Long wavelength vertical cavity surface emitting laser
Choquette, Kent D.; Klem, John F.
2005-08-16
Selectively oxidized vertical cavity lasers emitting near 1300 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave below, at and above room temperature. The lasers employ two n-type Al.sub.0.94 Ga.sub.0.06 As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the active region, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55.degree. C.
Minority carrier diffusion and defects in InGaAsN grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Kurtz, Steven R.; Klem, J. F.; Allerman, A. A.; Sieg, R. M.; Seager, C. H.; Jones, E. D.
2002-02-01
To gain insight into the nitrogen-related defects of InGaAsN, nitrogen vibrational mode spectra, Hall mobilities, and minority carrier diffusion lengths are examined for InGaAsN (1.1 eV band gap) grown by molecular beam epitaxy (MBE). Annealing promotes the formation of In-N bonding, and lateral carrier transport is limited by large scale (≫mean free path) material inhomogeneities. Comparing solar cell quantum efficiencies with our earlier results for devices grown by metalorganic chemical vapor deposition (MOCVD), we find significant electron diffusion in the MBE material (reversed from the hole diffusion in MOCVD material), and minority carrier diffusion in InGaAsN cannot be explained by a "universal," nitrogen-related defect.
Npn double heterostructure bipolar transistor with ingaasn base region
Chang, Ping-Chih; Baca, Albert G.; Li, Nein-Yi; Hou, Hong Q.; Ashby, Carol I. H.
2004-07-20
An NPN double heterostructure bipolar transistor (DHBT) is disclosed with a base region comprising a layer of p-type-doped indium gallium arsenide nitride (InGaAsN) sandwiched between n-type-doped collector and emitter regions. The use of InGaAsN for the base region lowers the transistor turn-on voltage, V.sub.on, thereby reducing power dissipation within the device. The NPN transistor, which has applications for forming low-power electronic circuitry, is formed on a gallium arsenide (GaAs) substrate and can be fabricated at commercial GaAs foundries. Methods for fabricating the NPN transistor are also disclosed.
NASA Astrophysics Data System (ADS)
Milanova, M.; Donchev, V.; Kostov, K. L.; Alonso-Álvarez, D.; Valcheva, E.; Kirilov, K.; Asenova, I.; Ivanov, I. G.; Georgiev, S.; Ekins-Daukes, N.
2017-08-01
We present a study of melt grown dilute nitride InGaAsN layers by x-ray photoelectron spectroscopy (XPS), Raman and photoluminescence (PL) spectroscopy. The purpose of the study is to determine the degree of atomic ordering in the quaternary alloy during the epitaxial growth at near thermodynamic equilibrium conditions and its influence on band gap formation. Despite the low In concentration (˜3%) the XPS data show a strong preference toward In-N bonding configuration in the InGaAsN samples. Raman spectra reveal that most of the N atoms are bonded to In instead of Ga atoms and the formation of N-centred In3Ga1 clusters. PL measurements reveal smaller optical band gap bowing as compared to the theoretical predictions for random alloy and localised tail states near the conduction band minimum.
NASA Astrophysics Data System (ADS)
López-Escalante, M. C.; Ściana, B.; Dawidowski, W.; Bielak, K.; Gabás, M.
2018-03-01
This work presents the results of X-ray photoelectron spectroscopy studies on the bonding N configuration in InGaAsN epilayers grown by atmospheric pressure metal organic vapour phase epitaxy. Growth temperature has been tuned in order to obtain both, relaxed and strained layers. The studies were concentrated on analysing the influence of the growth temperature, post growth thermal annealing process and surface quality on the formation of Ga-N and In-N bonds as well as N-related defects. The contamination of InGaAsN films by growth precursor residues and oxides has also been addressed. The growth temperature stands out as a decisive factor boosting In-N bonds formation, while the thermal annealing seems to affect the N-related defects density in the layers.
Defect properties of InGaAsN layers grown as sub-monolayer digital alloys by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Baranov, Artem I.; Gudovskikh, Alexander S.; Kudryashov, Dmitry A.; Lazarenko, Alexandra A.; Morozov, Ivan A.; Mozharov, Alexey M.; Nikitina, Ekaterina V.; Pirogov, Evgeny V.; Sobolev, Maxim S.; Zelentsov, Kirill S.; Egorov, Anton Yu.; Darga, Arouna; Le Gall, Sylvain; Kleider, Jean-Paul
2018-04-01
The defect properties of InGaAsN dilute nitrides grown as sub-monolayer digital alloys (SDAs) by molecular beam epitaxy for photovoltaic application were studied by space charge capacitance spectroscopy. Alloys of i-InGaAsN (Eg = 1.03 eV) were lattice-matched grown on GaAs wafers as a superlattice of InAs/GaAsN with one monolayer of InAs (<0.5 nm) between wide GaAsN (7-12 nm) layers as active layers in single-junction solar cells. Low p-type background doping was demonstrated at room temperature in samples with InGaAsN layers 900 nm and 1200 nm thick (less 1 × 1015 cm-3). According to admittance spectroscopy and deep-level transient spectroscopy measurements, the SDA approach leads to defect-free growth up to a thickness of 900 nm. An increase in thickness to 1200 nm leads to the formation of non-radiative recombination centers with an activation energy of 0.5 eV (NT = 8.4 × 1014 cm-3) and a shallow defect level at 0.20 eV. The last one leads to the appearance of additional doping, but its concentration is low (NT = 5 × 1014 cm-3) so it does not affect the photoelectric properties. However, further increase in thickness to 1600 nm, leads to significant growth of its concentration to (3-5) × 1015 cm-3, while the concentration of deep levels becomes 1.3 × 1015 cm-3. Therefore, additional free charge carriers appearing due to ionization of the shallow level change the band diagram from p-i-n to p-n junction at room temperature. It leads to a drop of the external quantum efficiency due to the effect of pulling electric field decrease in the p-n junction and an increased number of non-radiative recombination centers that negatively impact lifetimes in InGaAsN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauthier, J.-P.; Almosni, S.; Léger, Y.
We report on the structural and optical properties of (In,Ga)AsN self-assembled quantum dots grown on GaP (001) substrate. A comparison with nitrogen free (In,Ga)As system is presented, showing a clear modification of growth mechanisms and a significant shift of the photoluminescence spectrum. Low temperature carrier recombination dynamics is studied by time-resolved photoluminescence, highlighting a drastic reduction of the characteristic decay-time when nitrogen is incorporated in the quantum dots. Room temperature photoluminescence is observed at 840 nm. These results reveal the potential of (In,Ga)AsN as an efficient active medium monolithically integrated on Si for laser applications.
III-V-N materials for super high-efficiency multijunction solar cells
NASA Astrophysics Data System (ADS)
Yamaguchi, Masafumi; Bouzazi, Boussairi; Suzuki, Hidetoshi; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio
2012-10-01
We have been studying concentrator multi-junction solar cells under Japanese Innovative Photovoltaic R&D program since FY2008. InGaAsN is one of appropriate materials for 4-or 5-junction solar cell configuration because this material can be lattice-matched to GaAs and Ge substrates. However, present InGaAsN single-junction solar cells have been inefficient because of low minority-carrier lifetime due to N-related recombination centers and low carrier mobility due to alloy scattering and non-homogeneity of N. This paper presents our major results in the understanding of majority and minority carrier traps in GaAsN grown by chemical beam epitaxy and their relationships with the poor electrical properties of the materials.
The Growth of InGaAsN for High Efficiency Solar Cells by Metalorganic Chemical Vapor Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
ALLERMAN,ANDREW A.; BANKS,JAMES C.; GEE,JAMES M.
1999-09-16
InGaAsN alloys are a promising material for increasing the efficiency of multi-junction solar cells now used for satellite power systems. However, the growth of these dilute N containing alloys has been challenging with further improvements in material quality needed before the solar cell higher efficiencies are realized. Nitrogen/V ratios exceeding 0.981 resulted in lower N incorporation and poor surface morphologies. The growth rate was found to depend on not only the total group III transport for a fixed N/V ratio but also on the N/V ratio. Carbon tetrachloride and dimethylzinc were effective for p-type doping. Disilane was not an effectivemore » n-type dopant while SiCl4 did result in n-type material but only a narrow range of electron concentrations (2-5e17cm{sup -3}) were achieved.« less
NASA Astrophysics Data System (ADS)
Park, Yeonjoon
The advanced semiconductor material InGaAsN was grown with nitrogen plasma assisted Molecular Beam Epitaxy (MBE). The InGaAsN layers were characterized with High Resolution X-ray Diffraction (HRXDF), Atomic Fore Microscope (AFM), X-ray Photoemission Spectroscopy (XPS) and Photo-Luminescence (PL). The reduction of the band gap energy was observed with the incorporation of nitrogen and the lattice matched condition to the GaAs substrate was achieved with the additional incorporation of indium. A detailed investigation was made for the growth mode changes from planar layer-by-layer growth to 3D faceted growth with a higher concentration of nitrogen. A new X-ray diffraction analysis was developed and applied to the MBE growth on GaAs(111)B, which is one of the facet planes of InGaAsN. As an effort to enhance the processing tools for advanced semiconductor materials, gas assisted Focused Ion Beam (FIB) vertical milling was performed on GaN. The FIB processed area shows an atomically flat surface, which is good enough for the fabrication of Double Bragg Reflector (DBR) mirrors for the Blue GaN Vertical Cavity Surface Emitting Laser (VCSEL) Diodes. An in-situ electron beam system was developed to combine the enhanced lithographic processing capability with the atomic layer growth capability by MBE. The electron beam system has a compensation capability against substrate vibration and thermal drift. In-situ electron beam lithography was performed with the low pressure assisting gas. The advanced processing and characterization methods developed in this thesis will assist the development of superior semiconductor materials for the future.
High-efficiency solar cell and method for fabrication
Hou, Hong Q.; Reinhardt, Kitt C.
1999-01-01
A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).
High-efficiency solar cell and method for fabrication
Hou, H.Q.; Reinhardt, K.C.
1999-08-31
A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.
MBE development of dilute nitrides for commercial long-wavelength laser applications
NASA Astrophysics Data System (ADS)
Malis, O.; Liu, W. K.; Gmachl, C.; Fastenau, J. M.; Joel, A.; Gong, P.; Bland, S. W.; Moshegov, N.
2003-04-01
InGaAsN-based materials are being developed at IQE, Inc. for 1.3 μm laser applications. Both MBE and MOCVD growth technology are employed and under investigation for commercial viability. The MBE effort focuses on optimizing the process for the large-volume manufacturing environment. The PL efficiencies of InGaAsN QWs grown with different nitrogen sources on single and multi-wafer MBE platforms are compared. The effect of various annealing treatments on the PL intensity and wavelength uniformity is also discussed in detail. The PL intensity of MBE-grown InGaAsN QWs is inferior to the efficiency of MOCVD samples emitting below 1.29 μm. MOCVD samples, however, exhibit a faster decay of the PL intensity with increasing wavelength, and loose their advantage above 1.29 μm. Deep and shallow ridge-waveguide lasers emitting at 1.28 μm were processed from the MBE material and the laser characteristics are discussed.
. Yelon, "Evidence of the Meyer-Neldel rule in InGaAsN alloys and the problem of determining trap Conference, 599 (2005). S.W. Johnston, S.R. Kurtz, "Comparison of a dominant electron trap in n-type and response of grain boundaries in upgraded metallurgical-grade silicon for photovoltaics," Solar Energy
NASA Astrophysics Data System (ADS)
Tansu, Nelson
The thesis covers the development of novel active regions for high-performance edge-emitting lasers (EEL) and vertical cavity surface-emitting lasers (VCSELs) in optical communication. Three main themes of the thesis cover the design, fabrication, and physics of the novel and alternative active regions for GaAs-based VCSELs for the three optical communications windows at wavelength regimes of 850-nm, 1300-nm, and 1500-nm, with the emphases on the 1300-nm InGaAsN QW GaAs-based active regions and on the novel design of 1500-nm GaAs-based active regions. The studies include the utilization of compressively-strained InGaAsP quantum well (QW) active regions for the 850-nm VCSELs. The research on the long-wavelength lasers covers the design, growth, temperature analysis, carrier transport, and gain analysis of the InGaAsN (lambda = 1.3 mum) quantum well lasers. The novel and original design of the GaAsSb-(In)GaAsN type-II QWs to achieve 1500--3000 nm GaAs-based active regions is discussed in detail.
InGaAsN/GaAs heterojunction for multi-junction solar cells
Kurtz, Steven R.; Allerman, Andrew A.; Klem, John F.; Jones, Eric D.
2001-01-01
An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 0
Effect of Sb in thick InGaAsSbN layers grown by liquid phase epitaxy
NASA Astrophysics Data System (ADS)
Donchev, V.; Milanova, M.; Asenova, I.; Shtinkov, N.; Alonso-Álvarez, D.; Mellor, A.; Karmakov, Y.; Georgiev, S.; Ekins-Daukes, N.
2018-02-01
Dilute nitride InGaAsSbN layers grown by low-temperature liquid phase epitaxy are studied in comparison with quaternary InGaAsN layers grown at the same growth conditions to understand the effect of Sb in the alloy. The lattice mismatch to the GaAs substrate is found to be slightly larger for the InGaAsSbN layers, which is explained by the large atomic radius of Sb. A reduction of the band gap energy with respect to InGaAsN is demonstrated by means of photoluminescence (PL), surface photovoltage (SPV) spectroscopy and tight-binding calculations. The band-gap energies determined from PL and ellipsometry measurements are in good agreement, while the SPV spectroscopy and the tight-binding calculations provide lower values. Possible reasons for these discrepancies are discussed. The PL spectra reveal localized electronic states in the band gap near the conduction band edge, which is confirmed by SPV spectroscopy. The analysis of the power dependence of the integrated PL has allowed determining the dominant radiative recombination mechanisms in the layers. The values of the refraction index in a wide spectral region are found to be higher for the Sb containing layers.
A Comparative Study of QD and Nitrogen-Based 1.3 mu m VCSELs
2001-06-01
molecular beam epitaxy (MBE) proposed as promising candidates for 1.3 /tm emitters. Among them InGaAsN quantum well (QW) and InGaAs quantum dots (QD... VCSELs DISTRIBUTION: Approved for public release, distribution unlimited Availability: Hard copy only. This paper is part of the following report: TITLE...and Technology" LOED.02 St Petersburg, Russia, June 18-22, 2001 ©0 2001 loffe Institute A comparative study of QD and nitrogen-based 1.3 /tm VCSELs A. P
High Luminescence Efficiency from GaAsN Layers Grown by MBE with RF Nitrogen Plasma Source
2002-01-01
is the goal for applications in fiber optic communication systems. 1.3 micron edge- emitting lasers and VCSELs have been recently demonstrated by...GaAsN layers. CONCLUSIONS Molecular beam epitaxial growth of GaAsj_,N, layers has been studied as a function of nitrogen content and growth regimes. We...obtained are important for further improving the characteristics of InGaAsN lasers emitting at 1.3 micron. INTRODUCTION Group-Ill nitride semiconductors
2000-06-23
when Nitrogen concentration is increased [91. In molecular beam epitaxy (MBE) one of the reasons of this is the surface quality degradation due to the...cavity surface emitting laser ( VCSEL ) emitting at 1.18 /tm was also reported [7 1. The main problem in the InGaAsN epitaxy is a large difference in the...vertical cavity surface emitting lasers ( VCSELs ). This stimulates attempts to fabricate high quality 1.3 /tm lasers on GaAs substrates. The best results
Reliability of 1.3 micron VCSELs for metro area networks
NASA Astrophysics Data System (ADS)
Prakash, Simon R.; Chirovsky, Leo M. F.; Naone, Ryan L.; Galt, David; Kisker, Dave W.; Jackson, Andrew W.
2003-06-01
Vertical Cavity Surface Emitting Lasers (VCSELs) have been widely adopted in the 850nm data communications markets with great success. Using this technology as a basis, we have developed a 1.3 μm InGaAsN VCSEL and VCSEL Array technology for telecommunications applications. Since the reliability requirement of this market is less than 150 FITs over 20 years, we focused a great deal of development time on the reliability of the device, and so far have been able to predict an MTTF of over 13 million hours or 71 FITs. This report provides a brief summary of the characteristics of the VCSEL in various stress conditions and the methodology used to measure both the wear-out and random failure rates of the devices.
Peregrine rogue waves induced by the interaction between a continuous wave and a soliton.
Yang, Guangye; Li, Lu; Jia, Suotang
2012-04-01
Based on the soliton solution on a continuous wave background for an integrable Hirota equation, the reduction mechanism and the characteristics of the Peregrine rogue wave in the propagation of femtosecond pulses of optical fiber are discussed. The results show that there exist two processes of the formation of the Peregrine rogue wave: one is the localized process of the continuous wave background, and the other is the reduction process of the periodization of the bright soliton. The characteristics of the Peregrine rogue wave are exhibited by strong temporal and spatial localization. Also, various initial excitations of the Peregrine rogue wave are performed and the results show that the Peregrine rogue wave can be excited by a small localized (single peak) perturbation pulse of the continuous wave background, even for the nonintegrable case. The numerical simulations show that the Peregrine rogue wave is unstable. Finally, through a realistic example, the influence of the self-frequency shift to the dynamics of the Peregrine rogue wave is discussed. The results show that in the absence of the self-frequency shift, the Peregrine rogue wave can split into several subpulses; however, when the self-frequency shift is considered, the Peregrine rogue wave no longer splits and exhibits mainly a peak changing and an increasing evolution property of the field amplitude.
COMPARATIVE DISINFECTION EFFICIENCY OF PULSED AND CONTINUOUS-WAVE UV IRRADIATION TECHNOLOGIES
Pulsed UV (PUV) is novel UV irradiation system that is a non-mercury lamp based alternative to currently used continuous-wave systems for water disinfection. To compare the polychromatic PUV irradiation disinfection efficiency with that from continuous wave monochromatic low-pre...
Lahey, Benjamin B; Zald, David H; Hakes, Jahn K; Krueger, Robert F; Rathouz, Paul J
2014-09-01
Mental disorders predict future occurrences of both the same disorder (homotypic continuity) and other disorders (heterotypic continuity). Heterotypic continuity is inconsistent with a view of mental disorders as fixed entities. In contrast, hierarchical-dimensional conceptualizations of psychopathology, in which each form of psychopathology is hypothesized to have both unique and broadly shared etiologies and mechanisms, predict both homotypic and heterotypic continuity. To test predictions derived from a hierarchical-dimensional model of psychopathology that (1) heterotypic continuity is widespread, even controlling for homotypic continuity, and that (2) the relative magnitudes of heterotypic continuities recapitulate the relative magnitudes of cross-sectional correlations among diagnoses at baseline. Ten prevalent diagnoses were assessed in the same person twice (ie, in 2 waves separated by 3 years). We used a representative sample of adults in the United States (i.e., 28,958 participants 18-64 years of age in the National Epidemiologic Study of Alcohol and Related Conditions who were assessed in both waves). Diagnoses from reliable and valid structured interviews. Adjusting for sex and age, we found that bivariate associations of all pairs of diagnoses from wave 1 to wave 2 exceeded chance levels (P < .05) for all homotypic (median tetrachoric correlation of ρ = 0.54 [range, 0.41-0.79]) and for nearly all heterotypic continuities (median tetrachoric correlation of ρ = 0.28 [range, 0.07-0.50]). Significant heterotypic continuity was widespread even when all wave 1 diagnoses (including the same diagnosis) were simultaneous predictors of each wave 2 diagnosis. The rank correlation between age- and sex-adjusted tetrachoric correlation for cross-sectional associations among wave 1 diagnoses and for heterotypic associations from wave 1 to wave 2 diagnoses was ρ = 0.86 (P < .001). For these prevalent mental disorders, heterotypic continuity was nearly universal and not an artifact of failure to control for homotypic continuity. Furthermore, the relative magnitudes of heterotypic continuity closely mirrored the relative magnitudes of cross-sectional associations among these disorders, consistent with the hypothesis that both sets of associations reflect the same factors. Mental disorders are not fixed and independent entities. Rather, each diagnosis is robustly related to other diagnoses in a correlational structure that is manifested both concurrently and in patterns of heterotypic continuity across time.
NASA Astrophysics Data System (ADS)
Wheatley, R.; Kesaria, M.; Mawst, L. J.; Kirch, J. D.; Kuech, T. F.; Marshall, A.; Zhuang, Q. D.; Krier, A.
2015-06-01
Extended wavelength photoluminescence emission within the technologically important 2-5 μm spectral range has been demonstrated from InAs1-xNx and In1-yGayAs1-xNx type I quantum wells grown onto InP. Samples containing N ˜ 1% and 2% exhibited 4 K photoluminescence emission at 2.0 and 2.7 μm, respectively. The emission wavelength was extended out to 2.9 μm (3.3 μm at 300 K) using a metamorphic buffer layer to accommodate the lattice mismatch. The quantum wells were grown by molecular beam epitaxy and found to be of a high structural perfection as evidenced in the high resolution x-ray diffraction measurements. The photoluminescence was more intense from the quantum wells grown on the metamorphic buffer layer and persisted up to room temperature. The mid-infrared emission spectra were analysed, and the observed transitions were found to be in good agreement with the calculated emission energies.
Continuous-wave terahertz imaging of nonmelanoma skin cancers
NASA Astrophysics Data System (ADS)
Joseph, Cecil Sudhir
Continuous wave terahertz imaging has the potential to offer a safe, non-invasive medical imaging modality for detecting different types of human skin cancers. Terahertz pulse imaging (TPI) has already shown that there is contrast between basal cell carcinoma and normal skin. Continuous-wave imaging offers a simpler, lower cost alternative to terahertz pulse imaging. This project aims to isolate the optimal contrast frequency for a continuous wave terahertz imaging system and demonstrate transmission based, in-vitro , imaging of thin sections of non-melanoma skin cancers and correlate the images to sample histology. The aim of this project is to conduct a proof-of-principle experiment that establishes whether continuous-wave terahertz imaging can detect differences between cancerous and normal tissue while outlining the basic requirements for building a system capable of performing in vivo tests.
Lahey, Benjamin B.; Zald, David H.; Hakes, Jahn K.; Krueger, Robert F.; Rathouz, Paul J.
2014-01-01
Importance Mental disorders predict future occurrences of both the same disorder (homotypic continuity) and other disorders (heterotypic continuity). Heterotypic continuity is inconsistent with a view of mental disorders as fixed entities. In contrast, hierarchical-dimensional conceptualizations of psychopathology, in which each form of psychopathology is hypothesized to have both unique and broadly shared etiologies and mechanisms, predict both homotypic and heterotypic continuity. Objective To test predictions derived from a hierarchical-dimensional model of psychopathology that (a) heterotypic continuity is widespread, even controlling for homotypic continuity, and (b) the relative magnitudes of heterotypic continuities recapitulate the relative magnitudes of cross-sectional correlations among diagnoses at baseline. Design Assess 10 prevalent diagnoses in the same persons 3 years apart. Setting Representative sample of adults in the United States. Participants The 28,958 participants in the National Epidemiologic Study of Alcohol and Related Condition aged 18–64 years who were assessed in both waves. Main Outcome Measure Diagnoses from reliable and valid structured interviews. Results Bivariate associations of all pairs of diagnoses from wave 1 to wave 2 exceeded chance levels for all homotypic (tetrachoric ρ = 0.41 – 0.79, median = 0.54) and for nearly all heterotypic continuities (tetrachoric ρ = 0.07 – 0.50, median = 0.28), adjusted for sex and age. Significant heterotypic continuity was widespread even when all other wave 1 diagnoses (including the same diagnosis) were simultaneous predictors of each wave 2 diagnosis. The rank correlation between age and sex adjusted tetrachoric ρs for cross-sectional associations among wave 1 diagnoses and heterotypic associations from wave 1 to wave 2 diagnoses was ρ = .86. Conclusions and Relevance For these prevalent mental disorders, heterotypic continuity was nearly universal and not an artifact of failure to control for homotypic continuity. Furthermore, the relative magnitudes of heterotypic continuity closely mirrored the relative magnitudes of cross-sectional associations among these disorders, consistent with the hypothesis that both sets of associations reflect the same factors. Mental disorders are not fixed and independent entities. Rather, each diagnosis is robustly related to other diagnoses in a correlational structure that is manifested both concurrently and in patterns of heterotypic continuity across time. PMID:24989054
Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.
Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing
2014-01-01
The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.
Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance
Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing
2014-01-01
The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993
Toward continuous-wave operation of organic semiconductor lasers
Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya
2017-01-01
The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042
Toward continuous-wave operation of organic semiconductor lasers.
Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya
2017-04-01
The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.
Watt-Level Continuous-Wave Emission from a Bi-Functional Quantum Cascade Laser/Detector
2017-04-18
facet continuous wave emission at 15◦C. Apart from the general performance benets, this enables sensing techiques which rely on continuous wave...record achieved with strained material at this wavelength. Keywords quantum cascade laser, quantum cascade detector, lab- on -a-chip, monolithic integrated...materials, which makes their integration on Si particularly dicult. Heterogeneous integration using transfer techniques allows both single device and wafer
Reasons for Trying E-cigarettes and Risk of Continued Use
Kong, Grace; Cavallo, Dana A.; Camenga, Deepa R.; Krishnan-Sarin, Suchitra
2016-01-01
BACKGROUND: Longitudinal research is needed to identify predictors of continued electronic cigarette (e-cigarette) use among youth. We expected that certain reasons for first trying e-cigarettes would predict continued use over time (eg, good flavors, friends use), whereas other reasons would not predict continued use (eg, curiosity). METHODS: Longitudinal surveys from middle and high school students from fall 2013 (wave 1) and spring 2014 (wave 2) were used to examine reasons for trying e-cigarettes as predictors of continued e-cigarette use over time. Ever e-cigarette users (n = 340) at wave 1 were categorized into those using or not using e-cigarettes at wave 2. Among those who continued using e-cigarettes, reasons for trying e-cigarettes were examined as predictors of use frequency, measured as the number of days using e-cigarettes in the past 30 days at wave 2. Covariates included age, sex, race, and smoking of traditional cigarettes. RESULTS: Several reasons for first trying e-cigarettes predicted continued use, including low cost, the ability to use e-cigarettes anywhere, and to quit smoking regular cigarettes. Trying e-cigarettes because of low cost also predicted more days of e-cigarette use at wave 2. Being younger or a current smoker of traditional cigarettes also predicted continued use and more frequent use over time. CONCLUSIONS: Regulatory strategies such as increasing cost or prohibiting e-cigarette use in certain places may be important for preventing continued use in youth. In addition, interventions targeting current cigarette smokers and younger students may also be needed. PMID:27503349
Reasons for Trying E-cigarettes and Risk of Continued Use.
Bold, Krysten W; Kong, Grace; Cavallo, Dana A; Camenga, Deepa R; Krishnan-Sarin, Suchitra
2016-09-01
Longitudinal research is needed to identify predictors of continued electronic cigarette (e-cigarette) use among youth. We expected that certain reasons for first trying e-cigarettes would predict continued use over time (eg, good flavors, friends use), whereas other reasons would not predict continued use (eg, curiosity). Longitudinal surveys from middle and high school students from fall 2013 (wave 1) and spring 2014 (wave 2) were used to examine reasons for trying e-cigarettes as predictors of continued e-cigarette use over time. Ever e-cigarette users (n = 340) at wave 1 were categorized into those using or not using e-cigarettes at wave 2. Among those who continued using e-cigarettes, reasons for trying e-cigarettes were examined as predictors of use frequency, measured as the number of days using e-cigarettes in the past 30 days at wave 2. Covariates included age, sex, race, and smoking of traditional cigarettes. Several reasons for first trying e-cigarettes predicted continued use, including low cost, the ability to use e-cigarettes anywhere, and to quit smoking regular cigarettes. Trying e-cigarettes because of low cost also predicted more days of e-cigarette use at wave 2. Being younger or a current smoker of traditional cigarettes also predicted continued use and more frequent use over time. Regulatory strategies such as increasing cost or prohibiting e-cigarette use in certain places may be important for preventing continued use in youth. In addition, interventions targeting current cigarette smokers and younger students may also be needed. Copyright © 2016 by the American Academy of Pediatrics.
A comparison of the effects of continuous wave, sinusoidal-amplitude modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague Dawley rats (175-225g). Brain NADH fluorescence, adensine triphosphate (ATP) concentrat...
Novel Imaging Method of Continuous Shear Wave by Ultrasonic Color Flow Mapping
NASA Astrophysics Data System (ADS)
Yamakoshi, Yoshiki; Yamamoto, Atsushi; Yuminaka, Yasushi
Shear wave velocity measurement is a promising method in evaluation of tissue stiffness. Several methods have been developed to measure the shear wave velocity, however, it is difficult to obtain quantitative shear wave image in real-time by low cost system. In this paper, a novel shear wave imaging method for continuous shear wave is proposed. This method uses a color flow imaging which is used in ultrasonic imaging system to obtain shear wave's wavefront map. Two conditions, shear wave frequency condition and shear wave displacement amplitude condition, are required, however, these conditions are not severe restrictions in most applications. Using the proposed method, shear wave velocity of trapezius muscle is measured. The result is consistent with the velocity which is calculated from shear elastic modulus measured by ARFI method.
2008-01-30
that will use conventional diode- or hotomultiplier-tube-based optical detectors , which are xtremely sensitive . . HEATING AND FREE-CARRIER IMITATIONS...CONTRACT NUMBER IN-HOUSE Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides 5b. GRANT...B 261Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides T. Baehr-Jones,1,* M. Hochberg,1,3
Freak Waves In The Ocean A~é We Need Continuous Measurements!
NASA Astrophysics Data System (ADS)
Liu, P.; Teng, C.; Mori, N.
Freak waves, sometimes also known as rogue waves, are a particular kind of ocean waves that displays a singular, unexpected, and unusually high wave profile with an extraordinarily large and steep trough or crest. The existence of freak waves has be- come widely accepted while it always poses severe hazard to the navy fleets, merchant marines, offshore structures, and virtually all oceanic ventures. Multitudes of seagoing vessels and mariners have encountered freak waves over the years, many had resulted in disasters. The emerging interest in freak waves and the quest to grasp an understand- ing of the phenomenon have inspired numerous theoretical conjectures in recent years. But the practical void of actual field observation on freak waves renders even the well- developed theories remain unverified. Furthermore, the present wave measurement systems, which have been in practice for the last 5 decades, are not at all designed to capture freak waves. We wish therefore to propose and petition to all oceanic scientist and engineers to consider undertaking an unprecedented but technologically feasible practice of making continuous and uninterrupted wave measurements. As freak waves can happen anywhere in the ocean and at anytime, the continuous and uninterrupted measurements at a fixed station would certainly be warranted to document the occur- rence of freak waves, if present, and thus lead to basic realizations of the underlying driving mechanisms.
Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.
Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara
2017-09-01
Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.
Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy
Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao
2013-01-01
Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals. PMID:23966188
A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries
ERIC Educational Resources Information Center
Linares, J.; Nistal, M. C.
2011-01-01
We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…
Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes
Xiao, Fuliang; Zhou, Qinghua; He, Yihua; ...
2015-09-11
During the small storm on 14–15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along its orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate toward lower L shells outside the plasmasphere, with rapidly increasing path gains related to the continuous proton ring distribution. The waves then graduallymore » cross the plasmapause into the deep plasmasphere, with almost unchanged path gains due to the falling proton ring distribution and higher ambient density. These results present the first report on how MS waves penetrate into the plasmasphere with the aid of the continuous proton ring distributions during weak geomagnetic activities.« less
Directed search for continuous gravitational waves from the Galactic center
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2013-11-01
We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic center region, performed on two years of data from LIGO’s fifth science run from two LIGO detectors. The search uses a semicoherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first-order spindown values down to -7.86×10-8Hz/s at the highest frequency. No gravitational waves were detected. The 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic center are ˜3.35×10-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.
Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media
NASA Astrophysics Data System (ADS)
Ma, Jun; Wu, Fuqiang; Hayat, Tasawar; Zhou, Ping; Tang, Jun
2017-11-01
Continuous wave emitting from sinus node of the heart plays an important role in wave propagating among cardiac tissue, while the heart beating can be terminated when the target wave is broken into turbulent states by electromagnetic radiation. In this investigation, local periodical forcing is applied on the media to induce continuous target wave in the improved cardiac model, which the effect of electromagnetic induction is considered by using magnetic flux, then external electromagnetic radiation is imposed on the media. It is found that target wave propagation can be blocked to stand in a local area and the excitability of media is suppressed to approach quiescent but homogeneous state when electromagnetic radiation is imposed on the media. The sampled time series for membrane potentials decrease to quiescent state due to the electromagnetic radiation. It could accounts for the mechanism of abnormality in heart failure exposed to continuous electromagnetic field.
Recent searches for continuous gravitational waves
NASA Astrophysics Data System (ADS)
Riles, Keith
2017-12-01
Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst (GRB) and a kilonova, reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein “clouds” surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches are discussed.
Hierarchical multistage MCMC follow-up of continuous gravitational wave candidates
NASA Astrophysics Data System (ADS)
Ashton, G.; Prix, R.
2018-05-01
Leveraging Markov chain Monte Carlo optimization of the F statistic, we introduce a method for the hierarchical follow-up of continuous gravitational wave candidates identified by wide-parameter space semicoherent searches. We demonstrate parameter estimation for continuous wave sources and develop a framework and tools to understand and control the effective size of the parameter space, critical to the success of the method. Monte Carlo tests of simulated signals in noise demonstrate that this method is close to the theoretical optimal performance.
Neuronal Networks in Children with Continuous Spikes and Waves during Slow Sleep
ERIC Educational Resources Information Center
Siniatchkin, Michael; Groening, Kristina; Moehring, Jan; Moeller, Friederike; Boor, Rainer; Brodbeck, Verena; Michel, Christoph M.; Rodionov, Roman; Lemieux, Louis; Stephani, Ulrich
2010-01-01
Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least greater than 85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and…
Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators.
Stothard, David J M; Dunn, Malcolm H
2010-01-18
We report a solution to the long standing problem of the occurrence of spontaneous and long-lived bursts of relaxation oscillations which occur when a continuous-wave optical parametric oscillator is operated within the cavity of the parent pump-laser. By placing a second nonlinear crystal within the pump-wave cavity for the purpose of second-harmonic-generation of the pump-wave the additional nonlinear loss thereby arising due to up-conversion effectively suppresses the relaxation oscillations with very little reduction in down-converted power.
NASA Astrophysics Data System (ADS)
Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang
2018-02-01
Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.
Continuity Conditions on Schrodinger Wave Functions at Discontinuities of the Potential.
ERIC Educational Resources Information Center
Branson, David
1979-01-01
Several standard arguments which attempt to show that the wave function and its derivative must be continuous across jump discontinuities of the potential are reviewed and their defects discussed. (Author/HM)
NASA Technical Reports Server (NTRS)
Yamanaka, M. D.
1989-01-01
In MAP observations, it was found that: (1) gravity waves in selected or filtered portions of data are fit for monochromatic structures, whereas (2) those in fully continuous and resolved observations take universal continuous spectra. It is possible to explain (2) by dispersion of quasi-monochromatic (or slowly varying) wave packets observed locally as (1), since the medium atmosphere is unsteady and nonuniform. Complete verification of the wave-mean flow interactions by tracking individual wave packets seems hopeless, because the wave induced flow cannot be distinguished from the basic flow independent of the waves. Instead, the primitive picture is looked at before MAP, that is, the atmosphere is just like an entertainment stage illuminated by cocktail lights of quasi-monochromatic gravity waves. The wave parameters are regarded as functions of time and spatial coordinates. The observational evidences (1) and (2) suggest that the wave parameter field is rather homogeneous, which can be explained by interference of quasi-monochromatic wave packets.
Weinberger, Andrea H.; Pilver, Corey E.; Desai, Rani A.; Mazure, Carolyn M.; McKee, Sherry A.
2012-01-01
BACKGROUND Although data clearly link major depression and smoking, little is known about the association between dysthymia and minor depression and smoking behavior. The current study examined changes in smoking over three years for current and former smokers with and without dysthymia and minor depression. METHODS Participants who were current or former daily cigarette smokers at Wave 1 of the National Epidemiologic Survey on Alcohol and Related Conditions and completed the Wave 2 assessment were included in these analyses (n=11,973; 46% female). Analyses examined the main and gender-specific effects of current dysthymia, lifetime dysthymia, and minor depression (a single diagnostic category that denoted current and or lifetime prevalence) on continued smoking for Wave 1 current daily smokers and continued abstinence for Wave 1 former daily smokers. RESULTS Wave 1 current daily smokers with current dysthymia (OR=2.13, 95% CI=1.23, 3.70) or minor depression (OR=1.53, 95% CI=1.07, 2.18) were more likely than smokers without the respective diagnosis to report continued smoking at Wave 2. Wave 1 former daily smokers with current dysthymia (OR=0.44, 95% CI=0.20, 0.96) and lifetime dysthymia (OR=0.37, 95% CI=0.15, 0.91) were less likely than those without the diagnosis to remain abstinent from smoking at Wave 2. The gender-by-diagnosis interactions were not significant, suggesting that the impact of dysthymia and minor depression on smoking behavior is similar among men and women. CONCLUSIONS Current dysthymia and minor depression are associated with a greater likelihood of continued smoking; current and lifetime dysthymia are associated with a decreased likelihood of continued smoking abstinence. PMID:22809897
Weinberger, Andrea H; Pilver, Corey E; Desai, Rani A; Mazure, Carolyn M; McKee, Sherry A
2013-01-01
Although data clearly link major depression and smoking, little is known about the association between dysthymia and minor depression and smoking behavior. The current study examined changes in smoking over 3 years for current and former smokers with and without dysthymia and minor depression. Participants who were current or former daily cigarette smokers at Wave 1 of the National Epidemiologic Survey on Alcohol and Related Conditions and completed the Wave 2 assessment were included in these analyses (n=11,973; 46% female). Analyses examined the main and gender-specific effects of current dysthymia, lifetime dysthymia, and minor depression (a single diagnostic category that denoted current and/or lifetime prevalence) on continued smoking for Wave 1 current daily smokers and continued abstinence for Wave 1 former daily smokers. Wave 1 current daily smokers with current dysthymia (OR=2.13, 95% CI=1.23, 3.70) or minor depression (OR=1.53, 95% CI=1.07, 2.18) were more likely than smokers without the respective diagnosis to report continued smoking at Wave 2. Wave 1 former daily smokers with current dysthymia (OR=0.44, 95% CI=0.20, 0.96) and lifetime dysthymia (OR=0.37, 95% CI=0.15, 0.91) were less likely than those without the diagnosis to remain abstinent from smoking at Wave 2. The gender-by-diagnosis interactions were not significant, suggesting that the impact of dysthymia and minor depression on smoking behavior is similar among men and women. Current dysthymia and minor depression are associated with a greater likelihood of continued smoking; current and lifetime dysthymia are associated with a decreased likelihood of continued smoking abstinence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Liu, Haitao; Xue, Song; Ruan, Yuan; Sun, Xiaowen; Han, Bangmin; Xia, Shujie
2011-01-01
We have reported the efficacy and safety of 2-micrometer continuous wave laser resection of non-muscle-invasive bladder tumor (NMIVBC) (World J Urology 2010;28:157-161). In this study, we evaluated the use of 2-micrometer continuous wave laser resection in combination with intravesical instillation of epirubicin for the treatment of multiple NMIVBC. From September 2007 to April 2008, sixty patients with multiple NMIVBC were included in this study (44 cases of low grade papillary urothelial carcinoma, 10 cases of high grade papillary urothelial carcinoma, and six cases of papillary urothelial neoplasm with low malignant potential). Imaging examinations including pelvic computer tomography (CT) and intravenous urography showed no extravesical extension, lymphatic metastasis or any lesions of upper urinary tract. All patients received 2-micrometer continuous wave laser therapy under continuous epidural anesthesia, and intravesical chemotherapy with epirubicin 1 week later (intravesical instillation weekly for 8 weeks, followed by monthly maintenance to 12 months). Totally 211 tumors in 60 patients were successfully removed with 2-micrometer continuous wave laser. The mean operation time was 48 minutes per patient (ranged 20-90 minutes) and 13.6 minutes per tumor (range 5-25 minutes). No obturator nerve reflection or bladder perforation occurred during the procedure. All patients finished 12 months of intravesical chemotherapy without severe complications. The mean followed-up time was 23 months. Tumor recurrences were found in 13 patients (22%). The combination of 2-micrometer continuous wave laser and intravesical chemotherapy is feasible, safe, and efficacious for the treatment of multiple NMIVBC. Copyright © 2011 Wiley-Liss, Inc.
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meek, Garrett A.; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu
2016-05-14
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplingsmore » at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.« less
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections
NASA Astrophysics Data System (ADS)
Meek, Garrett A.; Levine, Benjamin G.
2016-05-01
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.
Meek, Garrett A; Levine, Benjamin G
2016-05-14
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.
The local nanohertz gravitational-wave landscape from supermassive black hole binaries
NASA Astrophysics Data System (ADS)
Mingarelli, Chiara M. F.; Lazio, T. Joseph W.; Sesana, Alberto; Greene, Jenny E.; Ellis, Justin A.; Ma, Chung-Pei; Croft, Steve; Burke-Spolaor, Sarah; Taylor, Stephen R.
2017-12-01
Supermassive black hole binary systems form in galaxy mergers and reside in galactic nuclei with large and poorly constrained concentrations of gas and stars. These systems emit nanohertz gravitational waves that will be detectable by pulsar timing arrays. Here we estimate the properties of the local nanohertz gravitational-wave landscape that includes individual supermassive black hole binaries emitting continuous gravitational waves and the gravitational-wave background that they generate. Using the 2 Micron All-Sky Survey, together with galaxy merger rates from the Illustris simulation project, we find that there are on average 91 ± 7 continuous nanohertz gravitational-wave sources, and 7 ± 2 binaries that will never merge, within 225 Mpc. These local unresolved gravitational-wave sources can generate a departure from an isotropic gravitational-wave background at a level of about 20 per cent, and if the cosmic gravitational-wave background can be successfully isolated, gravitational waves from at least one local supermassive black hole binary could be detected in 10 years with pulsar timing arrays.
Improved ultrasonic TV images achieved by use of Lamb-wave orientation technique
NASA Technical Reports Server (NTRS)
Berger, H.
1967-01-01
Lamb-wave sample orientation technique minimizes the interference from standing waves in continuous wave ultrasonic television imaging techniques used with thin metallic samples. The sample under investigation is oriented such that the wave incident upon it is not normal, but slightly angled.
Experimental studies of a continuous-wave HF(DF) confocal unstable resonator. Interim report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chodzko, R.A.; Cross, E.F.; Durran, D.A.
1976-05-03
A series of experiments were performed on a continuous-wave HF(DF) multiline edge-coupled confocal unstable resonator at The Aerospace Corporation MESA facility. Experimental techniques were developed to measure remotely (from a blockhouse) the output power, the near-field intensity distribution, the spatially resolved spectral content of the near field, and the far-field power distribution. A new technique in which a variable aperture calorimeter absorbing scraper (VACAS) was used for measuring the continuous-wave output power from an unstable resonator with variable-mode geometry and without the use of an output coupling mirror was developed. (GRA)
Asano, K; Masui, Y; Masuda, K; Fujinaga, T
2002-01-01
To evaluate the feasibility of noninvasive estimation of cardiac systolic function using transthoracic continuous-wave Doppler echocardiography in dogs with mitral regurgitation. Seven mongrel dogs with experimental mitral regurgitation were used. Left ventriculography and measurement of pulmonary capillary wedge pressure were performed under inhalational anaesthesia. A micromanometer-tipped catheter was placed into the left ventricle and transthoracic echocardiography was carried out. The peak rate of left ventricular pressure rise (peak dP/dt) was derived simultaneously by continuous-wave Doppler and manometer measurements. The Doppler-derived dP/dt was compared with the catheter-measured peak dP/dt in the dogs. Classification of the severity of mitral regurgitation in the dogs was as follows: 1+, 2 dogs; 2+, 1 dog; 3+, 2 dogs; 4+, 1 dog; and not examined, 1 dog. We were able to derive dP/dt from the transthoracic continuous-wave Doppler echocardiography in all dogs. Doppler-derived dP/dt had a significant correlation with the catheter-measured peak dP/dt (r = 0.90, P < 0.0001). It was demonstrated that transthoracic continuous-wave Doppler echocardiography is a feasible method of noninvasive estimation of cardiac systolic function in dogs with experimental mitral regurgitation and may have clinical usefulness in canine patients with spontaneous mitral regurgitation.
Dynamic response analysis of surrounding rock under the continuous blasting seismic wave
NASA Astrophysics Data System (ADS)
Gao, P. F.; Zong, Q.; Xu, Y.; Fu, J.
2017-10-01
The blasting vibration that is caused by blasting excavation will generate a certain degree of negative effect on the stability of surrounding rock in underground engineering. A dynamic response analysis of surrounding rock under the continuous blasting seismic wave is carried out to optimize blasting parameters and guide underground engineering construction. Based on the theory of wavelet analysis, the reconstructed signals of each layer of different frequency bands are obtained by db8 wavelet decomposition. The difference of dynamic response of the continuous blasting seismic wave at a certain point caused by different blasting sources is discussed. The signal in the frequency band of natural frequency of the surrounding rock shows a certain degree of amplification effect deduced from the dynamic response characteristics of the surrounding rock under the influence of continuous blasting seismic wave. Continuous blasting operations in a fixed space will lead to the change of internal structure of the surrounding rock. It may result in the decline of natural frequency of the whole surrounding rock and it is also harmful for the stability of the surrounding rock.
Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform
NASA Astrophysics Data System (ADS)
Poggi, V.; Fäh, D.; Giardini, D.
2013-03-01
A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.
A full-wave Helmholtz model for continuous-wave ultrasound transmission.
Huttunen, Tomi; Malinen, Matti; Kaipio, Jari P; White, Phillip Jason; Hynynen, Kullervo
2005-03-01
A full-wave Helmholtz model of continuous-wave (CW) ultrasound fields may offer several attractive features over widely used partial-wave approximations. For example, many full-wave techniques can be easily adjusted for complex geometries, and multiple reflections of sound are automatically taken into account in the model. To date, however, the full-wave modeling of CW fields in general 3D geometries has been avoided due to the large computational cost associated with the numerical approximation of the Helmholtz equation. Recent developments in computing capacity together with improvements in finite element type modeling techniques are making possible wave simulations in 3D geometries which reach over tens of wavelengths. The aim of this study is to investigate the feasibility of a full-wave solution of the 3D Helmholtz equation for modeling of continuous-wave ultrasound fields in an inhomogeneous medium. The numerical approximation of the Helmholtz equation is computed using the ultraweak variational formulation (UWVF) method. In addition, an inverse problem technique is utilized to reconstruct the velocity distribution on the transducer which is used to model the sound source in the UWVF scheme. The modeling method is verified by comparing simulated and measured fields in the case of transmission of 531 kHz CW fields through layered plastic plates. The comparison shows a reasonable agreement between simulations and measurements at low angles of incidence but, due to mode conversion, the Helmholtz model becomes insufficient for simulating ultrasound fields in plates at large angles of incidence.
de Saint-Martin, Anne; Rudolf, Gabrielle; Seegmuller, Caroline; Valenti-Hirsch, Maria Paola; Hirsch, Edouard
2014-08-01
Epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) presents clinically with infrequent nocturnal focal seizures, atypical absences related to secondary bilateral synchrony, negative myoclonia, and atonic and rare generalized tonic-clonic seizures. The unique electroencephalography (EEG) pattern found in ECSWS consists of continuous, diffuse, bilateral spike-waves during slow-wave sleep. Despite the eventual disappearance of clinical seizures and EEG abnormalities by adolescence, the prognosis is guarded in most cases because of neuropsychological and behavioral deficits. ECSWS has a heterogeneous etiology (genetic, structural, and unknown). Because epilepsy and electroencephalography (EEG) abnormalities in epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) are self-limited and age related, the need for ongoing medical care and transition to adult care might be questioned. For adolescents in whom etiology remains unknown (possibly genetic) and who experience the disappearance of seizures and EEG abnormalities, there is rarely need for long-term neurologic follow-up, because often a relatively normal cognitive and social evolution follows. However, the majority of patients with structural and possibly "genetic syndromic" etiologies will have persistent cognitive deficits and will need suitable socioeducative care. Therefore, the transition process in ECSWS will depend mainly on etiology and its related features (epileptic active phase duration, and cognitive and behavioral evolution) and revolve around neuropsychological and social support rather than medical and pharmacologic follow-up. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
Generation of whistler waves by continuous HF heating of the upper ionosphere
NASA Astrophysics Data System (ADS)
Vartanyan, A.; Milikh, G. M.; Eliasson, B. E.; Sharma, A.; Chang, C.; Parrot, M.; Papadopoulos, K.
2013-12-01
We report observations of VLF waves by the DEMETER satellite overflying the HAARP facility during ionospheric heating experiments. The detected VLF waves were in the range 8-17 kHz and coincided with times of continuous heating. The experiments indicate whistler generation due to conversion of artificial lower hybrid waves to whistlers on small scale field-aligned plasma density striations. The observations are compared with theoretical models, taking into account both linear and nonlinear processes. Implications of the mode conversion technique on VLF generation with subsequent injection into the radiation belts to trigger particle precipitation are discussed.
