is desirable. A coupled first- and second-order Gauss-Markov process is such a model.
A novel seizure detection algorithm informed by hidden Markov model event states
NASA Astrophysics Data System (ADS)
Baldassano, Steven; Wulsin, Drausin; Ung, Hoameng; Blevins, Tyler; Brown, Mesha-Gay; Fox, Emily; Litt, Brian
2016-06-01
Objective. Recently the FDA approved the first responsive, closed-loop intracranial device to treat epilepsy. Because these devices must respond within seconds of seizure onset and not miss events, they are tuned to have high sensitivity, leading to frequent false positive stimulations and decreased battery life. In this work, we propose a more robust seizure detection model. Approach. We use a Bayesian nonparametric Markov switching process to parse intracranial EEG (iEEG) data into distinct dynamic event states. Each event state is then modeled as a multidimensional Gaussian distribution to allow for predictive state assignment. By detecting event states highly specific for seizure onset zones, the method can identify precise regions of iEEG data associated with the transition to seizure activity, reducing false positive detections associated with interictal bursts. The seizure detection algorithm was translated to a real-time application and validated in a small pilot study using 391 days of continuous iEEG data from two dogs with naturally occurring, multifocal epilepsy. A feature-based seizure detector modeled after the NeuroPace RNS System was developed as a control. Main results. Our novel seizure detection method demonstrated an improvement in false negative rate (0/55 seizures missed versus 2/55 seizures missed) as well as a significantly reduced false positive rate (0.0012 h versus 0.058 h-1). All seizures were detected an average of 12.1 ± 6.9 s before the onset of unequivocal epileptic activity (unequivocal epileptic onset (UEO)). Significance. This algorithm represents a computationally inexpensive, individualized, real-time detection method suitable for implantable antiepileptic devices that may considerably reduce false positive rate relative to current industry standards.
A methodology for stochastic analysis of share prices as Markov chains with finite states.
Mettle, Felix Okoe; Quaye, Enoch Nii Boi; Laryea, Ravenhill Adjetey
2014-01-01
Price volatilities make stock investments risky, leaving investors in critical position when uncertain decision is made. To improve investor evaluation confidence on exchange markets, while not using time series methodology, we specify equity price change as a stochastic process assumed to possess Markov dependency with respective state transition probabilities matrices following the identified state pace (i.e. decrease, stable or increase). We established that identified states communicate, and that the chains are aperiodic and ergodic thus possessing limiting distributions. We developed a methodology for determining expected mean return time for stock price increases and also establish criteria for improving investment decision based on highest transition probabilities, lowest mean return time and highest limiting distributions. We further developed an R algorithm for running the methodology introduced. The established methodology is applied to selected equities from Ghana Stock Exchange weekly trading data.
Motion of kinesin in a viscoelastic medium
NASA Astrophysics Data System (ADS)
Knoops, Gert; Vanderzande, Carlo
2018-05-01
Kinesin is a molecular motor that transports cargo along microtubules. The results of many in vitro experiments on kinesin-1 are described by kinetic models in which one transition corresponds to the forward motion and subsequent binding of the tethered motor head. We argue that in a viscoelastic medium like the cytosol of a cell this step is not Markov and has to be described by a nonexponential waiting time distribution. We introduce a semi-Markov kinetic model for kinesin that takes this effect into account. We calculate, for arbitrary waiting time distributions, the moment generating function of the number of steps made, and determine from this the average velocity and the diffusion constant of the motor. We illustrate our results for the case of a waiting time distribution that is Weibull. We find that for realistic parameter values, viscoelasticity decreases the velocity and the diffusion constant, but increases the randomness (or Fano factor).
Online kinematic regulation by visual feedback for grasp versus transport during reach-to-pinch
Nataraj, Raviraj; Pasluosta, Cristian; Li, Zong-Ming
2014-01-01
Purpose This study investigated novel kinematic performance parameters to understand regulation by visual feedback (VF) of the reaching hand on the grasp and transport components during the reach-to-pinch maneuver. Conventional metrics often signify discrete movement features to postulate sensory-based control effects (e.g., time for maximum velocity to signify feedback delay). The presented metrics of this study were devised to characterize relative vision-based control of the sub-movements across the entire maneuver. Methods Movement performance was assessed according to reduced variability and increased efficiency of kinematic trajectories. Variability was calculated as the standard deviation about the observed mean trajectory for a given subject and VF condition across kinematic derivatives for sub-movements of inter-pad grasp (distance between thumb and index finger-pads; relative orientation of finger-pads) and transport (distance traversed by wrist). A Markov analysis then examined the probabilistic effect of VF on which movement component exhibited higher variability over phases of the complete maneuver. Jerk-based metrics of smoothness (minimal jerk) and energy (integrated jerk-squared) were applied to indicate total movement efficiency with VF. Results/Discussion The reductions in grasp variability metrics with VF were significantly greater (p<0.05) compared to transport for velocity, acceleration, and jerk, suggesting separate control pathways for each component. The Markov analysis indicated that VF preferentially regulates grasp over transport when continuous control is modeled probabilistically during the movement. Efficiency measures demonstrated VF to be more integral for early motor planning of grasp than transport in producing greater increases in smoothness and trajectory adjustments (i.e., jerk-energy) early compared to late in the movement cycle. Conclusions These findings demonstrate the greater regulation by VF on kinematic performance of grasp compared to transport and how particular features of this relativistic control occur continually over the maneuver. Utilizing the advanced performance metrics presented in this study facilitated characterization of VF effects continuously across the entire movement in corroborating the notion of separate control pathways for each component. PMID:24968371
Bayesian functional integral method for inferring continuous data from discrete measurements.
Heuett, William J; Miller, Bernard V; Racette, Susan B; Holloszy, John O; Chow, Carson C; Periwal, Vipul
2012-02-08
Inference of the insulin secretion rate (ISR) from C-peptide measurements as a quantification of pancreatic β-cell function is clinically important in diseases related to reduced insulin sensitivity and insulin action. ISR derived from C-peptide concentration is an example of nonparametric Bayesian model selection where a proposed ISR time-course is considered to be a "model". An inferred value of inaccessible continuous variables from discrete observable data is often problematic in biology and medicine, because it is a priori unclear how robust the inference is to the deletion of data points, and a closely related question, how much smoothness or continuity the data actually support. Predictions weighted by the posterior distribution can be cast as functional integrals as used in statistical field theory. Functional integrals are generally difficult to evaluate, especially for nonanalytic constraints such as positivity of the estimated parameters. We propose a computationally tractable method that uses the exact solution of an associated likelihood function as a prior probability distribution for a Markov-chain Monte Carlo evaluation of the posterior for the full model. As a concrete application of our method, we calculate the ISR from actual clinical C-peptide measurements in human subjects with varying degrees of insulin sensitivity. Our method demonstrates the feasibility of functional integral Bayesian model selection as a practical method for such data-driven inference, allowing the data to determine the smoothing timescale and the width of the prior probability distribution on the space of models. In particular, our model comparison method determines the discrete time-step for interpolation of the unobservable continuous variable that is supported by the data. Attempts to go to finer discrete time-steps lead to less likely models. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Carter, Marissa J; Gilligan, Adrienne M; Waycaster, Curtis R; Schaum, Kathleen; Fife, Caroline E
2017-03-01
The purpose of this study was to determine the cost effectiveness (from a payer's perspective) of adding clostridial collagenase ointment (CCO) to selective debridement compared with selective debridement alone (non-CCO) in the treatment of stage IV pressure ulcers among patients identified from the US Wound Registry. A 3-state Markov model was developed to determine costs and outcomes between the CCO and non-CCO groups over a 2-year time horizon. Outcome data were derived from a retrospective clinical study and included the proportion of pressure ulcers that were closed (epithelialized) over 2 years and the time to wound closure. Transition probabilities for the Markov states were estimated from the clinical study. In the Markov model, the clinical outcome is presented as ulcer-free weeks, which represents the time the wound is in the epithelialized state. Costs for each 4-week cycle were based on frequencies of clinic visits, debridement, and CCO application rates from the clinical study. The final model outputs were cumulative costs (in US dollars), clinical outcome (ulcer-free weeks), and incremental cost-effectiveness ratio (ICER) at 2 years. Compared with the non-CCO group, the CCO group incurred lower costs ($11,151 vs $17,596) and greater benefits (33.9 vs 16.8 ulcer-free weeks), resulting in an economically dominant ICER of -$375 per ulcer. Thus, for each additional ulcer-free week that can be gained, there is a concurrent cost savings of $375 if CCO treatment is selected. Over a 2-year period, an additional 17.2 ulcer-free weeks can be gained with concurrent cost savings of $6,445 for each patient. In this Markov model based on real-world data from the US Wound Registry, the addition of CCO to selective debridement in the treatment of pressure ulcers was economically dominant over selective debridement alone, resulting in greater benefit to the patient at lower cost.
When to stop managing or surveying cryptic threatened species
Chadès, Iadine; McDonald-Madden, Eve; McCarthy, Michael A.; Wintle, Brendan; Linkie, Matthew; Possingham, Hugh P.
