A digital signal processing system for coherent laser radar
NASA Technical Reports Server (NTRS)
Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry
1991-01-01
A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.
Tracking and Characterization of Aircraft Wakes Using Acoustic and Lidar Measurements
NASA Technical Reports Server (NTRS)
Booth, Earl R., Jr.; Humphreys, William M., Jr.
2005-01-01
Data from the 2003 Denver International Airport Wake Acoustics Test are further examined to discern spectral content of aircraft wake signatures, and to compare three dimensional wake tracking from acoustic data to wake tracking data obtained through use of continuous wave and pulsed lidar. Wake tracking data derived from acoustic array data agree well with both continuous wave and pulsed lidar in the horizontal plane, but less well with pulsed lidar in the vertical direction. Results from this study show that the spectral distribution of acoustic energy in a wake signature varies greatly with aircraft type.
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana
1998-01-01
Backscatter of several Earth surfaces was characterized in the laboratory as a function of incidence angle with a focused continuous-wave 9.1 micro meter CO2 Doppler lidar for use as possible calibration targets. Some targets showed negligible angular dependence, while others showed a slight increase with decreasing angle. The Earth-surface signal measured over the complex Californian terrain during a 1995 NASA airborne mission compared well with laboratory data. Distributions of the Earth's surface signal shows that the lidar efficiency can be estimated with a fair degree of accuracy, preferably with uniform Earth-surface targets during flight for airborne or space-based lidar.
Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois
NASA Technical Reports Server (NTRS)
Kwon, K. H.; Senft, D. C.; Gardner, C. S.; Voelz, D. G.; Sechrist, C. F., Jr.; Roesler, F. L.
1986-01-01
For more than 15 years lidar systems have been used to study the chemistry and dynamics of the mesospheric sodium layer. Because the layer is an excellent tracer of atmospheric wave motions, sodium lidar has proven to be particularly useful for studying the influence of gravity waves and tides on mesospheric dynamics. These waves, which originate in the troposphere and stratosphere, propagate through the mesosphere and dissipate their energy near the mesopause making important contributions to the momentum and turbulence budget in this region of the atmosphere. Recently, the sodium lidar was modified for daytime operation so that wave phenomena and chemical effects could be monitored throughout the complete diurnal cycle. The results of continuous 24 hour lidar observations of the sodium layer structure are presented alond with measurement of the semidiurnal tidal winds.
2013-01-01
are calculated from coherently -detected fields, e.g., coherent Doppler lidar . Our CRB results reveal that the best-case mean-square error scales as 1...1088 (2001). 7. K. Asaka, Y. Hirano, K. Tatsumi, K. Kasahara, and T. Tajime, “A pseudo-random frequency modulation continuous wave coherent lidar using...multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 2170–2180 (2007). 11. T. J. Karr, “Atmospheric phase error in coherent laser radar
Spectral Analysis of Vibrational Harmonic Motion by use of a Continuous-Wave CO2 Doppler Lidar
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana
1999-01-01
Vibrational motion of a harmonic oscillator was investigated using a focused continuous wave CO2 Doppler lidar at 9.1 microns wavelength. A continuum of frequencies along with many discrete, equally spaced, resonant frequency modes was observed. The frequency modes are similar in structure to the oscillatory longitudinal modes of a laser cavity and arise because of interference of the natural resonant frequency of the oscillator with specific frequencies within the continuum. The spectra revealed departures from linear motion for vigorous vibrations of the oscillator. Each consecutive resonant frequency mode occurred for a movement of the oscillator much less than the wavelength of incident lidar radiation.
Aerosol backscatter lidar calibration and data interpretation
NASA Technical Reports Server (NTRS)
Kavaya, M. J.; Menzies, R. T.
1984-01-01
A treatment of the various factors involved in lidar data acquisition and analysis is presented. This treatment highlights sources of fundamental, systematic, modeling, and calibration errors that may affect the accurate interpretation and calibration of lidar aerosol backscatter data. The discussion primarily pertains to ground based, pulsed CO2 lidars that probe the troposphere and are calibrated using large, hard calibration targets. However, a large part of the analysis is relevant to other types of lidar systems such as lidars operating at other wavelengths; continuous wave (CW) lidars; lidars operating in other regions of the atmosphere; lidars measuring nonaerosol elastic or inelastic backscatter; airborne or Earth-orbiting lidar platforms; and lidars employing combinations of the above characteristics.
Intensity-Modulated Continuous-Wave Lidar at 1.57 Micrometer for Atmospheric CO2 Measurements
NASA Technical Reports Server (NTRS)
Lin, Bing; Ismail, Syed; Browell, Edward; Meadows, Byron; Nehrir, Amin; Harrison, Wallace F.; Dobler, Jeremy; Obland, Michael
2014-01-01
Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc proposes to use the intensity-modulated, continuous-wave (IM-CW) lidar approach for the ASCENDS mission. Prototype instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space lidar systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW lidar system for the active space CO2 mission ASCENDS.
NASA Astrophysics Data System (ADS)
Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef
2018-01-01
Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana
1999-01-01
Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency determined with the standard calibrating hard target.
2013-03-21
instruments where frequency estimates are calcu- lated from coherently detected fields, e.g., coherent Doppler LIDAR . Our CRB results reveal that the best...wave coherent lidar using an optical field correlation detection method,” Opt. Rev. 5, 310–314 (1998). 8. H. P. Yuen and V. W. S. Chan, “Noise in...2170–2180 (2007). 13. T. J. Karr, “Atmospheric phase error in coherent laser radar,” IEEE Trans. Antennas Propag. 55, 1122–1133 (2007). 14. Throughout
Comparison of Lidar Backscatter with Particle Distribution and GOES-7 Data in Hurricane Juliette
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana; McCaul, Eugene W., Jr.; Jedlovec, Gary J.; Atkinson, Robert J.; Pueschel, Rudolf F.; Cutten, Dean R.
1997-01-01
Measurements of calibrated backscatter, using two continuous wave Doppler lidars operating at wavelengths 9.1 and 10.6 micrometers were obtained along with cloud particle size distributions in Hurricane Juliette on 21 September 1995 at altitude approximately 11.7 km. Agreement between backscatter from the two lidars and with the cloud particle size distribution is excellent. Features in backscatter and particle number density compare well with concurrent GOES-7 infrared images.
NASA Technical Reports Server (NTRS)
Rothermel, Jeffry; Chambers, Diana M.; Jarzembski, Maurice A.; Srivastava, Vandana; Bowdle, David A.; Jones, William D.
1996-01-01
Two continuous-wave(CW)focused C02 Doppler lidars (9.1 and 10.6 micrometers) were developed for airborne in situ aerosol backscatter measurements. The complex path of reliably calibrating these systems, with different signal processors, for accurate derivation of atmospheric backscatter coefficients is documented. Lidar calibration for absolute backscatter measurement for both lidars is based on range response over the lidar sample volume, not solely at focus. Both lidars were calibrated with a new technique using well-characterized aerosols as radiometric standard targets and related to conventional hard-target calibration. A digital signal processor (DSP), a surface acoustic and spectrum analyzer and manually tuned spectrum analyzer signal analyzers were used. The DSP signals were analyzed with an innovative method of correcting for systematic noise fluctuation; the noise statistics exhibit the chi-square distribution predicted by theory. System parametric studies and detailed calibration improved the accuracy of conversion from the measured signal-to-noise ratio to absolute backscatter. The minimum backscatter sensitivity is approximately 3 x 10(exp -12)/m/sr at 9.1 micrometers and approximately 9 x 10(exp -12)/m/sr at 10.6 micrometers. Sample measurements are shown for a flight over the remote Pacific Ocean in 1990 as part of the NASA Global Backscatter Experiment (GLOBE) survey missions, the first time to our knowledge that 9.1-10.6 micrometer lidar intercomparisons were made. Measurements at 9.1 micrometers, a potential wavelength for space-based lidar remote-sensing applications, are to our knowledge the first based on the rare isotope C-12 O(2)-18 gas.
Temperature Climatology with Rayleigh Lidar Above Observatory of Haute-Provence: Dynamical Feedback
NASA Astrophysics Data System (ADS)
Keckhut, Philippe; Hauchecorne, Alain; Funatsu, Beatriz; Khaykin, Serguey; Mze, Nahouda; Claud, Chantal; Angot, Guillaume
2016-06-01
Rayleigh lidar in synergy with satellite observations (SSU and AMSU) allow insuring an efficient monitoring and showing that cooling has continued. New approach for trend detection has been developed allowing a better estimate of changes due to radiative forcing. Stratospheric Warmings and gravity waves contribute to insure a dynamical feedback of the long-term changes.
Lidar observations of wave-like structure in the atmospheric sodium layer
NASA Technical Reports Server (NTRS)
Rowlett, J. R.; Gardner, C. S.; Richter, E. S.; Sechrist, C. F., Jr.
1978-01-01
The University of Illinois (Urbana) lidar system has been developed to study the atmospheric sodium layer near 90 km altitude through the mechanism of resonance scattering. The photocount data are processed using digital smoothing filters to obtain continuous estimates of the sodium density versus altitude. The filter cutoff frequency is related to the height resolution and accuracy of the estimated profile. Lidar photocount data processed using this filtering technique show wave-like structures in the sodium layer which move downward with time. The waves have typical wavelengths of 3-15 km and phase velocities of less than 1 m/sec. The movement of these structures seems to be independent of the motion of the bottomside of the layer, which also has been observed to move up or down by as much as 2 km over a period of a few hours.
Modulated Sine Waves for Differential Absorption Measurements Using a CW Laser System
NASA Technical Reports Server (NTRS)
Campbell, Joel F. (Inventor); Lin, Bing (Inventor); Nehrir, Amin R. (Inventor)
2015-01-01
A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.
Does the Coherent Lidar System Corroborate Non-Interaction of Waves (NIW)?
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Roychoudhari, Chandrasekhar
2013-01-01
The NIW (non-interaction of waves) property has been proposed by one of the coauthors. The NIW property states that in the absence of any "obstructing" detectors, all the Huygens-Fresnel secondary wavelets will continue to propagate unhindered and without interacting (interfering) with each other. Since a coherent lidar system incorporates complex behaviors of optical components with different polarizations including circular polarization for the transmitted radiation, then the question arises whether the NIW principle accommodate elliptical polarization of light. Elliptical polarization presumes the summation of orthogonally polarized electric field vectors which contradicts the NIW principle. In this paper, we present working of a coherent lidar system using Jones matrix formulation. The Jones matrix elements represent the anisotropic dipolar properties of molecules of optical components. Accordingly, when we use the Jones matrix methodology to analyze the coherent lidar system, we find that the system behavior is congruent with the NIW property.
NASA Astrophysics Data System (ADS)
Ardanuy, Antoni; Comerón, Adolfo
2018-04-01
We analyze the practical limits of a lidar system based on the use of a laser diode, random binary continuous wave power modulation, and an avalanche photodiode (APD)-based photereceiver, combined with the control and computing power of the digital signal processors (DSP) currently available. The target is to design a compact portable lidar system made all in semiconductor technology, with a low-power demand and an easy configuration of the system, allowing change in some of its features through software. Unlike many prior works, we emphasize the use of APDs instead of photomultiplier tubes to detect the return signal and the application of the system to measure not only hard targets, but also medium-range aerosols and clouds. We have developed an experimental prototype to evaluate the behavior of the system under different environmental conditions. Experimental results provided by the prototype are presented and discussed.
Monte Carlo simulation of non-invasive glucose measurement based on FMCW LIDAR
NASA Astrophysics Data System (ADS)
Xiong, Bing; Wei, Wenxiong; Liu, Nan; He, Jian-Jun
2010-11-01
Continuous non-invasive glucose monitoring is a powerful tool for the treatment and management of diabetes. A glucose measurement method, with the potential advantage of miniaturizability with no moving parts, based on the frequency modulated continuous wave (FMCW) LIDAR technology is proposed and investigated. The system mainly consists of an integrated near-infrared tunable semiconductor laser and a detector, using heterodyne technology to convert the signal from time-domain to frequency-domain. To investigate the feasibility of the method, Monte Carlo simulations have been performed on tissue phantoms with optical parameters similar to those of human interstitial fluid. The simulation showed that the sensitivity of the FMCW LIDAR system to glucose concentration can reach 0.2mM. Our analysis suggests that the FMCW LIDAR technique has good potential for noninvasive blood glucose monitoring.
NASA Technical Reports Server (NTRS)
Lin, Bing; Obland, Michael; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Campbell, Joel; Dobler, Jeremy; Meadows, Bryon; Fan, Tai-Fang; Kooi, Susan;
2015-01-01
This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-m CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively.
Time Shifted PN Codes for CW Lidar, Radar, and Sonar
NASA Technical Reports Server (NTRS)
Campbell, Joel F. (Inventor); Prasad, Narasimha S. (Inventor); Harrison, Fenton W. (Inventor); Flood, Michael A. (Inventor)
2013-01-01
A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)
2000-01-01
Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various Earth surfaces giving good agreement, suggesting that the lidar efficiency, and thus a lidar calibration factor for detection, can be estimated fairly well using Earth's surface signal.
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.
2014-01-01
NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.
NASA Astrophysics Data System (ADS)
Tegtmeier Pedersen, A.; Abari, C. F.; Mann, J.; Mikkelsen, T.
2014-06-01
A new direction sensing continuous-wave Doppler lidar based on an image-reject homodyne receiver has recently been demonstrated at DTU Wind Energy, Technical University of Denmark. In this contribution we analyse the signal-to-noise ratio resulting from two different data processing methods both leading to the direction sensing capability. It is found that using the auto spectrum of the complex signal to determine the wind speed leads to a signal-to-noise ratio equivalent to that of a standard self-heterodyne receiver. Using the imaginary part of the cross spectrum to estimate the Doppler shift has the benefit of a zero-mean background spectrum, but comes at the expense of a decrease in the signal-to noise ratio by a factor of √2.
NASA Astrophysics Data System (ADS)
Dyer, T.; Brodie, K. L.; Spore, N.
2016-02-01
Modern LIDAR systems, while capable of providing highly accurate and dense datasets, introduce significant challenges in data processing and end-user accessibility. At the United States Army Corps of Engineers Field Research Facility in Duck, North Carolina, we have developed a stationary LIDAR tower for the continuous monitoring of the ocean, beach, and foredune, as well as an automated workflow capable of providing scientific data products from the LIDAR scanner in near real-time through an online data portal. The LIDAR performs hourly scans, taking approximately 50 minutes to complete and producing datasets on the order of 1GB. Processing of the LIDAR data includes coordinate transformations, data rectification and coregistration, filtering to remove noise and unwanted objects, gridding, and time-series analysis to generate products for use by end-users. Examples of these products include water levels and significant wave heights, virtual wave gauge time-series and FFTs, wave runup, foreshore elevations and slopes, and bare earth DEMs. Immediately after processing, data products are combined with ISO compliant metadata and stored using the NetCDF-4 file format, making them easily discoverable through a web portal which provides an interactive map that allows users to explore datasets both spatially and temporally. End-users can download datasets in user-defined time intervals, which can be used, for example, as forcing or validation parameters in numerical models. Funded by the USACE Coastal Ocean Data Systems Program.
New generation lidar systems for eye safe full time observations
NASA Technical Reports Server (NTRS)
Spinhirne, James D.
1995-01-01
The traditional lidar over the last thirty years has typically been a big pulse low repetition rate system. Pulse energies are in the 0.1 to 1.0 J range and repetition rates from 0.1 to 10 Hz. While such systems have proven to be good research tools, they have a number of limitations that prevent them from moving beyond lidar research to operational, application oriented instruments. These problems include a lack of eye safety, very low efficiency, poor reliability, lack of ruggedness and high development and operating costs. Recent advances in solid state laser, detectors and data systems have enabled the development of a new generation of lidar technology that meets the need for routine, application oriented instruments. In this paper the new approaches to operational lidar systems will be discussed. Micro pulse lidar (MPL) systems are currently in use, and their technology is highlighted. The basis and current development of continuous wave (CW) lidar and potential of other technical approaches is presented.
NASA Technical Reports Server (NTRS)
Srivastava, V.; Rothermel, J.; Jarzembski, M. A.; Clarke, A. D.; Cutten, D. R.; Bowdle, D. A.; Spinhirne, J. D.; Menzies, R. T.
1999-01-01
Space-based and airborne coherent Doppler lidars designed for measuring global tropospheric wind profiles in cloud-free air rely on backscatter, beta from aerosols acting as passive wind tracers. Aerosol beta distribution in the vertical can vary over as much as 5-6 orders of magnitude. Thus, the design of a wave length-specific, space-borne or airborne lidar must account for the magnitude of 8 in the region or features of interest. The SPAce Readiness Coherent Lidar Experiment under development by the National Aeronautics and Space Administration (NASA) and scheduled for launch on the Space Shuttle in 2001, will demonstrate wind measurements from space using a solid-state 2 micrometer coherent Doppler lidar. Consequently, there is a critical need to understand variability of aerosol beta at 2.1 micrometers, to evaluate signal detection under varying aerosol loading conditions. Although few direct measurements of beta at 2.1 micrometers exist, extensive datasets, including climatologies in widely-separated locations, do exist for other wavelengths based on CO2 and Nd:YAG lidars. Datasets also exist for the associated microphysical and chemical properties. An example of a multi-parametric dataset is that of the NASA GLObal Backscatter Experiment (GLOBE) in 1990 in which aerosol chemistry and size distributions were measured concurrently with multi-wavelength lidar backscatter observations. More recently, continuous-wave (CW) lidar backscatter measurements at mid-infrared wavelengths have been made during the Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment in 1995. Using Lorenz-Mie theory, these datasets have been used to develop a method to convert lidar backscatter to the 2.1 micrometer wavelength. This paper presents comparison of modeled backscatter at wavelengths for which backscatter measurements exist including converted beta (sub 2.1).
Measuring Plume Meander in the Nighttime Stable Boundary Layer with Lidar
NASA Astrophysics Data System (ADS)
Hiscox, A.; Miller, D. R.; Nappo, C. J.
2009-12-01
Complex dynamics of the stable planetary boundary layer (PBL), such as the effects of density currents, intermittent turbulence, surface-layer decoupling, internal gravity waves, cold air pooling, and katabatic flows affect plume transport and diffusion. A better understanding of these effects is needed for nighttime transport model development. The JORNADA (Joint Observational Research on Nocturnal Atmospheric Dispersion of Aerosols) field campaign, conducted in the New Mexico desert during April 2005, sought to address some of these issues The JORNADA data set includes simultaneous micrometeorological measurements of the boundary layer structure, turbulence, and wave activity along with continuous lidar measurement of aerosol plume releases. What makes JORNADA unique is the real-time monitoring of an elevated plume with a lidar. The quantification of plume meander will be presented in this paper. The application of these techniques to the JORNADA data allows for a more complete understanding of the nocturnal boundary layer (NBL). We will present an in-depth analysis of lidar measurements of plume meander and dispersion and their relationship to the complexities of NBL structure.
Insect remote sensing using a polarization sensitive cw lidar system in chinese rice fields
NASA Astrophysics Data System (ADS)
Zhu, Shiming; Malmqvist, Elin; Li, Yiyun; Jansson, Samuel; Li, Wansha; Duan, Zheng; Fu, Wei; Svanberg, Katarina; Bood, Joakim; Feng, Hongqiang; Åkesson, Susanne; Song, Ziwei; Zhang, Baoxin; Zhao, Guangyu; Li, Dunsong; Brydegaard, Mikkel; Svanberg, Sune
2018-04-01
A joint Chinese-Swedish field campaign of Scheimpflug continuous-wave lidar monitoring of rice-field flying pest insects was pursued in very hot July weather conditions close to Guangzhou, China. The occurrence of insects, birds and bats with almost 200 hours of round-the-clock polarization-sensitive recordings was studied. Wing-beat frequency recordings and depolarization properties were used for target classification. Influence of weather conditions on the flying fauna was also investigated.
NASA Technical Reports Server (NTRS)
Gerrard, Andrew J.; Kane, Timothy J.; Eckermann, Stephen D.; Thayer, Jeffrey P.
2004-01-01
We conducted gravity wave ray-tracing experiments within an atmospheric region centered near the ARCLITE lidar system at Sondrestrom, Greenland (67N, 310 deg E), in efforts to understand lidar observations of both upper stratospheric gravity wave activity and mesospheric clouds during August 1996 and the summer of 2001. The ray model was used to trace gravity waves through realistic three-dimensional daily-varying background atmospheres in the region, based on forecasts and analyses in the troposphere and stratosphere and climatologies higher up. Reverse ray tracing based on upper stratospheric lidar observations at Sondrestrom was also used to try to objectively identify wave source regions in the troposphere. A source spectrum specified by reverse ray tracing experiments in early August 1996 (when atmospheric flow patterns produced enhanced transmission of waves into the upper stratosphere) yielded model results throughout the remainder of August 1996 that agreed best with the lidar observations. The model also simulated increased vertical group propagation of waves between 40 km and 80 km due to intensifying mean easterlies, which allowed many of the gravity waves observed at 40 km over Sondrestrom to propagate quasi-vertically from 40-80 km and then interact with any mesospheric clouds at 80 km near Sondrestrom, supporting earlier experimentally-inferred correlations between upper stratospheric gravity wave activity and mesospheric cloud backscatter from Sondrestrom lidar observations. A pilot experiment of real-time runs with the model in 2001 using weather forecast data as a low-level background produced less agreement with lidar observations. We believe this is due to limitations in our specified tropospheric source spectrum, the use of climatological winds and temperatures in the upper stratosphere and mesosphere, and missing lidar data from important time periods.
Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars
NASA Astrophysics Data System (ADS)
Mikkelsen, T.; Mann, J.; Courtney, M.; Sjöholm, M.
2008-05-01
At RISØ DTU we has started to build a new-designed laser-based lidar scanning facility for detailed remote measurements of the wind fields engulfing the huge wind turbines of today. Our aim is to measure in real-time 3D wind vector data at several hundred points every second: 1) upstream of the turbine, 2) near the turbine, and 3) in the wakes of the turbine rotors. Our first proto-type Windscanner is now being built from three commercially available Continuous Wave (CW) wind lidars modified with fast adjustable focus length and equipped with 2-D prism-based scan heads, in conjunction with a commercially available pulsed wind lidar for extended vertical profiling range. Design, construction and initial testing of the new 3-D wind lidar scanning facility are described and the functionality of the Windscanner and its potential as a new research facility within the wind energy community is discussed.
Development of a 9.3 micrometer CW LIDAR for the study of atmospheric aerosol
NASA Technical Reports Server (NTRS)
Whiteside, B. N.; Schotland, R. M.
1993-01-01
This report provides a brief summary of the basic requirements to obtain coherent or heterodyne mixing of the optical radiation backscattered by atmospheric aerosols with that from a fixed frequency source. The continuous wave (CW) mode of operation for a coherent lidar is reviewed along with the associated lidar transfer equation. A complete optical design of the three major subsystems of a CW, coherent lidar is given. Lens design software is implemented to model and optimize receiver performance. Techniques for the opto-mechanical assembly and some of the critical tolerances of the coherent lidar are provided along with preliminary tests of the subsystems. Included in these tests is a comparison of the experimental and the theoretical average power signal-to-noise ratio. The analog to digital software used to evaluate the power spectrum of the backscattered signal is presented in the Appendix of this report.
Visibility and aerosol measurement by diode-laser random-modulation CW lidar
NASA Technical Reports Server (NTRS)
Takeuchi, N.; Baba, H.; Sakurai, K.; Ueno, T.; Ishikawa, N.
1986-01-01
Examples of diode laser (DL) random-modulation continuous wave (RM-CW) lidar measurements are reported. The ability of the measurement of the visibility, vertical aerosol profile, and the cloud ceiling height is demonstrated. Although the data shown here were all measured at night time, the daytime measurement is, of course, possible. For that purpose, accurate control of the laser frequency to the center frequency of a narrow band filter is required. Now a new system with a frequency control is under construction.
A Novel Modified Omega-K Algorithm for Synthetic Aperture Imaging Lidar through the Atmosphere
Guo, Liang; Xing, Mendao; Tang, Yu; Dan, Jing
2008-01-01
The spatial resolution of a conventional imaging lidar system is constrained by the diffraction limit of the telescope's aperture. The combination of the lidar and synthetic aperture (SA) processing techniques may overcome the diffraction limit and pave the way for a higher resolution air borne or space borne remote sensor. Regarding the lidar transmitting frequency modulation continuous-wave (FMCW) signal, the motion during the transmission of a sweep and the reception of the corresponding echo were expected to be one of the major problems. The given modified Omega-K algorithm takes the continuous motion into account, which can compensate for the Doppler shift induced by the continuous motion efficiently and azimuth ambiguity for the low pulse recurrence frequency limited by the tunable laser. And then, simulation of Phase Screen (PS) distorted by atmospheric turbulence following the von Karman spectrum by using Fourier Transform is implemented in order to simulate turbulence. Finally, the computer simulation shows the validity of the modified algorithm and if in the turbulence the synthetic aperture length does not exceed the similar coherence length of the atmosphere for SAIL, we can ignore the effect of the turbulence. PMID:27879865
Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.; Ehernberger, Jack; Bogue, Rodney; Ashburn, Chris
2007-01-01
Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges in southern California by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.
Turbulence and mountain wave conditions observed with an airborne 2-micron lidar
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.; Ashburn, Chris; Ehernberger, Jack; Bogue, Rodney
2006-01-01
Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges (California, USA) by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 meters per second (m/s) at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 seconds in moderate turbulence.
Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.; Ashburn, Chris; Ehernberger, L. J.; Bogue, Rodney K.
2006-01-01
Joint efforts by the National Aeronautics and Space Administration, the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar (light detection and ranging) for Advanced In-Flight Measurements was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This report describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges by lidar on board the NASA Airborne Science DC-8 (McDonnell Douglas Corporation, Long Beach, California) airplane during two flights. The examples in this report compare lidar-predicted mountain waves and wave-induced turbulence to subsequent airplane-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.
Mei, Liang; Guan, Peng; Kong, Zheng
2017-10-02
Differential absorption lidar (DIAL) technique employed for remote sensing has been so far based on the sophisticated narrow-band pulsed laser sources, which require intensive maintenance during operation. In this work, a continuous-wave (CW) NO 2 DIAL system based on the Scheimpflug principle has been developed by employing a compact high-power CW multimode 450 nm laser diode as the light source. Laser emissions at the on-line and off-line wavelengths of the NO 2 absorption spectrum are implemented by tuning the injection current of the laser diode. Lidar signals are detected by a 45° tilted area CCD image sensor satisfying the Scheimpflug principle. Range-resolved NO 2 concentrations on a near-horizontal path are obtained by the NO 2 DIAL system in the range of 0.3-3 km and show good agreement with those measured by a conventional air pollution monitoring station. A detection sensitivity of ± 0.9 ppbv at 95% confidence level in the region of 0.3-1 km is achieved with 15-minute averaging and 700 m range resolution during hours of darkness, which allows accurate concentration measurement of ambient NO 2 . The low-cost and robust DIAL system demonstrated in this work opens up many possibilities for field NO 2 remote sensing applications.
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1989-01-01
Laser infrared radar (lidar) undergoing development harmless to human eyes, consists almost entirely of solid-state components, and offers high range resolution. Operates at wavelength of about 2 micrometers. If radiation from such device strikes eye, almost completely absorbed by cornea without causing damage, even if aimed directly at eye. Continuous-wave light from laser oscillator amplified and modulated for transmission from telescope. Small portion of output of oscillator fed to single-mode fiber coupler, where mixed with return pulses. Intended for remote Doppler measurements of winds and differential-absorption measurements of concentrations of gases in atmosphere.
Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements
NASA Astrophysics Data System (ADS)
Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.
2016-12-01
Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing architecture written in the C language to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs. This software is about an order of magnitude faster than the Mathematica code previously used and uses multithreaded parallel processing code that takes advantage of multicore processors.
NASA Astrophysics Data System (ADS)
Taori, A.; Kamalakar, V.; Raghunath, K.; Rao, S. V. B.; Russell, J. M.
2012-04-01
We utilize simultaneous Rayleigh lidar and mesospheric OH and O2 airglow measurements to identify the dominant and propagating waves within 40-95 km altitude regions over a low latitude station Gadanki (13.8° N, 79.2 °E). It is found that waves with 0.4-0.6 h periodicity are common throughout the altitude range of 40-95 km with significant amplitudes. The ground based temperature measurements with lidar and airglow monitoring are found to compare well with SABER data. With simultaneous Rayleigh lidar (temperature) and mesospheric airglow (emission intensity and temperature) measurements, we estimate the amplitude growth and Krassovsky parameters to characterize the propagation and dissipation of these upward propagating waves.
NASA Astrophysics Data System (ADS)
Cai, X.
2017-12-01
To investigate gravity wave (GW) perturbations in the midlatitude mesopause region during boreal equinox, 433 h of continuous Na lidar full diurnal cycle temperature measurements in September between 2011 and 2015 are utilized to derive the monthly profiles of GW-induced temperature variance, T'^2, and the potential energy density (PED). Operating at Utah State University (42° N, 112° W), these lidar measurements reveal severe GW dissipation near 90 km, where both parameters drop to their minima (˜ 20 K^2 and ˜ 50 m^2/ s^2, respectively). The study also shows that GWs with periods of 3-5 h dominate the midlatitude mesopause region during the summer-winter transition. To derive the precise temperature perturbations a new tide removal algorithm suitable for all ground-based observations is developed to de-trend the lidar temperature measurements and to isolate GW-induced perturbations. It removes the tidal perturbations completely and provides the most accurate GW perturbations for the ground-based observations. This algorithm is validated by comparing the true GW perturbations in the latest mesoscale-resolving Whole Atmosphere Community Climate Model (WACCM) with those derived from the WACCM local outputs by applying this newly developed tidal removal algorithm.
NASA Astrophysics Data System (ADS)
Taori, Alok; Raghunath, Karnam; Jayaraman, Achuthan
We use combination of simultaneous measurements made with Rayleigh lidar and O2 airglow monitoring to improve lidar investigation capability to cover a higher altitude range. We feed instantaneous O2 airglow temperatures instead the model values at the top altitude for subsequent integration method of temperature retrieval using Rayleigh lidar back scattered signals. Using this method, errors in the lidar temperature estimates converges at higher altitudes indicating better altitude coverage compared to regular methods where model temperatures are used instead of real-time measurements. This improvement enables the measurements of short period waves at upper mesospheric altitudes (~90 km). With two case studies, we show that above 60 km the few short period wave amplitude drastically increases while, some of the short period wave show either damping or saturation. We claim that by using such combined measurements, a significant and cost effective progress can be made in the understanding of short period wave processes which are important for the coupling across the different atmospheric regions.
NASA Astrophysics Data System (ADS)
Lu, Xian; Chen, Cao; Huang, Wentao; Smith, John A.; Chu, Xinzhao; Yuan, Tao; Pautet, Pierre-Dominique; Taylor, Mike J.; Gong, Jie; Cullens, Chihoko Y.
2015-10-01
We present the first coordinated study using two lidars at two separate locations to characterize a 1 h mesoscale gravity wave event in the mesopause region. The simultaneous observations were made with the Student Training and Atmospheric Research (STAR) Na Doppler lidar at Boulder, CO, and the Utah State University Na Doppler lidar and temperature mapper at Logan, UT, on 27 November 2013. The high precision possessed by the STAR lidar enabled these waves to be detected in vertical wind. The mean wave amplitudes are ~0.44 m/s in vertical wind and ~1% in relative temperature at altitudes of 82-107 km. Those in the zonal and meridional winds are 6.1 and 5.2 m/s averaged from 84 to 99 km. The horizontal and vertical wavelengths inferred from the mapper and lidars are ~219 ± 4 and 16.0 ± 0.3 km, respectively. The intrinsic period is ~1.3 h for the airglow layer, Doppler shifted by a mean wind of ~17 m/s. The wave packet propagates from Logan to Boulder with an azimuth angle of ~135° clockwise from north and an elevation angle of ~ 3° from the horizon. The observed phase difference between the two locations can be explained by the traveling time of the 1 h wave from Logan to Boulder, which is about ~2.4 h. The wave polarization relations are examined through the simultaneous quantifications of the three wind components and temperature. This study has developed a systematic methodology for fully characterizing mesoscale gravity waves, inspecting their intrinsic properties and validating the derivation of horizontal wave structures by applying multiple instruments from coordinated stations.
Monostatic lidar in weak-to-strong turbulence
NASA Astrophysics Data System (ADS)
Andrews, L. C.; Phillips, R. L.
2001-07-01
A heuristic scintillation model previously developed for weak-to-strong irradiance fluctuations of a spherical wave is extended in this paper to the case of a monostatic lidar configuration. As in the previous model, we account for the loss of spatial coherence as the optical wave propagates through atmospheric turbulence by eliminating the effects of certain turbulent scale sizes that exist between the scale size of the spatial coherence radius of the beam and that of the scattering disc. These mid-range scale-size effects are eliminated through the formal introduction of spatial scale frequency filters that continually adjust spatial cut-off frequencies as the optical wave propagates. In addition, we also account for correlations that exist in the incident wave to the target and the echo wave from the target arising from double-pass propagation through the same random inhomogeneities of the atmosphere. We separately consider the case of a point target and a diffuse target, concentrating on both the enhanced backscatter effect in the mean irradiance and the increase in scintillation in a monostatic channel. Under weak and strong irradiance fluctuations our asymptotic expressions are in agreement with previously published asymptotic results.