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-01-01
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. PMID:27009375
NASA Astrophysics Data System (ADS)
Singh, Avneet; Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Zhu, Sylvia; Pletsch, Holger; Allen, Bruce; Bock, Oliver; Maschenchalk, Bernd; Prix, Reinhard; Siemens, Xavier
2016-09-01
We present results of a high-frequency all-sky search for continuous gravitational waves from isolated compact objects in LIGO's fifth science run (S5) data, using the computing power of the Einstein@Home volunteer computing project. This is the only dedicated continuous gravitational wave search that probes this high-frequency range on S5 data. We find no significant candidate signal, so we set 90% confidence level upper limits on continuous gravitational wave strain amplitudes. At the lower end of the search frequency range, around 1250 Hz, the most constraining upper limit is 5.0 ×10-24, while at the higher end, around 1500 Hz, it is 6.2 ×10-24. Based on these upper limits, and assuming a fiducial value of the principal moment of inertia of 1038 kg m2 , we can exclude objects with ellipticities higher than roughly 2.8 ×10-7 within 100 pc of Earth with rotation periods between 1.3 and 1.6 milliseconds.
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-03-24
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν~1-5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06-4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers.
Understanding Rossby wave trains forced by the Indian Ocean Dipole
NASA Astrophysics Data System (ADS)
McIntosh, Peter C.; Hendon, Harry H.
2018-04-01
Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.
Propagation characteristics of ultrasonic guided waves in continuously welded rail
NASA Astrophysics Data System (ADS)
Yao, Wenqing; Sheng, Fuwei; Wei, Xiaoyuan; Zhang, Lei; Yang, Yuan
2017-07-01
Rail defects cause numerous railway accidents. Trains are derailed and serious consequences often occur. Compared to traditional bulk wave testing, ultrasonic guided waves (UGWs) can provide larger monitoring ranges and complete coverage of the waveguide cross-section. These advantages are of significant importance for the non-destructive testing (NDT) of the continuously welded rail, and the technique is therefore widely used in high-speed railways. UGWs in continuous welded rail (CWR) and their propagation characteristics have been discussed in this paper. Finite element methods (FEMs) were used to accomplish a vibration modal analysis, which is extended by a subsequent dispersion analysis. Wave structure features were illustrated by displacement profiles. It was concluded that guided waves have the ability to detect defects in the rail via choice of proper mode and frequency. Additionally, thermal conduction that is caused by temperature variation in the rail is added into modeling and simulation. The results indicated that unbalanced thermal distribution may lead to the attenuation of UGWs in the rail.
NASA Astrophysics Data System (ADS)
Kawamata, Shuichi; Tanaka, Sho; Hibino, Akira; Kawamura, Yuichi
2018-03-01
The InP-based InGaAs/GaAsSb type II multiple quantum well is the system for developing optical devices for 2 – 3 μm wavelength regions. By doping nitrogen into InGaAs layers, the system becomes effective to fabricate the optical devices with longer wavelength. The epitaxial layers of InGaAsN/GaAsSb on InP substrates are grown by the molecular beam epitaxy. The electrical resistance has been measured as a function of the magnetic field up to 9 Tesla at several temperatures between 2 and 8 K. The effective mass is obtained from the temperature dependence of the amplitude of the Shubnikov-de Haas oscillations. We have reported the nitrogen concentration dependence of the effective mass on the InGaAsN/GaAsSb type II system. The effective mass increases as the nitrogen concentration increases from 0.0 to 1.5 %. In this report, the annealing effect on the effective mass is investigated. The effective mass decreases by the annealing. This result suggests that some amount of nitrogen atoms of the InGaAsN layers are considered to diffuse to the GaAsSb layers by the annealing.
Novel materials for high-efficiency solar cells
NASA Astrophysics Data System (ADS)
Kojima, Nobuaki; Natori, Masato; Suzuki, Hidetoshi; Inagaki, Makoto; Ohshita, Yoshio; Yamaguchi, Masafumi
2009-08-01
Our Toyota Technological Institute group has investigated various novel materials for solar cells from organic to III-V compound materials. In this paper, we report our recent results in conductivity control of C60 thin films by metal-doping for organic solar cells, and mobility improvement of (In)GaAsN compounds for III-V tandem solar cells. The epitaxial growth of Mg-doped C60 films was attempted. It was found that the epitaxial growth of Mg-doped C60 film was enabled by using mica (001) substrate in the low Mg concentration region (Mg/C60 molar ratio < 1). The crystal quality of the epitaxial Mg-doped C60 film was improved drastically in compared with micro-crystalline film on glass substrate. Such drastic improvement of crystal quality in the epitaxial films resulted significant increase in conductivity. This result may indicate the significant increase of carrier mobility. Crystal quality improvement of CBE-grown GaAsN materials was investigated. We achieved the reduction of residual impurity concentration by chemical reaction control on the growing surface by modifying flow sequence of precursors and by increasing step density on the surface by using a vicinal GaAs substrate. Furthermore, the improvement in carrier mobility was observed, and it was suggested that the reduction of both residual impurities and N-related defects leads this improvement.
NASA Astrophysics Data System (ADS)
Keitel, David
2016-05-01
Non-axisymmetries in rotating neutron stars emit quasi-monochromatic gravitational waves. These long-duration ‘continuous wave’ signals are among the main search targets of ground-based interferometric detectors. However, standard detection methods are susceptible to false alarms from instrumental artefacts that resemble a continuous-wave signal. Past work [Keitel, Prix, Papa, Leaci and Siddiqi 2014, Phys. Rev. D 89 064023] showed that a Bayesian approach, based on an explicit model of persistent single-detector disturbances, improves robustness against such artefacts. Since many strong outliers in semi-coherent searches of LIGO data are caused by transient disturbances that last only a few hours or days, I describe in a recent paper [Keitel D 2015, LIGO-P1500159] how to extend this approach to cover transient disturbances, and demonstrate increased sensitivity in realistic simulated data. Additionally, neutron stars could emit transient signals which, for a limited time, also follow the continuous-wave signal model. As a pragmatic alternative to specialized transient searches, I demonstrate how to make standard semi-coherent continuous-wave searches more sensitive to transient signals. Focusing on the time-scale of a single segment in the semi-coherent search, Bayesian model selection yields a simple detection statistic without a significant increase in computational cost. This proceedings contribution gives a brief overview of both works.
Semi-continuous detection of mercury in gases
Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA
2011-12-06
A new method for the semi-continuous detection of heavy metals and metalloids including mercury in gaseous streams. The method entails mass measurement of heavy metal oxides and metalloid oxides with a surface acoustic wave (SAW) sensor having an uncoated substrate. An array of surface acoustic wave (SAW) sensors can be used where each sensor is for the semi-continuous emission monitoring of a particular heavy metal or metalloid.
Global Observation of Planetary-Scale Waves in UARS HRDI and WINDII MLT Winds
NASA Technical Reports Server (NTRS)
Lieberman, Ruth
1999-01-01
The purpose of this study is to use examine planetary-scale motions in the UARS mesosphere and lower thermospheric data. The actual study was confined to HRDI winds and temperatures, since these observations were more continuous, and spanned the 60-120 km range. Three classes of waves were studied: fast equatorial Kelvin waves, nonmigrating tides, and the midlatitude 2-day wave. The purpose of the Kelvin wave and the 2-day wave studies was to test whether the waves significantly affect the mean flow. Such studies require high-quality spectral definitions in order to derive the wave heat and momentum flux divergence which can act in comination to drive the mean flow. Accordingly, HRDI winds from several special observing campaigns were used for analyses of fast (periods under 5 days) waves. The campaigns are characterized by continuous viewing by HRDI in 2 viewing directions, for periods of 10-12 days. Data sampled in this manner lend themselves quite well to "asynoptic spectral analysis", from which motions with periods as low as one day can be retrieved with relatively minimal aliasing.
Cw hyper-Raman laser and four-wave mixing in atomic sodium
NASA Astrophysics Data System (ADS)
Klug, M.; Kablukov, S. I.; Wellegehausen, B.
2005-01-01
Continuous wave hyper-Raman (HR) generation in a ring cavity on the 6s → 4p transition at 1640 nm in sodium is realized for the first time by two-photon excitation of atomic sodium on the 3s → 6s transition with a continuous wave (cw) dye laser at 590 nm and a single frequency argon ion laser at 514 nm. It is shown, that the direction and efficiency of HR lasing depends on the propagation direction of the pump waves and their frequencies. More than 30% HR gain is measured at 250 mW of pump laser powers for counter-propagating pump waves and a medium length of 90 mm. For much shorter interaction lengths and corresponding focussing of the pump waves a dramatic increase of the gain is predicted. For co-propagating pump waves, in addition, generation of 330 nm radiation on the 4p → 3s transition by a four-wave mixing (FWM) process is observed. Dependencies of HR and parametric four-wave generation have been investigated and will be discussed.
Emergence and robustness of target waves in a neuronal network
NASA Astrophysics Data System (ADS)
Xu, Ying; Jin, Wuyin; Ma, Jun
2015-08-01
Target waves in excitable media such as neuronal network can regulate the spatial distribution and orderliness as a continuous pacemaker. Three different schemes are used to develop stable target wave in the network, and the potential mechanism for emergence of target waves in the excitable media is investigated. For example, a local pacing driven by external periodical forcing can generate stable target wave in the excitable media, furthermore, heterogeneity and local feedback under self-feedback coupling are also effective to generate continuous target wave as well. To discern the difference of these target waves, a statistical synchronization factor is defined by using mean field theory and artificial defects are introduced into the network to block the target wave, thus the robustness of these target waves could be detected. However, these target waves developed from the above mentioned schemes show different robustness to the blocking from artificial defects. A regular network of Hindmarsh-Rose neurons is designed in a two-dimensional square array, target waves are induced by using three different ways, and then some artificial defects, which are associated with anatomical defects, are set in the network to detect the effect of defects blocking on the travelling waves. It confirms that the robustness of target waves to defects blocking depends on the intrinsic properties (ways to generate target wave) of target waves.
On the measurement of airborne, angular-dependent sound transmission through supercritical bars.
Shaw, Matthew D; Anderson, Brian E
2012-10-01
The coincidence effect is manifested by maximal sound transmission at angles at which trace wave number matching occurs. Coincidence effect theory is well-defined for unbounded thin plates using plane-wave excitation. However, experimental results for finite bars are known to diverge from theory near grazing angles. Prior experimental work has focused on pulse excitation. An experimental setup has been developed to observe coincidence using continuous- wave excitation and phased-array methods. Experimental results with an aluminum bar exhibit maxima at the predicted angles, showing that coincidence is observable using continuous waves. Transmission near grazing angles is seen to diverge from infinite plate theory.
Cluster Observations of Non-Time Continuous Magnetosonic Waves
NASA Technical Reports Server (NTRS)
Walker, Simon N.; Demekhov, Andrei G.; Boardsen, Scott A.; Ganushkina, Natalia Y.; Sibeck, David G.; Balikhin, Michael A.
2016-01-01
Equatorial magnetosonic waves are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non temporally continuous use missions. The first, referred to as rising tone emissions, are characterized by the systematic onset of wave activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements)are observed to occur periodically in the region +/- 10 off the geomagnetic equator. The sweep rate of these emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal protons in the wave field. The second form of emissions is characterized by the simultaneous onset of activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron density. Thus, these waves appear to be trapped within regions of localized enhancement of the electron density.
Out in the cold: the hypothermic heart response
Nabeel, Yassar; Ali, Omair
2014-01-01
We present an interesting case of a 49-year-old woman with hypothermia and associated Osborn waves (also called J waves) on ECG. She was found on the floor of her home and difficult to arouse. On arrival to the emergency department (ED), her rectal temperature was 87.5°F. ECG showed Osborn waves in diffuse leads. She was intubated in the ED and was started on vasopressor support for hypotension refractory to intravenous fluid boluses. She was transferred to the critical care unit for continued respiratory and cardiovascular support. With active external rewarming her core body temperature continued to improve. Blood pressure also improved and vasopressor was tapered off. She was extubated and was transferred to the medical floor for continued supportive care. Osborn waves on ECG resolved within 12 h of achieving normal range body temperature. The patient was eventually discharged home with medical follow-up. PMID:25406217
Out in the cold: the hypothermic heart response.
Nabeel, Yassar; Ali, Omair
2014-11-18
We present an interesting case of a 49-year-old woman with hypothermia and associated Osborn waves (also called J waves) on ECG. She was found on the floor of her home and difficult to arouse. On arrival to the emergency department (ED), her rectal temperature was 87.5°F. ECG showed Osborn waves in diffuse leads. She was intubated in the ED and was started on vasopressor support for hypotension refractory to intravenous fluid boluses. She was transferred to the critical care unit for continued respiratory and cardiovascular support. With active external rewarming her core body temperature continued to improve. Blood pressure also improved and vasopressor was tapered off. She was extubated and was transferred to the medical floor for continued supportive care. Osborn waves on ECG resolved within 12 h of achieving normal range body temperature. The patient was eventually discharged home with medical follow-up. 2014 BMJ Publishing Group Ltd.
Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission
Tanoto, H.; Teng, J. H.; Wu, Q. Y.; Sun, M.; Chen, Z. N.; Maier, S. A.; Wang, B.; Chum, C. C.; Si, G. Y.; Danner, A. J.; Chua, S. J.
2013-01-01
We report highly efficient continuous-wave terahertz (THz) photoconductive antenna based photomixer employing nano-gap electrodes in the active region. The tip-to-tip nano-gap electrode structure provides strong THz field enhancement and acts as a nano-antenna to radiate the THz wave generated in the active region of the photomixer. In addition, it provides good impedance matching to the THz planar antenna and exhibits a lower RC time constant, allowing more efficient radiation especially at the higher part of the THz spectrum. As a result, the output intensity of the photomixer with the new nano-gap electrode structure in the active region is two orders of magnitude higher than that of a photomixer with typical interdigitated electrodes. Significant improvement in the THz emission bandwidth was also observed. An efficient continuous wave THz source will greatly benefit compact THz system development for high resolution THz spectroscopy and imaging applications. PMID:24100840
Data reduction and analysis of HELIOS plasma wave data
NASA Technical Reports Server (NTRS)
Anderson, Roger R.
1988-01-01
Reduction of data acquired from the HELIOS Solar Wind Plasma Wave Experiments on HELIOS 1 and 2 was continued. Production of 24 hour survey plots of the HELIOS 1 plasma wave data were continued and microfilm copies were submitted to the National Space Science Data Center. Much of the effort involved the shock memory from both HELIOS 1 and 2. This data had to be deconvoluted and time ordered before it could be displayed and plotted in an organized form. The UNIVAX 418-III computer was replaced by a DEC VAX 11/780 computer. In order to continue the reduction and analysis of the data set, all data reduction and analysis computer programs had to be rewritten.
Spencer, T D; Goldman, M H; Hyslop, J W; Lee, H M; Barnes, R W
1984-11-01
A 5 MHz continuous-wave Doppler probe was used intraoperatively to evaluate 25 in situ saphenous vein bypass grafts. At least one arteriovenous fistula per case and five retained competent posterior valvular leaflets were identified before completion angiography. The Doppler was able to distinguish a retained valve from an arteriovenous fistula on clinical grounds but not by waveform analysis. Intraoperative assessment of in situ saphenous vein bypass grafts with the continuous-wave Doppler can identify retained valves that might be missed by angiography. It can reduce the number of angiograms needed to demonstrate a technically perfect result, thus saving operative time and contrast agent load to the patient.
Continuous wave room temperature external ring cavity quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.
2015-06-29
An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.
High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuemin; Shen, Changle; Jiang, Tao
2016-07-15
Terahertz quantum cascade lasers with a record output power up to ∼0.23 W in continuous wave mode were obtained. We show that the optimal 2.9-mm-long device operating at 3.11 THz has a low threshold current density of 270 A/cm{sup 2} at ∼15 K. The maximum operating temperature arrived at ∼65 K in continuous wave mode and the internal quantum efficiencies decreased from 0.53 to 0.19 for the devices with different cavity lengths. By using one convex lens with the effective focal length of 13 mm, the beam profile was collimated to be a quasi Gaussian distribution.
NASA Astrophysics Data System (ADS)
Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef
2018-01-01
Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.
NASA Astrophysics Data System (ADS)
Li, Q.; Jia, Z. X.; Weng, H. Z.; Li, Z. R.; Yang, Y. D.; Xiao, J. L.; Chen, S. W.; Huang, Y. Z.; Qin, W. P.; Qin, G. S.
2018-05-01
We demonstrate broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm and a frequency separation of ~9.28 GHz generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity. By using one continuous-wave laser as the pump source, multi-wavelength Brillouin lasers with an operating wavelength range of 1554–1574 nm were generated via cascaded Brillouin scattering and four-wave mixing. Interestingly, when pumped by two continuous-wave lasers with an appropriate frequency separation, the operating wavelength range of the multi-wavelength Brillouin lasers was increased to 1500–1600 nm due to cavity-enhanced cascaded four-wave mixing among the frequency components generated by two pump lasers in the dual wavelength Brillouin laser cavity.
A fiber-based quasi-continuous-wave quantum key distribution system
Shen, Yong; Chen, Yan; Zou, Hongxin; Yuan, Jianmin
2014-01-01
We report a fiber-based quasi-continuous-wave (CW) quantum key distribution (QKD) system with continuous variables (CV). This system employs coherent light pulses and time multiplexing to maximally reduce cross talk in the fiber. No-switching detection scheme is adopted to optimize the repetition rate. Information is encoded on the sideband of the pulsed coherent light to fully exploit the continuous wave nature of laser field. With this configuration, high secret key rate can be achieved. For the 50 MHz detected bandwidth in our experiment, when the multidimensional reconciliation protocol is applied, a secret key rate of 187 kb/s can be achieved over 50 km of optical fiber against collective attacks, which have been shown to be asymptotically optimal. Moreover, recently studied loopholes have been fixed in our system. PMID:24691409
Differentiate low impedance media in closed steel tank using ultrasonic wave tunneling.
Wang, Chunying; Chen, Zhaojiang; Cao, Wenwu
2018-01-01
Ultrasonic wave tunneling through seriously mismatched media, such as steel and water, is possible only when the frequency matches the resonance of the steel plate. But it is nearly impossible to realize continuous wave tunneling if the low acoustic impedance media is air because the transducer frequency cannot be made so accurate. The issue might be resolved using tone-burst signals. Using finite element simulations, we found that for air media when the cycle number is 20, the -6dB bandwidth of energy transmission increased from 0.001% to 5.9% compared with that of continuous waves. We show that the tunneling waves can give us enough information to distinguish low acoustic impedance media inside a steel tank. Copyright © 2017 Elsevier B.V. All rights reserved.
Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor
NASA Astrophysics Data System (ADS)
Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.
2017-12-01
Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.
We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrummore » is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.« less
A probabilistic method for constructing wave time-series at inshore locations using model scenarios
Long, Joseph W.; Plant, Nathaniel G.; Dalyander, P. Soupy; Thompson, David M.
2014-01-01
Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally intensive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave conditions without performing additional, continuous numerical simulations. The archive of model output contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-series of wave height, period, direction, and associated uncertainties are constructed at locations included in the numerical model domain. The confidence limits are derived using statistical variability of oceanographic parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low computational expense. The constructed time-series can be developed to support a variety of applications including climate studies and other situations where a comprehensive survey of wave impacts on the coastal area is of interest.
Laser-assisted solar-cell metallization processing
NASA Technical Reports Server (NTRS)
Dutta, S.
1984-01-01
A photolytic metal deposition system using a focused continuous wave ultraviolet laser, a photolytic metal deposition system using a mask and ultraviolet flood illumination, and a pyrolytic metal deposition system using a focused continuous wave laser were studied. Fabrication of solar cells, as well as characterization to determine the effects of transient heat on solar cell junctions were investigated.
NASA Astrophysics Data System (ADS)
Okishev, Andrey V.; Zuegel, Jonathan D.
2006-12-01
Intracavity-pumped Raman laser action in a fiber-laser pumped, single-resonant, continuous-wave (cw) MgO:PPLN optical parametric oscillator with a high-Q linear resonator has been observed for the first time to our knowledge. Experimental results of this phenomenon investigation will be discussed.
Kim, Namje; Han, Sang-Pil; Ko, Hyunsung; Leem, Young Ahn; Ryu, Han-Cheol; Lee, Chul Wook; Lee, Donghun; Jeon, Min Yong; Noh, Sam Kyu; Park, Kyung Hyun
2011-08-01
We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-μm range.
Taylor, Adam B; Kim, Jooho; Chon, James W M
2012-02-27
In a multilayered structure of absorptive optical recording media, continuous-wave laser operation is highly disadvantageous due to heavy beam extinction. For a gold nanorod based recording medium, the narrow surface plasmon resonance (SPR) profile of gold nanorods enables the variation of extinction through mulilayers by a simple detuning of the readout wavelength from the SPR peak. The level of signal extinction through the layers can then be greatly reduced, resulting more efficient readout at deeper layers. The scattering signal strength may be decreased at the detuned wavelength, but balancing these two factors results an optimal scattering peak wavelength that is specific to each layer. In this paper, we propose to use detuned SPR scattering from gold nanorods as a new mechanism for continuous-wave readout scheme on gold nanorod based multilayered optical storage. Using this detuned scattering method, readout using continuous-wave laser is demonstrated on a 16 layer optical recording medium doped with heavily distributed, randomly oriented gold nanorods. Compared to SPR on-resonant readout, this method reduced the required readout power more than one order of magnitude, with only 60 nm detuning from SPR peak. The proposed method will be highly beneficial to multilayered optical storage applications as well as applications using a continuous medium doped heavily with plasmonic nanoparticles.
Tan, Xia; Ji, Zhong; Zhang, Yadan
2018-04-25
Non-invasive continuous blood pressure monitoring can provide an important reference and guidance for doctors wishing to analyze the physiological and pathological status of patients and to prevent and diagnose cardiovascular diseases in the clinical setting. Therefore, it is very important to explore a more accurate method of non-invasive continuous blood pressure measurement. To address the shortcomings of existing blood pressure measurement models based on pulse wave transit time or pulse wave parameters, a new method of non-invasive continuous blood pressure measurement - the GA-MIV-BP neural network model - is presented. The mean impact value (MIV) method is used to select the factors that greatly influence blood pressure from the extracted pulse wave transit time and pulse wave parameters. These factors are used as inputs, and the actual blood pressure values as outputs, to train the BP neural network model. The individual parameters are then optimized using a genetic algorithm (GA) to establish the GA-MIV-BP neural network model. Bland-Altman consistency analysis indicated that the measured and predicted blood pressure values were consistent and interchangeable. Therefore, this algorithm is of great significance to promote the clinical application of a non-invasive continuous blood pressure monitoring method.
Alfvén wave dynamics at the neighborhood of a 2.5D magnetic null-point
NASA Astrophysics Data System (ADS)
Sabri, S.; Vasheghani Farahani, S.; Ebadi, H.; Hosseinpour, M.; Fazel, Z.
2018-05-01
The aim of the present study is to highlight the energy transfer via the interaction of magnetohydrodynamic waves with a 2.5D magnetic null-point in a finite plasma-β regime of the solar corona. An initially symmetric Alfvén pulse at a specific distance from a magnetic null-point is kicked towards the isothermal null-point. A shock-capturing Godunov-type PLUTO code is used to solve the ideal magnetohydrodynamic set equations in the context of wave-plasma energy transfer. As the Alfvén wave propagates towards the magnetic null-point it experiences speed lowering which ends up in releasing energy along the separatrices. In this line owing to the Alfvén wave, a series of events take place that contribute towards coronal heating. Nonlinear induced waves are by products of the torsional Alfvén interaction with magnetic null-points. The energy of these induced waves which are fast magnetoacoustic (transverse) and slow magnetoacoustic (longitudinal) waves are supplied by the Alfvén wave. The nonlinearly induced density perturbations are proportional to the Alfvén wave energy loss. This supplies energy for the propagation of fast and slow magnetoacoustic waves, where in contrast to the fast wave the slow wave experiences a continuous energy increase. As such, the slow wave may transfer its energy to the medium at later times, maintaining a continuous heating mechanism at the neighborhood of a magnetic null-point.
Continuous-wave optical parametric oscillators on their way to the terahertz range
NASA Astrophysics Data System (ADS)
Sowade, Rosita; Breunig, Ingo; Kiessling, Jens; Buse, Karsten
2010-02-01
Continuous-wave optical parametric oscillators (OPOs) are known to be working horses for spectroscopy in the near- and mid-infrared. However, strong absorption in nonlinear media like lithium niobate complicates the generation of far-infrared light. This absorption leads to pump thresholds vastly exceeding the power of standard pump lasers. Our first approach was, therefore, to combine the established technique of photomixing with optical parametric oscillators. Here, two OPOs provide one wave each, with a tunable difference frequency. These waves are combined to a beat signal as a source for photomixers. Terahertz radiation between 0.065 and 1.018 THz is generated with powers in the order of nanowatts. To overcome the upper frequency limit of the opto-electronic photomixers, terahertz generation has to rely entirely on optical methods. Our all-optical approach, getting around the high thresholds for terahertz generation, is based on cascaded nonlinear processes: the resonantly enhanced signal field, generated in the primary parametric process, is intense enough to act as the pump for a secondary process, creating idler waves with frequencies in the terahertz regime. The latter ones are monochromatic and tunable with detected powers of more than 2 μW at 1.35 THz. Thus, continuous-wave optical parametric oscillators have entered the field of terahertz photonics.
Monitoring leaf water content with THz and sub-THz waves.
Gente, Ralf; Koch, Martin
2015-01-01
Terahertz technology is still an evolving research field that attracts scientists with very different backgrounds working on a wide range of subjects. In the past two decades, it has been demonstrated that terahertz technology can provide a non-invasive tool for measuring and monitoring the water content of leaves and plants. In this paper we intend to review the different possibilities to perform in-vivo water status measurements on plants with the help of THz and sub-THz waves. The common basis of the different methods is the strong absorption of THz and sub-THz waves by liquid water. In contrast to simpler, yet destructive, methods THz and sub-THz waves allow for the continuous monitoring of plant water status over several days on the same sample. The technologies, which we take into focus, are THz time domain spectroscopy, THz continuous wave setups, THz quasi time domain spectroscopy and sub-THz continuous wave setups. These methods differ with respect to the generation and detection schemes, the covered frequency range, the processing and evaluation of the experimental data, and the mechanical handling of the measurements. Consequently, we explain which method fits best in which situation. Finally, we discuss recent and future technological developments towards more compact and budget-priced measurement systems for use in the field.
Theory of Electromagnetic Surface Waves in Plasma with Smooth Boundaries
NASA Astrophysics Data System (ADS)
Kuzelev, M. V.
2018-05-01
A theory of nonpotential surface waves in plasma with smooth boundaries is developed. The complex frequencies of surface waves for plasma systems of different geometries and different profiles of the plasma density are calculated. Expressions for the rates of collisionless damping of surface waves due to their resonance interaction with local plasma waves of continuous spectrum are obtained. The influence of collisions in plasma is also considered.
A 24 km fiber-based discretely signaled continuous variable quantum key distribution system.
Dinh Xuan, Quyen; Zhang, Zheshen; Voss, Paul L
2009-12-21
We report a continuous variable key distribution system that achieves a final secure key rate of 3.45 kilobits/s over a distance of 24.2 km of optical fiber. The protocol uses discrete signaling and post-selection to improve reconciliation speed and quantifies security by means of quantum state tomography. Polarization multiplexing and a frequency translation scheme permit transmission of a continuous wave local oscillator and suppression of noise from guided acoustic wave Brillouin scattering by more than 27 dB.
Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.
Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P
1995-01-01
Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.
Detecting gravity waves from binary black holes
NASA Technical Reports Server (NTRS)
Wahlquist, Hugo D.
1989-01-01
One of the most attractive possible sources of strong gravitational waves would be a binary system comprising massive black holes (BH). The gravitational radiation from a binary is an elliptically polarized, periodic wave which could be observed continuously - or at intervals whenever a detector was available. This continuity of the signal is certainly appealing compared to waiting for individual pulses from infrequent random events. It also has the advantage over pulses that continued observation can increase the signal-to-noise ratio almost indefinitely. Furthermore, this system is dynamically simple; the theory of the generation of the radiation is unambiguous; all characteristics of the signal can be precisely related to the dynamical parameters of the source. The current situation is that while there is no observational evidence as yet for the existence of massive binary BH, their formation is theoretically plausible, and within certain coupled constraints of mass and location, their existence cannot be observationally excluded. Detecting gravitational waves from these objects might be the first observational proof of their existence.
El Niño Surges; Warm Kelvin Wave Headed for South America
2009-12-17
The most recent sea-level height data from the NASA/European Ocean Surface Topography Mission/Jason-2 oceanography satellite show the continued eastward progression of a strong wave of warm water, known as a Kelvin wave, now approaching South America.
1.9 μm square-wave passively Q-witched mode-locked fiber laser.
Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Wang, Furen; Zhang, Jing; Wang, Chengbo; Jiang, Huilin
2018-05-14
We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.
Continuous-time quantum random walks require discrete space
NASA Astrophysics Data System (ADS)
Manouchehri, K.; Wang, J. B.
2007-11-01
Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.
Full Spectrum Conversion Using Traveling Pulse Wave Quantization
2017-03-01
Full Spectrum Conversion Using Traveling Pulse Wave Quantization Michael S. Kappes Mikko E. Waltari IQ-Analog Corporation San Diego, California...temporal-domain quantization technique called Traveling Pulse Wave Quantization (TPWQ). Full spectrum conversion is defined as the complete...pulse width measurements that are continuously generated hence the name “traveling” pulse wave quantization. Our TPWQ-based ADC is composed of a
Diode-pumped continuous wave and passively Q-switched Tm, Mg: LiTaO₃ lasers.
Feng, T; Li, T; Zhao, S; Li, Q; Yang, K; Zhao, J; Qiao, W; Hang, Y; Zhang, P; Wang, Y; Xu, J
2014-02-24
We have demonstrated the continuous wave and passively Q-switched Tm, Mg: LiTaO3 lasers for the first time. In continuous wave (CW) regime, a maximum CW output power of 1.03 W at 1952 nm was obtained, giving a slope efficiency of 9.5% and a beam quality M2 = 2.2. In passive Q-switching regime, a single walled carbon nanotube (SWCNT) was employed as saturable absorber (SA). The Tm,Mg:LiTaO3 laser has yielded a pulse of 560 ns under repetition rate of 34.2 kHz at 1926 nm, corresponding to a single pulse energy of 10.1 μJ. The results indicate a promising potential of nonlinear crystals in the applications for laser host materials.
Zhao, Hai-Qiong; Yu, Guo-Fu
2017-04-01
In this paper, a spatial discrete complex modified Korteweg-de Vries equation is investigated. The Lax pair, conservation laws, Darboux transformations, and breather and rational wave solutions to the semi-discrete system are presented. The distinguished feature of the model is that the discrete rational solution can possess new W-shape rational periodic-solitary waves that were not reported before. In addition, the first-order rogue waves reach peak amplitudes which are at least three times of the background amplitude, whereas their continuous counterparts are exactly three times the constant background. Finally, the integrability of the discrete system, including Lax pair, conservation laws, Darboux transformations, and explicit solutions, yields the counterparts of the continuous system in the continuum limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V.; Sadovnikov, A. V.
We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development ofmore » magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.« less
NASA Astrophysics Data System (ADS)
Liu, Liang; Liu, Fukun; Shan, Jiafang; Kuang, Guangli
2007-04-01
In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 oC at the highest power level.
Continuous wave operation of quantum cascade lasers with frequency-shifted feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyakh, A., E-mail: arkadiy.lyakh@ucf.edu; NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy, Orlando, FL 32826; College of Optics and Photonics, University of Central Florida, 304 Scorpius St, Orlando, FL 32826
2016-01-15
Operation of continuous wave quantum cascade lasers with a frequency-shifted feedback provided by an acousto-optic modulator is reported. Measured linewidth of 1.7 cm{sup −1} for these devices, under CW operating conditions, was in a good agreement with predictions of a model based on frequency-shifted feedback seeded by spontaneous emission. Linewidth broadening was observed for short sweep times, consistent with sound wave grating period variation across the illuminated area on the acousto-optic modulator. Standoff detection capability of the AOM-based QCL setup was demonstrated for several solid materials.
Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.
Wang, Ke-Yao; Foster, Amy C
2012-04-15
We demonstrate wavelength conversion through nonlinear parametric processes in hydrogenated amorphous silicon (a-Si:H) with maximum conversion efficiency of -13 dB at telecommunication data rates (10 GHz) using only 15 mW of pump peak power. Conversion bandwidths as large as 150 nm (20 THz) are measured in continuous-wave regime at telecommunication wavelengths. The nonlinear refractive index of the material is determined by four-wave mixing (FWM) to be n(2)=7.43×10(-13) cm(2)/W, approximately an order of magnitude larger than that of single crystal silicon. © 2012 Optical Society of America
Mammalian Pathogenesis and Transmission of H7N9 Influenza Viruses from Three Waves, 2013-2015
Belser, Jessica A.; Creager, Hannah M.; Sun, Xiangjie; Gustin, Kortney M.; Jones, Tara; Shieh, Wun-Ju; Maines, Taronna R.
2016-01-01
ABSTRACT Three waves of human infection with H7N9 influenza viruses have concluded to date, but only viruses within the first wave (isolated between March and September 2013) have been extensively studied in mammalian models. While second- and third-wave viruses remain closely linked phylogenetically and antigenically, even subtle molecular changes can impart critical shifts in mammalian virulence. To determine if H7N9 viruses isolated from humans during 2013 to 2015 have maintained the phenotype first identified among 2013 isolates, we assessed the ability of first-, second-, and third-wave H7N9 viruses isolated from humans to cause disease in mice and ferrets and to transmit among ferrets. Similar to first-wave viruses, H7N9 viruses from 2013 to 2015 were highly infectious in mice, with lethality comparable to that of the well-studied A/Anhui/1/2013 virus. Second- and third-wave viruses caused moderate disease in ferrets, transmitted efficiently to cohoused, naive contact animals, and demonstrated limited transmissibility by respiratory droplets. All H7N9 viruses replicated efficiently in human bronchial epithelial cells, with subtle changes in pH fusion threshold identified between H7N9 viruses examined. Our results indicate that despite increased genetic diversity and geographical distribution since their initial detection in 2013, H7N9 viruses have maintained a pathogenic phenotype in mammals and continue to represent an immediate threat to public health. IMPORTANCE H7N9 influenza viruses, first isolated in 2013, continue to cause human infection and represent an ongoing public health threat. Now entering the fourth wave of human infection, H7N9 viruses continue to exhibit genetic diversity in avian hosts, necessitating continuous efforts to monitor their pandemic potential. However, viruses isolated post-2013 have not been extensively studied, limiting our understanding of potential changes in virus-host adaptation. In order to ensure that current research with first-wave H7N9 viruses still pertains to more recently isolated strains, we compared the relative virulence and transmissibility of H7N9 viruses isolated during the second and third waves, through 2015, in the mouse and ferret models. Our finding that second- and third-wave viruses generally exhibit disease in mammals comparable to that of first-wave viruses strengthens our ability to extrapolate research from the 2013 viruses to current public health efforts. These data further contribute to our understanding of molecular determinants of pathogenicity, transmissibility, and tropism. PMID:26912620
NASA Astrophysics Data System (ADS)
Moore, R. C.; Inan, U. S.; Bell, T. F.
2004-12-01
Naturally-forming, global-scale currents, such as the polar electrojet current and the mid-latitude dynamo, have been used as current sources to generate electromagnetic waves in the Extremely Low Frequency (ELF) and Very Low Frequency (VLF) bands since the 1970's. While many short-duration experiments have been performed, no continuous multi-week campaign data sets have been published providing reliable statistics for ELF/VLF wave generation. In this paper, we summarize the experimental data resulting from multiple ELF/VLF wave generation campaigns conducted at the High-frequency Active Auroral Research Project (HAARP) HF transmitter in Gakona, Alaska. For one 14-day period in March, 2002, and one 24-day period in November, 2002, the HAARP HF transmitter broadcast ELF/VLF wave generation sequences for 10 hours per day, between 0400 and 1400 UT. Five different modulation frequencies broadcast separately using two HF carrier frequencies are examined at receivers located 36, 44, 147, and 155 km from the HAARP facility. Additionally, a continuous 24-hour transmission period is analyzed to compare day-time wave generation to night-time wave generation. Lastly, a power-ramping scheme was employed to investigate possible thresholding effects at the wave-generating altitude. Wave generation statistics are presented along with source-region property calculations performed using a simple model.
Xiang, Nijuan; Iuliano, A Danielle; Zhang, Yanping; Ren, Ruiqi; Geng, Xingyi; Ye, Bili; Tu, Wenxiao; Li, Ch Ao; Lv, Yong; Yang, Ming; Zhao, Jian; Wang, Yali; Yang, Fuqiang; Zhou, Lei; Liu, Bo; Shu, Yuelong; Ni, Daxin; Feng, Zijian; Li, Qun
2016-12-05
H7N9 human cases were first detected in mainland China in March 2013. Circulation of this virus has continued each year shifting to typical winter months. We compared the clinical and epidemiologic characteristics for the first three waves of virus circulation. The first wave was defined as reported cases with onset dates between March 31-September 30, 2013, the second wave was defined as October 1, 2013-September 30, 2014 and the third wave was defined as October 1, 2014-September 30, 2015. We used simple descriptive statistics to compare characteristics of the three distinct waves of virus circulation. In mainland China, 134 cases, 306 cases and 219 cases were detected and reported in first three waves, respectively. The median age of cases was statistically significantly older in the first wave (61 years vs. 56 years, 56 years, p < 0.001) compared to the following two waves. Most reported cases were among men in all three waves. There was no statistically significant difference between case fatality proportions (33, 42 and 45%, respectively, p = 0.08). There were no significant statistical differences for time from illness onset to first seeking healthcare, hospitalization, lab confirmation, initiation antiviral treatment and death between the three waves. A similar percentage of cases in all waves reported exposure to poultry or live poultry markets (87%, 88%, 90%, respectively). There was no statistically significant difference in the occurrence of severe disease between the each of the first three waves of virus circulation. Twenty-one clusters were reported during these three waves (4, 11 and 6 clusters, respectively), of which, 14 were considered to be possible human-to-human transmission. Though our case investigation for the first three waves found few differences between the epidemiologic and clinical characteristics, there is continued international concern about the pandemic potential of this virus. Since the virus continues to circulate, causes more severe disease, has the ability to mutate and become transmissible from human-to-human, and there is limited natural protection from infection in communities, it is critical that surveillance systems in China and elsewhere are alert to the influenza H7N9 virus.
First all-sky search for continuous gravitational waves from unknown sources in binary systems
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N.; Kim, N. G.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2014-09-01
We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ˜2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ˜0.6×10-3 ls to ˜6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3×10-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.
Bölsterli Heinzle, Bigna Katrin; Bast, Thomas; Critelli, Hanne; Huber, Reto; Schmitt, Bernhard
2017-02-01
Epileptic encephalopathy with continuous spike-and-waves during sleep (CSWS) occurs during childhood and is characterized by an activation of spike wave complexes during slow wave sleep. The location of epileptic foci is variable, as is etiology. A relationship between the epileptic focus and age has been shown in various focal epilepsies following a posterior-anterior trajectory, and a link to brain maturation has been proposed. We hypothesize that in CSWS, maximal spike wave activity, corresponding to the epileptic focus, is related to age and shows a posterior-anterior evolution. In a retrospective cross-sectional study on CSWS (22 EEGs of 22 patients aged 3.1–13.5 years), the location of the epileptic focus is related to age and follows a posterior-anterior course. Younger patients are more likely to have posterior foci than older ones. We propose that the posterior-anterior trajectory of maximal spike waves in CSWS might reflect maturational changes of maximal expression of sleep slow waves, which follow a comparable course. Epileptic spike waves, that is, “hyper-synchronized slow waves” may occur at the place where the highest and therefore most synchronized slow waves meet brain tissue with an increased susceptibility to synchronization. Georg Thieme Verlag KG Stuttgart · New York.
Li, Yongfeng; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Zheng, Qiqi; Chen, Hongya; Han, Yajuan; Zhang, Jieqiu; Qu, Shaobo
2017-01-01
A high-efficiency tri-band quasi-continuous phase gradient metamaterial is designed and demonstrated based on spoof surface plasmon polaritons (SSPPs). High-efficiency polarizaiton conversion transmission is firstly achieved via tailoring phase differece between the transmisive SSPP and the space wave in orthogonal directions. As an example, a tri-band circular-to-circular (CTC) polarization conversion metamateiral (PCM) was designed by a nonlinearly dispersive phase difference. Using such PCM unit cell, a tri-band quasi-continuous phase gradient metamaterial (PGM) was then realized by virtue of the Pancharatnam-Berry phase. The distribution of the cross-polarization transmission phase along the x-direction is continuous except for two infinitely small intervals near the phases 0° and 360°, and thus the phase gradient has definition at any point along the x-direction. The simulated normalized polarization conversion transmission spectrums together with the electric field distributions for circularly polarized wave and linearly polarized wave demonstrated the high-efficiency anomalous refraction of the quasi-continuous PGM. The experimental verification for the linearly polarized incidence was also provided. PMID:28079185
Falconi, Audrey; Flick, David; Ferguson, Jason; Glorioso, John E
2016-01-01
Spinal cord injury is a nonfatal, catastrophic consequence of wave-riding sports. With surfing at the core, a multitude of activities have evolved that attempt to harness the power of ocean waves. The unique qualities of each wave-riding sport, in combination with the environmental factors of the ocean, define the risk for potential injuries. As wave-riding sports have become more advanced, athletes continue to push physical barriers. Taller waves are attempted while incorporating aerial maneuvers, all without protective equipment.
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Zhang, Cheng; Zu, Yuqian; Fan, Xiuwei; Liu, Jie; Guo, Xinsheng; Qian, Xiaobo; Su, Liangbi
2018-04-01
Laser operations in the continuous-wave as well as in the pulsed regime of a 4 at.% Tm3+:CaF2 crystal are reported. For the continuous-wave operation, a maximum average output power of 1.15 W was achieved, and the corresponding slope efficiency was more than 64%. A continuous tuning range of about 160 nm from 1877-2036 nm was achieved using a birefringent filter. Using Argentum nanorods as a saturable absorber, the significant pulsed operation of a passively Q-switched Tm3+:CaF2 laser was observed at 1935.4 nm for the first time, to the best of our knowledge. A maximum output power of 385 mW with 41.4 µJ pulse energy was obtained under an absorbed pump power of 2.04 W. The present results indicate that the Tm3+:CaF2 lasers could be promising laser sources to operate in the eye-safe spectral region.
NASA Astrophysics Data System (ADS)
Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu
2017-04-01
Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and underestimation of the combined effect of sea level variations and wind waves, and to help coastal infrastructure planning and support smooth and safe operation of coastal cities in a changing climate.
P-Wave Indices and Risk of Ischemic Stroke: A Systematic Review and Meta-Analysis.
He, Jinli; Tse, Gary; Korantzopoulos, Panagiotis; Letsas, Konstantinos P; Ali-Hasan-Al-Saegh, Sadeq; Kamel, Hooman; Li, Guangping; Lip, Gregory Y H; Liu, Tong
2017-08-01
Atrial cardiomyopathy is associated with an increased risk of ischemic stroke. P-wave terminal force in lead V 1 , P-wave duration, and maximum P-wave area are electrocardiographic parameters that have been used to assess left atrial abnormalities related to developing atrial fibrillation. The aim of this systematic review and meta-analysis was to examine their values for predicting ischemic stroke risk. PubMed and EMBASE databases were searched until December 2016 for studies that evaluated the association between P-wave indices and stroke risk. Both fixed- and random-effects models were used to calculate the overall effect estimates. Ten studies examining P-wave terminal force in lead V 1 , P-wave duration, and maximum P-wave area were included. P-wave terminal force in lead V 1 was found to be an independent predictor of stroke as both a continuous variable (odds ratio [OR] per 1 SD change, 1.18; 95% confidence interval [CI], 1.12-1.25; P <0.0001) and categorical variable (OR, 1.59; 95% CI, 1.10-2.28; P =0.01). P-wave duration was a significant predictor of incident ischemic stroke when analyzed as a categorical variable (OR, 1.86; 95% CI, 1.37-2.52; P <0.0001) but not when analyzed as a continuous variable (OR, 1.05; 95% CI, 0.98-1.13; P =0.15). Maximum P-wave area also predicted the risk of incident ischemic stroke (OR per 1 SD change, 1.10; 95% CI, 1.04-1.17). P-wave terminal force in lead V 1 , P-wave duration, and maximum P-wave area are useful electrocardiographic markers that can be used to stratify the risk of incident ischemic stroke. © 2017 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Shaotong; Jia, Yonggang; Zhang, Yaqi; Liu, Xiaolei; Shan, Hongxian
2018-03-01
A specially designed benthic chamber for the field observation of sediment resuspension that is caused by the wave-induced oscillatory seepage effect (i.e., the wave pumping of sediments) is newly developed. Observational results from the first sea trial prove that the geometry design and skillful instrumentation of the chamber well realize the goal of monitoring the wave pumping of sediments (WPS) continuously. Based on this field dataset, the quantitative contribution of the WPS to the total sediment resuspension is estimated to be 20-60% merely under the continuous action of normal waves (Hs ≤ 1.5 m) in the subaqueous Yellow River Delta (YRD). Such a large contribution invalidates a commonly held opinion that sediments are purely eroded from the seabed surface by the horizontal "shearing effect" from the wave orbital or current velocities. In fact, a considerable amount of sediments could originate from the shallow subsurface of seabed driven by the vertical "pumping effect" of the wave-generated seepage flows during wavy periods. According to the new findings, an improved conceptual model for the resuspension mechanisms of silty sediments under various hydrodynamics is proposed for the first time.
Room Temperature Erbium-Doped Yttrium Vanadate (Er:YVO4) Laser and Amplifier
2016-09-01
perpendicular to the laser cavity axis, was pumped in σ-polarization and lased in π-polarization. The laser operated in a quasi -continuous wave regime...laser, amplifier, quasi -continuous wave 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF...distribution unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Laser Experimental Setup and Results 2 3. Laser Amplifier Setup 6 4
2015-06-01
OF A CONTINUOUS WAVE LASER FOR RESONANCE IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS by Sunny G. Lau June 2015 Thesis...IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS 5. FUNDING NUMBERS 6. AUTHOR(S) Sunny G. Lau 7. PERFORMING ORGANIZATION NAME(S) AND...200 words) The application of resonance ionization mass spectroscopy (RIMS) to nuclear forensics involves the use of lasers to selectively ionize
2016-09-01
Switching and Narrowband Filtering by Gregory J Mazzaro, Andrew J Sherbondy, Kenneth I Ranney, and Kelly D Sherbondy...Switching and Narrowband Filtering by Gregory J Mazzaro, Andrew J Sherbondy, Kenneth I Ranney, and Kelly D Sherbondy Sensors and Electron Devices...08/2016 4. TITLE AND SUBTITLE Conversion of Radio-Frequency Pulses to Continuous-Wave Sinusoids by Fast Switching and Narrowband Filtering 5a
Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device
NASA Astrophysics Data System (ADS)
Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.
2012-08-01
Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.
CdS thin films prepared by continuous wave Nd:YAG laser
NASA Astrophysics Data System (ADS)
Wang, H.; Tenpas, Eric W.; Vuong, Khanh D.; Williams, James A.; Schuesselbauer, E.; Bernstein, R.; Fagan, J. G.; Wang, Xing W.
1995-08-01
We report new results on continuous wave Nd:YAG laser deposition of cadmium sulfide thin films. Substrates were soda-lime silicate glass, silica glass, silicon, and copper coated formvar sheets. As deposited films were mixtures of cubic and hexagonal phases, with two different grain sizes. As revealed by SEM micrographs, films had smooth surface morphology. As revealed by TEM analysis, grain sizes were extremely small.
NASA Astrophysics Data System (ADS)
Carroll, B.; Kharkovsky, S.; Zoughi, R.; Limmer, R.
2009-03-01
A frequency-modulated continuous-wave (FM-CW) handheld radar operating in the frequency range of 8-18 GHz, resulting in a relatively fine range resolution was designed and constructed for on-site inspection of refractory structure thickness. This paper presents the design of the radar and the results of measurements conducted on typical refractory furnace structures assembled in the laboratory.
Millimeter wave front-end figure of merit, part 2
NASA Astrophysics Data System (ADS)
Silberman, Gabriel G.
1995-09-01
This report presents a practical approach for defining and calculating a meaningful figure of merit for frequency modulated continuous wave radar systems with separate receive and transmit (bistatic) antennas.
Rapid Assessment of Wave Height Transformation through a Tidal Inlet via Radar Remote Sensing
NASA Astrophysics Data System (ADS)
Díaz Méndez, G.; Haller, M. C.; Raubenheimer, B.; Elgar, S.; Honegger, D.