2008-01-01
Threatened species become increasingly difficult to detect as their populations decline. Managers of such cryptic threatened species face several dilemmas: if they are not sure the species is present, should they continue to manage for that species or invest the limited resources in surveying? We find optimal solutions to this problem using a Partially Observable Markov Decision Process and rules of thumb derived from an analytical approximation. We discover that managing a protected area for a cryptic threatened species can be optimal even if we are not sure the species is present. The more threatened and valuable the species is, relative to the costs of management, the more likely we are to manage this species without determining its continued persistence by using surveys. If a species remains unseen, our belief in the persistence of the species declines to a point where the optimal strategy is to shift resources from saving the species to surveying for it. Finally, when surveys lead to a sufficiently low belief that the species is extant, we surrender resources to other conservation actions. We illustrate our findings with a case study using parameters based on the critically endangered Sumatran tiger (Panthera tigris sumatrae), and we generate rules of thumb on how to allocate conservation effort for any cryptic species. Using Partially Observable Markov Decision Processes in conservation science, we determine the conditions under which it is better to abandon management for that species because our belief that it continues to exist is too low. PMID:18779594
When to stop managing or surveying cryptic threatened species.
Chadès, Iadine; McDonald-Madden, Eve; McCarthy, Michael A; Wintle, Brendan; Linkie, Matthew; Possingham, Hugh P
2008-09-16
Threatened species become increasingly difficult to detect as their populations decline. Managers of such cryptic threatened species face several dilemmas: if they are not sure the species is present, should they continue to manage for that species or invest the limited resources in surveying? We find optimal solutions to this problem using a Partially Observable Markov Decision Process and rules of thumb derived from an analytical approximation. We discover that managing a protected area for a cryptic threatened species can be optimal even if we are not sure the species is present. The more threatened and valuable the species is, relative to the costs of management, the more likely we are to manage this species without determining its continued persistence by using surveys. If a species remains unseen, our belief in the persistence of the species declines to a point where the optimal strategy is to shift resources from saving the species to surveying for it. Finally, when surveys lead to a sufficiently low belief that the species is extant, we surrender resources to other conservation actions. We illustrate our findings with a case study using parameters based on the critically endangered Sumatran tiger (Panthera tigris sumatrae), and we generate rules of thumb on how to allocate conservation effort for any cryptic species. Using Partially Observable Markov Decision Processes in conservation science, we determine the conditions under which it is better to abandon management for that species because our belief that it continues to exist is too low.
Robertson, Colin; Sawford, Kate; Gunawardana, Walimunige S. N.; Nelson, Trisalyn A.; Nathoo, Farouk; Stephen, Craig
2011-01-01
Surveillance systems tracking health patterns in animals have potential for early warning of infectious disease in humans, yet there are many challenges that remain before this can be realized. Specifically, there remains the challenge of detecting early warning signals for diseases that are not known or are not part of routine surveillance for named diseases. This paper reports on the development of a hidden Markov model for analysis of frontline veterinary sentinel surveillance data from Sri Lanka. Field veterinarians collected data on syndromes and diagnoses using mobile phones. A model for submission patterns accounts for both sentinel-related and disease-related variability. Models for commonly reported cattle diagnoses were estimated separately. Region-specific weekly average prevalence was estimated for each diagnoses and partitioned into normal and abnormal periods. Visualization of state probabilities was used to indicate areas and times of unusual disease prevalence. The analysis suggests that hidden Markov modelling is a useful approach for surveillance datasets from novel populations and/or having little historical baselines. PMID:21949763
Surface Connectivity and Interocean Exchanges From Drifter-Based Transition Matrices
NASA Astrophysics Data System (ADS)
McAdam, Ronan; van Sebille, Erik
2018-01-01
Global surface transport in the ocean can be represented by using the observed trajectories of drifters to calculate probability distribution functions. The oceanographic applications of the Markov Chain approach to modeling include tracking of floating debris and water masses, globally and on yearly-to-centennial time scales. Here we analyze the error inherent with mapping trajectories onto a grid and the consequences for ocean transport modeling and detection of accumulation structures. A sensitivity analysis of Markov Chain parameters is performed in an idealized Stommel gyre and western boundary current as well as with observed ocean drifters, complementing previous studies on widespread floating debris accumulation. Focusing on two key areas of interocean exchange—the Agulhas system and the North Atlantic intergyre transport barrier—we assess the capacity of the Markov Chain methodology to detect surface connectivity and dynamic transport barriers. Finally, we extend the methodology's functionality to separate the geostrophic and nongeostrophic contributions to interocean exchange in these key regions.
Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain
Dai, Yonghui; Han, Dongmei; Dai, Weihui
2014-01-01
The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market. PMID:24782659
NASA Astrophysics Data System (ADS)
Mitsutake, Ayori; Takano, Hiroshi
2015-09-01
It is important to extract reaction coordinates or order parameters from protein simulations in order to investigate the local minimum-energy states and the transitions between them. The most popular method to obtain such data is principal component analysis, which extracts modes of large conformational fluctuations around an average structure. We recently applied relaxation mode analysis for protein systems, which approximately estimates the slow relaxation modes and times from a simulation and enables investigations of the dynamic properties underlying the structural fluctuations of proteins. In this study, we apply this relaxation mode analysis to extract reaction coordinates for a system in which there are large conformational changes such as those commonly observed in protein folding/unfolding. We performed a 750-ns simulation of chignolin protein near its folding transition temperature and observed many transitions between the most stable, misfolded, intermediate, and unfolded states. We then applied principal component analysis and relaxation mode analysis to the system. In the relaxation mode analysis, we could automatically extract good reaction coordinates. The free-energy surfaces provide a clearer understanding of the transitions not only between local minimum-energy states but also between the folded and unfolded states, even though the simulation involved large conformational changes. Moreover, we propose a new analysis method called Markov state relaxation mode analysis. We applied the new method to states with slow relaxation, which are defined by the free-energy surface obtained in the relaxation mode analysis. Finally, the relaxation times of the states obtained with a simple Markov state model and the proposed Markov state relaxation mode analysis are compared and discussed.
Analyzing a stochastic time series obeying a second-order differential equation.
Lehle, B; Peinke, J
2015-06-01
The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.
Detecting Seismic Events Using a Supervised Hidden Markov Model
NASA Astrophysics Data System (ADS)
Burks, L.; Forrest, R.; Ray, J.; Young, C.
2017-12-01
We explore the use of supervised hidden Markov models (HMMs) to detect seismic events in streaming seismogram data. Current methods for seismic event detection include simple triggering algorithms, such as STA/LTA and the Z-statistic, which can lead to large numbers of false positives that must be investigated by an analyst. The hypothesis of this study is that more advanced detection methods, such as HMMs, may decreases false positives while maintaining accuracy similar to current methods. We train a binary HMM classifier using 2 weeks of 3-component waveform data from the International Monitoring System (IMS) that was carefully reviewed by an expert analyst to pick all seismic events. Using an ensemble of simple and discrete features, such as the triggering of STA/LTA, the HMM predicts the time at which transition occurs from noise to signal. Compared to the STA/LTA detection algorithm, the HMM detects more true events, but the false positive rate remains unacceptably high. Future work to potentially decrease the false positive rate may include using continuous features, a Gaussian HMM, and multi-class HMMs to distinguish between types of seismic waves (e.g., P-waves and S-waves). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.SAND No: SAND2017-8154 A
Multi-level methods and approximating distribution functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, D., E-mail: daniel.wilson@dtc.ox.ac.uk; Baker, R. E.
2016-07-15
Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie’s direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparablemore » to Gillespie’s direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146–179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.« less
QRS complex detection based on continuous density hidden Markov models using univariate observations
NASA Astrophysics Data System (ADS)
Sotelo, S.; Arenas, W.; Altuve, M.
2018-04-01
In the electrocardiogram (ECG), the detection of QRS complexes is a fundamental step in the ECG signal processing chain since it allows the determination of other characteristics waves of the ECG and provides information about heart rate variability. In this work, an automatic QRS complex detector based on continuous density hidden Markov models (HMM) is proposed. HMM were trained using univariate observation sequences taken either from QRS complexes or their derivatives. The detection approach is based on the log-likelihood comparison of the observation sequence with a fixed threshold. A sliding window was used to obtain the observation sequence to be evaluated by the model. The threshold was optimized by receiver operating characteristic curves. Sensitivity (Sen), specificity (Spc) and F1 score were used to evaluate the detection performance. The approach was validated using ECG recordings from the MIT-BIH Arrhythmia database. A 6-fold cross-validation shows that the best detection performance was achieved with 2 states HMM trained with QRS complexes sequences (Sen = 0.668, Spc = 0.360 and F1 = 0.309). We concluded that these univariate sequences provide enough information to characterize the QRS complex dynamics from HMM. Future works are directed to the use of multivariate observations to increase the detection performance.