Rayleigh lidar observations of gravity wave activity in the upper stratosphere at Urbana, Ill.
NASA Technical Reports Server (NTRS)
Gardner, C. S.; Miller, M. S.; Liu, C. H.
1988-01-01
During 13 nights of Rayleigh lidar measurements at Urbana, Ill. in 1984 to 1986, thirty-six quasi-monochromatic gravity waves were observed in the 35 to 50 km altitude region of the stratosphere. The characteristics of the waves are compared with other lidar and radar measurements of gravity waves and the theoretical models of wave saturation and dissipation phenomena. The measured vertical wavelengths ranged from 2 to 11.5 km and the measured vertical phase velocities ranged from 10 to 85 cm/s. The vertical wavelengths and vertical phase velocities were used to infer observed wave periods which ranged from 100 to 1000 min and horizontal wavelengths which ranged from 70 to 2000 km. Dominant wave activity was found at vertical wavelengths between 2 to 4 km and 7 to 10 km. No significant seasonal variations were evident in the observed parameters. Vertical and horizontal wavelengths showed a clear tendency to increase with wave periods, which is consistent with recent sodium lidar studies of quasi-monochromatic waves near the mesopause. An average amplitude growth length of 20.9 km for the rms wind perturbations was estimated from the data. Kinetic energy density associated with the waves decreased with height, suggesting that waves in this altitude region were subject to dissipation or saturation effects.
Cheng, Chih-Hao; Chen, Chih-Ying; Chen, Jun-Da; Pan, Da-Kung; Ting, Kai-Ting; Lin, Fan-Yi
2018-04-30
We develop an unprecedented 3D pulsed chaos lidar system for potential intelligent machinery applications. Benefited from the random nature of the chaos, conventional CW chaos lidars already possess excellent anti-jamming and anti-interference capabilities and have no range ambiguity. In our system, we further employ self-homodyning and time gating to generate a pulsed homodyned chaos to boost the energy-utilization efficiency. Compared to the original chaos, we show that the pulsed homodyned chaos improves the detection SNR by more than 20 dB. With a sampling rate of just 1.25 GS/s that has a native sampling spacing of 12 cm, we successfully achieve millimeter-level accuracy and precision in ranging. Compared with two commercial lidars tested side-by-side, namely the pulsed Spectroscan and the random-modulation continuous-wave Lidar-lite, the pulsed chaos lidar that is in compliance with the class-1 eye-safe regulation shows significantly better precision and a much longer detection range up to 100 m. Moreover, by employing a 2-axis MEMS mirror for active laser scanning, we also demonstrate real-time 3D imaging with errors of less than 4 mm in depth.
Calibration Technique for Polarization-Sensitive Lidars
NASA Technical Reports Server (NTRS)
Alvarez, J. M.; Vaughan, M. A.; Hostetler, C. A.; Hung, W. H.; Winker, D. M.
2006-01-01
Polarization-sensitive lidars have proven to be highly effective in discriminating between spherical and non-spherical particles in the atmosphere. These lidars use a linearly polarized laser and are equipped with a receiver that can separately measure the components of the return signal polarized parallel and perpendicular to the outgoing beam. In this work we describe a technique for calibrating polarization-sensitive lidars that was originally developed at NASA s Langley Research Center (LaRC) and has been used continually over the past fifteen years. The procedure uses a rotatable half-wave plate inserted into the optical path of the lidar receiver to introduce controlled amounts of polarization cross-talk into a sequence of atmospheric backscatter measurements. Solving the resulting system of nonlinear equations generates the system calibration constants (gain ratio, G, and offset angle, theta) required for deriving calibrated measurements of depolarization ratio from the lidar signals. In addition, this procedure also determines the mean depolarization ratio within the region of the atmosphere that is analyzed. Simulations and error propagation studies show the method to be both reliable and well behaved. Operational details of the technique are illustrated using measurements obtained as part of Langley Research Center s participation in the First ISCCP Regional Experiment (FIRE).
LIDAR pulse coding for high resolution range imaging at improved refresh rate.
Kim, Gunzung; Park, Yongwan
2016-10-17
In this study, a light detection and ranging system (LIDAR) was designed that codes pixel location information in its laser pulses using the direct- sequence optical code division multiple access (DS-OCDMA) method in conjunction with a scanning-based microelectromechanical system (MEMS) mirror. This LIDAR can constantly measure the distance without idle listening time for the return of reflected waves because its laser pulses include pixel location information encoded by applying the DS-OCDMA. Therefore, this emits in each bearing direction without waiting for the reflected wave to return. The MEMS mirror is used to deflect and steer the coded laser pulses in the desired bearing direction. The receiver digitizes the received reflected pulses using a low-temperature-grown (LTG) indium gallium arsenide (InGaAs) based photoconductive antenna (PCA) and the time-to-digital converter (TDC) and demodulates them using the DS-OCDMA. When all of the reflected waves corresponding to the pixels forming a range image are received, the proposed LIDAR generates a point cloud based on the time-of-flight (ToF) of each reflected wave. The results of simulations performed on the proposed LIDAR are compared with simulations of existing LIDARs.
Lidar Observations of Wave Shape
NASA Astrophysics Data System (ADS)
Brodie, K. L.; Raubenheimer, B.; Spore, N.; Gorrell, L.; Slocum, R. K.; Elgar, S.
2016-02-01
As waves propagate across the inner-surf zone, through a shorebreak, to the swash, their shapes can evolve rapidly, particularly if there are large changes in water depth over a wavelength. As wave shapes evolve, the time history of near-bed wave-orbital velocities also changes. Asymmetrical near-bed velocities result in preferential directions for sediment transport, and spatial variations in asymmetries can lead to morphological evolution. Thus, understanding and predicting wave shapes in the inner-surf and swash zones is important to improving sediment transport predictions. Here, rapid changes in wave shape, quantified by 3rd moments (skewness and asymmetry) of the sea-surface elevation time series, were observed on a sandy Atlantic Ocean beach near Duck, NC using terrestrial lidar scanners that measure the elevation of the water surface along a narrow cross-shore transect with high spatial [O(1 cm)] and temporal [O(0.5 s)] resolution. The terrestrial lidar scanners were mounted on a tower on the beach dune (about 8 m above the water surface) and on an 8-m tall amphibious tripod [the Coastal Research Amphibious Buggy (CRAB)]. Observations with the dune lidar are used to investigate how bulk wave shape parameters such as wave skewness and asymmetry, and the ratio of wave height to water depth (gamma) vary with beach slope, tide level, and offshore wave conditions. Observations with the lidar mounted on the CRAB are used to investigate the evolution of individual waves propagating across the surf zone and shorebreak to the swash. For example, preliminary observations from the CRAB include a wave that appeared to shoal and then "pitch" backwards immediately prior to breaking and running up the beach. Funded by the USACE Coastal Field Data Collection Program, ASD(R&E), and ONR.
Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements
NASA Astrophysics Data System (ADS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron
2015-10-01
Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.
Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron
2015-01-01
Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.
Campbell, Joel F; Lin, Bing; Nehrir, Amin R; Harrison, F Wallace; Obland, Michael D
2014-12-15
An interpolation method is described for range measurements of high precision altimetry with repeating intensity modulated continuous wave (IM-CW) lidar waveforms using binary phase shift keying (BPSK), where the range profile is determined by means of a cross-correlation between the digital form of the transmitted signal and the digitized return signal collected by the lidar receiver. This method uses reordering of the array elements in the frequency domain to convert a repeating synthetic pulse signal to single highly interpolated pulse. This is then enhanced further using Richardson-Lucy deconvolution to greatly enhance the resolution of the pulse. We show the sampling resolution and pulse width can be enhanced by about two orders of magnitude using the signal processing algorithms presented, thus breaking the fundamental resolution limit for BPSK modulation of a particular bandwidth and bit rate. We demonstrate the usefulness of this technique for determining cloud and tree canopy thicknesses far beyond this fundamental limit in a lidar not designed for this purpose.
Evaluation of three lidar scanning strategies for turbulence measurements
NASA Astrophysics Data System (ADS)
Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.
2015-11-01
Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.
Evaluation of three lidar scanning strategies for turbulence measurements
NASA Astrophysics Data System (ADS)
Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas
2016-05-01
Several errors occur when a traditional Doppler beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.
Novel solid state lasers for Lidar applications at 2 μm
NASA Astrophysics Data System (ADS)
Della Valle, G.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P.
2005-09-01
A review on the results achieved by our group in the development of novel solid-state lasers for Lidar applications at 2 μm is presented. These lasers, based on fluoride crystals (YLF4, BaY2F8, and KYF4) doped with Tm and Ho ions, are characterized by high-efficiency and wide wavelength tunability around 2 μm. Single crystals of LiYF4, BaY2F8, and KYF4 codoped with the same Tm3+ and Ho3+ concentrations were successfully grown by the Czochralski method. The full spectroscopic characterization of the different laser crystals and the comparison between the laser performance are presented. Continuous wave operation was efficiently demonstrated by means of a CW diode-pumping. These oscillators find interesting applications in the field of remote sensing (Lidar and Dial systems) as well as in high-resolution molecular spectroscopy, frequency metrology, and biomedical applications.
Evaluation of three lidar scanning strategies for turbulence measurements
Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; ...
2016-05-03
Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less
Evaluation of three lidar scanning strategies for turbulence measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia
Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less
NASA Technical Reports Server (NTRS)
Li, Tao; She, C. -Y.; Liu, Han-Li; Leblanc, Thierry; McDermid, I. Stuart
2007-01-01
In December 2004, the Colorado State University sodium lidar system at Fort Collins, Colorado (41 deg N, 105 deg W), conducted an approximately 80-hour continuous campaign for the simultaneous observations of mesopause region sodium density, temperature, and zonal and meridional winds. This data set reveals the significant inertia-gravity wave activities with a period of approximately 18 hours, which are strong in both wind components since UT day 338 (second day of the campaign), and weak in temperature and sodium density. The considerable variability of wave activities was observed with both wind amplitudes growing up to approximately 40 m/s at 95-100 km in day 339 and then decreasing dramatically in day 340. We also found that the sodium density wave perturbation is correlated in phase with temperature perturbation below 90 km, and approximately 180 deg out of phase above. Applying the linear wave theory, we estimated the wave horizontal propagation direction, horizontal wavelength, and apparent horizontal phase speed to be approximately 25 deg south of west, approximately 1800 +/- 150 km, and approximately 28 +/- 2 m/s, respectively of wave intrinsic period, intrinsic phase speed, and vertical wavelength were also estimated. While the onset of enhanced inertia-gravity wave amplitude in the night of 338 was observed to be in coincidence with short-period gravity wave breaking via convective instability, the decrease of inertia-gravity wave amplitude after noon of day 339 was also observed to coincide with the development of atmospheric dynamical instability layers with downward phase progression clearly correlated with the 18-hour inertia-gravity wave, suggesting likely breaking of this inertia-gravity wave via dynamical (shear) instability.
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Henderson, Sammy W.; Frehlich, R. G.
1991-01-01
The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included.
Quantifying Wave Breaking Shape and Type in the Surf-Zone Using LiDAR
NASA Astrophysics Data System (ADS)
Albright, A.; Brodie, K. L.; Hartzell, P. J.; Glennie, C. L.
2017-12-01
Waves change shape as they shoal and break across the surf-zone, ultimately dissipating and transferring their energy into turbulence by either spilling or plunging. This injection of turbulence and changes in wave shape can affect the direction of sediment transport at the seafloor, and ultimately lead to morphological evolution. Typical methods for collecting wave data in the surf-zone include in-situ pressure gauges, velocimeters, ultrasonic sensors, and video imagery. Drawbacks to these data collection methods are low spatial resolution of point measurements, reliance on linear theory to calculate sea-surface elevations, and intensive computations required to extract wave properties from stereo 2D imagery. As a result, few field measurements of the shapes of plunging and/or spilling breakers exist, and existing knowledge is confined to results of laboratory studies. We therefore examine the use of a multi-beam scanning Light Detection and Ranging (LiDAR) remote sensing instrument with the goal of classifying the breaking type of propagating waves in the surf-zone and quantitatively determining wave morphometric properties. Data were collected with a Velodyne HDL-32E LiDAR scanner (360° vertical field of view) mounted on an arm of the Coastal Research Amphibious Buggy (CRAB) at the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina. Processed laser scan data are used to visualize the lifecycle of a wave (shoaling, breaking, broken) and identify wave types (spilling, plunging, non-breaking) as they pass beneath the scanner. For each rotation of the LiDAR scanner, the point cloud data are filtered, smoothed, and detrended in order to identify individual waves and measure their properties, such as speed, height, period, upward/downward slope, asymmetry, and skewness. The 3D nature of point cloud data is advantageous for research, because it enables viewing from any angle. In our analysis, plan views are used to separate individual waves, and cross-shore profiles are used to extract wave properties. Combined with accurate georeferencing information, LiDAR has the potential to be a powerful remote sensing tool for coastal monitoring systems and the study of nearshore processes.
NASA Technical Reports Server (NTRS)
Cutten, D. R.; Spinhirne, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.
1998-01-01
Aerosol backscatter coefficient data were examined from two nights near Japan and Hawaii undertaken during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. During each of these two nights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provided an ideal opportunity to allow flight level focused continuous wave (CW) lidar backscatter measured at 9.11-micron wavelength and modeled aerosol backscatter from two aerosol optical counters to be compared with pulsed lidar aerosol backscatter data at 1.06- and 9.25-micron wavelengths. The best agreement between all sensors was found in the altitude region below 7 km, where backscatter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscatter data at 1.06- and 9.25-micron wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters, suggesting sample volume effects were responsible for this. Aerosol microphysics analysis of data near Japan revealed a strong sea-salt aerosol plume extending upward from the marine boundary layer. On the basis of sample volume differences, it was found that large particles were of different composition compared with the small particles for low backscatter conditions.
Rayleigh lidar observations of gravity wave activity in the stratosphere and lower mesosphere
NASA Technical Reports Server (NTRS)
Miller, M. S.; Gardner, C. S.; Liu, C. H.
1987-01-01
Forty-two monochromatic gravity wave events were observed in the 25 to 55 km altitude region during 16 nights of Rayleigh lidar measurements at Poker Flat, Alaska and Urbana, Illinois. The measured wave parameters were compared to previous radar and lidar measurements of gravity wave activity. Vertical wavelengths, lambda(z), between 2 and 11.5 km with vertical phase velocities, c(z), between 0.1 and 1 m/s were observed. Measured values of lambda(z) and c(z) were used to infer observed wave periods, T(ob), between 50 and 1000 minutes and horizontal wavelengths, lambda(x), from 25 to 2000 km. Dominant wave activity was found at vertical wavelengths between 2 to 4 km and 7 to 10 km. No seasonal variations were evident in the observed wave parameters. Vertical and horizontal wavelengths showed a clear tendency to increase with T(ob), which is consistent with recent sodium lidar studies of monochromatic wave events near the mesopause. Measured power law relationships between the wave parameters were lambda(z) varies as T(ob) sup 0.96, lambda(x) varies as T(ob) sup 1.8, and c(z) varies as T(ob) sup -0.85. The kinetic energy calculated for the monochromatic wave events varied as k(z) sup -2, k(x) sup -1, and f(ob) sup -1.7. The atmospheric scale heights calculated for each observation date range from 6.5 to 7.6 km with a mean value of 7 km. The increase of rms wind perturbations with altitude indicated an amplitude growth length of 20.9 km. The altitude profile of kinetic energy density decreased with height, suggesting that waves in this altitude region were subject to dissipation or saturation effects.
NASA Astrophysics Data System (ADS)
Delgado, R.; Weldegaber, M.; Wilson, R. C.; McMillan, W.; McCann, K. J.; Woodman, M.; Demoz, B.; Adam, M.; Connell, R.; Venable, D.; Joseph, E.; Rabenhorst, S.; Twigg, L.; McGee, T.; Whiteman, D. N.; Hoff, R. M.
2008-12-01
Elastic and Raman lidar measurements were conducted to measure the vertical distribution of aerosols and water vapor during the Water Vapor Validation Experiments (WAVES) 2008 campaign by the University of Maryland Baltimore County (UMBC) Atmospheric Lidar Group at UMBC, at the same time as measurements at Howard University's Beltsville Research Station (26.5 km distant). The lidar profiles of atmospheric water vapor and aerosols allowed comparison for AURA/Aqua retrieval studies, by performing instrument accuracy assessments and data, generated by various independent active and passive remote sensing instruments for case studies of regional water vapor and aerosol sub-pixel variability. Integration of the lidar water vapor mixing ratios has been carried out to generate a column precipitable water vapor timeseries that can be compared to UMBC's SUOMINET station and Baltimore Bomem Atmospheric Emitted Radiance Interferometer (BBAERI). Changes in atmospheric aerosol concentration and water vapor mixing ratios due to meteorological events observed in the lidar timeseries have been correlated to the vertical temperature timeseries of BBAERI and to modeling of the air mass over the Baltimore-Washington metro area with the Weather Research and Forecasting (WRF) model.
2013-10-07
Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL data taken using DYNAMO 5a. CONTRACT NUMBER N0001411C0464 5b. GRANT...efficiency of energy, mass and momentum exchange at the bottom and top of the ABL. 15. SUBJECT TERMS DYNAMO , ABL 16. SECURITY CLASSIFICATION OF: 17...Investigation of the Air-Wave-Sea Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL data taken during DYNAMO George
Yue, J; She, C-Y; Williams, B P; Vance, J D; Acott, P E; Kawahara, T D
2009-04-01
With two cw single-mode Nd:YAG lasers at 1064 and 1319 nm and a periodically poled lithium niobate crystal, 11 mW of 2 kHz/100 ms bandwidth single-mode tunable 589 nm cw radiation has been detected using single-pass sum-frequency generation. The demonstrated conversion efficiency is approximately 3.2%[W(-1) cm(-1)]. This compact solid-state light source has been used in a solid-state-dye laser hybrid sodium fluorescence lidar transmitter to measure temperatures and winds in the upper atmosphere (80-105 km); it is being implemented into the transmitter of a mobile all-solid-state sodium temperature and wind lidar under construction.
NASA Technical Reports Server (NTRS)
Cutten, D. R.; Jarzembski, M. A.; Srivastava, V.; Pueschel, R. F.; Howard, S. D.; McCaul, E. W., Jr.
2003-01-01
An inversion technique has been developed to determine volume fractions of an atmospheric aerosol composed primarily of ammonium sulfate and ammonium nitrate and water combined with fixed concentration of elemental and organic carbon. It is based on measured aerosol backscatter obtained with 9.11 - and 10.59-micron wavelength continuous wave CO2 lidars and modeled backscatter from aerosol size distribution data. The technique is demonstrated during a flight of the NASA DC-8 aircraft over the Sierra Nevada Mountain Range, California on 19 September, 1995. Volume fraction of each component and effective complex refractive index of the composite particle were determined assuming an internally mixed composite aerosol model. The volume fractions were also used to re-compute aerosol backscatter, providing good agreement with the lidar-measured data. The robustness of the technique for determining volume fractions was extended with a comparison of calculated 2.1,-micron backscatter from size distribution data with the measured lidar data converted to 2.1,-micron backscatter using an earlier derived algorithm, verifying the algorithm as well as the backscatter calculations.
Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements
NASA Astrophysics Data System (ADS)
Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.
2015-12-01
Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.
NASA Astrophysics Data System (ADS)
Du, Li-fang; Yang, Guo-tao; Wang, Ji-hong; Yue, Chuan; Chen, Lin-xiang
2017-02-01
A wind measurement Doppler Lidar system was developed, in which injection seeded laser was used to generate narrow linewidth laser pulse. Frequency stabilization was achieved through absorption of iodine molecules. Commands that control the instrumental system were based on the PID algorithm and coded using VB language. The frequency of the seed laser was locked to iodine molecular absorption line 1109 which is close to the upper edge of the absorption range,with long-time (>4 h) frequency-locking accuracy being ≤0.5 MHz and long-time frequency stability being 3.55×10-9. Design the continuous light velocity measuring system, which concluded the cure about doppler frequency shift and actual speed of chopped wave plate, the velocity error is less than 0.4 m/s. The experiment showed that the stabilized frequency of the seed laser was different from the transmission frequency of the Lidar. And such frequency deviation is known as Chirp of the laser pulse. The real-time measured frequency difference of the continuous and pulsed lights was about 10 MHz, long-time stability deviation was around 5 MHz. When the temporal and spatial resolutions were respectively set to 100 s and 96 m, the wind velocity measurement error of the horizontal wind field at the attitude of 15-35 km was within ±5 m/s, the results showed that the wind measurement Doppler Lidar implemented in Yanqing, Beijing was capable of continuously detecting in the middle and low atmospheric wind field at nighttime. With further development of this technique, system measurement error could be lowered, and long-run routine observations are promising.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Bhawar, Rohini; Summa, Donato; Di Iorio, Tatiana; Demoz, Belay B.
2009-03-01
The Raman lidar system BASIL was deployed in Achern (Supersite R, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) in the frame of the Convective and Orographically-induced Precipitation Study. On 20 July 2007 a frontal zone passed over the COPS region, with a Mesoscale Convective System (MCS) imbedded in it. BASIL was operated continuously during this day, providing measurements of temperature, water vapour, particle backscattering coefficient at 355, 532 and 1064 nm, particle extinction coefficient at 355 and 532 nm and particle depolarization at 355 and 532 nm. The thunderstorm approaching determined the lowering of the anvil clouds, which is clearly visible in the lidar data. A cloud deck is present at 2 km, which represents a mid-level outflow from the thunderstorm/MCS. The mid-level outflow spits out hydrometeor-debris (mostly virga) and it is recycled back into it. The MCS modified the environment at 1.6-2.5 km levels directly (outflow) and the lower levels through the virga/precipitation. Wave structures were observed in the particle backscatter data. The wave activity seems to be a reflection of the shear that is produced by the MCS and the inflow environmental wind. Measurements in terms of particle backscatter and water vapour mixing ratio are discussed to illustrate the above phenomena.
Gravity Waves and Tidal Measurement Capabilities from a Space-borne Lidar across the Mesopause.
NASA Astrophysics Data System (ADS)
Dawkins, E. C. M.; Gardner, C. S.; Kaifler, B.; Marsh, D. R.; Janches, D.
2017-12-01
A new proposed NASA mission, ACaDAMe (Atmospheric Coupling and Dynamics Across the Mesopause region) consists of a space-borne sodium lidar, mounted upon the International Space Station. Combining the advantages of a lidar with the near-global coverage provided by the ISS (orbital inclination: 51.6o, orbital period: 92.7 mins), the ACaDAMe mission has enormous potential to quantify the waves that provide the major momentum and energy forcing of the Ionosphere-Thermosphere-Mesosphere system from below. Specifically, this mission seeks to quantify the dominant wave momentum and energy inputs across the mesopause, and identify the near-global distribution of gravity waves and tides that impact the Thermosphere/Ionosphere and are the terrestrial drivers of Space Weather. Leveraging on existing instrument heritage and expertise, this nadir-pointing narrowband lidar would be tuned to two-frequencies (at the peak of the D2a line, and at the minimum between the D2a and D2b peaks), with a capability to retrieve vertically-resolved [Na] and temperature, T, for both nighttime and daytime conditions. Here we outline the proposed mission, present an error characterization for [Na] and T, and describe the capabilities to estimate gravity waves and tidal features which will provide a crucial role in advancing our understanding of small-scale dynamical processes and coupling across this important atmospheric region.
NASA Astrophysics Data System (ADS)
Chu, X.; Yu, Z.; Fong, W.; Chen, C.; Huang, W.; Lu, X.; Gardner, C. S.; McDonald, A.; Fuller-Rowell, T. J.; Vadas, S.
2013-12-01
The scientific motivation to explore the neutral properties of the polar middle and upper atmosphere is compelling. Human-induced changes in the Earth's climate system are one of the most challenging social and scientific issues in this century. Besides monitoring climate change, to fully explore neutral-ion coupling in the critical region between 100 and 200 km is an objective of highest priority for the upper atmosphere science community. Meteorological sources of wave energy from the lower atmosphere are responsible for producing significant variability in the upper atmosphere. Energetic particles and fields originating from the magnetosphere regularly alter the state of the ionosphere. These influences converge through the tight coupling between the ionosphere plasma and neutral thermosphere gas in the space-atmosphere interaction region (SAIR). Unfortunately measurements of the neutral thermosphere are woefully incomplete and in critical need to advance our understanding of and ability to predict the SAIR. Lidar measurements of neutral thermospheric winds, temperatures and species can enable these explorations. To help address these issues, in December 2010 we deployed an Fe Boltzmann temperature lidar to McMurdo (77.8S, 166.7E), Antarctica via collaboration between the United States Antarctic Program and Antarctica New Zealand. Since then an extensive dataset (~3000 h) has been collected by this lidar during its first 32 months of operation, leading to several important new discoveries. The McMurdo lidar campaign will continue for another five years to acquiring long-term datasets for polar geospace research. In this paper we provide a comprehensive overview of the lidar campaign and scientific results, emphasizing several new discoveries in the polar middle and upper atmosphere research. In particular, the lidar has detected neutral Fe layers reaching 170 km in altitude, and derived neutral temperature from 30 to 170 km for the first time in the world. Such discoveries may have opened the new door to observing the neutral thermosphere with ground-based instruments. Extreme Fe events in summer were observed and understood as the interesting interactions among the meteoric metal atoms, sub-visible ice particles and energetic particles during aurora precipitation. Furthermore, the McMurdo middle and upper atmosphere is found to be very dynamical, especially in winter when inertia-gravity waves and eastward propagating planetary waves are predominant in the mesosphere and lower thermosphere and in the stratosphere, respectively. Despite small amplitudes below 100 km, the diurnal and semidiurnal tidal amplitudes exhibit fast growth from 100 to 110 km depending on the geomagnetic activities. These observations pose great challenges to our understanding of the Earth's upper atmosphere but also provide excellent opportunities to exploring how the electrodynamics and neutral dynamics work together at this high southern latitude to produce many intriguing geophysical phenomena.
NASA Astrophysics Data System (ADS)
Taylor, M. J.; Zhao, Y.; Pautet, P. D.; Carstens, J. N.; Pugmire, J. R.; Smith, S. M.; Liu, A. Z.; Vargas, F.; Swenson, G. R.; Randall, C. E.; Bailey, S. M.; Russell, J. M., III
2016-12-01
To date, the primary research goals of the Aeronomy of Ice in the Mesosphere (AIM) satellite have focussed on investigating the occurrence, properties and dynamics of high-latitude Polar Mesospheric Clouds (PMC). With the evolution of the AIM orbit beta angle the opportunity now exists to make measurements outside the PMC region covering mid-low and equatorial latitudes. As part of the extended AIM mission science program, the AIM platform in conjunction with auxiliary ground-based measurements will be used to better understand upper atmospheric dynamics and vertical coupling due to gravity waves. Over the next 2 years AIM will take advantage of a new imaging capability of the on-board large-field CIPS UV imager to capture new data on the characteristics and spatial extents of stratospheric gravity waves near the 50 km level and their variation with latitude and season. In this study we report on initial coordinated ground-based measurements with the Andes Lidar Observatory (ALO) at Cerro Pachon, Chile ( 30°S) and nearby El Leoncito Observatory, Argentina, high in the Andes Mountains, where regular remote-sensing measurements are made using meteor radar, mesospheric airglow imagers, temperature mappers and an Na wind-temperature lidar (on a campaign basis). First coordinated measurements were made during the winter period in June 2016. AIM daytime overpasses have been analysed to search for and characterize extensive stratospheric wave events, as well as long-lived "Mountain Waves" over South America. Subsequent night-time ground-based measurements have been used to quantify wave characteristics in the mesopause region ( 80-100 km) to investigate vertical coupling. These measurements are continuing and it is planned to extend the new AIM stratospheric gravity wave data set for similar studies from a number of well-instrumented ground sites around the world.
NASA Astrophysics Data System (ADS)
Huang, W.; Chu, X.; Gardner, C. S.; Barry, I. F.; Smith, J. A.; Fong, W.; Yu, Z.; Chen, C.
2014-12-01
The vertical transport of heat and constituent by gravity waves and tides plays a fundamental role in establishing the thermal and constituent structures of the mesosphere and lower thermosphere (MLT), but has not been thoroughly investigated by observations. In particular, direct measurements of vertical heat flux and metal constituent flux caused by dissipating waves are extremely rare, which demand precise measurements with high spatial and temporal resolutions over a long period. Such requirements are necessary to overcome various uncertainties to reveal the small quantities of the heat and constituent fluxes induced by dissipating waves. So far such direct observations have only been reported for vertical heat and Na fluxes using a Na Doppler lidar at Starfire Optical Range (SOR) in Albuquerque, New Mexico. Furthermore, estimate of eddy heat and constituent fluxes from the turbulent mixing generated by breaking waves is even more challenging due to the even smaller temporal and spatial scales of the eddy. Consequently, the associated coefficients of thermal (kH) and constituent (kzz) diffusion have not been well characterized and remain as large uncertainties in models. We attempt to address these issues with direct measurements by a Na Doppler lidar with exceptional high-resolution measurement capabilities. Since summer 2010, we have been operating a Na Doppler lidar at Boulder, Colorado. The efficiency of the lidar has been greatly improved in summer of 2011 and achieved generally over 1000 counts of Na signal per lidar pulse in winter. In 2013, we made extensive Na lidar observations in 98 nights. These data covering each month of a full year will be used to characterize the seasonal variations of heat and Na fluxes and to be compared with the pioneering observations at SOR. In November 2013, we further upgraded the lidar with two new frequency shifters and a new data acquisition scheme, which are optimized for estimating eddy fluxes and reducing the measurement bias. Since then, we have been making observations in order to directly measure the eddy heat and Na fluxes for the first time. Such lidar observations at Boulder will certainly help advance the understanding on the vertical transport in the MLT region and provide crucial observational references to the models.
Lidar Measurements of Atmospheric CO2 From Regional to Global Scales
NASA Technical Reports Server (NTRS)
Lin, Bing; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Dobler, Jeremy; Campbell, Joel; Meadows, Byron; Obland, Michael; Ismail, Syed; Kooi, Susan;
2015-01-01
Atmospheric CO2 is a critical forcing for the Earth's climate and the knowledge on its distributions and variations influences predictions of the Earth's future climate. Large uncertainties in the predictions persist due to limited observations. This study uses the airborne Intensity-Modulated Continuous-Wave (IMCW) lidar developed at NASA Langley Research Center to measure regional atmospheric CO2 spatio-temporal variations. Further lidar development and demonstration will provide the capability of global atmospheric CO2 estimations from space, which will significantly advances our knowledge on atmospheric CO2 and reduce the uncertainties in the predictions of future climate. In this presentation, atmospheric CO2 column measurements from airborne flight campaigns and lidar system simulations for space missions will be discussed. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved. Data analysis also shows that airborne lidar CO2 column measurements over these surfaces agree well with in-situ measurements. Even when thin cirrus clouds present, consistent CO2 column measurements between clear and thin cirrus cloudy skies are obtained. Airborne flight campaigns have demonstrated that precise atmospheric column CO2 values can be measured from current IM-CW lidar systems, which will lead to use this airborne technique in monitoring CO2 sinks and sources in regional and continental scales as proposed by the NASA Atmospheric Carbon and Transport â€" America project. Furthermore, analyses of space CO2 measurements shows that applying the current IM-CW lidar technology and approach to space, the CO2 science goals of space missions will be achieved, and uncertainties in CO2 distributions and variations will be reduced.
Assessment of MFLL column CO2 measurements obtained during the ACT-America field campaigns
NASA Astrophysics Data System (ADS)
Lin, B.; Browell, E. V.; Kooi, S. A.; Dobler, J. T.; Campbell, J.; Fan, T. F.; Pal, S.; O'Dell, C. W.; Obland, M. D.; Erxleben, W. H.; McGregor, D.; Kochanov, R. V.; DiGangi, J. P.; Davis, K. J.; Choi, Y.