2014-12-01
Radar has the potential to enable temporally and spatially dense, continuous monitoring of waves and currents in nearshore environments. If quantitative relationships between the remote sensing signals and the hydrodynamic parameters of interest can be found, remote sensing techniques can mitigate the challenges of continuous in situ sampling and possibly enable a better understanding of wave transformation in areas with strongly inhomogeneous along and across-shore bathymetry, currents, and dissipation. As part of the DARLA experiment (New River Inlet, NC), the accuracy of a rapid assessment of wave height transformation via radar remote sensing is tested. Wave breaking events are identified in the radar image time series (Catalán et al. 2011). Once the total number of breaking waves (per radar collection) is mapped throughout the imaging domain, radar-derived bathymetry and wave frequency are used to compute wave breaking dissipation (Janssen and Battjes 2007). Given the wave breaking dissipation, the wave height transformation is calculated by finding an inverse solution to the 1D cross-shore energy flux equation (including the effect of refraction). The predicted wave height transformation is consistent (correlation R > 0.9 and rmse as low as 0.1 m) with the transformation observed with in situ sensors in an area of complex morphology and strong (> 1 m/s) tidal currents over a nine-day period. The wave forcing (i.e., radiation stress gradients) determined from the remote sensing methodology will be compared with values estimated with in situ sensors. Funded by ONR and ASD(R&E)
NASA Astrophysics Data System (ADS)
Davis, K. A.; Reid, E. C.; Cohen, A. L.
2016-02-01
Internal waves propagating across the continental slope and shelf are transformed by the competing effects of nonlinear steepening and dispersive spreading, forming nonlinear internal waves (NLIWs) that can penetrate onto the shallow inner shelf, often appearing in the form of bottom-propagating nonlinear internal bores or boluses. NLIWs play a significant role in nearshore dynamics with baroclinic current amplitudes on the order of that of wind- and surface wave-driven flows and rapid temperature changes on the order of annual ranges. In June 2014 we used a Distributed Temperature Sensing (DTS) system to give a continuous cross-shelf view of nonlinear internal wave dynamics on the forereef of Dongsha Atoll, a coral reef in the northern South China Sea. A DTS system measures temperature continuously along the length of an optical fiber, resolving meter-to-kilometer spatial scales. This unique view of cross-shelf temperature structure made it possible to observe internal wave reflection, variable propagation speed across the shelf, bolus formation and dissipation. Additionally, we used the DTS data to track internal waves across the shallow fore reef and onto the reef flat and to quantify spatial patterns in temperature variability. Shoaling internal waves are an important process affecting physical variability and water properties on the reef.
Interferometric millimeter wave and THz wave doppler radar
Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas
2015-08-11
A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.
Rural Youth Education Project: Third Wave
ERIC Educational Resources Information Center
Center for Rural Pennsylvania, 2010
2010-01-01
This study is designed to include four waves of data collection, conducted approximately every other year, beginning in 2004 and continuing through 2011. This report briefly describes the procedures used for the third wave of data collection, completed in 2008-2009, and the results from a sample of Pennsylvania's rural 11th grade youth and youth…
Spherical-wave expansions of piston-radiator fields.
Wittmann, R C; Yaghjian, A D
1991-09-01
Simple spherical-wave expansions of the continuous-wave fields of a circular piston radiator in a rigid baffle are derived. These expansions are valid throughout the illuminated half-space and are useful for efficient numerical computation in the near-field region. Multipole coefficients are given by closed-form expressions which can be evaluated recursively.
Characterization of Electrocardiogram Changes Throughout a Marathon
Callaway, Clifton; Salcido, David; McEntire, Serina; Roth, Ronald; Hostler, David
2014-01-01
Purpose There are few data examining cardiovascular physiology throughout a marathon. This study was devised to characterize electrocardiographic activity continuously throughout a marathon. Methods Cardiac activity was recorded from 19 subjects wearing a Holter monitor during a marathon. The 19 subjects (14 men and 5 women) were aged 39 ± 16 years (mean ± SD) and completed a marathon in 4:32:16 ± 1:23:35. Heart rate (HR), heart rate variability (HRV), T-wave amplitude, T-wave amplitude variability, and T-wave alternans (TWA) were evaluated continuously throughout the marathon. Results Averaged across all subjects, HRV, T-wave amplitude variability, and TWA increased throughout the marathon. Increased variability in T-wave amplitude occurred in 86% of subjects, characterized by complex oscillatory patterns and TWA. Three minutes after the marathon, HR was elevated and HRV was suppressed relative to the pre-marathon state. Conclusion HRV and T-wave amplitude variability, especially in the form of TWA, increase throughout a marathon. Increasing TWA as a marathon progresses likely represents a physiologic process as no arrhythmias or cardiac events were observed. PMID:24832192
Precision ephemerides for gravitational-wave searches - III. Revised system parameters of Sco X-1
NASA Astrophysics Data System (ADS)
Wang, L.; Steeghs, D.; Galloway, D. K.; Marsh, T.; Casares, J.
2018-06-01
Neutron stars in low-mass X-ray binaries are considered promising candidate sources of continuous gravitational-waves. These neutron stars are typically rotating many hundreds of times a second. The process of accretion can potentially generate and support non-axisymmetric distortions to the compact object, resulting in persistent emission of gravitational-waves. We present a study of existing optical spectroscopic data for Sco X-1, a prime target for continuous gravitational-wave searches, with the aim of providing revised constraints on key orbital parameters required for a directed search with advanced-LIGO data. From a circular orbit fit to an improved radial velocity curve of the Bowen emission components, we derived an updated orbital period and ephemeris. Centre of symmetry measurements from the Bowen Doppler tomogram yield a centre of the disc component of 90 km s-1, which we interpret as a revised upper limit to the projected orbital velocity of the NS K1. By implementing Monte Carlo binary parameter calculations, and imposing new limits on K1 and the rotational broadening, we obtained a complete set of dynamical system parameter constraints including a new range for K1 of 40-90 km s-1. Finally, we discussed the implications of the updated orbital parameters for future continuous-waves searches.
NASA Astrophysics Data System (ADS)
Porritt, R. W.; Becker, T. W.; Auer, L.; Boschi, L.
2017-12-01
We present a whole-mantle, variable resolution, shear-wave tomography model based on newly available and existing seismological datasets including regional body-wave delay times and multi-mode Rayleigh and Love wave phase delays. Our body wave dataset includes 160,000 S wave delays used in the DNA13 regional tomographic model focused on the western and central US, 86,000 S and SKS delays measured on stations in western South America (Porritt et al., in prep), and 3,900,000 S+ phases measured by correlation between data observed at stations in the IRIS global networks (IU, II) and stations in the continuous US, against synthetic data generated with IRIS Syngine. The surface wave dataset includes fundamental mode and overtone Rayleigh wave data from Schaeffer and Levedev (2014), ambient noise derived Rayleigh wave and Love wave measurements from Ekstrom (2013), newly computed fundamental mode ambient noise Rayleigh wave phase delays for the continuous US up to July 2017, and other, previously published, measurements. These datasets, along with a data-adaptive parameterization utilized for the SAVANI model (Auer et al., 2014), should allow significantly finer-scale imaging than previous global models, rivaling that of regional-scale approaches, under the USArray footprint in the continuous US, while seamlessly integrating into a global model. We parameterize the model for both vertically (vSV) and horizontally (vSH) polarized shear velocities by accounting for the different sensitivities of the various phases and wave types. The resulting, radially anisotropic model should allow for a range of new geodynamic analysis, including estimates of mantle flow induced topography or seismic anisotropy, without generating artifacts due to edge effects, or requiring assumptions about the structure of the region outside the well resolved model space. Our model shows a number of features, including indications of the effects of edge-driven convection in the Cordillera and along the eastern margin and larger-scale convection due to the subduction of the Farallon slab and along the edge of the Laurentia cratonic margin.
Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun
2009-08-03
We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.
NASA Astrophysics Data System (ADS)
Zheng, R.; Jiang, Y.; Yang, J.; Bi, Y.; Hong, J.; Yang, B.; Yang, D.
2012-05-01
Aims: Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory (SDO) observations, we present an extreme ultraviolet (EUV) wave associated with a failed filament eruption that generated no coronal mass ejection (CME) on 2011 March 1. We aim at understanding the nature and origin of this EUV wave. Methods: Combining the high-quality observations in the photosphere, the chromosphere, and the corona, we studied the characteristics of the wave and its relations to the associated eruption. Results: The event occurred at an ephemeral region near a small active region. The continuous magnetic flux cancelation in the ephemeral region produced pre-eruption brightenings and two EUV jets, and excited the filament eruption, accompanying it with a microflare. After the eruption, the filament material appeared far from the eruption center, and the ambient loops seemed to be intact. It was evident that the filament eruption had failed and was not associated with a CME. The wave happened just after the north jet arrived, and apparently emanated ahead of the north jet, far from the eruption center. The wave propagated at nearly constant velocities in the range of 260-350 km s-1, with a slight negative acceleration in the last phase. Remarkably, the wave continued to propagate, and a loop in its passage was intact when wave and loop met. Conclusions: Our analysis confirms that the EUV wave is a true wave, which we interpret as a fast-mode wave. In addition, the close temporal and spatial relationship between the wave and the jet provides evidence that the wave was likely triggered by the jet when the CME failed to happen. Three movies are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Donne, S.; Bean, C. J.; Lokmer, I.; Lambkin, K.; Creamer, C.
2012-12-01
Ocean gravity waves are driven by atmospheric pressure systems. Their interactions with one another and reflection off coastlines generate pressure changes at the sea floor. These pressure fluctuations are the cause of continuous background seismic noise known as microseisms. The levels of microseism activity vary as a function of the sea state and increase during periods of intensive ocean wave activity. In 2011 a seismic network was deployed along the west coast of Ireland to continuously record microseisms generated in the Atlantic Ocean, as part of the Wave Observation (WaveObs) project based in University College Dublin. This project aims to determine the characteristics of the causative ocean gravity waves through calibration of the microseism data with ocean buoy data. In initial tests we are using a Backpropagation Feed-forward Artificial Neural Network (BP ANN) to establish the underlying relationships between microseisms and ocean waves. ANNs were originally inspired by studies of the mammalian brain and nervous system and are designed to learn by example. If successful these tools could then be used to estimate ocean wave heights and wave periods using a land-based seismic network and complement current wave observations being made offshore by marine buoys. Preliminary ANN results are promising with the network successfully able to reconstruct trends in ocean wave heights and periods. Microseisms can provide significant information about oceanic processes. With a deeper understanding of how these processes work there is potential for 1) locating and tracking the evolution of the largest waves in the Atlantic and 2) reconstructing the wave climate off the west coast of Ireland using legacy seismic data on a longer time scale than is currently available using marine based observations.
Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances
NASA Technical Reports Server (NTRS)
Balakumar, P.
2013-01-01
Boundary-layer receptivity and stability of Mach 6 flows over smooth and rough seven-degree half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances is considered. The effects of three-dimensional isolated roughness on the receptivity and stability are also simulated. The results for the smooth cone show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast acoustic waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. Distributed roughness elements located near the nose region decreased the receptivity of the second mode generated by the slow acoustic wave by a small amount. Roughness elements distributed across the continuous spectrum increased the receptivity of the second mode generated by the slow and fast acoustic waves and the vorticity wave. The largest increase occurred for the vorticity wave. Roughness elements distributed across the synchronization point did not change the receptivity of the second modes generated by the acoustic waves. The receptivity of the second mode generated by the vorticity wave increased in this case, but the increase is lower than that occurred with the roughness elements located across the continuous spectrum. The simulations with an isolated roughness element showed that the second mode waves generated by the acoustic disturbances are not influenced by the small roughness element. Due to the interaction, a three-dimensional wave is generated. However, the amplitude is orders of magnitude smaller than the two-dimensional wave.
21 CFR 892.1540 - Nonfetal ultrasonic monitor.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Identification. A nonfetal ultrasonic monitor is a device that projects a continuous high-frequency sound wave... wave and is intended for use in the investigation of nonfetal blood flow and other nonfetal body...
21 CFR 892.1540 - Nonfetal ultrasonic monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Identification. A nonfetal ultrasonic monitor is a device that projects a continuous high-frequency sound wave... wave and is intended for use in the investigation of nonfetal blood flow and other nonfetal body...
Lagrangian methods in the analysis of nonlinear wave interactions in plasma
NASA Technical Reports Server (NTRS)
Galloway, J. J.
1972-01-01
An averaged-Lagrangian method is developed for obtaining the equations which describe the nonlinear interactions of the wave (oscillatory) and background (nonoscillatory) components which comprise a continuous medium. The method applies to monochromatic waves in any continuous medium that can be described by a Lagrangian density, but is demonstrated in the context of plasma physics. The theory is presented in a more general and unified form by way of a new averaged-Lagrangian formalism which simplifies the perturbation ordering procedure. Earlier theory is extended to deal with a medium distributed in velocity space and to account for the interaction of the background with the waves. The analytic steps are systematized, so as to maximize calculational efficiency. An assessment of the applicability and limitations of the method shows that it has some definite advantages over other approaches in efficiency and versatility.
Bound states of moving potential wells in discrete wave mechanics
NASA Astrophysics Data System (ADS)
Longhi, S.
2017-10-01
Discrete wave mechanics describes the evolution of classical or matter waves on a lattice, which is governed by a discretized version of the Schrödinger equation. While for a vanishing lattice spacing wave evolution of the continuous Schrödinger equation is retrieved, spatial discretization and lattice effects can deeply modify wave dynamics. Here we discuss implications of breakdown of exact Galilean invariance of the discrete Schrödinger equation on the bound states sustained by a smooth potential well which is uniformly moving on the lattice with a drift velocity v. While in the continuous limit the number of bound states does not depend on the drift velocity v, as one expects from the covariance of ordinary Schrödinger equation for a Galilean boost, lattice effects can lead to a larger number of bound states for the moving potential well as compared to the potential well at rest. Moreover, for a moving potential bound states on a lattice become rather generally quasi-bound (resonance) states.
Shi, Jinjie; Yazdi, Shahrzad; Lin, Sz-Chin Steven; Ding, Xiaoyun; Chiang, I-Kao; Sharp, Kendra; Huang, Tony Jun
2011-07-21
Three-dimensional (3D) continuous microparticle focusing has been achieved in a single-layer polydimethylsiloxane (PDMS) microfluidic channel using a standing surface acoustic wave (SSAW). The SSAW was generated by the interference of two identical surface acoustic waves (SAWs) created by two parallel interdigital transducers (IDTs) on a piezoelectric substrate with a microchannel precisely bonded between them. To understand the working principle of the SSAW-based 3D focusing and investigate the position of the focal point, we computed longitudinal waves, generated by the SAWs and radiated into the fluid media from opposite sides of the microchannel, and the resultant pressure and velocity fields due to the interference and reflection of the longitudinal waves. Simulation results predict the existence of a focusing point which is in good agreement with our experimental observations. Compared with other 3D focusing techniques, this method is non-invasive, robust, energy-efficient, easy to implement, and applicable to nearly all types of microparticles.
Dynamics of Laser-Driven Shock Waves in Solid Targets
NASA Astrophysics Data System (ADS)
Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Schmitt, A. J.; Obenschain, S. P.; Grun, J.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.
2009-11-01
Accurate shock timing is a key issue of both indirect- and direct-drive laser fusions. The experiments on the Nike laser at NRL presented here were made possible by improvements in the imaging capability of our monochromatic x-ray diagnostics based on Bragg reflection from spherically curved crystals. Side-on imaging implemented on Nike makes it possible to observe dynamics of the shock wave and ablation front in laser-driven solid targets. We can choose to observe a sequence of 2D images or a continuous time evolution of an image resolved in one spatial dimension. A sequence of 300 ps snapshots taken using vanadium backlighter at 5.2 keV reveals propagation of a shock wave in a solid plastic target. The shape of the shock wave reflects the intensity distribution in the Nike beam. The streak records with continuous time resolution show the x-t trajectory of a laser-driven shock wave in a 10% solid density DVB foam.
The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrödinger Equations*
NASA Astrophysics Data System (ADS)
Chiu, Tin Lok; Liu, Tian Yang; Chan, Hiu Ning; Wing Chow, Kwok
2017-09-01
Rogue waves are unexpectedly large deviations from equilibrium or otherwise calm positions in physical systems, e.g. hydrodynamic waves and optical beam intensities. The profiles and points of maximum displacements of these rogue waves are correlated with the movement of poles of the exact solutions extended to the complex plane through analytic continuation. Such links are shown to be surprisingly precise for the first order rogue wave of the nonlinear Schrödinger (NLS) and the derivative NLS equations. A computational study on the second order rogue waves of the NLS equation also displays remarkable agreements.
Millimeter-wave generation and characterization of a GaAs FET by optical mixing
NASA Technical Reports Server (NTRS)
Ni, David C.; Fetterman, Harold R.; Chew, Wilbert
1990-01-01
Coherent mixing of optical radiation from a tunable continuous-wave dye laser and a stabilized He-Ne laser was used to generate millimeter-wave signals in GaAs FETs attached to printed-circuit millimeter-wave antennas. The generated signal was further down-converted to a 2-GHz IF by an antenna-coupled millimeter-wave local oscillator at 62 GHz. Detailed characterizations of power and S/N under different bias conditions have been performed. This technique is expected to allow signal generation and frequency-response evaluation of millimeter-wave devices at frequencies as high as 100 GHz.
NASA Astrophysics Data System (ADS)
Yamakoshi, Yoshiki; Yamamoto, Atsushi; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi
2015-07-01
We have proposed a quantitative shear wave imaging technique for continuous shear wave excitation. Shear wave wavefront is observed directly by color flow imaging using a general-purpose ultrasonic imaging system. In this study, the proposed method is applied to experiments in vivo, and shear wave maps, namely, the shear wave phase map, which shows the shear wave propagation inside the medium, and the shear wave velocity map, are observed for the skeletal muscle in the shoulder. To excite the shear wave inside the skeletal muscle of the shoulder, a hybrid ultrasonic wave transducer, which combines a small vibrator with an ultrasonic wave probe, is adopted. The shear wave velocity of supraspinatus muscle, which is measured by the proposed method, is 4.11 ± 0.06 m/s (N = 4). This value is consistent with those obtained by the acoustic radiation force impulse method.
Decreased oscillation threshold of a continuous-wave OPO using a semiconductor gain mirror.
Siltanen, Mikael; Leinonen, Tomi; Halonen, Lauri
2011-09-26
We have constructed a singly resonant, continuous-wave optical parametric oscillator, where the signal beam resonates and is amplified by a semiconductor gain mirror. The gain mirror can significantly decrease the oscillation threshold compared to an identical system with conventional mirrors. The largest idler beam tuning range reached by changing the pump laser wavelength alone is from 3.6 to 4.7 µm. The single mode output power is limited but can be continuously scanned for at least 220 GHz by adding optical components in the oscillator cavity for increased stability. © 2011 Optical Society of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakhti, S.; Destouches, N.; Gamet, E.
The microstructuring of titania based sol-gel films is investigated by direct writing with a continuous wave ultraviolet laser beam emitting at 244 nm. Depending on the exposure conditions, the films exhibit a volume expansion, a volume shrinkage, a self-shaped delamination, or are damaged. This paper is mainly focused on the regime where spontaneous local delamination occurs, which corresponds to a narrow range of laser irradiances and writing speeds. In this regime, self-organized round-shape micro-holes opened on the substrate are generated.
Traveling-wave solutions in continuous chains of unidirectionally coupled oscillators
NASA Astrophysics Data System (ADS)
Glyzin, S. D.; Kolesov, A. Yu; Rozov, N. Kh
2017-12-01
Proposed is a mathematical model of a continuous annular chain of unidirectionally coupled generators given by certain nonlinear advection-type hyperbolic boundary value problem. Such problems are constructed by a limit transition from annular chains of unidirectionally coupled ordinary differential equations with an unbounded increase in the number of links. It is shown that any preassigned finite number of stable periodic motions of the traveling-wave type can coexist in the model.
Longevity of microwave-treated (2. 45 GHz continuous wave) honey bees in observation hives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary, N.E.; Westerdahl, B.B.
1981-12-15
Adult honey bees were exposed for 30 min to 2.45 GHz of continuous wave microwave radiation at power densities ranging from 3 to 50 mW/cm/sup 2/. After exposure, bees were returned to glass-walled observation hives, and their longevity was compared with that of control bees. No significant differences were found between microwave- and sham-treated bees at any of the power densities tested.
Guha, Shekhar; Barnes, Jacob O; Gonzalez, Leonel P
2014-09-01
Over 3.5 W of continuous-wave power at 3.4 μm was obtained by single-pass difference frequency mixing of 1.064 and 1.55 μm fiber lasers in a 5 cm long periodically poled lithium niobate crystal. Good agreement was obtained between the observed temperature dependence of the generated power and the prediction from focused Gaussian beam theory.
Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector
2017-01-01
Bifunctional active regions, capable of light generation and detection at the same wavelength, allow a straightforward realization of the integrated mid-infrared photonics for sensing applications. Here, we present a high performance bifunctional device for 8 μm capable of 1 W single facet continuous wave emission at 15 °C. Apart from the general performance benefits, this enables sensing techniques which rely on continuous wave operation, for example, heterodyne detection, to be realized within a monolithic platform and demonstrates that bifunctional operation can be realized at longer wavelength, where wavelength matching becomes increasingly difficult and that the price to be paid in terms of performance is negligible. In laser operation, the device has the same or higher efficiency compared to the best lattice-matched QCLs without same wavelength detection capability, which is only 30% below the record achieved with strained material at this wavelength. PMID:28540324
Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths
NASA Astrophysics Data System (ADS)
Han, Yu; Li, Qiang; Zhu, Si; Ng, Kar Wei; Lau, Kei May
2017-11-01
We report continuous-wave lasing from InP/InGaAs nanoridges grown on a patterned (001) Si substrate by aspect ratio trapping. Multi-InGaAs ridge quantum wells inside InP nanoridges are designed as active gain materials for emission in the 1500 nm band. The good crystalline quality and optical property of the InGaAs quantum wells are attested by transmission electron microscopy and microphotoluminescence measurements. After transfer of the InP/InGaAs nanoridges onto a SiO2/Si substrate, amplified Fabry-Perot resonant modes at room temperature and multi-mode lasing behavior in the 1400 nm band under continuous-wave optical pumping at 4.5 K are observed. This result thus marks an important step towards integrating InP/InGaAs nanolasers directly grown on microelectronic standard (001) Si substrates.
Frequency-tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shang-Hua; Jarrahi, Mona; Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095
2015-09-28
We present frequency-tunable, continuous-wave terahertz sources based on GaAs plasmonic photomixers, which offer high terahertz radiation power levels at 50% radiation duty cycle. The use of plasmonic contact electrodes enhances photomixer quantum efficiency while maintaining its ultrafast operation by concentrating a large number of photocarriers in close proximity to the device contact electrodes. Additionally, the relatively high thermal conductivity and high resistivity of GaAs allow operation under high optical pump power levels and long duty cycles without reaching the thermal breakdown limit of the photomixer. We experimentally demonstrate continuous-wave terahertz radiation with a radiation frequency tuning range of more thanmore » 2 THz and a record-high radiation power of 17 μW at 1 THz through plasmonic photomixers fabricated on a low temperature grown GaAs substrate at 50% radiation duty cycle.« less
Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion
Guo, Yinghui; Yan, Lianshan; Pan, Wei; Shao, Liyang
2016-01-01
The control of electromagnetic waves scattering is critical in wireless communications and stealth technology. Discrete metasurfaces not only increase the design and fabrication complex but also cause difficulties in obtaining simultaneous electric and optical functionality. On the other hand, discontinuous phase profiles fostered by discrete systems inevitably introduce phase noises to the scattering fields. Here we propose the principle of a scattering-harness mechanism by utilizing continuous gradient phase stemming from the spin-orbit interaction via sinusoidal metallic strips. Furthermore, by adjusting the amplitude and period of the sinusoidal metallic strip, the scattering characteristics of the underneath object can be greatly changed and thus result in electromagnetic illusion. The proposal is validated by full-wave simulations and experiment characterization in microwave band. Our approach featured by continuous phase profile, polarization independent performance and facile implementation may find widespread applications in electromagnetic wave manipulation. PMID:27439474
Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion
NASA Astrophysics Data System (ADS)
Guo, Yinghui; Yan, Lianshan; Pan, Wei; Shao, Liyang
2016-07-01
The control of electromagnetic waves scattering is critical in wireless communications and stealth technology. Discrete metasurfaces not only increase the design and fabrication complex but also cause difficulties in obtaining simultaneous electric and optical functionality. On the other hand, discontinuous phase profiles fostered by discrete systems inevitably introduce phase noises to the scattering fields. Here we propose the principle of a scattering-harness mechanism by utilizing continuous gradient phase stemming from the spin-orbit interaction via sinusoidal metallic strips. Furthermore, by adjusting the amplitude and period of the sinusoidal metallic strip, the scattering characteristics of the underneath object can be greatly changed and thus result in electromagnetic illusion. The proposal is validated by full-wave simulations and experiment characterization in microwave band. Our approach featured by continuous phase profile, polarization independent performance and facile implementation may find widespread applications in electromagnetic wave manipulation.
Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.
Feng, Peihua; Zhang, Jiazhong; Wang, Wei
2016-06-01
Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.
Coherent electromagnetic waves in the presence of a half space of randomly distributed scatterers
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1988-01-01
The present investigation of coherent field propagation notes, upon solving the Foldy-Twersky integral equation for a half-space of small spherical scatterers illuminated by a plane wave at oblique incidence, that the coherent field for a horizontally-polarized incident wave exhibits reflectivity and transmissivity consistent with the Fresnel formula for an equivalent continuous effective medium. In the case of a vertically polarized incident wave, both the vertical and longitudinal waves obtained for the coherent field have reflectivities and transmissivities that do not agree with the Fresnel formula.
Jones, Susan M; Quarry, Jill L; Caldwell-McMillan, Molly; Mauger, David T; Gabbay, Robert A
2005-04-01
We attempted to identify an optimal insulin pump meal bolus by comparing postprandial sensor glucose values following three methods of insulin pump meal bolusing for a consistent pizza meal. Twenty-four patients with type 1 diabetes participated in a study to compare postprandial glucose values following three meal bolus regimens for a consistent evening pizza meal. Each participant utilized the following insulin lispro regimens on consecutive evenings, and glucose values were tracked by the Continuous Glucose Monitoring System (CGMS, Medtronic MiniMed, Northridge, CA): (a) single-wave bolus (100% of insulin given immediately); (b) 4-h dual-wave bolus (50% of insulin given immediately and 50% given over a 4-h period); and (c) 8-h dual-wave bolus (50% of insulin given immediately and 50% given over a 8-h period). Total insulin bolus amount was kept constant for each pizza meal. Divergence in blood glucose among the regimens was greatest at 8-12 h. The 8-h dual-wave bolus provided the best glycemic control and lowest mean glucose values (singlewave bolus, 133 mg/dL; 4-h dual-wave bolus, 145 mg/dL; 8-h dual-wave bolus, 104 mg/dL), leading to a difference in mean glucose of 29 mg/dL for the single-wave bolus versus the 8-h dual-wave bolus and 42 mg/dL for the 4-h dual-wave bolus versus the 8-h dual-wave bolus. The lower mean glucose in the 8-h dual-wave bolus was not associated with any increased incidence of hypoglycemia. Use of a dual-wave bolus extended over an 8-h period following a pizza meal provided significantly less postprandial hyperglycemia in the late postprandial period (8-12 h) with no increased risk of hypoglycemia.
NASA Astrophysics Data System (ADS)
Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun
2018-01-01
Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.
Direct-current nanogenerator driven by ultrasonic waves.
Wang, Xudong; Song, Jinhui; Liu, Jin; Wang, Zhong Lin
2007-04-06
We have developed a nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output. The nanogenerator was fabricated with vertically aligned zinc oxide nanowire arrays that were placed beneath a zigzag metal electrode with a small gap. The wave drives the electrode up and down to bend and/or vibrate the nanowires. A piezoelectric-semiconducting coupling process converts mechanical energy into electricity. The zigzag electrode acts as an array of parallel integrated metal tips that simultaneously and continuously create, collect, and output electricity from all of the nanowires. The approach presents an adaptable, mobile, and cost-effective technology for harvesting energy from the environment, and it offers a potential solution for powering nanodevices and nanosystems.
VOYAGER OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS: 2–6 au
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, Poornima; Taylor, David K.; Smith, Charles W.
We report observations by the Voyager 1 and 2 spacecraft of low-frequency magnetic waves excited by newborn interstellar pickup ions H{sup +} and He{sup +} during 1978–1979 when the spacecraft were in the range from 2 to 6.3 au. The waves have the expected association with the cyclotron frequency of the source ions, are left-hand polarized in the spacecraft frame, and have minimum variance directions that are quasi-parallel to the local mean magnetic field. There is one exception to this in that one wave event that is excited by pickup H{sup +} is right-hand polarized in the spacecraft frame, butmore » similar exceptions have been reported by Cannon et al. and remain unexplained. We apply the theory of Lee and Ip that predicts the energy spectrum of the waves and then compare growth rates with turbulent cascade rates under the assumption that turbulence acts to destroy the enhanced wave activity and transport the associated energy to smaller scales where dissipation heats the background plasma. As with Cannon et al., we find that the ability to observe the waves depends on the ambient turbulence being weak when compared with growth rates, thereby allowing sustained wave growth. This analysis implies that the coupled processes of pitch-angle scattering and wave generation are continuously associated with newly ionized pickup ions, despite the fact that the waves themselves may not be directly observable. When waves are not observed, but wave excitation can be argued to be present, the wave energy is simply absorbed by the turbulence at a rate that prevents significant accumulation. In this way, the kinetic process of wave excitation by scattering of newborn ions continues to heat the plasma without producing observable wave energy. These findings support theoretical models that invoke efficient scattering of new pickup ions, leading to turbulent driving in the outer solar wind and in the IBEX ribbon beyond the heliopause.« less
Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.
Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B
2005-11-01
A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.
A generalized invariant imbedding for wave propagation
NASA Astrophysics Data System (ADS)
Ayoubi, I. S.; Nelson, P.
1984-04-01
The initial-value problems for reflection and transmission coefficients (imbeddings) obtained by Bellman and Wing are critically reviewed. It is shown in detail how the two reduce to a common form when both are valid. A simultaneous generalization of these two imbeddings is obtained. The generalized imbedding involves incidence onto an intermediate region of continuous wave number, from a region of smooth wave number, but with no requirement concerning the manner in which the wave numbers join at the interface.
Ultrasonic guided wave for monitoring corrosion of steel bar
NASA Astrophysics Data System (ADS)
Liu, Xi; Qin, Lei; Huang, Bosheng
2018-01-01
Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.
Continuous two-wave lasing in microchip Nd : YAG lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ievlev, Ivan V; Koryukin, Igor' V; Lebedeva, Yu S
2011-08-31
Simultaneous two-wave lasing was obtained in microchip end-pumped Nd:YAG lasers at the wavelengths of 1061.5 and 1064.17 nm at room temperature. Laser wave intensities were studied as functions of crystal temperature and pump power. The ranges of parameters were determined in which the two-wave lasing occurs and the reasons for such lasing were established. A model is suggested, which adequately describes the experimental results obtained. (control of radiation parameters)
Optical Kerr spatiotemporal dark extreme waves
NASA Astrophysics Data System (ADS)
Wabnitz, Stefan; Kodama, Yuji; Baronio, Fabio
2018-02-01
We study the existence and propagation of multidimensional dark non-diffractive and non-dispersive spatiotemporal optical wave-packets in nonlinear Kerr media. We report analytically and confirm numerically the properties of spatiotemporal dark lines, X solitary waves and lump solutions of the (2 + 1)D nonlinear Schr odinger equation (NLSE). Dark lines, X waves and lumps represent holes of light on a continuous wave background. These solitary waves are derived by exploiting the connection between the (2 + 1)D NLSE and a well-known equation of hydrodynamics, namely the (2+1)D Kadomtsev-Petviashvili (KP) equation. This finding opens a novel path for the excitation and control of spatiotemporal optical solitary and rogue waves, of hydrodynamic nature.
Nonlinear coseismic infrasound waves in the upper atmosphere and ionosphere
NASA Astrophysics Data System (ADS)
Chum, J.; Liu, J. Y.; Cabrera, M. A.
2017-12-01
Vertical motion of the ground surface caused by seismic waves generates acoustic waves that propagate nearly vertically upward because of supersonic speed of seismic waves. As the air density decreases with height, the amplitude of acoustic waves increases to conserve the energy flux. If the initial perturbation is large enough (larger than 10 mm/s) and the period of waves is long (>10 s), then the amplitude reaches significant values in the upper atmosphere (e.g. oscillation velocities of the air particles become comparable with sound speed) and the nonlinear phenomena start to play an important role before the wave is dissipated. The nonlinear phenomena lead to changes of spectral content of the wave packet. The energy is transferred to lower frequencies, which can cause the formation of roughly bipolar N-shaped pulse in the vicinity of the epicenters (up to distance about 1000-1500 km) of strong, M>7, earthquakes. The nonlinear propagation is studied on the basis of numerical solution of continuity, momentum and heat equations in 1D (along vertical axis) for viscous compressible atmosphere. Boundary conditions on the ground are determined by real measurements of the vertical motion of the ground surface. The results of numerical simulations are in a good agreement with atmospheric fluctuations observed by continuous Doppler sounding at heights of about 200 km and epicenter distance around 800 km. In addition, the expected fluctuations of GSP-TEC are calculated.
Trajectory description of the quantum–classical transition for wave packet interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-08-15
The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow themore » main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.« less
Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments
Thompson, E.M.; Baise, L.G.; Kayen, R.E.
2007-01-01
Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.
Tang, Xiao-Lan; Zhang, Qingfeng; Hu, Sanming; Zhuang, Yaqiang; Kandwal, Abhishek; Zhang, Ge; Chen, Yifan
2017-09-15
Goubau line is a single-conductor transmission line, featuring easy integration and low-loss transmission properties. Here, we propose a periodic leaky-wave antenna (LWA) based on planar Goubau transmission line on a thin dielectric substrate. The leaky-wave radiations are generated by introducing periodic modulations along the Goubau line. In this way, the surface wave, which is slow-wave mode supported by the Goubau line, achieves an additional momentum and hence enters the fast-wave region for radiations. By employing the periodic modulations, the proposed Goubau line LWAs are able to continuously steer the main beam from backward to forward within the operational frequency range. However, the LWAs usually suffer from a low radiation efficiency at the broadside direction. To overcome this drawback, we explore both transversally and longitudinally asymmetrical modulations to the Goubau line. Theoretical analysis, numerical simulations and experimental results are given in comparison with the symmetrical LWAs. It is demonstrated that the asymmetrical modulations significantly improve the radiation efficiency of LWAs at the broadside. Furthermore, the measurement results agree well with the numerical ones, which experimentally validates the proposed LWA structures. These novel Goubau line LWAs, experimentally demonstrated and validated at microwave frequencies, show also great potential for millimeter-wave and terahertz systems.
The 25 mA continuous-wave surface-plasma source of H{sup −} ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Gorbovsky, A.; Sanin, A.
The ion source with the Penning geometry of electrodes producing continuous-wave beam of H{sup −} ions with current up to 25 mA was developed. Several improvements were introduced to increase source intensity, reliability, and lifetime. The collar around the emission aperture increases the electrons filtering. The apertures’ diameters of the ion-optical system electrodes were increased to generate the beam with higher intensity. An optimization of electrodes’ temperature was performed.
Compact near-IR and mid-IR cavity ring down spectroscopy device
NASA Technical Reports Server (NTRS)
Miller, J. Houston (Inventor)
2011-01-01
This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.
Multiple-frequency continuous wave ultrasonic system for accurate distance measurement
NASA Astrophysics Data System (ADS)
Huang, C. F.; Young, M. S.; Li, Y. C.
1999-02-01
A highly accurate multiple-frequency continuous wave ultrasonic range-measuring system for use in air is described. The proposed system uses a method heretofore applied to radio frequency distance measurement but not to air-based ultrasonic systems. The method presented here is based upon the comparative phase shifts generated by three continuous ultrasonic waves of different but closely spaced frequencies. In the test embodiment to confirm concept feasibility, two low cost 40 kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Individual frequencies are transmitted serially, each generating its own phase shift. For any given frequency, the transmitter/receiver distance modulates the phase shift between the transmitted and received signals. Comparison of the phase shifts allows a highly accurate evaluation of target distance. A single-chip microcomputer-based multiple-frequency continuous wave generator and phase detector was designed to record and compute the phase shift information and the resulting distance, which is then sent to either a LCD or a PC. The PC is necessary only for calibration of the system, which can be run independently after calibration. Experiments were conducted to test the performance of the whole system. Experimentally, ranging accuracy was found to be within ±0.05 mm, with a range of over 1.5 m. The main advantages of this ultrasonic range measurement system are high resolution, low cost, narrow bandwidth requirements, and ease of implementation.
High-sensitivity detection of TNT
Pushkarsky, Michael B.; Dunayevskiy, Ilya G.; Prasanna, Manu; Tsekoun, Alexei G.; Go, Rowel; Patel, C. Kumar N.
2006-01-01
We report high-sensitivity detection of 2,4,6-trinitrotoluene (TNT) by using laser photoacoustic spectroscopy where the laser radiation is obtained from a continuous-wave room temperature high-power quantum cascade laser in an external grating cavity geometry. The external grating cavity quantum cascade laser is continuously tunable over ≈400 nm around 7.3 μm and produces a maximum continuous-wave power of ≈200 mW. The IR spectroscopic signature of TNT is sufficiently different from that of nitroglycerine so that unambiguous detection of TNT without false positives from traces of nitroglycerine is possible. We also report the results of spectroscopy of acetylene in the 7.3-μm region to demonstrate continuous tunability of the IR source. PMID:17164325
NASA Astrophysics Data System (ADS)
Covas, P. B.; Effler, A.; Goetz, E.; Meyers, P. M.; Neunzert, A.; Oliver, M.; Pearlstone, B. L.; Roma, V. J.; Schofield, R. M. S.; Adya, V. B.; Astone, P.; Biscoveanu, S.; Callister, T. A.; Christensen, N.; Colla, A.; Coughlin, E.; Coughlin, M. W.; Crowder, S. G.; Dwyer, S. E.; Eggenstein, H.-B.; Hourihane, S.; Kandhasamy, S.; Liu, W.; Lundgren, A. P.; Matas, A.; McCarthy, R.; McIver, J.; Mendell, G.; Ormiston, R.; Palomba, C.; Papa, M. A.; Piccinni, O. J.; Rao, K.; Riles, K.; Sammut, L.; Schlassa, S.; Sigg, D.; Strauss, N.; Tao, D.; Thorne, K. A.; Thrane, E.; Trembath-Reichert, S.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Ananyeva, A.; Appert, S.; Arai, K.; Aston, S. M.; Austin, C.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bejger, M.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Blair, R. M.; Bork, R.; Brooks, A. F.; Cao, H.; Ciani, G.; Clara, F.; Clearwater, P.; Cooper, S. J.; Corban, P.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Costa, C. F. Da Silva; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Edo, T. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Galiana, A. Fernández; Ferreira, E. C.; Fisher, R. P.; Fong, H.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gateley, B.; Giaime, J. A.; Giardina, K. D.; Goetz, R.; Goncharov, B.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Inta, R.; Izumi, K.; Jones, R.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kennedy, R.; Kijbunchoo, N.; Kim, W.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Laxen, M.; Liu, J.; Lockerbie, N. A.; Lormand, M.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Marsh, P.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McClelland, D. E.; McCormick, S.; McCuller, L.; McIntyre, G.; McRae, T.; Merilh, E. L.; Miller, J.; Mittleman, R.; Mo, G.; Mogushi, K.; Moraru, D.; Moreno, G.; Mueller, G.; Mukund, N.; Mullavey, A.; Munch, J.; Nelson, T. J. N.; Nguyen, P.; Nuttall, L. K.; Oberling, J.; Oktavia, O.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Parker, W.; Pele, A.; Penn, S.; Perez, C. J.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Radkins, H.; Raffai, P.; Ramirez, K. E.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Romel, C. L.; Romie, J. H.; Ross, M. P.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sanchez, L. E.; Sandberg, V.; Savage, R. L.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shoemaker, D. H.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Spencer, A. P.; Staley, A.; Strain, K. A.; Sun, L.; Tanner, D. B.; Tasson, J. D.; Taylor, R.; Thomas, M.; Thomas, P.; Toland, K.; Torrie, C. I.; Traylor, G.; Tse, M.; Tuyenbayev, D.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Wade, M.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Wofford, J.; Worden, J.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zhu, S.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors
2018-04-01
Searches are under way in Advanced LIGO and Virgo data for persistent gravitational waves from continuous sources, e.g. rapidly rotating galactic neutron stars, and stochastic sources, e.g. relic gravitational waves from the Big Bang or superposition of distant astrophysical events such as mergers of black holes or neutron stars. These searches can be degraded by the presence of narrow spectral artifacts (lines) due to instrumental or environmental disturbances. We describe a variety of methods used for finding, identifying and mitigating these artifacts, illustrated with particular examples. Results are provided in the form of lists of line artifacts that can safely be treated as non-astrophysical. Such lists are used to improve the efficiencies and sensitivities of continuous and stochastic gravitational wave searches by allowing vetoes of false outliers and permitting data cleaning.
Resonant optical pulses on a continuous-wave background in two-level active media
NASA Astrophysics Data System (ADS)
Li, Sitai; Biondini, Gino; Kovačič, Gregor; Gabitov, Ildar
2018-01-01
We present exact N-soliton optical pulses riding on a continuous-wave (c.w.) beam that propagate through and interact with a two-level active optical medium. Their representation is derived via an appropriate generalization of the inverse scattering transform for the corresponding Maxwell-Bloch equations. We describe the single-soliton solutions in detail and classify them into several distinct families. In addition to the analogues of traveling-wave soliton pulses that arise in the absence of a c.w. beam, we obtain breather-like structures, periodic pulse-trains and rogue-wave-type (i.e., rational) pulses, whose existence is directly due to the presence of the c.w. beam. These soliton solutions are the analogues for Maxwell-Bloch systems of the four classical solution types of the focusing nonlinear Schrödinger equation with non-zero background, although the physical behavior of the corresponding solutions is quite different.
Progress in high-power continuous-wave quantum cascade lasers [Invited].
Figueiredo, Pedro; Suttinger, Matthew; Go, Rowel; Tsvid, Eugene; Patel, C Kumar N; Lyakh, Arkadiy
2017-11-01
Multi-watt continuous-wave room temperature operation with efficiency exceeding 10% has been demonstrated for quantum cascade lasers essentially in the entire mid-wave and long-wave infrared spectral regions. Along with interband cascade lasers, these devices are the only room-temperature lasers that directly convert electrical power into mid- and long-infrared optical power. In this paper, we review the progress in high-power quantum cascade lasers made over the last 10 years. Specifically, an overview of the most important active region, waveguide, and thermal design techniques is presented, and various aspects of die packaging for high-power applications are discussed. Prospects of power scaling with lateral device dimensions for reaching optical power level in the range from 10 W to 20 W are also analyzed. Finally, coherent and spectral beam-combining techniques for very high-power infrared platforms are discussed.
Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.
Berenstein, Igal; Muñuzuri, Alberto P; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R
2008-08-01
Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.
Investigation into influence factors of wave velocity anisotropy for TCDP borehole
NASA Astrophysics Data System (ADS)
Wu, C. N.; Dong, J. J.; Yang, C. M.; Wu, W. J.
2015-12-01
The direction of fast horizontal shear wave velocity (FSH direction) is used as an indicator of the direction of maximum horizontal principal stress. However, the wave velocity anisotropy will be simultaneously dominated by the stress induced anisotropy and the inherent anisotropy which includes the effects of sedimentary and tectonic structures. In this study, the influence factors of wave velocity anisotropy will be analyzed in borehole-A of Taiwan Chelungpu-Fault Drilling Project (TCDP). The anisotropic compliance tensors of intact sandstones and mudrocks derived from the laboratory wave measurement are combined with the equivalent continuous model to evaluate the compliance tensor of jointed rock mass. Results show the lithology was identified as the most influential factor on the wave velocity anisotropy. Comparing the FSH direction logging data with our results, the wave velocity anisotropy in sandstones is mostly caused by inherent anisotropy of intact sandstones. The spatial variations of wave velocity anisotropy in mudrocks is caused by other relatively higher influence factors than inherent anisotropy of intact mudrocks. In addition, the dip angle of bedding plans is also important for wave velocity anisotropy of mudrocks because the FSH direction logging data seems dominated by the dip direction of bedding planes when the dip angle becomes steeper (at the depth greater than 1785 m). Surprisingly, the wave velocity anisotropy contributed by joints that we determined by equivalent continuous model is not significant. In this study, based on the TCDP borehole data, we conclude that determining the direction of maximum horizontal principal stress from the FSH directions should consider the influence of inherent anisotropy on rock mass.
History of shock wave lithotripsy
NASA Astrophysics Data System (ADS)
Delius, Michael
2000-07-01
The first reports on the fragmentation of human calculi with ultrasound appeared in the fifties. Initial positive results with an extracorporeal approach with continuous wave ultrasound could, however, not be reproduced. A more promising result was found by generating the acoustic energy either in pulsed or continuous form directly at the stone surface. The method was applied clinically with success. Extracorporeal shock-wave generators unite the principle of using single ultrasonic pulses with the principle of generating the acoustic energy outside the body and focusing it through the skin and body wall onto the stone. Häusler and Kiefer reported the first successful contact-free kidney stone destruction by shock waves. They had put the stone in a water filled cylinder and generated a shock wave with a high speed water drop which was fired onto the water surface. To apply the new principle in medicine, both Häusler and Hoff's group at Dornier company constructed different shock wave generators for the stone destruction; the former used a torus-shaped reflector around an explosion wire, the latter the electrode-ellipsoid system. The former required open surgery to access the kidney stone, the latter did not. It was introduced into clinical practice after a series of experiments in Munich.
Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background
NASA Astrophysics Data System (ADS)
Triki, Houria; Porsezian, K.; Choudhuri, Amitava; Dinda, P. Tchofo
2016-06-01
A class of derivative nonlinear Schrödinger equation with cubic-quintic-septic-nonic nonlinear terms describing the propagation of ultrashort optical pulses through a nonlinear medium with higher-order Kerr responses is investigated. An intensity-dependent chirp ansatz is adopted for solving the two coupled amplitude-phase nonlinear equations of the propagating wave. We find that the dynamics of field amplitude in this system is governed by a first-order nonlinear ordinary differential equation with a tenth-degree nonlinear term. We demonstrate that this system allows the propagation of a very rich variety of solitary waves (kink, dark, bright, and gray solitary pulses) which do not coexist in the conventional nonlinear systems that have appeared so far in the literature. The stability of the solitary wave solution under some violation on the parametric conditions is investigated. Moreover, we show that, unlike conventional systems, the nonlinear Schrödinger equation considered here meets the special requirements for the propagation of a chirped solitary wave on a continuous-wave background, involving a balance among group velocity dispersion, self-steepening, and higher-order nonlinearities of different nature.
Directed searches for continuous gravitational waves from spinning neutron stars in binary systems
NASA Astrophysics Data System (ADS)
Meadors, Grant David
2014-09-01
Gravitational wave detectors such as the Laser Interferometer Gravitational-wave Observatory (LIGO) seek to observe ripples in space predicted by General Relativity. Black holes, neutron stars, supernovae, the Big Bang and other sources can radiate gravitational waves. Original contributions to the LIGO effort are presented in this thesis: feedforward filtering, directed binary neutron star searches for continuous waves, and scientific outreach and education, as well as advances in quantum optical squeezing. Feedforward filtering removes extraneous noise from servo-controlled instruments. Filtering of the last science run, S6, improves LIGO's astrophysical range (+4.14% H1, +3.60% L1: +12% volume) after subtracting noise from auxiliary length control channels. This thesis shows how filtering enhances the scientific sensitivity of LIGO's data set during and after S6. Techniques for non-stationarity and verifying calibration and integrity may apply to Advanced LIGO. Squeezing is planned for future interferometers to exceed the standard quantum limit on noise from electromagnetic vacuum fluctuations; this thesis discusses the integration of a prototype squeezer at LIGO Hanford Observatory and impact on astrophysical sensitivity. Continuous gravitational waves may be emitted by neutron stars in low-mass X-ray binary systems such as Scorpius X-1. The TwoSpect directed binary search is designed to detect these waves. TwoSpect is the most sensitive of 4 methods in simulated data, projecting an upper limit of 4.23e-25 in strain, given a year-long data set at an Advanced LIGO design sensitivity of 4e-24 Hz. (-1/2). TwoSpect is also used on real S6 data to set 95% confidence upper limits (40 Hz to 2040 Hz) on strain from Scorpius X-1. A millisecond pulsar, X-ray transient J1751-305, is similarly considered. Search enhancements for Advanced LIGO are proposed. Advanced LIGO and fellow interferometers should detect gravitational waves in the coming decade. Methods in these thesis will benefit both the instrumental and analytical sides of observation.