Stochastic Formal Correctness of Numerical Algorithms
NASA Technical Reports Server (NTRS)
Daumas, Marc; Lester, David; Martin-Dorel, Erik; Truffert, Annick
2009-01-01
We provide a framework to bound the probability that accumulated errors were never above a given threshold on numerical algorithms. Such algorithms are used for example in aircraft and nuclear power plants. This report contains simple formulas based on Levy's and Markov's inequalities and it presents a formal theory of random variables with a special focus on producing concrete results. We selected four very common applications that fit in our framework and cover the common practices of systems that evolve for a long time. We compute the number of bits that remain continuously significant in the first two applications with a probability of failure around one out of a billion, where worst case analysis considers that no significant bit remains. We are using PVS as such formal tools force explicit statement of all hypotheses and prevent incorrect uses of theorems.
Stochastic Model of Seasonal Runoff Forecasts
NASA Astrophysics Data System (ADS)
Krzysztofowicz, Roman; Watada, Leslie M.
1986-03-01
Each year the National Weather Service and the Soil Conservation Service issue a monthly sequence of five (or six) categorical forecasts of the seasonal snowmelt runoff volume. To describe uncertainties in these forecasts for the purposes of optimal decision making, a stochastic model is formulated. It is a discrete-time, finite, continuous-space, nonstationary Markov process. Posterior densities of the actual runoff conditional upon a forecast, and transition densities of forecasts are obtained from a Bayesian information processor. Parametric densities are derived for the process with a normal prior density of the runoff and a linear model of the forecast error. The structure of the model and the estimation procedure are motivated by analyses of forecast records from five stations in the Snake River basin, from the period 1971-1983. The advantages of supplementing the current forecasting scheme with a Bayesian analysis are discussed.
Spatial estimation from remotely sensed data via empirical Bayes models
NASA Technical Reports Server (NTRS)
Hill, J. R.; Hinkley, D. V.; Kostal, H.; Morris, C. N.
1984-01-01
Multichannel satellite image data, available as LANDSAT imagery, are recorded as a multivariate time series (four channels, multiple passovers) in two spatial dimensions. The application of parametric empirical Bayes theory to classification of, and estimating the probability of, each crop type at each of a large number of pixels is considered. This theory involves both the probability distribution of imagery data, conditional on crop types, and the prior spatial distribution of crop types. For the latter Markov models indexed by estimable parameters are used. A broad outline of the general theory reveals several questions for further research. Some detailed results are given for the special case of two crop types when only a line transect is analyzed. Finally, the estimation of an underlying continuous process on the lattice is discussed which would be applicable to such quantities as crop yield.
Representing Lumped Markov Chains by Minimal Polynomials over Field GF(q)
NASA Astrophysics Data System (ADS)
Zakharov, V. M.; Shalagin, S. V.; Eminov, B. F.
2018-05-01
A method has been proposed to represent lumped Markov chains by minimal polynomials over a finite field. The accuracy of representing lumped stochastic matrices, the law of lumped Markov chains depends linearly on the minimum degree of polynomials over field GF(q). The method allows constructing the realizations of lumped Markov chains on linear shift registers with a pre-defined “linear complexity”.
NASA Astrophysics Data System (ADS)
Liu, Xiangdong; Li, Qingze; Pan, Jianxin
2018-06-01
Modern medical studies show that chemotherapy can help most cancer patients, especially for those diagnosed early, to stabilize their disease conditions from months to years, which means the population of tumor cells remained nearly unchanged in quite a long time after fighting against immune system and drugs. In order to better understand the dynamics of tumor-immune responses under chemotherapy, deterministic and stochastic differential equation models are constructed to characterize the dynamical change of tumor cells and immune cells in this paper. The basic dynamical properties, such as boundedness, existence and stability of equilibrium points, are investigated in the deterministic model. Extended stochastic models include stochastic differential equations (SDEs) model and continuous-time Markov chain (CTMC) model, which accounts for the variability in cellular reproduction, growth and death, interspecific competitions, and immune response to chemotherapy. The CTMC model is harnessed to estimate the extinction probability of tumor cells. Numerical simulations are performed, which confirms the obtained theoretical results.
NASA Astrophysics Data System (ADS)
Wang, Ting; Plecháč, Petr
2017-12-01
Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.
Level-crossing statistics of the horizontal wind speed in the planetary surface boundary layer
NASA Astrophysics Data System (ADS)
Edwards, Paul J.; Hurst, Robert B.
2001-09-01
The probability density of the times for which the horizontal wind remains above or below a given threshold speed is of some interest in the fields of renewable energy generation and pollutant dispersal. However there appear to be no analytic or conceptual models which account for the observed power law form of the distribution of these episode lengths over a range of over three decades, from a few tens of seconds to a day or more. We reanalyze high resolution wind data and demonstrate the fractal character of the point process generated by the wind speed level crossings. We simulate the fluctuating wind speed by a Markov process which approximates the characteristics of the real (non-Markovian) wind and successfully generates a power law distribution of episode lengths. However, fundamental questions concerning the physical basis for this behavior and the connection between the properties of a continuous-time stochastic process and the fractal statistics of the point process generated by its level crossings remain unanswered.
Short-ranged memory model with preferential growth
NASA Astrophysics Data System (ADS)
Schaigorodsky, Ana L.; Perotti, Juan I.; Almeira, Nahuel; Billoni, Orlando V.
2018-02-01
In this work we introduce a variant of the Yule-Simon model for preferential growth by incorporating a finite kernel to model the effects of bounded memory. We characterize the properties of the model combining analytical arguments with extensive numerical simulations. In particular, we analyze the lifetime and popularity distributions by mapping the model dynamics to corresponding Markov chains and branching processes, respectively. These distributions follow power laws with well-defined exponents that are within the range of the empirical data reported in ecologies. Interestingly, by varying the innovation rate, this simple out-of-equilibrium model exhibits many of the characteristics of a continuous phase transition and, around the critical point, it generates time series with power-law popularity, lifetime and interevent time distributions, and nontrivial temporal correlations, such as a bursty dynamics in analogy with the activity of solar flares. Our results suggest that an appropriate balance between innovation and oblivion rates could provide an explanatory framework for many of the properties commonly observed in many complex systems.
Evolution of olfactory receptors.
Hoover, Kara C
2013-01-01
Olfactory receptors are a specialized set of receptor cells responsible for the detection of odors. These cells are G protein-coupled receptors and expressed in the cell membranes of olfactory sensory neurons. Once a cell is activated by a ligand, it initiates a signal transduction cascade that produces a nerve impulse to the brain where odor perception is processed. Vertebrate olfactory evolution is characterized by birth-and-death events, a special case of the stochastic continuous time Markov process. Vertebrate fish have three general types of receptor cells (two dedicated to pheromones). Terrestrial animals have different epithelial biology due to the specialized adaptation to detecting airborne odors. Two general classes of olfactory receptor gene reflect the vertebrate marine heritage (Class I) and the derived amphibian, reptile, and mammal terrestrial heritage (Class II). While we know much about olfactory receptor cells, there are still areas where our knowledge is insufficient, such as intra-individual diversity throughout the life time, epigenetic processes acting on olfactory receptors, and association of ligands to specific cells.
Short-ranged memory model with preferential growth.
Schaigorodsky, Ana L; Perotti, Juan I; Almeira, Nahuel; Billoni, Orlando V
2018-02-01
In this work we introduce a variant of the Yule-Simon model for preferential growth by incorporating a finite kernel to model the effects of bounded memory. We characterize the properties of the model combining analytical arguments with extensive numerical simulations. In particular, we analyze the lifetime and popularity distributions by mapping the model dynamics to corresponding Markov chains and branching processes, respectively. These distributions follow power laws with well-defined exponents that are within the range of the empirical data reported in ecologies. Interestingly, by varying the innovation rate, this simple out-of-equilibrium model exhibits many of the characteristics of a continuous phase transition and, around the critical point, it generates time series with power-law popularity, lifetime and interevent time distributions, and nontrivial temporal correlations, such as a bursty dynamics in analogy with the activity of solar flares. Our results suggest that an appropriate balance between innovation and oblivion rates could provide an explanatory framework for many of the properties commonly observed in many complex systems.
Markov modeling of peptide folding in the presence of protein crowders
NASA Astrophysics Data System (ADS)
Nilsson, Daniel; Mohanty, Sandipan; Irbäck, Anders
2018-02-01
We use Markov state models (MSMs) to analyze the dynamics of a β-hairpin-forming peptide in Monte Carlo (MC) simulations with interacting protein crowders, for two different types of crowder proteins [bovine pancreatic trypsin inhibitor (BPTI) and GB1]. In these systems, at the temperature used, the peptide can be folded or unfolded and bound or unbound to crowder molecules. Four or five major free-energy minima can be identified. To estimate the dominant MC relaxation times of the peptide, we build MSMs using a range of different time resolutions or lag times. We show that stable relaxation-time estimates can be obtained from the MSM eigenfunctions through fits to autocorrelation data. The eigenfunctions remain sufficiently accurate to permit stable relaxation-time estimation down to small lag times, at which point simple estimates based on the corresponding eigenvalues have large systematic uncertainties. The presence of the crowders has a stabilizing effect on the peptide, especially with BPTI crowders, which can be attributed to a reduced unfolding rate ku, while the folding rate kf is left largely unchanged.