2017-12-01
Accurate observations of atmospheric CO2 with airborne and space-based lidar systems such as those used during the Atmospheric Carbon and Transport - America (ACT-America) field campaigns and proposed for the NASA ASCENDS mission would improve our knowledge of CO2 distributions and variations on both regional and global scales, reduce the uncertainties in atmospheric CO2 transport and fluxes, and increase confidence in predictions of future climate changes. To reach these scientific goals, atmospheric column CO2 (XCO2) measurements of the Harris Corporation's Multifunctional Fiber Laser Lidar (MFLL) obtained during the first two ACT-America flight campaigns have been thoroughly investigated by the ACT-America lidar measurement group. MFLL is an intensity-modulated continuous-wave lidar operating in the 1.57-mm CO2 absorption band. Atmospheric XCO2 amounts are retrieved based on the integrated path differential absorption of the lidar signals at online and offline wavelengths between the aircraft and the ground. NASA Langley Research Center and Harris have been collaborating in the development and evaluation of this CO2 lidar approach for a number of years. To gain insights into the lidar performance, the measurement group has collected all possible lidar measurements with corresponding in-situ atmospheric profile information from the first two ACT-America field campaigns, including the data from several flight legs dedicated to lidar calibration. Initially large differences (-1 to 2 %) were found between lidar measured CO2 optical depths and those derived from in-situ observations and spectroscopy from HITRAN2008. When an improved spectroscopic model (Pre-HITRAN2016) was applied, the large systematic errors were much more consistent leading to the development of an empirical linear correction of measured optical depth based on the calibration flight data. This correction accounts for remaining uncertainties in spectroscopic models, environmental conditions, such as temperature, pressure, and water vapor, and possible instrumental issues like optical cross-talk between wavelengths introduced in the power amplifier. Results from a flight of Gulf of Mexico with a very homogenous environment showed that the precision of lidar XCO2 measurements was as high as about 0.5ppm for 10-s averages.
DAWN Coherent Wind Profiling Lidar Flights on NASA's DC-8 During GRIP
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Beyon, Jeffrey Y.; Creary, Garfield A.; Koch, Grady J.; Petros, Mulugeta; Petzar, Paul J.; Singh, Upendra N.; Trieu, Bo C.; Yu, Jirong
2011-01-01
Almost from their invention, lasers have been used to measure the velocity of wind and objects; over distances of cm to 10s of km. Long distance (remote) sensing of wind has been accomplished with continuous-wave (CW), focused pulsed, and collimated pulsed lasers; with direct and coherent (heterodyne) optical detection; and with a multitude of laser wavelengths. Airborne measurement of wind with pulsed, coherent-detection lidar was first performed in 1971 with a CW CO2 laser1, in 1972 with a pulsed CO2 laser2, in 1993 with a pulsed 2-micron laser3, and in 1999 with a pulsed CO2 laser and nadir-centered conical scanning4. Of course there were many other firsts and many other groups doing lidar wind remote sensing with coherent and direct detection. A very large FOM coherent wind lidar has been built by LaRC and flown on a DC-8. However a burn on the telescope secondary mirror prevented the full demonstration of high FOM. Both the GRIP science product and the technology and technique demonstration from aircraft are important to NASA. The technology and technique demonstrations contribute to our readiness for the 3D Winds space mission. The data analysis is beginning and we hope to present results at the conference.
Wavelength Locking to CO2 Absorption Line-Center for 2-Micron Pulsed IPDA Lidar Application
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong
2016-01-01
An airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-micron CW (Continuous Wave) laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nanometers, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.
Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave
NASA Technical Reports Server (NTRS)
Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.
1992-01-01
Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.
NASA Astrophysics Data System (ADS)
Chu, X.
2017-12-01
A new STAR Na Doppler lidar will be installed to Arrival Heights near McMurdo Station, Antarctica in October 2017. This new lidar will be operated next to an existing Fe Boltzmann lidar to make simultaneous and common-volume measurements of metal Na and Fe layers, neutral temperatures, and vertical winds in the mesosphere and thermosphere, up to nearly 200 km. These measurements will be used to study a variety of science topics, e.g., the meteoric metal layers, wave dynamics, polar mesospheric clouds, constituent and heat fluxes, and cosmic dust. The discoveries of thermospheric neutral Fe layers and persistent gravity waves by the Fe Boltzmann lidar observations has opened a new door to explore the space-atmosphere interactions with ground-based instruments, especially in the least understood but crucially important altitude range of 100-200 km. These neutral metal layers provide excellent tracers for modern resonance lidars to measure the neutral wind and temperature directly. Even more exciting, the neutral metal layers in the thermosphere provide a natural laboratory to test our fundamental understandings of the atmosphere-ionosphere-magnetosphere coupling and processes. This paper will report the first summer results from the simultaneous Na and Fe lidar observations from Antarctica, and highlight important discoveries made by the Fe lidar during its first seven years of campaign at McMurdo. A thermosphere-ionosphere Fe/Fe+ (TIFe) model will be introduced to explain the TIFe layers in Antarctica.
Development of a Coherent Lidar for Aiding Precision Soft Landing on Planetary Bodies
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Pierrottet, Diego; Tolson, Robert H.; Powell, Richard W.; Davidson, John B.; Peri, Frank
2005-01-01
Coherent lidar can play a critical role in future planetary exploration missions by providing key guidance, navigation, and control (GNC) data necessary for navigating planetary landers to the pre-selected site and achieving autonomous safe soft-landing. Although the landing accuracy has steadily improved over time to approximately 35 km for the recent Mars Exploration Rovers due to better approach navigation, a drastically different guidance, navigation and control concept is required to meet future mission requirements. For example, future rovers will require better than 6 km landing accuracy for Mars and better than 1 km for the Moon plus maneuvering capability to avoid hazardous terrain features. For this purpose, an all-fiber coherent lidar is being developed to address the call for advancement of entry, descent, and landing technologies. This lidar will be capable of providing precision range to the ground and approach velocity data, and in the case of landing on Mars, it will also measure the atmospheric wind and density. The lidar obtains high resolution range information from a frequency modulated-continuous wave (FM-CW) laser beam whose instantaneous frequency varies linearly with time, and the ground vector velocity is directly extracted from the Doppler frequency shift. Utilizing the high concentration of aerosols in the Mars atmosphere (approx. two order of magnitude higher than the Earth), the lidar can measure wind velocity with a few watts of optical power. Operating in 1.57 micron wavelength regime, the lidar can use the differential absorption (DIAL) technique to measure the average CO2 concentration along the laser beam using, that is directly proportional to the Martian atmospheric density. Employing fiber optics components allows for the lidar multi-functional operation while facilitating a highly efficient, compact and reliable design suitable for integration into a spacecraft with limited mass, size, and power resources.
Three atmospheric dispersion experiments involving oil fog plumes measured by lidar
NASA Technical Reports Server (NTRS)
Eberhard, W. L.; Mcnice, G. T.; Troxel, S. W.
1986-01-01
The Wave Propagation Lab. participated with the U.S. Environmental Protection Agency in a series of experiments with the goal of developing and validating dispersion models that perform substantially better that models currently available. The lidar systems deployed and the data processing procedures used in these experiments are briefly described. Highlights are presented of conclusions drawn thus far from the lidar data.
NASA Astrophysics Data System (ADS)
Yuan, T.; Heale, C. J.; Snively, J. B.
2016-12-01
Utilizing observations from the Na lidar at Utah State University and the nearby Mesospheric Temperature Mapper (MTM) at Bear Lake Observatory (BLO) [41.9°N, 111.4°W], we investigate a unique case of vertical dispersion for a spectrally broad gravity wave packet in the mesopause region over Logan, Utah (41.7°N, 111.8°W) that occurred on September 2nd, 2011, to study the waves' evolution as a packet propagates upward. The lidar observed temperature perturbation was dominated by close to a 1-hour modulation at 100 km during the early hours, but gradually evolved into a 1.5-hour modulation during the second half of the night. The vertical wavelength also decreased simultaneously, while the vertical group and phase velocities of the packet apparently slowed, as it was approaching a critical level during the second half of the night. A two-dimensional numerical model is utilized to simulate the observed GW processes, finding that the location of the lidar relative to the source can strongly influence which portion of the spectrum can be observed at a particular location relative to a source.
Lidar Past, Present, and Future in NASA's Earth and Space Science Programs
NASA Technical Reports Server (NTRS)
Einaudi, Franco; Schwemmer, Geary K.; Gentry, Bruce M.; Abshire, James B.
2004-01-01
Lidar is firmly entrenched in the family of remote sensing technologies that NASA is developing and using. Still a relatively new technology, lidar should continue to experience significant advances and progress. Lidar is used in each one of the major research themes, including planetary exploration, in the Earth Sciences Directorate at Goddard Space Flight Center. NASA has and will continue to generate new lidar applications from ground, air and space for both Earth science and planetary exploration.
A study of Equartorial wave characteristics using rockets, balloons, lidar and radar
NASA Astrophysics Data System (ADS)
Sasi, M.; Krishna Murthy, B.; Ramkumar, G.; Satheesan, K.; Parameswaran, K.; Rajeev, K.; Sunilkumar, S.; Nair, P.; Krishna Murthy, K.; Bhavanikumar, Y.; Raghunath, K.; Jain, A.; Rao, P.; Krishnaiah, M.; Nayar, S.; Revathy, K.
Dynamics of low latitude middle atmosphere is dominated by the zonal wind quasi- biennial oscillation (QBO) in the lower stratosphere and zonl wind semiannual oscillation (SAO) in the stratopause and mesopause regions. Equatorial waves play a significant role in the evolution of QBO and SAO through wave- mean flow interactions resulting in momentum transfer from the waves to the mean flow in the equatorial middle atmosphere. With the objective of characterising the equatorial wave characteristics and momentum fluxes associated with them a campaign experiment was conducted in 2000 using RH-200 rockets, balloons, Raleigh lidar and MST radar. Winds and temperatures in the troposphere, stratosphere and mesosphere over two low latitude stations Gadanki (13.5°N, 79.2°E) and SHAR (13.7°N, 80.2°E) were measured, using MST Radar, Rayleigh Lidar, balloons and RH-200 rockets, for 40 consecutive days from 21 February to 01 April 2000 and were used for the study of equatorial waves and their interactions with the background mean flow in various atmospheric regions. The study shows the occurrence of a strong stratospheric cooling (~25 K) anomaly along with a zonal wind anomaly and this low-latitude event appears to be linked to high-latitude stratospheric warming event and leads to subsequent generation of short period (~5 days) oscillations lasting for a few cycles in the stratosphere. A slow Kelvin wave (~18 day period), fast Kelvin wave (~8 days) and ultra fast Kelvin wave (~3.3 day period) and RG wave (~4.8 day period) have been identified. There are indications of slow and ultra fast Kelvin waves, in addition to fast Kelvin waves, contributing to the evolution of the westerly phase of the stratopause SAO.
Widely-Tunable Parametric Short-Wave Infrared Transmitter for CO2 Trace Detection (POSTPRINT)
2013-01-01
F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “ Coherent differential absorption lidar measurements of CO2... Doppler lidar system for wind sensing,” Appl. Opt. 46(11), 1953–1962 (2007). 1. Introduction Over the short-wave infrared (SWIR) spectrum, which is...fiber. References and links 1. M. Ebrahim-Zadeh, and I. T. Sorokina, eds., Mid-Infrared Coherent Sources and Applications (Springer, 2007). 2. C
Intensity Modulation Techniques for Continuous-Wave Lidar for Column CO2 Measurements
NASA Astrophysics Data System (ADS)
Campbell, J. F.; Lin, B.; Obland, M. D.; Kooi, S. A.; Fan, T. F.; Meadows, B.; Browell, E. V.; Erxleben, W. H.; McGregor, D.; Dobler, J. T.; Pal, S.; O'Dell, C.
2017-12-01
Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) and Linear Swept Frequency modulations to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that take advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. We compare BPSK to linear swept frequency and introduce a new technique to eliminate sidelobes in situations from linear swept frequency where the SNR is high with results that rival BPSK. We also investigate the effects of non-linear modulators, which can in some circumstances degrade the orthogonality of the waveforms, and show how to avoid this. These techniques are used in a new data processing architecture written in the C language to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.
Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey
2014-01-01
We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlipf, David; Raach, Steffen; Haizmann, Florian
2015-12-14
This paper presents first steps toward an adaptive lidar data processing technique crucial for lidar-assisted control in wind turbines. The prediction time and the quality of the wind preview from lidar measurements depend on several factors and are not constant. If the data processing is not continually adjusted, the benefit of lidar-assisted control cannot be fully exploited, or can even result in harmful control action. An online analysis of the lidar and turbine data are necessary to continually reassess the prediction time and lidar data quality. In this work, a structured process to develop an analysis tool for the predictionmore » time and a new hardware setup for lidar-assisted control are presented. The tool consists of an online estimation of the rotor effective wind speed from lidar and turbine data and the implementation of an online cross correlation to determine the time shift between both signals. Further, initial results from an ongoing campaign in which this system was employed for providing lidar preview for feed-forward pitch control are presented.« less
Modelling lidar volume-averaging and its significance to wind turbine wake measurements
NASA Astrophysics Data System (ADS)
Meyer Forsting, A. R.; Troldborg, N.; Borraccino, A.
2017-05-01
Lidar velocity measurements need to be interpreted differently than conventional in-situ readings. A commonly ignored factor is “volume-averaging”, which refers to lidars not sampling in a single, distinct point but along its entire beam length. However, especially in regions with large velocity gradients, like the rotor wake, can it be detrimental. Hence, an efficient algorithm mimicking lidar flow sampling is presented, which considers both pulsed and continous-wave lidar weighting functions. The flow-field around a 2.3 MW turbine is simulated using Detached Eddy Simulation in combination with an actuator line to test the algorithm and investigate the potential impact of volume-averaging. Even with very few points discretising the lidar beam is volume-averaging captured accurately. The difference in a lidar compared to a point measurement is greatest at the wake edges and increases from 30% one rotor diameter (D) downstream of the rotor to 60% at 3D.
NASA Technical Reports Server (NTRS)
Sun, Xiaoli
2012-01-01
An overview of space-based lidar systems is presented. from the first laser altimeter on APOLLO 15 mission in 1971 to the Mercury Laser Altimeter on MESSENGER mission currently in orbit, and those currently under development. Lidar, which stands for Light Detection And Ranging, is a powerful tool in remote sensing from space. Compared to radars, lidars operate at a much shorter wavelength with a much narrower beam and much smaller transmitter and receiver. Compared to passive remote sensing instruments. lidars carry their own light sources and can continue measuring day and night. and over polar regions. There are mainly two types of lidars depending on the types of measurements. lidars that are designed to measure the distance and properties of hard targets are often called laser rangers or laser altimeters. They are used to obtain the surface elevation and global shape of a planet from the laser pulse time-of-night and the spacecraft orbit position. lidars that are designed to measure the backscattering and absorption of a volume scatter, such as clouds and aerosols, are often just called lidars and categorized by their measurements. such as cloud and aerosol lidar, wind lidar, CO2 lidar, and so on. The advantages of space-based lidar systems over ground based lidars are the abilities of global coverage and continuous measurements.
Validation campaigns of a coherent Doppler Wind Lidar for PBL Continuous Profiling
NASA Astrophysics Data System (ADS)
Sauvage, Laurent; Cariou, Jean-Pierre; Boquet, Matthieu; Parmentier, Remy
2010-05-01
To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. In July 2009, the WLS70 took its definitive configuration with a new optical device installed on it allowing enhanced measurement range. New measurements were done at PNNL in Richland, Washington, and NASA Langley in Hampton, Virginia. These results are now processed and will bring a further proof on reliability and accuracy. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity accuracy.
High Density Lidar and Orthophotography in UXO Wide Area Assessment (Rev 1)
2007-08-01
The demonstration provided important insights regarding the appropriate uses and confidence levels for both lidar and orthophoto technologies. At...Patterns ................................................................................ 3-34 3.7.18 Lidar and Orthophoto Positional Accuracy...02-D-2008 Page iii CONTENTS (Continued) APPENDICES A Lidar and Orthophoto Positional Accuracy Results B Combining Lidar Data from Multiple
NASA Astrophysics Data System (ADS)
Cao, B.; Gelinas, L. J.; Liu, A. Z.; Hecht, J. H.
2016-12-01
Instabilities generated by large amplitude gravity waves are ubiquitous in the mesopause region, and contribute to the strong forcing on the background atmosphere. Gravity waves and ripples generated by instability are commonly detected by high resolution airglow imagers that measure the hydroxyl emissions near the mesopause ( 87 km). Recently, a method based on 2D wavelet is developed by Gelinas et al. to characterize the statistics of ripple parameters from the Aerospace Infrared Camera at Andes Lidar Observatory located at Cerro Pachón, Chile (70.74°W, 30.25°S). In the meantime, data from a collocated all-sky imager is used to derive gravity wave parameters and their statistics. In this study, the relationship between the ripples and gravity waves that appeared at the same time and location are investigated in terms of their orientations, magnitudes and scales, to examine the statistical properties of the gravity wave induced instabilities and the ripples they generate.
Lidar-based Research and Innovation at DTU Wind Energy - a Review
NASA Astrophysics Data System (ADS)
Mikkelsen, T.
2014-06-01
As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars (short-range system), and another consisting of three synchronized pulsed wind lidar systems (long-range system). Today, wind lidar profilers and WindScanners are routinely deployed and operated during field tests and measurement campaigns. Lidars have been installed and operated from ground, on offshore platforms, and also as scanning lidars integrated in operating turbines. As a result, wind profiles and also detailed 3D scanning of wind and turbulence fields have been achieved: 1) of the free wind aloft, 2) over complex terrain, 3) at coastal ranges with land-sea interfaces, 4) offshore, 5) in turbine inflow induction zone, and 6) of the complex and turbulent flow fields in the wakes inside wind parks.
NASA Astrophysics Data System (ADS)
Bi, L.
2016-12-01
Atmospheric remote sensing based on the Lidar technique fundamentally relies on knowledge of the backscattering of light by particulate matters in the atmosphere. This talk starts with a review of the current capabilities of electromagnetic wave scattering simulations to determine the backscattering optical properties of irregular particles, such as the backscatterer and depolarization ratio. This will be followed by a discussion of possible pitfalls in the relevant simulations. The talk will then be concluded with reports on the latest advancements in computational techniques. In addition, we summarize the laws of the backscattering optical properties of aerosols with respect to particle geometries, particle sizes, and mixing rules. These advancements will be applied to the analysis of the Lidar observation data to reveal the state and possible microphysical processes of various aerosols.
Synergy of VSWIR and LiDAR for Ecosystem Structure, Biomass, and Canopy Diversity
NASA Technical Reports Server (NTRS)
Cook, Bruce D.; Asner, Gregory P.
2010-01-01
This slide presentation reviews the use of Visible ShortWave InfraRed (VSWIR) Imaging Spectrometer and LiDAR to study ecosystem structure, biomass and canopy diversity. It is shown that the biophysical data from LiDAR and biochemical information from hyperspectral remote sensing provides complementary data for: (1) describing spatial patterns of vegetation and biodiversity, (2) characterizing relationships between ecosystem form and function, and (3) detecting natural and human induced change that affects the biogeochemical cycles.
Stability characteristics of the mesopause region above the Andes
NASA Astrophysics Data System (ADS)
Yang, F.; Liu, A. Z.
2017-12-01
The structure and seasonal variations of static and dynamic (shear) instabilities in the upper atmosphere (80 to 110 km) are examined using 3-year high-resolution wind and temperature data obtained with the Na Lidar at Andes Lidar Observatory (30S,71W). The stabilities are primarily determined by background temperature and wind, but strongly affected by tidal and gravity wave variations. Gravity waves perturb the atmosphere, causing intermittent unstable layers. The stabilities are characterized by their vertical and seasonal distributions of probability of instabilities. As have been found in previous studies, there is a correlation between high static stability (large N2) and strong vertical wind shear. The mechanism for this relationship is investigated in the context of gravity waves interacting with varying background.
NASA Technical Reports Server (NTRS)
Dobler, Jeremy T.; Harrison, F. Wallace; Browell, Edward V.; Lin, Bing; McGregor, Doug; Kooi, Susan; Choi, Yonghoon; Ismail, Syed
2013-01-01
The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as a mid-term, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype Laser Absorption Spectrometer for making high-precision, column CO2 mixing ratio measurements needed for the ASCENDS mission. This instrument, called the Multifunctional Fiber Laser Lidar (MFLL), operates in an intensity-modulated, continuous-wave mode in the 1.57- micron CO2 absorption band. Flight experiments have been conducted with the MFLL on a Lear-25, UC-12, and DC-8 aircraft over a variety of different surfaces and under a wide range of atmospheric conditions. Very high-precision CO2 column measurements resulting from high signal-to-noise (great than 1300) column optical depth measurements for a 10-s (approximately 1 km) averaging interval have been achieved. In situ measurements of atmospheric CO2 profiles were used to derive the expected CO2 column values, and when compared to the MFLL measurements over desert and vegetated surfaces, the MFLL measurements were found to agree with the in situ-derived CO2 columns to within an average of 0.17% or approximately 0.65 ppmv with a standard deviation of 0.44% or approximately 1.7 ppmv. Initial results demonstrating ranging capability using a swept modulation technique are also presented.
Lidar observations of wind- and wave-driven morphological evolution of coastal foredunes
NASA Astrophysics Data System (ADS)
Spore, N.; Brodie, K. L.; Kershner, C. M.
2016-02-01
Coastal foredunes are continually evolving geomorphic features that are slowly built up by wind-blown sand and rapidly eroded during storms by large waves and swash. Landward aeolian transport removes sediment from the active beach and surf-zone, trapping it in the dune, where as coastal erosion both removes sediment from the dune and can decrease the overall fetch and sediment supply available to the dune. Understanding how wave and wind-driven process interact with each other and the dune-beach system itself is a critical component of improving predictions of coastal evolution. To investigate these processes, two 50 m alongshore by 25 m cross-shore patches of dune along an open coast beach fronting the Atlantic Ocean in Duck, NC were scanned with a high resolution terrestrial lidar scanner ( 5000 points per m^2) every three weeks over the last year to observe detailed morphological evolution of the dune and upper beach. Sequential scans were co-registered to each other using fixed objects in the field of view, significantly increasing precision and accuracy of the observations. The north study site featured a 7.5 m tall scarped foredune system, where as the southern study site featured a 6 m tall, hummocky, prograding foredune. Initial analyses show large accretion events on the southern prograding site. For example, during one three week period in February, portions of the site accreted over 40 cm. In contrast, during the same three week period at the northern site (less than 1 km away), response was alongshore variable with erosion and accretion of roughly 10 cm on the foredune face. Further analysis will focus on separating wind vs. wave driven evolution of these sites. Funded by the USACE Coastal Inlets Research Program.
Recent developments with the asian dust and aerosol lidar observation network (AD-NET)
NASA Astrophysics Data System (ADS)
Sugimoto, Nobuo; Shimizu, Atsushi; Nishizawa, Tomoaki; Jin, Yoshitaka
2018-04-01
Recent developments of lidars and data analysis methods for AD-Net, and the studies using ADNet are presented. Continuous observation was started in 2001 at three stations using polarizationsensitive Mie-scattering lidars. Currently, lidars, including three multi-wavelength Raman lidars and one high-spectral-resolution lidar, are operated at 20 stations. Recent studies on validation/assimilation of chemical transport models, climatology, and epidemiology of Asian dust are also described.
Technique to separate lidar signal and sunlight.
Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R
2016-06-13
Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise.
NASA Astrophysics Data System (ADS)
Parameswaran, K.; Rajeev, K.; Sasi, M. N.; Ramkumar, Geetha; Krishna Murthy, B. V.; Satheesan, K.; Jain, A. R.; Bhavanikumar, Y.; Raghunath, Kalavai J.; Krishnaiah, M.
2002-01-01
Rayleigh lidar observations of temperature in the stratosphere and mesosphere are carried out an Gadanki from February 29 to March 31, 2000, which provided a powerful means of studying the gravity wave characteristics over the tropical atmosphere during winter. The potential energy per unit mass associated with the gravity wave activity in the upper stratosphere and mesosphere is found to undergo periodic fluctuations, which are closely correlated with the zonal wind fluctuations in the stratosphere produced by the equatorial waves. This provides the first observational evidence for the modulation of the gravity wave activity by the long period equatorial waves over the tropical middle atmosphere. The vertical wave number spectra of gravity waves shows that power spectral density decease with increasing wave number with a slope less than that expected for the saturated gravity wave spectrum in the stratosphere and mesosphere. PSD decreases for vertical wavelengths smaller than about 10 km in the stratosphere while the decrease is observed for the complete range of observed gravity wave spectrum in the mesosphere. A monochromatic upward propagating gravity wave with periodicity of 6 hour, amplitude of about 1 K to 3 K and vertical wavelength of 11 km was observed on 22 March, 2000.
Lidar Observations of Atmospheric CO2 Column During 2014 Summer Flight Campaigns
NASA Technical Reports Server (NTRS)
Lin, Bing; Harrison, F. Wallace; Fan, Tai-Fang
2015-01-01
Advanced knowledge in atmospheric CO2 is critical in reducing large uncertainties in predictions of the Earth' future climate. Thus, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) from space was recommended by the U.S. National Research Council to NASA. As part of the preparation for the ASCENDS mission, NASA Langley Research Center (LaRC) and Exelis, Inc. have been collaborating in development and demonstration of the Intensity-Modulated Continuous-Wave (IM-CW) lidar approach for measuring atmospheric CO2 column from space. Airborne laser absorption lidars such as the Multi-Functional Fiber Laser Lidar (MFLL) and ASCENDS CarbonHawk Experiment Simulator (ACES) operating in the 1.57 micron CO2 absorption band have been developed and tested to obtain precise atmospheric CO2 column measurements using integrated path differential absorption technique and to evaluate the potential of the space ASCENDS mission. This presentation reports the results of our lidar atmospheric CO2 column measurements from 2014 summer flight campaign. Analysis shows that for the 27 Aug OCO-2 under flight over northern California forest regions, significant variations of CO2 column approximately 2 ppm) in the lower troposphere have been observed, which may be a challenge for space measurements owing to complicated topographic condition, heterogeneity of surface reflection and difference in vegetation evapotranspiration. Compared to the observed 2011 summer CO2 drawdown (about 8 ppm) over mid-west, 2014 summer drawdown in the same region measured was much weak (approximately 3 ppm). The observed drawdown difference could be the results of the changes in both meteorological states and the phases of growing seasons. Individual lidar CO2 column measurements of 0.1-s integration were within 1-2 ppm of the CO2 estimates obtained from on-board in-situ sensors. For weak surface reflection conditions such as ocean surfaces, the 1- s integrated signal-to-noise ratio (SNR) of lidar measurements at 11 km altitude reached 376, which was equivalent to a 10-s CO2 error 0.33 ppm. For the entire processed 2014 summer flight campaign data, the mean differences between lidar remote sensed and in-situ estimated CO2 values were about -0.013 ppm. These results indicate that current laser absorption lidar approach could meet space measurement requirements for CO2 science goals.
NASA Technical Reports Server (NTRS)
Javan, A.
1979-01-01
A tunable multiatmospheric pulsed CO2 laser with emphasis on experimental features and supporting theoretical analyses important to differential absorption lidar and Doppler lidar measurement of pollutants and wind velocities is reported. The energy deposition and the means to produce the uniform high density plasma in the multiatmospheric medium, through UV preionization of an organic seed gas is discussed. Design features of the pulsed CO2 laser are presented. The radiative processes which are operative and prevent the laser from breaking into oscillations in a large number of modes over its broad amplification bandwidth are described. The mode competition for the transient pulsed laser oscillation in a standing wave and traveling wave ring laser configuration is discussed and contrasted with the approach to steady state oscillations. The latter findings are important to transient injection locking for production of a highly stable pulsed CO2 laser output.
Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2
NASA Technical Reports Server (NTRS)
Andrawis, Madeleine Y.
1994-01-01
The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.
NASA Technical Reports Server (NTRS)
Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry
1997-01-01
During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.
Validation Campaigns of a new 1.5μm Doppler Wind Lidar for PBL Continuous Profiling
NASA Astrophysics Data System (ADS)
Sauvage, Laurent; Boquet, Matthieu; Cariou, Jean-Pierre; Lolli, Simone
2010-05-01
To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. In July 2009, the WLS70 took its definitive configuration with a new optical device installed on it allowing enhanced measurement range. New measurements were done at PNNL in Richland, Washington, and NASA Langley in Hampton, Virginia. These results are now processed and will bring a further proof on reliability and accuracy. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity accuracy (<0.2m/s).
Development of Raman-Mie lidar system for aerosol and water vapor profiling
NASA Astrophysics Data System (ADS)
Deng, Qian; Wang, Zhenzhu; Xu, Jiwei; Tan, Min; Wu, Decheng; Xie, Chenbo; Liu, Dong; Wang, Yingjian
2018-03-01
Aerosol and water vapor are two important atmospheric parameters. The accurate quantification of diurnal variation of these parameters are very useful for environment assessment and climate change studies. A moveable, compact and unattended lidar system based on modular design is developed for aerosol extinction coefficients and water vapor mixing ratios measurements. In the southern suburbs of Beijing, the continuous observation was carried out by this lidar since the middle of the year of 2017. The lidar equipment is presented and the case study is also described in this paper. The observational results show that the lidar kept a very good status from the long-time continuous measurements which is suitable for networking especially in meteorological research field.
NASA Astrophysics Data System (ADS)
Chazette, Patrick; Totems, Julien; Shang, Xiaoxia
2017-12-01
The aerosol layers during the heat wave of July 2015 over Paris Area have been studied using a N2-Raman lidar with co- and cross-polarized channels. The lidar observations are examined to allow the identification of main aerosol types and their origins, in synergy with measurements of the AERONET sunphotometer network and back trajectory studies from the HYSPLIT model. The results are compatible with spaceborne observations of MODIS and CALIOP. As for previous heat waves of August 2003 and July 2006 occurring in France, the aerosol optical thickness is very large, up to 0.8 at the lidar wavelength of 355 nm (between 0.5 and 0.7 at 550 nm). However, air mass trajectories highlight that the observed aerosol layers may have multiple and diverse origins during the 2015 heat wave (North America, Northwest Africa, Southern and Northern Europe). Biomass burning, pollution and desert dust aerosols have been identified, using linear particle depolarization ratio, lidar ratio and analysis of back trajectories initiated at the altitudes and arrival times of the plumes. These layers are elevated and are shown to have little impact on surface aerosol concentrations (PM10 < 40 μg m-3 or PM2.5 < 25 μg m-3) and therefore no influence on the local air quality during the 2015 heat wave, unlike in 2003 and 2006. However, they significantly modify the radiative budget by trapping part of the solar ingoing/outgoing fluxes, which leads to a mean aerosol radiative forcing close to +50 ± 17 Wm-2 per aerosol optical thickness unit at 550 nm (AOT550) for solar zenith angles between 55 and 75°, which are available from sunphotometer measurements. This value is smaller than those of the 2003 and 2006 heat waves, which are assessed to be +95 ± 13 and +70 ± 18 Wm-2/AOT550, respectively. The differences between the heat wave of 2015 and the others are mainly due to both the nature and the diversity of aerosols, as indicated by the dispersion of the single scattering albedo distributions at 550 nm: 0.90 ± 0.03, 0.95 ± 0.02 and 0.93 ± 0.04 for 2003, 2006 and 2015, respectively.
LOSA-M3: multi-wave polarization scanning lidar for research of the troposphere and cirrus clouds
NASA Astrophysics Data System (ADS)
Kokhanenko, G. P.; Balin, Yu. S.; Klemasheva, M. G.; Penner, I. E.; Nasonov, S. V.; Samoilova, S. V.
2017-11-01
Lidar is designed to study the aerosol fields of the troposphere and the polarization characteristics of crystal clouds. Two laser wavelengths are used - 1064 and 532 nm, elastic scattering signals and spontaneous Raman scattering of nitrogen (607 nm) are recorded. Lidar is made in a mobile version, allowing its transportation by road and working under expeditionary conditions. The lidar transceiver is placed on a scanning column, which allows to change the direction of sounding within the upper hemisphere at a speed of 1 degree per second. The polarization characteristics of the transmitter and receiver can be changed by rotating the phase plates synchronously with the the laser pulses. In combination with conical scanning of the lidar, this makes it possible to detect the anisotropy of scattering and the possible azimuthal orientation of the crystal particles.
Quantifying hurricane-induced coastal changes using topographic lidar
Sallenger,, Asbury H.; Krabill, William; Swift, Robert; Brock, John
2001-01-01
USGS and NASA are investigating the impacts of hurricanes on the United States East and Gulf of Mexico coasts with the ultimate objective of improving predictive capabilities. The cornerstone of our effort is to use topographic lidar to acquire pre- and post-storm topography to quantify changes to beaches and dunes. With its rapidity of acquisition and very high density, lidar is revolutionizing the. quantification of storm-induced coastal change. Lidar surveys have been acquired for the East and Gulf coasts to serve as pre-storm baselines. Within a few days of a hurricane landfall anywhere within the study area, the impacted area will be resurveyed to detect changes. For example, during 1999, Hurricane Dennis impacted the northern North Carolina coast. Along a 70-km length of coast between Cape Hatteras and Oregon Inlet, there was large variability in the types of impacts including overwash, dune erosion, dune stability, and even accretion at the base of dunes. These types of impacts were arranged in coherent patterns that repeated along the coast over scales of tens of kilometers. Preliminary results suggest the variability is related to the influence of offshore shoals that induce longshore gradients in wave energy by wave refraction.
NASA Astrophysics Data System (ADS)
Mulligan, R. P.; Gomes, E.; McNinch, J.; Brodie, K. L.