Development of Active Control Method for Supercooling Releasing of Water
NASA Astrophysics Data System (ADS)
Mito, Daisuke; Kozawa, Yoshiyuki; Tanino, Masayuki; Inada, Takaaki
We have tested the prototype ice-slurry generator that enables both production of supercooled water (-2°C) and releasing of its supercooling simultaneously and continuously in a closed piping system. In the experiment, we adopted the irradiation of ultrasonic wave as an active control method of triggering for supercooling releasing, and evaluated the reliability for a practical use compared with the seed ice-crystal trigger. As the results, it has been confirmed that the ultrasonic wave trigger acts assuredly at the same level of degree of supercooling as that by using the seed ice-crystal Trigger. Moreover, it can be found that the ultrasonic wave trigger has the advantage of removing the growing ice-crystals on the pipe wall at the same time. Finally, we have specified the bombardment condition of ultrasonic wave enough to make continuously the ice-slurry in a closed system as the output surface power density > 31.4kW/m2 and the superficial bombardment time > 4.1sec. We have also demonstrated the continuous ice-slurry making for more than 6hours by using the refrigerator system with the practical scale of 88kW.
NASA Astrophysics Data System (ADS)
Taylor, Stephen; Ellis, Justin; Gair, Jonathan
2014-11-01
We describe several new techniques which accelerate Bayesian searches for continuous gravitational-wave emission from supermassive black-hole binaries using pulsar-timing arrays. These techniques mitigate the problematic increase of search dimensionality with the size of the pulsar array which arises from having to include an extra parameter per pulsar as the array is expanded. This extra parameter corresponds to searching over the phase of the gravitational wave as it propagates past each pulsar so that we can coherently include the pulsar term in our search strategies. Our techniques make the analysis tractable with powerful evidence-evaluation packages like MultiNest. We find good agreement of our techniques with the parameter-estimation and Bayes factor evaluation performed with full signal templates and conclude that these techniques make excellent first-cut tools for detection and characterization of continuous gravitational-wave signals with pulsar-timing arrays. Crucially, at low to moderate signal-to-noise ratios the factor by which the analysis is sped up can be ≳100 , permitting rigorous programs of systematic injection and recovery of signals to establish robust detection criteria within a Bayesian formalism.
Reproducing continuous radio blackout using glow discharge plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Kai; Li, Xiaoping; Liu, Donglin
2013-10-15
A novel plasma generator is described that offers large-scale, continuous, non-magnetized plasma with a 30-cm-diameter hollow structure, which provides a path for an electromagnetic wave. The plasma is excited by a low-pressure glow discharge, with varying electron densities ranging from 10{sup 9} to 2.5 × 10{sup 11} cm{sup −3}. An electromagnetic wave propagation experiment reproduced a continuous radio blackout in UHF-, L-, and S-bands. The results are consistent with theoretical expectations. The proposed method is suitable in simulating a plasma sheath, and in researching communications, navigation, electromagnetic mitigations, and antenna compensation in plasma sheaths.
Weinberger, Andrea H.; Pilver, Corey E.; Desai, Rani A.; Mazure, Carolyn M.; McKee, Sherry A.
2012-01-01
Aims Although depression and smoking are highly correlated, the relationship of Major Depressive Disorder (MDD) to smoking cessation and relapse remains unclear. This study compared changes in smoking for current and former smokers with and without Current and Lifetime MDD over a three year period. Design Analysis of two waves of longitudinal data from the National Institute on Alcohol Abuse and Alcoholism’s National Epidemiologic Survey on Alcohol and Related Conditions (Wave 1, 2001–2002; Wave 2, 2004–2005). Setting Data were collected through face-to-face interviews from non-institutionalized United States civilians, 18 years and older, in 50 states and the District of Columbia. Participants 11,973 adults (46% female) classified as Current or Former Daily Smokers at Wave 1 and completed Wave 2. Measurements Classification as Current or Former Smokers at Wave 1 and Wave 2. Findings Smoking status remained stable for most participants. Wave 1 Current Daily Smokers with Current MDD (OR=1.38, 95% CI=1.03, 1.85) and Lifetime MDD (OR=1.48, 95% CI=1.18, 1.85) were more likely than those without the respective diagnosis to report continued smoking at Wave 2. Wave 1 Former Daily Smokers with Current MDD (OR=0.44, 95% CI=0.26, 0.76) were less likely to report continued abstinence at Wave 2. None of the gender by MDD diagnosis interactions were significant. Patterns of results remained similar when analyses were limited to smokers with nicotine dependence. Conclusions Current and Lifetime Major Depressive Disorder are associated with a lower likelihood of quitting smoking and Current Major Depressive Disorder is associated with greater likelihood of smoking relapse. PMID:22429388
3D shear wave velocity structure revealed with ambient noise tomography on a DAS array
NASA Astrophysics Data System (ADS)
Zeng, X.; Thurber, C. H.; Wang, H. F.; Fratta, D.
2017-12-01
An 8700-m Distributed Acoustic Sensing (DAS) cable was deployed at Brady's Hot Springs, Nevada in March 2016 in a 1.5 by 0.5 km study area. The layout of the DAS array was designed with a zig-zag geometry to obtain relatively uniform areal and varied angular coverage, providing very dense coverage with a one-meter channel spacing. This array continuously recorded signals of a vibroseis truck, earthquakes, and traffic noise during the 15-day deployment. As shown in a previous study (Zeng et al., 2017), ambient noise tomography can be applied to DAS continuous records to image shear wave velocity structure in the near surface. To avoid effects of the vibroseis truck operation, only continuous data recorded during the nighttime was used to compute noise cross-correlation functions for channel pairs within a given linear segment. The frequency band of whitening was set at 5 to 15 Hz and the length of the cross-correlation time window was set to 60 second. The phase velocities were determined using the multichannel analysis of surface waves (MASW) methodology. The phase velocity dispersion curve was then used to invert for shear wave velocity profiles. A preliminarily velocity model at Brady's Hot Springs (Lawrence Livermore National Laboratory, 2015) was used as the starting model and the sensitivity kernels of Rayleigh wave group and phase velocities were computed with this model. As the sensitivity kernel shows, shear wave velocity in the top 200 m can be constrained with Rayleigh wave group and phase velocities in our frequency band. With the picked phase velocity data, the shear wave velocity structure can be obtained via Occam's inversion (Constable et al., 1987; Lai 1998). Shear wave velocity gradually increases with depth and it is generally faster than the Lawrence Livermore National Laboratory (2015) model. Furthermore, that model has limiting constraints at shallow depth. The strong spatial variation is interpreted to reflect the different sediments and sediment thicknesses in the near surface. Shear wave velocities in the northeast corner of the tested area is high whereas loose soil reduces shear wave velocities in the central part of the tested area. This spatial variation pattern is very similar to the results obtained with the ambient noise tomography using the 238-geophone array used the experiment.
Thermal responses in a coronal loop maintained by wave heating mechanisms
NASA Astrophysics Data System (ADS)
Matsumoto, Takuma
2018-05-01
A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuously forced, the MHD waves become excited and propagate upward. Then, 1-MK temperature corona is produced naturally as the wave energy dissipates. The excited wave packets become non-linear just above the magnetic canopy, and the wave energy cascades into smaller spatial scales. Moreover, collisions between counter-propagating Alfvén wave packets increase the heating rate, resulting in impulsive temperature increases. Our model demonstrates that the heating events in the wave-heated loops can be nanoflare-like in the sense that they are spatially localized and temporally intermittent.
Kumar, Vipin; Jose, John; Jose, V Jacob
2014-01-01
62-year-old female presented with progressive dyspnea NYHA class III for six months. Echocardiography showed normal left ventricular (LV) systolic function, mild biatrial enlargement, an L wave in pulse wave Doppler at mitral inflow and in M mode echocardiography across mitral valve. Tissue Doppler imaging at medial mitral annulus showed an L' wave in mid diastole in addition to E' and A' wave. An L wave in pulse wave Doppler and M mode echocardiography represents continued pulmonary vein mid diastolic flow through the left atrium in to LV across mitral valve after early rapid filling. Presence of an L' wave in these patients associated with higher E/E' is indicative of advance diastolic dysfunction with elevated filling pressures. Copyright © 2014 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.
Shoursheini, S Z; Parvin, P; Sajad, B; Bassam, M A
2009-04-01
In this work, we investigate the enhancement of Cu emission lines of a micro-plasma induced by a Nd:YAG laser due to the thermal effect of simultaneous irradiation by a continuous wave (CW) CO(2) laser. The enhancement of the emission lines was achieved at a higher temperature with minimal distortion of the target when the focal point of the Nd:YAG laser was located approximately 1 mm away from the sample surface.
Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar.
Barber, Zeb W; Babbitt, Wm Randall; Kaylor, Brant; Reibel, Randy R; Roos, Peter A
2010-01-10
As the bandwidth and linearity of frequency modulated continuous wave chirp ladar increase, the resulting range resolution, precisions, and accuracy are improved correspondingly. An analysis of a very broadband (several THz) and linear (<1 ppm) chirped ladar system based on active chirp linearization is presented. Residual chirp nonlinearity and material dispersion are analyzed as to their effect on the dynamic range, precision, and accuracy of the system. Measurement precision and accuracy approaching the part per billion level is predicted.
NASA Astrophysics Data System (ADS)
John, T. L.
1996-04-01
Free-free absorption coefficients of the negative neon ion are calculated by the phase-shift approximation based on multiconfiguration Hartree-Fock continuum wave functions. These wave functions accurately account for electron-neon correlation and polarization, and yield scattering cross-sections in excellent agreement with the latest experimental values. The coefficients are expected to give the best current estimates of Ne^- continuous absorption. We find that Ne^- makes only a small contribution (less than 0.3 per cent) to stellar opacities, including hydrogen-deficient stars with enhanced Ne abundances.
2013-01-01
are calculated from coherently -detected fields, e.g., coherent Doppler lidar . Our CRB results reveal that the best-case mean-square error scales as 1...1088 (2001). 7. K. Asaka, Y. Hirano, K. Tatsumi, K. Kasahara, and T. Tajime, “A pseudo-random frequency modulation continuous wave coherent lidar using...multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 2170–2180 (2007). 11. T. J. Karr, “Atmospheric phase error in coherent laser radar
Spectral linewidth preservation in parametric frequency combs seeded by dual pumps.
Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan
2012-07-30
We demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation. Parametric combs with over 200-nm bandwidth were obtained and characterized with respect to phase noise scaling to demonstrate linewidth preservation over 100 generated tones.
Fourier Deconvolution Methods for Resolution Enhancement in Continuous-Wave EPR Spectroscopy.
Reed, George H; Poyner, Russell R
2015-01-01
An overview of resolution enhancement of conventional, field-swept, continuous-wave electron paramagnetic resonance spectra using Fourier transform-based deconvolution methods is presented. Basic steps that are involved in resolution enhancement of calculated spectra using an implementation based on complex discrete Fourier transform algorithms are illustrated. Advantages and limitations of the method are discussed. An application to an experimentally obtained spectrum is provided to illustrate the power of the method for resolving overlapped transitions. © 2015 Elsevier Inc. All rights reserved.
Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing.
Ren, Yingying; Dong, Ningning; Macdonald, John; Chen, Feng; Zhang, Huaijin; Kar, Ajoy K
2012-01-30
Buried channel waveguides in Nd:LuVO<4 were fabricated by femtosecond laser writing with the double-line technique. The photoluminescence properties of the bulk materials were found to be well preserved within the waveguide core region. Continuous-wave laser oscillation at 1066.4 nm was observed from the waveguide under ~809 nm optical excitation, with the absorbed pump power at threshold and laser slope efficiency of 98 mW and 14%, respectively.
Millimeter wave imaging: a historical review
NASA Astrophysics Data System (ADS)
Appleby, Roger; Robertson, Duncan A.; Wikner, David
2017-05-01
The SPIE Passive and Active Millimeter Wave Imaging conference has provided an annual focus and forum for practitioners in the field of millimeter wave imaging for the past two decades. To celebrate the conference's twentieth anniversary we present a historical review of the evolution of millimeter wave imaging over the past twenty years. Advances in device technology play a fundamental role in imaging capability whilst system architectures have also evolved. Imaging phenomenology continues to be a crucial topic underpinning the deployment of millimeter wave imaging in diverse applications such as security, remote sensing, non-destructive testing and synthetic vision.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
Continuous millimeter-wave radiation has no effect on lipid peroxidation in liposomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logani, M.K.; Ziskin, M.C.
1996-02-01
The effect of millimeter waves on lipid peroxidation was studied in the presence and absence of melanin. Irradiation of liposomes with continuous millimeter electromagnetic waves at frequencies of 53.6, 61.2 and 78.2 GHz and incident power densities of 10, 1 and 500 mW/cm{sup 2}, respectively, did not show an enhancement in the formation of lipid peroxides compared to unirradiated samples. Liposomes exposed to 254 nm UVC radiation at 0.32 mW/cm{sup 2} and 302 nm UVB radiation at 1.12 mW/cm{sup 2} served as positive controls. No increment in the formation of lipid peroxides was observed when irradiation of liposomes was carriedmore » out in the presence of ADP-Fe{sup +3} and EDTA-Fe{sup +3}. Direct irradiation of melanin with millimeter waves did not exhibit an increased formation of superoxide or hydrogen peroxide. The present results indicate that millimeter waves of the above frequencies and intensities do not cause lipid peroxidation in liposomal membranes. 19 refs., 2 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Saygin, E.; Lumley, D. E.
2017-12-01
We use continuous seismic data recorded with an array of 909 buried geophones at Otway, South Australia, to investigate the potential of using ambient seismic noise for time-lapse monitoring of the subsurface. The array was installed prior to a 15,000 ton CO2 injection in 2016-17, in order to detect and monitor the evolution of the injected CO2 plume, and any associated microseismic activity. Continuously recorded data from the vertical components of the geophone array were cross-correlated to retrieve the inter-station Green's functions. The dense collection of Green's functions contains diving body waves and surface Rayleigh waves. Green's Functions were then compared with each other at different time frames including the pre-injection period to track subtle changes in the travel times due to the CO2 injection. Our results show a clear change in the velocities of Green's functions at the start of injection for both body waves and surface waves for wave paths traversing the injection area, whereas the observed changes are much smaller for areas which are far from the injection well.
Upstream waves and particles /Tutorial Lecture/. [from shocks in interplanetary space
NASA Technical Reports Server (NTRS)
Russell, C. T.; Hoppe, M. M.
1983-01-01
The plasma waves, MHD waves, energetic electrons and ions associated with the proximity of the region upstream from terrestrial, planetary and interplanetary shocks are discussed in view of observations and current theories concerning their origin. These waves cannot be separated from the study of shock structure. Since the shocks are supersonic, they continually overtake any ULF waves created in the plasma in front of the shock. The upstream particles and waves are also of intrinsic interest because they provide a plasma laboratory for the study of wave-particle interactions in a plasma which, at least at the earth, is accessible to sophisticated probing. Insight may be gained into interstellar medium cosmic ray acceleration through the study of these phenomena.
Rapid calculation of acoustic fields from arbitrary continuous-wave sources.
Treeby, Bradley E; Budisky, Jakub; Wise, Elliott S; Jaros, Jiri; Cox, B T
2018-01-01
A Green's function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Green's function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions to be calculated in a single step using two fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically focused bowl transducers, and multi-element linear and hemispherical arrays.
The Plasma Wave Experiment (PWE) on board the Arase (ERG) satellite
NASA Astrophysics Data System (ADS)
Kasahara, Yoshiya; Kasaba, Yasumasa; Kojima, Hirotsugu; Yagitani, Satoshi; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ozaki, Mitsunori; Matsuda, Shoya; Imachi, Tomohiko; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Katoh, Yuto; Ota, Mamoru; Shoji, Masafumi; Matsuoka, Ayako; Shinohara, Iku
2018-05-01
The Exploration of energization and Radiation in Geospace (ERG) project aims to study acceleration and loss mechanisms of relativistic electrons around the Earth. The Arase (ERG) satellite was launched on December 20, 2016, to explore in the heart of the Earth's radiation belt. In the present paper, we introduce the specifications of the Plasma Wave Experiment (PWE) on board the Arase satellite. In the inner magnetosphere, plasma waves, such as the whistler-mode chorus, electromagnetic ion cyclotron wave, and magnetosonic wave, are expected to interact with particles over a wide energy range and contribute to high-energy particle loss and/or acceleration processes. Thermal plasma density is another key parameter because it controls the dispersion relation of plasma waves, which affects wave-particle interaction conditions and wave propagation characteristics. The DC electric field also plays an important role in controlling the global dynamics of the inner magnetosphere. The PWE, which consists of an orthogonal electric field sensor (WPT; wire probe antenna), a triaxial magnetic sensor (MSC; magnetic search coil), and receivers named electric field detector (EFD), waveform capture and onboard frequency analyzer (WFC/OFA), and high-frequency analyzer (HFA), was developed to measure the DC electric field and plasma waves in the inner magnetosphere. Using these sensors and receivers, the PWE covers a wide frequency range from DC to 10 MHz for electric fields and from a few Hz to 100 kHz for magnetic fields. We produce continuous ELF/VLF/HF range wave spectra and ELF range waveforms for 24 h each day. We also produce spectral matrices as continuous data for wave direction finding. In addition, we intermittently produce two types of waveform burst data, "chorus burst" and "EMIC burst." We also input raw waveform data into the software-type wave-particle interaction analyzer (S-WPIA), which derives direct correlation between waves and particles. Finally, we introduce our PWE observation strategy and provide some initial results.[Figure not available: see fulltext.
EMIC waves covering wide L shells: MMS and Van Allen Probes observations
NASA Astrophysics Data System (ADS)
Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Wang, Dedong; Li, Haimeng; Qiao, Zheng; Yao, Fei
2017-07-01
During 04:45:00-08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6-9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial magnetosphere, an appropriately dense background plasma would make contributions to the growth of EMIC waves in lower L shells, while the ion anisotropy, driven by magnetospheric compression, might play an important role in the excitation of EMIC waves in higher L shells. These EMIC waves are observed over wide L shells after three continuous magnetic storms, which suggests that these waves might obtain their free energy from those energetic ions injected during storm times. These EMIC waves should be included in radiation belt modeling, especially during continuous magnetic storms. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. It is suggested that multiband-structured EMIC waves can be used to trace the coupling between solar wind and the magnetosphere.tract type="synopsis">le type="main">Plain Language SummaryThe spatial distribution of EMIC waves is an opening question. With combined observations of MMS and Van Allen Probes, this paper has reported EMIC waves covering wide L shells. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. The result is helpful to revealing the spatial distribution and role of He2+ in excitation of EMIC waves.
NASA Astrophysics Data System (ADS)
Wilkins, Matthew M.; Gupta, James; Jaouad, Abdelatif; Bouzazi, Boussairi; Fafard, Simon; Boucherif, Abderraouf; Valdivia, Christopher E.; Arès, Richard; Aimez, Vincent; Schriemer, Henry P.; Hinzer, Karin
2017-04-01
Four-junction solar cells for space and terrestrial applications require a junction with a band gap of ˜1 eV for optimal performance. InGaAsN or InGaAsN(Sb) dilute nitride junctions have been demonstrated for this purpose, but in achieving the 14 mA/cm2 short-circuit current needed to match typical GaInP and GaAs junctions, the open-circuit voltage (VOC) and fill factor of these junctions are compromised. In multijunction devices incorporating materials with short diffusion lengths, we study the use of thin junctions to minimize sensitivity to varying material quality and ensure adequate transmission into lower junctions. An n-i-p device with 0.65-μm absorber thickness has sufficient short-circuit current, however, it relies less heavily on field-aided collection than a device with a 1-μm absorber. Our standard cell fabrication process, which includes a rapid thermal anneal of the contacts, yields a significant improvement in diffusion length and device performance. By optimizing a four-junction cell around a smaller 1-sun short-circuit current of 12.5 mA/cm2, we produced an InGaAsN(Sb) junction with open-circuit voltage of 0.44 V at 1000 suns (1 sun=100 mW/cm2), diode ideality factor of 1.4, and sufficient light transmission to allow >12.5 mA/cm2 in all four subcells.
NASA Astrophysics Data System (ADS)
Hiraga, R.; Omura, Y.
2017-12-01
By recent observations, chorus waves include fine structures such as amplitude fluctuations (i.e. sub-packet structure), and it has not been verified in detail yet how energetic electrons are efficiently accelerated under the wave features. In this study, we firstly focus on the acceleration process of a single electron: how it experiences the efficient energy increase by interaction with sub-packet chorus waves in parallel propagation along the Earth's magnetic field. In order to reproduce the chorus waves as seen by the latest observations by Van Allen Probes (Foster et al. 2017), the wave model amplitude in our simulation is structured such that when the wave amplitude nonlinearly grows to reach the optimum amplitude, it starts decreasing until crossing the threshold. Once it crosses the threshold, the wave dissipates and a new wave rises to repeat the nonlinear growth and damping in the same manner. The multiple occurrence of this growth-damping cycle forms a saw tooth-like amplitude variation called sub-packet. This amplitude variation also affects the wave frequency behavior which is derived by the chorus wave equations as a function of the wave amplitude (Omura et al. 2009). It is also reasonable to assume that when a wave packet diminishes and the next wave rises, it has a random phase independent of the previous wave. This randomness (discontinuity) in phase variation is included in the simulation. Through interaction with such waves, dynamics of energetic electrons were tracked. As a result, some electrons underwent an efficient acceleration process defined as successive entrapping, in which an electron successfully continues to surf the trapping potential generated by consecutive wave packets. When successive entrapping occurs, an electron trapped and de-trapped (escape the trapping potential) by a single wave packet falls into another trapping potential generated by the next wave sub-packet and continuously accelerated. The occurrence of successive entrapping is influenced by some factors such as the magnitude of wave amplitude or inhomogeneity of the Earth's dipole magnetic field. In addition, an energy range of electrons is also a major factor. In this way, it has been examined in detail how and under which conditions electrons are efficiently accelerated in the formation process of the radiation belts.
Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.
Saller, Maximilian A C; Habershon, Scott
2017-07-11
Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.
Optical trapping of nanoparticles by ultrashort laser pulses.
Usman, Anwar; Chiang, Wei-Yi; Masuhara, Hiroshi
2013-01-01
Optical trapping with continuous-wave lasers has been a fascinating field in the optical manipulation. It has become a powerful tool for manipulating micrometer-sized objects, and has been widely applied in physics, chemistry, biology, material, and colloidal science. Replacing the continuous-wave- with pulsed-mode laser in optical trapping has already revealed some novel phenomena, including the stable trap, modifiable trapping positions, and controllable directional optical ejections of particles in nanometer scales. Due to two distinctive features; impulsive peak powers and relaxation time between consecutive pulses, the optical trapping with the laser pulses has been demonstrated to have some advantages over conventional continuous-wave lasers, particularly when the particles are within Rayleigh approximation. This would open unprecedented opportunities in both fundamental science and application. This Review summarizes recent advances in the optical trapping with laser pulses and discusses the electromagnetic formulations and physical interpretations of the new phenomena. Its aim is rather to show how beautiful and promising this field will be, and to encourage the in-depth study of this field.
NASA Technical Reports Server (NTRS)
Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.
1977-01-01
The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.
Damage detection and locating using tone burst and continuous excitation modulation method
NASA Astrophysics Data System (ADS)
Li, Zheng; Wang, Zhi; Xiao, Li; Qu, Wenzhong
2014-03-01
Among structural health monitoring techniques, nonlinear ultrasonic spectroscopy methods are found to be effective diagnostic approach to detecting nonlinear damage such as fatigue crack, due to their sensitivity to incipient structural changes. In this paper, a nonlinear ultrasonic modulation method was developed to detect and locate a fatigue crack on an aluminum plate. The method is different with nonlinear wave modulation method which recognizes the modulation of low-frequency vibration and high-frequency ultrasonic wave; it recognizes the modulation of tone burst and high-frequency ultrasonic wave. In the experiment, a Hanning window modulated sinusoidal tone burst and a continuous sinusoidal excitation were simultaneously imposed on the PZT array which was bonded on the surface of an aluminum plate. The modulations of tone burst and continuous sinusoidal excitation was observed in different actuator-sensor paths, indicating the presence and location of fatigue crack. The results of experiments show that the proposed method is capable of detecting and locating the fatigue crack successfully.
Continuous-wave EPR at 275 GHz: Application to high-spin Fe 3+ systems
NASA Astrophysics Data System (ADS)
Mathies, G.; Blok, H.; Disselhorst, J. A. J. M.; Gast, P.; van der Meer, H.; Miedema, D. M.; Almeida, R. M.; Moura, J. J. G.; Hagen, W. R.; Groenen, E. J. J.
2011-05-01
The 275 GHz electron-paramagnetic-resonance spectrometer we reported on in 2004 has been equipped with a new probe head, which contains a cavity especially designed for operation in continuous-wave mode. The sensitivity and signal stability that is achieved with this new probe head is illustrated with 275 GHz continuous-wave spectra of a 1 mM frozen solution of the complex Fe(III)-ethylenediamine tetra-acetic acid and of 10 mM frozen solutions of the protein rubredoxin, which contains Fe 3+ in its active site, from three different organisms. The high quality of the spectra of the rubredoxins allows the determination of the zero-field-splitting parameters with an accuracy of 0.5 GHz. The success of our approach results partially from the enhanced absolute sensitivity, which can be reached using a single-mode cavity. At least as important is the signal stability that we were able to achieve with the new probe head.
On the relationship between wave based control, absolute vibration suppression and input shaping
NASA Astrophysics Data System (ADS)
Peled, I.; O'Connor, W. J.; Halevi, Y.
2013-08-01
The modeling and control of continuous flexible structures is one of the most challenging problems in control theory. This topic gains more interest with the development of slender space structures, light weight aeronautical components or even traditional gears and drive shafts with flexible properties. Several control schemes are based on the traveling wave approach, rather than the more common modal methods. In this work we investigate the relationships between two of these methods. The Absolute Vibration Suppression (AVS) controller, which was developed for infinite dimension systems, is compared to Wave Based Control (WBC) which was designed primarily for lumped systems. The WBC was first adjusted to continuous systems and then the two controllers, whose algorithms seem different, are compared. The investigation shows that for the flexible shaft these two control laws are actually the same. Furthermore, when converted into an equivalent open loop controller they appear as an extension to continuous systems of the Input Shaping (IS) methodology.
NASA Astrophysics Data System (ADS)
Guan, Wei; Shi, Peng; Hu, Hengshan
2018-01-01
In this study, we theoretically analyse the contributions of the four poroelastic-wave potentials to seismoelectromagnetic (SEM) wavefields, verify the validity of the quasi-static calculation of the electric field and provide a method to calculate the magnetic field by using the curl-free electric field. Calculations show that both the fast and slow P waves and the SH and SV waves have non-negligible contributions to the SEM fields. The S waves have indirect contribution to the electric field through the EM conversion from the magnetic field, although the direct contribution due to streaming current is negligible if EM wavenumbers are much smaller than those of the S waves. The P waves have indirect contribution to the magnetic field through EM conversion from the electric field, although the direct contribution is absent. The quasi-static calculation of the electric field is practicable since it is normally satisfied in reality that the EM wavenumbers are much smaller than those of poroelastic waves. While the direct contribution of the S waves and the higher-order EM conversions are ignored, the first-order EM conversion from the S-wave-induced magnetic field is reserved through the continuity of the electric-current density. To calculate the magnetic field on this basis, we separate the quasi-static electric field into a rotational and an irrotational part. The magnetic-field solutions are derived through Hertz vectors in which the coefficients of the magnetic Hertz vector are determined from the magnetic-field continuities and those of the electric Hertz vector originate from the irrotational part of the quasi-static electric field.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, Aaron
2007-01-01
In the first two papers in this series, we developed a method for studying electron-hydrogen scattering that does not use partial wave analysis. We constructed an ansatz for the wave function in both the static and static exchange approximations and calculated the full scattering amplitude. Here we go beyond the static exchange approximation, and include correlation in the wave function via a modified polarized orbital. This correlation function provides a significant improvement over the static exchange approximation: the resultant elastic scattering amplitudes are in very good agreement with fully converged partial wave calculations for electron-hydrogen scattering. A fully variational modification of this approach is discussed in the conclusion of the article Popular summary of Direct calculation of the scattering amplitude without partial wave expansion. III ....." by J. Shertzer and A. Temkin. In this paper we continue the development of In this paper we continue the development of a new approach to the way in which researchers have traditionally used to calculate the scattering cross section of (low-energy) electrons from atoms. The basic mathematical problem is to solve the Schroedinger Equation (SE) corresponding the above physical process. Traditionally it was always the case that the SE was reduced to a sequence of one-dimensional (ordinary) differential equations - called partial waves which were solved and from the solutions "phase shifts" were extracted, from which the scattering cross section was calculated.
Electromagnetic pulse propagation in dispersive planar dielectrics.
Moten, K; Durney, C H; Stockham, T G
1989-01-01
The responses of a plane-wave pulse train irradiating a lossy dispersive dielectric half-space are investigated. The incident pulse train is expressed as a Fourier series with summing done by the inverse fast Fourier transform. The Fourier series technique is adopted to avoid the many difficulties often encountered in finding the inverse Fourier transform when transform analyses are used. Calculations are made for propagation in pure water, and typical waveforms inside the dielectric half-space are presented. Higher harmonics are strongly attenuated, resulting in a single continuous sinusoidal waveform at the frequency of the fundamental depth in the material. The time-averaged specific absorption rate (SAR) for pulse-train propagation is shown to be the sum of the time-averaged SARs of the individual harmonic components of the pulse train. For the same average power, calculated SARs reveal that pulse trains generally penetrate deeper than carrier-frequency continuous waves but not deeper than continuous waves at frequencies approaching the fundamental of the pulse train. The effects of rise time on the propagating pulse train in the dielectrics are shown and explained. Since most practical pulsed systems are very limited in bandwidth, no pronounced differences between their response and continuous wave (CW) response would be expected. Typical results for pulse-train propagation in arrays of dispersive planar dielectric slabs are presented. Expressing the pulse train as a Fourier series provides a practical way of interpreting the dispersion characteristics from the spectral point of view.
Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard
NASA Astrophysics Data System (ADS)
Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team
2015-05-01
194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).
Matched Template Signal Processing for Continuous Wave Laser Tracking of Space Debris
NASA Astrophysics Data System (ADS)
Raj, S.; Ward, R.; Roberts, L.; Fleddermann, R.; Francis, S.; McClellend, D.; Shaddock, D.; Smith, C.
2016-09-01
The build up of space junk in Earth's orbit space is a growing concern as it shares the same orbit as many currently active satellites. As the number of objects increase in these orbits, the likelihood of collisions between satellites and debris will increase [1]. The eventual goal is to be able to maneuver space debris to avoid such collisions. We at SERC aim to accomplish this by using ground based laser facilities that are already being used to track space debris orbit. One potential method to maneuver space debris is using continuous wave lasers and applying photon pressure on the debris and attempt to change the orbit. However most current laser ranging facilities operates using pulsed lasers where a pulse of light is sent out and the time taken for the pulse to return back to the telescope is measured after being reflected by the target. If space debris maneuvering is carried out with a continuous wave laser then two laser sources need to be used for ranging and maneuvering. The aim of this research is to develop a laser ranging system that is compatible with the continuous wave laser; using the same laser source to simultaneously track and maneuver space debris. We aim to accomplish this by modulating the outgoing laser light with pseudo random noise (PRN) codes, time tagging the outgoing light, and utilising a matched filter at the receiver end to extract the various orbital information of the debris.
Pal, Debasis; Ghosh, Aditi; Sen, Ranjan; Pal, Atasi
2016-08-10
A continuous-wave (CW) as well as quasi-continuous wave (QCW) thulium-doped all-fiber laser at 1.94 μm has been designed for targeting applications in urology. The thulium-doped active fiber with an octagonal-shaped inner cladding is pumped at 793 nm to achieve stable CW laser power of 10 W with 32% lasing efficiency (against launched pump power). The linear variation of laser power with pump offers a scope of further power scaling. A QCW operation with variation of duty cycle from 0.5% to 90%, repetition rate from 0.1 Hz to 1 kHz, and pulse width from 40 μs to 2 s has been presented. Laser power of 9.5 W in CW mode of operation and average power of 5.2 W with energy range of 10.4-104 mJ in QCW mode of operation has been employed to fragment calcium oxalate monohydrate kidney stones (size of 1.5-4 cm) having different colors and composition. Dependence of ablation threshold, ablation rate, and average fragmented particle size on the average power and energy has been studied. One minute of laser exposure results in fragmentation of a stone surface with ablation rate of 8 mg/min having minimum particle size of 6.54 μm with an average size of 20-100 μm ensuring the natural removal of fragmented parts through the urethra.
To determine the proximate consequences of the limited breeding distribution of the critically endangered Waved Albatross (Phoebastria irrorata), we present continuous breeding season GPS tracks highlighting differences in behaviour, destinations, and distances travelled between ...
Shear Wave Wavefront Mapping Using Ultrasound Color Flow Imaging.
Yamakoshi, Yoshiki; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi
2015-10-01
A wavefront reconstruction method for a continuous shear wave is proposed. The method uses ultrasound color flow imaging (CFI) to detect the shear wave's wavefront. When the shear wave vibration frequency satisfies the required frequency condition and the displacement amplitude satisfies the displacement amplitude condition, zero and maximum flow velocities appear at the shear wave vibration phases of zero and π rad, respectively. These specific flow velocities produce the shear wave's wavefront map in CFI. An important feature of this method is that the shear wave propagation is observed in real time without addition of extra functions to the ultrasound imaging system. The experiments are performed using a 6.5 MHz CFI system. The shear wave is excited by a multilayer piezoelectric actuator. In a phantom experiment, the shear wave velocities estimated using the proposed method and those estimated using a system based on displacement measurement show good agreement. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Hayashi, K.; Matsui, H.; Kawano, H.; Yamamoto, T.; Kokubun, S.
1994-12-01
Whistler mode waves observed in the upstream region very close to the bow-shock is focused from the initial survey for magnetic fed data in a frequency range between 1Hz and 50Hz observed by the search coil magnetometer on board the Geotail satellite. Based on the three component wave form data polarization and wave-normal characteristics of foreshock waves is first shown as dynamic spectra for the whole Fourier components of the 50 Hz band width. Intense whistler mode waves generated in the foot region of the bow-shock are found strongly controlled in the observed polarization dependent on the angle between directions of the wave propagation and the solar wind flow but not very dependent on frequency. Our simple scheme to derive the ware characteristics which is effective to survey large amount of data continuously growing is also introduced.
Wave attenuation in the marginal ice zone during LIMEX
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.; Bhogal, A. S.
1992-01-01
The effect of ice cover on ocean-wave attenuation is investigated for waves under flexure in the marginal ice zone (MIZ) with SAR image spectra and the results of models. Directional wavenumber spectra are taken from the SAR image data, and the wave-attenuation rate is evaluated with SAR image spectra and by means of the model by Liu and Mollo-Christensen (1988). Eddy viscosity is described by means of dimensional analysis as a function of ice roughness and wave-induced velocity, and comparisons are made with the remotely sensed data. The model corrects the open-water model by introducing the effects of a continuous ice sheet, and turbulent eddy viscosity is shown to depend on ice thickness, floe sizes, significant wave height, and wave period. SAR and wave-buoy data support the trends described in the model results, and a characteristic rollover is noted in the model and experimental wave-attenuation rates at high wavenumbers.
Solitary-wave solutions of the Benjamin equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, J.P.; Bona, J.L.; Restrepo, J.M.
1999-10-01
Considered here is a model equation put forward by Benjamin that governs approximately the evolution of waves on the interface of a two-fluid system in which surface-tension effects cannot be ignored. The principal focus is the traveling-wave solutions called solitary waves, and three aspects will be investigated. A constructive proof of the existence of these waves together with a proof of their stability is developed. Continuation methods are used to generate a scheme capable of numerically approximating these solitary waves. The computer-generated approximations reveal detailed aspects of the structure of these waves. They are symmetric about their crests, but unlikemore » the classical Korteqeg-de Vries solitary waves, they feature a finite number of oscillations. The derivation of the equation is also revisited to get an idea of whether or not these oscillatory waves might actually occur in a natural setting.« less
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Ho, W. C. G.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-12-01
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.
NASA Astrophysics Data System (ADS)
Sharma, M. D.
2018-07-01
Phenomenon of reflection and refraction is considered at the plane interface between a thermoelastic medium and thermo-poroelastic medium. Both the media are isotropic and behave dissipative to wave propagation. Incident wave in thermo-poroelastic medium is considered inhomogeneous with deviation allowed between the directions of propagation and maximum attenuation. For this incidence, four attenuated waves reflect back in thermo-poroelastic medium and three waves refract to the continuing thermoelastic medium. Each of these reflected/refracted waves is inhomogeneous and propagates with a phase shift. The propagation characteristics (velocity, attenuation, inhomogeneity, phase shift, amplitude, energy) of reflected and refracted waves are calculated as functions of propagation direction and inhomogeneity of the incident wave. Variations in these propagation characteristics with the incident direction are illustrated through a numerical example.
Generation of ultrasound in materials using continuous-wave lasers.
Caron, James N; DiComo, Gregory P; Nikitin, Sergei
2012-03-01
Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Meadors, G. D.; Goetz, E.; Riles, K.; Creighton, T.; Robinet, F.
2017-02-01
Scorpius X-1 (Sco X-1) and x-ray transient XTE J1751-305 are low-mass x-ray binaries (LMXBs) that may emit continuous gravitational waves detectable in the band of ground-based interferometric observatories. Neutron stars in LMXBs could reach a torque-balance steady-state equilibrium in which angular momentum addition from infalling matter from the binary companion is balanced by angular momentum loss, conceivably due to gravitational-wave emission. Torque balance predicts a scale for detectable gravitational-wave strain based on observed x-ray flux. This paper describes a search for Sco X-1 and XTE J1751-305 in LIGO science run 6 data using the TwoSpect algorithm, based on searching for orbital modulations in the frequency domain. While no detections are claimed, upper limits on continuous gravitational-wave emission from Sco X-1 are obtained, spanning gravitational-wave frequencies from 40 to 2040 Hz and projected semimajor axes from 0.90 to 1.98 light-seconds. These upper limits are injection validated, equal any previous set in initial LIGO data, and extend over a broader parameter range. At optimal strain sensitivity, achieved at 165 Hz, the 95% confidence level random-polarization upper limit on dimensionless strain h0 is approximately 1.8 ×10-24. The closest approach to the torque-balance limit, within a factor of 27, is also at 165 Hz. Upper limits are set in particular narrow frequency bands of interest for J1751-305. These are the first upper limits known to date on r -mode emission from this XTE source. The TwoSpect method will be used in upcoming searches of Advanced LIGO and Virgo data.
Localization of ultra-low frequency waves in multi-ion plasmas of the planetary magnetosphere
Kim, Eun -Hwa; Johnson, Jay R.; Lee, Dong -Hun
2015-01-01
By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Lastly, our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH wavesmore » can be localized in different locations along the field line.« less
Schrödinger propagation of initial discontinuities leads to divergence of moments
NASA Astrophysics Data System (ADS)
Marchewka, A.; Schuss, Z.
2009-09-01
We show that the large phase expansion of the Schrödinger propagation of an initially discontinuous wave function leads to the divergence of average energy, momentum, and displacement, rendering them unphysical states. If initially discontinuous wave functions are considered to be approximations to continuous ones, the determinant of the spreading rate of these averages is the maximal gradient of the initial wave function. Therefore a dilemma arises between the inclusion of discontinuous wave functions in quantum mechanics and the requirement of finite moments.
Scalar wave-optical reconstruction of plenoptic camera images.
Junker, André; Stenau, Tim; Brenner, Karl-Heinz
2014-09-01
We investigate the reconstruction of plenoptic camera images in a scalar wave-optical framework. Previous publications relating to this topic numerically simulate light propagation on the basis of ray tracing. However, due to continuing miniaturization of hardware components it can be assumed that in combination with low-aperture optical systems this technique may not be generally valid. Therefore, we study the differences between ray- and wave-optical object reconstructions of true plenoptic camera images. For this purpose we present a wave-optical reconstruction algorithm, which can be run on a regular computer. Our findings show that a wave-optical treatment is capable of increasing the detail resolution of reconstructed objects.
Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagstrom, George I.; Hameiri, Eliezer
Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also anmore » entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.« less
Su, Shuo; Gu, Min; Liu, Di; Cui, Jie; Gao, George F; Zhou, Jiyong; Liu, Xiufan
2017-09-01
H7N9 influenza viruses were first isolated in 2013 and continue to cause human infections. H7N9 infections represent an ongoing public health threat that has resulted in 1344 cases with 511 deaths as of April 9, 2017. This highlights the continued threat posed by the current poultry trade and live poultry market system in China. Until now, there have been five H7N9 influenza epidemic waves in China; however, the steep increase in the number of humans infected with H7N9 viruses observed in the fifth wave, beginning in October 2016, the spread into western provinces, and the emergence of highly pathogenic (HP) H7N9 influenza outbreaks in chickens and infection in humans have caused domestic and international concern. In this review, we summarize and compare the different waves of H7N9 regarding their epidemiology, pathogenesis, evolution, and characteristic features, and speculate on factors behind the recent increase in the number of human cases and sudden outbreaks in chickens. The continuous evolution of the virus poses a long-term threat to public health and the poultry industry, and thus it is imperative to strengthen prevention and control strategies. Copyright © 2017. Published by Elsevier Ltd.
Jason Celebrates 5th Anniversary as El Niño Builds, Warm Kelvin Wave Surges Toward South America
2006-12-07
Recent sea-level height data from NASA Jason-1 altimetric satellite show that continuing weaker-than-normal trade winds in the western and central equatorial Pacific have triggered another strong, eastward moving, warm Kelvin wave.
A new method for blood velocity measurements using ultrasound FMCW signals.
Kunita, Masanori; Sudo, Masamitsu; Inoue, Shinya; Akahane, Mutsuhiro
2010-05-01
The low peak power of frequency-modulated continuous wave (FMCW) radar makes it attractive for various applications, including vehicle collision warning systems and airborne radio altimeters. This paper describes a new ultrasound Doppler measurement system that measures blood flow velocity based on principles similar to those of FMCW radar. We propose a sinusoidal wave for FM modulation and introduce a new demodulation technique for obtaining Doppler information with high SNR and range resolution. Doppler signals are demodulated with a reference FMCW signal to adjust delay times so that they are equal to propagation times between the transmitter and the receiver. Analytical results suggest that Doppler signals can be obtained from a selected position, as with a sample volume in pulse wave Doppler systems, and that the resulting SNR is nearly identical to that obtained with continuous wave (CW) Doppler systems. Additionally, clutter power is less than that of CW Doppler systems. The analytical results were verified by experiments involving electronic circuits and Doppler ultrasound phantoms.
NASA Astrophysics Data System (ADS)
Yaakob, K. I.; Ishak, M.; Idris, S. R. A.; Aiman, M. H.; Khalil, N. Z.
2017-09-01
Recent car manufacturer requirement in lightweight and optimum safety lead to utilization of boron steel with tailor welded blank approach. Laser welding process in tailor welded blank (TWB) production can be applied in continuous wave (CW) of pulse wave (PW) which produce different thermal experience in welded area. Instead of microstructure identification, hardness properties also can determine the behavior of weld area. In this paper, hardness variation of welded boron steel using PW and CW mode is investigated. Welding process is conducted using similar average power for both welding mode. Hardness variation across weld area is observed. The result shows similar hardness pattern across weld area for both welding mode. Hardness degradation at fusion zone (FZ) is due to ferrite formation existence from high heat input applied. With additional slower cooling rate for CW mode, the hardness degradation is become obvious. The normal variation of hardness behavior with PW mode might lead to good strength.
An Alternative Derivation of the Energy Levels of the "Particle on a Ring" System
NASA Astrophysics Data System (ADS)
Vincent, Alan
1996-10-01
All acceptable wave functions must be continuous mathematical functions. This criterion limits the acceptable functions for a particle in a linear 1-dimensional box to sine functions. If, however, the linear box is bent round into a ring, acceptable wave functions are those which are continuous at the 'join'. On this model some acceptable linear functions become unacceptable for the ring and some unacceptable cosine functions become acceptable. This approach can be used to produce a straightforward derivation of the energy levels and wave functions of the particle on a ring. These simple wave mechanical systems can be used as models of linear and cyclic delocalised systems such as conjugated hydrocarbons or the benzene ring. The promotion energy of an electron can then be used to calculate the wavelength of absorption of uv light. The simple model gives results of the correct order of magnitude and shows that, as the chain length increases, the uv maximum moves to longer wavelengths, as found experimentally.
NASA Astrophysics Data System (ADS)
Flanigan, D.; McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P.; Araujo, D.; Bradford, K.; Cantor, R.; Che, G.; Day, P.; Doyle, S.; Kjellstrand, C. B.; Leduc, H.; Limon, M.; Luu, V.; Mauskopf, P.; Miller, A.; Mroczkowski, T.; Tucker, C.; Zmuidzinas, J.
2016-02-01
We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP≈2 ×10-17 W Hz-1 /2 , referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP∝P for broadband (chaotic) illumination and NEP∝P1 /2 for continuous-wave (coherent) illumination.
Onboard Processing of Electromagnetic Measurements for the Luna - Glob Mission
NASA Astrophysics Data System (ADS)
Hruska, F.; Kolmasova, I.; Santolik, O.; Skalski, A.; Pronenko, V.; Belyayev, S.; Lan, R.; Uhlir, L.
2013-12-01
The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.
NASA Astrophysics Data System (ADS)
Kolmasova, Ivana; Santolik, Ondrej; Belyayev, Serhiy; Uhlir, Ludek; Skalsky, Alexander; Pronenko, Vira; Lan, Radek
The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.
Neymotin, Samuel A.; McDougal, Robert A.; Sherif, Mohamed A.; Fall, Christopher P.; Hines, Michael L.; Lytton, William W.
2015-01-01
Calcium (Ca2+) waves provide a complement to neuronal electrical signaling, forming a key part of a neuron’s second messenger system. We developed a reaction-diffusion model of an apical dendrite with diffusible inositol triphosphate (IP3), diffusible Ca2+, IP3 receptors (IP3Rs), endoplasmic reticulum (ER) Ca2+ leak, and ER pump (SERCA) on ER. Ca2+ is released from ER stores via IP3Rs upon binding of IP3 and Ca2+. This results in Ca2+-induced-Ca2+-release (CICR) and increases Ca2+ spread. At least two modes of Ca2+ wave spread have been suggested: a continuous mode based on presumed relative homogeneity of ER within the cell; and a pseudo-saltatory model where Ca2+ regeneration occurs at discrete points with diffusion between them. We compared the effects of three patterns of hypothesized IP3R distribution: 1. continuous homogeneous ER, 2. hotspots with increased IP3R density (IP3R hotspots), 3. areas of increased ER density (ER stacks). All three modes produced Ca2+ waves with velocities similar to those measured in vitro (~50–90µm /sec). Continuous ER showed high sensitivity to IP3R density increases, with time to onset reduced and speed increased. Increases in SERCA density resulted in opposite effects. The measures were sensitive to changes in density and spacing of IP3R hotspots and stacks. Increasing the apparent diffusion coefficient of Ca2+ substantially increased wave speed. An extended electrochemical model, including voltage gated calcium channels and AMPA synapses, demonstrated that membrane priming via AMPA stimulation enhances subsequent Ca2+ wave amplitude and duration. Our modeling suggests that pharmacological targeting of IP3Rs and SERCA could allow modulation of Ca2+ wave propagation in diseases where Ca2+ dysregulation has been implicated. PMID:25734493
The Detection of Gravitational Waves
NASA Astrophysics Data System (ADS)
Blair, David G.
2005-10-01
Part I. An Introduction to Gravitational Waves and Methods for their Detection: 1. Gravitational waves in general relativity D. G. Blair; 2. Sources of gravitational waves D. G. Blair; 3. Gravitational wave detectors D. G. Blair; Part II. Gravitational Wave Detectors: 4. Resonant-bar detectors D. G. Blair; 5. Gravity wave dewars W. O. Hamilton; 6. Internal friction in high Q materials J. Ferreirinko; 7. Motion amplifiers and passive transducers J. P. Richard; 8. Parametric transducers P. J. Veitch; 9. Detection of continuous waves K. Tsubono; 10. Data analysis and algorithms for gravitational wave-antennas G. V. Paalottino; Part III. Laser Interferometer Antennas: 11. A Michelson interferometer using delay lines W. Winkler; 12. Fabry-Perot cavity gravity-wave detectors R. W. P. Drever; 13. The stabilisation of lasers for interferometric gravitational wave detectors J. Hough; 14. Vibration isolation for the test masses in interferometric gravitational wave detectors N. A. Robertson; 15. Advanced techniques A. Brillet; 16. Data processing, analysis and storage for interferometric antennas B. F. Schutz; 17. Gravitational wave detection at low and very low frequencies R. W. Hellings.
Nonlinear wave propagation in discrete and continuous systems
NASA Astrophysics Data System (ADS)
Rothos, V. M.