Saliency Detection via Absorbing Markov Chain With Learnt Transition Probability.
Lihe Zhang; Jianwu Ai; Bowen Jiang; Huchuan Lu; Xiukui Li
2018-02-01
In this paper, we propose a bottom-up saliency model based on absorbing Markov chain (AMC). First, a sparsely connected graph is constructed to capture the local context information of each node. All image boundary nodes and other nodes are, respectively, treated as the absorbing nodes and transient nodes in the absorbing Markov chain. Then, the expected number of times from each transient node to all other transient nodes can be used to represent the saliency value of this node. The absorbed time depends on the weights on the path and their spatial coordinates, which are completely encoded in the transition probability matrix. Considering the importance of this matrix, we adopt different hierarchies of deep features extracted from fully convolutional networks and learn a transition probability matrix, which is called learnt transition probability matrix. Although the performance is significantly promoted, salient objects are not uniformly highlighted very well. To solve this problem, an angular embedding technique is investigated to refine the saliency results. Based on pairwise local orderings, which are produced by the saliency maps of AMC and boundary maps, we rearrange the global orderings (saliency value) of all nodes. Extensive experiments demonstrate that the proposed algorithm outperforms the state-of-the-art methods on six publicly available benchmark data sets.
Numazawa, Satoshi; Smith, Roger
2011-10-01
Classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The scheme is then used to determine transitions that can be applied in a lattice-based kinetic Monte Carlo (KMC) atomistic simulation model. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements are considered as local transition events constrained in potential energy wells over certain local time periods. These processes are represented by Markov chains of multidimensional Boolean valued functions in three-dimensional lattice space. The events inhibited by the barriers under a certain level are regarded as thermal fluctuations of the canonical ensemble and accepted freely. Consequently, the fluctuating system evolution process is implemented as a Markov chain of equivalence class objects. It is shown that the process can be characterized by the acceptance of metastable local transitions. The method is applied to a problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of a morphology-dependent transition time limit from a local metastable to stable state for subsequent cluster growth by accretion. Excellent agreement with observed experimental results is obtained.
Madrasi, Kumpal; Chaturvedula, Ayyappa; Haberer, Jessica E; Sale, Mark; Fossler, Michael J; Bangsberg, David; Baeten, Jared M; Celum, Connie; Hendrix, Craig W
2017-05-01
Adherence is a major factor in the effectiveness of preexposure prophylaxis (PrEP) for HIV prevention. Modeling patterns of adherence helps to identify influential covariates of different types of adherence as well as to enable clinical trial simulation so that appropriate interventions can be developed. We developed a Markov mixed-effects model to understand the covariates influencing adherence patterns to daily oral PrEP. Electronic adherence records (date and time of medication bottle cap opening) from the Partners PrEP ancillary adherence study with a total of 1147 subjects were used. This study included once-daily dosing regimens of placebo, oral tenofovir disoproxil fumarate (TDF), and TDF in combination with emtricitabine (FTC), administered to HIV-uninfected members of serodiscordant couples. One-coin and first- to third-order Markov models were fit to the data using NONMEM ® 7.2. Model selection criteria included objective function value (OFV), Akaike information criterion (AIC), visual predictive checks, and posterior predictive checks. Covariates were included based on forward addition (α = 0.05) and backward elimination (α = 0.001). Markov models better described the data than 1-coin models. A third-order Markov model gave the lowest OFV and AIC, but the simpler first-order model was used for covariate model building because no additional benefit on prediction of target measures was observed for higher-order models. Female sex and older age had a positive impact on adherence, whereas Sundays, sexual abstinence, and sex with a partner other than the study partner had a negative impact on adherence. Our findings suggest adherence interventions should consider the role of these factors. © 2016, The American College of Clinical Pharmacology.
NASA Astrophysics Data System (ADS)
Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia
2018-07-01
Continuous noise caused by mutation is widely present in evolutionary systems. Considering the noise effects and under the optional participation mechanism, a stochastic model for evolutionary public goods game in a finite size population is established. The evolutionary process of strategies in the population is described as a multidimensional ergodic and continuous time Markov process. The stochastic stable state of the system is analyzed by the limit distribution of the stochastic process. By numerical experiments, the influences of the fixed income coefficient for non-participants and the investment income coefficient of the public goods on the stochastic stable equilibrium of the system are analyzed. Through the numerical calculation results, we found that the optional participation mechanism can change the evolutionary dynamics and the equilibrium of the public goods game, and there is a range of parameters which can effectively promote the evolution of cooperation. Further, we obtain the accurate quantitative relationship between the parameters and the probabilities for the system to choose different stable equilibriums, which can be used to realize the control of cooperation.
Analyses and simulation to spatial pattern of land utilization in Guangzhu City
NASA Astrophysics Data System (ADS)
Zhang, Xin-chang; Zhang, Wen-jiang; Ma, Kun
2006-10-01
Based on Landsat TM remote sensing images in 1990 and 2000, we analyses the temporal and spatial pattern Characters of land use in the 1990s in Guangzhou city. We also simulate the scenarios of land-use pattern in 2010 by integrating the Markov process into cellular automata model. The results show that the area of constructions was rapid increasing during the last ten years of the 20th century, at the same time the arable land, woodland and unused land areas were decreasing, the orchard and water areas were rarely changed; In the first ten years of 21st century, land use pattern keep the change trend in the 1990s, land of constructions continue rapid increasing; arable land and unused land areas continue rapid decreasing; woodland, orchard and water areas keep steadily. Research shows that the extent of urban area has increased exponentially in Guangzhou city, no evidences show that the arable land decreasing rate will slow down in the near future. So, it is necessary to enhance the control functions of land use planning and take actives measures to protect arable land.
Bettenbühl, Mario; Rusconi, Marco; Engbert, Ralf; Holschneider, Matthias
2012-01-01
Complex biological dynamics often generate sequences of discrete events which can be described as a Markov process. The order of the underlying Markovian stochastic process is fundamental for characterizing statistical dependencies within sequences. As an example for this class of biological systems, we investigate the Markov order of sequences of microsaccadic eye movements from human observers. We calculate the integrated likelihood of a given sequence for various orders of the Markov process and use this in a Bayesian framework for statistical inference on the Markov order. Our analysis shows that data from most participants are best explained by a first-order Markov process. This is compatible with recent findings of a statistical coupling of subsequent microsaccade orientations. Our method might prove to be useful for a broad class of biological systems.
Gamado, Kokouvi; Marion, Glenn; Porphyre, Thibaud
2017-01-01
Livestock epidemics have the potential to give rise to significant economic, welfare, and social costs. Incursions of emerging and re-emerging pathogens may lead to small and repeated outbreaks. Analysis of the resulting data is statistically challenging but can inform disease preparedness reducing potential future losses. We present a framework for spatial risk assessment of disease incursions based on data from small localized historic outbreaks. We focus on between-farm spread of livestock pathogens and illustrate our methods by application to data on the small outbreak of Classical Swine Fever (CSF) that occurred in 2000 in East Anglia, UK. We apply models based on continuous time semi-Markov processes, using data-augmentation Markov Chain Monte Carlo techniques within a Bayesian framework to infer disease dynamics and detection from incompletely observed outbreaks. The spatial transmission kernel describing pathogen spread between farms, and the distribution of times between infection and detection, is estimated alongside unobserved exposure times. Our results demonstrate inference is reliable even for relatively small outbreaks when the data-generating model is known. However, associated risk assessments depend strongly on the form of the fitted transmission kernel. Therefore, for real applications, methods are needed to select the most appropriate model in light of the data. We assess standard Deviance Information Criteria (DIC) model selection tools and recently introduced latent residual methods of model assessment, in selecting the functional form of the spatial transmission kernel. These methods are applied to the CSF data, and tested in simulated scenarios which represent field data, but assume the data generation mechanism is known. Analysis of simulated scenarios shows that latent residual methods enable reliable selection of the transmission kernel even for small outbreaks whereas the DIC is less reliable. Moreover, compared with DIC, model choice based on latent residual assessment correlated better with predicted risk. PMID:28293559
Kovatchev, Boris P; Clarke, William L; Breton, Marc; Brayman, Kenneth; McCall, Anthony
2005-12-01
Continuous glucose monitors (CGMs) collect detailed blood glucose (BG) time series, which carry significant information about the dynamics of BG fluctuations. In contrast, the methods for analysis of CGM data remain those developed for infrequent BG self-monitoring. As a result, important information about the temporal structure of the data is lost during the translation of raw sensor readings into clinically interpretable statistics and images. The following mathematical methods are introduced into the field of CGM data interpretation: (1) analysis of BG rate of change; (2) risk analysis using previously reported Low/High BG Indices and Poincare (lag) plot of risk associated with temporal BG variability; and (3) spatial aggregation of the process of BG fluctuations and its Markov chain visualization. The clinical application of these methods is illustrated by analysis of data of a patient with Type 1 diabetes mellitus who underwent islet transplantation and with data from clinical trials. Normative data [12,025 reference (YSI device, Yellow Springs Instruments, Yellow Springs, OH) BG determinations] in patients with Type 1 diabetes mellitus who underwent insulin and glucose challenges suggest that the 90%, 95%, and 99% confidence intervals of BG rate of change that could be maximally sustained over 15-30 min are [-2,2], [-3,3], and [-4,4] mg/dL/min, respectively. BG dynamics and risk parameters clearly differentiated the stages of transplantation and the effects of medication. Aspects of treatment were clearly visualized by graphs of BG rate of change and Low/High BG Indices, by a Poincare plot of risk for rapid BG fluctuations, and by a plot of the aggregated Markov process. Advanced analysis and visualization of CGM data allow for evaluation of dynamical characteristics of diabetes and reveal clinical information that is inaccessible via standard statistics, which do not take into account the temporal structure of the data. The use of such methods improves the assessment of patients' glycemic control.