2016-02-01
Numerical modelling of the nearshore zone can be computationally intensive due to the complexity of wave breaking, and the need for high temporal and spatial resolution. In this study we apply the SWASH non-hydrostatic wave-flow model that phase-resolves the free surface and fluid motions in the water column at high resolution. The model is forced using observed directional energy spectra, and results are compared to wave observations during moderate storm events. Observations are collected outside the surf zone using acoustic wave and currents sensors, and inside the surf zone over a 100 m transect using high-resolution LIDAR measurements of the sea surface from a sensor mounted on a tower on the beach dune at the Field Research Facility in Duck, NC. The model is applied to four cases with different wave conditions and bathymetry, and used to predict the spatial variability in wave breaking, and correlation between energy dissipation and morphologic features. Model results compare well with observations of spectral evolution outside the surf zone, and with the remotely sensed observations of wave transformation inside the surf zone. The results indicate the importance of nearshore bars, rip-channels, and larger features (major scour depression under the pier following large waves from Hurricane Irene) on the location of wave breaking and alongshore variability in wave energy dissipation.
NASA Technical Reports Server (NTRS)
Collis, R. T. H.
1969-01-01
Lidar is an optical radar technique employing laser energy. Variations in signal intensity as a function of range provide information on atmospheric constituents, even when these are too tenuous to be normally visible. The theoretical and technical basis of the technique is described and typical values of the atmospheric optical parameters given. The significance of these parameters to atmospheric and meteorological problems is discussed. While the basic technique can provide valuable information about clouds and other material in the atmosphere, it is not possible to determine particle size and number concentrations precisely. There are also inherent difficulties in evaluating lidar observations. Nevertheless, lidar can provide much useful information as is shown by illustrations. These include lidar observations of: cirrus cloud, showing mountain wave motions; stratification in clear air due to the thermal profile near the ground; determinations of low cloud and visibility along an air-field approach path; and finally the motion and internal structure of clouds of tracer materials (insecticide spray and explosion-caused dust) which demonstrate the use of lidar for studying transport and diffusion processes.
Backscatter-depolarisation lidars on high-altitude research aircraft
NASA Astrophysics Data System (ADS)
Mitev, Valentin; Matthey, Renaud; Makarov, Vladislav
2014-11-01
This article presents an overview of the development and the applications of two compact elastic backscatter depolarisation lidars, installed on-board the high-altitude research aircraft Myasishchev M-55 Geophysica. The installation of the lidars is intended for simultaneous probing of air parcels respectively upward and downward from the aircraft flight altitude to identify the presence of clouds (or aerosol )above and below the aircraft and to collocate them with in situ instruments. The lidar configuration and the procedure for its on-ground validation is outlined. Example of airborne measurements include polar stratospheric clouds, both synoptical and in lee-waves, ultra-thin cirrus clouds around the tropical tropopause and observation of aerosol layers emerging from the top of deep tropical convection.
NASA Astrophysics Data System (ADS)
Yang, T.; Wang, Z.; Zhang, W.; Gbaguidi, A.; Sugimoto, N.; Matsui, I.; Wang, X.; Yele, S.
2017-12-01
Predicting air pollution events in low atmosphere over megacities requires thorough understanding of the tropospheric dynamic and chemical processes, involving notably, continuous and accurate determination of the boundary layer height (BLH). Through intensive observations experimented over Beijing (China), and an exhaustive evaluation existing algorithms applied to the BLH determination, persistent critical limitations are noticed, in particular over polluted episodes. Basically, under weak thermal convection with high aerosol loading, none of the retrieval algorithms is able to fully capture the diurnal cycle of the BLH due to pollutant insufficient vertical mixing in the boundary layer associated with the impact of gravity waves on the tropospheric structure. Subsequently, a new approach based on gravity wave theory (the cubic root gradient method: CRGM), is developed to overcome such weakness and accurately reproduce the fluctuations of the BLH under various atmospheric pollution conditions. Comprehensive evaluation of CRGM highlights its high performance in determining BLH from Lidar. In comparison with the existing retrieval algorithms, the CRGM potentially reduces related computational uncertainties and errors from BLH determination (strong increase of correlation coefficient from 0.44 to 0.91 and significant decreases of the root mean square error from 643 m to 142 m). Such newly developed technique is undoubtedly expected to contribute to improve the accuracy of air quality modelling and forecasting systems.
Demonstration of coherent Doppler lidar for navigation in GPS-denied environments
NASA Astrophysics Data System (ADS)
Amzajerdian, Farzin; Hines, Glenn D.; Pierrottet, Diego F.; Barnes, Bruce W.; Petway, Larry B.; Carson, John M.
2017-05-01
A coherent Doppler lidar has been developed to address NASA's need for a high-performance, compact, and cost-effective velocity and altitude sensor onboard its landing vehicles. Future robotic and manned missions to solar system bodies require precise ground-relative velocity vector and altitude data to execute complex descent maneuvers and safe, soft landing at a pre-designated site. This lidar sensor, referred to as a Navigation Doppler Lidar (NDL), meets the required performance of the landing missions while complying with vehicle size, mass, and power constraints. Operating from up to four kilometers altitude, the NDL obtains velocity and range precision measurements reaching 2 cm/sec and 2 meters, respectively, dominated by the vehicle motion. Terrestrial aerial vehicles will also benefit from NDL data products as enhancement or replacement to GPS systems when GPS is unavailable or redundancy is needed. The NDL offers a viable option to aircraft navigation in areas where the GPS signal can be blocked or jammed by intentional or unintentional interference. The NDL transmits three laser beams at different pointing angles toward the ground to measure range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. The three line-of-sight measurements are then combined in order to determine the three components of the vehicle velocity vector and its altitude relative to the ground. This paper describes the performance and capabilities that the NDL demonstrated through extensive ground tests, helicopter flight tests, and onboard an autonomous rocket-powered test vehicle while operating in closedloop with a guidance, navigation, and control (GN and C) system.
NASA Astrophysics Data System (ADS)
Beissner, Kenneth C.
1997-10-01
Temperature observations of the middle atmosphere have been carried out from September 1993 through July 1995 using a Rayleigh backscatter lidar located at Utah State University (42oN, 111oW). Data have been analyzed to obtain absolute temperature profiles from 40 to 90 km. Various sources of error were reviewed in order to ensure the quality of the measurements. This included conducting a detailed examination of the data reduction procedure, integration methods, and averaging techniques, eliminating errors of 1-3%. The temperature structure climatology has been compared with several other mid-latitude data sets, including those from the French lidars, the SME spacecraft, the sodium lidars at Ft. Collins and Urbana, the MSISe90 model, and a high- latitude composite set from Andenes, Norway. In general, good agreement occurs at mid-latitudes, but areas of disagreement do exist. Among these, the Utah temperatures are significantly warmer than the MSISe90 temperatures above approximately 80 km, they are lower below 80 km than any of the others in summer, they show major year- to-year variability in the winter profiles, and they differ from the sodium lidar data at the altitudes where the temperature profiles should overlap. Also, comparisons between observations and a physics based global circulation model, the TIME-GCM, were conducted for a mid-latitude site. A photo-chemical model was developed to predict airglow intensity of OH based on output from the TIME-GCM. Many discrepancies between the model and observations were found, including a modeled summer mesopause too high, a stronger summer inversion not normally observed by lidar, a fall-spring asymmetry in the OH winds and lidar temperatures but not reproduced in the TIME-GCM equinoctial periods, larger winter seasonal wind tide than observed by the FPI, and a failure of the model to reverse the summertime mesospheric jet. It is our conclusion these discrepancies are due to a gravity wave parameterization in the model that is too weak and an increase will effectively align the model calculations with our observations.
NASA Astrophysics Data System (ADS)
Sridharan, S.; Sathishkumar, S.; Raghunath, K.
2009-01-01
Rayleigh lidar observations of temperature structure and gravity wave activity were carried out at Gadanki (13.5° N, 79.2° E) during January-February 2006. A major stratospheric warming event occurred at high latitude during the end of January and early February. There was a sudden enhancement in the stratopause temperature over Gadanki coinciding with the date of onset of the major stratospheric warming event which occurred at high latitudes. The temperature enhancement persisted even after the end of the high latitude major warming event. During the same time, the UKMO (United Kingdom Meteorological Office) zonal mean temperature showed a similar warming episode at 10° N and cooling episode at 60° N around the region of stratopause. This could be due to ascending (descending) motions at high (low) latitudes above the critical level of planetary waves, where there was no planetary wave flux. The time variation of the gravity wave potential energy computed from the temperature perturbations over Gadanki shows variabilities at planetary wave periods, suggesting a non-linear interaction between gravity waves and planetary waves. The space-time analysis of UKMO temperature data at high and low latitudes shows the presence of similar periodicities of planetary wave of zonal wavenumber 1.
Development of Rayleigh Doppler lidar for measuring middle atmosphere winds
NASA Astrophysics Data System (ADS)
Raghunath, K.; Patra, A. K.; Narayana Rao, D.
Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar
NASA Astrophysics Data System (ADS)
Nakamura, T.; Suzuki, H.; Tsutsumi, M.; Ejiri, M. K.; Tomikawa, Y.; Abo, M.; Kawahara, T.; Tsuda, T. T.; Nishiyama, T.
2014-12-01
A Rayleigh/Raman lidar system has been operated by the Japanese Antarctic Research Expedition (JARE) since February, 2011 (JARE 52nd) in Syowa Station Antarctica (69.0S, 39.5E). The lidar system consists of a pulsed Nd:YAG laser (355nm) as a transmitter and two telescopes with four photo multiplier tubes which are to detect Rayleigh scattered light from low and high atmosphere at 355 nm and N2 Raman emission at 387nm. Polar Mesospheric Cloud (PMC) was detected by the lidar at 22:30UT (+3hr for LT) on Feb 4th, 2011, the first day of a routine operation. This event was the first time to detect PMC over Syowa Station by a lidar [Suzuki et al., Ann. Geophys., 2013]. However, signal to noise ratio (SNR) of the PMC event was not so good due to large shot noises from daytime background signals. Moreover, a receiver system was designed mainly for nighttime observations. In this way, observation of PMC during the midnight sun, which also corresponds to most frequent PMC season, was difficult. Thus, to improve SNR of the PMC observation with the lidar during daytime, a narrow band-pass Fabry-Perot etalon unit has been developed and installed in the receiver system on Dec 2013 by JARE 55th. By using this new system, clear PMC signals were successfully detected under daylight condition during the period of summer operation of JARE55th. During this period of 53 days (from 17 Dec. 2013 to 7 Feb. 2014), only 11 days were with a clear sky and suitable for PMC observation. Thus, it was difficult to study temporal variations on a PMC activity only by using the lidar data. Fortunately, NASA's AIM satellite had passed near Syowa Station and provided with complimentary PMC data during observation gap of the lidar. By combining our lidar data with the AIM/CIPS data, nearly continuous monitoring of PMC variability over Syowa Station was achieved for period between 13th and 18th in January 2014. PMC occurrence with an interval of two days over Syowa Station during the period was clearly confirmed. Co-located MF radar also showed clear two days fluctuation in horizontal wind velocities around PMC altitude during the same period. In this presentation, we will discuss the cause of the two-day oscillation found in PMC occurrence and horizontal wind velocity. In particular, two-day planetary wave will be quantitatively investigated as a potential cause of the fluctuation.
Parameter identification of JONSWAP spectrum acquired by airborne LIDAR
NASA Astrophysics Data System (ADS)
Yu, Yang; Pei, Hailong; Xu, Chengzhong
2017-12-01
In this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape parameters. We identified these two wind-dependent parameters to better understand the wind effect on surface waves. Due to its efficiency and high-resolution, we employed the airborne Light Detection and Ranging (LIDAR) system for our measurements. Due to the lack of actual data, we simulated ocean waves in the MATLAB environment, which can be easily translated into industrial programming language. We utilized the Longuet-Higgin (LH) random-phase method to generate the time series of wave records and used the fast Fourier transform (FFT) technique to compute the power spectra density. After validating these procedures, we identified the JS parameters by minimizing the mean-square error of the target spectrum to that of the estimated spectrum obtained by FFT. We determined that the estimation error is relative to the amount of available wave record data. Finally, we found the inverse computation of wind factors (wind speed and wind fetch length) to be robust and sufficiently precise for wave forecasting.
TOLNet - A Tropospheric Ozone Lidar Profiling Network for Satellite Continuity and Process Studies
NASA Technical Reports Server (NTRS)
Newchurch, Michael J.; Kuang, Shi; Wang, Lihua; LeBlanc, Thierry; Alvarez II, Raul J.; Langford, Andrew O.; Senff, Christoph J.; Brown, Steve; Johnson, Bryan; Burris, John F.;
2015-01-01
NASA initiated an interagency ozone lidar observation network under the name TOLNet to promote cooperative multiple-station ozone-lidar observations to provide highly time-resolved (few minutes) tropospheric-ozone vertical profiles useful for air-quality studies, model evaluation, and satellite validation.
NASA Astrophysics Data System (ADS)
Bak, S.; Smith, J. M.; Hesser, T.; Bryant, M. A.
2016-12-01
Near-coast wave models are generally validated with relatively small data sets that focus on analytical solutions, specialized experiments, or intense storms. Prior studies have compiled testbeds that include a few dozen experiments or storms to validate models (e.g., Ris et al. 2002), but few examples exist that allow for continued model evaluation in the nearshore and surf-zone in near-realtime. The limited nature of these validation sets is driven by a lack of high spatial and temporal resolution in-situ wave measurements and the difficulty in maintaining these instruments on the active profile over long periods of time. The US Army Corps of Engineers Field Research Facility (FRF) has initiated a Coastal Model Test-Bed (CMTB), which is an automated system that continually validates wave models (with morphological and circulation models to follow) utilizing the rich data set of oceanographic and bathymetric measurements collected at the FRF. The FRF's cross-shore wave array provides wave measurements along a cross-shore profile from 26 m of water depth to the shoreline, utilizing various instruments including wave-rider buoys, AWACs, aquadopps, pressure gauges, and a dune-mounted lidar (Brodie et al. 2015). This work uses the CMTB to evaluate the performance of a phase-averaged numerical wave model, STWAVE (Smith 2007, Massey et al. 2011) over the course of a year at the FRF in Duck, NC. Additionally, from the BathyDuck Experiment in October 2015, the CMTB was used to determine the impact of applying the depth boundary condition for the model from monthly acoustic bathymetric surveys in comparison to hourly estimates using a video-based inversion method (e.g., cBathy, Holman et al. 2013). The modeled wave parameters using both bathymetric boundary conditions are evaluated using the FRF's cross-shore wave array and two additional cross-shore arrays of wave measurements in 2 to 4 m water depth from BathyDuck in Fall, 2015.
Non-mechanical beam steering in the mid-wave infrared
NASA Astrophysics Data System (ADS)
Frantz, Jesse A.; Myers, Jason D.; Bekele, Robel Y.; Spillmann, Christopher M.; Naciri, Jawad; Kolacz, Jakub S.; Gotjen, Henry; Shaw, Leslie B.; Sanghera, Jasbinder S.; Sodergren, Bennett; Wang, Ying-Ju; Rommel, Scott D.; Anderson, Mike; Davis, Scott R.; Ziemkiewicz, Michael
2017-05-01
The mid-wave infrared (MWIR) portion of the electromagnetic spectrum is critically important for a variety of applications such as LIDAR and chemical sensing. Concerning the latter, the MWIR is often referred to as the "molecular fingerprint" region owing to the fact that many molecules display distinctive vibrational absorptions in this region, making it useful for gas detection. To date, steering MWIR radiation typically required the use of mechanical devices such as gimbals, which are bulky, slow, power-hungry, and subject to mechanical failure. We present the first non-mechanical beam steerer capable of continuous angular tuning in the MWIR. These devices, based on refractive, electro-optic waveguides, provide angular steering in two dimensions without relying on moving parts. Previous work has demonstrated non-mechanical beam steering (NMBS) in the short-wave infrared (SWIR) and near infrared (NIR) using a waveguide in which a portion of the propagating light is evanescently coupled to a liquid crystal (LC) layer in which the refractive index is voltage-tuned. We have extended this NMBS technology into the MWIR by employing chalcogenide glass waveguides and LC materials that exhibit high MWIR transparency. As a result, we have observed continuous, 2D MWIR steering for the first time with a magnitude of 2.74° in-plane and 0.3° out-of-plane.
NASA Astrophysics Data System (ADS)
Li, Yajuan; Lin, Xin; Yang, Yong; Xia, Yuan; Xiong, Jun; Song, Shalei; Liu, Linmei; Chen, Zhenwei; Cheng, Xuewu; Li, Faquan
2017-02-01
Temperature profiles at altitudes of 5-80 km are obtained with a self-calibrated Rayleigh-rotational Raman lidar over Wuhan, China (30.5°N, 114.5°E). By using the synchronous Rayleigh lidar temperature, rotational Raman temperature in the lower atmosphere could be calibrated and retrieved, which is free of other instruments (like local radiosondes). The results are comparable to the radiosonde calibration method. Based on the self-calibration approach, one-night (August 4-5, 2014) lidar temperature profiles are presented with radiosondes, NRLMSISE-00 model and TIMED/SABER data. Some interesting temperature characteristics have been present for studies of waves propagating from near ground level into the mesosphere. Temperature perturbations are found to increase exponentially with a scale height of 10 km. The wavy structure shows minimal perturbations ('nodes') at some altitudes of 39, 52, 64 and 73 km. Dominant wavelengths and temperature variations are also analyzed at different time and altitudes. By comparison of the temperature and associate perturbations from the tropopause up to the stratopause, different amplitudes, phase fronts and vertical wavelengths are discovered as well. These discoveries indicate that some waves may originate in the lower atmosphere and propagate upward with decreasing static stability.
The influrence of an optical receiving system on statistical characteristics of a lidar signal
NASA Technical Reports Server (NTRS)
Zuev, A. E.; Banakh, V. A.; Mironov, V. L.
1986-01-01
The effects connected with correlation of direct and backward waves propagating through the same randomly inhomogeneous media can be observed along the path with refection in a turbulent atmosphere. In particular, the mean intensity of the reflected wave can increase in comparison with the wave propagating in the forward direction at a doubled distance; the intensity fluctuations can become stronger. These effects depend on the strength of optical turbulence, as well as on the diffraction sizes of the exit apertures of the source and the reflector. However, the focusing of radiation reflected with a receiving telescope leads, in some cases, to the fact that the dependence of amplification effects on the parameters becomes essentially different. This should be taken into account when alayzing the lidar signals. The effect of backscattering amplification and amplification of the intensity fluctuations is discussed.
Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.
2010-01-01
Digital elevation data commonly are used to extract surface flow features. One source for high-resolution elevation data is light detection and ranging (lidar). Lidar can capture a vast amount of topographic detail because of its fine-scale ability to digitally capture the surface of the earth. Because elevation is a key factor in extracting surface flow features, high-resolution lidar-derived digital elevation models (DEMs) provide the detail needed to consistently integrate hydrography with elevation, land cover, structures, and other geospatial features. The U.S. Geological Survey has developed selective drainage methods to extract continuous surface flow from high-resolution lidar-derived digital elevation data. The lidar-derived continuous surface flow network contains valuable information for water resource management involving flood hazard mapping, flood inundation, and coastal erosion. DEMs used in hydrologic applications typically are processed to remove depressions by filling them. High-resolution DEMs derived from lidar can capture much more detail of the land surface than courser elevation data. Therefore, high-resolution DEMs contain more depressions because of obstructions such as roads, railroads, and other elevated structures. The filling of these depressions can significantly affect the DEM-derived surface flow routing and terrain characteristics in an adverse way. In this report, selective draining methods that modify the elevation surface to drain a depression through an obstruction are presented. If such obstructions are not removed from the elevation data, the filling of depressions to create continuous surface flow can cause the flow to spill over an obstruction in the wrong location. Using this modified elevation surface improves the quality of derived surface flow and retains more of the true surface characteristics by correcting large filled depressions. A reliable flow surface is necessary for deriving a consistently connected drainage network, which is important in understanding surface water movement and developing applications for surface water runoff, flood inundation, and erosion. Improved methods are needed to extract continuous surface flow features from high-resolution elevation data based on lidar.
Software design of control system of CCD side-scatter lidar
NASA Astrophysics Data System (ADS)
Kuang, Zhiqiang; Liu, Dong; Deng, Qian; Zhang, Zhanye; Wang, Zhenzhu; Yu, Siqi; Tao, Zongming; Xie, Chenbo; Wang, Yingjian
2018-03-01
Because of the existence of blind zone and transition zone, the application of backscattering lidar in near-ground is limited. The side-scatter lidar equipped with the Charge Coupled Devices (CCD) can separate the transmitting and receiving devices to avoid the impact of the geometric factors which is exited in the backscattering lidar and, detect the more precise near-ground aerosol signals continuously. Theories of CCD side-scatter lidar and the design of control system are introduced. The visible control of laser and CCD and automatic data processing method of the side-scatter lidar are developed by using the software of Visual C #. The results which are compared with the calibration of the atmospheric aerosol lidar data show that signals from the CCD side- scatter lidar are convincible.
Modern fibre-optic coherent lidars for remote sensing
NASA Astrophysics Data System (ADS)
Hill, Chris
2015-10-01
This paper surveys some growth areas in optical sensing that exploit near-IR coherent laser sources and fibreoptic hardware from the telecoms industry. Advances in component availability and performance are promising benefits in several military and commercial applications. Previous work has emphasised Doppler wind speed measurements and wind / turbulence profiling for air safety, with recent sharp increases in numbers of lidar units sold and installed, and with wider recognition that different lidar / radar wavebands can and should complement each other. These advances are also enabling fields such as microDoppler measurement of sub-wavelength vibrations and acoustic waves, including non-lineof- sight acoustic sensing in challenging environments. To shed light on these different applications we review some fundamentals of coherent detection, measurement probe volume, and parameter estimation - starting with familiar similarities and differences between "radar" and "laser radar". The consequences of changing the operating wavelength by three or four orders of magnitude - from millimetric or centimetric radar to a typical fibre-optic lidar working near 1.5 μm - need regular review, partly because of continuing advances in telecoms technology and computing. Modern fibre-optic lidars tend to be less complicated, more reliable, and cheaper than their predecessors; and they more closely obey the textbook principles of easily adjusted and aligned Gaussian beams. The behaviours of noises and signals, and the appropriate processing strategies, are as expected different for the different wavelengths and applications. For example, the effective probe volumes are easily varied (e.g. by translating a fibre facet) through six or eight orders of magnitude; as the average number of contributing scatterers varies, from <<1 through ~1 to >>1, we should review any assumptions about "many" scatterers and Gaussian statistics. Finally, some much older but still relevant scientific work (by A G Bell, E H Armstrong and their colleagues) is recalled, in the context of remote sensing of acoustic vibrations.
Regional and Global Atmospheric CO2 Measurements Using 1.57 Micron IM-CW Lidar
NASA Technical Reports Server (NTRS)
Lin, Bing; Obland, Michael; Nehrir, Amin; Browell, Edward; Harrison, F. Wallace; Dobler, Jeremy; Campbell, Joel; Kooi, Susan; Meadows, Byron; Fan, Tai-Fang;
2015-01-01
Atmospheric CO2 is a critical forcing for the Earth's climate, and knowledge of its distribution and variations influences predictions of the Earth's future climate. Accurate observations of atmospheric CO2 are also crucial to improving our understanding of CO2 sources, sinks and transports. To meet these science needs, NASA is developing technologies for the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, which is aimed at global CO2 observations. Meanwhile an airborne investigation of atmospheric CO2 distributions as part of the NASA Suborbital Atmospheric Carbon and Transport â€" America (ACT-America) mission will be conducted with lidar and in situ instrumentation over the central and eastern United States during all four seasons and under a wide range of meteorological conditions. In preparing for the ASCENDS mission, NASA Langley Research Center and Exelis Inc./Harris Corp. have jointly developed and demonstrated the capability of atmospheric CO2 column measurements with an intensity-modulated continuous-wave (IM-CW) lidar. Since 2005, a total of 14 flight campaigns have been conducted. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved, and the lidar CO2 measurements also agree well with in-situ observations. Significant atmospheric CO2 variations on various spatiotemporal scales have been observed during these campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200A-300 sq km over Iowa during a summer 2014 flight. Results from recent flight campaigns are presented in this paper. The ability to achieve the science objectives of the ASCENDS mission with an IM-CW lidar is also discussed in this paper, along with the plans for the ACT-America aircraft investigation that begins in the winter of 2016.
NASA Astrophysics Data System (ADS)
Hicks-Jalali, Shannon; Sica, R. J.; Haefele, Alexander; Martucci, Giovanni
2018-04-01
With only 50% downtime from 2007-2016, the RALMO lidar in Payerne, Switzerland, has one of the largest continuous lidar data sets available. These measurements will be used to produce an extensive lidar water vapour climatology using the Optimal Estimation Method introduced by Sica and Haefele (2016). We will compare our improved technique for external calibration using radiosonde trajectories with the standard external methods, and present the evolution of the lidar constant from 2007 to 2016.
The 2014 ASCENDS Field Campaign - a Carbon Dioxide Laser Absorption Spectrometer Perspective
NASA Astrophysics Data System (ADS)
Spiers, G. D.; Menzies, R. T.; Jacob, J. C.; Geier, S.; Fregoso, S. F.
2014-12-01
NASA's ASCENDS mission has been flying several candidate lidar instruments on board the NASA DC-8 aircraft to obtain column integrated measurements of Carbon Dioxide. Each instrument uses a different approach to making the measurement and combined they have allowed for the informed development of the ASCENDS mission measurement requirements(1). The JPL developed Carbon Dioxide Laser Absorption Spectrometer, CO2LAS is one of these instruments. The CO2LAS measures the weighted, column averaged carbon dioxide between the aircraft and the ground using a continuous-wave heterodyne technique. The instrument operates at a 2.05 micron wavelength optimized for enhancing sensitivity to boundary layer carbon dioxide. Since the 2013 field campaign the instrument has undergone significant upgrades that improve the data collection efficiency and instrument stability and has recently been re-integrated onto the NASA DC-8 for the August 2014 ASCENDS field campaign. This presentation will summarize the instrument and algorithm improvements and review the 2014 field campaign flights and preliminary results. (1) Abshire, J.B. et al., "An overview of NASA's ASCENDS Mission lidar measurement requirements", submitted to 2014 Fall AGU Conference.
NASA Astrophysics Data System (ADS)
Zhu, Shiming; Malmqvist, Elin; Li, Wansha; Jansson, Samuel; Li, Yiyun; Duan, Zheng; Svanberg, Katarina; Feng, Hongqiang; Song, Ziwei; Zhao, Guangyu; Brydegaard, Mikkel; Svanberg, Sune
2017-07-01
Effective monitoring of flying insects is of major societal importance in view of the role of insects as indispensable pollinators, destructive disease vectors and economically devastating agricultural pests. The present paper reports on monitoring of flying agricultural pests using a continuous-wave lidar system in a rice-field location in Southern China. Using a Scheimpflug arrangement, range resolution over several 100 m long observational paths was achieved. The system operates with two perpendicularly polarized near-infrared lasers, which are activated intermittently, and back-scattered radiation from insects was recorded by a linear array detector placed after a linear polarizer. Our polarization sensitive system was used to monitor the flying insect diurnal activity and also the influence of changes in weather conditions, e.g., the occurrence of rain. Activity strongly peaked at dusk and rose again, although to a lower extent, just before dawn. At the onset of rainfall, a strong increase in insect counts occurred which was interpreted as the rain-induced bringing down of high-altitude migrant insects.
Hydrologic enforcement of lidar DEMs
Poppenga, Sandra K.; Worstell, Bruce B.; Danielson, Jeffrey J.; Brock, John C.; Evans, Gayla A.; Heidemann, H. Karl
2014-01-01
Hydrologic-enforcement (hydro-enforcement) of light detection and ranging (lidar)-derived digital elevation models (DEMs) modifies the elevations of artificial impediments (such as road fills or railroad grades) to simulate how man-made drainage structures such as culverts or bridges allow continuous downslope flow. Lidar-derived DEMs contain an extremely high level of topographic detail; thus, hydro-enforced lidar-derived DEMs are essential to the U.S. Geological Survey (USGS) for complex modeling of riverine flow. The USGS Coastal and Marine Geology Program (CMGP) is integrating hydro-enforced lidar-derived DEMs (land elevation) and lidar-derived bathymetry (water depth) to enhance storm surge modeling in vulnerable coastal zones.
Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen;
2010-01-01
A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE-II measurements, along with numerical simulation, were used to determine that the likely reason for the suboptimal airborne aerosol extinction performance during theWAVES_2007 campaign was amisaligned interference filter. With full laser power and a properly tuned interference filter,RASL is shown to be capable ofmeasuring themain water vapor and aerosol parameters with temporal resolutions of between 2 and 45 s and spatial resolutions ranging from 30 to 330 m from a flight altitude of 8 km with precision of generally less than 10%, providing performance that is competitive with some airborne Differential Absorption Lidar (DIAL) water vapor and High Spectral Resolution Lidar (HSRL) aerosol instruments. The use of diode-pumped laser technology would improve the performance of an airborne Raman lidar and permit additional instrumentation to be carried on board a small research aircraft. The combined airborne and ground-based measurements presented here demonstrate a level of versatility in Raman lidar that may be impossible to duplicate with any other single lidar technique.
NASA Astrophysics Data System (ADS)
Gerrard, Andrew John
Although the role of gravity waves in the global atmospheric circulation is generally understood, discussion of synoptic gravity wave activity, especially pertaining to high latitude summer environments, is lacking in the literature. Tropospherically generated gravity waves greatly contribute to the zonal drag necessary to induce meridional outflow and subsequent upwelling observed in the adiabatically cooled summer mesosphere, ultimately resulting in an environment conducive to mesospheric cloud formation. However, the very gravity wave activity responsible for this induced cooling is also believed to be a major source of variability on mesospheric clouds over shorter time scales, and this topic should be of considerable interest if such clouds are to be used as tracers of the global climate. It is therefore the purpose of this thesis to explore high latitude synoptic gravity wave activity and ultimately seek an understanding of the associated influence on overlaying summer mesospheric clouds. Another goal is to better understand and account for potential variability in high latitude middle and upper atmospheric measurements that can be directly associated with "weather conditions" at lower altitudes. These endeavors are addressed through Rayleigh/aerosol lidar data obtained from the ARCtic LIdar TEchnology (ARCLITE) facility located at Sondrestrom, Greenland (67°N, 310°E), global tropospheric and stratospheric analyses and forecasts, and the Gravity-wave Regional Or Global RAy Tracer (GROGRAT) model. In this study we are able to show that (a) the upper stratospheric gravity wave strength and the brightness of overlaying mesospheric clouds, as measured by representative field proxies, are negatively correlated over time scales of less than a day, (b) such upper stratospheric gravity wave variability is inversely related to mesospheric cloud variability on time scales of ˜1 to 4 hours, (c) gravity wave hindcasts faithfully reproduce experimental lidar observations taken over the month of August 1996, (d) the observed upper stratospheric gravity wave activity is shown to originate from regionalized, non-orographic sources in the troposphere, (e) such gravity wave activity can propagate through the middle atmosphere, potentially impacting overlaying mesospheric clouds, and (f) the forecasting of such upper stratospheric gravity wave activity, and therefore the corresponding mesospheric cloud activity, is feasible. In conclusion, the results herein provide additional evidence of gravity wave influence on mesospheric clouds, a step towards the forecasting of regional gravity wave activity, and ultimately a better understanding of synoptic gravity wave activity at high latitudes.
Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements
NASA Astrophysics Data System (ADS)
Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael
2015-04-01
Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.
Coplanar Doppler Lidar Retrieval of Rotors from T-REX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Michael; Calhoun, Ron; Fernando, H. J. S.