2016-09-01
In this review we try to capture some of the recent excitement induced by a large volume of theoretical and computational studies addressing nonlinear Schrödinger models (discrete and continuous) and the localized structures that they support. We focus on some prototypical structures, namely the breather solutions and solitary waves. In particular, we investigate the bifurcation of travelling wave solution in Discrete NLS system applying dynamical systems methods. Next, we examine the combined effects of cubic and quintic terms of the long range type in the dynamics of a double well potential. The relevant bifurcations, the stability of the branches and their dynamical implications are examined both in the reduced (ODE) and in the full (PDE) setting. We also offer an outlook on interesting possibilities for future work on this theme.
Detecting continuous gravitational waves with superfluid helium
NASA Astrophysics Data System (ADS)
Singh, Swati; de Lorenzo, Laura; Pikovski, Igor; Schwab, Keith
2017-04-01
We study the sensitivity to continuous-wave strain fields of a kg-scale optomechanical system formed by the acoustic motion of superfluid helium-4 parametrically coupled to a superconducting microwave cavity. This narrowband detection scheme can operate at very high Q-factors, while the resonant frequency is tunable through pressurization of the helium in the 0.1-1.5 kHz range. The detector can therefore be tuned to a variety of astrophysical sources and can remain sensitive to a particular source over a long period of time. For reasonable experimental parameters, we find that strain fields on the order of h 10-23 /√{ Hz} are detectable. We show that the proposed system can significantly improve the limits on gravitational wave strain from nearby pulsars within a few months of integration time.
Continuous-wave operation of a room-temperature, diode-laser-pumped, 946-nm Nd:YAG laser
NASA Technical Reports Server (NTRS)
Fan, T. Y.; Byer, Robert L.
1987-01-01
Single-stripe diode-laser-pumped operation of a continuous-wave 946-nm Nd:YAG laser with less than 10-mW threshold has been demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. KNbO3 and periodically poled LiNbO3 appear to be the most promising.
Spectral and multi-wavelength continuous-wave laser properties of Yb3+:BaLaGa3O7
NASA Astrophysics Data System (ADS)
Gao, Shufang; Xu, Shan
2018-05-01
Yb3+ doped BaLaGa3O7 crystal has been successfully grown by Czochralski method. The polarized absorption spectra, the fluorescence spectra and the fluorescence decay lifetime of Yb3+:BaLaGa3O7 crystal were measured at room temperature. The spectroscopic parameters of Yb3+:BaLaGa3O7 crystal are calculated. A continuous wave output power of 1.32W was obtained with four-wavelength emission corresponding to an optical-optical slope efficiency of 55%.
Integrated injection-locked semiconductor diode laser
Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert
1991-01-01
A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.
Purification of photon subtraction from continuous squeezed light by filtering
NASA Astrophysics Data System (ADS)
Yoshikawa, Jun-ichi; Asavanant, Warit; Furusawa, Akira
2017-11-01
Photon subtraction from squeezed states is a powerful scheme to create good approximation of so-called Schrödinger cat states. However, conventional continuous-wave-based methods actually involve some impurity in squeezing of localized wave packets, even in the ideal case of no optical losses. Here, we theoretically discuss this impurity by introducing mode match of squeezing. Furthermore, here we propose a method to remove this impurity by filtering the photon-subtraction field. Our method in principle enables creation of pure photon-subtracted squeezed states, which was not possible with conventional methods.
NASA Technical Reports Server (NTRS)
Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.
2005-01-01
We report the demonstration of a terahertz quantum-cascade laser that operates up to 164 K in pulsed mode and 117 K in continuous-wave mod e at approximately 3.0 THz. The active region was based on a resonant -phonon depopulation scheme and a metal-metal waveguide was used for modal confinement. Copper to copper thermocompression wafer bonding w as used to fabricate the waveguide, which displayed improved thermal properties compared to a previous indium-gold bonding method.
A model for a continuous-wave iodine laser
NASA Technical Reports Server (NTRS)
Hwang, In H.; Tabibi, Bagher M.
1990-01-01
A model for a continuous-wave (CW) iodine laser has been developed and compared with the experimental results obtained from a solar-simulator-pumped CW iodine laser. The agreement between the calculated laser power output and the experimental results is generally good for various laser parameters even when the model includes only prominent rate coefficients. The flow velocity dependence of the output power shows that the CW iodine laser cannot be achieved with a flow velocity below 1 m/s for the present solar-simulator-pumped CW iodine laser system.
Molecular dynamics study of lubricant depletion by pulsed laser heating
NASA Astrophysics Data System (ADS)
Seo, Young Woo; Rosenkranz, Andreas; Talke, Frank E.
2018-05-01
In this study, molecular dynamics simulations were performed to numerically investigate the effect of pulsed laser heating on lubricant depletion. The maximum temperature, the lubricant depletion width, the number of evaporated lubricant beads and the number of fragmented lubricant chains were studied as a function of laser peak power, pulse duration and repetition rate. A continuous-wave laser and a square pulse laser were simulated and compared to a Gaussian pulse laser. With increasing repetition rate, pulsed laser heating was found to approach continuous-wave laser heating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widiyastuti, W., E-mail: widi@chem-eng.its.ac.id; Machmudah, Siti; Kusdianto,
Nanostructured ZnO was synthesized by a sonochemical reaction. Ultrasonic irradiation were set up in continuous, pulse in 3 seconds on and a second off (on:off=3:1), and pulse in 2 seconds on and a second off (on:off=2:1) wave modes for 1.5 hours. The characteristics of particles generated by these modes such as morphology, crystallinity, FTIR, photoluminescence, and photocatalytic activity to degrade methylene blue were compared. Zinc nitrate and ammonia water-based solutions were selected as chemicals without the addition of other surfactants. The morphology of the generated ZnO particles could be tuned from flower-like, needle- or hairy-like, and spherical structures by changingmore » the mode of ultrasonic irradiation from continuous, on:off=3:1, and on:off=2:1 modes, respectively. The generated particles indicated that a wurtzite structure of ZnO in a hexagonal phase was formed. The crystalline sizes of particles generated in continuous, on:off=3:1, and on:off=2:1 modes were 28, 27, 24 nm. A similar position of reduction peak of FTIR in all samples indicated that no differences in particles chemical bonding characteristics. Photoluminescence intensity was also decreased with changes the wave mode from continuous to pulse. Photocatalytic activity was also evaluated resulting in particles synthesized by continuous mode had the highest methylene blue degradation degree following by on:off=3:1, and on:off=2:1 modes.« less
NASA Astrophysics Data System (ADS)
Widiyastuti, W.; Machmudah, Siti; Kusdianto, Nurtono, Tantular; Winardi, Sugeng
2015-12-01
Nanostructured ZnO was synthesized by a sonochemical reaction. Ultrasonic irradiation were set up in continuous, pulse in 3 seconds on and a second off (on:off=3:1), and pulse in 2 seconds on and a second off (on:off=2:1) wave modes for 1.5 hours. The characteristics of particles generated by these modes such as morphology, crystallinity, FTIR, photoluminescence, and photocatalytic activity to degrade methylene blue were compared. Zinc nitrate and ammonia water-based solutions were selected as chemicals without the addition of other surfactants. The morphology of the generated ZnO particles could be tuned from flower-like, needle- or hairy-like, and spherical structures by changing the mode of ultrasonic irradiation from continuous, on:off=3:1, and on:off=2:1 modes, respectively. The generated particles indicated that a wurtzite structure of ZnO in a hexagonal phase was formed. The crystalline sizes of particles generated in continuous, on:off=3:1, and on:off=2:1 modes were 28, 27, 24 nm. A similar position of reduction peak of FTIR in all samples indicated that no differences in particles chemical bonding characteristics. Photoluminescence intensity was also decreased with changes the wave mode from continuous to pulse. Photocatalytic activity was also evaluated resulting in particles synthesized by continuous mode had the highest methylene blue degradation degree following by on:off=3:1, and on:off=2:1 modes.
Modeling ocean wave propagation under sea ice covers
NASA Astrophysics Data System (ADS)
Zhao, Xin; Shen, Hayley H.; Cheng, Sukun
2015-02-01
Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology. Laboratory experiments, field measurements and numerical simulations supporting the fundamental research in wave-ice interaction models are discussed. We conclude with some outlook of future research needs in this field.
Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.
Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S
2015-05-15
Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.
Gene surfing in expanding populations.
Hallatschek, Oskar; Nelson, David R
2008-02-01
Large scale genomic surveys are partly motivated by the idea that the neutral genetic variation of a population may be used to reconstruct its migration history. However, our ability to trace back the colonization pathways of a species from their genetic footprints is limited by our understanding of the genetic consequences of a range expansion. Here, we study, by means of simulations and analytical methods, the neutral dynamics of gene frequencies in an asexual population undergoing a continual range expansion in one dimension. During such a colonization period, lineages can fix at the wave front by means of a "surfing" mechanism [Edmonds, C.A., Lillie, A.S., Cavalli-Sforza, L.L., 2004. Mutations arising in the wave front of an expanding population. Proc. Natl. Acad. Sci. 101, 975-979]. We quantify this phenomenon in terms of (i) the spatial distribution of lineages that reach fixation and, closely related, (ii) the continual loss of genetic diversity (heterozygosity) at the wave front, characterizing the approach to fixation. Our stochastic simulations show that an effective population size can be assigned to the wave that controls the (observable) gradient in heterozygosity left behind the colonization process. This effective population size is markedly higher in the presence of cooperation between individuals ("pushed waves") than when individuals proliferate independently ("pulled waves"), and increases only sub-linearly with deme size. To explain these and other findings, we develop a versatile analytical approach, based on the physics of reaction-diffusion systems, that yields simple predictions for any deterministic population dynamics. Our analytical theory compares well with the simulation results for pushed waves, but is less accurate in the case of pulled waves when stochastic fluctuations in the tip of the wave are important.
Detection of Low-volume Blood Loss: Compensatory Reserve Versus Traditional Vital Signs
2014-01-01
studies have demonstrated that photoplethysmogram (PPG) wave forms obtained with a pulse oximeter sensor significantly change with volume loss.5 With this...donation, including PPG wave forms (OEM III pulse oximeter , Nonin, Minneapolis, MN), and a noninvasive BPwave form (ccNexfin, Edwards Lifesciences, Irvine...a PPG wave form obtained with a pulse oximeter sensor. CRI is calculated after 30 heart beats and is recalculated beat-to-beat in a continuous
Continued reduction and analysis of data from the Dynamics Explorer Plasma Wave Instrument
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.; Weimer, Daniel R.
1994-01-01
The plasma wave instrument on the Dynamics Explorer 1 spacecraft provided measurements of the electric and magnetic components of plasma waves in the Earth's magnetosphere. Four receiver systems processed signals from five antennas. Sixty-seven theses, scientific papers and reports were prepared from the data generated. Data processing activities and techniques used to analyze the data are described and highlights of discoveries made and research undertaken are tabulated.
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave
Dyachenko, Sergey A.; A. Silantyev, Denis
2017-01-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced. PMID:28690418
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave.
Lushnikov, Pavel M; Dyachenko, Sergey A; A Silantyev, Denis
2017-06-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced.
Spiral waves are stable in discrete element models of two-dimensional homogeneous excitable media
NASA Technical Reports Server (NTRS)
Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.
1998-01-01
The spontaneous breakup of a single spiral wave of excitation into a turbulent wave pattern has been observed in both discrete element models and continuous reaction-diffusion models of spatially homogeneous 2D excitable media. These results have attracted considerable interest, since spiral breakup is thought to be an important mechanism of transition from the heart rhythm disturbance ventricular tachycardia to the fatal arrhythmia ventricular fibrillation. It is not known whether this process can occur in the absence of disease-induced spatial heterogeneity of the electrical properties of the ventricular tissue. Candidate mechanisms for spiral breakup in uniform 2D media have emerged, but the physical validity of the mechanisms and their applicability to myocardium require further scrutiny. In this letter, we examine the computer simulation results obtained in two discrete element models and show that the instability of each spiral is an artifact resulting from an unphysical dependence of wave speed on wave front curvature in the medium. We conclude that spiral breakup does not occur in these two models at the specified parameter values and that great care must be exercised in the representation of a continuous excitable medium via discrete elements.
Nonlinear amplification of coherent waves in media with soliton-type refractive index pattern.
Bugaychuk, S; Conte, R
2012-08-01
We derive the complex Ginzburg-Landau equation for the dynamical self-diffraction of optical waves in a nonlinear cavity. The case of the reflection geometry of wave interaction as well as a medium that possesses the cubic nonlinearity (including a local and a nonlocal nonlinear responses) and the relaxation is considered. A stable localized spatial structure in the form of a "dark" dissipative soliton is formed in the cavity in the steady state. The envelope of the intensity pattern, as well as of the dynamical grating amplitude, takes the shape of a tanh function. The obtained complex Ginzburg-Landau equation describes the dynamics of this envelope; at the same time, the evolution of this spatial structure changes the parameters of the output waves. New effects are predicted in this system due to the transformation of the dissipative soliton which takes place during the interaction of a pulse with a continuous wave, such as retention of the pulse shape during the transmission of impulses in a long nonlinear cavity, and giant amplification of a seed pulse, which takes energy due to redistribution of the pump continuous energy into the signal.
NASA Astrophysics Data System (ADS)
Luo, Y.; Thurber, C. H.; Zeng, X.; Zhang, L.
2016-12-01
Data from 71 broadband stations of a dense transportable array deployed in southwest Yunnan makes it possible to improve the resolution of the seismic model in this region. Continuous waveforms from 12 permanent stations of the China National Seismic Network were also used in this study. We utilized one-year continuous vertical component records to compute ambient noise cross-correlation functions (NCF). More than 3,000 NCFs were obtained and used to measure group velocities between 5 and 25 seconds with the frequency-time analysis method. This frequency band is most sensitive to crustal seismic structure, especially the upper and middle crust. The group velocity at short-period shows a clear azimuthal anisotropy with a north-south fast direction. The fast direction is consistent with previous seismic results revealed from shear wave splitting. More than 2,000 group velocity measurements were employed to invert the surface wave dispersion data for group velocity maps. We applied a finite difference forward modeling algorithm with an iterative inversion. A new body-wave and surface wave joint inversion algorithm (Fang et al., 2016) was utilized to improve the resolution of both P and S models. About 60,000 P wave and S wave arrivals from 1,780 local earthquakes, which occurred from May 2011 to December 2013 with magnitudes larger than 2.0, were manually picked. The new high-resolution seismic structure shows good consistency with local geological features, e.g. Tengchong Volcano. The earthquake locations also were refined with our new velocity model.
Propagation and dispersion of shock waves in magnetoelastic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crum, R. S.; Domann, J. P.; Carman, G. P.
Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less
Propagation and dispersion of shock waves in magnetoelastic materials
NASA Astrophysics Data System (ADS)
Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.
2017-12-01
Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.
Propagation and dispersion of shock waves in magnetoelastic materials
Crum, R. S.; Domann, J. P.; Carman, G. P.; ...
2017-11-15
Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less
NASA Astrophysics Data System (ADS)
Bak, S.; Smith, J. M.; Hesser, T.; Bryant, M. A.
2016-12-01
Near-coast wave models are generally validated with relatively small data sets that focus on analytical solutions, specialized experiments, or intense storms. Prior studies have compiled testbeds that include a few dozen experiments or storms to validate models (e.g., Ris et al. 2002), but few examples exist that allow for continued model evaluation in the nearshore and surf-zone in near-realtime. The limited nature of these validation sets is driven by a lack of high spatial and temporal resolution in-situ wave measurements and the difficulty in maintaining these instruments on the active profile over long periods of time. The US Army Corps of Engineers Field Research Facility (FRF) has initiated a Coastal Model Test-Bed (CMTB), which is an automated system that continually validates wave models (with morphological and circulation models to follow) utilizing the rich data set of oceanographic and bathymetric measurements collected at the FRF. The FRF's cross-shore wave array provides wave measurements along a cross-shore profile from 26 m of water depth to the shoreline, utilizing various instruments including wave-rider buoys, AWACs, aquadopps, pressure gauges, and a dune-mounted lidar (Brodie et al. 2015). This work uses the CMTB to evaluate the performance of a phase-averaged numerical wave model, STWAVE (Smith 2007, Massey et al. 2011) over the course of a year at the FRF in Duck, NC. Additionally, from the BathyDuck Experiment in October 2015, the CMTB was used to determine the impact of applying the depth boundary condition for the model from monthly acoustic bathymetric surveys in comparison to hourly estimates using a video-based inversion method (e.g., cBathy, Holman et al. 2013). The modeled wave parameters using both bathymetric boundary conditions are evaluated using the FRF's cross-shore wave array and two additional cross-shore arrays of wave measurements in 2 to 4 m water depth from BathyDuck in Fall, 2015.
The Shift of ERG B-Wave Induced by Hours' Dark Exposure in Rodents.
Li, Dake; Fang, Qi; Yu, Hongbo
2016-01-01
Dark adaptation can induce a rapid functional shift in the retina, and after that, the retinal function is believed to remain stable during the continuous dark exposure. However, we found that electroretinograms (ERG) b-waves gradually shifted during 24 hours' dark exposure in rodents. Detailed experiments were designed to explore this non-classical dark adaptation. In vivo ERG recording in adult and developing rodents after light manipulations. We revealed a five-fold decrease in ERG b-waves in adult rats that were dark exposed for 24 hours. The ERG b-waves significantly increased within the first hour's dark exposure, but after that decreased continuously and finally attained steady state after 1 day's dark exposure. After 3 repetitive, 10 minutes' light exposure, the dark exposed rats fully recovered. This recovery effect was eye-specific, and light exposure to one eye could not restore the ERGs in the non-exposed eye. The prolonged dark exposure-induced functional shift was also reflected in the down-regulation on the amplitude of intensity-ERG response curve, but the dynamic range of the responsive light intensity remained largely stable. Furthermore, the ERG b-wave shifts occurred in and beyond classical critical period, and in both rats and mice. Importantly, when ERG b-wave greatly shifted, the amplitude of ERG a-wave did not change significantly after the prolonged dark exposure. This rapid age-independent ERG change demonstrates a generally existing functional shift in the retina, which is at the entry level of visual system.
2011-01-01
Background In patients with idiopathic normal pressure hydrocephalus (iNPH) responding to shunt surgery, we have consistently found elevated intracranial pressure (ICP) wave amplitudes during diagnostic ICP monitoring prior to surgery. It remains unknown why ICP wave amplitudes are increased in these patients. Since iNPH is accompanied by a high incidence of vascular co-morbidity, a possible explanation is that there is reduced vascular compliance accompanied by elevated arterial blood pressure (ABP) wave amplitudes and even altered cardiac output (CO). To investigate this possibility, the present study was undertaken to continuously monitor CO to determine if it is correlated to ABP and ICP wave amplitudes and the outcome of shunting in iNPH patients. It was specifically addressed whether the increased ICP wave amplitudes seen in iNPH shunt responders were accompanied by elevated CO and/or ABP wave amplitude levels. Methods Prospective iNPH patients (29) were clinically graded using an NPH grading scale. Continuous overnight minimally-invasive monitoring of CO and ABP was done simultaneously with ICP monitoring; the CO, ABP, and ICP parameters were parsed into 6-second time windows. Patients were assessed for shunt surgery on clinical grade, Evan's index, and ICP wave amplitude. Follow-up clinical grading was performed 12 months after surgery. Results ICP wave amplitudes but not CO or ABP wave amplitude, showed good correlation with the response to shunt treatment. The patients with high ICP wave amplitude did not have accompanying high levels of CO or ABP wave amplitude. Correlation analysis between CO and ICP wave amplitudes in individual patients showed different profiles [significantly positive in 10 (35%) and significantly negative in 16 (55%) of 29 recordings]. This depended on whether there was also a correlation between ABP and ICP wave amplitudes and on the average level of ICP wave amplitude. Conclusions These results gave no evidence that the increased levels of ICP wave amplitudes seen in iNPH shunt responders prior to surgery were accompanied by elevated levels of ABP wave amplitudes or elevated CO. In the individual patients the correlation between CO and ICP wave amplitude was partly related to an association between ABP and ICP wave amplitudes which can be indicative of the state of cerebrovascular pressure regulation, and partly related to the ICP wave amplitude which can be indicative of the intracranial compliance. PMID:21349148
Spatiotemporal optical dark X solitary waves.
Baronio, Fabio; Chen, Shihua; Onorato, Miguel; Trillo, Stefano; Wabnitz, Stefan; Kodama, Yuji
2016-12-01
We introduce spatiotemporal optical dark X solitary waves of the (2+1)D hyperbolic nonlinear Schrödinger equation (NLSE), which rules wave propagation in a self-focusing and normally dispersive medium. These analytical solutions are derived by exploiting the connection between the NLSE and a well-known equation of hydrodynamics, namely the type II Kadomtsev-Petviashvili (KP-II) equation. As a result, families of shallow water X soliton solutions of the KP-II equation are mapped into optical dark X solitary wave solutions of the NLSE. Numerical simulations show that optical dark X solitary waves may propagate for long distances (tens of nonlinear lengths) before they eventually break up, owing to the modulation instability of the continuous wave background. This finding opens a novel path for the excitation and control of X solitary waves in nonlinear optics.
Hyperthyroidism with dome-and-dart T wave: A case report: A care-compliant article.
Lai, Ping; Yuan, Jing-Ling; Xue, Jin-Hua; Qiu, Yue-Qun
2017-02-01
Dome-and-dart T waves (or bifid T waves) are a rare phenomenon in the surface electrocardiogram. These wave forms are mainly observed in patients with congenital heart disease such as atrial septal defect and ventricular septal defect. And hyperthyroidism who presented with an electrocardiogram that had dome-and-dart T waves in a precordial lead is never been reported. The patient presented with continuous tachycardia, palpitations, chest tightness, and headache for 4 days, and aggravated for 1 day. Hyperthyroidism. Methimazole. All symptoms were alleviated. Dome-and-dart or bifid T waves have been reported in the conventional 12-lead electrocardiograms in some patients with congenital heart disease. The case illustrated here, to the best of our knowledge, dome-and-dart or bifid T waves may associate with hyperthyroidism patients.
Hyperthyroidism with dome-and-dart T wave: A case report
Lai, Ping; Yuan, Jing-ling; Xue, Jin-hua; Qiu, Yue-qun
2017-01-01
Abstract Rationale: Dome-and-dart T waves (or bifid T waves) are a rare phenomenon in the surface electrocardiogram. These wave forms are mainly observed in patients with congenital heart disease such as atrial septal defect and ventricular septal defect. And hyperthyroidism who presented with an electrocardiogram that had dome-and-dart T waves in a precordial lead is never been reported. Patient concerns: The patient presented with continuous tachycardia, palpitations, chest tightness, and headache for 4 days, and aggravated for 1 day. Diagnoses: Hyperthyroidism. Interventions: Methimazole. Outcomes: All symptoms were alleviated. Lessons: Dome-and-dart or bifid T waves have been reported in the conventional 12-lead electrocardiograms in some patients with congenital heart disease. The case illustrated here, to the best of our knowledge, dome-and-dart or bifid T waves may associate with hyperthyroidism patients. PMID:28178156
Wolff-Parkinson-White (WPW) syndrome: the detection of delta wave in an electrocardiogram (ECG).
Mahamat, Hassan Adam; Jacquir, Sabir; Khalil, Cliff; Laurent, Gabriel; Binczak, Stephane
2016-08-01
The delta wave remains an important indicator to diagnose the WPW syndrome. In this paper, a new method of detection of delta wave in an ECG signal is proposed. Firstly, using the continuous wavelet transform, the P wave, the QRS complex and the T wave are detected, then their durations are computed after determination of the boundary location (onsets and offsets of the P, QRS and T waves). Secondly, the PR duration, the QRS duration and the upstroke of the QRS complex are used to determine the presence or absence of the delta wave. This algorithm has been tested on the Physionel database (ptbdb) in order to evaluate its robustness. It has been applied to clinical signals from patients affected by WPW syndrome. This method can provide assistance to practitioners in order to detect the WPW syndrome.
Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Ko, Hyunsung; Park, Jeong-Woo; Lee, Donghun; Jeon, Min Yong; Park, Kyung Hyun
2012-07-30
A widely tunable dual mode laser diode with a single cavity structure is demonstrated. This novel device consists of a distributed feedback (DFB) laser diode and distributed Bragg reflector (DBR). Micro-heaters are integrated on the top of each section for continuous and independent wavelength tuning of each mode. By using a single gain medium in the DFB section, an effective common optical cavity and common modes are realized. The laser diode shows a wide tunability of the optical beat frequency, from 0.48 THz to over 2.36 THz. Continuous wave THz radiation is also successfully generated with low-temperature grown InGaAs photomixers from 0.48 GHz to 1.5 THz.
Entrepreneurship: The College as a Business Enterprise
ERIC Educational Resources Information Center
Cejda, Brent D.; Jolley, Michael R.
2014-01-01
This chapter explores the concept of entrepreneurial waves, with a special focus on the "third wave" of entrepreneurial ventures: alternative means of funding programs and services in light of continued reductions in public financial support and as an approach to building strong and sustainable relationships with external constituencies.…
Raffington, Laurel; Prindle, John J; Shing, Yee Lee
2018-04-26
Alleviating disadvantage in low-income environments predicts higher cognitive abilities during early childhood. It is less established whether family income continues to predict cognitive growth in later childhood or whether there may even be bidirectional dynamics. Notably, living in poverty may moderate income-cognition dynamics. In this study, we investigated longitudinal dynamics over 7 waves of data collection from 1,168 children between the ages of 4.6 and 12 years, 226 (19%) of whom lived in poverty in at least 1 wave, as part of the NICHD Study of Early Child Care and Youth Development. Two sets of dual change-score models evaluated, first, whether a score predicted change from that wave to the next and, second, whether change from 1 wave to the next predicted the following score. As previous comparisons have documented, poor children had substantially lower average starting points and cognitive growth slopes through later childhood. The first set of models showed that income scores did not predict cognitive change. In reverse, child cognitive scores positively predicted income change. We speculated that parents may reduce their work investment, thus reducing income gains, when their children fall behind. Second, income changes continued to positively predict higher cognitive scores at the following wave for poor children only, which suggests that income gains and losses continue to be a leading indicator in time of poor children's cognitive performance in later childhood. This study underlined the need to look at changes in income, allow for poverty moderation, and explore bidirectional income-cognition dynamics in middle childhood. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Wu, Mingzhong; Kalinikos, Boris A; Patton, Carl E
2004-10-08
The generation of dark spin wave envelope soliton trains from a continuous wave input signal due to spontaneous modulational instability has been observed for the first time. The dark soliton trains were formed from high dispersion dipole-exchange spin waves propagated in a thin yttrium iron garnet film with pinned surface spins at frequencies situated near the dipole gaps in the dipole-exchange spin wave spectrum. Dark and bright soliton trains were generated for one and the same film through placement of the input carrier frequency in regions of negative and positive dispersion, respectively. Two unreported effects in soliton dynamics, hysteresis and period doubling, were also observed.
Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes
NASA Astrophysics Data System (ADS)
Bershader, Daniel; Hanson, Ronald
1986-09-01
One hundred ten papers were presented in 32 sessions. Topics included: The application of Hook-method spectroscopy to the diagnosis of shock-heated gases. The nonintrusive destruction of kidney stones by underwater focused shock waves. Several of the papers reflect the recent and continuing interest in shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive configurations. The major subject areas were: shock propagation and interactions; shock-general chemical kinetics; shock computation, modeling, and stability problems; shock wave aerodynamics; experimental methods; shocks in multiphase and heterogeneous media; high energy gas excitation and wave phenomena; and technical applications and shocks in condensed matter.
Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua
2015-08-01
Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.
Nonlinear Light Dynamics in Multi-Core Structures
2017-02-27
be generated in continuous- discrete optical media such as multi-core optical fiber or waveguide arrays; localisation dynamics in a continuous... discrete nonlinear system. Detailed theoretical analysis is presented of the existence and stability of the discrete -continuous light bullets using a very...and pulse compression using wave collapse (self-focusing) energy localisation dynamics in a continuous- discrete nonlinear system, as implemented in a
Density waves in granular flow
NASA Astrophysics Data System (ADS)
Herrmann, H. J.; Flekkøy, E.; Nagel, K.; Peng, G.; Ristow, G.
Ample experimental evidence has shown the existence of spontaneous density waves in granular material flowing through pipes or hoppers. Using Molecular Dynamics Simulations we show that several types of waves exist and find that these density fluctuations follow a 1/f spectrum. We compare this behaviour to deterministic one-dimensional traffic models. If positions and velocities are continuous variables the model shows self-organized criticality driven by the slowest car. We also present Lattice Gas and Boltzmann Lattice Models which reproduce the experimentally observed effects. Density waves are spontaneously generated when the viscosity has a nonlinear dependence on density which characterizes granular flow.
A continuous-wave ultrasound system for displacement amplitude and phase measurement.
Finneran, James J; Hastings, Mardi C
2004-06-01
A noninvasive, continuous-wave ultrasonic technique was developed to measure the displacement amplitude and phase of mechanical structures. The measurement system was based on a method developed by Rogers and Hastings ["Noninvasive vibration measurement system and method for measuring amplitude of vibration of tissue in an object being investigated," U.S. Patent No. 4,819,643 (1989)] and expanded to include phase measurement. A low-frequency sound source was used to generate harmonic vibrations in a target of interest. The target was simultaneously insonified by a low-power, continuous-wave ultrasonic source. Reflected ultrasound was phase modulated by the target motion and detected with a separate ultrasonic transducer. The target displacement amplitude was obtained directly from the received ultrasound frequency spectrum by comparing the carrier and sideband amplitudes. Phase information was obtained by demodulating the received signal using a double-balanced mixer and low-pass filter. A theoretical model for the ultrasonic receiver field is also presented. This model coupled existing models for focused piston radiators and for pulse-echo ultrasonic fields. Experimental measurements of the resulting receiver fields compared favorably with theoretical predictions.
One step linear reconstruction method for continuous wave diffuse optical tomography
NASA Astrophysics Data System (ADS)
Ukhrowiyah, N.; Yasin, M.
2017-09-01
The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.
Canter, C E; Gutierrez, F R; Molina, P; Hartmann, A F; Spray, T L
1991-04-01
Right-sided extracardiac conduits are frequently complicated by obstruction over time. We compared the utility of two-dimensional and Doppler echocardiography and magnetic resonance imaging in the diagnosis of postoperative right-sided obstruction with cardiac catheterization and angiography in 10 patients with xenograft or homograft conduits. Correlation (r = 0.95) between continuous-wave Doppler estimates and catheter pullback pressure gradients across the conduits was excellent. Echocardiography could only visualize five of 10 conduits in their entirety. Magnetic resonance imaging visualized all conduits and showed statistically significant (kappa = 0.58) agreement with angiography in the localization and estimation of severity of a variety of right-sided obstructions in these patients. However, flow voids created by the metallic ring around xenograft valves led to a false negative diagnosis of valvular stenosis in four patients when magnetic resonance imaging was used alone. Doppler studies correctly indicated obstruction in these patients. The combination of magnetic resonance imaging studies and continuous-wave Doppler echocardiography can be useful to noninvasively evaluate right-sided obstruction in postoperative patients with right-sided extracardiac conduits.
A scalable and continuous-upgradable optical wireless and wired convergent access network.
Sung, J Y; Cheng, K T; Chow, C W; Yeh, C H; Pan, C-L
2014-06-02
In this work, a scalable and continuous upgradable convergent optical access network is proposed. By using a multi-wavelength coherent comb source and a programmable waveshaper at the central office (CO), optical millimeter-wave (mm-wave) signals of different frequencies (from baseband to > 100 GHz) can be generated. Hence, it provides a scalable and continuous upgradable solution for end-user who needs 60 GHz wireless services now and > 100 GHz wireless services in the future. During the upgrade, user only needs to upgrade their optical networking unit (ONU). A programmable waveshaper is used to select the suitable optical tones with wavelength separation equals to the desired mm-wave frequency; while the CO remains intact. The centralized characteristics of the proposed system can easily add any new service and end-user. The centralized control of the wavelength makes the system more stable. Wired data rate of 17.45 Gb/s and w-band wireless data rate up to 3.36 Gb/s were demonstrated after transmission over 40 km of single-mode fiber (SMF).
Greijmans, Ellen; Luiting-Welkenhuyzen, Hedwig; Luijks, Harriet; Bovenschen, H Jorn
2016-07-01
Although not an accepted standard treatment, the 532-nm continuous wave potassium titanyl phosphate (CW-KTP) laser might be a powerful device to treat xanthelasma palpebrarum (XP). To determine the safety and efficacy of CW-KTP laser treatment for XP. Between January 2013 and January 2015, 30 consecutive patients with XP were treated with a 532-nm CW-KTP laser (spot size: 0.9 mm, power: 5.0 W, fluence: 36-38 J/cm, pulse width: 46 milliseconds, frequency: 2.0 Hz, passes per session: 3). In a retrospective study design, safety and efficacy data were collected and analyzed. Overall, 29/30 (97%) of patients had an excellent cosmetical result. Downtime was 1 week with crusted lesions. Although slight hypopigmentation was common, only 1/30 (3%) patients had hypopigmentation that was more than expected. Recurrences (13/30; 43%) were frequent, so that yearly maintenance therapy was warranted. No major side effects were noticed. Continuous wave KTP laser therapy is safe and highly effective for XP, although regular follow-up treatments are often necessary to maintain the achieved cosmetic results.
Geometric Mechanics for Continuous Swimmers on Granular Material
NASA Astrophysics Data System (ADS)
Dai, Jin; Faraji, Hossein; Schiebel, Perrin; Gong, Chaohui; Travers, Matthew; Hatton, Ross; Goldman, Daniel; Choset, Howie; Biorobotics Lab Collaboration; LaboratoryRobotics; Applied Mechanics (LRAM) Collaboration; Complex Rheology; Biomechanics Lab Collaboration
Animal experiments have shown that Chionactis occipitalis(N =10) effectively undulating on granular substrates exhibits a particular set of waveforms which can be approximated by a sinusoidal variation in curvature, i.e., a serpenoid wave. Furthermore, all snakes tested used a narrow subset of all available waveform parameters, measured as the relative curvature equal to 5.0+/-0.3, and number of waves on the body equal to1.8+/-0.1. We hypothesize that the serpenoid wave of a particular choice of parameters offers distinct benefit for locomotion on granular material. To test this hypothesis, we used a physical model (snake robot) to empirically explore the space of serpenoid motions, which is linearly spanned with two independent continuous serpenoid basis functions. The empirically derived height function map, which is a geometric mechanics tool for analyzing movements of cyclic gaits, showed that displacement per gait cycle increases with amplitude at small amplitudes, but reaches a peak value of 0.55 body-lengths at relative curvature equal to 6.0. This work signifies that with shape basis functions, geometric mechanics tools can be extended for continuous swimmers.
Spectra of Baroclinic Inertia-Gravity Wave Turbulence
NASA Technical Reports Server (NTRS)
Glazman, Roman E.
1996-01-01
Baroclinic inertia-gravity (IG) waves form a persistent background of thermocline depth and sea surface height oscillations. They also contribute to the kinetic energy of horizontal motions in the subsurface layer. Measured by the ratio of water particle velocity to wave phase speed, the wave nonlinearity may be rather high. Given a continuous supply of energy from external sources, nonlinear wave-wave interactions among IG waves would result in inertial cascades of energy, momentum, and wave action. Based on a recently developed theory of wave turbulence in scale-dependent systems, these cascades are investigated and IG wave spectra are derived for an arbitrary degree of wave nonlinearity. Comparisons with satellite-altimetry-based spectra of surface height variations and with energy spectra of horizontal velocity fluctuations show good agreement. The well-known spectral peak at the inertial frequency is thus explained as a result of the inverse cascade. Finally, we discuss a possibility of inferring the internal Rossby radius of deformation and other dynamical properties of the upper thermocline from the spectra of SSH (sea surface height) variations based on altimeter measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lianjie
Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Resultsmore » from various data input to the method indicate significant improvements are provided in both image quality and resolution.« less
NASA Astrophysics Data System (ADS)
Laithwaite, E. R.; Kuznetsov, S. B.
1980-09-01
A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.
Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy
Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.
2015-01-01
Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar activity. PMID:25975615
New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten
1994-01-01
We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.
2013-03-01
beam tunnel [5,6] for a high - power , wideband W- band traveling-wave tube (TWT) amplifier. UV-LIGA is also a promising technique at higher...wide- band , high - power operation of the amplifier [7, 8]. The interaction circuit consists of two traveling-wave stages separated by a power ...technique produces monolithic all-copper circuits, integrated with electron beam tunnel, suitable for high - power continuous-wave operation [1]. We
Acoustic-to-Seismic Coupling Over Porous Ground Surfaces.
1984-01-01
of sound into the ground is predicted for both spherical and plane acoustic waves incident upon two models of the ground viz i) a rigid porous solid...and soils of above-ground acoustic disturbances. Furthermore it is found possible to predict the results of model measurements using continuous and...saddle point 2.4 The geometrical wave 2.5 The lateral wave 2.6 Special cases 3. POINT TO POINT PROPAGATION MEASUREMENTS USING ACOUSTIC MODELLING " 3.0
Spherical shock waves in general relativity
NASA Astrophysics Data System (ADS)
Nutku, Y.
1991-11-01
We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-N vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-N Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the C0-form of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.
Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories
NASA Astrophysics Data System (ADS)
Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan
2017-10-01
Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.
Continuous long-term health monitoring using ultrasonic wave propagation.
DOT National Transportation Integrated Search
2016-12-01
This report presents the findings of a research project on using ultrasonic testing to : continuously monitor reinforced concrete bridge decks for the onset of delamination. The : report first presents a review of current nondestructive testing techn...
Optimized power simulation of AlGaN/GaN HEMT for continuous wave and pulse applications
NASA Astrophysics Data System (ADS)
Tiwat, Pongthavornkamol; Lei, Pang; Xinhua, Wang; Sen, Huang; Guoguo, Liu; Tingting, Yuan; Xinyu, Liu
2015-07-01
An optimized modeling method of 8 × 100 μm AlGaN/GaN-based high electron mobility transistor (HEMT) for accurate continuous wave (CW) and pulsed power simulations is proposed. Since the self-heating effect can occur during the continuous operation, the power gain from the continuous operation significantly decreases when compared to a pulsed power operation. This paper extracts power performances of different device models from different quiescent biases of pulsed current-voltage (I-V) measurements and compared them in order to determine the most suitable device model for CW and pulse RF microwave power amplifier design. The simulated output power and gain results of the models at Vgs = -3.5 V, Vds = 30 V with a frequency of 9.6 GHz are presented. Project supported by the National Natural Science Foundation of China (No. 61204086).
Yan, Wenguang; Sun, Shaodan; Li, Xuhong
2014-12-01
To observe the therapeutic effect of extracorporeal shock wave combined with orthopaedic insole on plantar fasciitis. A total of 153 plantar with plantar fasciitis were randomly divided into a combined group (n=51), an extracorporeal shock wave group (n=53) and an orthopaedic group (n=49). The combined group received treatment of both extracorporeal shock wave and orthopaedic insole while the extracorporeal shock wave or the orthopaedic group only received the treatment of extracorporeal shock wave or orthopaedic insole. The therapeutic parameters such as visual analogue scale (VAS) scores, continued walking time and thickness of the plantar fascia were monitored before and aft er the treatment for 2 weeks, 1 month and 3 months, respectively. The VAS scores in the 3 groups were all reduced after the treatment compared with the corresponding scores before the therapy (P< 0.05). The VAS score in the extracorporeal shock wave group was greater than that in the orthopedic group after the treatment for 2 weeks. The VAS score in the combined group was smaller than that in the orthopedic group after the treatment for 2 weeks and 3 months (P< 0.05). The VAS scores in the orthopedic group and the combined group were smaller than those in the extracorporeal shock wave group after the treatment for 1 month or 3 months (P< 0.05). The continued walking time and thickness of the plantar fascia was improved after the treatment (P< 0.05). The cure rate and total effective rate in the combination group were obviously greater than those in the two other groups. The cure rate in the orthopedic group was greater than that in the extracorporeal shock wave group (P< 0.05). Extracorporeal shock wave combined with orthopaedic insole therapy is an effective method to treat plantar fasciitis. It is recommended to spread in clinic.
On the existence of solutions to a one-dimensional degenerate nonlinear wave equation
NASA Astrophysics Data System (ADS)
Hu, Yanbo
2018-07-01
This paper is concerned with the degenerate initial-boundary value problem to the one-dimensional nonlinear wave equation utt =((1 + u) aux) x which arises in a number of various physical contexts. The global existence of smooth solutions to the degenerate problem was established under relaxed conditions on the initial-boundary data by the characteristic decomposition method. Moreover, we show that the solution is uniformly C 1 , α continuous up to the degenerate boundary and the degenerate curve is C 1 , α continuous for α ∈ (0 , min a/1+a, 1/1+a).
Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.
Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J
2010-06-21
We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.
Diode-pumped continuous-wave and passively Q-switched Nd:GdLuAG laser at 1443.9 nm
NASA Astrophysics Data System (ADS)
Wu, Qianwen; Liu, Zhaojun; Zhang, Sasa; Cong, Zhenghua; Guan, Chen; Xue, Feng; Chen, Hui; Huang, Qingjie; Xu, Xiaodong; Xu, Jun; Qin, Zengguang
2017-12-01
We investigated the 1443.9 nm laser characteristics of Nd:GdLuAG crystal. Diode-end-pumping configuration was employed under both continuous-wave (CW) and passively Q-switched operations. For CW operation, the maximum average output power was 1.36 W with a slope efficiency of 15%. By using a V3+:YAG crystal as the saturable absorber, we obtained the maximum average output power of 164 mW under Q-switched operation. The corresponding pulse energy was 29.3 μJ and pulse duration was 59 ns.
The second-order interference of two independent single-mode He-Ne lasers
NASA Astrophysics Data System (ADS)
Liu, Jianbin; Le, Mingnan; Bai, Bin; Wang, Wentao; Chen, Hui; Zhou, Yu; Li, Fu-li; Xu, Zhuo
2015-09-01
The second-order spatial and temporal interference patterns with two independent single-mode continuous-wave He-Ne lasers are observed when these two lasers are incident to two adjacent input ports of a 1:1 non-polarizing beam splitter, respectively. Two-photon interference based on the superposition principle in Feynman's path integral theory is employed to interpret the experimental results. The conditions to observe the second-order interference pattern with two independent single-mode continuous-wave lasers are discussed. It is concluded that frequency stability is important to observe the second-order interference pattern with two independent light beams.
Integrated injection-locked semiconductor diode laser
Hadley, G.R.; Hohimer, J.P.; Owyoung, A.
1991-02-19
A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norman, Justin; Kennedy, M. J.; Selvidge, Jennifer
High performance III-V lasers at datacom and telecom wavelengths on on-axis (001) Si are needed for scalable datacenter interconnect technologies. We demonstrate electrically injected quantum dot lasers grown on on-axis (001) Si patterned with {111} v-grooves lying in the [110] direction. No additional Ge buffers or substrate miscut was used. The active region consists of five InAs/InGaAs dot-in-a-well layers. Here, we achieve continuous wave lasing with thresholds as low as 36 mA and operation up to 80°C.
Continuous wave cavity ring-down spectroscopy for velocity distribution measurements in plasma.
McCarren, D; Scime, E
2015-10-01
We report the development of a continuous wave cavity ring-down spectroscopic (CW-CRDS) diagnostic for real-time, in situ measurement of velocity distribution functions of ions and neutral atoms in plasma. This apparatus is less complex than conventional CW-CRDS systems. We provide a detailed description of the CW-CRDS apparatus as well as measurements of argon ions and neutrals in a high-density (10(9) cm(-3) < plasma density <10(13) cm(-3)) plasma. The CW-CRDS measurements are validated through comparison with laser induced fluorescence measurements of the same absorbing states of the ions and neutrals.
Highly efficient continuous-wave laser operation of LD-pumped Nd,Gd:CaF2 and Nd,Y:CaF2 crystals
NASA Astrophysics Data System (ADS)
Pang, Siyuan; Ma, Fengkai; Yu, Hao; Qian, Xiaobo; Jiang, Dapeng; Wu, Yongjing; Zhang, Feng; Liu, Jie; Xu, Jiayue; Su, Liangbi
2018-05-01
Spectroscopic properties of Nd:CaF2 crystals are investigated. The photoluminescence intensity in the near infrared region is drastically enhanced by co-doping Gd3+ ions and Y3+ in Nd:CaF2 crystals. Preliminary laser experiments are carried out with 0.3%Nd,5%Gd:CaF2 and 0.3%Nd,5%Y:CaF2 crystals under laser diode pumping; true continuous wave laser operation is achieved with slope efficiencies of 42% and 39%, respectively, and the maximum output power reaches 1.188 W.
Tracking and Characterization of Aircraft Wakes Using Acoustic and Lidar Measurements
NASA Technical Reports Server (NTRS)
Booth, Earl R., Jr.; Humphreys, William M., Jr.
2005-01-01
Data from the 2003 Denver International Airport Wake Acoustics Test are further examined to discern spectral content of aircraft wake signatures, and to compare three dimensional wake tracking from acoustic data to wake tracking data obtained through use of continuous wave and pulsed lidar. Wake tracking data derived from acoustic array data agree well with both continuous wave and pulsed lidar in the horizontal plane, but less well with pulsed lidar in the vertical direction. Results from this study show that the spectral distribution of acoustic energy in a wake signature varies greatly with aircraft type.
Norman, Justin; Kennedy, M. J.; Selvidge, Jennifer; ...
2017-02-14
High performance III-V lasers at datacom and telecom wavelengths on on-axis (001) Si are needed for scalable datacenter interconnect technologies. We demonstrate electrically injected quantum dot lasers grown on on-axis (001) Si patterned with {111} v-grooves lying in the [110] direction. No additional Ge buffers or substrate miscut was used. The active region consists of five InAs/InGaAs dot-in-a-well layers. Here, we achieve continuous wave lasing with thresholds as low as 36 mA and operation up to 80°C.
Improved formula for continuous-wave measurements of ultrasonic phase velocity
NASA Technical Reports Server (NTRS)
Chern, E. J.; Cantrell, J. H., Jr.; Heyman, J. S.
1981-01-01
An improved formula for continuous-wave ultrasonic phase velocity measurements using contact transducers is derived from the transmission line theory. The effect of transducer-sample coupling bonds is considered for measurements of solid samples even though it is often neglected because of the difficulty of accurately determining the bond thickness. Computer models show that the present formula is more accurate than previous expressions. Laboratory measurements using contacting transducers with the present formula are compared to measurements using noncontacting (hence effectively correction-free) capacitive transducers. The results of the experiments verify the validity and accuracy of the new formula.
NASA Astrophysics Data System (ADS)
Zhou, Yi; Li, Qi
2017-01-01
A dual-axis reflective continuous-wave terahertz (THz) confocal scanning polarization imaging system was adopted. THz polarization imaging experiments on gaps on film and metallic letters "BeLLE" were carried out. Imaging results indicate that the THz polarization imaging is sensitive to the tilted gap or wide flat gap, suggesting the THz polarization imaging is able to detect edges and stains. An image fusion method based on the digital image processing was proposed to ameliorate the imaging quality of metallic letters "BeLLE." Objective and subjective evaluation both prove that this method can improve the imaging quality.
Cha, Yong-Ho; Ko, Kwang-Hoon; Lim, Gwon; Han, Jae-Min; Park, Hyun-Min; Kim, Taek-Soo; Jeong, Do-Young
2010-03-20
We have generated continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling a high-power Ti:sapphire laser in an external enhancement cavity. An LBO crystal that is Brewster-cut and antireflection coated on both ends is used for a long-term stable frequency doubling. By optimizing the input coupler's reflectivity, we could generate 1.5 W 378 nm radiation from a 5 W 756 nm Ti:sapphire laser. According to our knowledge, this is the highest CW frequency-doubled power of a Ti:sapphire laser.
Coded continuous wave meteor radar
NASA Astrophysics Data System (ADS)
Chau, J. L.; Vierinen, J.; Pfeffer, N.; Clahsen, M.; Stober, G.
2016-12-01
The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products, such as wind fields. This type of a radar would also be useful for over-the-horizon radar, ionosondes, and observations of field-aligned-irregularities.
Resonant triad in boundary-layer stability. Part 1: Fully nonlinear interaction
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1991-01-01
A first principles theory is developed to study the nonlinear spatial evolution of a near-resonance triad of instability waves in boundary layer transition. This triad consists of a plane wave at fundamental frequency and a pair of symmetrical, oblique waves at the subharmonic frequency. A low frequency, high Reynolds number asymptotic scaling leads to a distinct critical layer where nonlinearity first becomes important; the development of the triad's waves is determined by the critical layer's nonlinear, viscous dynamics. The resulting theory is fully nonlinear in that all nonlinearly generated oscillatory and nonoscillatory components are accounted for. The presence of the plane wave initially causes exponential of exponential growth of the oblique waves. However, the plane wave continues to follow the linear theory, even when the oblique waves' amplitude attains the same order of magnitude as that of the plane wave. A fully interactive stage then comes into effect when the oblique waves exceed a certain level compared to that of the plane wave. The oblique waves react back on the fundamental, slowing its growth rate. The oblique waves' saturation results from their self-interaction - a mechanism that does not require the presence of the plane wave. The oblique waves' saturation level is independent of their initial level, but decreases as the obliqueness angle increases.