Bayesian explorations of fault slip evolution over the earthquake cycle
NASA Astrophysics Data System (ADS)
Duputel, Z.; Jolivet, R.; Benoit, A.; Gombert, B.
2017-12-01
The ever-increasing amount of geophysical data continuously opens new perspectives on fundamental aspects of the seismogenic behavior of active faults. In this context, the recent fleet of SAR satellites including Sentinel-1 and COSMO-SkyMED permits the use of InSAR for time-dependent slip modeling with unprecedented resolution in time and space. However, existing time-dependent slip models rely on spatial smoothing regularization schemes, which can produce unrealistically smooth slip distributions. In addition, these models usually do not include uncertainty estimates thereby reducing the utility of such estimates. Here, we develop an entirely new approach to derive probabilistic time-dependent slip models. This Markov-Chain Monte Carlo method involves a series of transitional steps to predict and update posterior Probability Density Functions (PDFs) of slip as a function of time. We assess the viability of our approach using various slow-slip event scenarios. Using a dense set of SAR images, we also use this method to quantify the spatial distribution and temporal evolution of slip along a creeping segment of the North Anatolian Fault. This allows us to track a shallow aseismic slip transient lasting for about a month with a maximum slip of about 2 cm.
A multi-level solution algorithm for steady-state Markov chains
NASA Technical Reports Server (NTRS)
Horton, Graham; Leutenegger, Scott T.
1993-01-01
A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.
Optimal firm growth under the threat of entry
Kort, Peter M.; Wrzaczek, Stefan
2015-01-01
The paper studies the incumbent-entrant problem in a fully dynamic setting. We find that under an open-loop information structure the incumbent anticipates entry by overinvesting, whereas in the Markov perfect equilibrium the incumbent slightly underinvests in the period before the entry. The entry cost level where entry accommodation passes into entry deterrence is lower in the Markov perfect equilibrium. Further we find that the incumbent’s capital stock level needed to deter entry is hump shaped as a function of the entry time, whereas the corresponding entry cost, where the entrant is indifferent between entry and non-entry, is U-shaped. PMID:26435573
Under-reported data analysis with INAR-hidden Markov chains.
Fernández-Fontelo, Amanda; Cabaña, Alejandra; Puig, Pedro; Moriña, David
2016-11-20
In this work, we deal with correlated under-reported data through INAR(1)-hidden Markov chain models. These models are very flexible and can be identified through its autocorrelation function, which has a very simple form. A naïve method of parameter estimation is proposed, jointly with the maximum likelihood method based on a revised version of the forward algorithm. The most-probable unobserved time series is reconstructed by means of the Viterbi algorithm. Several examples of application in the field of public health are discussed illustrating the utility of the models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Bozhalkina, Yana; Timofeeva, Galina
2016-12-01
Mathematical model of loan portfolio in the form of a controlled Markov chain with discrete time is considered. It is assumed that coefficients of migration matrix depend on corrective actions and external factors. Corrective actions include process of receiving applications, interaction with existing solvent and insolvent clients. External factors are macroeconomic indicators, such as inflation and unemployment rates, exchange rates, consumer price indices, etc. Changes in corrective actions adjust the intensity of transitions in the migration matrix. The mathematical model for forecasting the credit portfolio structure taking into account a cumulative impact of internal and external changes is obtained.
Modeling of dialogue regimes of distance robot control
NASA Astrophysics Data System (ADS)
Larkin, E. V.; Privalov, A. N.
2017-02-01
Process of distance control of mobile robots is investigated. Petri-Markov net for modeling of dialogue regime is worked out. It is shown, that sequence of operations of next subjects: a human operator, a dialogue computer and an onboard computer may be simulated with use the theory of semi-Markov processes. From the semi-Markov process of the general form Markov process was obtained, which includes only states of transaction generation. It is shown, that a real transaction flow is the result of «concurrency» in states of Markov process. Iteration procedure for evaluation of transaction flow parameters, which takes into account effect of «concurrency», is proposed.
Algorithms for Discovery of Multiple Markov Boundaries
Statnikov, Alexander; Lytkin, Nikita I.; Lemeire, Jan; Aliferis, Constantin F.
2013-01-01
Algorithms for Markov boundary discovery from data constitute an important recent development in machine learning, primarily because they offer a principled solution to the variable/feature selection problem and give insight on local causal structure. Over the last decade many sound algorithms have been proposed to identify a single Markov boundary of the response variable. Even though faithful distributions and, more broadly, distributions that satisfy the intersection property always have a single Markov boundary, other distributions/data sets may have multiple Markov boundaries of the response variable. The latter distributions/data sets are common in practical data-analytic applications, and there are several reasons why it is important to induce multiple Markov boundaries from such data. However, there are currently no sound and efficient algorithms that can accomplish this task. This paper describes a family of algorithms TIE* that can discover all Markov boundaries in a distribution. The broad applicability as well as efficiency of the new algorithmic family is demonstrated in an extensive benchmarking study that involved comparison with 26 state-of-the-art algorithms/variants in 15 data sets from a diversity of application domains. PMID:25285052
Probability distributions for Markov chain based quantum walks
NASA Astrophysics Data System (ADS)
Balu, Radhakrishnan; Liu, Chaobin; Venegas-Andraca, Salvador E.
2018-01-01
We analyze the probability distributions of the quantum walks induced from Markov chains by Szegedy (2004). The first part of this paper is devoted to the quantum walks induced from finite state Markov chains. It is shown that the probability distribution on the states of the underlying Markov chain is always convergent in the Cesaro sense. In particular, we deduce that the limiting distribution is uniform if the transition matrix is symmetric. In the case of a non-symmetric Markov chain, we exemplify that the limiting distribution of the quantum walk is not necessarily identical with the stationary distribution of the underlying irreducible Markov chain. The Szegedy scheme can be extended to infinite state Markov chains (random walks). In the second part, we formulate the quantum walk induced from a lazy random walk on the line. We then obtain the weak limit of the quantum walk. It is noted that the current quantum walk appears to spread faster than its counterpart-quantum walk on the line driven by the Grover coin discussed in literature. The paper closes with an outlook on possible future directions.
NASA Astrophysics Data System (ADS)
Widyawan, A.; Pasaribu, U. S.; Henintyas, Permana, D.
2015-12-01
Nowadays some firms, including insurer firms, think that customer-centric services are better than product-centric ones in terms of marketing. Insurance firms will try to attract as many new customer as possible while maintaining existing customer. This causes the Customer Lifetime Value (CLV) becomes a very important thing. CLV are able to put customer into different segments and calculate the present value of a firm's relationship with its customer. Insurance customer will depend on the last service he or she can get. So if the service is bad now, then customer will not renew his contract though the service is very good at an erlier time. Because of this situation one suitable mathematical model for modeling customer's relationships and calculating their lifetime value is Markov Chain. In addition, the advantages of using Markov Chain Modeling is its high degree of flexibility. In 2000, Pfeifer and Carraway states that Markov Chain Modeling can be used for customer retention situation. In this situation, Markov Chain Modeling requires only two states, which are present customer and former ones. This paper calculates customer lifetime value in an insurance firm with two distinctive interest rates; the constant interest rate and uniform distribution of interest rates. The result shows that loyal customer and the customer who increase their contract value have the highest CLV.
Long-range memory and non-Markov statistical effects in human sensorimotor coordination
NASA Astrophysics Data System (ADS)
M. Yulmetyev, Renat; Emelyanova, Natalya; Hänggi, Peter; Gafarov, Fail; Prokhorov, Alexander
2002-12-01
In this paper, the non-Markov statistical processes and long-range memory effects in human sensorimotor coordination are investigated. The theoretical basis of this study is the statistical theory of non-stationary discrete non-Markov processes in complex systems (Phys. Rev. E 62, 6178 (2000)). The human sensorimotor coordination was experimentally studied by means of standard dynamical tapping test on the group of 32 young peoples with tap numbers up to 400. This test was carried out separately for the right and the left hand according to the degree of domination of each brain hemisphere. The numerical analysis of the experimental results was made with the help of power spectra of the initial time correlation function, the memory functions of low orders and the first three points of the statistical spectrum of non-Markovity parameter. Our observations demonstrate, that with the regard to results of the standard dynamic tapping-test it is possible to divide all examinees into five different dynamic types. We have introduced the conflict coefficient to estimate quantitatively the order-disorder effects underlying life systems. The last one reflects the existence of disbalance between the nervous and the motor human coordination. The suggested classification of the neurophysiological activity represents the dynamic generalization of the well-known neuropsychological types and provides the new approach in a modern neuropsychology.