2010-03-01
Two coherent Doppler lidars were deployed during the Terrain-induced Rotor EXperiment (T-REX). Coplanar Range Height Indicator (RHI) scans by the lidars (along the same azimuthal angle) allowed retrieval of two-dimensional velocity vectors on a vertical/cross-barrier plane using the least squares method. Vortices are shown to evolve and advect in the flow field, allowing analysis of their behavior in the mountain-wave-boundary layer system. The locations, magnitudes, and evolution of the vortices can be studied through calculated fields of velocity, vorticity, streamlines, and swirl. Two classes of vortical motions are identified: rotors and sub-rotors, which differ in scale and behavior. The levelmore » of coordination of the two lidars and the nature of the output (i.e., in range-gates) creates inherent restrictions on the spatial and temporal resolution of retrieved fields.« less
Foredune Classification and Storm Response: Automated Analysis of Terrestrial Lidar DEMs
2015-06-15
since Hurricane Sandy. 041 20/3/2015 4 Figure 1. A. The study site in Duck , NC showing the alongshore coordinates of the local coordinate...waves on March 10: Hs = 4.8 m at 16 sec Coastal Lidar and Radar Imaging System (CLARIS) Nor’easter Storm Conditions Study Site: Duck , NC...Engineer Research and Development Center, Coastal & Hydraulics Laboratory, Coastal Observation & Analysis Branch, 1261 Duck Rd, Duck , NC 27949, USA
Scattering and Polarization Measurements Using the PL/OPA Low Altitude Lidar
1990-12-20
66 A.3.2 Application to Lidar Data .. .. .. .. .. ... ... ... .. 70 References 72 iv List of Figures 1 The Poincare ... the vcctor in the I __ plane is the degree of linear polarization (defined as [Q2 + U2 II/2 /1). The component of the vector along the K axis is the ...scattering refers to the scattering of a monochromatic electromagr1tic plane wave by a spherically shaped, homogeneous, isotropic dielectric and conducting
Winds and temperatures of the Arctic middle atmosphere during January measured by Doppler lidar
NASA Astrophysics Data System (ADS)
Hildebrand, Jens; Baumgarten, Gerd; Fiedler, Jens; Lübken, Franz-Josef
2017-11-01
We present an extensive data set of simultaneous temperature and wind measurements in the Arctic middle atmosphere. It consists of more than 300 h of Doppler Rayleigh lidar observations obtained during three January seasons (2012, 2014, and 2015) and covers the altitude range from 30 km up to about 85 km. The data set reveals large year-to-year variations in monthly mean temperatures and winds, which in 2012 are affected by a sudden stratospheric warming. The temporal evolution of winds and temperatures after that warming are studied over a period of 2 weeks, showing an elevated stratopause and the reformation of the polar vortex. The monthly mean temperatures and winds are compared to data extracted from the Integrated Forecast System of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Horizontal Wind Model (HWM07). Lidar and ECMWF data show good agreement of mean zonal and meridional winds below ≈ 55 km altitude, but we also find mean temperature, zonal wind, and meridional wind differences of up to 20 K, 20 m s-1, and 5 m s-1, respectively. Differences between lidar observations and HWM07 data are up to 30 m s-1. From the fluctuations of temperatures and winds within single nights we extract the potential and kinetic gravity wave energy density (GWED) per unit mass. It shows that the kinetic GWED is typically 5 to 10 times larger than the potential GWED, the total GWED increases with altitude with a scale height of ≈ 16 km. Since temporal fluctuations of winds and temperatures are underestimated in ECMWF, the total GWED is underestimated as well by a factor of 3-10 above 50 km altitude. Similarly, we estimate the energy density per unit mass for large-scale waves (LWED) from the fluctuations of nightly mean temperatures and winds. The total LWED is roughly constant with altitude. The ratio of kinetic to potential LWED varies with altitude over 2 orders of magnitude. LWEDs from ECMWF data show results similar to the lidar data. From the comparison of GWED and LWED, it follows that large-scale waves carry about 2 to 5 times more energy than gravity waves.
Shipborne LiDAR system for coastal change monitoring
NASA Astrophysics Data System (ADS)
Kim, chang hwan; Park, chang hong; Kim, hyun wook; hyuck Kim, won; Lee, myoung hoon; Park, hyeon yeong
2016-04-01
Coastal areas, used as human utilization areas like leisure space, medical care, ports and power plants, etc., are regions that are continuously changing and interconnected with oceans and land and the sea level has risen by about 8cm (1.9mm / yr) due to global warming from 1964 year to 2006 year in Korea. Coastal erosion due to sea-level rise has caused the problem of marine ecosystems and loss of tourism resources, etc. Regular monitoring of coastal erosion is essential at key locations with such volatility. But the survey method of land mobile LiDAR (light detection and ranging) system has much time consuming and many restrictions. For effective monitoring beach erosion, KIOST (Korea Institute of Ocean Science & Technology) has constructed a shipborne mobile LiDAR system. The shipborne mobile LiDAR system comprised a land mobile LiDAR (RIEGL LMS-420i), an INS (inertial navigation system, MAGUS Inertial+), a RTKGPS (LEICA GS15 GS25), and a fixed platform. The shipborne mobile LiDAR system is much more effective than a land mobile LiDAR system in the measuring of fore shore areas without shadow zone. Because the vessel with the shipborne mobile LiDAR system is continuously moved along the shoreline, it is possible to efficiently survey a large area in a relatively short time. Effective monitoring of the changes using the constructed shipborne mobile LiDAR system for seriously eroded coastal areas will be able to contribute to coastal erosion management and response.
NASA Astrophysics Data System (ADS)
Greaves, Heather E.
Climate change is disproportionately affecting high northern latitudes, and the extreme temperatures, remoteness, and sheer size of the Arctic tundra biome have always posed challenges that make application of remote sensing technology especially appropriate. Advances in high-resolution remote sensing continually improve our ability to measure characteristics of tundra vegetation communities, which have been difficult to characterize previously due to their low stature and their distribution in complex, heterogeneous patches across large landscapes. In this work, I apply terrestrial lidar, airborne lidar, and high-resolution airborne multispectral imagery to estimate tundra vegetation characteristics for a research area near Toolik Lake, Alaska. Initially, I explored methods for estimating shrub biomass from terrestrial lidar point clouds, finding that a canopy-volume based algorithm performed best. Although shrub biomass estimates derived from airborne lidar data were less accurate than those from terrestrial lidar data, algorithm parameters used to derive biomass estimates were similar for both datasets. Additionally, I found that airborne lidar-based shrub biomass estimates were just as accurate whether calibrated against terrestrial lidar data or harvested shrub biomass--suggesting that terrestrial lidar potentially could replace destructive biomass harvest. Along with smoothed Normalized Differenced Vegetation Index (NDVI) derived from airborne imagery, airborne lidar-derived canopy volume was an important predictor in a Random Forest model trained to estimate shrub biomass across the 12.5 km2 covered by our lidar and imagery data. The resulting 0.80 m resolution shrub biomass maps should provide important benchmarks for change detection in the Toolik area, especially as deciduous shrubs continue to expand in tundra regions. Finally, I applied 33 lidar- and imagery-derived predictor layers in a validated Random Forest modeling approach to map vegetation community distribution at 20 cm resolution across the data collection area, creating maps that will enable validation of coarser maps, as well as study of fine-scale ecological processes in the area. These projects have pushed the limits of what can be accomplished for vegetation mapping using airborne remote sensing in a challenging but important region; it is my hope that the methods explored here will illuminate potential paths forward as landscapes and technologies inevitably continue to change.
Internal gravity-shear waves in the atmospheric boundary layer from acoustic remote sensing data
NASA Astrophysics Data System (ADS)
Lyulyukin, V. S.; Kallistratova, M. A.; Kouznetsov, R. D.; Kuznetsov, D. D.; Chunchuzov, I. P.; Chirokova, G. Yu.
2015-03-01
The year-round continuous remote sounding of the atmospheric boundary layer (ABL) by means of the Doppler acoustic radar (sodar) LATAN-3 has been performed at the Zvenigorod Scientific Station of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, since 2008. A visual analysis of sodar echograms for four years revealed a large number of wavelike patterns in the intensity field of a scattered sound signal. Similar patterns were occasionally identified before in sodar, radar, and lidar sounding data. These patterns in the form of quasi-periodic inclined stripes, or cat's eyes, arise under stable stratification and significant vertical wind shears and result from the loss of the dynamic stability of the flow. In the foreign literature, these patterns, which we call internal gravity-shear waves, are often associated with Kelvin-Helmholtz waves. In the present paper, sodar echograms are classified according to the presence or absence of wavelike patterns, and a statistical analysis of the frequency of their occurrence by the year and season was performed. A relationship between the occurrence of the patterns and wind shear and between the wave length and amplitude was investigated. The criteria for the identification of gravity-shear waves, meteorological conditions of their excitation, and issues related to their observations were discussed.
NASA Astrophysics Data System (ADS)
Jia, Mingjiao; Xue, Xianghui; Dou, Xiankang; Tang, Yihuan; Yu, Chao; Wu, Jianfei; Xu, Jiyao; Yang, Guotao; Ning, Baiqi; Hoffmann, Lars
2016-03-01
In this work, we used observational data from an all-sky airglow imager at Xinglong (40.2 °N, 117.4 °E), a sodium lidar at Yanqing (40.4 °N, 116.0 °E) and a meteor radar at Shisanling (40.3 °N, 116.2 °E) to study the propagation of a mesoscale gravity wave. During the night of March 1, 2011, the imager identified a mesoscale gravity wave structure in the OH airglow that had a wave period of 2 hours, propagated along an azimuthal direction (clockwise) with an angle of 163°, a phase speed of 73 m/s, and a horizontal wavelength of 566 km. Simultaneous measurements provided by the sodium lidar also showed a perturbation in the sodium layer with a 2-hour period. Based on the SABER/TIMED and radar data, we estimated that the momentum flux and the energy flux of the gravity wave were approximately 0.59 m2/s2 and 0.22 mW/m2, respectively. Ray-tracing analysis showed that the gravity wave was likely generated in the center of Lake Baikal owing to the existence of a jet- front system in the upper troposphere at that time.
Water Vapor Measurements by Howard University Raman Lidar during the WAVES 2006 Campaign
NASA Technical Reports Server (NTRS)
Adam, M.; Demoz, B. B.; Whiteman, D. N.; Venable, D. D.; Joseph E.; Gambacorta, A.; Wei, J.; Shephard, M. W.; Miloshevich, L. M.; Barnet, C. D.;
2009-01-01
Retrieval of water vapor mixing ratio using the Howard University Raman Lidar is presented with emphasis on three aspects: i) performance of the lidar against collocated radiosondes and Raman lidar, ii) investigation of the atmospheric state variables when poor agreement between lidar and radiosondes values occurred and iii) a comparison with satellite-based measurements. The measurements were acquired during the Water Vapor Validation Experiment Sondes/Satellites 2006 field campaign. Ensemble averaging of water vapor mixing ratio data from ten night-time comparisons with Vaisala RS92 radiosondes shows on average an agreement within 10 % up to approx. 8 km. A similar analysis of lidar-to-lidar data of over 700 profiles revealed an agreement to within 20 % over the first 7 km (10 % below 4 km). A grid analysis, defined in the temperature - relative humidity space, was developed to characterize the lidar - radiosonde agreement and quantitatively localizes regions of strong and weak correlations as a function of altitude, temperature or relative humidity. Three main regions of weak correlation emerge: i) regions of low relative humidity and low temperature, ii) moderate relative humidity at low temperatures and iii) low relative humidity at moderate temperatures. Comparison of Atmospheric InfraRed Sounder and Tropospheric Emission Sounder satellites retrievals of moisture with that of Howard University Raman Lidar showed a general agreement in the trend but the formers miss a lot of the details in atmospheric structure due to their low resolution. A relative difference of about 20 % is usually found between lidar and satellites measurements.
Lidar measurements at Lauder, NZ
NASA Technical Reports Server (NTRS)
McGee, Thomas J.; Gross, Michael; Singh, Upendra; Kimvilakani, Patrick
1995-01-01
In March of 1994, the GSFC Stratospheric Ozone Lidar was deployed to the Network for the Detection of Stratospheric Change (NDSC) site at Lauder, NZ. This was in conjunction with a series of NASA ER-2 flights from Christchurch, NZ south to the Antarctic Circle. These flights were organized to study the chemistry of the stratosphere before, during and after the formation of the well-known 'ozone hole'. Lidar measurements were made at four different time periods corresponding to the times of the ER-2 flights. Lauder is situated nearly along the flight path as the aircraft flew south and so the lidar measurements provide a checkpoint for the ozone, aerosol and temperature instruments onboard the aircraft. Whenever the weather permitted, lidar measurements were made as near to dawn, prior to the flight, and as near to sunset, after the flight. This provided data as close to the aircraft transit time as possible. More than 70 individual lidar measurements were made, each consisting of a vertical profile of ozone, temperature, and aerosol. These were made over three different seasons and show seasonal variation. Of particular interest in the lidar data base is the wintertime stratospheric - mesospheric temperature profiles, which show large variations at the stratopause and also some significant wave activity.
Wind Ressources in Complex Terrain investigated with Synchronized Lidar Measurements
NASA Astrophysics Data System (ADS)
Mann, J.; Menke, R.; Vasiljevic, N.
2017-12-01
The Perdigao experiment was performed by a number of European and American universities in Portugal 2017, and it is probably the largest field campaign focussing on wind energy ressources in complex terrain ever conducted. 186 sonic anemometers on 50 masts, 20 scanning wind lidars and a host of other instruments were deployed. The experiment is a part of an effort to make a new European wind atlas. In this presentation we investigate whether scanning the wind speed over ridges in this complex terrain with multiple Doppler lidars can lead to an efficient mapping of the wind resources at relevant positions. We do that by having pairs of Doppler lidars scanning 80 m above the ridges in Perdigao. We compare wind resources obtained from the lidars and from the mast-mounted sonic anemometers at 80 m on two 100 m masts, one on each of the two ridges. In addition, the scanning lidar measurements are also compared to profiling lidars on the ridges. We take into account the fact that the profiling lidars may be biased due to the curvature of the streamlines over the instrument, see Bingol et al, Meteorolog. Z. vol. 18, pp. 189-195 (2009). We also investigate the impact of interruptions of the lidar measurements on the estimated wind resource. We calculate the relative differences of wind along the ridge from the lidar measurements and compare those to the same obtained from various micro-scale models. A particular subject investigated is how stability affects the wind resources. We often observe internal gravity waves with the scanning lidars during the night and we quantify how these affect the relative wind speed on the ridges.
Estimation of the heat/Na flux using lidar data recorded at ALO, Cerro Pachon, Chile
NASA Astrophysics Data System (ADS)
Vargas, F.; Gardner, C. S.; Liu, A. Z.; Swenson, G. R.
2013-12-01
In this poster, lidar nigh-time data are used to estimate the vertical fluxes of heat and Na at the mesopause region due to dissipating gravity waves presenting periods from 5 min to 8 h, and vertical wavelengths > 2 km. About 60 hours of good quality data were recorded near the equinox during two observation campaigns held in Mar, 2012 and Apr, 2013 at the Andes Lidar Observatory (30.3S,70.7W). These first measurements of the heat/Na flux in the southern hemisphere will be discussed and compared with those from the northern hemisphere stations obtained at the Starfire Optical Range, NM, and Maui, HW.
Ocean subsurface particulate backscatter estimation from CALIPSO spaceborne lidar measurements
NASA Astrophysics Data System (ADS)
Chen, Peng; Pan, Delu; Wang, Tianyu; Mao, Zhihua
2017-10-01
A method for ocean subsurface particulate backscatter estimation from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite was demonstrated. The effects of the CALIOP receiver's transient response on the attenuated backscatter profile were first removed. The two-way transmittance of the overlying atmosphere was then estimated as the ratio of the measured ocean surface attenuated backscatter to the theoretical value computed from wind driven wave slope variance. Finally, particulate backscatter was estimated from the depolarization ratio as the ratio of the column-integrated cross-polarized and co-polarized channels. Statistical results show that the derived particulate backscatter by the method based on CALIOP data agree reasonably well with chlorophyll-a concentration using MODIS data. It indicates a potential use of space-borne lidar to estimate global primary productivity and particulate carbon stock.
Real-time FPGA-based radar imaging for smart mobility systems
NASA Astrophysics Data System (ADS)
Saponara, Sergio; Neri, Bruno
2016-04-01
The paper presents an X-band FMCW (Frequency Modulated Continuous Wave) Radar Imaging system, called X-FRI, for surveillance in smart mobility applications. X-FRI allows for detecting the presence of targets (e.g. obstacles in a railway crossing or urban road crossing, or ships in a small harbor), as well as their speed and their position. With respect to alternative solutions based on LIDAR or camera systems, X-FRI operates in real-time also in bad lighting and weather conditions, night and day. The radio-frequency transceiver is realized through COTS (Commercial Off The Shelf) components on a single-board. An FPGA-based baseband platform allows for real-time Radar image processing.
Highly-reliable laser diodes and modules for spaceborne applications
NASA Astrophysics Data System (ADS)
Deichsel, E.
2017-11-01
Laser applications become more and more interesting in contemporary missions such as earth observations or optical communication in space. One of these applications is light detection and ranging (LIDAR), which comprises huge scientific potential in future missions. The Nd:YAG solid-state laser of such a LIDAR system is optically pumped using 808nm emitting pump sources based on semiconductor laser-diodes in quasi-continuous wave (qcw) operation. Therefore reliable and efficient laser diodes with increased output powers are an important requirement for a spaceborne LIDAR-system. In the past, many tests were performed regarding the performance and life-time of such laser-diodes. There were also studies for spaceborne applications, but a test with long operation times at high powers and statistical relevance is pending. Other applications, such as science packages (e.g. Raman-spectroscopy) on planetary rovers require also reliable high-power light sources. Typically fiber-coupled laser diode modules are used for such applications. Besides high reliability and life-time, designs compatible to the harsh environmental conditions must be taken in account. Mechanical loads, such as shock or strong vibration are expected due to take-off or landing procedures. Many temperature cycles with high change rates and differences must be taken in account due to sun-shadow effects in planetary orbits. Cosmic radiation has strong impact on optical components and must also be taken in account. Last, a hermetic sealing must be considered, since vacuum can have disadvantageous effects on optoelectronics components.
NASA Astrophysics Data System (ADS)
Bu, Lingbing; Pan, Honglin; Kumar, K. Raghavendra; Huang, Xingyou; Gao, Haiyang; Qin, Yanqiu; Liu, Xinbo; Kim, Dukhyeon
2016-10-01
Cirrus plays an important role in the regulation of the Earth-atmosphere radiation budget. The joint observation using both the LIght Detection And Ranging (LIDAR) and Millimeter-Wave Cloud RADAR (MWCR) was implemented in this study to obtain properties of cirrus at Atmospheric Radiation Measurement (ARM) mobile facility in Shouxian (32.56°N, 116.78°E, 21 m above sea level), China during May-December 2008. We chose the simultaneous measurements of LIDAR and MWCR with effective data days, and the days must with cirrus. Hence, the cirrus properties based on 37 days of data between October 18th and December 13th, 2008 were studied in the present work. By comparing the LIDAR data with the MWCR data, we analyzed the detection capabilities of both instruments quantitatively for measuring the cirrus. The LIDAR cannot penetrate through the thicker cirrus with optical depth (τ) of more than 1.5, while the MWCR cannot sense the clouds with an optical depth of less than 0.3. Statistical analysis showed that the mean cloud base height (CBH) and cloud thickness (CT) of cirrus were 6.5±0.8 km and 2.1±1.1 km, respectively. Furthermore, we investigated three existing inversion methods for deriving the ice water content (IWC) by using the separate LIDAR, MWCR, and the combination of both, respectively. Based on the comparative analysis, a novel joint method was provided to obtain more accurate IWC. In this joint method, cirrus was divided into three different categories according to the optical depth (τ≤0.3, τ≥1.5, and 0.3<τ<1.5). Based on the joint method used in this study, the mean IWC was calculated by means of the statistics, which showed that the mean IWC of cirrus was 0.011±0.008 g m-3.
NASA Technical Reports Server (NTRS)
Lin, Bing
2014-01-01
Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc. proposes to use the intensity-modulated, continuous-wave (IM-CW) laser absorption spectrometer (LAS) approach for the ASCENDS mission. Prototype LAS instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space LAS systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW LAS system for the active space CO2 mission ASCENDS.
NASA Astrophysics Data System (ADS)
Shang, Xiaoxia; Chazette, Patrick; Totems, Julien
2018-04-01
This paper presents the first, to our knowledge, lidar measurement of an industrial fire plume, which covered the north of the Paris area on 17th April 2015. The fire started in a textile warehouse and rapidly spread by emitting large quantities of aerosols into the low troposphere. A ground based N2-Raman lidar performed continuous measurements during this event. Vertical profiles of the aerosol extinction coefficient, depolarization and lidar ratio are derived. A Monte Carlo algorithm was used to assess the uncertainties on the optical parameters, and to evaluate lidar inversion methods.
Developing a regional canopy fuels assessment strategy using multi-scale lidar
Peterson, Birgit E.; Nelson, Kurtis
2011-01-01
Accurate assessments of canopy fuels are needed by fire scientists to understand fire behavior and to predict future fire occurrence. A key descriptor for canopy fuels is canopy bulk density (CBD). CBD is closely linked to the structure of the canopy; therefore, lidar measurements are particularly well suited to assessments of CBD. LANDFIRE scientists are exploring methods to integrate airborne and spaceborne lidar datasets into a national mapping effort. In this study, airborne lidar, spaceborne lidar, and field data are used to map CBD in the Yukon Flats Ecoregion, with the airborne lidar serving as a bridge between the field data and the spaceborne observations. The field-based CBD was positively correlated with airborne lidar observations (R2=0.78). Mapped values of CBD using the airborne lidar dataset were significantly correlated with spaceborne lidar observations when analyzed by forest type (R2=0.62, evergreen and R2=0.71, mixed). Though continued research is necessary to validate these results, they do support the feasibility of airborne and, most importantly, spaceborne lidar data for canopy fuels assessment.
On the Interaction Between Gravity Waves and Atmospheric Thermal Tides
NASA Astrophysics Data System (ADS)
Agner, Ryan Matthew
Gravity waves and thermal tides are two of the most important dynamical features of the atmosphere. They are both generated in the lower atmosphere and propagate upward transporting energy and momentum to the upper atmosphere. This dissertation focuses on the interaction of these waves in the Mesosphere and Lower Thermosphere (MLT) region of the atmosphere using both observational data and Global Circulation Model (GCMs). The first part of this work focuses on observations of gravity wave interactions with the tides using both LIDAR data at the Star Fire Optical Range (SOR, 35?N, 106.5?W) and a meteor radar data at the Andes LIDAR Observatory (ALO, 30.3?S, 70.7?W). At SOR, the gravity waves are shown to enhance or damp the amplitude of the diurnal variations dependent on altitude while the phase is always delayed. The results compare well with previous mechanistic model results and with the Japanese Atmospheric General circulation model for Upper Atmosphere Research (JAGUAR) high resolution global circulation model. The meteor radar observed the GWs to almost always enhance the tidal amplitudes and either delay or advance the phase depending on the altitude. When compared to previous radar results from the same meteor radar when it was located in Maui, Hawaii, the Chile results are very similar while the LIDAR results show significant differences. This is because of several instrument biases when calculating GW momentum fluxes that is not significant when determining the winds. The radar needs to perform large amounts of all-sky averaging across many weeks, while the LIDAR directly detects waves in a small section of sky. The second part of this work focuses on gravity wave parameterization scheme effects on the tides in GCMs. The Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) and the extended Canadian Middle Atmosphere Model (eCMAM) are used for this analysis. The gravity wave parameterization schemes in the eCMAM (Hines scheme) have been shown to enhance the tidal amplitudes compared to observations while the parameterization scheme in SD-WACCM (Lindzen scheme) overdamps the tides. It is shown here that the Hines scheme assumption that only small scale gravity waves force the atmosphere do not create enough drag to properly constrain the tidal amplitudes. The Lindzen scheme produces too much drag because all wave scales are assumed to be saturated thus continuing to provide forcing on the atmosphere above the breaking altitude. The final part of this work investigates GWs, tides and their interactions on a local time scale instead of a global scale in the two GCMs. The local time GWs in eCMAM are found to have a strong seasonal dependence, with the majority of the forcings at the winter pole at latitudes where the diurnal variations are weak limiting their interactions. In SD-WACCM, the largest local GW forcings are located at mid latitudes near where the diurnal variations peak causing them to dampen the diurnal amplitudes. On a local time level the diurnal variations may be a summation of many tidal modes. The analysis reveals that in eCMAM the DW1 tidal mode is by far the dominant mode accounting for the local time variations. The high amount of modulation of GWs by the DW1 tidal winds does not allow it to be properly constrained, causing it to dominate the local time diurnal variations. Similarly, the DW1 projection of GW forcing is dominant over all other other modes and contributes the most to the local time diurnal GW variations. The local time wind variations in SD-WACCM are in uenced by several tidal modes because the DW1 tide is of compatible amplitudes to other modes. This is because of the increased damping on the tide by the GWs. It is also found that the local GW diurnal variations have significant contributions from all tidal modes due to the time and location of the forcing being dependent only on the tropospheric source regions and not the at altitude tidal winds.
Lidar Remote Sensing of Forests: New Instruments and Modeling Capabilities
NASA Technical Reports Server (NTRS)
Cook, Bruce D.
2012-01-01
Lidar instruments provide scientists with the unique opportunity to characterize the 3D structure of forest ecosystems. This information allows us to estimate properties such as wood volume, biomass density, stocking density, canopy cover, and leaf area. Structural information also can be used as drivers for photosynthesis and ecosystem demography models to predict forest growth and carbon sequestration. All lidars use time-in-flight measurements to compute accurate ranging measurements; however, there is a wide range of instruments and data types that are currently available, and instrument technology continues to advance at a rapid pace. This seminar will present new technologies that are in use and under development at NASA for airborne and space-based missions. Opportunities for instrument and data fusion will also be discussed, as Dr. Cook is the PI for G-LiHT, Goddard's LiDAR, Hyperspectral, and Thermal airborne imager. Lastly, this talk will introduce radiative transfer models that can simulate interactions between laser light and forest canopies. Developing modeling capabilities is important for providing continuity between observations made with different lidars, and to assist the design of new instruments. Dr. Bruce Cook is a research scientist in NASA's Biospheric Sciences Laboratory at Goddard Space Flight Center, and has more than 25 years of experience conducting research on ecosystem processes, soil biogeochemistry, and exchange of carbon, water vapor and energy between the terrestrial biosphere and atmosphere. His research interests include the combined use of lidar, hyperspectral, and thermal data for characterizing ecosystem form and function. He is Deputy Project Scientist for the Landsat Data Continuity Mission (LDCM); Project Manager for NASA s Carbon Monitoring System (CMS) pilot project for local-scale forest biomass; and PI of Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) airborne imager.
NASA Astrophysics Data System (ADS)
Khaykin, S. M.; Hauchecorne, A.; Cammas, J.-P.; Marqestaut, N.; Mariscal, J.-F.; Posny, F.; Payen, G.; Porteneuve, J.; Keckhut, P.
2018-04-01
A unique Rayleigh-Mie Doppler lidar capable of wind measurements in the 5-50 km altitude range is operated routinely at La Reunion island (21° S, 55° E) since 2015. We evaluate instrument's capacities in capturing fine structures in stratospheric wind profiles and their temporal and spatial variability through comparison with collocated radiosoundings and ECMWF analysis. Perturbations in the wind velocity are used to retrieve gravity wave frequency spectrum.
2012-06-30
laser wave height ( lidar ) measurement system was deployed from a boom connected between the bows of the R/V Kilo Moana’s twin hulls [Zappa et al...Robbins et al., 2006], and a surfactant skimmer called the Lil KM (Figure 1). Also, a small aircraft equipped with lidar instrumentation made...c) R/P FLIP starboard boom during the Hawaii Exper- iment in September 2009. The air-sea flux package, orthogonal scanning laser altimeters
Lidar Profiling In the lower Troposphere: experience from PECAN
NASA Astrophysics Data System (ADS)
Demoz, Belay B.; Delgado, Ruben; Caroll, Brian; Vermeesch, Kevin; Whiteman, David N.; Sakai, Ricardo; Tesfay, Sium; Cooper, Lorenza
2018-04-01
Results from the PECAN (Plains Elevated Convection at Night) campaign are discussed. In particular, the utility of simple backscatter lidars/ceilometers in quantifying atmospheric dynamics parameters and variables as well as evolution of the lower tropospheric dynamics are made. Cases of bore wave dynamics and the potential of these events in lofting of low level, moist, airmass and its consequence in thunderstorm initiation are made. A suite of thermodynamic profiling instruments are combined and compared to describe and visualize lower tropospheric dynamic evolution.
Two-component wind fields over ocean waves using atmospheric lidar and motion estimation algorithms
NASA Astrophysics Data System (ADS)
Mayor, S. D.
2016-02-01
Numerical models, such as large eddy simulations, are capable of providing stunning visualizations of the air-sea interface. One reason for this is the inherent spatial nature of such models. As compute power grows, models are able to provide higher resolution visualizations over larger domains revealing intricate details of the interactions of ocean waves and the airflow over them. Spatial observations on the other hand, which are necessary to validate the simulations, appear to lag behind models. The rough ocean environment of the real world is an additional challenge. One method of providing spatial observations of fluid flow is that of particle image velocimetry (PIV). PIV has been successfully applied to many problems in engineering and the geosciences. This presentation will show recent research results that demonstate that a PIV-style approach using pulsed-fiber atmospheric elastic backscatter lidar hardware and wavelet-based optical flow motion estimation software can reveal two-component wind fields over rough ocean surfaces. Namely, a recently-developed compact lidar was deployed for 10 days in March of 2015 in the Eureka, California area. It scanned over the ocean. Imagery reveal that breaking ocean waves provide copius amounts of particulate matter for the lidar to detect and for the motion estimation algorithms to retrieve wind vectors from. The image below shows two examples of results from the experiment. The left panel shows the elastic backscatter intensity (copper shades) under a field of vectors that was retrieved by the wavelet-based optical flow algorithm from two scans that took about 15 s each to acquire. The vectors, that reveal offshore flow toward the NW, were decimated for clarity. The bright aerosol features along the right edge of the sector scan were caused by ocean waves breaking on the beach. The right panel is the result of scanning over the ocean on a day when wave amplitudes ranged from 8-12 feet and whitecaps offshore beyond the surf zone appeared to be rare and fleeting. Nonetheless, faint coherent aerosol structures are observable in the backscatter field as long, streaky, wind-parallel filaments and a wind field was retrieved. During the 10-day deployment, the seas were not as rough as expected. A current goal is to find collaborators and return to map airflow in rougher conditions.
NASA Astrophysics Data System (ADS)
Zhao, J.; Geraghty, I.; Chu, X.; Vadas, S.; Becker, E.; Harvey, V. L.; Jones, R. M.; Chen, C.; Lu, X.
2017-12-01
After Antarctic persistent gravity waves (GWs) in the Mesosphere and Lower Thermosphere (MLT) were discovered from lidar observations [Chen et al., 2013, 2016], secondary wave generation theory was proposed to explain the source. Here we perform a source investigation of such persistent GWs through analyzing both stratospheric and MLT GWs at McMurdo using temperature measurements (30 - 50 km, year 2011 - 2015) obtained by Fe Boltzmann lidar. In the stratosphere, GW vertical wavelengths (λ) and periods exhibit seasonal cycles with winter maxima and summer minima, which linearly correlated with mean zonal wind velocities. GWs dissipate more in winter than in summer due to larger wave amplitudes. The potential energy density (Ep) are anti-correlated with wind rotation angles but positively correlated with surface and stratospheric winds. Critical level filtering, in-situ generation of GWs, and wave saturation changes play roles in Ep seasonal variations (winter maxima and summer minima). The large increase of Ep from summer to winter possibly results from the decrease in critical level filtering. The gradual variations of Ep from Mar to Oct are likely related both to the increased λ towards winter, allowing larger wave amplitudes before saturation, and to in-situ GW generation via geostrophic adjustment, secondary GW generation. Large Ep occur when McMurdo is inside the jet stream core 5-24º poleward from vortex edge. In winter MLT, the persistent GWs cause larger temperature perturbations (± 30 K, compared to ± 10 K in the stratosphere) with longer λ (23.5 km) and larger vertical phase speeds (1.8 m/s). More waves (95.4%) show downward phase progression compared to the stratospheric GWs (70.4%). Since the inferred horizontal wavelength of stratospheric GWs (350 - 450 km) are much shorter than those of the persistent GWs in the MLT (1000 - 2000 km), the dominant stratospheric GWs are not the direct source of the MLT persistent GWs. Secondary wave generation possibly provides the source for the persistent GWs. Primary GWs (such as dominant stratospheric GWs) generated from the lower atmosphere break at 50 km, create body forces, and generate secondary GWs, providing the persistent GWs we observed in the MLT. The theoretically predicted "Fish-bone" patterns are presented from our lidar measurements.
Pseudorandom Noise Code-Based Technique for Cloud and Aerosol Discrimination Applications
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.; Harrison, Fenton Wallace
2011-01-01
NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a PN code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths. Keywords: ASCENDS, CO2 sensing, O2 sensing, PN codes, CW lidar
Wake Vortex Field Measurement Program at Memphis, Tennessee: Data Guide
NASA Technical Reports Server (NTRS)
Campbell, S. D.; Dasey, T. J.; Freehart, R. E.; Heinrichs, R. M.; Mathews, M. P.; Perras, G. H.; Rowe, G. S.
1997-01-01
Eliminating or reducing current restrictions in the air traffic control system due to wake vortex considerations would yield increased capacity, decreased delays, and cost savings. Current wake vortex separation standards are widely viewed as very conservative under most conditions. However, scientific uncertainty about wake vortex behavior under different atmospheric conditions remains a barrier to development of an adaptive vortex spacing system. The objective of the wake vortex field measurement efforts during December, 1994 and August, 1995 at Memphis, TN were to record wake vortex behavior for varying atmospheric conditions and types of aircraft. This effort is part of a larger effort by the NASA Langley Research Center to develop an Aircraft Vortex Spacing System (AVOSS) as an element of the Terminal Area Productivity (TAP) program. The TAP program is being performed in concert with the FAA Terminal Air Traffic Control Automation (TATCA) program and ATC Automation. Wake vortex behavior was observed using a mobile continuous-wave (CW) coherent laser Doppler radar (lidar) developed at Lincoln Laboratory. This lidar features a number of improvements over previous systems, including the first-ever demonstration of an automatic wake vortex detection and tracking algorithm.