Laser probe for measuring 2-D wave slope spectra of ocean capillary waves
NASA Technical Reports Server (NTRS)
Palm, C. S.; Anderson, R. C.; Reece, A. M.
1977-01-01
A laser-optical instrument for use in determining the two-dimensional wave-slope spectrum of ocean capillary waves is described. The instrument measures up to a 35-deg tip angle of the surface normal by measuring the position of a refracted laser beam directed vertically upward through a water surface. A telescope, a continuous two-dimensional Schottky barrier photodiode, and a pair of analog dividers render the signals independent of water height and insensitive to laser-beam intensity fluctuations. Calibration is performed entirely in the laboratory before field use. Sample records and wave-slope spectra are shown for one-dimensional wave-tank tests and for two-dimensional ocean tests. These are presented along with comparison spectra for calm and choppy water conditions. A mechanical wave follower was used to adjust the instrument position in the presence of large ocean swell and tides.
Observation of gravity waves during the extreme tornado outbreak of 3 April 1974
NASA Technical Reports Server (NTRS)
Hung, R. J.; Phan, T.; Smith, R. E.
1978-01-01
A continuous wave-spectrum high-frequency radiowave Doppler sounder array was used to observe upper-atmospheric disturbances during an extreme tornado outbreak. The observations indicated that gravity waves with two harmonic wave periods were detected at the F-region ionospheric height. Using a group ray path computational technique, the observed gravity waves were traced in order to locate potential sources. The signals were apparently excited 1-3 hours before tornado touchdown. Reverse ray tracing indicated that the wave source was located at the aurora zone with a Kp index of 6 at the time of wave excitation. The summation of the 24-hour Kp index for the day was 36. The results agree with existing theories (Testud, 1970; Titheridge, 1971; Kato, 1976) for the excitation of large-scale traveling ionospheric disturbances associated with geomagnetic activity in the aurora zone.
The acoustic and instability waves of jets confined inside an acoustically lined rectangular duct
NASA Technical Reports Server (NTRS)
Hu, Fang Q.
1993-01-01
An analysis of linear wave modes associated with supersonic jets confined inside an acoustically lined rectangular duct is presented. Mathematical formulations are given for the vortex-sheet model and continuous mean flow model of the jet flow profiles. Detailed dispersion relations of these waves in a two-dimensional confined jet as well as an unconfined free jet are computed. Effects of the confining duct and the liners on the jet instability and acoustic waves are studied numerically. It is found that the effect of the liners is to attenuate waves that have supersonic phase velocities relative to the ambient flow. Numerical results also show that the growth rates of the instability waves could be reduced significantly by the use of liners. In addition, it is found that the upstream propagating neutral waves of an unconfined jet could become attenuated when the jet is confined.
Ultrasonic investigation of granular materials subjected to compression and crushing.
Gheibi, Amin; Hedayat, Ahmadreza
2018-07-01
Ultrasonic wave propagation measurement has been used as a suitable technique for studying the granular materials and investigating the soil fabric structure, the grain contact stiffness, frictional strength, and inter-particle contact area. Previous studies have focused on the variations of shear and compressional wave velocities with effective stress and void ratio, and lesser effort has been made in understanding the variation of amplitude and dominant frequency of transmitted compressional waves with deformation of soil packing. In this study, continuous compressional wave transmission measurements during compaction of unconsolidated quartz sand are used to investigate the impact of soil layer deformation on ultrasonic wave properties. The test setup consisted of a loading machine to apply constant loading rate to a sand layer (granular quartz) of 6 mm thickness compressed between two forcing blocks, and an ultrasonic wave measurement system to continuously monitor the soil layer during compression up to 48 MPa normal stress. The variations in compressional wave attributes such as wave velocity, transmitted amplitude, and dominant frequency were studied as a function of the applied normal stress and the measured normal strain as well as void ratio and particle size. An increasing trend was observed for P-wave velocity, transmitted amplitude and dominant frequency with normal stress. In specimen with the largest particle size (D 50 = 0.32 mm), the wave velocity, amplitude and dominant frequency were found to increase about 230%, 4700% and 320% as the normal stress reached the value of 48 MPa. The absolute values of transmitted wave amplitude and dominant frequency were greater for specimens with smaller particle sizes while the normalized values indicate an opposite trend. The changes in the transmitted amplitude were linked to the changes in the true contact area between the particles with a transitional point in the slope of normalized amplitude, coinciding with the yield stress of the granular soil layer. The amount of grain crushing as a result of increase in the normal stress was experimentally measured and a linear correlation was found between the degree of grain crushing and the changes in the normalized dominant frequency of compressional waves. Copyright © 2018 Elsevier B.V. All rights reserved.
Global Discrete Artificial Boundary Conditions for Time-Dependent Wave Propagation
NASA Technical Reports Server (NTRS)
Ryabenkii, V. S.; Tsynkov, S. V.; Turchaninov, V. I.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
We construct global artificial boundary conditions (ABCs) for the numerical simulation of wave processes on unbounded domains using a special non-deteriorating algorithm that has been developed previously for the long-term computation of wave-radiation solutions. The ABCs are obtained directly for the discrete formulation of the problem; in so doing, neither a rational approximation of 'non-reflecting kernels,' nor discretization of the continuous boundary conditions is required. The extent of temporal nonlocality of the new ABCs appears fixed and limited; in addition, the ABCs can handle artificial boundaries of irregular shape on regular grids with no fitting/adaptation needed and no accuracy loss induced. The non-deteriorating algorithm, which is the core of the new ABCs is inherently three-dimensional, it guarantees temporally uniform grid convergence of the solution driven by a continuously operating source on arbitrarily long time intervals, and provides unimprovable linear computational complexity with respect to the grid dimension. The algorithm is based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions in odd-dimension spaces, It can, in fact, be built as a modification on top of any consistent and stable finite-difference scheme, making its grid convergence uniform in time and at the same time keeping the rate of convergence the same as that of the non-modified scheme. In the paper, we delineate the construction of the global lacunae-based ABCs in the framework of a discretized wave equation. The ABCs are obtained for the most general formulation of the problem that involves radiation of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering aircraft). We also present systematic numerical results that corroborate the theoretical design properties of the ABCs' algorithm.
Fong, Geoffrey T.; Craig, Lorraine V.; Guignard, Romain; Nagelhout, Gera E.; Tait, Megan K.; Driezen, Pete; Kennedy, Ryan David; Boudreau, Christian; Wilquin, Jean-Louis; Deutsch, Antoine; Beck, François
2013-01-01
France implemented a comprehensive smoke-free policy in public places in February 2007 for workplaces, shopping centres, airports, train stations, hospitals and schools. On January 2008, it was extended to meeting places (bars, restaurants, hotels, casinos, nightclubs). This paper evaluates France’s smoke-free law based on the International Tobacco Control Policy Evaluation Project in France (the ITC France Project), which conducted a cohort survey of approximately 1,500 smokers and 500 non-smokers before the implementation of the laws (Wave 1, conducted December 2006 to February 2007) and two waves after the implementation (Wave 2, conducted between September-November 2008; and Wave 3, conducted between September-December 2012). Results show that the smoke-free law led to a very significant and near total elimination of indoor smoking in key venues such as bars (from 95.9% to 3.7%) and restaurants (from 64.7% to 2.3%) at Wave 2, which was sustained four years later at Wave 3 (1.4% in restaurants; 6.6% in bars). Smoking in workplaces declined significantly after the law (from 42.6% to 19.3%), which continued to decline at Wave 3 (to 12.8%). Support for the smoke-free law increased significantly after their implementation and continued to increase at Wave 3 (among smokers for bars and restaurants; among smokers and non-smokers for workplaces). The findings demonstrate that smoke-free policies that are implemented in ways consistent with the Guidelines for Article 8 of the WHO Framework Convention on Tobacco Control (WHO FCTC) lead to substantial and sustained reductions in tobacco smoke in public places while also leading to high levels of support by the public. PMID:24803715
Global Discrete Artificial Boundary Conditions for Time-Dependent Wave Propagation
NASA Astrophysics Data System (ADS)
Ryaben'kii, V. S.; Tsynkov, S. V.; Turchaninov, V. I.
2001-12-01
We construct global artificial boundary conditions (ABCs) for the numerical simulation of wave processes on unbounded domains using a special nondeteriorating algorithm that has been developed previously for the long-term computation of wave-radiation solutions. The ABCs are obtained directly for the discrete formulation of the problem; in so doing, neither a rational approximation of “nonreflecting kernels” nor discretization of the continuous boundary conditions is required. The extent of temporal nonlocality of the new ABCs appears fixed and limited; in addition, the ABCs can handle artificial boundaries of irregular shape on regular grids with no fitting/adaptation needed and no accuracy loss induced. The nondeteriorating algorithm, which is the core of the new ABCs, is inherently three-dimensional, it guarantees temporally uniform grid convergence of the solution driven by a continuously operating source on arbitrarily long time intervals and provides unimprovable linear computational complexity with respect to the grid dimension. The algorithm is based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions in odd-dimensional spaces. It can, in fact, be built as a modification on top of any consistent and stable finite-difference scheme, making its grid convergence uniform in time and at the same time keeping the rate of convergence the same as that of the unmodified scheme. In this paper, we delineate the construction of the global lacunae-based ABCs in the framework of a discretized wave equation. The ABCs are obtained for the most general formulation of the problem that involves radiation of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering aircraft). We also present systematic numerical results that corroborate the theoretical design properties of the ABC algorithm.
Standing Waves in a Nonuniform Medium
ERIC Educational Resources Information Center
Gluck, Paul
2011-01-01
A recent note in this journal presented a demonstration of standing waves along a cord consisting of two parts having different material densities, showing different sized wavelengths in each part. A generalization of that experiment to a continuously varying linear mass density is to vibrate a strip of material with gradually varying width (mass…
My Autobiographical-Poetic Rendition: An Inquiry into Humanizing Our Teacher Scholarship
ERIC Educational Resources Information Center
Park, Gloria
2013-01-01
In this paper, I highlight four distinct but interconnected areas of my life history that I refer to as "autobiographic poetic waves." These waves are layered with the complex underpinning of racial, linguistic, gendered, classed, and professional identity politics that continue to not only liberate but also subjugate me at times. These…
New measurements quantify atmospheric greenhouse effect
NASA Astrophysics Data System (ADS)
Bhattacharya, Atreyee
2012-10-01
In spite of a large body of existing measurements of incoming short-wave solar radiation and outgoing long-wave terrestrial radiation at the surface of the Earth and, more recently, in the upper atmosphere, there are few observations documenting how radiation profiles change through the atmosphere—information that is necessary to fully quantify the greenhouse effect of Earth's atmosphere. Through the use of existing technology but employing improvements in observational techniques it may now be possible not only to quantify but also to understand how different components of the atmosphere (e.g., concentration of gases, cloud cover, moisture, and aerosols) contribute to the greenhouse effect. Using weather balloons equipped with radiosondes, Philipona et al. continuously measured radiation fluxes from the surface of Earth up to altitudes of 35 kilometers in the upper stratosphere. Combining data from flights conducted during both day and night with continuous 24-hour measurements made at the surface of the Earth, the researchers created radiation profiles of all four components necessary to fully capture the radiation budget of Earth, namely, the upward and downward short-wave and long-wave radiation as a function of altitude.
NASA Astrophysics Data System (ADS)
Bisht, Mahesh Singh; Rajput, Archana; Srivastava, Kumar Vaibhav
2018-04-01
A cloak based on gradient index metamaterial (GIM) is proposed. Here, the GIM is used, for conversion of propagating waves into surface waves and vice versa, to get the cloaking effect. The cloak is made of metamaterial consisting of four supercells with each supercell possessing the linear spatial variation of permittivity and permeability. The spatial variation of material parameters in supercells allows the conversion of propagating waves into surface waves and vice versa, hence results in reduction of electromagnetic signature of the object. To facilitate the practical implementation of the cloak, continuous spatial variation of permittivity and/or permeability, in each supercell, is discretized into seven segments and it is shown that there is not much deviation in cloaking performance of discretized cloak as compared to its continuous counterpart. The crucial advantage, of the proposed cloaks, is that the material parameters are isotropic and in physically realizable range. Furthermore, the proposed cloaks have been shown to possess bandwidth of the order of 190% which is a significantly improved performance compared to the recently published literature.
Plasma Waves in the Magnetosheath of Venus
NASA Technical Reports Server (NTRS)
Strangeway, Robert J.
1996-01-01
Research supported by this grant is divided into three basic topics of investigation. These are: (1) Plasma waves in the Venus magnetosheath, (2) Plasma waves in the Venus foreshock and solar wind, (3) plasma waves in the Venus nightside ionosphere and ionotail. The main issues addressed in the first area - Plasma waves in the Venus magnetosheath - dealt with the wave modes observed in the magnetosheath and upper ionosphere, and whether these waves are a significant source of heating for the topside ionosphere. The source of the waves was also investigated. In the second area - Plasma waves in the Venus foreshock and solar wind, we carried out some research on waves observed upstream of the planetary bow shock known as the foreshock. The foreshock and bow shock modify the ambient magnetic field and plasma, and need to be understood if we are to understand the magnetosheath. Although most of the research was directed to wave observations on the dayside of the planet, in the last of the three basic areas studied, we also analyzed data from the nightside. The plasma waves observed by the Pioneer Venus Orbiter on the nightside continue to be of considerable interest since they have been cited as evidence for lightning on Venus.
Spatio-Temporal Evolutions of Non-Orthogonal Equatorial Wave Modes Derived from Observations
NASA Astrophysics Data System (ADS)
Barton, C.; Cai, M.
2015-12-01
Equatorial waves have been studied extensively due to their importance to the tropical climate and weather systems. Historically, their activity is diagnosed mainly in the wavenumber-frequency domain. Recently, many studies have projected observational data onto parabolic cylinder functions (PCF), which represent the meridional structure of individual wave modes, to attain time-dependent spatial wave structures. In this study, we propose a methodology that seeks to identify individual wave modes in instantaneous fields of observations by determining their projections on PCF modes according to the equatorial wave theory. The new method has the benefit of yielding a closed system with a unique solution for all waves' spatial structures, including IG waves, for a given instantaneous observed field. We have applied our method to the ERA-Interim reanalysis dataset in the tropical stratosphere where the wave-mean flow interaction mechanism for the quasi-biennial oscillation (QBO) is well-understood. We have confirmed the continuous evolution of the selection mechanism for equatorial waves in the stratosphere from observations as predicted by the theory for the QBO. This also validates the proposed method for decomposition of observed tropical wave fields into non-orthogonal equatorial wave modes.
Ablation behaviors of carbon reinforced polymer composites by laser of different operation modes
NASA Astrophysics Data System (ADS)
Wu, Chen-Wu; Wu, Xian-Qian; Huang, Chen-Guang
2015-10-01
Laser ablation mechanism of Carbon Fiber Reinforced Polymer (CFRP) composite is of critical meaning for the laser machining process. The ablation behaviors are investigated on the CFRP laminates subject to continuous wave, long duration pulsed wave and short duration pulsed wave lasers. Distinctive ablation phenomena have been observed and the effects of laser operation modes are discussed. The typical temperature patterns resulted from laser irradiation are computed by finite element analysis and thereby the different ablation mechanisms are interpreted.
1977-12-30
ACOUSTO - OPTIC INTERACTION IN SURFACE ACOUSTIC WAVES AND ITS APP--ETC(U) DEC 77 0 SCHUMER, P DAS NOOOIJ -75-C-0772 NCLASSIFIED MA-ONR-30 Nt.EE E’h...CHART NAT*NAL BUREAU OF STANDARDS 1-63- ACOUSTO - OPTIC INTERACTION IN SURFACE ACOUSTIC WAVES AND ITS APPLICATION TO REAL TIME SIGNAL PROCESSING By 00 D... Acousto - optics , Integrated optics, Optical Signal Processing. 20. AbSKTRACT (Continue an reverse side it neceary and idewnt& by block mum ber) The
Analytical approximation and numerical simulations for periodic travelling water waves
NASA Astrophysics Data System (ADS)
Kalimeris, Konstantinos
2017-12-01
We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity. This article is part of the theme issue 'Nonlinear water waves'.
The ISEE-C plasma wave investigation
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Fredricks, R. W.; Gurnett, D. A.; Smith, E. J.
1978-01-01
The ISEE-C plasma wave investigation is designed to provide comprehensive information on interplanetary wave-particle interactions. Three spectrum analyzers with a total of 19 bandpass channels cover the frequency range 0.3 Hz to 100 kHz. The main analyzer, which uses 16 continuously active amplifiers, gives two complete spectral scans per second in each of 16 filter channels. The instrument sensors include a high-sensitivity magnetic search coil, and electric antennas with effective lengths of 0.6 and 45 m.
NASA Astrophysics Data System (ADS)
Frehner, Marcel; Schmalholz, Stefan M.; Podladchikov, Yuri
2009-02-01
A 1-D model is presented that couples the microscale oscillations of non-wetting fluid blobs in a partially saturated poroelastic medium with the macroscale wave propagation through the elastic skeleton. The fluid oscillations are caused by surface tension forces that act as the restoring forces driving the oscillations. The oscillations are described mathematically with the equation for a linear oscillator and the wave propagation is described with the 1-D elastic wave equation. Coupling is done using Hamilton's variational principle for continuous systems. The resulting linear system of two partial differential equations is solved numerically with explicit finite differences. Numerical simulations are used to analyse the effect of solids exhibiting internal oscillations, and consequently a resonance frequency, on seismic waves propagating through such media. The phase velocity dispersion relation shows a higher phase velocity in the high-frequency limit and a lower phase velocity in the low-frequency limit. At the resonance frequency a singularity in the dispersion relation occurs. Seismic waves can initiate oscillations of the fluid by transferring energy from solid to fluid at the resonance frequency. Due to this transfer, the spectral amplitude of the solid particle velocity decreases at the resonance frequency. After initiation, the oscillatory movement of the fluid continuously transfers energy at the resonance frequency back to the solid. Therefore, the spectral amplitude of the solid particle velocity is increased at the resonance frequency. Once initiated, fluid oscillations decrease in amplitude with increasing time. Consequently, the spectral peak of the solid particle velocity at the resonance frequency decreases with time.
The Shift of ERG B-Wave Induced by Hours' Dark Exposure in Rodents
Li, Dake; Fang, Qi; Yu, Hongbo
2016-01-01
Purpose Dark adaptation can induce a rapid functional shift in the retina, and after that, the retinal function is believed to remain stable during the continuous dark exposure. However, we found that electroretinograms (ERG) b-waves gradually shifted during 24 hours’ dark exposure in rodents. Detailed experiments were designed to explore this non-classical dark adaptation. Methods In vivo ERG recording in adult and developing rodents after light manipulations. Results We revealed a five-fold decrease in ERG b-waves in adult rats that were dark exposed for 24 hours. The ERG b-waves significantly increased within the first hour’s dark exposure, but after that decreased continuously and finally attained steady state after 1 day’s dark exposure. After 3 repetitive, 10 minutes’ light exposure, the dark exposed rats fully recovered. This recovery effect was eye-specific, and light exposure to one eye could not restore the ERGs in the non-exposed eye. The prolonged dark exposure-induced functional shift was also reflected in the down-regulation on the amplitude of intensity-ERG response curve, but the dynamic range of the responsive light intensity remained largely stable. Furthermore, the ERG b-wave shifts occurred in and beyond classical critical period, and in both rats and mice. Importantly, when ERG b-wave greatly shifted, the amplitude of ERG a-wave did not change significantly after the prolonged dark exposure. Conclusions This rapid age-independent ERG change demonstrates a generally existing functional shift in the retina, which is at the entry level of visual system. PMID:27517462
Active mode locking of lasers by piezoelectrically induced diffraction modulation
NASA Astrophysics Data System (ADS)
Krausz, F.; Turi, L.; Kuti, Cs.; Schmidt, A. J.
1990-04-01
A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 μm and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate of 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.
NASA Technical Reports Server (NTRS)
Chriss, R. M.; Hingst, W. R.; Strazisar, A. J.; Keith, T. G., Jr.
1989-01-01
Nonintrusive measurements were made of a normal shock wave/boundary layer interaction. Two dimensional measurements were made throughout the interaction region while 3-D measurements were made in the vicinity of the shock wave. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. Laser Doppler Anemometry, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The results define the flow field structure in detail for each case.
Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimine, Isao; Iida, Ryugo; Shimura, Tsutomu
A phase-controlled spin wave was non-thermally generated in bismuth-doped rare-earth iron garnet by linearly polarized light pulses. We controlled the initial phase of the spin wave continuously within a range of 180° by changing the polarization azimuth of the excitation light. The azimuth dependences of the initial phase and amplitude of the spin wave were attributed to a combination of the inverse Cotton-Mouton effect and photoinduced magnetic anisotropy. Temporally and spatially resolved spin wave propagation was observed with a CCD camera, and the waveform was in good agreement with calculations. A nonlinear effect of the spin excitation was observed formore » excitation fluences higher than 100 mJ/cm{sup 2}.« less
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, Aaron
2004-01-01
The development of a practical method of accurately calculating the full scattering amplitude, without making a partial wave decomposition is continued. The method is developed in the context of electron-hydrogen scattering, and here exchange is dealt with by considering e-H scattering in the static exchange approximation. The Schroedinger equation in this approximation can be simplified to a set of coupled integro-differential equations. The equations are solved numerically for the full scattering wave function. The scattering amplitude can most accurately be calculated from an integral expression for the amplitude; that integral can be formally simplified, and then evaluated using the numerically determined wave function. The results are essentially identical to converged partial wave results.
Static shape of an acoustically levitated drop with wave-drop interaction
NASA Astrophysics Data System (ADS)
Lee, C. P.; Anilkumar, A. V.; Wang, T. G.
1994-11-01
The static shape of a drop levitated and flattened by an acoustic standing wave field in air is calculated, requiring self-consistency between the drop shape and the wave. The wave is calculated for a given shape using the boundary integral method. From the resulting radiation stress on the drop surface, the shape is determined by solving the Young-Laplace equation, completing an iteration cycle. The iteration is continued until both the shape and the wave converge. Of particular interest are the shapes of large drops that sustain equilibrium, beyond a certain degree of flattening, by becoming more flattened at a decreasing sound pressure level. The predictions for flattening versus acoustic radiation stress, for drops of different sizes, compare favorably with experimental data.
Discontinuity-free edge-diffraction model for characterization of focused wave fields.
Sedukhin, Andrey G
2010-03-01
A model of discontinuity-free edge diffraction is proposed that is valid in the framework of the scalar Debye approximation and describes the formation process and approximate structure of the stationary diffracted field of a monochromatic converging spherical wave of limited angular opening throughout the whole space about the focus. The field is represented semianalytically in terms of the sum of a direct quasi-spherical wave and two edge quasi-conical waves of the zeroth and first order. The angular spectrum amplitudes of all these waves have smooth continuous variations of the real and imaginary parts in polar angle and radius, the separable nonanalytic functions defining the polar-angle variations of the amplitudes being found by optimization techniques.
Functional significance of the pattern of renal sympathetic nerve activation.
Dibona, G F; Sawin, L L
1999-08-01
To assess the renal functional significance of the pattern of renal sympathetic nerve activation, computer-generated stimulus patterns (delivered at constant integrated voltage) were applied to the decentralized renal sympathetic nerve bundle and renal hemodynamic and excretory responses determined in anesthetized rats. When delivered at the same integrated voltage, stimulus patterns resembling those observed in in vivo multifiber recordings of renal sympathetic nerve activity (diamond-wave patterns) produced greater renal vasoconstrictor responses than conventional square-wave patterns. Within diamond-wave patterns, increasing integrated voltage by increasing amplitude produced twofold greater renal vasoconstrictor responses than by increasing duration. With similar integrated voltages that were subthreshold for renal vasoconstriction, neither diamond- nor square-wave pattern altered glomerular filtration rate, whereas diamond- but not square-wave pattern reversibly decreased urinary sodium excretion by 25 +/- 3%. At the same number of pulses per second, intermittent stimulation produced faster and greater renal vasoconstriction than continuous stimulation. At the same number of pulses per second, increases in rest period during intermittent stimulation proportionally augmented the renal vasoconstrictor response compared with that observed with continuous stimulation; the maximum augmentation of 55% occurred at a rest period of 500 ms. These results indicate that the pattern of renal sympathetic nerve stimulation (activity) significantly influences the rapidity, magnitude, and selectivity of the renal vascular and tubular responses.
Ocean Wave Simulation Based on Wind Field
2016-01-01
Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates. PMID:26808718
Ocean Wave Simulation Based on Wind Field.
Li, Zhongyi; Wang, Hao
2016-01-01
Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.
Blewett, J.P.; Kiesling, J.D.
1963-06-11
A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)
NASA Astrophysics Data System (ADS)
Liu, Xu; Chen, Lunjin; Yang, Lixia; Xia, Zhiyang; Malaspina, David M.
2018-01-01
The effect of the plasmapause on equatorially radially propagating fast magnetosonic (MS) waves in the Earth's dipole magnetic field is studied by using finite difference time domain method. We run 1-D simulation for three different density profiles: (1) no plasmapause, (2) with a plasmapause, and (3) with a plasmapause accompanied with fine-scale density irregularity. We find that (1) without plasmapause the radially inward propagating MS wave can reach ionosphere and continuously propagate to lower altitude if no damping mechanism is considered. The wave properties follow the cold plasma dispersion relation locally along its trajectory. (2) For simulation with a plasmapause with a scale length of 0.006 RE compared to wavelength, only a small fraction of the MS wave power is reflected by the plasmapause. WKB approximation is generally valid for such plasmapause. (3) The multiple fine-scale density irregularities near the outer edge of plasmapause can effectively block the MS wave propagation, resulting in a terminating boundary for MS waves near the plasmapause.
Catchings, Rufus D.; Goldman, Mark R.; Li, Yong-Gang; Chan, Joanne
2016-01-01
We measure peak ground velocities from fault‐zone guided waves (FZGWs), generated by on‐fault earthquakes associated with the 24 August 2014 Mw 6.0 South Napa earthquake. The data were recorded on three arrays deployed across north and south of the 2014 surface rupture. The observed FZGWs indicate that the West Napa fault zone (WNFZ) and the Franklin fault (FF) are continuous in the subsurface for at least 75 km. Previously published potential‐field data indicate that the WNFZ extends northward to the Maacama fault (MF), and previous geologic mapping indicates that the FF extends southward to the Calaveras fault (CF); this suggests a total length of at least 110 km for the WNFZ–FF. Because the WNFZ–FF appears contiguous with the MF and CF, these faults apparently form a continuous Calaveras–Franklin–WNFZ–Maacama (CFWM) fault that is second only in length (∼300 km) to the San Andreas fault in the San Francisco Bay area. The long distances over which we observe FZGWs, coupled with their high amplitudes (2–10 times the S waves) suggest that strong shaking from large earthquakes on any part of the CFWM fault may cause far‐field amplified fault‐zone shaking. We interpret guided waves and seismicity cross sections to indicate multiple upper crustal splays of the WNFZ–FF, including a northward extension of the Southhampton fault, which may cause strong shaking in the Napa Valley and the Vallejo area. Based on travel times from each earthquake to each recording array, we estimate average P‐, S‐, and guided‐wave velocities within the WNFZ–FF (4.8–5.7, 2.2–3.2, and 1.1–2.8 km/s, respectively), with FZGW velocities ranging from 58% to 93% of the average S‐wave velocities.
Bayesian reconstruction of gravitational wave bursts using chirplets
NASA Astrophysics Data System (ADS)
Millhouse, Margaret; Cornish, Neil J.; Littenberg, Tyson
2018-05-01
The LIGO-Virgo Collaboration uses a variety of techniques to detect and characterize gravitational waves. One approach is to use templates—models for the signals derived from Einstein's equations. Another approach is to extract the signals directly from the coherent response of the detectors in the LIGO-Virgo network. Both approaches played an important role in the first gravitational wave detections. Here we extend the BayesWave analysis algorithm, which reconstructs gravitational wave signals using a collection of continuous wavelets, to use a generalized wavelet family, known as chirplets, that have time-evolving frequency content. Since generic gravitational wave signals have frequency content that evolves in time, a collection of chirplets provides a more compact representation of the signal, resulting in more accurate waveform reconstructions, especially for low signal-to-noise events, and events that occupy a large time-frequency volume.
Spherical shock waves in general relativity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutku, Y.
1991-11-15
We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-{ital N} vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-{ital N} Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the {ital C}{sup 0}-formmore » of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.« less
Lamb Wave Tomography for Corrosion Mapping
NASA Technical Reports Server (NTRS)
Hinders, Mark K.; McKeon, James C. P.
1999-01-01
As the world-wide civil aviation fleet continues to age, methods for accurately predicting the presence of structural flaws-such as hidden corrosion-that compromise airworthiness become increasingly necessary. Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. However, extracting quantitative information from Lamb wave data has always involved highly trained personnel with a detailed knowledge of mechanical-waveguide physics. Our work focuses on using a variety of different tomographic reconstruction techniques to graphically represent the Lamb wave data in images that can be easily interpreted by technicians. Because the velocity of Lamb waves depends on thickness, we can convert the travel times of the fundamental Lamb modes into a thickness map of the inspection region. In this paper we show results for the identification of single or multiple back-surface corrosion areas in typical aluminum aircraft skin structures.
Technical support for geopressured-geothermal well activities in Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-07-01
Continuous recording microearthquake monitoring networks have been established around US Department of Energy (DOE) geopressured-geothermal design wells in southwestern Louisiana and southeastern Texas since summer 1980 to assess the effects well development may have had on subsidence and growth-fault activation. This monitoring has shown several unusual characteristics of Gulf Coast seismic activity. The observed activity is classified into two dominant types, one with identifiable body phases (type 1) and the other with only surface-wave signatures (type 2). During this reporting period no type 1 or body-wave events were reported. A total of 230 type 2 or surface-wave events were recorded.more » Origins of the type 2 events are still not positively understood; however, little or no evidence is available to connect them with geopressured-geothermal well activity. We continue to suspect sonic booms from military aircraft or some other human-induced source. 37 refs., 16 figs., 6 tabs.« less
Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Kim, Chihoon; Ahn, Jae Sung; Ji, Taeksoo; Eom, Joo Beom
2017-04-01
We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz-800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis.
A fiber-laser-pumped four-wavelength continuous-wave mid-infrared optical parametric oscillator
NASA Astrophysics Data System (ADS)
Wang, Peng; Shang, Yaping; Li, Xiao; Xu, Xiaojun
2017-10-01
In this paper, a four-wavelength continuous-wave mid-infrared optical parametric oscillator was demonstrated for the first time. The pump source was a home-built linearly polarized Yb-doped fiber laser and the maximum output power was 72.5 W. The pump source had three central wavelengths locating at 1060 nm, 1065 nm and 1080 nm. Four idler emissions with different wavelengths were generated which were 3132 nm, 3171 nm, 3310 nm and 3349 nm under the maximum pump power. The maximum idler output reached 8.7 W, indicating a 15% pump-to-idler slope efficiency. The signal wave generated in the experiment had two wavelengths which were 1595 nm and 1603 nm under the maximum pump power. It was analyzed that four nonlinear progresses occurred in the experiment, two of them being optical parametric oscillation and the rest two being intracavity difference frequency generation.
Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm
NASA Astrophysics Data System (ADS)
Hou, Chuncai; Zhao, Yue; Zhang, Jinchuan; Zhai, Shenqiang; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Liu, Shuman; Liu, Fengqi; Wang, Zhanguo
2018-03-01
Continuous wave (CW) operation of long wave infrared (LWIR) quantum cascade lasers (QCLs) is achieved up to a temperature of 303 K. For room temperature CW operation, the wafer with 35 stages was processed into buried heterostructure lasers. For a 2-mm-long and 10-μm-wide laser with high-reflectivity (HR) coating on the rear facet, CW output power of 45 mW at 283 K and 9 mW at 303 K is obtained. The lasing wavelength is around 9.4 μm locating in the LWIR spectrum range. Project supported by the National Key Research And Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61774146, 61674144, 61404131), the Key Projects of Chinese Academy of Sciences (Nos. ZDRW-XH-2016-4, QYZDJ-SSW-JSC027), and the Beijing Natural Science Foundation (No. 4162060, 4172060).
Shock wave refraction enhancing conditions on an extended interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markhotok, A.; Popovic, S.
2013-04-15
We determined the law of shock wave refraction for a class of extended interfaces with continuously variable gradients. When the interface is extended or when the gas parameters vary fast enough, the interface cannot be considered as sharp or smooth and the existing calculation methods cannot be applied. The expressions we derived are general enough to cover all three types of the interface and are valid for any law of continuously varying parameters. We apply the equations to the case of exponentially increasing temperature on the boundary and compare the results for all three types of interfaces. We have demonstratedmore » that the type of interface can increase or inhibit the shock wave refraction. Our findings can be helpful in understanding the results obtained in energy deposition experiments as well as for controlling the shock-plasma interaction in other settings.« less
Blin, Stéphane; Vaudel, Olivier; Besnard, Pascal; Gabet, Renaud
2009-05-25
Bistabilities between a steady (or pulsating, chaotic) and different pulsating regimes are investigated for an optically injected semi-conductor laser. Both numerical and experimental studies are reported for continuous-wave single-mode semiconductor distributed-feedback lasers emitting at 1.55 microm. Hysteresis are driven by either changing the optically injected power or the frequency difference between both lasers. The effect of the injected laser pumping rate is also examined. Systematic mappings of the possible laser outputs (injection locking, bimodal, wave mixing, chaos or relaxation oscillations) are carried out. At small pumping rates (1.2 times threshold), only locking and bimodal regimes are observed. The extent of the bistable area is either 11 dB or 35 GHz, depending on the varying parameters. At high pumping rates (4 times threshold), numerous injection regimes are observed. Injection locking and its bistabilities are also reported for secondary longitudinal modes.
Ayalon, Liat
2018-03-01
The study examined the accounts of older adults and their adult children concerning the transition to the continuing care retirement community (CCRC) and the adjustment to it, using a life course perspective. Up to three waves of interviews, consisting of a total of 187 interviews with older adults and their adult children, were conducted between 6 months and 6 years from the transition to the CCRC. Thematic analysis was employed using comparisons across groups of interviewees (older adults and adult children) and waves of interviews (up to three waves) to identify core categories of meaning. Time perception was an organizing principle across interviews. Both older adults and their adult children perceived themselves as moving forward and backward in time following the transition to the CCRC and future expectations for deterioration. The study emphasizes the linked-lives of older adults and their adult children.
Fabrication and properties of SiNO continuous fiber reinforced BN wave-transparent composites
NASA Astrophysics Data System (ADS)
Cao, F.; Fang, Z.; Chen, F.; Shen, Q.; Zhang, C.
2012-06-01
SiNO continuous fiber reinforced boron nitride (BN) wave-transparent composites (SiNO f /BN) have been fabricated by a precursor infiltration pyrolysis (PIP) method using borazine as the precursor. The densification behavior, microstructures, mechanical properties, and dielectric properties of the composites have been investigated. After four PIP cycles, the density of the composites had increased from 1.1 g·cm-3 to 1.81 g·cm-3. A flexural strength of 128.9 MPa and an elastic modulus of 23.5 GPa were achieved. The obtained composites have relatively high density and the fracture faces show distinct fiber pull-out and interface de-bonding features. The dielectric properties of the SiNO f /BN composites, including the dielectric constant of 3.61 and the dielectric loss angle tangent of 5.7×10-3, are excellent for application as wave-transparent materials.
A digital signal processing system for coherent laser radar
NASA Technical Reports Server (NTRS)
Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry
1991-01-01
A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.
Remote creation of hybrid entanglement between particle-like and wave-like optical qubits
NASA Astrophysics Data System (ADS)
Morin, Olivier; Huang, Kun; Liu, Jianli; Le Jeannic, Hanna; Fabre, Claude; Laurat, Julien
2014-07-01
The wave-particle duality of light has led to two different encodings for optical quantum information processing. Several approaches have emerged based either on particle-like discrete-variable states (that is, finite-dimensional quantum systems) or on wave-like continuous-variable states (that is, infinite-dimensional systems). Here, we demonstrate the generation of entanglement between optical qubits of these different types, located at distant places and connected by a lossy channel. Such hybrid entanglement, which is a key resource for a variety of recently proposed schemes, including quantum cryptography and computing, enables information to be converted from one Hilbert space to the other via teleportation and therefore the connection of remote quantum processors based upon different encodings. Beyond its fundamental significance for the exploration of entanglement and its possible instantiations, our optical circuit holds promise for implementations of heterogeneous network, where discrete- and continuous-variable operations and techniques can be efficiently combined.
Continuous-wave Submillimeter-wave Gyrotrons
Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.
2007-01-01
Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605
Imaging the slab structure in the Alpine region by high-resolution P-wave tomography
NASA Astrophysics Data System (ADS)
Guillot, Stéphane; Zhao, Liang; Paul, Anne; Malusà, Marco G.; Xu, Xiaobing; Zheng, Tianyu; Solarino, stefano; Schwartz, Stéphane; Dumont, Thierry; Salimbeni, Simone; Aubert, Coralie; Pondrelli, Silvia; Wang, Qingchen; Zhu, Rixiang
2017-04-01
Based upon a finite-frequency inversion of traveltimes, we computed a new high-resolution tomography model using P-wave data from 527 broadband seismic stations, both from permanent networks and temporary experiments (Zhao et al., 2016). This model provides an improved image of the slab structure in the Alpine region, and fundamental pin-points for the analysis of Cenozoic magmatism, (U)HP metamorphism and Alpine topography. Our results document the lateral continuity of the European slab from the Western to the Central Alps, and the down-dip slab continuity beneath the Central Alps, ruling out the hypothesis of slab breakoff to explain Cenozoic Alpine magmatism. A low velocity anomaly is observed in the upper mantle beneath the core of the Western Alps, pointing to dynamic topography effects (Malusà et al., this meeting). A NE-dipping Adriatic slab, consistent with Dinaric subduction, is possibly observed beneath the Eastern Alps, whereas the laterally continuous Adriatic slab of the Northern Apennines shows major gaps at the boundary with the Southern Apennines, and becomes near vertical in the Alps-Apennines transition zone. Tear faults accommodating opposite-dipping subductions during Alpine convergence may represent reactivated lithospheric faults inherited from Tethyan extension. Our results suggest that the interpretations of previous tomography results that include successive slab breakoffs along the Alpine-Zagros-Himalaya orogenic belt might be proficiently reconsidered. Malusà M.G. et alii (2017) On the potential asthenospheric linkage between Apenninic slab rollback and Alpine topographic uplift: insights from P wave tomography and seismic anisotropy analysis. EGU 2017. Zhao L. et alii (2016), Continuity of the Alpine slab unraveled by high-resolution P wave tomography. J. Geophys. Res., doi:10.1002/2016JB013310.
Decomposition of ECG by linear filtering.
Murthy, I S; Niranjan, U C
1992-01-01
A simple method is developed for the delineation of a given electrocardiogram (ECG) signal into its component waves. The properties of discrete cosine transform (DCT) are exploited for the purpose. The transformed signal is convolved with appropriate filters and the component waves are obtained by computing the inverse transform (IDCT) of the filtered signals. The filters are derived from the time signal itself. Analysis of continuous strips of ECG signals with various arrhythmias showed that the performance of the method is satisfactory both qualitatively and quantitatively. The small amplitude P wave usually had a high percentage rms difference (PRD) compared to the other large component waves.
Self-similar gravity wave spectra resulting from the modulation of bound waves
NASA Astrophysics Data System (ADS)
Michel, Guillaume; Semin, Benoît; Cazaubiel, Annette; Haudin, Florence; Humbert, Thomas; Lepot, Simon; Bonnefoy, Félicien; Berhanu, Michaël; Falcon, Éric
2018-05-01
We experimentally study the properties of nonlinear surface gravity waves in a large-scale basin. We consider two different configurations: a one-dimensional (1D) monochromatic wave forcing, and a two-dimensional (2D) forcing with bichromatic waves satisfying resonant-wave interaction conditions. For the 1D forcing, we find a discrete wave-energy spectrum dominated at high frequencies by bound waves whose amplitudes decrease as a power law of the frequency. Bound waves (e.g., to the carrier) are harmonics superimposed on the carrier wave propagating with the same phase velocity as the one of the carrier. When a narrow frequency random modulation is applied to this carrier, the high-frequency part of the wave-energy spectrum becomes continuous with the same frequency-power law. Similar results are found for the 2D forcing when a random modulation is also applied to both carrier waves. Our results thus show that all these nonlinear gravity wave spectra are dominated at high frequencies by the presence of bound waves, even in the configuration where resonant interactions occur. Moreover, in all these configurations, the power-law exponent of the spectrum is found to depend on the forcing amplitude with the same trend as the one found in previous gravity wave turbulence experiments. Such a set of bound waves may thus explain this dependence that was previously poorly understood.
Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular
Okasaka, Shozo; Weiler, Richard J.; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei
2016-01-01
The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access. PMID:27571074
Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular.
Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei
2016-08-25
The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.
Potential applications of low-energy shock waves in functional urology.
Wang, Hung-Jen; Cheng, Jai-Hong; Chuang, Yao-Chi
2017-08-01
A shock wave, which carries energy and can propagate through a medium, is a type of continuous transmitted sonic wave with a frequency of 16 Hz-20 MHz. It is accompanied by processes involving rapid energy transformations. The energy associated with shock waves has been harnessed and used for various applications in medical science. High-energy extracorporeal shock wave therapy is the most successful application of shock waves, and has been used to disintegrate urolithiasis for 30 years. At lower energy levels, however, shock waves have enhanced expression of vascular endothelial growth factor, endothelial nitric oxide synthase, proliferating cell nuclear antigen, chemoattractant factors and recruitment of progenitor cells; shock waves have also improved tissue regeneration. Low-energy shock wave therapy has been used clinically with musculoskeletal disorders, ischemic cardiovascular disorders and erectile dysfunction, through the mechanisms of neovascularization, anti-inflammation and tissue regeneration. Furthermore, low-energy shock waves have been proposed to temporarily increase tissue permeability and facilitate intravesical drug delivery. The present review article provides information on the basics of shock wave physics, mechanisms of action on the biological system and potential applications in functional urology. © 2017 The Japanese Urological Association.
Nonlinear optical detection of terahertz-wave radiation from resonant tunneling diodes.
Takida, Yuma; Nawata, Kouji; Suzuki, Safumi; Asada, Masahiro; Minamide, Hiroaki
2017-03-06
The sensitive detection of terahertz (THz)-wave radiation from compact sources at room temperature is crucial for real-world THz-wave applications. Here, we demonstrate the nonlinear optical detection of THz-wave radiation from continuous-wave (CW) resonant tunneling diodes (RTDs) at 0.58, 0.78, and 1.14 THz. The up-conversion process in a MgO:LiNbO3 crystal under the noncollinear phase-matching condition offers efficient wavelength conversion from a THz wave to a near-infrared (NIR) wave that is detected using a commercial NIR photodetector. The minimum detection limit of CW THz-wave power is as low as 5 nW at 1.14 THz, corresponding to 2-aJ energy and 2.7 × 103 photons within the time window of a 0.31-ns pump pulse. Our results show that the input frequency and power of RTD devices can be calibrated by measuring the output wavelength and energy of up-converted waves, respectively. This optical detection technique for compact electronic THz-wave sources will open up a new opportunity for the realization of real-world THz-wave applications.
NASA Astrophysics Data System (ADS)
Matsuda, Shoya; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Yagitani, Satoshi; Ozaki, Mitsunori; Imachi, Tomohiko; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ota, Mamoru; Kurita, Satoshi; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Matsuoka, Ayako; Shinohara, Iku
2018-05-01
We developed the onboard processing software for the Plasma Wave Experiment (PWE) onboard the Exploration of energization and Radiation in Geospace, Arase satellite. The PWE instrument has three receivers: Electric Field Detector, Waveform Capture/Onboard Frequency Analyzer (WFC/OFA), and the High-Frequency Analyzer. We designed a pseudo-parallel processing scheme with a time-sharing system and achieved simultaneous signal processing for each receiver. Since electric and magnetic field signals are processed by the different CPUs, we developed a synchronized observation system by using shared packets on the mission network. The OFA continuously measures the power spectra, spectral matrices, and complex spectra. The OFA obtains not only the entire ELF/VLF plasma waves' activity but also the detailed properties (e.g., propagation direction and polarization) of the observed plasma waves. We performed simultaneous observation of electric and magnetic field data and successfully obtained clear wave properties of whistler-mode chorus waves using these data. In order to measure raw waveforms, we developed two modes for the WFC, `chorus burst mode' (65,536 samples/s) and `EMIC burst mode' (1024 samples/s), for the purpose of the measurement of the whistler-mode chorus waves (typically in a frequency range from several hundred Hz to several kHz) and the EMIC waves (typically in a frequency range from a few Hz to several hundred Hz), respectively. We successfully obtained the waveforms of electric and magnetic fields of whistler-mode chorus waves and ion cyclotron mode waves along the Arase's orbit. We also designed the software-type wave-particle interaction analyzer mode. In this mode, we measure electric and magnetic field waveforms continuously and transfer them to the mission data recorder onboard the Arase satellite. We also installed an onboard signal calibration function (onboard SoftWare CALibration; SWCAL). We performed onboard electric circuit diagnostics and antenna impedance measurement of the wire-probe antennas along the orbit. We utilize the results obtained using the SWCAL function when we calibrate the spectra and waveforms obtained by the PWE.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Löhner-Böttcher, Johannes
2016-03-01
Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the magnetic field lines. Signatures of umbral flashes and running penumbral waves are found already in the middle to upper photosphere. The signal and velocity increases toward the chromosphere. The shock wave behavior of the umbral flashes is confirmed by the evolving saw-tooth pattern in velocity and the strong downward motion of the plasma right after the passage of the shock front. The power spectra and peak periods of sunspot waves vary significantly with atmospheric altitude and position within the sunspot. In the vertical field of the umbra, the mixture of wave periods in the lower photosphere transforms into a domination of the 2.5min range in the upper photosphere and chromosphere. In the differentially inclined penumbra, the dominating wave periods increase with radial distance. The acoustic cut-off frequency which blocks the propagation of long-period waves is considered to increase with the field inclination and the ambient sound speed. The reconstruction of the sunspot's magnetic field inclination based on the peak period distribution yields consistent results with the inferred photospheric and extrapolated coronal magnetic field.
Anderson localization of shear waves observed by magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Papazoglou, S.; Klatt, D.; Braun, J.; Sack, I.
2010-07-01
In this letter we present for the first time an experimental investigation of shear wave localization using motion-sensitive magnetic resonance imaging (MRI). Shear wave localization was studied in gel phantoms containing arrays of randomly positioned parallel glass rods. The phantoms were exposed to continuous harmonic vibrations in a frequency range from 25 to 175 Hz, yielding wavelengths on the order of the elastic mean free path, i.e. the Ioffe-Regel criterion of Anderson localization was satisfied. The experimental setup was further chosen such that purely shear horizontal waves were induced to avoid effects due to mode conversion and pressure waves. Analysis of the distribution of shear wave intensity in experiments and simulations revealed a significant deviation from Rayleigh statistics indicating that shear wave energy is localized. This observation is further supported by experiments on weakly scattering samples exhibiting Rayleigh statistics and an analysis of the multifractality of wave functions. Our results suggest that motion-sensitive MRI is a promising tool for studying Anderson localization of time-harmonic shear waves, which are increasingly used in dynamic elastography.
Plateau Waves of Intracranial Pressure and Multimodal Brain Monitoring.
Dias, Celeste; Maia, Isabel; Cerejo, Antonio; Smielewski, Peter; Paiva, José-Artur; Czosnyka, Marek
2016-01-01
The aim of this study was to describe multimodal brain monitoring characteristics during plateau waves of intracranial pressure (ICP) in patients with head injury, using ICM+ software for continuous recording. Plateau waves consist of an abrupt elevation of ICP above 40 mmHg for 5-20 min. This is a prospective observational study of patients with head injury who were admitted to a neurocritical care unit and who developed plateau waves. We analyzed 59 plateau waves that occurred in 8 of 18 patients (44 %). At the top of plateau waves arterial blood pressure remained almost constant, but cerebral perfusion pressure, cerebral blood flow, brain tissue oxygenation, and cerebral oximetry decreased. After plateau waves, patients with a previously better autoregulation status developed hyperemia, demonstrated by an increase in cerebral blood flow and brain oxygenation. Pressure and oxygen cerebrovascular reactivity indexes (pressure reactivity index and ORxshort) increased significantly during the plateau wave as a sign of disruption of autoregulation. Bedside multimodal brain monitoring is important to characterize increases in ICP and give differential diagnoses of plateau waves, as management of this phenomenon differs from that of regular ICP.