Hierarchical modeling for reliability analysis using Markov models. B.S./M.S. Thesis - MIT
NASA Technical Reports Server (NTRS)
Fagundo, Arturo
1994-01-01
Markov models represent an extremely attractive tool for the reliability analysis of many systems. However, Markov model state space grows exponentially with the number of components in a given system. Thus, for very large systems Markov modeling techniques alone become intractable in both memory and CPU time. Often a particular subsystem can be found within some larger system where the dependence of the larger system on the subsystem is of a particularly simple form. This simple dependence can be used to decompose such a system into one or more subsystems. A hierarchical technique is presented which can be used to evaluate these subsystems in such a way that their reliabilities can be combined to obtain the reliability for the full system. This hierarchical approach is unique in that it allows the subsystem model to pass multiple aggregate state information to the higher level model, allowing more general systems to be evaluated. Guidelines are developed to assist in the system decomposition. An appropriate method for determining subsystem reliability is also developed. This method gives rise to some interesting numerical issues. Numerical error due to roundoff and integration are discussed at length. Once a decomposition is chosen, the remaining analysis is straightforward but tedious. However, an approach is developed for simplifying the recombination of subsystem reliabilities. Finally, a real world system is used to illustrate the use of this technique in a more practical context.
Scaling properties of multiscale equilibration
NASA Astrophysics Data System (ADS)
Detmold, W.; Endres, M. G.
2018-04-01
We investigate the lattice spacing dependence of the equilibration time for a recently proposed multiscale thermalization algorithm for Markov chain Monte Carlo simulations. The algorithm uses a renormalization-group matched coarse lattice action and prolongation operation to rapidly thermalize decorrelated initial configurations for evolution using a corresponding target lattice action defined at a finer scale. Focusing on nontopological long-distance observables in pure S U (3 ) gauge theory, we provide quantitative evidence that the slow modes of the Markov process, which provide the dominant contribution to the rethermalization time, have a suppressed contribution toward the continuum limit, despite their associated timescales increasing. Based on these numerical investigations, we conjecture that the prolongation operation used herein will produce ensembles that are indistinguishable from the target fine-action distribution for a sufficiently fine coupling at a given level of statistical precision, thereby eliminating the cost of rethermalization.
Supervised self-organization of homogeneous swarms using ergodic projections of Markov chains.
Chattopadhyay, Ishanu; Ray, Asok
2009-12-01
This paper formulates a self-organization algorithm to address the problem of global behavior supervision in engineered swarms of arbitrarily large population sizes. The swarms considered in this paper are assumed to be homogeneous collections of independent identical finite-state agents, each of which is modeled by an irreducible finite Markov chain. The proposed algorithm computes the necessary perturbations in the local agents' behavior, which guarantees convergence to the desired observed state of the swarm. The ergodicity property of the swarm, which is induced as a result of the irreducibility of the agent models, implies that while the local behavior of the agents converges to the desired behavior only in the time average, the overall swarm behavior converges to the specification and stays there at all times. A simulation example illustrates the underlying concept.
Predicting Loss-of-Control Boundaries Toward a Piloting Aid
NASA Technical Reports Server (NTRS)
Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.
Regenerative Simulation of Harris Recurrent Markov Chains.
1982-07-01
Sutijle) S. TYPE OF REPORT A PERIOD COVERED REGENERATIVE SIMULATION OF HARRIS RECURRENT Technical Report MARKOV CHAINS 14. PERFORMING ORG. REPORT NUMBER...7 AD-Ag 251 STANFORD UNIV CA DEPT OF OPERATIONS RESEARCH /s i2/ REGENERATIVE SIMULATION OF HARRIS RECURRENT MARKOV CHAINS,(U) JUL 82 P W GLYNN N0001...76-C-0578 UNtLASSIFIED TR-62 NL EhhhIhEEEEEEI EEEEEIIIIIII REGENERATIVE SIMULATION OF HARRIS RECURRENT MARKOV CHAINS by Peter W. Glynn TECHNICAL
Lee, Kyung-Eun; Park, Hyun-Seok
2015-01-01
Epigenetic computational analyses based on Markov chains can integrate dependencies between regions in the genome that are directly adjacent. In this paper, the BED files of fifteen chromatin states of the Broad Histone Track of the ENCODE project are parsed, and comparative nucleotide frequencies of regional chromatin blocks are thoroughly analyzed to detect the Markov property in them. We perform various tests to examine the Markov property embedded in a frequency domain by checking for the presence of the Markov property in the various chromatin states. We apply these tests to each region of the fifteen chromatin states. The results of our simulation indicate that some of the chromatin states possess a stronger Markov property than others. We discuss the significance of our findings in statistical models of nucleotide sequences that are necessary for the computational analysis of functional units in noncoding DNA.
Information distribution in distributed microprocessor based flight control systems
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Lee, P. S.
1977-01-01
This paper presents an optimal control theory that accounts for variable time intervals in the information distribution to control effectors in a distributed microprocessor based flight control system. The theory is developed using a linear process model for the aircraft dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved that provides the control law that minimizes the expected value of a quadratic cost function. An example is presented where the theory is applied to the control of the longitudinal motions of the F8-DFBW aircraft. Theoretical and simulation results indicate that, for the example problem, the optimal cost obtained using a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained using a known uniform information update interval.
Automated Guidance from Physiological Sensing to Reduce Thermal-Work Strain Levels on a Novel Task
USDA-ARS?s Scientific Manuscript database
This experiment demonstrated that automated pace guidance generated from real-time physiological monitoring allowed least stressful completion of a timed (60 minute limit) 5 mile treadmill exercise. An optimal pacing policy was estimated from a Markov decision process that balanced the goals of the...
Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCullough, Michael; Iu, Herbert Ho-Ching; Small, Michael
2015-05-15
We investigate a generalised version of the recently proposed ordinal partition time series to network transformation algorithm. First, we introduce a fixed time lag for the elements of each partition that is selected using techniques from traditional time delay embedding. The resulting partitions define regions in the embedding phase space that are mapped to nodes in the network space. Edges are allocated between nodes based on temporal succession thus creating a Markov chain representation of the time series. We then apply this new transformation algorithm to time series generated by the Rössler system and find that periodic dynamics translate tomore » ring structures whereas chaotic time series translate to band or tube-like structures—thereby indicating that our algorithm generates networks whose structure is sensitive to system dynamics. Furthermore, we demonstrate that simple network measures including the mean out degree and variance of out degrees can track changes in the dynamical behaviour in a manner comparable to the largest Lyapunov exponent. We also apply the same analysis to experimental time series generated by a diode resonator circuit and show that the network size, mean shortest path length, and network diameter are highly sensitive to the interior crisis captured in this particular data set.« less
Validating the Modeling and Simulation of a Generic Tracking Radar
2009-07-28
order Gauss-Markov time series with CTGM = 250 units and rGM = 10 s is shown in the top panel of Figure 1. The time series, ifr , can represent any...are shared among the sensors. The total position and velocity estimation errors valid at time index k are given by < fr *|fc = rk\\k - rk and
Approximate Evaluation of Reliability and Availability via Perturbation Analysis.
1986-12-01
generating the dxact answers to which the results of the approximation will be compared are discussed:." - 87 7" 2 04 2LOISTRIGUTIONIAVAILASILITYI OF...appropriately, constructing the Markov process that approximately governs interclass behavior from the result above (this is called the enlarged... compared to a numerical or analytical computation of the aame quantities. This work and its continuation represents our progress so far on Goal 3. 2.4I
Combining Offline and Online Computation for Solving Partially Observable Markov Decision Process
2015-03-06
David Hsu and Wee Sun Lee, Monte Carlo Bayesian Reinforcement Learning, International Conference on Machine Learning (ICML), 2012. • Haoyu Bai, David...and Automation (ICRA), 2015. • Zhan Wei Lim, David Hsu, and Wee Sun Lee, Adaptive Informative Path Planning in Metric Spaces. Submitted to Int. J... Automation (ICRA), 2015. 2. Bai, H., Hsu, D., Kochenderfer, M. J., and Lee, W. S., Unmanned aircraft collision avoidance using continuous state POMDPs
Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression
NASA Astrophysics Data System (ADS)
Liu, Yongqi; Ye, Lei; Qin, Hui; Hong, Xiaofeng; Ye, Jiajun; Yin, Xingli
2018-06-01
Reliable streamflow forecasts can be highly valuable for water resources planning and management. In this study, we combined a hidden Markov model (HMM) and Gaussian Mixture Regression (GMR) for probabilistic monthly streamflow forecasting. The HMM is initialized using a kernelized K-medoids clustering method, and the Baum-Welch algorithm is then executed to learn the model parameters. GMR derives a conditional probability distribution for the predictand given covariate information, including the antecedent flow at a local station and two surrounding stations. The performance of HMM-GMR was verified based on the mean square error and continuous ranked probability score skill scores. The reliability of the forecasts was assessed by examining the uniformity of the probability integral transform values. The results show that HMM-GMR obtained reasonably high skill scores and the uncertainty spread was appropriate. Different HMM states were assumed to be different climate conditions, which would lead to different types of observed values. We demonstrated that the HMM-GMR approach can handle multimodal and heteroscedastic data.