The new scanning iron lidar, current state and future developments
NASA Astrophysics Data System (ADS)
Lautenbach, J.; Höffner, J.; Menzel, P.; Keller, P.
2005-08-01
This paper gives an update on the design and developments of the new scanning Doppler iron temperature lidar. Continuous temperature profiles in the altitude range from 50 to 105 km are derived by using the iron resonance and Rayleigh backscatter signal of this lidar. We show a common volume measurement with the well established potassium and Rayleigh-Mie-Raman (RMR) lidar at the Leibniz-Institute of Atmospheric Physics (IAP) in Kühlungsborn (Germany, 54°N). The iron lidar temperatures match quite well and have an uncertainty of 0.4K at the top of the iron layer. Improvements for daylight capability are under development and will be pointed out.
An Operational Wake Vortex Sensor Using Pulsed Coherent Lidar
NASA Technical Reports Server (NTRS)
Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, D. Chi
1998-01-01
NASA and FAA initiated a program in 1994 to develop methods of setting spacings for landing aircraft by incorporating information on the real-time behavior of aircraft wake vortices. The current wake separation standards were developed in the 1970's when there was relatively light airport traffic and a logical break point by which to categorize aircraft. Today's continuum of aircraft sizes and increased airport packing densities have created a need for re-evaluation of wake separation standards. The goals of this effort are to ensure that separation standards are adequate for safety and to reduce aircraft spacing for higher airport capacity. Of particular interest are the different requirements for landing under visual flight conditions and instrument flight conditions. Over the years, greater spacings have been established for instrument flight than are allowed for visual flight conditions. Preliminary studies indicate that the airline industry would save considerable money and incur fewer passenger delays if a dynamic spacing system could reduce separations at major hubs during inclement weather to the levels routinely achieved under visual flight conditions. The sensor described herein may become part of this dynamic spacing system known as the "Aircraft VOrtex Spacing System" (AVOSS) that will interface with a future air traffic control system. AVOSS will use vortex behavioral models and short-term weather prediction models in order to predict vortex behavior sufficiently into the future to allow dynamic separation standards to be generated. The wake vortex sensor will periodically provide data to validate AVOSS predictions. Feasibility of measuring wake vortices using a lidar was first demonstrated using a continuous wave (CW) system from NASA Marshall Space Flight Sensor and tested at the Volpe National Transportation Systems Center's wake vortex test site at JFK International Airport. Other applications of CW lidar for wake vortex measurement have been made more recently, including a system developed by the MIT Lincoln Laboratory. This lidar has been used for detailed measurements of wake vortex velocities in support of wake vortex model validation. The first measurements of wake vortices using a pulsed, lidar were made by Coherent Technologies, Inc. (CTI) using a 2 micron solid-state, flashlamp-pumped system operating at 5 Hz. This system was first deployed at Denver's Stapleton Airport. Pulsed lidar has been selected as the baseline technology for an operational sensor due to its longer range capability.
NASA Astrophysics Data System (ADS)
Dobler, J. T.; Braun, M.; Zaccheo, T.
2012-12-01
The Laser Atmospheric Transmitter Receiver-Network (LAnTeRN) is a new measurement concept that will enable local, regional and continental determination of key greenhouse gases, with unparalleled accuracy and precision. This new approach will offer the ability to make low bias, high precision, quasi-continuous, measurements to the accuracies required for separating anthropogenic and biogenic sources and sinks. In 2004 ITT Exelis developed an airborne demonstration unit, based on an intensity modulated continuous wave (IM-CW) lidar approach, for actively measuring atmospheric CO2 and O2. The multi-functional fiber laser lidar (MFLL) system relies on low peak power, high reliability, and efficient telecom laser components to implement this unique measurement approach. While evaluating methods for discriminating against thin clouds for the MFLL instrument, a new measurement concept was conceived. LAnTeRN has several fundamental characteristics in common with the MFLL instrument, but is a fundamentally different implementation and capability. The key difference is that LAnTeRN operates in transmission rather than in the traditional backscatter lidar configuration, which has several distinct advantages. Operating as a forward scatter, bistatic lidar system, LAnTeRN enables consideration of continuous monitoring from a geostationary orbit to multiple locations on the ground. Having the receivers on the ground significantly lowers cost and risk compared to an all space based mission, and allows the transmitter subsystem to be implemented, near term, as a hosted payload. Furthermore, the LAnTeRN measurement approach is also applicable for ground to ground measurements where high precision measurements over a long open path is required, such as facilities monitoring, or monitoring of passive volcanoes and fault lines. Using narrow linewidth laser sources allows flexibility to select the position on the absorption feature being probed. This feature allows for weighting the absorption toward lower altitudes for the space implementation or to handle large dynamic range measurements as would be required for volcano monitoring. This presentation will discuss results from a detailed instrument performance analyses, retrieval simulations, and from initial testing of a proof of concept demonstration unit being developed by Exelis. Initial analysis indicate that measurements from a transmitter in geostationary orbit to 25 ground receivers in the eastern U.S. can retrieve column integrated CO2 values to a precision of <0.2 ppm on monthly averages and <0.06 ppm on yearly averages, using conservative estimates of cloud cover and aerosol loading. The capability for continuous monitoring over a fixed geometry makes it possible to independently characterize the atmospheric column, using existing capabilities (e.g. aircore, aircraft and in-situ instrumentation), for quantification of bias. Furthermore, the ability to selectively locate the ground receivers can enable focused studies for specific applications.
NASA Astrophysics Data System (ADS)
Hecht, J. H.; Fritts, D. C.; Wang, L.; Gelinas, L. J.; Rudy, R. J.; Walterscheid, R. L.; Taylor, M. J.; Pautet, P. D.; Smith, S.; Franke, S. J.
2018-01-01
Although mountain waves (MWs) are thought to be a ubiquitous feature of the wintertime southern Andes stratosphere, it was not known whether these waves propagated up to the mesopause region until Smith et al. (2009) confirmed their presence via airglow observations. The new Andes Lidar Observatory at Cerro Pachon in Chile provided the opportunity for a further study of these waves. Since MWs have near-zero phase speed, and zero wind lines often occur in the winter upper mesosphere (80 to 100 km altitude) region due to the reversal of the zonal mean and tidal wind, MW breakdown may routinely occur at these altitudes. Here we report on very high spatial/temporal resolution observations of the initiation of MW breakdown in the mesopause region. Because the waves are nearly stationary, the breakdown process was observed over several hours; a much longer interval than has previously been observed for any gravity wave breakdown. During the breakdown process observations were made of initial horseshoe-shaped vortices, leading to successive vortex rings, as is also commonly seen in Direct Numerical Simulations (DNS) of idealized and multiscale gravity wave breaking. Kelvin-Helmholtz instability (KHI) structures were also observed to form. Comparing the structure of observed KHI with the results of existing DNS allowed an estimate of the turbulent kinematic viscosity. This viscosity was found to be around 25 m2/s, a value larger than the nominal viscosity that is used in models.
A study of equatorial wave characteristics using rockets, balloons, lidar and radar
NASA Astrophysics Data System (ADS)
Sasi, M. N.; Krishna Murthy, B. V.; Ramkumar, Geetha; Satheesan, K.; Parameswaran, K.; Rajeev, K.; Sunilkumar, S. V.; Nair, Prabha R.; Krishna Moorthy, K.; Bhavanikumar, Y.; Raghunath, K.; Jain, A. R.; Rao, P. B.; Krishnaiah, M.; Prabhakaran Nayars, S. R.; Revathy, K.; Devanarayanan, S.
2003-09-01
A co-ordmated experimental campaign was conducted for 40 consecutive days from 21 February to 01 April 2000 using RH-200 rockets, balloons, Rayleigh lidar and MST radar, with the objective of delineating the equatorial waves and estimating momentum fluxes associated with them. Winds and temperatures in the troposphere, stratosphere and mesosphere over two low latitude stations Gadanki (13.5°N, 79.2°E) and SHAR (13.7°N, 80.2°E) were measured and were used for the study of equatorial waves and their interactions with the background mean flow in various atmospheric regions. The study shows the occurrence of a strong stratospheric cooling (˜25 K) anomaly along with a zonal wind anomaly and this low-latitude event appears to be linked to high-latitude stratospheric warming event and followed by subsequent generation of short period (˜5 days) oscillations lasting for a few cycles in the stratosphere. Slow and fast Kelvin waves and RG wave (˜-17-day and ˜7.2-day and ˜4.2-day periods respectively) have been identified. The mean flow acceleration produced by the divergence of the momentum flux due to the observed Kelvin waves in the 35-60 km height region were compared with the zonal flow accelerations computed from the observed zonal winds. Contribution by the slow and fast Kelvin waves was found to be only ˜25 % of the observed acceleration during the evolution of the westerly phase of the semi-annual oscillation.
NASA Technical Reports Server (NTRS)
Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.
1986-01-01
The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.
The promise of remote sensing in the atmospheric sciences
NASA Technical Reports Server (NTRS)
Atlas, D.
1981-01-01
The applications and advances in remote sensing technology for weather prediction, mesoscale meteorology, severe storms, and climate studies are discussed. Doppler radar permits tracking of the three-dimensional field of motion within storms, thereby increasing the accuracy of convective storm modeling. Single Doppler units are also employed for detecting mesoscale storm vortices and tornado vortex signatures with lead times of 30 min. Clear air radar in pulsed and high resolution FM-CW forms reveals boundary layer convection, Kelvin-Helmoltz waves, shear layer turbulence, and wave motions. Lidar is successfully employed for stratospheric aerosol measurements, while Doppler lidar provides data on winds from the ground and can be based in space. Sodar is useful for determining the structure of the PBL. Details and techniques of satellite-based remote sensing are presented, and results from the GWE and FGGE experiments are discussed.
Solichin Manuri; Hans-Erik Andersen; Robert J. McGaughey; Cris Brack
2017-01-01
The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition canvary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed...
Analysis of Technology for Solid State Coherent Lidar
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
1997-01-01
Over the past few years, considerable advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers, wide bandwidth, semiconductor detectors operating in the near-infrared region. These advances have created new possibilities for the development of low-cost, reliable, and compact coherent lidar systems for measurements of atmospheric winds and aerosol backscattering from a space-based platform. The work performed by the UAH personnel concentrated on design and analyses of solid state pulsed coherent lidar systems capable of measuring atmospheric winds from space, and design and perform laboratory experiments and measurements in support of solid state laser radar remote sensing systems which are to be designed, deployed, and used by NASA to measure atmospheric processes and constituents. A lidar testbed system was designed and analyzed by considering the major space operational and environmental requirements, and its associated physical constraints. The lidar optical system includes a wedge scanner and the compact telescope designed by the UAH personnel. The other major optical components included in the design and analyses were: polarizing beam splitter, routing mirrors, wave plates, signal beam derotator, and lag angle compensator. The testbed lidar optical train was designed and analyzed, and different design options for mounting and packaging the lidar subsystems and components and support structure were investigated. All the optical components are to be mounted in a stress-free and stable manner to allow easy integration and alignment, and long term stability. This lidar system is also intended to be used for evaluating the performance of various lidar subsystems and components that are to be integrated into a flight unit and for demonstrating the integrity of the signal processing algorithms by performing actual atmospheric measurements from a ground station.
NASA Astrophysics Data System (ADS)
Chu, X.; Xu, Z.; Zhao, J.; Yu, Z.; Knipp, D. J.; Kilcommons, L. M.; Chen, C.; Fong, W.; Barry, I. F.; Hartinger, M.
2016-12-01
The discovery of thermospheric neutral Fe layers by lidar observations in Antarctica has opened a new door to explore the space-atmosphere interactions with ground-based instruments, especially in the least understood but crucially important altitude range of 100-200 km. These neutral metal layers provide excellent tracers for modern resonance lidars to measure the neutral wind and temperature directly, complementing the radar measurements of the ionosphere and the magnetometer measurements of the geomagnetic field. Even more exciting, the neutral metal layers in the thermosphere provide a natural laboratory to test our fundamental understandings of the atmosphere-ionosphere-magnetosphere (AIM) coupling and processes. The stunning Fe layer event on 28 May 2011 with clear gravity wave signatures has been simulated successfully with the University of Colorado Thermosphere-Ionosphere Fe/Fe+ (TIFe) model, confirming the theoretical hypothesis that such thermospheric Fe layers are produced through the neutralization of converged Fe+layers. Over 5.5 years of lidar observations at McMurdo have revealed many more cases with variety of patterns - besides the `gravity wave' patterns, there are `diffusive' patterns with both upward and downward phase progressions of Fe layers, and `superposition' patterns with both gravity wave signature and diffusive background. Surprisingly, these Fe layer events exhibit close correlations with geomagnetic storms. They also correspond to remarkable activity of extreme solar wind events, e.g., high-speed stream (HSS) and coronal mass ejection (CME), etc. This paper conducts a systematic investigation of the coupling among TIFe layers, geomagnetic storms, solar wind and IMF via combining ground-based lidar, magnetometer, and SuperDARN data with DMSP, ACE and WIND satellite data along with the TIFe model simulations. We aim to quantitatively determine the relationship between TIFe and magnetic storms, and explore the mechanisms responsible for such correlations. The new insights gained through this investigation will certainly advance our understandings of the AIM coupling processes, especially the neutral atmosphere responses to geomagnetic storms and solar activity.
Brunel, Marc; Vallet, Marc
2007-02-19
We show that modulating the diode-pump power of a microchip solid-state laser enables to lock its wavelength to a reference molecular line. The method is applied to two different types of Er,Yb:glass monolithic microchip lasers operating at 1.53 microm. First, wavelength locking of a continuous-wave dual-polarization microchip laser to acetylene absorption lines is demonstrated, without using any additional modulator, internal or external. We then show that, remarkably, this simple method is also suitable for stabilizing a passively Q-switched microchip laser. A pulsed wavelength stability of 10(-8) over 1 hour is readily observed. Applications to lidars and to microwave photonics are discussed.
A Temporal Assessment of Barrier Island Vulnerability to Extreme Wave Events, Virginia Coast Reserve
NASA Astrophysics Data System (ADS)
Oster, D. J.; Moore, L. J.; Doran, K. J.; Stockdon, H. F.
2010-12-01
Barrier island vulnerability to storm-generated waves is directly related to interactions between shoreface morphology and surf-zone dynamics. During storms, the seaward-most dune often limits the landward extent of wave energy; however, if maximum wave run-up exceeds the elevation of the top of the dune, overwash or inundation may occur. The ‘Storm Impact Scale’ presented by Sallenger (2000) classifies barrier beach vulnerability to individual storm events based on the elevation of the frontal dune crest and toe relative to maximum wave run-up. Changes to the dune and beachface can occur over a range of time scales, altering local vulnerability to extreme waves from storms, even as a storm is occurring. As sea level continues to rise, barrier beaches will become increasingly vulnerable to overwash and inundation from a greater number of storms. Our objective is to assess temporal trends in barrier island vulnerability while also exploring island-chain-wide response and recovery from two notably different storm events (Nor’Ida and Hurricane Bonnie) along the undeveloped barrier islands of the Virginia Coast Reserve (VCR). We compare shoreline position and elevations of the frontal dune crest (DHIGH) and dune toe (DLOW) across four lidar data sets collected between 1998-2010. Observed significant wave height and period from the National Data Buoy Center and the Duck, NC Field Research Facility for the time period between 1985 and 2009 are classified to represent one-year, five-year, and ten-year storm events that serve as the basis for comparison of island vulnerability through time to a range of storm severity. Initial results reveal significant spatial and temporal variation in barrier island vulnerability to storms throughout the VCR. Despite the range of variability, all three beach features (i.e., shoreline position, DHIGH and DLOW), have moved landward indicating large-scale, widespread migration, or narrowing, of VCR barrier island landforms over the last 10 years. Potentially evolving long-term trends in island vulnerability appear to be difficult to detect, likely due to the short time window of analysis and the preferential capture of short-term variations as two out of the four lidar data sets were collected immediately following a storm event. Further statistical analysis of changes in frontal dune height (DHIGH) and the distance between the dune toe (DLOW) and shoreline will provide insight into short-term responses to individual storms as well as the potential for future long-term changes in barrier island vulnerability, contributing to a better understanding of barrier island response to rising seas and severe storms.
Altitude profiles of temperature from 4 to 80 km over the tropics from MST radar and lidar
NASA Astrophysics Data System (ADS)
Parameswaran, K.; Sasi, M. N.; Ramkumar, G.; Nair, P. R.; Deepa, V.; Murthy, B. V. K.; Nayar, S. R. P.; Revathy, K.; Mrudula, G.; Satheesan, K.; Bhavanikumar, Y.; Sivakumar, V.; Raghunath, K.; Rajendraprasad, T.; Krishnaiah, M.
2000-10-01
Using ground-based techniques of MST radar and Lidar, temperature profiles in the entire height range of 4 to 75km are obtained for the first time at a tropical location. The temporal resolution of the profiles is ~1h in the lower altitudes and 12.5min in the higher altitudes and altitude resolution is ~300m. The errors involved in the derived values are presented. Preliminary analysis of temperature variations in a night revealed fluctuations with characteristics resembling those of large-scale gravity waves.
Environmental forcing metrics to quantify short-term foredune morphodynamics
NASA Astrophysics Data System (ADS)
Spore, N.; Conery, I.; Brodie, K. L.; Palmsten, M.
2016-12-01
Coastal foredunes evolve continuously due to competing aeolian and hydrodynamic processes. Onshore to shore-parallel winds transport sand to the dune while storm-driven surge and wave runup remove sand from the dune. Dune-growth requires periods of time when the wind exceeds a threshold velocity to initiate transport and the relative geometry of the dry beach to the wind direction to create large fetches. This study aims to derive an aeolian transport potential (ATP) metric from the precipitation, available fetch (a function of wind angle and dry-beach width), and a threshold wind speed to initiate transport. ATP is then combined with a hydrodynamic transport potential (HTP) metric, defined as the number of hours of wave impact to the foredune or upper beach, to assess the time-dependent magnitude of the forcing factors affecting morphological evolution of the foredune between monthly terrestrial lidar surveys.This study focuses on two distinctly different dune fields and their frontal or incipient dune ridges in Duck, NC at the USACE Field Research Facility (FRF): (1) an undisturbed, tall and narrow recently impacted dune with a near vertical face; and (2) an undisturbed, shorter and wider dune with gentler and more hummocky slopes. The two sites are separated by < 1km alongshore and experience similar environmental forcings due to their close proximity. We used hourly precipitation, wind, wave, and imagery-derived runup data from the FRF and surrounding weather stations as inputs to ATP and HTP for each site. We scanned each site at monthly intervals for 18 months with high-resolution terrestrial lidar and generated 10 cm digital elevation models (DEM) for each scan. Incremental and cumulative changes in elevation, volume, and dune toe position were extracted from the DEMs and compared to the ATP and HTP values between the surveys to evaluate the dominant factors affecting sediment flux to the system.
Recent U.S. Geological Survey applications of Lidar
Queija, Vivian R.; Stoker, Jason M.; Kosovich, John J.
2005-01-01
As lidar (light detection and ranging) technology matures, more applications are being explored by U.S. Geological Survey (USGS) scientists throughout the Nation, both in collaboration with other Federal agencies and alone in support of USGS natural-hazards research (Crane et al., 2004). As the technology continues to improve and evolve, USGS scientists are finding new and unique methods to use and represent high-resolution lidar data, and new ways to make these data and derived information publicly available. Different lidar sensors and configurations have offered opportunities to use high-resolution elevation data for a variety of projects across all disciplines of the USGS. The following examples are just a few of the diverse projects in the USGS where lidar data is being used.
NASA Astrophysics Data System (ADS)
Nishizawa, Tomoaki; Sugimoto, Nobuo; Shimizu, Atsushi; Uno, Itsushi; Hara, Yukari; Kudo, Rei
2018-04-01
We deployed multi-wavelength Mie-Raman lidars (MMRL) at three sites of the AD-Net and have conducted continuous measurements using them since 2013. To analyze the MMRL data and better understand the externally mixing state of main aerosol components (e.g., dust, sea-salt, and black carbon) in the atmosphere, we developed an integrated package of aerosol component retrieval algorithms, which have already been developed or are being developed, to estimate vertical profiles of the aerosol components. This package applies to the other ground-based lidar network data (e.g., EARLINET) and satellite-borne lidar data (e.g., CALIOP/CALIPSO and ATLID/EarthCARE) as well as the other lidar data of the AD-Net.
Frequency-modulated laser ranging sensor with closed-loop control
NASA Astrophysics Data System (ADS)
Müller, Fabian M.; Böttger, Gunnar; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Schneider-Ramelow, Martin
2018-02-01
Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.
Statistical comparisons of gravity wave features derived from OH airglow and SABER data
NASA Astrophysics Data System (ADS)
Gelinas, L. J.; Hecht, J. H.; Walterscheid, R. L.
2017-12-01
The Aerospace Corporation's near-IR camera (ANI), deployed at Andes Lidar Observatory (ALO), Cerro Pachon Chile (30S,70W) since 2010, images the bright OH Meinel (4,2) airglow band. The imager provides detailed observations of gravity waves and instability dynamics, as described by Hecht et al. (2014). The camera employs a wide-angle lens that views a 73 by 73 degree region of the sky, approximately 120 km x 120 km at 85 km altitude. Image cadence of 30s allows for detailed spectral analysis of the horizontal components of wave features, including the evolution and decay of instability features. The SABER instrument on NASA's TIMED spacecraft provides remote soundings of kinetic temperature profiles from the lower stratosphere to the lower thermosphere. Horizontal and vertical filtering techniques allow SABER temperatures to be analyzed for gravity wave variances [Walterscheid and Christensen, 2016]. Here we compare the statistical characteristics of horizontal wave spectra, derived from airglow imagery, with vertical wave variances derived from SABER temperature profiles. The analysis is performed for a period of strong mountain wave activity over the Andes spanning the period between June and September 2012. Hecht, J. H., et al. (2014), The life cycle of instability features measured from the Andes Lidar Observatory over Cerro Pachon on March 24, 2012, J. Geophys. Res. Atmos., 119, 8872-8898, doi:10.1002/2014JD021726. Walterscheid, R. L., and A. B. Christensen (2016), Low-latitude gravity wave variances in the mesosphere and lower thermosphere derived from SABER temperature observation and compared with model simulation of waves generated by deep tropical convection, J. Geophys. Res. Atmos., 121, 11,900-11,912, doi:10.1002/2016JD024843.
NASA Astrophysics Data System (ADS)
Baars, Holger; Seifert, Patric; Engelmann, Ronny; Wandinger, Ulla
2017-09-01
Absolute calibrated signals at 532 and 1064 nm and the depolarization ratio from a multiwavelength lidar are used to categorize primary aerosol but also clouds in high temporal and spatial resolution. Automatically derived particle backscatter coefficient profiles in low temporal resolution (30 min) are applied to calibrate the lidar signals. From these calibrated lidar signals, new atmospheric parameters in temporally high resolution (quasi-particle-backscatter coefficients) are derived. By using thresholds obtained from multiyear, multisite EARLINET (European Aerosol Research Lidar Network) measurements, four aerosol classes (small; large, spherical; large, non-spherical; mixed, partly non-spherical) and several cloud classes (liquid, ice) are defined. Thus, particles are classified by their physical features (shape and size) instead of by source. The methodology is applied to 2 months of continuous observations (24 h a day, 7 days a week) with the multiwavelength-Raman-polarization lidar PollyXT during the High-Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in spring 2013. Cloudnet equipment was operated continuously directly next to the lidar and is used for comparison. By discussing three 24 h case studies, it is shown that the aerosol discrimination is very feasible and informative and gives a good complement to the Cloudnet target categorization. Performing the categorization for the 2-month data set of the entire HOPE campaign, almost 1 million pixel (5 min × 30 m) could be analysed with the newly developed tool. We find that the majority of the aerosol trapped in the planetary boundary layer (PBL) was composed of small particles as expected for a heavily populated and industrialized area. Large, spherical aerosol was observed mostly at the top of the PBL and close to the identified cloud bases, indicating the importance of hygroscopic growth of the particles at high relative humidity. Interestingly, it is found that on several days non-spherical particles were dispersed from the ground into the atmosphere.
NASA Astrophysics Data System (ADS)
Veiga Rodrigues, C.; Palma, JMLM; Vasiljević, N.; Courtney, M.; Mann, J.
2016-09-01
The wind flow over a double-ridge site has been numerically simulated with a nested model- chain coupling, down to horizontal resolutions of 40 m. The results were compared with field measurements attained using a triple-lidar instrument, the long-range WindScanner system, which allowed measurements up to 500 m height and the mapping of the wind speed onto a two-dimensional transect crossing the valley. The site, known as Serra do Perdigão, is located in central Portugal and consists of two parallel ridges 1.4 km apart with height differences of 200 m in between, being characterized by rough terrain and forested areas. The analysis was restricted to June 10th 2015, for which measurements and simulations both predicted gravity wave activity, the later showing formation of rotors in the lee of both ridges and some events of wave breaking above the ridge top.
LASE Observations of Interactions Between African Easterly Waves and the Saharan Air Layer
NASA Technical Reports Server (NTRS)
Ismail, Syed; Ferrare, Richard; Browell, Edward; Kooi, Susan; Biswas, Mrinal; Krishnamurti, T. N.; Notari, Anthony; Heymsfield, Andrew; Butler, Carolyn; Burton, Sharon;
2010-01-01
The Lidar Atmospheric Sensing Experiment (LASE) participated in the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment in 2006 that was conducted from Sal, Cape Verde to study the Saharan Air Layer (SAL) and its influence on the African Easterly Waves (AEWs) and Tropical Cyclones (TCs). During NAMMA, LASE collected simultaneous water vapor and aerosol lidar measurements from 14 flights onboard the NASA DC- 8. In this paper we present three examples of the interaction of the SAL and AEWs regarding: moistening of the SAL and transfer of latent heat; injection of dust in an updraft; and influence of dry air intrusion on an AEW. A brief discussion is also given on activities related to the refurbishment of LASE to enhance its operational performance and plans to participate in the next NASA hurricane field experiment in the summer of 2010.
NASA Astrophysics Data System (ADS)
Boquet, M.; Cariou, J. P.; Lolli, S.; Sauvage, L.; Parmentier, R.
2009-09-01
To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity resolution (0.2m/s). Enhanced measurement range is now expected through new optical device.
Development of State of the Art Solid State Lasers for Altimetry and other LIDAR Applications
NASA Technical Reports Server (NTRS)
Kay, Richard B.
1997-01-01
This report describes work performed and research accomplished through the end of 1997. During this time period, we have designed and fabricated two lasers for flight LIDAR applications to medium altitudes (Laser Vegetation Imaging System designs LVIS 1 and LVIS 2), designed one earth orbiting LIDAR transmitter (VCL-Alt), and continued work on a high rep-rate LIDAR laser (Raster Scanned Altimeter, RASCAL). Additionally, a 'White Paper' was prepared which evaluates the current state of the art of Nd:YAG lasers and projects efficiencies to the year 2004. This report is attached as Appendix 1 of this report.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.
2011-01-01
Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064, 532, 355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time data capability of the ISS will enable CATS to support operational applications such as air quality and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data.
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Evans, K. D.; DiGirolamo, P.; Demoz, B. B.; Turner, D.; Comstock, J.; Ismail, S.; Ferrare, R. A.; Browell, E. V.; Goldsmith, J. E. M.;
2002-01-01
The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Southern Great Plains CART site from September - December, 2000 and participated in two field campaigns devoted to comparisons of various water vapor measurement technologies and calibrations. These campaigns were the Water Vapor Intensive Operations Period 2000 (WVIOP2000) and the ARM FIRE Water Vapor Experiment (AFWEX). WVIOP2000 was devoted to validating water vapor measurements in the lower atmosphere while AFWEX had similar goals but for measurements in the upper troposphere. The SRL was significantly upgraded both optically and electronically prior to these field campaigns. These upgrades enabled the SRL to demonstrate the highest resolution lidar measurements of water vapor ever acquired during the nighttime and the highest S/N Raman lidar measurements of water vapor in the daytime; more than a factor of 2 increase in S/N versus the DOE CARL Raman Lidar. Examples of these new measurement capabilities along with comparisons of SRL and CARL, LASE, MPI-DIAL, in-situ sensors, radiosonde, and others will be presented. The profile comparisons of the SRL and CARL have revealed what appears to be an overlap correction or countrate correction problem in CARL. This may be involved in an overall dry bias in the precipitable water calibration of CARL with respect to the MWR of approx. 4%. Preliminary analysis indicates that the application of a temperature dependent correction to the narrowband Raman lidar measurements of water vapor improves the lidar/Vaisala radiosonde comparisons of upper tropospheric water vapor. Other results including the comparison of the first-ever simultaneous measurements from four water vapor lidar systems, a bore-wave event captured at high resolution by the SRL and cirrus cloud optical depth studies using the SRL and CARL will be presented at the meeting.
NASA Technical Reports Server (NTRS)
Boers, R.; Eloranta, E. W.
1986-01-01
Lidar data of the atmospheric entrainment zone from six days of clear air convection obtained in central Illinois during July 1979 are presented. A new method to measure the potential temperature jump across the entrainment zone based on only one temperature sounding and continuous lidar measurements of the mixed layer height is developed. An almost linear dependence is found between the normalized entrainment rate and the normalized thickness of the entrainment zone.
Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar.
Hauchecorne, Alain; Cot, Charles; Dalaudier, Francis; Porteneuve, Jacques; Gaudo, Thierry; Wilson, Richard; Cénac, Claire; Laqui, Christian; Keckhut, Philippe; Perrin, Jean-Marie; Dolfi, Agnès; Cézard, Nicolas; Lombard, Laurent; Besson, Claudine
2016-05-01
Atmospheric gravity waves and turbulence generate small-scale fluctuations of wind, pressure, density, and temperature in the atmosphere. These fluctuations represent a real hazard for commercial aircraft and are known by the generic name of clear-air turbulence (CAT). Numerical weather prediction models do not resolve CAT and therefore provide only a probability of occurrence. A ground-based Rayleigh lidar was designed and implemented to remotely detect and characterize the atmospheric variability induced by turbulence in vertical scales between 40 m and a few hundred meters. Field measurements were performed at Observatoire de Haute-Provence (OHP, France) on 8 December 2008 and 23 June 2009. The estimate of the mean squared amplitude of bidimensional fluctuations of lidar signal showed excess compared to the estimated contribution of the instrumental noise. This excess can be attributed to atmospheric turbulence with a 95% confidence level. During the first night, data from collocated stratosphere-troposphere (ST) radar were available. Altitudes of the turbulent layers detected by the lidar were roughly consistent with those of layers with enhanced radar echo. The derived values of turbulence parameters Cn2 or CT2 were in the range of those published in the literature using ST radar data. However, the detection was at the limit of the instrumental noise and additional measurement campaigns are highly desirable to confirm these initial results. This is to our knowledge the first successful attempt to detect CAT in the free troposphere using an incoherent Rayleigh lidar system. The built lidar device may serve as a test bed for the definition of embarked CAT detection lidar systems aboard airliners.
Hassebo, Yasser Y; Gross, Barry; Oo, Min; Moshary, Fred; Ahmed, Samir
2006-08-01
The impact and potential of a polarization-selection technique to reduce the sky background signal for linearly polarized monostatic elastic backscatter lidar measurements are examined. Taking advantage of naturally occurring polarization properties in scattered skylight, we devised a polarization-discrimination technique in which both the lidar transmitter and the receiver track and minimize detected sky background noise while maintaining maximum lidar signal throughput. Lidar elastic backscatter measurements, carried out continuously during daylight hours at 532 nm, show as much as a factor of square root 10 improvement in the signal-to-noise ratio (SNR) over conventional unpolarized schemes. For vertically pointing lidars, the largest improvements are limited to the early morning and late afternoon hours, while for lidars scanning azimuthally and in elevation at angles other than vertical, significant improvements are achievable over more extended time periods with the specific times and improvement factors depending on the specific angle between the lidar and the solar axes. The resulting diurnal variations in SNR improvement sometimes show an asymmetry with the solar angle that analysis indicates can be attributed to changes in observed relative humidity that modifies the underlying aerosol microphysics and observed optical depth.
NASA Astrophysics Data System (ADS)
Hassebo, Yasser Y.; Gross, Barry; Oo, Min; Moshary, Fred; Ahmed, Samir
2006-08-01
The impact and potential of a polarization-selection technique to reduce the sky background signal for linearly polarized monostatic elastic backscatter lidar measurements are examined. Taking advantage of naturally occurring polarization properties in scattered skylight, we devised a polarization-discrimination technique in which both the lidar transmitter and the receiver track and minimize detected sky background noise while maintaining maximum lidar signal throughput. Lidar elastic backscatter measurements, carried out continuously during daylight hours at 532 nm, show as much as a factor of square root 10 improvement in the signal-to-noise ratio (SNR) over conventional unpolarized schemes. For vertically pointing lidars, the largest improvements are limited to the early morning and late afternoon hours, while for lidars scanning azimuthally and in elevation at angles other than vertical, significant improvements are achievable over more extended time periods with the specific times and improvement factors depending on the specific angle between the lidar and the solar axes. The resulting diurnal variations in SNR improvement sometimes show an asymmetry with the solar angle that analysis indicates can be attributed to changes in observed relative humidity that modifies the underlying aerosol microphysics and observed optical depth.