NASA Astrophysics Data System (ADS)
Knispel, Benjamin
2011-07-01
Neutron stars are the endpoints of stellar evolution and one of the most compact forms of matter in the universe. They can be observed as radio pulsars and are promising sources for the emission of continuous gravitational waves. Discovering new radio pulsars in tight binary orbits offers the opportunity to conduct very high precision tests of General Relativity and to further our understanding of neutron star structure and matter at super-nuclear densities. The direct detection of gravitational waves would validate Einstein's theory of Relativity and open a new window to the universe by offering a novel astronomical tool. This thesis addresses both of these scientific fields: the first fully coherent search for radio pulsars in tight, circular orbits has been planned, set up and conducted in the course of this thesis. Two unusual radio pulsars, one of them in a binary system, have been discovered. The other half of this thesis is concerned with the simulation of the Galactic neutron star population to predict their emission of continuous gravitational waves. First realistic statistical upper limits on the strongest continuous gravitational-wave signal and detection predictions for realistic all-sky blind searches have been obtained. The data from a large-scale pulsar survey with the 305-m Arecibo radio telescope were searched for signals from radio pulsars in binary orbits. The massive amount of computational work was done on hundreds of thousands of computers volunteered by members of the general public through the distributed computing project Einstein@Home. The newly developed analysis pipeline searched for pulsar spin frequencies below 250 Hz and for orbital periods as short as 11 min. The structure of the search pipeline consisting of data preparation, data analysis, result post-processing, and set-up of the pipeline components is presented in detail. The first radio pulsar, discovered with this search, PSR J2007+2722, is an isolated radio pulsar, likely from a double neutron star system disrupted by the second supernova. We present discovery and initial characterisation using observations from five of the largest radio telescopes worldwide. Only a dozen similar systems were previously known. The second discovered radio pulsar, PSR J1952+2630, is in a 9.4-hr orbit with most likely a massive white dwarf of at least 0.95 M⊙. We characterise its orbit by analysis of the apparent spin period changes. This pulsar most likely belongs to the very rare class of intermediate-mass binary pulsars, from which only five systems were previously known. It is a promising target for the future measurement of relativistic effects. In the second half of this thesis, the emission of continuous gravitational waves from a Galactic population of neutron stars is studied. For the first time, realistic estimates of the statistical upper limit of the expected gravitational wave signal are obtained, improving previous estimates by about a factor of six. The simulation is used to obtain for the first time detectability predictions for these objects with ground based gravitational wave detectors and realistic blind searches. It is also shown how to improve possible searches by maximising the number of detections for a fixed amount of computation cycles.
Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas; Weiss, Sara E.; Maurer, Michael; Kranner, Ilse
2012-01-01
Shimmering is a collective defence behaviour in Giant honeybees (Apis dorsata) whereby individual bees flip their abdomen upwards, producing Mexican wave-like patterns on the nest surface. Bucket bridging has been used to explain the spread of information in a chain of members including three testable concepts: first, linearity assumes that individual “agent bees” that participate in the wave will be affected preferentially from the side of wave origin. The directed-trigger hypothesis addresses the coincidence of the individual property of trigger direction with the collective property of wave direction. Second, continuity describes the transfer of information without being stopped, delayed or re-routed. The active-neighbours hypothesis assumes coincidence between the direction of the majority of shimmering-active neighbours and the trigger direction of the agents. Third, the graduality hypothesis refers to the interaction between an agent and her active neighbours, assuming a proportional relationship in the strength of abdomen flipping of the agent and her previously active neighbours. Shimmering waves provoked by dummy wasps were recorded with high-resolution video cameras. Individual bees were identified by 3D-image analysis, and their strength of abdominal flipping was assessed by pixel-based luminance changes in sequential frames. For each agent, the directedness of wave propagation was based on wave direction, trigger direction, and the direction of the majority of shimmering-active neighbours. The data supported the bucket bridging hypothesis, but only for a small proportion of agents: linearity was confirmed for 2.5%, continuity for 11.3% and graduality for 0.4% of surface bees (but in 2.6% of those agents with high wave-strength levels). The complimentary part of 90% of surface bees did not conform to bucket bridging. This fuzziness is discussed in terms of self-organisation and evolutionary adaptedness in Giant honeybee colonies to respond to rapidly changing threats such as predatory wasps scanning in front of the nest. PMID:22662123
Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas; Weiss, Sara E; Maurer, Michael; Kranner, Ilse
2012-01-01
Shimmering is a collective defence behaviour in Giant honeybees (Apis dorsata) whereby individual bees flip their abdomen upwards, producing Mexican wave-like patterns on the nest surface. Bucket bridging has been used to explain the spread of information in a chain of members including three testable concepts: first, linearity assumes that individual "agent bees" that participate in the wave will be affected preferentially from the side of wave origin. The directed-trigger hypothesis addresses the coincidence of the individual property of trigger direction with the collective property of wave direction. Second, continuity describes the transfer of information without being stopped, delayed or re-routed. The active-neighbours hypothesis assumes coincidence between the direction of the majority of shimmering-active neighbours and the trigger direction of the agents. Third, the graduality hypothesis refers to the interaction between an agent and her active neighbours, assuming a proportional relationship in the strength of abdomen flipping of the agent and her previously active neighbours. Shimmering waves provoked by dummy wasps were recorded with high-resolution video cameras. Individual bees were identified by 3D-image analysis, and their strength of abdominal flipping was assessed by pixel-based luminance changes in sequential frames. For each agent, the directedness of wave propagation was based on wave direction, trigger direction, and the direction of the majority of shimmering-active neighbours. The data supported the bucket bridging hypothesis, but only for a small proportion of agents: linearity was confirmed for 2.5%, continuity for 11.3% and graduality for 0.4% of surface bees (but in 2.6% of those agents with high wave-strength levels). The complimentary part of 90% of surface bees did not conform to bucket bridging. This fuzziness is discussed in terms of self-organisation and evolutionary adaptedness in Giant honeybee colonies to respond to rapidly changing threats such as predatory wasps scanning in front of the nest.
Development of a Comb Limiter Combiner with Sub band Known Interference Cancellation
2017-10-17
Juarez, Head 55190 Networks Division ACRONYMS ABSF absorptive bandstop filters ATP applied thin films BAW bulk acoustic waves BPF bandpass filter ...BSF bandstop filters CW continuous wave CWSP Commercial Wideband Satellite Program DAC digital to analog converter DAC digital to analog converter...8 3.2 FREQUENCY AGILE ABSORPTIVE NOTCH FILTERS ................................................. 9 3.3 INTEGRATION OF
Assessing the Impact of Lesson Study on the Teaching Practice of Middle School Science Teachers
ERIC Educational Resources Information Center
Grove, Michael C.
2011-01-01
Despite wave after wave of educational reform in the United States our students continue to lag behind their peers in other industrialized countries on virtually all measures of academic achievement. Effective professional development (PD) is seen as a key to improving instructional practice and therefore student learning, but traditional forms of…
Auroral-Region Dynamics Determined with the Chatanika Radar.
1982-11-01
report) 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from report) 18 . SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on...for 1 April 1973 .......... ... 41 18 Vertical Neutral Wind Measured with the Fabry-Perot Interferometer ......... ........................ ... 44 vii...Waves Determined from Radar Observations on 18 January 1976 ..... ............... ... 50 23 Meridional Wind and Gravity Waves Determined from Radar
Riding the crest of the wave : sawn softwood markets in 2003-2004
Henry Spelter; Robert Kozak; Nikolai Burdin
2004-01-01
Globalization of the sawn softwood sector continues as we ride the crest of the wave, characterized by generally positive markets worldwide. In North America, market conditions for sawn softwood are booming, fuelled by a robust housing sector; however, the ongoing trade dispute between the United States and Canada is dampening this generally positive outlook. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasserman, F.E.; Patterson, D.A.; Kunz, T.H.
1986-01-01
The effect of chronic continuous wave microwave radiation on the foraging behavior of the White-throated Sparrow was examined using an optimal foraging laboratory technique. Birds were exposed to microwaves for seven days at a frequency of 2.45 GHz and power densities of 0.0, 0.1, 1.0, 10.0, and 25.0 mW/cm/sup 2/. Even though there were differences in foraging behaviors among power densities no trend was found for a dose response effect. Birds showed no significant differences in foraging behaviors among pre-exposure, exposure, and post-exposure periods.
Lefebvre, J E; Zhang, V; Gazalet, J; Gryba, T; Sadaune, V
2001-09-01
The propagation of guided waves in continuous functionally graded plates is studied by using Legendre polynomials. Dispersion curves, and power and field profiles are easily obtained. Our computer program is validated by comparing our results against other calculations from the literature. Numerical results are also given for a graded semiconductor plate. It is felt that the present method could be of quite practical interest in waveguiding engineering, non-destructive testing of functionally graded materials (FGMs) to identify the best inspection strategies, or by means of a numerical inversion algorithm to determine through-thickness gradients in material parameters.
A 1-2 GHz pulsed and continuous wave electron paramagnetic resonance spectrometer
NASA Astrophysics Data System (ADS)
Quine, Richard W.; Rinard, George A.; Ghim, Barnard T.; Eaton, Sandra S.; Eaton, Gareth R.
1996-07-01
A microwave bridge has been constructed that performs three types of electron paramagnetic resonance experiments: continuous wave, pulsed saturation recovery, and pulsed electron spin echo. Switching between experiment types can be accomplished via front-panel switches without moving the sample. Design features and performance of the bridge and of a resonator used in testing the bridge are described. The bridge is constructed of coaxial components connected with semirigid cable. Particular attention has been paid to low-noise design of the preamplifier and stability of automatic frequency control circuits. The bridge incorporates a Smith chart display and phase adjustment meter for ease of tuning.
Sopeña, Pol; Arrese, Javier; González-Torres, Sergio; Fernández-Pradas, Juan Marcos; Cirera, Albert; Serra, Pere
2017-09-06
Laser-induced forward transfer (LIFT) is a direct-writing technique that allows printing inks from a liquid film in a similar way to inkjet printing but with fewer limitations concerning ink viscosity and loading particle size. In this work, we prove that liquid inks can be printed through LIFT by using continuous wave (CW) instead of pulsed lasers, which allows a substantial reduction in the cost of the printing system. Through the fabrication of a functional circuit on both rigid and flexible substrates (plastic and paper), we provide a proof-of-concept that demonstrates the versatility of the technique for printed electronics applications.
Continuous-wave stimulated Raman scattering
NASA Astrophysics Data System (ADS)
Bryant, C. H.; Golombok, M.
1991-04-01
The first observation of continuous-wave stimulated Raman scattering (SRS) is reported. Both forward and enhanced backward SRS were observed in liquids, and the large spectral frequency shift between pump and probe makes signal detection easy. No separate collection optics are necessary for the backscattered SRS, whose signal-to-noise ratio is much improved compared with that measured by forward or side scatter. This is attributed to the existence of a phase-conjugate beam. Higher orders of Stokes scattering are also observed in return. Contrary to theoretical expectation, both forward-scattered and backscattered signals have identical gains owing to saturation effects in a number of the high-gain liquids studied.
Growth, spectroscopy and continuous-wave laser performance of Nd3+:LiLu0.65Y0.35F4 crystal
NASA Astrophysics Data System (ADS)
Demesh, M. P.; Kurilchik, S. V.; Gusakova, N. V.; Yasukevich, A. S.; Kisel, V. E.; Nizamutdinov, A. S.; Marisov, M. M.; Aglyamov, R. D.; Korableva, S. L.; Naumov, A. K.; Semashko, V. V.; Kuleshov, N. V.
2018-04-01
A mixed fluoride crystal of LiLu0.65Y0.35F4 doped with Nd3+ ions was grown by the Bridgman-Stockbarger method. Polarized absorption and luminescence spectra as well as luminescence lifetime were measured at room temperature. Emission probabilities, branching ratios and radiative lifetime were studied within the Judd-Ofelt theory and the emission cross section spectra were calculated. Efficient continuous wave laser operation was demonstrated with the crystal. A maximum output power of 7.7 W and slope efficiency of 60% were achieved at 1047 nm for the TEM00 mode.
Spectral comb mitigation to improve continuous-wave search sensitivity in Advanced LIGO
NASA Astrophysics Data System (ADS)
Neunzert, Ansel; LIGO Scientific Collaboration; Virgo Collaboration
2017-01-01
Searches for continuous gravitational waves, such as those emitted by rapidly spinning non-axisymmetric neutron stars, are degraded by the presence of narrow noise ``lines'' in detector data. These lines either reduce the spectral band available for analysis (if identified as noise and removed) or cause spurious outliers (if unidentified). Many belong to larger structures known as combs: series of evenly-spaced lines which appear across wide frequency ranges. This talk will focus on the challenges of comb identification and mitigation. I will discuss tools and methods for comb analysis, and case studies of comb mitigation at the LIGO Hanford detector site.
Continuous wave cavity ring-down spectroscopy for velocity distribution measurements in plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarren, D.; Lockheed Martin, Palmdale, California 93599; Scime, E., E-mail: earl.scime@mail.wvu.edu
2015-10-15
We report the development of a continuous wave cavity ring-down spectroscopic (CW-CRDS) diagnostic for real-time, in situ measurement of velocity distribution functions of ions and neutral atoms in plasma. This apparatus is less complex than conventional CW-CRDS systems. We provide a detailed description of the CW-CRDS apparatus as well as measurements of argon ions and neutrals in a high-density (10{sup 9} cm{sup −3} < plasma density <10{sup 13} cm{sup −3}) plasma. The CW-CRDS measurements are validated through comparison with laser induced fluorescence measurements of the same absorbing states of the ions and neutrals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, T Y; Deng, Yu; Ju, Y-L
2015-12-31
We demonstrate a continuous-wave (cw) and actively Q-switched Er : YAG ceramic laser resonantly dual-end-pumped by a 1532 nm fibre-coupled laser diode. A maximum cw output power of 1.48 W at 1645.3 nm is obtained at an absorbed pump power of 12.72 W, corresponding to a slope efficiency of 19.2%. In the Q-switched regime the maximum pulse energy of 0.84 mJ is reached at a pulse repetition rate of 100 Hz, pulse duration of 48.03 ns and absorbed pump power of 10.51 W. (lasers)
Preliminary design of a high-intensity continuous-wave deuteron RFQ
NASA Astrophysics Data System (ADS)
Liu, X.; Kamigaito, O.; Sakamoto, N.; Yamada, K.
2017-07-01
A high-intensity deuteron linear accelerator is currently being studied as a promising candidate to treat high-level radioactive waste through the nuclear transmutation process. This paper presents the study on a design of a 75.5 MHz, 400 mA, continuous-wave deuteron radio-frequency quadrupole (RFQ), which is proposed as the front-end of such a linear accelerator. The results of the beam dynamics simulation suggest that the designed RFQ can accelerate a 400-mA deuteron beam from 100 keV to 2.5 MeV with a transmission rate of 92.0 ∼ 93.3%, depending on the assumed input transverse emittance.
NASA Astrophysics Data System (ADS)
Suhaimi, N. Sheeda; Ohae, C.; Gavara, T.; Nakagawa, K.; Hong, F.-L.; Katsuragawa, M.
2017-08-01
We have successfully generated a new broadband coherent light source in the continuous wave (CW) regime which is an ensemble of multi-harmonic radiations (2403, 1201, 801, 600 and 480 nm) by implementing a frequency dividing technology. The system is uniquely designed that all the harmonics are generated and propagate coaxially which gives the advantage of robustly maintaining the phase coherence among the harmonics. The highlight is its huge potential for the arbitrary optical waveform synthesis in the CW regime which has not been performed yet due to the limitation of the existing light source.
High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers
NASA Astrophysics Data System (ADS)
Arun, S.; Choudhury, Vishal; Balaswamy, V.; Prakash, Roopa; Supradeepa, V. R.
2018-04-01
We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power Ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm(>1 octave) from 880-1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.
Comb-Resolved Dual-Comb Spectroscopy Stabilized by Free-Running Continuous-Wave Lasers
NASA Astrophysics Data System (ADS)
Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei
2012-11-01
We demonstrate dual-comb spectroscopy with relatively phase-locked two frequency combs, instead of frequency combs firmly fixed to the absolute frequency references. By stabilizing two beat frequencies between two mode-locked lasers at different wavelengths observed via free-running continuous-wave (CW) lasers, two combs are tightly phase locked to each other. The frequency noise of the CW lasers barely affects the performance of dual-comb spectroscopy because of the extremely fast common-mode noise rejection. Transform-limited comb-resolved dual-comb spectroscopy with a 6 Hz radio frequency linewidth is demonstrated by the use of Yb-fiber oscillators.
NASA Astrophysics Data System (ADS)
Ko, Kwang-Hoon; Kim, Yonghee; Park, Hyunmin; Cha, Yong-Ho; Kim, Taek-Soo; Lee, Lim; Lim, Gwon; Han, Jaemin; Ko, Kwang-Hee; Jeong, Do-Young
2015-08-01
Continuous-wave single-frequency tunable 544- and 272-nm beams have been demonstrated by the second- and fourth-harmonic conversions of a 1088-nm fundamental beam from a diode-oscillator fiber-amplifier. The single-pass second-harmonic generation with a MgO-doped periodically poled stoichiometric LiTaO3 crystal and the external-cavity frequency-doubling technique with a bulk BBO crystal were employed to achieve an approximately 6-W 544-nm beam and a 1.5-W 272-nm beam, respectively. We characterized the second- and fourth-harmonic generations and discussed their applications to calcium spectroscopy.
Jechow, Andreas; Schedel, Marco; Stry, Sandra; Sacher, Joachim; Menzel, Ralf
2007-10-15
A continuous-wave distributed feedback diode laser emitting at 976 nm was frequency doubled by the use of a periodically poled lithium niobate waveguide crystal with a channel size of 3 microm x 5 microm and an interaction length of 10 mm. A laser to waveguide coupling efficiency of 75% could be achieved resulting in 304 mW of incident infrared light inside the waveguide. Blue laser light emission of 159 mW at 488 nm has been generated, which equals to a conversion efficiency of 52%. The resulting wall plug efficiency was 7.4%.
High-resolution multiphoton microscopy with a low-power continuous wave laser pump.
Chen, Xiang-Dong; Li, Shen; Du, Bo; Dong, Yang; Wang, Ze-Hao; Guo, Guang-Can; Sun, Fang-Wen
2018-02-15
Multiphoton microscopy (MPM) has been widely used for three-dimensional biological imaging. Here, based on the photon-induced charge state conversion process, we demonstrated a low-power high-resolution MPM with a nitrogen vacancy (NV) center in diamond. Continuous wave green and orange lasers were used to pump and detect the two-photon charge state conversion, respectively. The power of the laser for multiphoton excitation was 40 μW. Both the axial and lateral resolutions were improved approximately 1.5 times compared with confocal microscopy. The results can be used to improve the resolution of the NV center-based quantum sensing and biological imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paeng, Dongwoo; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu; Lee, Daeho
2014-08-18
In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.
A progress report on seismic model studies
Healy, J.H.; Mangan, G.B.
1963-01-01
The value of seismic-model studies as an aid to understanding wave propagation in the Earth's crust was recognized by early investigators (Tatel and Tuve, 1955). Preliminary model results were very promising, but progress in model seismology has been restricted by two problems: (1) difficulties in the development of models with continuously variable velocity-depth functions, and (2) difficulties in the construction of models of adequate size to provide a meaningful wave-length to layer-thickness ratio. The problem of a continuously variable velocity-depth function has been partly solved by a technique using two-dimensional plate models constructed by laminating plastic to aluminum, so that the ratio of plastic to aluminum controls the velocity-depth function (Healy and Press, 1960). These techniques provide a continuously variable velocity-depth function, but it is not possible to construct such models large enough to study short-period wave propagation in the crust. This report describes improvements in our ability to machine large models. Two types of models are being used: one is a cylindrical aluminum tube machined on a lathe, and the other is a large plate machined on a precision planer. Both of these modeling techniques give promising results and are a significant improvement over earlier efforts.
Theoretical study of the characteristics of a continuous wave iron-doped ZnSe laser
NASA Astrophysics Data System (ADS)
Pan, Qikun; Chen, Fei; Xie, Jijiang; Wang, Chunrui; He, Yang; Yu, Deyang; Zhang, Kuo
2018-03-01
A theoretical model describing the dynamic process of a continuous-wave Fe2+:ZnSe laser is presented. The influence of some of the operating parameters on the output characteristics of an Fe2+:ZnSe laser is studied in detail. The results indicate that the temperature rise of the Fe2+:ZnSe crystal is significant with the use of a high power pump laser, especially for a high doped concentration of crystal. The optimal crystal length increases with decreasing the doped concentration of crystal, so an Fe2+:ZnSe crystal with simultaneous doping during growth is an attractive choice, which usually has a low doped concentration and long length. The laser pumping threshold is almost stable at low temperatures, but increases exponentially with a working temperature in the range of 180 K to room temperature. The main reason for this phenomenon is the short upper level lifetime and serious thermal temperature rise when the working temperature is higher than 180 K. The calculated optimum output mirror transmittance is about 35% and the performance of a continuous-wave Fe2+:ZnSe laser is more efficient at a lower operating temperature.
Continuous-wave and Q-switched microchip laser performance of Yb:Y3Sc2Al3O12 crystals.
Dong, Jun; Ueda, Ken-ichi; Kaminskii, Alexander A
2008-04-14
Optical properties of Yb:Y(3)Sc(2)Al(3)O(12) crystal were investigated and compared with those from Yb:YAG crystals. The broad absorption and emission spectra of Yb:Y(3)Sc(2)Al(3)O(12) show that this crystal is very suitable for laser-diode pumping and ultrafast laser pulse generation. Laser-diode pumped continuous-wave and passively Q-switched Yb:Y(3)Sc(2)Al(3)O(12) lasers with Cr(4+):YAG crystals as saturable absorber have been demonstrated for the first time. Continuous-wave output power of 1.12 W around 1032 nm (multi-longitudinal modes) was measured with an optical-to-optical efficiency of 30%. Laser pulses with pulse energy of over 31 microJ and pulse width of 2.5 ns were measured at repetition rate of over 12.7 kHz; a corresponding peak power of over 12 kW was obtained. The longitudinal mode selection by a thin plate of Cr(4+):YAG as an intracavity etalon was also observed in passively Q-switched Yb:Y(3)Sc(2)Al(2)O(12) microchip lasers.
A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response
NASA Astrophysics Data System (ADS)
Zhang, Yixin; Xia, Lan; Cao, Chunqi; Sun, Zhenhong; Li, Yanting; Zhang, Xuping
2017-01-01
A hybrid single-end-access Mach-Zehnder interferometer (MZI) and phase sensitive OTDR (Φ-OTDR) vibration sensing system is proposed and demonstrated experimentally. In our system, the narrow optical pulses and the continuous wave are injected into the fiber through the front end of the fiber at the same time. And at the rear end of the fiber, a frequency-shift-mirror (FSM) is designed to back propagate the continuous wave modulated by the external vibration. Thus the Rayleigh backscattering signals (RBS) and the back propagated continuous wave interfere with the reference light at the same end of the sensing fiber and a single-end-access configuration is achieved. The RBS can be successfully separated from the interference signal (IS) through digital signal process due to their different intermediate frequency based on frequency division multiplexing technique. There is no influence between these two schemes. The experimental results show 10 m spatial resolution and up to 1.2 MHz frequency response along a 6.35 km long fiber. This newly designed single-end-access setup can achieve vibration events locating and high frequency events response, which can be widely used in health monitoring for civil infrastructures and transportation.
Continuous-wave mid-infrared photonic crystal light emitters at room temperature
NASA Astrophysics Data System (ADS)
Weng, Binbin; Qiu, Jijun; Shi, Zhisheng
2017-01-01
Mid-infrared photonic crystal enhanced lead-salt light emitters operating under continuous-wave mode at room temperature were investigated in this work. For the device, an active region consisting of 9 pairs of PbSe/Pb0.96Sr0.04Se quantum wells was grown by molecular beam epitaxy method on top of a Si(111) substrate which was initially dry-etched with a two-dimensional photonic crystal structure in a pattern of hexagonal holes. Because of the photonic crystal structure, an optical band gap between 3.49 and 3.58 µm was formed, which matched with the light emission spectrum of the quantum wells at room temperature. As a result, under optical pumping, using a near-infrared continuous-wave semiconductor laser, the device exhibited strong photonic crystal band-edge mode emissions and delivered over 26.5 times higher emission efficiency compared to the one without photonic crystal structure. The output power obtained was up to 7.68 mW (the corresponding power density was 363 mW/cm2), and a maximum quantum efficiency reached to 1.2%. Such photonic crystal emitters can be used as promising light sources for novel miniaturized gas-sensing systems.
Mc Cullagh, J J; Setchell, D J; Gulabivala, K; Hussey, D L; Biagioni, P; Lamey, P J; Bailey, G
2000-07-01
This study was designed to use two methods of temperature measurement to analyse and quantify the in vitro root surface temperature changes during the initial stage of the continuous wave technique of obturation of 17 single-rooted premolar teeth with standard canal preparations. A model was designed to allow simultaneous temperature measurement with both thermocouples and an infrared thermal imaging system. Two thermocouples were placed on the root surface, one coronally and the other near the root apex. A series of thermal images were recorded by an infrared thermal imaging camera during the downpack procedure. The mean temperature rises on the root surface, as measured by the two thermocouples, averaged 13.9 degrees C over the period of study, whilst the infrared thermal imaging system measured an average rise of 28.4 degrees C at the same sites. Temperatures at the more apical point were higher than those measured coronally. After the first wave of condensation, the second activation of the plugger in the canal prior to its removal always resulted in a secondary rise in temperature. The thermal imaging system detected areas of greater temperature change distant from the two selected thermocouple sites. The continuous wave technique of obturation may result in high temperatures on the external root surface. Infrared thermography is a useful device for mapping patterns of temperature change over a large area.
Tam, A M W; Qi, G; Srivastava, A K; Wang, X Q; Fan, F; Chigrinov, V G; Kwok, H S
2014-06-10
In this paper, we present a novel design configuration of double DHFLC wave plate continuous tunable Lyot filter, which exhibits a rapid response time of 185 μs, while the high-contrast ratio between the passband and stop band is maintained throughout a wide tunable range. A DHFLC tunable filter with a high-contrast ratio is attractive for realizing high-speed optical processing devices, such as multispectral and hyperspectral imaging systems, real-time remote sensing, field sequential color display, and wavelength demultiplexing in the metro network. In this work, an experimental prototype for a single-stage DHFLC Lyot filter of this design has been fabricated using photoalignment technology. We have demonstrated that the filter has a continuous tunable range of 30 nm for a blue wavelength, 45 nm for a green wavelength, and more than 50 nm for a red wavelength when the applied voltage gradually increases from 0 to 8 V. Within this tunable range, the contrast ratio of the proposed double wave plate configuration is maintained above 20 with small deviation in the transmittance level. Simulation and experimental results showed the proposed double DHFLC wave plate configuration enhances the contrast ratio of the tunable filter and, thus, increases the tunable range of the filter when compared with the Lyot filter using a single DHFLC wave plate. Moreover, we have proposed a polarization insensitive configuration for which the efficiency of the existing prototype can theoretically be doubled by the use of polarization beam splitters.
Subjective assessment of simulated helicopter blade-slap noise
NASA Technical Reports Server (NTRS)
Lawton, B. W.
1976-01-01
The effects of several characteristics of helicopter blade slap upon human annoyance are examined. Blade slap noise was simulated by using continuous and impulsive noises characterized by five parameters: The number of sine waves in a single impulse; the frequency of the sine waves; the impulse repetition frequency; the sound pressure level (SPL) of the continuous noise; and the idealized crest factor of the impulses. Ten second samples of noise were synthesized with each of the five parameters at representative levels. The annoyance of each noise was judged by 40 human subjects. Analysis of the subjective data indicated that each of the five parameters had a statistically significant effect upon the annoyance judgments. The impulse crest factor and SPL of the continuous noise had very strong positive relationships with annoyance. The other parameters had smaller, but still significant, effects upon the annoyance judgments.
Active mode locking of lasers by piezoelectrically induced diffraction modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krausz, F.; Turi, L.; Kuti, C.
A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 {mu}m and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate ofmore » 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.« less
Custom chipset and compact module design for a 75-110 GHz laboratory signal source
NASA Astrophysics Data System (ADS)
Morgan, Matthew A.; Boyd, Tod A.; Castro, Jason J.
2016-12-01
We report on the development and characterization of a compact, full-waveguide bandwidth (WR-10) signal source for general-purpose testing of mm-wave components. The monolithic microwave integrated circuit (MMIC) based multichip module is designed for compactness and ease-of-use, especially in size-constrained test sets such as a wafer probe station. It takes as input a cm-wave continuous-wave (CW) reference and provides a factor of three frequency multiplication as well as amplification, output power adjustment, and in situ output power monitoring. It utilizes a number of custom MMIC chips such as a Schottky-diode limiter and a broadband mm-wave detector, both designed explicitly for this module, as well as custom millimeter-wave multipliers and amplifiers reported in previous papers.
Space-Based Gravitational-Wave Observations as Tools for Testing General Relativity
NASA Technical Reports Server (NTRS)
Will, Clifford M.
2004-01-01
We continued a project, to analyse the ways in which detection and study of gravitational waves could provide quantitative tests of general relativity, with particular emphasis on waves that would be detectable by space-based observatories, such as LISA. This work had three foci: 1) Tests of scalar-tensor theories of gravity that, could be done by analyzing gravitational waves from neutron stars inspiralling into massive black holes, as detectable by LISA; 2) Study of alternative theories of gravity in which the graviton could be massive, and of how gravitational-wave observations by space-based detectors, solar-system tests, and cosmological observations could constrain such theories; and 3) Study of gravitational-radiation back reaction of particles orbiting black holes in general relativity, with emphasis on the effects of spin.
Electroconvulsive therapy-induced Wolff-Parkinson-White syndrome: a case report.
Enomoto, Shingo; Yoshino, Aihide; Takase, Bonpei; Kuwahara, Tatsuro; Tatsuzawa, Yasutaka; Nomura, Soichiro
2013-01-01
Wolff-Parkinson-White (WPW) syndrome is characterized by premature ventricular excitation due to the presence of an abnormal accessory pathway. Electrocardiography (ECG) of patients with WPW syndrome portrays a short PR interval and a wide QRS interval with a delta wave. Herein, we report the case of a patient with schizophrenia who developed a wide QRS interval with a delta wave immediately following electroconvulsive therapy (ECT). Initially, the delta wave disappeared within 2 days after ECT. However, the duration of the delta wave increased exponentially to 4 months when ECT was repeated. Although the patient's cardiocirculatory dynamics remained normal, we continued to monitor her ECG until the delta wave disappeared because WPW syndrome can lead to serious arrhythmia. Copyright © 2013 Elsevier Inc. All rights reserved.
Predicting dangerous ocean waves with spaceborne synthetic aperture radar
NASA Technical Reports Server (NTRS)
Beal, R. C.
1984-01-01
It is pointed out that catastrophes, related to the occurrence of strong winds and large ocean waves, can consume more lives and property than most naval battles. The generation of waves by wind are considered, Pierson et al. (1955) have incorporated statistical concepts into a wave forecast model. The concept of an 'ocean wave spectrum' was introduced, with the wind acting independently on each Fourier component. However, even after 30 years of research and debate, the generation, propagation, and dissipation of the spectrum under arbitrary conditions continue to be controversial. It has now been found that spaceborne SAR has a surprising ability to precisely monitor spatially evolving wind and wave fields. Approaches to overcome certain weaknesses of the SAR method are discussed, taking into account the second Shuttle Imaging Radar experiment, and a possible long-term solution provided by Spectrasat. Spectrasat should be a low-altitude (200 to 250 km) satellite with active drag compensation.
Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar
2015-04-01
When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.
NASA Technical Reports Server (NTRS)
1974-01-01
The area of wave experiments for the PPEPL is considered in broad terms. It was found that most experiments in this area can be classified typically by a few generalized experiments. These experiment possibilities are discussed in terms of advantages, disadvantages, and probable areas for future investigation. It was concluded that the areas where wave experiments have the most promise are wave sources, wave propagation, and nonlinear interactions and should be implemented in that order. It was recommended that the PPEPL facility remain sufficiently flexible to handle new ideas as they appear, and a continuing effort should be made to solicit new ideas and approaches. It was also felt that detailed investigations should begin as soon as possible in the areas of antennas, both conventional and particle types, and wave-particle interaction experiments. For Vol. 1, see N74-28169; for Vol. 3, see N74-28171.
Chen, Yulong; Irfan, Muhammad; Uchimura, Taro; Zhang, Ke
2018-03-27
Rainfall-induced landslides are one of the most widespread slope instability phenomena posing a serious risk to public safety worldwide so that their temporal prediction is of great interest to establish effective warning systems. The objective of this study is to determine the effectiveness of elastic wave velocities in the surface layer of the slope in monitoring, prediction and early warning of landslide. The small-scale fixed and varied, and large-scale slope model tests were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Based on the preliminary results of this analysis, the method using the change in elastic wave velocity proves superior for landslide early warning and suggests that a warning be issued at switch of wave velocity decrease rate.
NASA Astrophysics Data System (ADS)
Prikner, K.
Using reference models of the daytime and night ionosphere of geomagnetic mid-latitudes in a quiescent period in summer, autumn and winter, the seasonal variation of ULF frequency characteristics of amplitude and energy correction factors of the ionosphere - vertical reflexibility, transmissibility and absorption, are studied. The existence of two frequency bands within the ULF range with different properties of ionospheric wave filtration is pointed out: (a) continuous band f of less than 0.1 to 0.2 Hz with the mirror effect of the ionosphere with respect to the incident wave, but with small ionospheric absorption of wave energy; and (b) a Hz band of greater than 0.2 Hz with resonance frequency windows and wave emissions with a sharply defined frequency structure. The seasonal variation from summer to winter indicates a decrease in wave energy absorption in the ionosphere and a slight displacement of the resonances towards higher frequencies.
NASA Astrophysics Data System (ADS)
Prikner, K.
Using reference models of the daytime and night ionosphere of geomagnetic mid-latitudes in a quiescent period in summer, autumn and winter, the seasonal variation of ULF frequency characteristics of amplitude and energy correction factors of the ionosphere - vertical reflexibility, transmissibility, are studied. The existence of two frequency bands within the ULF range with different properties of ionospheric wave filtration is pointed out: (1) continuous band f 0.1-0.2 Hz with the mirror effect of the ionosphere with respect to the incident wave, but with small ionospheric absorption of wave energy; (2) the f 0.2 Hz band with resonance frequency windows and wave emissions with a sharply defined frequency structure. The seasonal variation from summer to winter indicates a decrease in wave energy absorption in the ionosphere and a slight displacement of the resonances towards higher frequencies.
NASA Technical Reports Server (NTRS)
Balmain, K. G.; James, H. G.; Bantin, C. C.
1991-01-01
A recent space experiment confirmed sheath-wave propagation of a kilometer-long insulated wire in the ionosphere, oriented parallel to the Earth's magnetic field. This space tether experiment, Oedipus-A, showed a sheath-wave passband up to about 2 MHz and a phase velocity somewhat slower than the velocity of light in a vacuum, and also demonstrated both ease of wave excitation and low attenuation. The evidence suggests that, on any large structure in low Earth orbit, transient or continuous wave electromagnetic interference, once generated, could propagate over the structure via sheath waves, producing unwanted signal levels much higher than in the absence of the ambient plasma medium. Consequently, there is a need for a review of both electromagnetic interference/electromagnetic compatibility standards and ground test procedures as they apply to large structures in low Earth orbit.
NASA Astrophysics Data System (ADS)
Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.
2013-12-01
Bursty Langmuir waves have been interpreted as the result of the superposition of multiple Langmuir normal-mode waves, with the resultant modulation being the beat pattern between waves with e.g. 10 kHz frequency differences. The normal-mode waves could be generated either through wave-wave interactions with VLF waves, or through independent linear processes. The CHARM II sounding rocket was launched into a substorm at 9:49 UT on 15 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the Dartmouth High-Frequency Experiment (HFE), a receiver system which effectively yields continuous (100% duty cycle) E-field waveform measurements up to 5 MHz, as well as a number of charged particle detectors, including a wave-particle correlator. The payload also included a magnetometer and several low-frequency wave instruments. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, including several hundred discrete Langmuir-wave bursts. We show results of a statistical analysis of CHARM II data for the entire flight, comparing HFE data with the other payload instruments, specifically looking at timings and correlations between bursty Langmuir waves, Alfvén and whistler-mode waves, and electrons precipitating parallel to the magnetic field. Following a similar analysis on TRICE dayside sounding rocket data, we also calculate the fraction of correlated waves with VLF waves at appropriate frequencies to support the wave-wave interaction bursty Langmuir wave generation mechanism, and compare to results from CHARM II nightside data.
Re-radiation of acoustic waves from the A0 wave on a submerged elastic shell
NASA Astrophysics Data System (ADS)
Ahyi, A. C.; Cao, Hui; Raju, P. K.; Überall, Herbert
2005-07-01
We consider evacuated thin semi-infinite shells immersed in a fluid, which may be either of cylindrical shape with a hemispherical shell endcap, or formed two-dimensionally by semi-infinite parallel plates joined together by a semi-cylinder. The connected shell portions are joined in a manner to satisfy continuity but with a discontinuous radius of curvature. Acoustic waves are considered incident along the axis of symmetry (say the z axis) onto the curved portion of the shell, where they, at the critical angle of coincidence, generate Lamb and Stoneley-type waves in the shell. Computations were carried out using a code developed by Cao et al. [Chinese J. Acoust. 14, 317 (1995)] and was used in order to computationally visualize the waves in the fluid that have been re-radiated by the shell waves a the critical angle. The frequency range was below that of the lowest Lamb wave, and only the A0 wave (and partly the S0 wave) was observed to re-radiate into the fluid under our assumptions. The results will be compared to experimental results in which the re-radiated waves are optically visualized by the Schardin-Cranz schlieren method. .
Lunar LIGO and gravitational wave astronomy on the Moon
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lafave, Norman
1994-01-01
Gravitational wave astronomy continues to be one of the exploration concepts under consideration in NASA's strategy for conducting physics and astrophysics from the lunar surface. As with other proposals for new concepts in science and astronomy from the Moon, this one has a number of very interesting features which need to be developed further in order to assess them adequately. The possibility of robotic deployment of a gravitational wave antenna on the Moon in a triangular configuration and the question of closure on the third interferometer leg are discussed here.
Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow
Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.
2016-01-01
Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169
NASA Astrophysics Data System (ADS)
Pizzella, G.
2016-12-01
A history of the experiments for the search of gravitational waves, with emphasis on the experiments made by the Rome group, is given. The search for gravitational waves was initiated by the brilliant scientific acumen of Joseph Weber. In this paper we start from the early times of the resonant detectors at room temperature and continue with the cryogenic resonant detectors: STANFORD, ALLEGRO, AURIGA, EXPLORER, NAUTILUS and NIOBE. These cryogenic detectors reached a sensitivity able to observe gravitational waves generated by the conversion of about 0.001 solar masses in the Galaxy. This was an improvement by a factor of a few thousand in energy with respect to the early room temperature experiments. No clear signals due to gravitational waves have been observed with this technique. This research, that has lasted four decades, has paved the way to the more sensitive detectors for gravitational waves, the long-arm laser interferometers, which announced, on February 12th 2016, the first observation of gravitational waves.
Gravitational waves from vacuum first-order phase transitions: From the envelope to the lattice
NASA Astrophysics Data System (ADS)
Cutting, Daniel; Hindmarsh, Mark; Weir, David J.
2018-06-01
We conduct large scale numerical simulations of gravitational wave production at a first-order vacuum phase transition. We find a power law for the gravitational wave power spectrum at high wave number which falls off as k-1.5 rather than the k-1 produced by the envelope approximation. The peak of the power spectrum is shifted to slightly lower wave numbers from that of the envelope approximation. The envelope approximation reproduces our results for the peak power less well, agreeing only to within an order of magnitude. After the bubbles finish colliding, the scalar field oscillates around the true vacuum. An additional feature is produced in the UV of the gravitational wave power spectrum, and this continues to grow linearly until the end of our simulation. The additional feature peaks at a length scale close to the bubble wall thickness and is shown to have a negligible contribution to the energy in gravitational waves, providing the scalar field mass is much smaller than the Planck mass.
Investigation of the role of gravity waves in the generation of equatorial bubbles
NASA Technical Reports Server (NTRS)
Johnson, Francis S.; Coley, William R.
1995-01-01
The following areas of interest in this progress report are: (1) the continuation of software development in the examination of F-region gravity-wave power using in-situ data from the Atmosphere Explorer (AE-E); (2) the inquiry into the use of the San Marco data for the study of the initiation and growth of bubbles, particularly when the satellite passes through the early evening hours at relatively high altitudes, and the development of bubbles using not only the San Marco data but includes the use of airglow observations made in Hawaii; and (3) the promising development in the observation of distinct well formed waves at about 400 km altitude in the equatorial region. These waves look very much like waves seen over the polar cap that are attributed to internal gravity waves in the neutral atmosphere driving ionization up and down the magnetic field lines. These equatorial waves show no modulation of the total ion concentration.
Development of a contrast phantom for active millimeter-wave imaging systems
NASA Astrophysics Data System (ADS)
Barber, Jeffrey; Weatherall, James C.; Brauer, Carolyn S.; Smith, Barry T.
2011-06-01
As the development of active millimeter wave imaging systems continues, it is necessary to validate materials that simulate the expected response of explosives. While physics-based models have been used to develop simulants, it is desirable to image both the explosive and simulant together in a controlled fashion in order to demonstrate success. To this end, a millimeter wave contrast phantom has been created to calibrate image grayscale while controlling the configuration of the explosive and simulant such that direct comparison of their respective returns can be performed. The physics of the phantom are described, with millimeter wave images presented to show successful development of the phantom and simulant validation at GHz frequencies.
Impulsive spherical gravitational waves
NASA Astrophysics Data System (ADS)
Aliev, A. N.; Nutku, Y.
2001-03-01
Penrose's identification with warp provides the general framework for constructing the continuous form of impulsive gravitational wave metrics. We present the two-component spinor formalism for the derivation of the full family of impulsive spherical gravitational wave metrics which brings out the power in identification with warp and leads to the simplest derivation of exact solutions. These solutions of the Einstein vacuum field equations are obtained by cutting Minkowski space into two pieces along a null cone and re-identifying them with warp which is given by an arbitrary nonlinear holomorphic transformation. Using two-component spinor techniques we construct a new metric describing an impulsive spherical gravitational wave where the vertex of the null cone lies on a worldline with constant acceleration.
Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin
NASA Astrophysics Data System (ADS)
Baronio, Fabio; Wabnitz, Stefan; Kodama, Yuji
2016-04-01
There is considerable fundamental and applicative interest in obtaining nondiffractive and nondispersive spatiotemporal localized wave packets propagating in optical cubic nonlinear or Kerr media. Here, we analytically predict the existence of a novel family of spatiotemporal dark lump solitary wave solutions of the (2 +1 )D nonlinear Schrödinger equation. Dark lumps represent multidimensional holes of light on a continuous wave background. We analytically derive the dark lumps from the hydrodynamic exact soliton solutions of the (2 +1 )D shallow water Kadomtsev-Petviashvili model, inheriting their complex interaction properties. This finding opens a novel path for the excitation and control of optical spatiotemporal waveforms of hydrodynamic footprint and multidimensional optical extreme wave phenomena.
ELF propagation in the plasmasphere based on satellite observations of discrete and continuous forms
NASA Technical Reports Server (NTRS)
Muzzio, J. L. R.
1971-01-01
The propagation of electromagnetic waves in a nonhomogeneous anisotropic medium is examined from the point of view of geometrical optics. In particular, the propagation of ELF waves in the magnetosphere is described in terms of the electron and ion densities and the intensity and inclination of the earth's magnetic field. The analysis of the variations of wave normal angle along the ray path is extended to include the effects of ions. A comparison of the relative importance of each of the above parameters in controlling the orientation of the wave normals is made in the region of the magnetosphere where most of the ion whistlers have been detected.
Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin.
Baronio, Fabio; Wabnitz, Stefan; Kodama, Yuji
2016-04-29
There is considerable fundamental and applicative interest in obtaining nondiffractive and nondispersive spatiotemporal localized wave packets propagating in optical cubic nonlinear or Kerr media. Here, we analytically predict the existence of a novel family of spatiotemporal dark lump solitary wave solutions of the (2+1)D nonlinear Schrödinger equation. Dark lumps represent multidimensional holes of light on a continuous wave background. We analytically derive the dark lumps from the hydrodynamic exact soliton solutions of the (2+1)D shallow water Kadomtsev-Petviashvili model, inheriting their complex interaction properties. This finding opens a novel path for the excitation and control of optical spatiotemporal waveforms of hydrodynamic footprint and multidimensional optical extreme wave phenomena.
Bulk Nonlinear Elastic Strain Waves in a Bilayer Coaxial Cylindrical Rod
NASA Astrophysics Data System (ADS)
Gula, I. A.; Samsonov, A. M.
2017-12-01
The problem of the propagation of long nonlinear elastic strain waves in a bilayer coaxial cylindrical rod with an ideal contact between the layers has been considered. Expressions for transverse displacements through longitudinal displacements have been derived. The former satisfies free boundary conditions and continuity conditions for displacements and stresses at the interlayer interface with the desired accuracy. It has been shown how these expressions generalize the well-known plane-section and Love hypotheses for an isotropic homogeneous rod. An equation for the propagation of a nonlinearly elastic strain longitudinal wave has been derived, and its particular solution in the form of a solitary traveling wave has been studied.
Photoacoustic Effect Generated from an Expanding Spherical Source
NASA Astrophysics Data System (ADS)
Bai, Wenyu; Diebold, Gerald J.
2018-02-01
Although the photoacoustic effect is typically generated by amplitude-modulated continuous or pulsed radiation, the form of the wave equation for pressure that governs the generation of sound indicates that optical sources moving in an absorbing fluid can produce sound as well. Here, the characteristics of the acoustic wave produced by a radially symmetric Gaussian source expanding outwardly from the origin are found. The unique feature of the photoacoustic effect from the spherical source is a trailing compressive wave that arises from reflection of an inwardly propagating component of the wave. Similar to the one-dimensional geometry, an unbounded amplification effect is found for the Gaussian source expanding at the sound speed.
High-Frequency Gravitational Wave research and application to exoplanet studies
NASA Astrophysics Data System (ADS)
Baker, R. M. L., Jr.
2017-10-01
A discussion of the history of High-Frequency Gravitational Wave (HFGW) research is first presented. Over the years until modern times, starting with the first mention of Gravitational Waves by Poincaré in 1905 and the definition of HFGWs in 1961 by Robert L. Forward, the discussion continues concerning the international research efforts to detect HFGWs. The article highlights the accomplishments of HFGW researchers in China, Russia, Ukraine, England, Australia, Japan, Germany, Spain, Italy, and the United States. Comparisons are made with Low-Frequency Gravitational Wave (LFGW) research, especially concerning the Laser Interferometer Gravitational Observatory or LIGO. In fine, there are presented several interesting perspectives concerning cosmology, the speed of time and, especially, exoplanet applications of HFGWs.
Effect of film slicks on near-surface wind
NASA Astrophysics Data System (ADS)
Charnotskii, Mikhail; Ermakov, Stanislav; Ostrovsky, Lev; Shomina, Olga
2016-09-01
The transient effects of horizontal variation of sea-surface wave roughness due to surfactant films on near-surface turbulent wind are studied theoretically and experimentally. Here we suggest two practical schemes for calculating variations of wind velocity profiles near the water surface, the average short-wave roughness of which is varying in space and time when a film slick is present. The schemes are based on a generalized two-layer model of turbulent air flow over a rough surface and on the solution of the continuous model involving the equation for turbulent kinetic energy of the air flow. Wave tank studies of wind flow over wind waves in the presence of film slicks are described and compared with theory.
Hydroelectric power from ocean waves
NASA Astrophysics Data System (ADS)
Raghavendran, K.
1981-02-01
This paper describes a system which converts the variable energy of ocean waves into a steady supply of energy in a conventional form. The system consists of a set of floats and Persian wheels located off-shore and a storage reservoir on the shore. The floats oscillate vertically as the waves pass below them and turn their respective Persian wheels which lift sea water to a height and deliver to the reservoir through an interconnecting pipeline. The head of water in the reservoir operates a hydraulic turbine which in turn works a generator to supply electricity. Due to the recurrent wave action, water is maintained at the optimum level in the reservoir to ensure continuous power supply.
First low frequency all-sky search for continuous gravitational wave signals
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Amariutei, D. V.; Andersen, M.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Ashton, G.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Branco, V.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Colombini, M.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Damjanic, M. D.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez, J.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammer, D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hoelscher-Obermaier, J.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karlen, J. L.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kerrigan, J.; Key, J. S.; Khalili, F. Y.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J. T.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J. P.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Madden-Fong, D. X.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N. M.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, A.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okounkova, M.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W. E.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C. T.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H. R.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rodger, A. S.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sanchez, E.; Sandberg, V.; Sanders, J. R.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shaffery, P.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Tse, M.; Turconi, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, M.; Wade, L. E.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, K. J.; Williams, L.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-02-01
In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0 ×10-10 and +1.5 ×10-11 Hz /s , and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 1 0-24 and 2 ×10-23 at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of ˜2 with respect to the results of previous all-sky searches at frequencies below 80 Hz.