Dissipation and decoherence in nanodevices: a generalized Fermi's golden rule
NASA Astrophysics Data System (ADS)
Taj, D.; Iotti, R. C.; Rossi, F.
2009-06-01
We shall revisit the conventional adiabatic or Markov approximation, which—in contrast to the semiclassical case—does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally pointed out and partially solved by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, which (i) is physically justified under the same validity restrictions of the conventional Markov approach, (ii) in the semiclassical limit reduces to the standard Fermi's golden rule and (iii) describes a genuine Lindblad evolution, thus providing a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, the dependence of our approximation on the specific choice of the subsystem (that includes the common partial trace reduction) does not threaten positivity, and quantum scattering rates are well defined even in the case the subsystem is infinitely extended/has a continuous spectrum.
Hidden Markov Model-Based CNV Detection Algorithms for Illumina Genotyping Microarrays.
Seiser, Eric L; Innocenti, Federico
2014-01-01
Somatic alterations in DNA copy number have been well studied in numerous malignancies, yet the role of germline DNA copy number variation in cancer is still emerging. Genotyping microarrays generate allele-specific signal intensities to determine genotype, but may also be used to infer DNA copy number using additional computational approaches. Numerous tools have been developed to analyze Illumina genotype microarray data for copy number variant (CNV) discovery, although commonly utilized algorithms freely available to the public employ approaches based upon the use of hidden Markov models (HMMs). QuantiSNP, PennCNV, and GenoCN utilize HMMs with six copy number states but vary in how transition and emission probabilities are calculated. Performance of these CNV detection algorithms has been shown to be variable between both genotyping platforms and data sets, although HMM approaches generally outperform other current methods. Low sensitivity is prevalent with HMM-based algorithms, suggesting the need for continued improvement in CNV detection methodologies.
Invariant graphs of a family of non-uniformly expanding skew products over Markov maps
NASA Astrophysics Data System (ADS)
Walkden, C. P.; Withers, T.
2018-06-01
We consider a family of skew-products of the form where T is a continuous, expanding, locally eventually onto Markov map and is a family of homeomorphisms of . A function is said to be an invariant graph if is an invariant set for the skew-product; equivalently, u(T(x)) = g x (u(x)). A well-studied problem is to consider the existence, regularity and dimension-theoretic properties of such functions, usually under strong contraction or expansion conditions (in terms of Lyapunov exponents or partial hyperbolicity) in the fibre direction. Here we consider such problems in a setting where the Lyapunov exponent in the fibre direction is zero on a set of periodic orbits but expands except on a neighbourhood of these periodic orbits. We prove that u either has the structure of a ‘quasi-graph’ (or ‘bony graph’) or is as smooth as the dynamics, and we give a criteria for this to happen.
NASA Astrophysics Data System (ADS)
Kirchhoff, Michael
2018-03-01
Ramstead MJD, Badcock PB, Friston KJ. Answering Schrödinger's question: A free-energy formulation. Phys Life Rev 2018. https://doi.org/10.1016/j.plrev.2017.09.001 [this issue] motivate a multiscale characterisation of living systems in terms of hierarchically structured Markov blankets - a view of living systems as comprised of Markov blankets of Markov blankets [1-4]. It is effectively a treatment of what life is and how it is realised, cast in terms of how Markov blankets of living systems self-organise via active inference - a corollary of the free energy principle [5-7].
Modeling Hubble Space Telescope flight data by Q-Markov cover identification
NASA Technical Reports Server (NTRS)
Liu, K.; Skelton, R. E.; Sharkey, J. P.
1992-01-01
A state space model for the Hubble Space Telescope under the influence of unknown disturbances in orbit is presented. This model was obtained from flight data by applying the Q-Markov covariance equivalent realization identification algorithm. This state space model guarantees the match of the first Q-Markov parameters and covariance parameters of the Hubble system. The flight data were partitioned into high- and low-frequency components for more efficient Q-Markov cover modeling, to reduce some computational difficulties of the Q-Markov cover algorithm. This identification revealed more than 20 lightly damped modes within the bandwidth of the attitude control system. Comparisons with the analytical (TREETOPS) model are also included.
Activation rates for nonlinear stochastic flows driven by non-Gaussian noise
NASA Astrophysics Data System (ADS)
van den Broeck, C.; Hänggi, P.
1984-11-01
Activation rates are calculated for stochastic bistable flows driven by asymmetric dichotomic Markov noise (a two-state Markov process). This noise contains as limits both a particular type of non-Gaussian white shot noise and white Gaussian noise. Apart from investigating the role of colored noise on the escape rates, one can thus also study the influence of the non-Gaussian nature of the noise on these rates. The rate for white shot noise differs in leading order (Arrhenius factor) from the corresponding rate for white Gaussian noise of equal strength. In evaluating the rates we demonstrate the advantage of using transport theory over a mean first-passage time approach for cases with generally non-white and non-Gaussian noise sources. For white shot noise with exponentially distributed weights we succeed in evaluating the mean first-passage time of the corresponding integro-differential master-equation dynamics. The rate is shown to coincide in the weak noise limit with the inverse mean first-passage time.
LECTURES ON GAME THEORY, MARKOV CHAINS, AND RELATED TOPICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, G L
1958-03-01
Notes on nine lectures delivered at Sandin Corporation in August 1957 are given. Part one contains the manuscript of a paper concerning a judging problem. Part two is concerned with finite Markov-chain theory amd discusses regular Markov chains, absorbing Markov chains, the classification of states, application to the Leontief input-output model, and semimartingales. Part three contains notes on game theory and covers matrix games, the effect of psychological attitudes on the outcomes of games, extensive games, amd matrix theory applied to mathematical economics. (auth)
Markov chains: computing limit existence and approximations with DNA.
Cardona, M; Colomer, M A; Conde, J; Miret, J M; Miró, J; Zaragoza, A
2005-09-01
We present two algorithms to perform computations over Markov chains. The first one determines whether the sequence of powers of the transition matrix of a Markov chain converges or not to a limit matrix. If it does converge, the second algorithm enables us to estimate this limit. The combination of these algorithms allows the computation of a limit using DNA computing. In this sense, we have encoded the states and the transition probabilities using strands of DNA for generating paths of the Markov chain.
Time series modeling of live-cell shape dynamics for image-based phenotypic profiling.
Gordonov, Simon; Hwang, Mun Kyung; Wells, Alan; Gertler, Frank B; Lauffenburger, Douglas A; Bathe, Mark
2016-01-01
Live-cell imaging can be used to capture spatio-temporal aspects of cellular responses that are not accessible to fixed-cell imaging. As the use of live-cell imaging continues to increase, new computational procedures are needed to characterize and classify the temporal dynamics of individual cells. For this purpose, here we present the general experimental-computational framework SAPHIRE (Stochastic Annotation of Phenotypic Individual-cell Responses) to characterize phenotypic cellular responses from time series imaging datasets. Hidden Markov modeling is used to infer and annotate morphological state and state-switching properties from image-derived cell shape measurements. Time series modeling is performed on each cell individually, making the approach broadly useful for analyzing asynchronous cell populations. Two-color fluorescent cells simultaneously expressing actin and nuclear reporters enabled us to profile temporal changes in cell shape following pharmacological inhibition of cytoskeleton-regulatory signaling pathways. Results are compared with existing approaches conventionally applied to fixed-cell imaging datasets, and indicate that time series modeling captures heterogeneous dynamic cellular responses that can improve drug classification and offer additional important insight into mechanisms of drug action. The software is available at http://saphire-hcs.org.
Random graph models for dynamic networks
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Moore, Cristopher; Newman, Mark E. J.
2017-10-01
Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.
Gao, Kaifu; Zhao, Yunjie
2017-04-13
New Delhi metallo-β-lactamase-1 (NDM-1) is a novel β-lactamase enzyme that confers enteric bacteria with nearly complete resistance to all β-lactam antibiotics, so it raises a formidable and global threat to human health. However, the binding mechanism between apo-NDM-1 and antibiotics as well as related conformational changes remains poorly understood, which largely hinders the overcoming of its antibiotic resistance. In our study, long-time conventional molecular dynamics simulation and Markov state models were applied to reveal both the dynamical and conformational landscape of apo-NDM-1: the MD simulation demonstrates that loop L3, which is responsible for antibiotic binding, is the most flexible and undergoes dramatic conformational changes; moreover, the Markov state model built from the simulation maps four metastable states including open, semiopen, and closed conformations of loop L3 as well as frequent transitions between the states. Our findings propose a possible conformational selection model for the binding mechanism between apo-NDM-1 and antibiotics, which facilitates the design of novel inhibitors and antibiotics.