NASA Astrophysics Data System (ADS)
Baars, Holger; Althausen, Dietrich; Engelmann, Ronny; Heese, Birgit; Ansmann, Albert; Wandinger, Ulla; Hofer, Julian; Skupin, Annett; Komppula, Mika; Giannakaki, Eleni; Filioglou, Maria; Bortoli, Daniele; Silva, Ana Maria; Pereira, Sergio; Stachlewska, Iwona S.; Kumala, Wojciech; Szczepanik, Dominika; Amiridis, Vassilis; Marinou, Eleni; Kottas, Michail; Mattis, Ina; Müller, Gerhard
2018-04-01
PollyNET is a network of portable, automated, and continuously measuring Ramanpolarization lidars of type Polly operated by several institutes worldwide. The data from permanent and temporary measurements sites are automatically processed in terms of optical aerosol profiles and displayed in near-real time at polly.tropos.de. According to current schedules, the network will grow by 3-4 systems during the upcoming 2-3 years and will then comprise 11 permanent stations and 2 mobile platforms.
Comparisons of Crosswind Velocity Profile Estimates Used in Fast-Time Wake Vortex Prediction Models
NASA Technical Reports Server (NTRS)
Pruis, Mathew J.; Delisi, Donald P.; Ahmad, Nashat N.
2011-01-01
Five methods for estimating crosswind profiles used in fast-time wake vortex prediction models are compared in this study. Previous investigations have shown that temporal and spatial variations in the crosswind vertical profile have a large impact on the transport and time evolution of the trailing vortex pair. The most important crosswind parameters are the magnitude of the crosswind and the gradient in the crosswind shear. It is known that pulsed and continuous wave lidar measurements can provide good estimates of the wind profile in the vicinity of airports. In this study comparisons are made between estimates of the crosswind profiles from a priori information on the trajectory of the vortex pair as well as crosswind profiles derived from different sensors and a regional numerical weather prediction model.
Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2
NASA Technical Reports Server (NTRS)
Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason
2011-01-01
The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.
NASA Astrophysics Data System (ADS)
Engin, Doruk; Mathason, Brian; Storm, Mark
2017-08-01
Global wind measurements are critically needed to improve and extend NOAA weather forecasting that impacts U.S. economic activity such as agriculture crop production, as well as hurricane forecasting, flooding, and FEMA disaster planning.1 NASA and the 2007 National Research Council (NRC) Earth Science Decadal Study have also identified global wind measurements as critical for global change research. NASA has conducted aircraft-based wind lidar measurements using 2 um Ho:YLF lasers, which has shown that robust wind measurements can be made. Fibertek designed and demonstrated a high-efficiency, 100 W average power continuous wave (CW) 1940 nm thulium (Tm)- doped fiber laser bread-board system meeting all requirements for a NASA Earth Science spaceflight 2 μm Ho:YLF pump laser. Our preliminary design shows that it is possible to package the laser for high-reliability spaceflight operation in an ultra-compact 2″x8″x14″ size and weight <8.5 lbs. A spaceflight 100 W polarization maintaining (PM) Tm laser provides a path to space for a pulsed, Q-switched 2 μm Ho:YLF laser with 30-80 mJ/pulse range at 100-200 Hz repletion rates.
Atmospheric measurements using the LAMP lidar during the LADIMAS campaign
NASA Technical Reports Server (NTRS)
Philbrick, C. R.; Lysak, D. B.; Stevens, T. D.; Haris, P. A. T.; Rau, Y.-C.
1992-01-01
The results of the LAtitudinal DIstribution of Middle Atmosphere Structure (LADIMAS) experiment have provided a unique data set to improve our understanding of the middle atmosphere. The project included shipboard and rocket range coordinated measurements between 70 deg N to 65 deg S to study the structure, dynamics, and chemistry of the atmosphere. Results on important dynamical processes, such as gravity waves, tidal components, as well as the formation of the layers of meteoric ion and neutral species, were obtained with lidar, digisonde, microwave radiometer, and spectrometers. The cooperative study of the atmosphere was undertaken by researchers from several laboratories, including Penn State University (PSU), University Bonn, University Wuppertal, Lowell University, and others. Several of the parameters studied have never been measured before over such a wide range of latitudes. Instruments were assembled aboard the German research vessel RV POLARSTERN while this vessel was sailing from the Arctic to the Antarctic seas between 8 Oct. 1991 - 2 Jan. 1992. This paper presents an introduction to the data gathered by the PSU investigation with the Lidar Atmospheric Measurements Program (LAMP) lidar.
Understanding Beam Alignment in a Coherent Lidar System
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Roychoudhari, Chandrasekhar
2015-01-01
Optical beam alignment in a coherent lidar (or ladar) receiver system plays a critical role in optimizing its performance. Optical alignment in a coherent lidar system dictates the wavefront curvature (phase front) and Poynting vector) matching of the local oscillator beam with the incoming receiver beam on a detector. However, this alignment is often not easy to achieve and is rarely perfect. Furthermore, optical fibers are being increasingly used in coherent lidar system receivers for transporting radiation to achieve architectural elegance. Single mode fibers also require stringent mode matching for efficient light coupling. The detector response characteristics vary with the misalignment of the two pointing vectors. Misalignment can lead to increase in DC current. Also, a lens in front of the detector may exasperate phase front and Poynting vector mismatch. Non-Interaction of Waves, or the NIW property indicates the light beams do not interfere by themselves in the absence of detecting dipoles. In this paper, we will analyze the extent of misalignment on the detector specifications using pointing vectors of mixing beams in light of the NIW property.
Doppler lidar studies of atmospheric wind field dynamics
NASA Technical Reports Server (NTRS)
Hardesty, R. M.; Post, M. J.; Lawrence, T. R.; Hall, F. F., Jr.
1986-01-01
For the past 5 years the Wave Propagation Lab. has operated a pulsed CO2 Doppler lidar system to evaluate coherent laser radar technology and to investigate applications of the technique in atmospheric research. The capability of the system to provide measurements of atmospheric winds, backscatter, and water vapor has been extensively studied over this period. Because Doppler lidar can measure atmospheric wind structure in the clear air without degradation by terrain features, it offers a unique capability as a research tool for studies of many transient or local scale atmospheric events. This capability was demonstrated in recent field experiments near Boulder, Colo. and Midland, Tex., in which the lidar clearly depicted the wind field structure associated with several types of phenomena, including thunderstorm microbursts, valley drainage flow, and passage of a dryline front. To improve sensitivity during the periods of low aerosol backscatter, the system has recently been upgraded with new transmitter/receiver hardware. The upgraded system, which transmit 2 J per pulse of output energy at a rate of 50 Hz and incorporates computer control for automated operation, underwent calibration testing during the spring of 1986.
The Water Vapor Variability - Satellite/Sondes (WAVES) Field Campaigns
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Adam, M.; Barnet, C.; Bojkov, B.; Delgado, R.; Demoz, B.; Fitzgibbon, J.; Forno, R.; Herman, R.; Hoff, E.;
2008-01-01
Three NASA-funded field campaigns have been hosted at the Howard University Research Campus in Beltsville, MD. In each of the years 2006, 2007 and 2008, WAVES field campaigns have coordinated ozonesonde launches, lidar operations and other measurements with A-train satellite overpasses for the purposes of satellite validation. The unique mix of measurement systems, physical location and the interagency, international group of researchers and students has permitted other objectives, such as mesoscale meteorological studies, to be addressed as well. We review the goals and accomplishments of the three WAVES missions with the emphasis on the nonsatellite validation component of WAVES, as the satellite validation activities have been reported elsewhere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, K. K.; Phanikumar, D. V.; Kumar, K. Niranjan
2015-10-01
Doppler Lidar and Multi-Filter Rotating Shadowband Radiometer (MFRSR) observations are utilized to show wave like signatures in aerosol optical depth (AOD) during daytime boundary layer evolution over the Himalayan region. Fourier analysis depicted 60–80 min periods dominant during afternoon hours, implying that observed modulations could be plausible reason for the AOD forenoon–afternoon asymmetry which was previously reported. Inclusion of wave amplitude in diurnal variation of aerosol radiative forcing estimates showed ~40% additional warming in the atmosphere relative to mean AOD. The present observations emphasize the importance of wave induced variations in AOD and radiation budget over the site.
Atmospheric aerosol and gas sensing using Scheimpflug lidar
NASA Astrophysics Data System (ADS)
Mei, Liang; Brydegaard, Mikkel
2015-04-01
This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard, "Contineous-wave differential absorption lidar," Submitted to Laser and Photonics Reviews, 2014.
Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS)
NASA Technical Reports Server (NTRS)
Rhothermel, Jeffry; Jones, W. D.; Dunkin, J. A.; Mccaul, E. W., Jr.
1993-01-01
This effort involves development of a calibrated, pulsed coherent CO2 Doppler lidar, followed by a carefully-planned and -executed program of multi-dimensional wind velocity and aerosol backscatter measurements from the NASA DC-8 research aircraft. The lidar, designated as the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS), will be applicable to two research areas. First, MACAWS will enable specialized measurements of atmospheric dynamical processes in the planetary boundary layer and free troposphere in geographic locations and over scales of motion not routinely or easily accessible to conventional sensors. The proposed observations will contribute fundamentally to a greater understanding of the role of the mesoscale, helping to improve predictive capabilities for mesoscale phenomena and to provide insights into improving model parameterizations of sub-grid scale processes within large-scale circulation models. As such, it has the potential to contribute uniquely to major, multi-institutional field programs planned for the mid 1990's. Second, MACAWS measurements can be used to reduce the degree of uncertainty in performance assessments and algorithm development for NASA's prospective Laser Atmospheric Wind Sounder (LAWS), which has no space-based instrument heritage. Ground-based lidar measurements alone are insufficient to address all of the key issues. To minimize costs, MACAWS is being developed cooperatively by the lidar remote sensing groups of the Jet Propulsion Laboratory, NOAA Wave Propagation Laboratory, and MSFC using existing lidar hardware and manpower resources. Several lidar components have already been exercised in previous airborne lidar programs (for example, MSFC Airborne Doppler Lidar System (ADLS) used in 1981,4 Severe Storms Wind Measurement Program; JPL Airborne Backscatter Lidar Experiment (ABLE) used in 1989,90 Global Backscatter Experiment Survey Missions). MSFC has been given responsibility for directing the overall program of instrument development and scientific measurement. The focus of current research and plans for next year are presented.
Utilization of volume correlation filters for underwater mine identification in LIDAR imagery
NASA Astrophysics Data System (ADS)
Walls, Bradley
2008-04-01
Underwater mine identification persists as a critical technology pursued aggressively by the Navy for fleet protection. As such, new and improved techniques must continue to be developed in order to provide measurable increases in mine identification performance and noticeable reductions in false alarm rates. In this paper we show how recent advances in the Volume Correlation Filter (VCF) developed for ground based LIDAR systems can be adapted to identify targets in underwater LIDAR imagery. Current automated target recognition (ATR) algorithms for underwater mine identification employ spatial based three-dimensional (3D) shape fitting of models to LIDAR data to identify common mine shapes consisting of the box, cylinder, hemisphere, truncated cone, wedge, and annulus. VCFs provide a promising alternative to these spatial techniques by correlating 3D models against the 3D rendered LIDAR data.
NASA Astrophysics Data System (ADS)
Haase, J. S.; Cao, B.; Alexander, M. J.; Zhang, W.
2017-12-01
Deep tropical convection influences the transport of mass and momentum from the equatorial upper troposphere into the lower stratosphere through the generation and interaction of waves at a broad range of scales. The France-US collaborative Stratéole-2 project will explore equatorial waves in the tropopause region with super-pressure balloons, designed to drift on quasi-Lagrangian trajectories in the lower stratosphere. The Stratéole-2 program will launch 5 balloons from the Seychelles in the Indian Ocean in 2018-2019, and 20 balloons in 2020-2021, each with a flight duration of about 80 days. Five balloons will carry the Radio OCcultation (ROC2) instrument at 20 km altitude to execute a continuous sequence of temperature profiles on either side of the balloon trajectory to sample the equatorial wave field in three dimensions. It will also carry a micro-lidar for detecting cirrus and convective cloud tops. The goals are to describe the horizontal and vertical structure of tropical waves and their impact on cirrus formation and to investigate the relationships of waves to convective clouds. The GPS measurements quantify wave activity by providing precise estimates of balloon velocity and height perturbations due to waves and by providing refractivity profiles that are sensitive to vertical temperature fluctuations caused by waves. We present ray-tracing simulations of the propagation of GPS signals through the Earth's atmosphere, where they will be bent and delayed due to the gradient of atmospheric refractive index. European Centre for Medium-Range Weather Forecasts (ECMWF) analyses are used to construct the refractive index of the equatorial atmosphere, in which abundant atmospheric waves are present. With the known GPS signal geometry, the excess phase/Doppler are simulated that reflect the wave signatures. The resulting refractivity retrievals provide guidance for interpreting the spectral range of waves that the ROC2 instruments are most likely to reveal.
Laser Remote Sensing from ISS: CATS Cloud and Aerosol Level 2 Data Products (Heritage Edition)
NASA Technical Reports Server (NTRS)
Rodier, Sharon; Palm, Steve; Vaughan, Mark; Yorks, John; McGill, Matt; Jensen, Mike; Murray, Tim; Trepte, Chip
2016-01-01
With the recent launch of the Cloud-Aerosol Transport System (CATS) we have the opportunity to acquire a continuous record of space based lidar measurements spanning from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) era to the start of the EarthCARE mission. Utilizing existing well-validated science algorithms from the CALIPSO mission, we will ingest the CATS data stream and deliver high-quality lidar data sets to the user community at the earliest possible opportunity. In this paper we present an overview of procedures necessary to generate CALIPSO-like lidar level 2 data products from the CATS level 1 data products.
Heidemann, Hans Karl
2012-08-17
In late 2009, a $14.3 million allocation from the American Recovery and Reinvestment Act (ARRA) for new light detection and ranging (lidar) elevation data acquisition prompted the U.S. Geological Survey (USGS) National Geospatial Program (NGP) to develop a common minimum specification for all lidar data acquired for The National Map. Released as a working draft in 2010 and formally published in 2012, the USGS–NGP Lidar Base Specification (LBS) was quickly embraced by numerous States, counties, and foreign countries as the foundation for their own lidar specifications.Prompted by a growing appreciation for the wide applicability and inherent value of lidar, a consortium of Federal agencies commissioned the National Enhanced Elevation Assessment (NEEA) study in 2010 to quantify the costs and benefits of a national lidar program. Published in 2012, the NEEA report documented a substantial return on such an investment, defined five quality levels (QL) for elevation data, and recommended an 8-year collection cycle of QL2 lidar data as the optimum balance of benefit and affordability. In response to the study, the USGS–NGP established the 3D Elevation Program (3DEP) in 2013 as the interagency vehicle through which the NEEA recommendations could be realized.Lidar is a quickly evolving technology and much has changed in the industry since the previous version of the Lidar Base Specification (LBS) was published. Lidar data have improved in accuracy and spatial resolution, the American Society for Photogrammetry and Remote Sensing has revised the geospatial accuracy standards, industry standard file formats have been expanded, additional applications for lidar have become accepted, and the need for interoperable data across collections has been realized. This revision to the LBS addresses some of those changes and provides continued guidance towards a nationally consistent lidar dataset.
Lidar Observations of Stratospheric Aerosol Layer After the Mt. Pinatubo Volcanic Eruption
NASA Technical Reports Server (NTRS)
Nagai, Tomohiro; Uchino, Osamu; Fujimoto, Toshifumi
1992-01-01
The volcano Mt. Pinatubo located on the Luzon Island, Philippines, had explosively erupted on June 15, 1991. The volcanic eruptions such as volcanic ash, SO2 and H2O reached into the stratosphere over 30 km altitude by the NOAA-11 satellite observation and this is considered one of the biggest volcanic eruptions in this century. A grandiose volcanic eruption influences the atmosphere seriously and causes many climatic effects globally. There had been many impacts on radiation, atmospheric temperature and stratospheric ozone after some past volcanic eruptions. The main cause of volcanic influence depends on stratospheric aerosol, that stay long enough to change climate and other meteorological conditions. Therefore it is very important to watch stratospheric aerosol layers carefully and continuously. Standing on this respect, we do not only continue stratospheric aerosol observation at Tsukuba but also have urgently developed another lidar observational point at Naha in Okinawa Island. This observational station could be thought valuable since there is no lidar observational station in this latitudinal zone and it is much nearer to Mt. Pinatubo. Especially, there is advantage to link up these two stations on studying the transportation mechanism in the stratosphere. In this paper, we present the results of lidar observations at Tsukuba and Naha by lidar systems with Nd:YAG laser.
Planetary wave-gravity wave interactions during mesospheric inversion layer events
NASA Astrophysics Data System (ADS)
Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.
2013-07-01
lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion amplitude may get modulated by the interaction between gravity waves and planetary waves. The eddy diffusion associated with gravity wave drag may also cause suppression in the planetary wave activity.
NASA Astrophysics Data System (ADS)
La, I.; Yum, S. S.; Yeom, J. M.; Gultepe, I.
2017-12-01
Since microphysical and dynamical processes of fog are not well-known and have non-linear relationships among processes that are related to fog formation, improving the accuracy of the fog forecasting/nowcasting system is challenging. For these reasons, understanding the fog mechanism is needed to develop the fog forecasting system. So, we focus on understanding fog-turbulence interactions and fog-gravity wave interactions. Many studies noted that turbulence plays important roles in fog. However, a discrepancy between arguments for the effect of turbulent mixing on fog formation exists. Several studies suggested that turbulent mixing suppresses fog formation. Some other studies reported that turbulent mixing contributes to fog formation. On the other hand, several quasi-periodic oscillations of temperature, visibility, and vertical velocity, which have period of 10-20 minutes, were observed to be related to gravity waves in fog; because gravity waves play significant dynamic roles in the atmosphere. Furthermore, a numerical study suggested that gravity waves, simulated near the top of the fog layer, may affect fog microphysics. Thus, we investigate the effects of turbulent mixing on fog formation and the influences of gravity waves on fog microphysics to understand fog structure in Pyeongchang. In these studies, we analyze the data that are obtained from doppler lidar and 3.5 m meteorological observation tower including 3D-ultrasonic anemometer, IR sensor, and fog monitor during ICE-POP (International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games) campaign. In these instruments, doppler lidar is a good instrument to observe the gravity waves near the fog top, while in situ measurements have small spatial coverage. The instruments are installed at the mountainous terrain of Pyeongchang, Korea. More details will be presented at the conference.
NASA Astrophysics Data System (ADS)
Obland, M. D.; Nehrir, A. R.; Liu, Z.; Chen, S.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Fan, T. F.; Choi, Y.; Plant, J.; Yang, M. M.; Browell, E. V.; Harrison, F. W.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.
2015-12-01
This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights.
NASA Astrophysics Data System (ADS)
Obland, M. D.; Liu, Z.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Carrion, W.; Hicks, J.; Fan, T. F.; Nehrir, A. R.; Browell, E. V.; Meadows, B.; Davis, K. J.
2016-12-01
This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights during the Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital flight campaign.
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Ismail, Syed
2014-01-01
Global atmospheric carbon dioxide (CO2) measurements through the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Decadal Survey recommended space mission are critical for improving our understanding of CO2 sources and sinks. IM-CW (Intensity Modulated Continuous Wave) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS science requirements. In previous laboratory and flight experiments we have successfully used linear swept frequency modulation to discriminate surface lidar returns from intermediate aerosol and cloud contamination. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate clouds, which is a requirement for the inversion of the CO2 column-mixing ratio from the instrument optical depth measurements, has been demonstrated with the linear swept frequency modulation technique. We are concurrently investigating advanced techniques to help improve the auto-correlation properties of the transmitted waveform implemented through physical hardware to make cloud rejection more robust in special restricted scenarios. Several different carrier based modulation techniques are compared including orthogonal linear swept, orthogonal non-linear swept, and Binary Phase Shift Keying (BPSK). Techniques are investigated that reduce or eliminate sidelobes. These techniques have excellent auto-correlation properties while possessing a finite bandwidth (by way of a new cyclic digital filter), which will reduce bias error in the presence of multiple scatterers. Our analyses show that the studied modulation techniques can increase the accuracy of CO2 column measurements from space. A comparison of various properties such as signal to noise ratio (SNR) and time-bandwidth product are discussed.
Modeling Wave Overtopping on the Chandeleur Islands during Hurricane Katrina using XBeach
NASA Astrophysics Data System (ADS)
Lindemer, C. A.; Plant, N.; Puleo, J.; Thompson, D.
2008-12-01
Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines of along the Gulf Coast. Much of the Gulf Coast is ringed with barrier islands that provide inland marshes and the mainland some protection from storm events. The Chandeleur Islands, are located 161 km east of New Orleans, Louisiana and are oriented from north to south, and act to dissipate some of this energy. After a series of major storm events between 2001 and 2005, Hurricane Katrina's devastation in the fall of 2005 was particularly violent, destroying two-thirds of the area associated with the island chain. We would like to evaluate the predictability of hurricane-induced barrier island erosion and accretion. We test the ability of a time-dependent hydrodynamic and morphodynamic model, XBeach, to predict the impact of Hurricane Katrina on portions of Chandeleur Islands. Pre-storm LIDAR-derived bathymetry/topography and surge and wave data were used to drive a number of XBeach simulations. Model-predicted morphology was compared to post-storm LIDAR data. The accuracy of these predictions, including model sensitivity tests with varying grid size and temporal resolutions, are presented.
NASA Technical Reports Server (NTRS)
Beal, Robert C. (Editor)
1987-01-01
Papers are presented on ocean-wave prediction; the quasi-universal form of the spectra of wind-generated gravity waves at different stages of their development; the limitations of the spectral measurements and observations of the group structure of surface waves; the effect of swell on the growth of wind wave; operational wave forecasting; ocean-wave models, and seakeeping using directional wave spectra. Consideration is given to microwave measurements of the ocean-wave directional spectra; SIR research; estimating wave energy spectra from SAR imagery, with the radar ocean-wave spectrometer, and SIR-B; the wave-measurement capabilities of the surface contour radar and the airborne oceanographic lidar; and SIR-B ocean-wave enhancement with fast-Fourier transform techniques. Topics discussed include wave-current interaction; the design and applicability of Spectrasat; the need for a global wave monitoring system; the age and source of ocean swell observed in Hurricane Josephine; and the use of satellite technology for insulin treatment.
NASA Astrophysics Data System (ADS)
Lu, Xian; Chu, Xinzhao; Li, Haoyu; Chen, Cao; Smith, John A.; Vadas, Sharon L.
2017-09-01
We present the first statistical study of gravity waves with periods of 0.3-2.5 h that are persistent and dominant in the vertical winds measured with the University of Colorado STAR Na Doppler lidar in Boulder, CO (40.1°N, 105.2°W). The probability density functions of the wave amplitudes in temperature and vertical wind, ratios of these two amplitudes, phase differences between them, and vertical wavelengths are derived directly from the observations. The intrinsic period and horizontal wavelength of each wave are inferred from its vertical wavelength, amplitude ratio, and a designated eddy viscosity by applying the gravity wave polarization and dispersion relations. The amplitude ratios are positively correlated with the ground-based periods with a coefficient of 0.76. The phase differences between the vertical winds and temperatures (φW -φT) follow a Gaussian distribution with 84.2±26.7°, which has a much larger standard deviation than that predicted for non-dissipative waves ( 3.3°). The deviations of the observed phase differences from their predicted values for non-dissipative waves may indicate wave dissipation. The shorter-vertical-wavelength waves tend to have larger phase difference deviations, implying that the dissipative effects are more significant for shorter waves. The majority of these waves have the vertical wavelengths ranging from 5 to 40 km with a mean and standard deviation of 18.6 and 7.2 km, respectively. For waves with similar periods, multiple peaks in the vertical wavelengths are identified frequently and the ones peaking in the vertical wind are statistically longer than those peaking in the temperature. The horizontal wavelengths range mostly from 50 to 500 km with a mean and median of 180 and 125 km, respectively. Therefore, these waves are mesoscale waves with high-to-medium frequencies. Since they have recently become resolvable in high-resolution general circulation models (GCMs), this statistical study provides an important and timely reference for them.
DOT National Transportation Integrated Search
2016-05-01
As driving becomes more automated, vehicles are being equipped with more sensors generating even higher data rates. Radars (RAdio Detection and Ranging) are used for object detection, visual cameras as virtual mirrors, and LIDARs (LIght Detection and...
NASA Astrophysics Data System (ADS)
Du, Juan; Liu, Jiqiao; Bi, Decang; Ma, Xiuhua; Hou, Xia; Zhu, Xiaolei; Chen, Weibiao
2018-04-01
A ground-based double-pulse 1572 nm integrated path differential absorption (IPDA) lidar was developed for carbon dioxide (CO2) column concentrations measurement. The lidar measured the CO2 concentrations continuously by receiving the scattered echo signal from a building about 1300 m away. The other two instruments of TDLAS and in-situ CO2 analyzer measured the CO2 concentrations on the same time. A CO2 concentration measurement of 430 ppm with 1.637 ppm standard error was achieved.
SAR and LIDAR fusion: experiments and applications
NASA Astrophysics Data System (ADS)
Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.
2013-05-01
In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.
Ceilometer-based Rainfall Rate estimates in the framework of VORTEX-SE campaign: A discussion
NASA Astrophysics Data System (ADS)
Barragan, Ruben; Rocadenbosch, Francesc; Waldinger, Joseph; Frasier, Stephen; Turner, Dave; Dawson, Daniel; Tanamachi, Robin
2017-04-01
During Spring 2016 the first season of the Verification of the Origins of Rotation in Tornadoes EXperiment-Southeast (VORTEX-SE) was conducted in the Huntsville, AL environs. Foci of VORTEX-SE include the characterization of the tornadic environments specific to the Southeast US as well as societal response to forecasts and warnings. Among several experiments, a research team from Purdue University and from the University of Massachusetts Amherst deployed a mobile S-band Frequency-Modulated Continuous-Wave (FMCW) radar and a co-located Vaisala CL31 ceilometer for a period of eight weeks near Belle Mina, AL. Portable disdrometers (DSDs) were also deployed in the same area by Purdue University, occasionally co-located with the radar and lidar. The NOAA National Severe Storms Laboratory also deployed the Collaborative Lower Atmosphere Mobile Profiling System (CLAMPS) consisting of a Doppler lidar, a microwave radiometer, and an infrared spectrometer. The purpose of these profiling instruments was to characterize the atmospheric boundary layer evolution over the course of the experiment. In this paper we focus on the lidar-based retrieval of rainfall rate (RR) and its limitations using observations from intensive observation periods during the experiment: 31 March and 29 April 2016. Departing from Lewandowski et al., 2009, the RR was estimated by the Vaisala CL31 ceilometer applying the slope method (Kunz and Leeuw, 1993) to invert the extinction caused by the rain. Extinction retrievals are fitted against RR estimates from the disdrometer in order to derive a correlation model that allows us to estimate the RR from the ceilometer in similar situations without a disdrometer permanently deployed. The problem of extinction retrieval is also studied from the perspective of Klett-Fernald-Sasano's (KFS) lidar inversion algorithm (Klett, 1981; 1985), which requires the assumption of an aerosol extinction-to-backscatter ratio (the so-called lidar ratio) and calibration in a molecular reference range. The latter is hampered by the limited dynamic range of the ceilometer under rain events, which usually makes it difficult to properly record the reference-range interval. The RR is also compared to estimates by the FMCW radar, which provides vertical profiles of reflectivity and Doppler spectra, from which DSDs and rainfall rates can be inferred more directly. Ceilometer-derived RRs are compared with RR radar estimates for the same days in order to identify pros and cons of the proposed approach. Following Westbrook et al. (2010), we also consider the estimation of rain rates using two-color lidar, which is limited to drizzle and low rain rates. The key to this method is that the Doppler lidar's wavelength (1.5 µm) is partially absorbed by the liquid, and thus it is a differential absorption technique. This work was supported by NOAA under contracts NA1501R4590232 and NA16OAR4590209 and by the Purdue University Dept. of Earth, Atmospheric, and Planetary Sciences. UPC collaborated via Spanish Government - European Regional Development Funds, TEC2015-63832-P project and EU H2020 ACTRIS-2 (GA-654109) project. Klett J.D., 1981: Stable analytical inversion solution for processing lidar returns. Appl. Opt. 20, 211-220. doi: 10.1364/AO.20.000211. Klett J.D., 1985: Lidar inversion with variable backscatter/extinction ratios. Appl. Opt. 24, 1638-1643. doi: 10.1364/AO.24.001638. Kunz G.J., de Leeuv G., 1993: Inversion of lidar signals with the slope method. Appl Opt. 32(18):3249-56. doi: 10.1364/AO.32.003249. Lewandowski P.A., Eichinger W.E., Kruger A., Krajewski W.F., 2008: Lidar-Based Estimation of Small-Scale Rainfall: Empirical Evidence. Journal of Atmospheric and Oceanic Technology, 26, 656-664. doi: 10.1175/2008JTECHA1122.1. Westbrook C.D., Hogan R.J., O'Connor E.J., Illinworth A.J., 2010: Estimating drizzle drop size and precipitation rate using two-colour lidar measurements. Atmos. Meas. Tech., 3, 671-681. doi: 10.5194/amt-3-671-2010.
Agishev, Ravil
2018-05-10
This paper demonstrates a renewed concept and applications of the generalized methodology for atmospheric light detection and ranging (LIDAR) capability prediction as a continuation of a series of our previous works, where the dimensionless parameterization appeared as a tool for comparing systems of a different scale, design, and applications. The modernized concept applied to microscale and milliscale LIDARs with relatively new silicon photomultiplier detectors and traditional photomultiplier tube and avalanche photodiode detectors allowed prediction of the remote sensing instruments' performance and limitations. Such a generalized, uniform, and objective concept is applied for evaluation of the increasingly popular class of limited-energy LIDARs using the best optical detectors, operating on different targets (back-scatter or topographic, static or dynamic) and under intense sky background conditions. It can be used in the LIDAR community to compare different instruments and select the most suitable and effective ones for specific applications.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.
2012-01-01
Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data. Input from the ICAP community is desired to help plan our NRT mission goals and interactions with ICAP forecasters.
NASA Astrophysics Data System (ADS)
Kayen, R.; Barnhardt, W.; Carkin, B.; Collins, B. D.; Grossman, E. E.; Minasian, D.; Thompson, E.
2004-12-01
The Mw 7.9 Denali fault earthquake of 3 November 2002 resulted in approximately 5.5 meters of right-lateral offset and sub-meter (0.6m average) up-to-the north vertical displacement of alluvial deposits of the Delta River. We characterize the surface rupture and shallow fault structure of the Denali fault zone at the Delta River in order to better understand these most recent displacements and to estimate the total vertical offset of alluvium above glacially scoured bedrock. To analyze deformations along the fault-trace, we performed tripod-mounted ground-based LiDAR surveys, and Spectral analysis of Surface Wave (SASW) and Ground Penetrating RADAR (GPR) geophysical investigations. These studies were performed between the Trans-Alaska Pipeline (TAPS) corridor on the terrace deposits of the eastern flanks of the Delta River valley and the steeply sloping bedrock surface on the western side of the river. To produce digital terrain models (DTM) of the surface break we used a Riegl Z210i Laser-scanner to image eight independent LiDAR scans, and ISite3D modeling software to merge these scans into three DTM surfaces. We find that using a rotating scanning-laser allows us to produce ultra-high resolution quantitative DTMs for geomorphic analysis that can be used to resolve features and detect topographic changes on a fine-scale (0.9-2.5cm). Local geo-referencing control points are established using fixed auto reflectors. The near subsurface alluvium was imaged using reflection-based (GPR). A suite of parallel and orthogonal GPR reflection lines were measured to develop block models of the surface rupture at two locations. Radar imagery clearly delineates a plane of chaotic reflectors across the rupture zone. To characterize the depth of alluvium over bedrock on either side of the fault, we used the spectral analysis of surface waves (SASW) approach to invert the near-surface shear wave velocity profile. An Alyeska Co. Catepillar D9N track-mounted dozer was used as a high-energy random-wave source for the SASW test. This source allowed us to profile to depths in excess of 200 meters on either side of the fault. We found the combination of LiDAR and GPR allows us to analyze the surface and near-surface characteristics of a complex oblique rupture across the braid bars of the Delta River. SASW-based shear wave velocity profiles on either side of the fault indicate total up-to-the north uplift on the Denali fault of between 60-90 meters since Pleistocene (?) deglaciation. This investigation is the product of a collaborative research and development agreement between the Alyeska Pipeline Services Company, Pacific Gas and Electric Company and the U.S. Geological Survey.