Covariance Function for Nearshore Wave Assimilation Systems
2018-01-30
covariance can be modeled by a parameterized Gaussian function, for nearshore wave assimilation applications, the covariance function depends primarily on...case of missing values at the compiled time series, the gaps were filled by weighted interpolation. The weights depend on the number of the...averaging, in order to create the continuous time series, filters out the dependency on the instantaneous meteorological and oceanographic conditions
Development and Calibration of Two and Four Wire Water Surface Wave Height Measurement Systems
1992-12-01
ON 0; "I$ -’ AGE S/N 0102-LF-01 -6603 Unclassified i Unclassified SECURITY CLASSIFICATION OF THIS PAGE 19 ABSTRACT (Continued) Hertz and decayed at 50...to 70 dB per decade, or ascu -5 to W-7 for both systems. Gravity wave phase speed and wavelength measurements were performed with capaci- tance system
Aerospace Medicine and Biology: A Continuing Bibliography with Indexes
1987-09-01
drug against motion sickness more closely than any other medication. Author A87-35422 THE USE OF EXTRACORPOREAL SHOCK WAVE LITHOTRIPSY IN AVIATORS A87...diagnosis and treatment Denmark) Aviation, Space, and Environmental Medicine (ISSN Extracorporeal shock wave lithotripsy (ESWL) has recently become 0095...and M. J. GRIFFIN ( Southampton , University, functional mechanisms are insufficient. Solutions are discussed England) Aviation, Space, and Environmental
Arrhythmia during extracorporeal shock wave lithotripsy.
Zeng, Z R; Lindstedt, E; Roijer, A; Olsson, S B
1993-01-01
A prospective study of arrhythmia during extracorporeal shock wave lithotripsy (ESWL) was performed in 50 patients, using an EDAP LT01 piezoelectric lithotriptor. The 12-lead standard ECG was recorded continuously for 10 min before and during treatment. One or more atrial and/or ventricular ectopic beats occurred during ESWL in 15 cases (30%). The occurrence of arrhythmia was similar during right-sided and left-sided treatment. One patient developed multifocal ventricular premature beats and ventricular bigeminy; another had cardiac arrest for 13.5 s. It was found that various irregularities of the heart rhythm can be caused even by treatment with a lithotriptor using piezoelectric energy to create the shock wave. No evidence was found, however, that the shock wave itself rather than vagal activation and the action of sedo-analgesia was the cause of the arrhythmia. For patients with severe underlying heart disease and a history of complex arrhythmia, we suggest that the ECG be monitored during treatment. In other cases, we have found continuous monitoring of oxygen saturation and pulse rate with a pulse oximeter to be perfectly reliable for raising the alarm when depression of respiration and vaso-vagal reactions occur.
Correspondence between discrete and continuous models of excitable media: trigger waves
NASA Technical Reports Server (NTRS)
Chernyak, Y. B.; Feldman, A. B.; Cohen, R. J.
1997-01-01
We present a theoretical framework for relating continuous partial differential equation (PDE) models of excitable media to discrete cellular automata (CA) models on a randomized lattice. These relations establish a quantitative link between the CA model and the specific physical system under study. We derive expressions for the CA model's plane wave speed, critical curvature, and effective diffusion constant in terms of the model's internal parameters (the interaction radius, excitation threshold, and time step). We then equate these expressions to the corresponding quantities obtained from solution of the PDEs (for a fixed excitability). This yields a set of coupled equations with a unique solution for the required CA parameter values. Here we restrict our analysis to "trigger" wave solutions obtained in the limiting case of a two-dimensional excitable medium with no recovery processes. We tested the correspondence between our CA model and two PDE models (the FitzHugh-Nagumo medium and a medium with a "sawtooth" nonlinear reaction source) and found good agreement with the numerical solutions of the PDEs. Our results suggest that the behavior of trigger waves is actually controlled by a small number of parameters.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dartez, L.; Dattilo, V.; Dave, I.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heidmann, A.; Heintze, M.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangano, V.; Mansell, G. L.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meacher, D.; Meadors, G. D.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Reula, O.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Serafinelli, R.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Swinkels, B.; Szczepanczyk, M.; Szeifert, G.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2015-01-01
In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational-wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed assuming both that polarization parameters are completely unknown and that they are known with some uncertainty, as derived from x-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of 2 below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.
NASA Technical Reports Server (NTRS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.;
2015-01-01
In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from X-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.
PCA Based Stress Monitoring of Cylindrical Specimens Using PZTs and Guided Waves
Mujica, Luis; Ruiz, Magda; Camacho, Johanatan
2017-01-01
Since mechanical stress in structures affects issues such as strength, expected operational life and dimensional stability, a continuous stress monitoring scheme is necessary for a complete integrity assessment. Consequently, this paper proposes a stress monitoring scheme for cylindrical specimens, which are widely used in structures such as pipelines, wind turbines or bridges. The approach consists of tracking guided wave variations due to load changes, by comparing wave statistical patterns via Principal Component Analysis (PCA). Each load scenario is projected to the PCA space by means of a baseline model and represented using the Q-statistical indices. Experimental validation of the proposed methodology is conducted on two specimens: (i) a 12.7 mm (1/2″) diameter, 0.4 m length, AISI 1020 steel rod, and (ii) a 25.4 mm (1″) diameter, 6m length, schedule 40, A-106, hollow cylinder. Specimen 1 was subjected to axial loads, meanwhile specimen 2 to flexion. In both cases, simultaneous longitudinal and flexural guided waves were generated via piezoelectric devices (PZTs) in a pitch-catch configuration. Experimental results show the feasibility of the approach and its potential use as in-situ continuous stress monitoring application. PMID:29194384
Towards Understanding the Mechanism of Receptivity and Bypass Dynamics in Laminar Boundary Layers
NASA Technical Reports Server (NTRS)
Lasseigne, D. G.; Criminale, W. O.; Joslin, R. D.; Jackson, T. L.
1999-01-01
Three problems concerning laminar-turbulent transition are addressed by solving a series of initial value problems. The first problem is the calculation of resonance within the continuous spectrum of the Blasius boundary layer. The second is calculation of the growth of Tollmien-Schlichting waves that are a direct result of disturbances that only lie outside of the boundary layer. And, the third problem is the calculation of non-parallel effects. Together, these problems represent a unified approach to the study of freestream disturbance effects that could lead to transition. Solutions to the temporal, initial-value problem with an inhomogeneous forcing term imposed upon the flow is sought. By solving a series of problems, it is shown that: A transient disturbance lying completely outside of the boundary layer can lead to the growth of an unstable Tollmien-Schlichting wave. A resonance with the continuous spectrum leads to strong amplification that may provide a mechanism for bypass transition once nonlinear effects are considered. A disturbance with a very weak unstable Tollmien-Schlichting wave can lead to a much stronger Tollmien-Schlichting wave downstream, if the original disturbance has a significant portion of its energy in the continuum modes.
Ferromagnetic resonance in a topographically modulated permalloy film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sklenar, J.; Tucciarone, P.; Lee, R. J.
2015-04-01
A major focus within the field of magnonics involves the manipulation and control spin wave modes. This is usually done by patterning continuous soft magnetic films. Here, we report on work in which we use topographic modifications of a continuous magnetic thin film, rather than lithographic patterning techniques, to modify the magnon spectrum. To demonstrate this technique we have performed in-plane, broad-band, ferromagnetic res- onance studies on a 100 nm Permalloy film sputtered unto a colloidal crystal with individual sphere diameters of 200 nm. Effects resulting from the, ideally, six-fold symmetric underlying colloidal crystal were studied as a function ofmore » the in plane field angle through experiment and micromagnetic modeling. Experimentally, we find two primary spin wave modes; the ratio of the amplitude of these two modes exhibits a six-fold dependence. Modeling shows that both modes are fundamental modes that are nodeless in the unit cell but reside in different demagnetized regions of the unit cell. Additionally, modeling suggests the presence of new higher order topographically modified spin wave modes. Our results demonstrate that topographic modification of magnetic thin films opens new directions for manipulating spin wave modes.« less
Time-Lapse Monitoring with 4D Seismic Coda Waves in Active, Passive and Ambient Noise Data
NASA Astrophysics Data System (ADS)
Lumley, D. E.; Kamei, R.; Saygin, E.; Shragge, J. C.
2017-12-01
The Earth's subsurface is continuously changing, due to temporal variations in fluid flow, stress, temperature, geomechanics and geochemistry, for example. These physical changes occur at broad tectonic and earthquake scales, and also at very detailed near-surface and reservoir scales. Changes in the physical states of the earth cause time-varying changes in the physical properties of rocks and fluids, which can be monitored with natural or manmade seismic waves. Time-lapse (4D) seismic monitoring is important for applications related to natural and induced seismicity, hydrocarbon and groundwater reservoir depletion, CO2 sequestration etc. An exciting new research area involves moving beyond traditional methods in order to use the full complex time-lapse scattered wavefield (4D coda waves) for both manmade active-source 3D/4D seismic data, and also to use continuous recordings of natural-source passive seismic data, especially (micro) earthquakes and ocean ambient noise. This research involves full wave-equation approaches including waveform inversion (FWI), interferometry, Large N sensor arrays, "big data" information theory, and high performance supercomputing (HPC). I will present high-level concepts and recent data results that are quite spectacular and highly encouraging.
Energy transport in weakly nonlinear wave systems with narrow frequency band excitation.
Kartashova, Elena
2012-10-01
A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction, conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example given-surface water waves with dispersion function ω(2)=gk and small nonlinearity-the D model predicts asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous energy spectrum, excitation parameters properly chosen, yields the saturated Phillips' power spectrum ~g(2)ω(-5). The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.
NASA Astrophysics Data System (ADS)
Blanc, Elisabeth; Rickel, Dwight
1989-06-01
Different wave fronts affected by significant nonlinearities have been observed in the ionosphere by a pulsed HF sounding experiment at a distance of 38 km from the source point of a 4800-kg ammonium nitrate and fuel oil (ANFO) explosion on the ground. These wave fronts are revealed by partial reflections of the radio sounding waves. A small-scale irregular structure has been generated by a first wave front at the level of a sporadic E layer which characterized the ionosphere at the time of the experiment. The time scale of these fluctuations is about 1 to 2 s; its lifetime is about 2 min. Similar irregularities were also observed at the level of a second wave front in the F region. This structure appears also as diffusion on a continuous wave sounding at horizontal distances of the order of 200 km from the source. In contrast, a third front unaffected by irregularities may originate from the lowest layers of the ionosphere or from a supersonic wave front propagating at the base of the thermosphere. The origin of these structures is discussed.
Identifying Changes in the Probability of High Temperature, High Humidity Heat Wave Events
NASA Astrophysics Data System (ADS)
Ballard, T.; Diffenbaugh, N. S.
2016-12-01
Understanding how heat waves will respond to climate change is critical for adequate planning and adaptation. While temperature is the primary determinant of heat wave severity, humidity has been shown to play a key role in heat wave intensity with direct links to human health and safety. Here we investigate the individual contributions of temperature and specific humidity to extreme heat wave conditions in recent decades. Using global NCEP-DOE Reanalysis II daily data, we identify regional variability in the joint probability distribution of humidity and temperature. We also identify a statistically significant positive trend in humidity over the eastern U.S. during heat wave events, leading to an increased probability of high humidity, high temperature events. The extent to which we can expect this trend to continue under climate change is complicated due to variability between CMIP5 models, in particular among projections of humidity. However, our results support the notion that heat wave dynamics are characterized by more than high temperatures alone, and understanding and quantifying the various components of the heat wave system is crucial for forecasting future impacts.
Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor
Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael
2013-01-01
Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner. PMID:23447010
The wave-field from an array of periodic emitters driven simultaneously by a broadband pulse.
Dixon, Steve; Hill, Samuel; Fan, Yichao; Rowlands, George
2013-06-01
The use of phased array methods are commonplace in ultrasonic applications, where controlling the variation of the phase between the narrowband emitters in an array facilitates beam steering and focusing of ultrasonic waves. An approach is presented here whereby emitters of alternating polarity arranged in a one-dimensional array are pulsed simultaneously, and have sufficiently wide, controlled bandwidth to emit a two-dimensional wave. This pulsed approach provides a rapid means of simultaneously covering a region of space with a wave-front, whereby any wave that scatters or reflects off a body to a detector will have a distinct arrival time and frequency. This is a general wave phenomenon with a potential application in radar, sonar, and ultrasound. The key result is that one can obtain a smooth, continuous wave-front emitted from the array, over a large solid angle, whose frequency varies as a function of angle to the array. Analytic and finite element models created to describe this phenomenon have been validated with experimental results using ultrasonic waves in metal samples.
Multi reflection of Lamb wave emission in an acoustic waveguide sensor.
Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael
2013-02-27
Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.
Attenuation of Slab determined from T-wave generation by deep earthquakes
NASA Astrophysics Data System (ADS)
Huang, J.; Ni, S.
2006-05-01
T-wave are seismically generated acoustic waves that propagate over great distance in the ocean sound channel (SOFAR). Because of the high attenuation in both the upper mantle and the ocean crust, T wave is rarely observed for earthquakes deeper than 80 km. However some deep earthquakes deeper than 80km indeed generate apparent T-waves if the subducted slab is continuous Okal et al. (1997) . We studied the deep earthquakes in the Fiji/Tonga region, where the subducted lithosphere is old and thus with small attenuation. After analyzing 33 earthquakes with the depth from 10 Km to 650 Km in Fiji/Tonga, we observed and modeled obvious T-phases from these earthquakes observed at station RAR. We used the T-wave generated by deep earthquakes to compute the quality factor of the Fiji/Tonga slab. The method used in this study is followed the equation (1) by [Groot-Hedlin et al,2001][1]. A=A0/(1+(Ω0/Ω)2)×exp(-LΩ/Qv)×Ωn where the A is the amplitude computed by the practicable data, amplitude depending on the earthquakes, and A0 is the inherent frequency related with the earthquake's half duration, L is the length of ray path that P wave or S travel in the slab, and the V is the velocity of P-wave. In this study, we fix the n=2, by assuming the T- wave scattering points in the Fiji/Tonga island arc having the same attribution as the continental shelf. After some computing and careful analysis, we determined the quality factor of the Fiji/Tonga to be around 1000, Such result is consistent with results from the traditional P,S-wave data[Roth & Wiens,1999][2] . Okal et al. (1997) pointed out that the slab in the part of central South America was also a continuous slab, by modeling apparent T-waves from the great 1994 Bolivian deep earthquake in relation to channeling of S wave energy propagating upward through the slab[3]. [1]Catherine D. de Groot-Hedlin, John A. Orcutt, excitation of T-phases by seafloor scattering, J. Acoust. Soc, 109,1944-1954,2001. [2]Erich G.Roth and Douglas A.Wiens, Leroy M.Dorman, Seismic attenuation tomography of the Tonga-Fiji region using phase pair methods, Geophys. Res.,104,4795-4809,1999. [3]Emile A.Okal and Jacques Talandier, T waves from the great 1994 Bolivian deep earthquake in relation to channeling of S wave energy up the slab, J.Geophys. Res.,102(12):27421-27437,1997.
Dynamic response of a riser under excitation of internal waves
NASA Astrophysics Data System (ADS)
Lou, Min; Yu, Chenglong; Chen, Peng
2015-12-01
In this paper, the dynamic response of a marine riser under excitation of internal waves is studied. With the linear approximation, the governing equation of internal waves is given. Based on the rigid-lid boundary condition assumption, the equation is solved by Thompson-Haskell method. Thus the velocity field of internal waves is obtained by the continuity equation. Combined with the modified Morison formula, using finite element method, the motion equation of riser is solved in time domain with Newmark-β method. The computation programs are compiled to solve the differential equations in time domain. Then we get the numerical results, including riser displacement and transfiguration. It is observed that the internal wave will result in circular shear flow, and the first two modes have a dominant effect on dynamic response of the marine riser. In the high mode, the response diminishes rapidly. In different modes of internal waves, the deformation of riser has different shapes, and the location of maximum displacement shifts. Studies on wave parameters indicate that the wave amplitude plays a considerable role in response displacement of riser, while the wave frequency contributes little. Nevertheless, the internal waves of high wave frequency will lead to a high-frequency oscillation of riser; it possibly gives rise to fatigue crack extension and partial fatigue failure.
Interactions of solitary waves and compression/expansion waves in core-annular flows
NASA Astrophysics Data System (ADS)
Maiden, Michelle; Anderson, Dalton; El, Gennady; Franco, Nevil; Hoefer, Mark
2017-11-01
The nonlinear hydrodynamics of an initial step leads to the formation of rarefaction waves and dispersive shock waves in dispersive media. Another hallmark of these media is the soliton, a localized traveling wave whose speed is amplitude dependent. Although compression/expansion waves and solitons have been well-studied individually, there has been no mathematical description of their interaction. In this talk, the interaction of solitons and shock/rarefaction waves for interfacial waves in viscous, miscible core-annular flows are modeled mathematically and explored experimentally. If the interior fluid is continuously injected, a deformable conduit forms whose interfacial dynamics are well-described by a scalar, dispersive nonlinear partial differential equation. The main focus is on interactions of solitons with dispersive shock waves and rarefaction waves. Theory predicts that a soliton can either be transmitted through or trapped by the extended hydrodynamic state. The notion of reciprocity is introduced whereby a soliton interacts with a shock wave in a reciprocal or dual fashion as with the rarefaction. Soliton reciprocity, trapping, and transmission are observed experimentally and are found to agree with the modulation theory and numerical simulations. This work was partially supported by NSF CAREER DMS-1255422 (M.A.H.) and NSF GRFP (M.D.M.).
A longitudinal study of factors explaining attitude change towards gambling among adolescents
Pallesen, Ståle; Hanss, Daniel; Molde, Helge; Griffiths, Mark D.; Mentzoni, Rune Aune
2016-01-01
Background and aims No previous study has investigated changes in attitudes toward gambling from under legal gambling age to legal gambling age. The aim of the present study was therefore to investigate attitudinal changes during this transition and to identify predictors of corresponding attitude change. Methods In all 1239 adolescents from a national representative sample participated in two survey waves (Wave 1; 17.5 years; Wave 2; 18.5 years). Results From Wave 1 to Wave 2 the sample became more acceptant toward gambling. A regression analysis showed that when controlling for attitudes toward gambling at Wave 1 males developed more acceptant attitudes than females. Neuroticism was inversely related to development of acceptant attitudes toward gambling from Wave 1 to Wave 2, whereas approval of gambling by close others at Wave 1 was positively associated with development of more acceptant attitudes. Continuous or increased participation in gambling was related to development of more acceptant attitudes from Wave 1 to Wave 2. Conclusions Attitudes toward gambling became more acceptant when reaching legal gambling age. Male gender, approval of gambling by close others and gambling participation predicted development of positive attitudes toward gambling whereas neuroticism was inversely related to development of positive attitudes toward gambling over time. PMID:28092188
A longitudinal study of factors explaining attitude change towards gambling among adolescents.
Pallesen, Ståle; Hanss, Daniel; Molde, Helge; Griffiths, Mark D; Mentzoni, Rune Aune
2016-03-01
Background and aims No previous study has investigated changes in attitudes toward gambling from under legal gambling age to legal gambling age. The aim of the present study was therefore to investigate attitudinal changes during this transition and to identify predictors of corresponding attitude change. Methods In all 1239 adolescents from a national representative sample participated in two survey waves (Wave 1; 17.5 years; Wave 2; 18.5 years). Results From Wave 1 to Wave 2 the sample became more acceptant toward gambling. A regression analysis showed that when controlling for attitudes toward gambling at Wave 1 males developed more acceptant attitudes than females. Neuroticism was inversely related to development of acceptant attitudes toward gambling from Wave 1 to Wave 2, whereas approval of gambling by close others at Wave 1 was positively associated with development of more acceptant attitudes. Continuous or increased participation in gambling was related to development of more acceptant attitudes from Wave 1 to Wave 2. Conclusions Attitudes toward gambling became more acceptant when reaching legal gambling age. Male gender, approval of gambling by close others and gambling participation predicted development of positive attitudes toward gambling whereas neuroticism was inversely related to development of positive attitudes toward gambling over time.
NASA Astrophysics Data System (ADS)
Grimshaw, R. H. J.; Baines, P. G.; Bell, R. C.
1985-07-01
We consider the three-dimensional reflection and diffraction properties of internal waves in a continuously stratified rotating fluid which are incident on the junction of a vertical slit and a half-space. This geometry is a model for submarine canyons on continental slopes in the ocean, where various physical phenomena embodying reflection and diffraction effects have been observed. Three types of incident wave are considered: (1) Kelvin waves in the slit (canyon); (2) Kelvin waves on the slope; and (3) plane internal waves incident from the half-space (ocean). These are scattered into Kelvin and Poincaré waves in the slit, a Kelvin wave on the slope and Poincaré waves in the half-space. Most of the discussion is centered around case (1). Various properties of the wave field are calculated for ranges of the parameters c/ cot θ, γα and ƒ/ω where cot θ is the topographic slope, c is the internal wave ray slope, α is the canyon half-width, γ is the down-slope wave-number, ƒ is the Coriolis parameter and ω is the wave frequency. Analytical results are obtained for small γα and some approximate results for larger values of γα. The results show that significant wave trapping may occur in oceanic situations, and that submarine canyons may act as source regions for internal Kelvin waves on the continental slope.
NASA Astrophysics Data System (ADS)
Zigone, Dimitri; Rivet, Diane; Radiguet, Mathilde; Campillo, Michel; Voisin, Christophe; Cotte, Nathalie; Walpersdorf, Andrea; Shapiro, Nikolai M.; Cougoulat, Glenn; Roux, Philippe; Kostoglodov, Vladimir; Husker, Allen; Payero, Juan S.
2012-09-01
We investigate the triggering of seismic tremor and slow slip event in Guerrero (Mexico) by the February 27, 2010 Maule earthquake (Mw 8.8). Triggered tremors start with the arrival of S wave generated by the Maule earthquake, and keep occurring during the passing of ScS, SS, Love and Rayleigh waves. The Rayleigh wave dispersion curve footprints the high frequency energy envelope of the triggered tremor, indicating a strong modulation of the source of tremors by the passing surface wave. This correlation and modulation by the passing waves is progressively lost with time over a few hours. The tremor activity continues during the weeks/months after the earthquake. GPS time series suggest that the second sub-event of the 2009-2010 SSE in Guerrero is actually triggered by the Maule earthquake. The southward displacement of the GPS stations starts coincidently with the earthquake and tremors. The long duration of tremors indicate a continuing deformation process at depth, which we propose to be the second sub-event of the 2009-2010 SSE. We show a quasi-systematic correlation between surface displacement rate measured by GPS and tremor activity, suggesting that the NVT are controlled by the variations in the slip history of the SSE. This study shows that two types of tremors emerge: (1) Those directly triggered by the passing waves and (2) those triggered by the stress variations associated with slow slip. This indicates the prominent role of aseismic creep in the Mexican subduction zone response to a large teleseismic earthquake, possibly leading to large-scale stress redistribution.
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.
2014-01-01
NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.
Three-dimensional freak waves and higher-order wave-wave resonances
NASA Astrophysics Data System (ADS)
Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.
2012-04-01
Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover period October 14 - November 6, 2009 almost continuously. Antenna of 6 resistance wave gauges (a pentagon with one center gauge) is used to gain information on wave directions. Wave conditions vary from perfect still to storms with significant wave heights up to Hs = 1.7 meters and wind speeds 15m/s. Measurements with frequency 10Hz for dominant frequencies 0.1 - 0.2Hz fixed 40 freak wave events (criterium H/Hs > 2) and showed no dependence on Hs definitely. Data processing within frequency quasi-spectra approach and directional spectra reconstructions found pronounced features of essentially three-dimensional anomalous waves. All the events are associated with dramatic widening of instant frequency spectra in the range fp - f5w and stronger directional spreading. On the contrary, the classic Benjamin-Feir modulations show no definite links with the events and can be likely treated as dynamically neutral part of wave field. The apparent contradiction with the recent study (Saprykina, Dulov, Kuznetsov, Smolov, 2010) based on the same data collection can be explained partially by features of data processing. Physical roots of the inconsistency should be detailed in further studies. The work was supported by the Russian government contract 11.G34.31.0035 (signed 25 November 2010), Russian Foundation for Basic Research grant 11-05-01114-a, Ukrainian State Agency of Science, Innovations and Information under Contract M/412-2011 and ONR grant N000141010991. Authors gratefully acknowledge continuing support of these foundations.
Method for cancelling expansion waves in a wave rotor
NASA Astrophysics Data System (ADS)
Paxson, Daniel E.
1994-03-01
A wave rotor system includes a wave rotor coupled to first and second end plates. Special ports are provided, one in each of the first and second end plates, to cancel expansion waves generated by the release of working fluid from the wave rotor. One of the expansion waves is reflected in the wave rotor from a reflecting portion, and provided to the special port in the second end plate. Fluid present at the special port in the second end plate has a stagnation pressure and mass flow which is substantially the same as that of the cells of the wave rotor communicating with such special port. This allows for cancellation of the expansion wave generated by the release of working fluid from the wave rotor. The special port in the second end plate has a first end corresponding substantially to the head of the expansion wave, and a second end corresponding substantially to the tail of the expansion wave. Also, the special port is configured to continually change along the circumference of the second end plate to affect expansion wave cancellation. An expansion wave generated by a second release of working fluid from the wave rotor is cancelled in a similar manner to that described above using a special port in the first end plate. Preferably the cycle of operation of the wave rotor system is designed so that the stagnation pressure and mass flow of the fluid present at the special ports is the same so that the special ports may be connected by a common duct.
System and method for cancelling expansion waves in a wave rotor
NASA Astrophysics Data System (ADS)
Paxson, Daniel E.
1993-12-01
A wave rotor system that is comprised of a wave rotor coupled to first and second plates is described. Special ports are provided, one in each of the first and second end plates, to cancel expansion waves generated by the release of working fluid from the wave rotor. One of the expansion waves is reflected in the wave rotor from a reflecting portion and provided to the special port in the second end plate. Fluid present at the special port in the second end plate has a stagnation pressure and mass flow which is the same as that of the cells of the wave rotor communicating with such special port. This allows for cancellation of the expansion wave generated by the release of working fluid from the wave rotor. The special port in the second end plate has a first end corresponding to the head of the expansion wave and a second end corresponding to the tail of the expansion wave. Also, the special port is configured to continually change along the circumference of the second end plate to affect expansion wave cancellation. An expansion wave generated by a second release of working fluid from the wave rotor is cancelled in a similar manner to that described above using a special port in the first end plate. The cycle of operation of the wave rotor system is designed so that the stagnation pressure and mass flow of the fluid present at the special ports is the same so that the special ports may be connected by a common duct.
NASA Astrophysics Data System (ADS)
Zirak, H.; Jafari, S.
2015-06-01
In this study, a theory of free-electron laser (FEL) with a Langmuir wave wiggler in the presence of an axial magnetic field has been presented. The small wavelength of the plasma wave (in the sub-mm range) allows obtaining higher frequency than conventional wiggler FELs. Electron trajectories have been obtained by solving the equations of motion for a single electron. In addition, a fourth-order Runge-Kutta method has been used to simulate the electron trajectories. Employing a perturbation analysis, the dispersion relation for an electromagnetic and space-charge waves has been derived by solving the momentum transfer, continuity, and wave equations. Numerical calculations show that the growth rate increases with increasing the e-beam energy and e-beam density, while it decreases with increasing the strength of the axial guide magnetic field.
Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.
2017-10-19
Vertical one-dimensional shear wave velocity (VS) profiles are presented for strong-motion sites in Arizona for a suite of stations surrounding the Palo Verde Nuclear Generating Station. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS30), the average velocity for the entire profile (VSZ), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The VS profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean-square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.
System and method for generating current by selective minority species heating
Fisch, Nathaniel J.
1983-01-01
A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of low-frequency waves into the plasma by means of phased antenna arrays or phased waveguide arrays. The plasma is prepared with a minority ion species of different charge state and different gyrofrequency from the majority ion species. The wave frequency and wave phasing are chosen such that the wave energy is absorbed preferentially by minority species ions traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.
NASA Astrophysics Data System (ADS)
Liu, J. Y.; Chen, C. H.; Sun, Y. Y.; Chen, C. H.; Tsai, H. F.; Yen, H. Y.; Chum, J.; Lastovicka, J.; Yang, Q. S.; Chen, W. S.; Wen, S.
2016-02-01
In this paper, concurrent/colocated measurements of seismometers, infrasonic systems, magnetometers, HF-CW (high frequency-continuous wave) Doppler sounding systems, and GPS receivers are employed to detect disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake. No time delay between colocated infrasonic (i.e., super long acoustic) waves and seismic waves indicates that the triggered acoustic and/or gravity waves in the atmosphere (or seismo-traveling atmospheric disturbances, STADs) near the Earth's surface can be immediately activated by vertical ground motions. The circle method is used to find the origin and compute the observed horizontal traveling speed of the triggered infrasonic waves. The speed of about 3.3 km/s computed from the arrival time versus the epicentral distance suggests that the infrasonic waves (i.e., STADs) are mainly induced by the Rayleigh waves. The agreements in the travel time at various heights between the observation and theoretical calculation suggest that the STADs triggered by the vertical motion of ground surface caused by the Tohoku earthquake traveled vertically from the ground to the ionosphere with speed of the sound in the atmosphere over Taiwan.
Characteristics of microseisms in South China
NASA Astrophysics Data System (ADS)
Xiao, H.; Xue, M.; Pan, M.
2017-12-01
Microseisms are generated by coupling ocean waves and the solid earth, and their main frequencies and sources vary in different regions of the world. We use continuous waveforms from three arrays along the southern coast of China to study the types and sources of microseisms in South China. Using cross-correlation functions and a three-component F-K analysis, we found that the main type of microseisms in this area propagates as surface waves, arriving mainly from the east and southeast. We also found that the surface waves have different characteristics: the Rayleigh waves and Love waves have diverse sources, are frequency dependent and have no obvious seasonal changes. In the 0.2-0.25 Hz frequency band, the Rayleigh and Love waves at the W01, W02 and ST arrays show the influences of common microseisms sources from Taiwan and the Luzon Strait. However, in the 0.27-0.5 Hz frequency band, the energy of the microseisms tends to be governed by the offshore sources near the stations. In addition, the Love waves have broader back azimuths than those of the Rayleigh waves, which may due to the energy transfer between Rayleigh and Love waves in the thick sediment layers.
Wind-waves interactions in the Gulf of Eilat
NASA Astrophysics Data System (ADS)
Shani-Zerbib, Almog; Liberzon, Dan; T-SAIL Team
2017-11-01
The Gulf of Eilat, at the southern tip of Israel, with its elongated rectangular shape and unique diurnal wind pattern is an appealing location for wind-waves interactions research. Results of experimental work will be reported analyzing a continuous, 50 hour long, data. Using a combined array of wind and waves sensing instruments, the wave field statistics and its response to variations of wind forcing were investigated. Correlations between diurnal fluctuations in wind magnitude and direction and the wave field response will be discussed. The directional spread of waves' energy, as estimated by the Wavelet Directional Method, showed a strong response to small variations in wind flow direction attributed to the unique topography of the gulf surroundings and its bathymetry. Influenced by relatively strong winds during the light hours, the wave field was dominated by a significant amount of breakings that are well pronounced in the saturation range of waves spectra. Temporal growth and decay behavior of the waves during the morning and evening wind transition periods was examined. Sea state induced roughness, as experienced by the wind flow turbulent boundary layer, is examined in view of the critical layer theory. Israel Science Foundation Grant # 1521/15.
Ikegami, Tomonori; Kageyama, Yoshiyuki; Obara, Kazuma; Takeda, Sadamu
2016-07-11
Building a bottom-up supramolecular system to perform continuously autonomous motions will pave the way for the next generation of biomimetic mechanical systems. In biological systems, hierarchical molecular synchronization underlies the generation of spatio-temporal patterns with dissipative structures. However, it remains difficult to build such self-organized working objects via artificial techniques. Herein, we show the first example of a square-wave limit-cycle self-oscillatory motion of a noncovalent assembly of oleic acid and an azobenzene derivative. The assembly steadily flips under continuous blue-light irradiation. Mechanical self-oscillation is established by successively alternating photoisomerization processes and multi-stable phase transitions. These results offer a fundamental strategy for creating a supramolecular motor that works progressively under the operation of molecule-based machines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ma, Yufei; He, Ying; Peng, Zhenfang; Sun, Haiyue; Peng, Fang; Yan, Renpeng; Li, Xudong; Yu, Xin; Zhang, Qingli; Ding, Shoujun
2018-05-01
A diode-pumped acousto-optically (AO) Q-switched 1066 nm laser with a novel Nd:GdTaO4 crystal was demonstrated for the first time to the best of our knowledge. The optimization selection of output coupler was carried out in the continuous-wave (CW) operation. After that the pulsed Nd:GdTaO4 laser performances using different modulation repetition rates of 10 kHz and 20 kHz were investigated. At an absorbed pump power of 10 W and repetition rates of 10 kHz, the obtained minimum pulse width was 28 ns and the maximum peak power was 5.4 kW.
Spectral Analysis of Vibrational Harmonic Motion by use of a Continuous-Wave CO2 Doppler Lidar
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana
1999-01-01
Vibrational motion of a harmonic oscillator was investigated using a focused continuous wave CO2 Doppler lidar at 9.1 microns wavelength. A continuum of frequencies along with many discrete, equally spaced, resonant frequency modes was observed. The frequency modes are similar in structure to the oscillatory longitudinal modes of a laser cavity and arise because of interference of the natural resonant frequency of the oscillator with specific frequencies within the continuum. The spectra revealed departures from linear motion for vigorous vibrations of the oscillator. Each consecutive resonant frequency mode occurred for a movement of the oscillator much less than the wavelength of incident lidar radiation.
Modeling and simulation of continuous wave velocity radar based on third-order DPLL
NASA Astrophysics Data System (ADS)
Di, Yan; Zhu, Chen; Hong, Ma
2015-02-01
Second-order digital phase-locked-loop (DPLL) is widely used in traditional Continuous wave (CW) velocity radar with poor performance in high dynamic conditions. Using the third-order DPLL can improve the performance. Firstly, the echo signal model of CW radar is given. Secondly, theoretical derivations of the tracking performance in different velocity conditions are given. Finally, simulation model of CW radar is established based on Simulink tool. Tracking performance of the two kinds of DPLL in different acceleration and jerk conditions is studied by this model. The results show that third-order PLL has better performance in high dynamic conditions. This model provides a platform for further research of CW radar.
Diode-pumped continuous wave tunable and graphene Q-switched Tm:LSO lasers.
Feng, T L; Zhao, S Z; Yang, K J; Li, G Q; Li, D C; Zhao, J; Qiao, W C; Hou, J; Yang, Y; He, J L; Zheng, L H; Wang, Q G; Xu, X D; Su, L B; Xu, J
2013-10-21
We have investigated the lasing characteristics of Tm:LSO crystal in three operation regimes: continuous wave (CW), wavelength tunable and passive Q-switching based on graphene. In CW regime, a maximum output power of 0.65 W at 2054.9 nm with a slope efficiency of 21% was achieved. With a quartz plate, a broad wavelength tunable range of 145 nm was obtained, corresponding to a FWHM of 100 nm. By using a graphene saturable absorber mirror, the passively Q-switched Tm:LSO laser produced pulses with duration of 7.8 μs at 2030.8 nm under a repetition rate of 7.6 kHz, corresponding to pulse energy of 14.0 μJ.
Thermal diffusivity and nuclear spin relaxation: a continuous wave free precession NMR study.
Venâncio, Tiago; Engelsberg, Mario; Azeredo, Rodrigo B V; Colnago, Luiz A
2006-07-01
Continuous wave free precession (CWFP) nuclear magnetic resonance is capable of yielding quantitative and easily obtainable information concerning the kinetics of processes that change the relaxation rates of the nuclear spins through the action of some external agent. In the present application, heat flow from a natural rubber sample to a liquid nitrogen thermal bath caused a large temperature gradient leading to a non-equilibrium temperature distribution. The ensuing local changes in the relaxation rates could be monitored by the decay of the CWFP signals and, from the decays, it was possible to ascertain the prevalence of a diffusive process and to obtain an average value for the thermal diffusivity.
A Dual-Beam Irradiation Facility for a Novel Hybrid Cancer Therapy
NASA Astrophysics Data System (ADS)
Sabchevski, Svilen Petrov; Idehara, Toshitaka; Ishiyama, Shintaro; Miyoshi, Norio; Tatsukawa, Toshiaki
2013-01-01
In this paper we present the main ideas and discuss both the feasibility and the conceptual design of a novel hybrid technique and equipment for an experimental cancer therapy based on the simultaneous and/or sequential application of two beams, namely a beam of neutrons and a CW (continuous wave) or intermittent sub-terahertz wave beam produced by a gyrotron for treatment of cancerous tumors. The main simulation tools for the development of the computer aided design (CAD) of the prospective experimental facility for clinical trials and study of such new medical technology are briefly reviewed. Some tasks for a further continuation of this feasibility analysis are formulated as well.
Dark soliton dynamics and interactions in continuous-wave-induced lattices.
Tsopelas, Ilias; Kominis, Yannis; Hizanidis, Kyriakos
2007-10-01
The dynamics of dark spatial soliton beams and their interaction under the presence of a continuous wave (CW), which dynamically induces a photonic lattice, are investigated. It is shown that appropriate selection of the characteristic parameters of the CW result in controllable steering of a single soliton as well as controllable interaction between two solitons. Depending on the CW parameters, the soliton angle of propagation can be changed drastically, while two-soliton interaction can be either enhanced or reduced, suggesting a reconfigurable soliton control mechanism. Our analytical approach, based on the variational perturbation method, provides a dynamical system for the dark soliton evolution parameters. Analytical results are shown in good agreement with direct numerical simulations.
NASA Astrophysics Data System (ADS)
Wang, Jun; Zhao, Jianlin; Di, Jianglei; Jiang, Biqiang
2015-04-01
A scheme for recording fast process at nanosecond scale by using digital holographic interferometry with continuous wave (CW) laser is described and demonstrated experimentally, which employs delayed-time fibers and angular multiplexing technique and can realize the variable temporal resolution at nanosecond scale and different measured depths of object field at certain temporal resolution. The actual delay-time is controlled by two delayed-time fibers with different lengths. The object field information in two different states can be simultaneously recorded in a composite hologram. This scheme is also suitable for recording fast process at picosecond scale, by using an electro-optic modulator.
Broadband continuous wave source localization via pair-wise, cochleagram processing
NASA Astrophysics Data System (ADS)
Nosal, Eva-Marie; Frazer, L. Neil
2005-04-01
A pair-wise processor has been developed for the passive localization of broadband continuous-wave underwater sources. The algorithm uses sparse hydrophone arrays and does not require previous knowledge of the source signature. It is applicable in multiple source situations. A spectrogram/cochleagram version of the algorithm has been developed in order to utilize higher frequencies at longer ranges where signal incoherence, and limited computational resources, preclude the use of full waveforms. Simulations demonstrating the robustness of the algorithm with respect to noise and environmental mismatch will be presented, together with initial results from the analysis of humpback whale song recorded at the Pacific Missile Range Facility off Kauai. [Work supported by MHPCC and ONR.
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana
1998-01-01
Backscatter of several Earth surfaces was characterized in the laboratory as a function of incidence angle with a focused continuous-wave 9.1 micro meter CO2 Doppler lidar for use as possible calibration targets. Some targets showed negligible angular dependence, while others showed a slight increase with decreasing angle. The Earth-surface signal measured over the complex Californian terrain during a 1995 NASA airborne mission compared well with laboratory data. Distributions of the Earth's surface signal shows that the lidar efficiency can be estimated with a fair degree of accuracy, preferably with uniform Earth-surface targets during flight for airborne or space-based lidar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Jeffrey Wayne; Pratt, Richard M
A modulated backscatter radio frequency identification device includes a diode detector configured to selectively modulate a reply signal onto an incoming continuous wave; communications circuitry configured to provide a modulation control signal to the diode detector, the diode detector being configured to modulate the reply signal in response to be modulation control signal; and circuitry configured to increase impedance change at the diode detector which would otherwise not occur because the diode detector rectifies the incoming continuous wave while modulating the reply signal, whereby reducing the rectified signal increases modulation depth by removing the reverse bias effects on impedance changes.more » Methods of improving depth of modulation in a modulated backscatter radio frequency identification device are also provided.« less
Arun, S; Choudhury, Vishal; Balaswamy, V; Prakash, Roopa; Supradeepa, V R
2018-04-02
We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm (>1 octave) from 880 to 1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.
Göbel, Thorsten; Stanze, Dennis; Globisch, Björn; Dietz, Roman J B; Roehle, Helmut; Schell, Martin
2013-10-15
A modified photoconductive receiver significantly improves the performance of photomixing-based continuous wave (cw) THz systems driven at the optical telecommunication wavelength of 1.5 μm. The achieved signal-to-noise ratio of 105 dB at 100 GHz and 70 dB at 1 THz, both for an integration time of 200 ms, are to our knowledge the highest numbers reported in literature for any optoelectronic cw THz system, including classical setups operating at 800 nm. The developed receiver allows for combining low cost and high performance in one system for the first time to our knowledge.
Telle, J.M.
1984-05-01
Apparatus and method for generating continuous wave 16 ..mu..m laser radiation using gaseous CF/sub 4/. Laser radiation at 16 ..mu..m has been observed in a cooled static cell containing low pressure CF/sub 4/ optically pumped by an approximately 3 W output power c-w CO/sub 2/ laser. The laser cavity employed was a multiple-pass off-axis-path two spherical mirror ring resonator. Unidirectional CF/sub 4/ laser output power at 615 cm/sup -1/ exceeded 2 mW. Computer calculations indicate that for modest pump powers of about 40 W, approximately 1 W of emitted laser radiation at 16 ..mu..m might be obtained.
Apparatus and method for generating continuous wave 16 .mu.m laser radiation using gaseous CF.sub.4
Telle, John M.
1986-01-01
Apparatus and method for generating continuous wave 16 .mu.m laser radiation using gaseous CF.sub.4. Laser radiation at 16 .mu.m has been observed in a cooled static cell containing low pressure CF.sub.4 optically pumped by an approximately 3 W output power cw CO.sub.2 laser. The laser cavity employed was a multiple-pass off-axis-path two spherical mirror ring resonator. Unidirectional CF.sub.4 laser output power at 615 cm.sup.-1 exceeded 2 mW. Computer calculations indicate that for modest pump powers of about 40 W, approximately 1 W of emitted laser radiation at 16 .mu.m might be obtained.
Continuous-wave Nd:GYSGG laser at 1.1 μm
NASA Astrophysics Data System (ADS)
Lin, Hongyi; Liu, Hong; Huang, Xiaohua; Copner, Nigel; Sun, Dong
2018-02-01
We demonstrated a compact and simple continuous-wave (CW) Nd:GYSGG laser with triple-wavelength lines at 1105, 1107 and 1110 nm based on R2 → Y6, R1 → Y5 and R1 → Y6 of the 4F3/2 → 4I11/2 transition. The total output power of the triple-wavelength lines was 480 mW. Moreover, we obtained an efficient CW Nd:GYSGG laser at 1110 nm with the output power of 1560 mW at the pump power of 11.05 W. Those lines at 1058 and 1062 nm were suppressed completely by the simple output mirror of high transmission at 1.06 μm.
Parasitic modulation of electromagnetic signals caused by time-varying plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Min, E-mail: merovingia1911@126.com; Li, Xiaoping; Xie, Kai
2015-02-15
An experiment on the propagation of electromagnetic (EM) signals in continuous time-varying plasma is described. The time-varying characteristics of plasma are considered to cause a parasitic modulation in both amplitude and phase, and the strength of this modulation, which carries the information of the electron density profile, is closely related to the plasma frequency and the incident wave frequency. Through theoretical analysis, we give an explanation and mechanism of the interaction between the continuous time-varying plasma and EM waves, which is verified by a comparative analysis with experiments performed under the same conditions. The effects of this modulation on themore » EM signals in the plasma sheath cannot be ignored.« less
NASA Astrophysics Data System (ADS)
Matsui, Hiroyuki; Mishchenko, Andrei S.; Hasegawa, Tatsuo
2010-02-01
We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.
Matsui, Hiroyuki; Mishchenko, Andrei S; Hasegawa, Tatsuo
2010-02-05
We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.
End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal
NASA Astrophysics Data System (ADS)
Yang, F. G.; You, Z. Y.; Zhu, Z. J.; Wang, Y.; Li, J. F.; Tu, C. Y.
2010-01-01
We present an end-pumped continuous-wave intra-cavity yellow Raman laser at 590 nm with a 60 mm long pure crystal SrWO4 and an intra-cavity LiB3O5 frequency doubling crystal. The highest output power of yellow laser at 590 nm was 230 mW and the output power and threshold were found to be correlative with the polarized directions of pure single crystal SrWO4 deeply. Along different directions, the minimum and maximum thresholds of yellow Raman laser at 590 nm were measured to be 2.8 W and 14.3 W with respect to 808 nm LD pump power, respectively.
Maximizing power output from continuous-wave single-frequency fiber amplifiers.
Ward, Benjamin G
2015-02-15
This Letter reports on a method of maximizing the power output from highly saturated cladding-pumped continuous-wave single-frequency fiber amplifiers simultaneously, taking into account the stimulated Brillouin scattering and transverse modal instability thresholds. This results in a design figure of merit depending on the fundamental mode overlap with the doping profile, the peak Brillouin gain coefficient, and the peak mode coupling gain coefficient. This figure of merit is then numerically analyzed for three candidate fiber designs including standard, segmented acoustically tailored, and micro-segmented acoustically tailored photonic-crystal fibers. It is found that each of the latter two fibers should enable a 50% higher output power than standard photonic crystal fiber.
Wang, Yaoting; Liu, Jianli; Liu, Qin; Li, Yuanji; Zhang, Kuanshou
2010-06-07
We report a continuous-wave (cw) single frequency Nd:YAG blue laser at 473 nm end-pumped by a laser diode. A ring laser resonator was designed, the frequency doubling efficiency and the length of nonlinear crystal were optimized based on the investigation of the influence of the frequency doubling efficiency on the thermal lensing effect induced by energy-transfer upconversion. By intracavity frequency doubling with PPKTP crystal, an output power of 1 W all-solid-state cw blue laser of single-frequency operation was achieved. The stability of the blue output power was better than +/- 1.8% in the given four hours.
Efficient Q-switched Tm:YAG ceramic slab laser.
Zhang, Shuaiyi; Wang, Mingjian; Xu, Lin; Wang, Yan; Tang, Yulong; Cheng, Xiaojin; Chen, Weibiao; Xu, Jianqiu; Jiang, Benxue; Pan, Yubai
2011-01-17
Characteristics of Tm:YAG ceramic for high efficient 2-μm lasers are analyzed. Efficient diode end-pumped continuous-wave and Q-switched Tm:YAG ceramic lasers are demonstrated. At the absorbed pump power of 53.2W, the maximum continuous wave (cw) output power of 17.2 W around 2016 nm was obtained with the output transmission of 5%. The optical conversion efficiency is 32.3%, corresponding to a slope efficiency of 36.5%. For Q-switched operation, the shortest width of 69 ns was achieved with the pulse repetition frequency of 500 Hz and single pulse energy of 20.4 mJ, which indicates excellent energy storage capability of the Tm:YAG ceramic.
Bousefsaf, F; Maaoui, C; Pruski, A
2016-11-25
Vasoconstriction and vasodilation phenomena reflect the relative changes in the vascular bed. They induce particular modifications in the pulse wave magnitude. Webcams correspond to remote sensors that can be employed to measure the pulse wave in order to compute the pulse frequency. Record and analyze pulse wave signal with a low-cost webcam to extract the amplitude information and assess the vasomotor activity of the participant. Photoplethysmographic signals obtained from a webcam are analyzed through a continuous wavelet transform. The performance of the proposed filtering technique was evaluated using approved contact probes on a set of 12 healthy subjects after they perform a short but intense physical exercise. During the rest period, a cutaneous vasodilation is observable. High degrees of correlation between the webcam and a reference sensor were obtained. Webcams are low-cost and non-contact devices that can be used to reliably estimate both heart rate and peripheral vasomotor activity, notably during physical exertion.
Nonlinear aspects of infrasonic pressure transfer into the perilymph.
Krukowski, B; Carlborg, B; Densert, O
1980-06-01
The perilymphatic pressure was studied in response to various low frequency pressure changes in the ear canal. The pressure transfer was analysed and found to be nonlinear in many aspects. The pressure response was found to contain two time constants representing the inner ear pressure regulating mechanisms. The time constants showed an asymmetry in response to positive and negative going inputs--the effects to some extent proportional to input levels. Further nonlinearities were found when infrasonic sine waves were applied to the ear. Harmonic distortion and modulation appeared. When short bursts of infrasound were introduced a clear d.c. shift was observed as a consequence of an asymmetry in the response to positive and negative going pressure inputs. A temporary change in mean perilymphatic pressure was thus achieved and continued throughout the duration of the signal. At very low frequencies a distinct phase shift was detected in the sine waves. This appeared as a phase lead, breaking the continuity of the output sine wave.