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.
Radiative transfer calculated from a Markov chain formalism
NASA Technical Reports Server (NTRS)
Esposito, L. W.; House, L. L.
1978-01-01
The theory of Markov chains is used to formulate the radiative transport problem in a general way by modeling the successive interactions of a photon as a stochastic process. Under the minimal requirement that the stochastic process is a Markov chain, the determination of the diffuse reflection or transmission from a scattering atmosphere is equivalent to the solution of a system of linear equations. This treatment is mathematically equivalent to, and thus has many of the advantages of, Monte Carlo methods, but can be considerably more rapid than Monte Carlo algorithms for numerical calculations in particular applications. We have verified the speed and accuracy of this formalism for the standard problem of finding the intensity of scattered light from a homogeneous plane-parallel atmosphere with an arbitrary phase function for scattering. Accurate results over a wide range of parameters were obtained with computation times comparable to those of a standard 'doubling' routine. The generality of this formalism thus allows fast, direct solutions to problems that were previously soluble only by Monte Carlo methods. Some comparisons are made with respect to integral equation methods.
Local Composite Quantile Regression Smoothing for Harris Recurrent Markov Processes
Li, Degui; Li, Runze
2016-01-01
In this paper, we study the local polynomial composite quantile regression (CQR) smoothing method for the nonlinear and nonparametric models under the Harris recurrent Markov chain framework. The local polynomial CQR regression method is a robust alternative to the widely-used local polynomial method, and has been well studied in stationary time series. In this paper, we relax the stationarity restriction on the model, and allow that the regressors are generated by a general Harris recurrent Markov process which includes both the stationary (positive recurrent) and nonstationary (null recurrent) cases. Under some mild conditions, we establish the asymptotic theory for the proposed local polynomial CQR estimator of the mean regression function, and show that the convergence rate for the estimator in nonstationary case is slower than that in stationary case. Furthermore, a weighted type local polynomial CQR estimator is provided to improve the estimation efficiency, and a data-driven bandwidth selection is introduced to choose the optimal bandwidth involved in the nonparametric estimators. Finally, we give some numerical studies to examine the finite sample performance of the developed methodology and theory. PMID:27667894
Dynamic neutron scattering from conformational dynamics. I. Theory and Markov models
NASA Astrophysics Data System (ADS)
Lindner, Benjamin; Yi, Zheng; Prinz, Jan-Hendrik; Smith, Jeremy C.; Noé, Frank
2013-11-01
The dynamics of complex molecules can be directly probed by inelastic neutron scattering experiments. However, many of the underlying dynamical processes may exist on similar timescales, which makes it difficult to assign processes seen experimentally to specific structural rearrangements. Here, we show how Markov models can be used to connect structural changes observed in molecular dynamics simulation directly to the relaxation processes probed by scattering experiments. For this, a conformational dynamics theory of dynamical neutron and X-ray scattering is developed, following our previous approach for computing dynamical fingerprints of time-correlation functions [F. Noé, S. Doose, I. Daidone, M. Löllmann, J. Chodera, M. Sauer, and J. Smith, Proc. Natl. Acad. Sci. U.S.A. 108, 4822 (2011)]. Markov modeling is used to approximate the relaxation processes and timescales of the molecule via the eigenvectors and eigenvalues of a transition matrix between conformational substates. This procedure allows the establishment of a complete set of exponential decay functions and a full decomposition into the individual contributions, i.e., the contribution of every atom and dynamical process to each experimental relaxation process.
Block-accelerated aggregation multigrid for Markov chains with application to PageRank problems
NASA Astrophysics Data System (ADS)
Shen, Zhao-Li; Huang, Ting-Zhu; Carpentieri, Bruno; Wen, Chun; Gu, Xian-Ming
2018-06-01
Recently, the adaptive algebraic aggregation multigrid method has been proposed for computing stationary distributions of Markov chains. This method updates aggregates on every iterative cycle to keep high accuracies of coarse-level corrections. Accordingly, its fast convergence rate is well guaranteed, but often a large proportion of time is cost by aggregation processes. In this paper, we show that the aggregates on each level in this method can be utilized to transfer the probability equation of that level into a block linear system. Then we propose a Block-Jacobi relaxation that deals with the block system on each level to smooth error. Some theoretical analysis of this technique is presented, meanwhile it is also adapted to solve PageRank problems. The purpose of this technique is to accelerate the adaptive aggregation multigrid method and its variants for solving Markov chains and PageRank problems. It also attempts to shed some light on new solutions for making aggregation processes more cost-effective for aggregation multigrid methods. Numerical experiments are presented to illustrate the effectiveness of this technique.
A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence.
Maliyoni, Milliward; Chirove, Faraimunashe; Gaff, Holly D; Govinder, Keshlan S
2017-09-01
We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton-Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.
The generalization ability of SVM classification based on Markov sampling.
Xu, Jie; Tang, Yuan Yan; Zou, Bin; Xu, Zongben; Li, Luoqing; Lu, Yang; Zhang, Baochang
2015-06-01
The previously known works studying the generalization ability of support vector machine classification (SVMC) algorithm are usually based on the assumption of independent and identically distributed samples. In this paper, we go far beyond this classical framework by studying the generalization ability of SVMC based on uniformly ergodic Markov chain (u.e.M.c.) samples. We analyze the excess misclassification error of SVMC based on u.e.M.c. samples, and obtain the optimal learning rate of SVMC for u.e.M.c. We also introduce a new Markov sampling algorithm for SVMC to generate u.e.M.c. samples from given dataset, and present the numerical studies on the learning performance of SVMC based on Markov sampling for benchmark datasets. The numerical studies show that the SVMC based on Markov sampling not only has better generalization ability as the number of training samples are bigger, but also the classifiers based on Markov sampling are sparsity when the size of dataset is bigger with regard to the input dimension.
NASA Astrophysics Data System (ADS)
Ye, Jing; Dang, Yaoguo; Li, Bingjun
2018-01-01
Grey-Markov forecasting model is a combination of grey prediction model and Markov chain which show obvious optimization effects for data sequences with characteristics of non-stationary and volatility. However, the state division process in traditional Grey-Markov forecasting model is mostly based on subjective real numbers that immediately affects the accuracy of forecasting values. To seek the solution, this paper introduces the central-point triangular whitenization weight function in state division to calculate possibilities of research values in each state which reflect preference degrees in different states in an objective way. On the other hand, background value optimization is applied in the traditional grey model to generate better fitting data. By this means, the improved Grey-Markov forecasting model is built. Finally, taking the grain production in Henan Province as an example, it verifies this model's validity by comparing with GM(1,1) based on background value optimization and the traditional Grey-Markov forecasting model.
El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar
2014-11-01
Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data.
Damage evaluation by a guided wave-hidden Markov model based method
NASA Astrophysics Data System (ADS)
Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin
2016-02-01
Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.
Quantum Mechanics, Pattern Recognition, and the Mammalian Brain
NASA Astrophysics Data System (ADS)
Chapline, George
2008-10-01
Although the usual way of representing Markov processes is time asymmetric, there is a way of describing Markov processes, due to Schrodinger, which is time symmetric. This observation provides a link between quantum mechanics and the layered Bayesian networks that are often used in automated pattern recognition systems. In particular, there is a striking formal similarity between quantum mechanics and a particular type of Bayesian network, the Helmholtz machine, which provides a plausible model for how the mammalian brain recognizes important environmental situations. One interesting aspect of this relationship is that the "wake-sleep" algorithm for training a Helmholtz machine is very similar to the problem of finding the potential for the multi-channel Schrodinger equation. As a practical application of this insight it may be possible to use inverse scattering techniques to study the relationship between human brain wave patterns, pattern recognition, and learning. We also comment on whether there is a relationship between quantum measurements and consciousness.
Renormalization group theory for percolation in time-varying networks.
Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M
2018-05-22
Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.
Accelerometry-based classification of human activities using Markov modeling.
Mannini, Andrea; Sabatini, Angelo Maria
2011-01-01
Accelerometers are a popular choice as body-motion sensors: the reason is partly in their capability of extracting information that is useful for automatically inferring the physical activity in which the human subject is involved, beside their role in feeding biomechanical parameters estimators. Automatic classification of human physical activities is highly attractive for pervasive computing systems, whereas contextual awareness may ease the human-machine interaction, and in biomedicine, whereas wearable sensor systems are proposed for long-term monitoring. This paper is concerned with the machine learning algorithms needed to perform the classification task. Hidden Markov Model (HMM) classifiers are studied by contrasting them with Gaussian Mixture Model (GMM) classifiers. HMMs incorporate the statistical information available on movement dynamics into the classification process, without discarding the time history of previous outcomes as GMMs do. An example of the benefits of the obtained statistical leverage is illustrated and discussed by analyzing two datasets of accelerometer time series.