NASA Astrophysics Data System (ADS)
Walford, Segayle Cereta
Forecasting subtle, small-scale convective cases in both winter and summer time is an ongoing challenge in weather forecasting. Recent studies have shown that better structure of moisture within the boundary layer is crucial for improving forecasting skills, particularly quantitative precipitation forecasting (QPF). Lidars, which take high temporal observations of moisture, are able to capture very detailed structures, especially within the boundary layer where convection often begins. This study first investigates the extent to which an aerosol and a water vapor lidar are able to capture key boundary layer processes necessary for the development of convection. The results of this preliminary study show that the water vapor lidar is best able to capture the small scale water vapor variability that is necessary for the development of convection. These results are then used to investigate impacts of assimilating moisture from the Howard University Raman Lidar (HURL) for one mesoscale convective case, July 27-28, 2006. The data for this case is from the Water Vapor Validation Experiment-Satellite and Sondes (WAVES) field campaign located at the Howard University Beltsville Site (HUBS) in Beltsville, MD. Specifically, lidar-based water vapor mixing ratio profiles are assimilated into the Weather Research and Forecasting (WRF) regional model over a 4 km grid resolution over Washington, DC. Model verification is conducted using the Meteorological Evaluation Tool (MET) and the results from the lidar run are then compared to a control (no assimilation) run. The findings indicate that quantitatively conclusions cannot be draw from this one case study. However, qualitatively, the assimilation of the lidar observations improved the equivalent potential temperature, and water vapor distribution of the region. This difference changed location, strength and spatial coverage of the convective system over the HUBS region.
NASA Technical Reports Server (NTRS)
Yorks, John E.; Mcgill, Matthew J.; Scott, V. Stanley; Kupchock, Andrew; Wake, Shane; Hlavka, Dennis; Hart, William; Selmer, Patrick
2014-01-01
The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds.
NASA Astrophysics Data System (ADS)
Taori, A.; Dashora, N.; Raghunath, K.; Russell, J. M., III; Mlynczak, Martin G.
2011-07-01
We report first simultaneous airglow, lidar, and total electron content measurements in the mesosphere-thermosphere-ionosphere system behavior from Gadanki (13.5°N, 79.2°E). The observed variability in mesospheric temperatures and 630 nm thermospheric emission intensity shows large variations from one night to another with clear upward propagating waves at mesospheric altitudes. The deduced mesospheric temperatures compare well with Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER)-derived temperatures, while the variability agrees well with lidar temperatures (on the night of simultaneous observations). The 630.0 nm thermospheric emission intensity and GPS-total electron content data exhibit occurrence of plasma depletions on the nights of 22-23 October and 22-23 May 2009, while no depletions are noted on the nearby nights of 23-24 October and 21-22 May 2009. These first simultaneous data reveal strong gravity-wave growth at upper mesospheric altitudes on the nights when plasma depletions were noted.
NASA Astrophysics Data System (ADS)
Guedes, Anderson G.; Landulfo, Eduardo; Montilla-Rosero, Elena; Lopes, Fábio J. S.; Hoelzemann, Judith J.; Fernandez, José Henrique; Silva, Marcos P. A.; Santos, Renata S. S.; Guerrero-Rascado, Juan L.; Alados-Arboledas, Lucas
2018-04-01
In this study we present results of linear volume depolarization ratio profiles obtained by a depolarization lidar in operation in Natal, Brazil. The DUSTER system has 4 channels, namely: 1064, 532 s/p and 355 nm. This system is calibrated with a half-wave plate using the Δ90° methodology. The data obtained from this system is correlated with AERONET sunphotometer data, and, when available, CALIPSO satellite data. In addition a trajectory model (HYSPLIT) is used to calculate backward trajectories to assess the origin of the dust polluted air parcels. The objective is to create a transport database of Saharan dust.
A model for gravity-wave spectra observed by Doppler sounding systems
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.
1986-01-01
A model for Mesosphere - Stratosphere - Troposphere (MST) radar spectra is developed following the formalism presented by Pinkel (1981). Expressions for the one-dimensional spectra of radial velocity versus frequency and versus radial wave number are presented. Their dependence on the parameters of the gravity-wave spectrum and on the experimental parameters, radar zenith angle and averaging time are described and the conditions for critical tests of the gravity-wave hypothesis are discussed. The model spectra is compared with spectra observed in the Arctic summer mesosphere by the Poker Flat radar. This model applies to any monostatic Doppler sounding system, including MST radar, Doppler lidar and Doppler sonar in the atmosphere, and Doppler sonar in the ocean.
A guide to LIDAR data acquisition and processing for the forests of the Pacific Northwest.
Demetrios Gatziolis; Hans-Erik Andersen
2008-01-01
Light detection and ranging (LIDAR) is an emerging remote-sensing technology with promising potential to assist in mapping, monitoring, and assessment of forest resources. Continuous technological advancement and substantial reductions in data acquisition cost have enabled acquisition of laser data over entire states and regions. These developments have triggered an...
Lidar Penetration Depth Observations for Constraining Cloud Longwave Feedbacks
NASA Astrophysics Data System (ADS)
Vaillant de Guelis, T.; Chepfer, H.; Noel, V.; Guzman, R.; Winker, D. M.; Kay, J. E.; Bonazzola, M.
2017-12-01
Satellite-borne active remote sensing Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations [CALIPSO; Winker et al., 2010] and CloudSat [Stephens et al., 2002] provide direct measurements of the cloud vertical distribution, with a very high vertical resolution. The penetration depth of the laser of the lidar Z_Opaque is directly linked to the LongWave (LW) Cloud Radiative Effect (CRE) at Top Of Atmosphere (TOA) [Vaillant de Guélis et al., in review]. In addition, this measurement is extremely stable in time making it an excellent observational candidate to verify and constrain the cloud LW feedback mechanism [Chepfer et al., 2014]. In this work, we present a method to decompose the variations of the LW CRE at TOA using cloud properties observed by lidar [GOCCP v3.0; Guzman et al., 2017]. We decompose these variations into contributions due to changes in five cloud properties: opaque cloud cover, opaque cloud altitude, thin cloud cover, thin cloud altitude, and thin cloud emissivity [Vaillant de Guélis et al., in review]. We apply this method, in the real world, to the CRE variations of CALIPSO 2008-2015 record, and, in climate model, to LMDZ6 and CESM simulations of the CRE variations of 2008-2015 period and of the CRE difference between a warm climate and the current climate. In climate model simulations, the same cloud properties as those observed by CALIOP are extracted from the CFMIP Observation Simulator Package (COSP) [Bodas-Salcedo et al., 2011] lidar simulator [Chepfer et al., 2008], which mimics the observations that would be performed by the lidar on board CALIPSO satellite. This method, when applied on multi-model simulations of current and future climate, could reveal the altitude of cloud opacity level observed by lidar as a strong constrain for cloud LW feedback, since the altitude feedback mechanism is physically explainable and the altitude of cloud opacity accurately observed by lidar.
NASA Astrophysics Data System (ADS)
Totems, Julien; Sicard, Michael; Bertolin, Santi; Boytard, Mai-Lan; Chazette, Patrick; Comeron, Adolfo; Dulac, Francois; Hassanzadeh, Sahar; Lange, Diego; Marnas, Fabien; Munoz, Constantino; Shang, Xiaoxia
2014-05-01
We present a preliminary analysis of aerosol observations performed in June 2013 in the western Mediterranean at two stations set up in Barcelona and Menorca (Spain) in the framework of the ChArMEx (Chemistry Aerosol Mediterranean Experiment) project. The Barcelona station was equipped with the following fixed instruments belonging to the Universitat Politècnica de Catalunya (UPC): an AERONET (Aerosol Robotic Network) sun-photometer, an MPL (Micro Pulse Lidar) lidar and the UPC multi-wavelength lidar. The MPL lidar works at 532 nm and has a depolarization channel, while the UPC lidar works at 355, 532 and 1064 nm, and also includes two N2- (at 387 and 607 nm) and one H2O-Raman (at 407 nm) channels. The MPL system works continuously 24 hour/day. The UPC system was operated on alert in coordination with the research aircrafts plans involved in the campaign. In Cap d'en Font, Menorca, the mobile laboratory of the Laboratoire des Sciences du Climat et de l'Environnement hosted an automated (AERONET) and a manual (Microtops) 5-lambda sunphotometer, a 3-lambda nephelometer, a 7-lambda aethalometer, as well as the LSCE Water vapor Aerosol LIdar (WALI). This mini Raman lidar, first developed and validated for the HyMEX (Hydrological cycle in the Mediterranean eXperiment) campaign in 2012, works at 355 nm for eye safety and is designed with a short overlap distance (<300m) to probe the lower troposphere. It includes depolarization, N2- and H2O-Raman channels. H2O observations have been calibrated on-site by different methods and show good agreement with balloon measurements. Observations at Cap d'en Font were quasi-continuous from June 10th to July 3rd, 2013. The lidar data at both stations helped direct the research aircrafts and balloon launches to interesting plumes of particles in real time for in-situ measurements. Among some light pollution background from the European continent, a typical Saharan dust event and an unusual American dust/biomass burning event are highlighted in our measurements. The lidar ratio, depolarization ratio and water content, as well as the usual aerosol vertical distribution and extinction properties provided by the Raman lidars, and the size distributions provided by AERONET, prove very helpful in characterizing particle types and sources, especially for the multi-layer situations observed. Further on, the study of parameters extracted during this campaign will allow us an assessment of the local direct aerosol radiative forcing.
Ground Based Operational Testing Of Holographic Scanning Lidars : The HOLO Experiments
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Wilkerson, Thomas D.; Sanders, Jason A.; Guerra, David V.; Miller, David O.; Moody, Stephen E.
2000-01-01
Two aerosol backscatter lidar measurement campaigns were conducted using two holographic scanning lidars and one zenith staring lidar for the purposes of reliability testing under field conditions three new lidar systems and to develop new scanning measurement techniques and applications. The first campaign took place near the campus of Utah State University in Logan Utah in March of 1999 and is called HOLO-1. HOLO-2 was conducted in June of 1999 on the campus of Saint Anselm College, near the city of Manchester, New Hampshire. Each campaign covered a period of approximately one week of nearly continuous observation of cloud and aerosol backscatter in the visible and near infrared by lidar, and wide field visible sky images by video camera in the daytime. The scanning capability coupled with a high rep-rate, high average power laser enables both high spatial and high temporal resolution observations that Particularly intriguing is the possibility of deriving atmospheric wind profiles from temporal analysis of aerosol backscatter spatial structure obtained by conical scan without the use of Doppler techniques.
An Overview of Ocean Lidar Studies At NRL Stennis, NOAA ESRL and NASA LaRC (Invited)
NASA Astrophysics Data System (ADS)
Hu, Y.; Arnone, R. A.; Churnside, J. H.
2009-12-01
(Author List: Robert A Arnone, James H Churnside, Yongxiang Hu) Naval interests in ocean LIDAR systems has several areas which include the use of LIDAR for bathymetry mapping, underwater imaging systems and characterizing the vertical bio-optical scattering layers. Ocean LIDAR provides a new capability of extending surface bio-optical properties retrieved form ocean color imagery into the subsurface. The relationships between bio-optical scattering layers and physical properties such as mixed layer depth are being developed and LIDAR profiles can provide a significant contribution. These techniques for combining the vertical bio-optical structure with physical models and satellite ocean color using data assimilation are providing new capability in characterize the 3d ocean volume. The LIDAR capability in resolving the vertical ocean structure can provide the next generation remote sensing information for ocean characterization. Over the last ten years, NOAA has been developing and testing lidar for aerial surveys of fish schools and plankton aggregations. We have flown the lidar on numerous aircraft, ranging in size from a four-seat Cessna to a Casa twin-engine cargo plane. Surveys have covered both inland and offshore waters on both coasts of North America and the Atlantic waters of Europe. The species of interest have generally been near surface schooling fishes like sardines, anchovies, herring, mackerel, and menhaden. Plankton studies have included both zooplankton and phytoplankton. There are several general conclusions that can be drawn from the results of this work. The penetration depth of the lidar varies from about 15 m in very turbid inland waters to over 50 m in blue offshore waters. Reliable detection of fish schools and plankton layers requires filtering and application of a threshold to remove background scattering levels. The correlation between the results of a lidar survey and traditional acoustic or net surveys generally depends on the time delay between the two surveys. With no time delay the correlation is well above 0.9, and the correlation is essentially zero after about four days. The ocean lidar studies at NASA Langley Research Center started from the launch of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The lidar, designed for cloud and aerosol observation, also provides information about (1) ocean subsurface particulate backscatter, and (2) high resolution ocean surface wind speeds / mean square wave slopes. More than three years of global ocean measurements from CALIPSO are analyzed and available to the community. Ocean and atmospheric seasonal and inter-annual variations are studied using the CALIPSO observations combined with measurements from other A-train satellites. Future studies at NASA Langley Research Center includes: (1) Improvement of CALIPSO ocean product; (2) Theoretical radiative transfer modeling, such as lidar multiple scatter and coupled ocean-atmospheric Stokes vector, and new retrieval concepts with combined lidar and multi-angle, multi-spectral polarimeter; (3) Aircraft based measurements of next generation lidar, polarimeter and hyperspectral measurements.
The discrimination between crude-oil spills and monomolecular sea slicks by an airborne lidar
NASA Technical Reports Server (NTRS)
Huehnerfuss, H.; Garrett, W. D.; Hoge, F. E.
1986-01-01
Airborne lidar measurements were performed over a deployed monomolecular oleyl alcohol surface film ('slick'), the physicochemical characteristics of which are known to be similar to biogenic organic compounds secreted by plankton and fish, and adjacent 'clean' sea surfaces in the North Sea. In the presence of the slick, the suppression of the Raman backscatter at 381 nm and of two spectral bands indicative of water column fluorescent organic material at 414 and 482 nm were observed. This effect is explained by two possible mechanisms giving rise to a modification of the transmission or coupling of the laser beam into the water column: (1) the damping of capillary and short gravity water waves by the oleyl alcohol slick, and (2) the modification of the uppermost water layer by the oleyl alcohol film. The results obtained in the presence of a slick are compared with data measured over a Murban crude-oil spill with the same lidar system off the coast of the U.S.A. The consequences of the lidar-monomolecular film experiments with regard to the remote detection of crude-oil spills and oil-thickness measurements with an airborne laser fluorosensing system will be discussed.
Development of a Sodium Lidar for Space-Borne Missions
NASA Astrophysics Data System (ADS)
Janches, D.; Krainak, M. A.; Yu, A. W.; Jones, S.; Chen, J. R.
2015-12-01
We are currently developing laser and electro-optic technologies to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage to study the composition and dynamics of Earth's mesosphere based on a spaceborne instrument that will measure the mesospheric Na layer. There is a pressing need in the Ionosphere - Thermosphere - Mesosphere (ITM) community for high-resolution measurements that can characterize the effect of small-scale dynamics (i.e. Gravity Waves with wavelengths smaller than a few hundred km) in the Mesosphere-Lower-Termosphere (MLT) on a global basis. This is compelling because they are believed to be the dominant contributors to momentum transport and deposition in the MLT, which largely drive the global circulation and thermal structure and interactions with the tides and planetary waves in this region. A nadir-pointing spaceborne Na Doppler resonance fluorescence LIDAR on board of the International Space Station (ISS) will essentially make high-resolution, in time and space, Na density, temperature and vertical wind measurements, from 75-115 km (MLT region). Our instrument concept consisted of a high-energy laser transmitter at 589 nm and highly sensitive photon counting detector that allows for range-resolved atmospheric-sodium-temperature profiles. The atmospheric temperature is deduced from the linewidth of the resonant fluorescence from the atomic sodium vapor D2 line as measured by our tunable laser. We are currently developing a high power energy laser that allows for some day time sodium lidar observations with the help of a narrow bandpass filter based on etalon or atomic sodium Faraday filter with ~5 to 10 pm optical bandwidth. The current baseline detector for the lidar instrument is a 16-channel Photomultiplier Tube with receiver electronics that has been space-qualified for the ICESat-2/ATLAS mission. Our technique uses the 16-channels as a photon-number-resolving "single" detector to provide the required full-spectroscopic sodium lineshape waveform for recovering Mesospheric temperature profiles. In this paper, we will describe our instrument concept for a future Heliophysics space mission based on board of the ISS as well as show current progress results.
Monitoring Atmospheric CO2 From Space: Challenge & Approach
NASA Technical Reports Server (NTRS)
Lin, Bing; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Dobler, Jeremy; Campbell, Joel; Meadows, Byron; Obland, Michael; Kooi, Susan; Fan, Tai-Fang;
2015-01-01
Atmospheric CO2 is the key radiative forcing for the Earth's climate and may contribute a major part of the Earth's warming during the past 150 years. Advanced knowledge on the CO2 distributions and changes can lead considerable model improvements in predictions of the Earth's future climate. Large uncertainties in the predictions have been found for decades owing to limited CO2 observations. To obtain precise measurements of atmospheric CO2, certain challenges have to be overcome. For an example, global annual means of the CO2 are rather stable, but, have a very small increasing trend that is significant for multi-decadal long-term climate. At short time scales (a second to a few hours), regional and subcontinental gradients in the CO2 concentration are very small and only in an order of a few parts per million (ppm) compared to the mean atmospheric CO2 concentration of about 400 ppm, which requires atmospheric CO2 space monitoring systems with extremely high accuracy and precision (about 0.5 ppm or 0.125%) in spatiotemporal scales around 75 km and 10-s. It also requires a decadal-scale system stability. Furthermore, rapid changes in high latitude environments such as melting ice, snow and frozen soil, persistent thin cirrus clouds in Amazon and other tropical areas, and harsh weather conditions over Southern Ocean all increase difficulties in satellite atmospheric CO2 observations. Space lidar approaches using Integrated Path Differential Absorption (IPDA) technique are considered to be capable of obtaining precise CO2 measurements and, thus, have been proposed by various studies including the 2007 Decadal Survey (DS) of the U.S. National Research Council. This study considers to use the Intensity-Modulated Continuous-Wave (IM-CW) lidar to monitor global atmospheric CO2 distribution and variability from space. Development and demonstration of space lidar for atmospheric CO2 measurements have been made through joint adventure of NASA Langley Research Center and Exelis, Inc. As prototype space IPDA lidars, airborne laser absorption lidar systems operating in 1.57 CO2 absorption band have been developed and tested through lab, ground-based range, and flight campaigns. Very encouraging results have been obtained. The signal-to-noise ratio (SNR) for clear sky IPDA measurements of CO2 differential absorption optical depth (DAOD) for a 10-s integration over vegetated areas with about 10 km range was found to be as high as 1300, resulting in an error 0.077% or equivalent CO2 mixing ratio (XCO2) column precision of 0.3 ppm. Precise range measurements using the IM-CW lidar approach were also achieved, and the uncertainties have been shown to be at sub meter level. Based on the airborne lidar development, space lidar and atmospheric CO2 observations are simulated. It shows that with the IM-CW approach, accurate atmospheric CO2 measurements can be achieved from space, and a space mission such as that proposed by the DS will meet science goals of atmospheric CO2 monitoring.
Gravity Wave Interactions with Fine Structures in the Mesosphere and Lower Thermosphere
NASA Astrophysics Data System (ADS)
Mixa, Tyler; Fritts, David; Bossert, Katrina; Laughman, Brian; Wang, Ling; Lund, Thomas; Kantha, Lakshmi
2017-04-01
An anelastic numerical model is used to probe the influences of fine layering structures on gravity wave propagation in the Mesosphere and Lower Thermosphere (MLT). Recent lidar observations confirm the presence of persistent layered structures in the MLT that have sharp stratification and vertical scales below 1km. Gravity waves propagating through finely layered environments can excite and modulate the evolution of small scale instabilities that redefine the layering structure in these regions. Such layers in turn filter the outgoing wave spectra, promote ducting or reflection, hasten the onset of self-acceleration dynamics, and encourage wave/mean-flow interactions via energy and momentum transport. Using high resolution simulations of a localized gravity wave packet in a deep atmosphere, we identify the relative impacts of various wave and mean flow parameters to improve our understanding of these dynamics and complement recent state-of-the-art observations.
Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey
Nicholas Skowronski; Kenneth Clark; Ross Nelson; John Hom; Matt Patterson
2007-01-01
We used a single-beam, first return profiling LIDAR (Light Detection and Ranging) measurements of canopy height, intensive biometric measurements in plots, and Forest Inventory and Analysis (FIA) data to quantify forest structure and ladder fuels (defined as vertical fuel continuity between the understory and canopy) in the New Jersey Pinelands. The LIDAR data were...
Wind speed vector restoration algorithm
NASA Astrophysics Data System (ADS)
Baranov, Nikolay; Petrov, Gleb; Shiriaev, Ilia
2018-04-01
Impulse wind lidar (IWL) signal processing software developed by JSC «BANS» recovers full wind speed vector by radial projections and provides wind parameters information up to 2 km distance. Increasing accuracy and speed of wind parameters calculation signal processing technics have been studied in this research. Measurements results of IWL and continuous scanning lidar were compared. Also, IWL data processing modeling results have been analyzed.
Development of a COTS Mass Storage Unit for the Space Readiness Coherent Lidar Experiment
NASA Technical Reports Server (NTRS)
Liggin, Karl; Clark, Porter
1999-01-01
The technology to develop a Mass Storage Unit (MSU) using commercial-off-the-shelf (COTS) hard drives is an on-going challenge to meet the Space Readiness Coherent Lidar Experiment (SPARCLE) program requirements. A conceptual view of SPARCLE's laser collecting atmospheric data from the shuttle is shown in Figure 1. The determination to develop this technology required several in depth studies before an actual COTS hard drive was selected to continue this effort. Continuing the development of the MSU can, and will, serve future NASA programs that require larger data storage and more on-board processing.
Identification of Critical Design Points for the EAP of a Space-based Doppler Lidar Wind Sounder
NASA Technical Reports Server (NTRS)
Emmitt, G. D.; Wood, S. A.
1992-01-01
The feasibility of making tropospheric wind measurements with a space-based Doppler lidar was studied by a number of agencies over the past 10-15 years. Currently NASA has a plan to launch such an instrument, the Laser Atmospheric Wind Sounder (LAWS), within the next decade. The design of the LAWS continues to undergo a series of iterations common to most instruments targeted for a space platform. In general, the constraints of available platform power, weight allowance, and project funds continue to change. With these changes the performance and design specifications also must change.
The NASA Micro-Pulse Lidar Network (MPLNET): Co-location of Lidars with AERONET
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Holben, Brent; Tsay, Si-Chee
2004-01-01
We present the formation of a global-ground based eye-safe lidar network, the NASA Micro-Pulse Lidar Network (MPLNET). The aim of MPLNET is to acquire long-term observations of aerosol and cloud vertical profiles at unique geographic sites within the NASA Aerosol Robotic Network (AERONET). Network growth follows a federated approach, pioneered by AERONET, wherein independent research groups may join MPLNET with their own instrument and site. MPLNET utilizes standard instrumentation and data processing algorithms for efficient network operations and direct comparison of data between each site. The micro-pulse lidar is eye-safe, compact, and commercially available, and most easily allows growth of the network without sacrificing standardized instrumentation gods. Red-time data products (next-day) are available, and include Level 1 daily lidar signal images from the surface to -2Okm, and Level 1.5 aerosol extinction provides at times co-incident with AERONET observations. Testing of our quality assured aerosol extinction products, Level 2, is near completion and data will soon be available. Level 3 products, continuous daylight aerosol extinction profiles, are under development and testing has begun. An overview of h4PL" will be presented. Successful methods of merging standardized lidar operations with AERONET will also be discussed, with the first 4 years of MPLNET results serving as an example.
NASA Astrophysics Data System (ADS)
Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent
2013-04-01
The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.
Satellite to Ground-based LIDAR Comparisons using MPLNET Data Products
NASA Technical Reports Server (NTRS)
Berkoff, T.A.; Belcher, L.; Campbell, J.; Spinhirne, J.; Welton, E. J.
2007-01-01
The Micro-Pulse Lidar Network (MPLNET) is a network of ground-based lidar systems that provide continuous long-term observations of aerosol and cloud properties at approximately 10 different locations around the globe. Each site in the network uses an elastic scattering lidar co-located with a sunphotometer to provide data products of aerosol optical physical properties. Data products from sites are available on a next-day basis from the MPLNET website. Expansion of the network is based on partnering with research groups interested in joining MPLNET. Results have contributed to a variety of studies including aerosol transport studies and satellite calibration and validation efforts. One of the key motivations for MPLNET is to contribute towards the calibration and validation of satellite-based lidars such as GLAS/ICESAT and CALIPSO. MPLNET is able to provide comparison to several of the key aerosol and cloud CALIPSO data products including: layer height and thickness, optical depth, backscatter and extinction profiles, and the extinction-to-backscatter ratio.
NASA Astrophysics Data System (ADS)
Sridharan, S.; Raghunath, K.; Sathishkumar, S.; Nath, D.
2010-09-01
Rayleigh lidar observations at Gadanki (13.5°N, 79.2°E) show an enhancement of the nightly mean temperature by 10-15 K at altitudes 70-80 km and of gravity wave potential energy at 60-70 km during the 2009 major stratospheric warming event. An enhanced quasi-16-day wave activity is observed at 50-70 km in the wavelet spectrum of TIMED-SABER temperatures, possibly due to the absence of a critical level in the low-latitude stratosphere because of less westward winds caused by this warming event. The observed low-latitude mesospheric warming could be due to wave breaking, as waves are damped at 80 km.
Automated integration of lidar into the LANDFIRE product suite
Peterson, Birgit; Nelson, Kurtis; Seielstad, Carl; Stoker, Jason M.; Jolly, W. Matt; Parsons, Russell
2015-01-01
Accurate information about three-dimensional canopy structure and wildland fuel across the landscape is necessary for fire behaviour modelling system predictions. Remotely sensed data are invaluable for assessing these canopy characteristics over large areas; lidar data, in particular, are uniquely suited for quantifying three-dimensional canopy structure. Although lidar data are increasingly available, they have rarely been applied to wildland fuels mapping efforts, mostly due to two issues. First, the Landscape Fire and Resource Planning Tools (LANDFIRE) program, which has become the default source of large-scale fire behaviour modelling inputs for the US, does not currently incorporate lidar data into the vegetation and fuel mapping process because spatially continuous lidar data are not available at the national scale. Second, while lidar data are available for many land management units across the US, these data are underutilized for fire behaviour applications. This is partly due to a lack of local personnel trained to process and analyse lidar data. This investigation addresses these issues by developing the Creating Hybrid Structure from LANDFIRE/lidar Combinations (CHISLIC) tool. CHISLIC allows individuals to automatically generate a suite of vegetation structure and wildland fuel parameters from lidar data and infuse them into existing LANDFIRE data sets. CHISLIC will become available for wider distribution to the public through a partnership with the U.S. Forest Service’s Wildland Fire Assessment System (WFAS) and may be incorporated into the Wildland Fire Decision Support System (WFDSS) with additional design and testing. WFAS and WFDSS are the primary systems used to support tactical and strategic wildland fire management decisions.
Barrier Island Shorelines Extracted from Landsat Imagery
Guy, Kristy K.
2015-10-13
The shoreline is a common variable used as a metric for coastal erosion or change (Himmelstoss and others, 2010). Although shorelines are often extracted from topographic data (for example, ground-based surveys and light detection and ranging [lidar]), image-based shorelines, corrected for their inherent uncertainties (Moore and others, 2006), have provided much of our understanding of long-term shoreline change because they pre-date routine lidar elevation survey methods. Image-based shorelines continue to be valuable because of their higher temporal resolution compared to costly airborne lidar surveys. A method for extracting sandy shorelines from 30-meter (m) resolution Landsat imagery is presented here.
Past and future drivers of increased erosion risk in the northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Wahl, T.; Plant, N. G.
2014-12-01
We use hourly observations of water levels from two tide gauges and wave data from three buoys to assess their relative contribution to past and potential future changes in the erosion risk for Dauphin Island, a barrier island located off the coastline of Alabama. Topographic information (i.e. beach slopes and dune toe and crest heights) is obtained from the most recent lidar survey conducted in the area in July 2013. Water levels and wave parameters (i.e. significant wave height and peak period) from the two tide gauges and three wave buoys are merged into single records spanning the period from 1981 to 2013. The Stockdon et al. (2006) run-up model is used to estimate the 2% exceedance values of wave run-up maxima, which are then combined with the observed water levels at the representative tide gauge site to obtain total water levels (TWLs). With this information we assess the relative contribution of geocentric sea level rise, vertical land-movement, and long-term changes in the wave parameters to the observed increase in erosion risk. The latter is approximated using the concept of impact hours per year (IHPY; Ruggiero 2013) at dune toe and dune crest elevation thresholds derived from the lidar data. Wahl et al. (2014) recently discovered a significant increase in the amplitude of the seasonal sea level cycle in the Gulf of Mexico. Here, we explore the potential of these changes, and similar developments in the seasonal cycle of the wave data and corresponding IHPY, to affect coastal erosion. Such intra-annual signals with longer-term variations have not been included in most earlier studies in favour of analysing the effects of annually averaged long-term trends. Finally, scenarios of potential future changes of all relevant parameters are used to explore their relative contribution to further increase in the coastal erosion risk over the next few decades.
NASA Astrophysics Data System (ADS)
Nagasawa, C.; Abo, M.; Shibata, Y.
2017-12-01
The transport of substance between stratosphere and troposphere in the equatorial region makes an impact to the global climate change, but it has a lot of unknown behaviors. We have performed the lidar observations for survey of atmospheric structure of troposphere, stratosphere, and mesosphere over Kototabang (0.2S, 100.3E), Indonesia in the equatorial region since 2004. Kelut volcano (7.9S, 112.3E) in the Java island of Indonesia erupted on 13 February 2014. The CALIOP observed that the eruption cloud reached 26km above sea level in the tropical stratosphere, but most of the plume remained at 19-20 km over the tropopause. By CALIOP data analysis, aerosol clouds spread in the longitude direction with the lapse of time and arrived at equator in 5 days. After aerosol clouds reached equator, they moved towards the east along the equator by strong eastward equatorial wind of QBO. In June 2014 (4 months after the eruption), aerosol transport from the stratosphere to the troposphere were observed by the polarization lidar at Kototabang. At the same time, we can clearly see down phase structure of vertical wind velocity observed by EAR (Equatorial Atmosphere Radar) generated by the equatorial Kelvin wave. We investigate the transport of substance between stratosphere and troposphere in the equatorial region by data which have been collected by the polarization lidar at Kototabang and the EAR after Kelut volcano eruption. Using combination of ground based lidar, satellite based lidar, and atmosphere radar, we can get valuable evidence of equatorial transport of substance between the troposphere and the lower stratosphere. This work was supported by Collaborative Research based on MU Radar and Equatorial Atmosphere Radar.
Estimation of 557.7 nm Emission Altitude using Co-located Lidars and Photometers over Arecibo
NASA Astrophysics Data System (ADS)
Franco, E.; Raizada, S.; Lautenbach, J.; Brum, C. G. M.
2017-12-01
Airglow at 557.7 nm (green line emission) is generated through the Barth mechanism in the E-region altitude and is sometimes associated with red line (630.0 nm) originating at F-region altitudes. Photons at 557.7 nm are produced through the quenching of excited atomic oxygen atoms, O(1S), while 630.0 nm results through the de-excitation of O(1D) atoms. Even though, the contribution of the green line from F-region is negligible and the significant component comes from the mesosphere, this uncertainty gives rise to a question related to its precise altitude. Previous studies have shown that perturbations generated by atmospheric gravity Waves (GWs) alter the airglow intensity and can be used for studying dynamics of the region where it originates. The uncertainty in the emission altitude of green line can be resolved by using co-located lidars, which provide altitude resolved metal densities. At Arecibo, the resonance lidars tuned to Na and K resonance wavelengths at 589 nm and 770 nm can be used in conjunction with simultaneous measurements from green line photometer to resolve this issue. Both photometer and lidars have narrow field of view as compared to airglow imagers, and hence provide an added advantage that these instruments sample same GW spectrum. Hence, correlation between density perturbations inferred from lidars and airglow intensity perturbations can shed light on the exact altitude of green line emission.
NASA Astrophysics Data System (ADS)
Simeonov, Dr; Dinoev, Dr; Serikov, Dr; Calpini, Dr; Bobrovnikov, Dr; Arshinov, Dr; Ristori, Dr; van den Bergh, Dr; Parlange, Dr
2010-09-01
To satisfy the rising demands on the quality and frequency of atmospheric water vapor, temperature and aerosol measurements used for numerical weather prediction models, climate change observations and special events (volcanoes, dust and smoke transport) monitoring, MeteoSwiss decided to implement a lidar at his main aerological station in Payerne. The instrument is narrow field of view, narrowband UV Raman lidar designed for continuous day and night operational profiling of tropospheric water vapor, aerosol and temperature The lidar was developed and built by the Swiss Federal Institute of Technology- Lausanne (EPFL) within a joint project with MeteoSwiss. To satisfy the requirements for operational exploitation in a meteorological network the lidar had to satisfy a number of criteria, the most important of which are: accuracy and precision, traceability of the measurement, long-term data consistency, long-term system stability, automated operation, requiring minimal maintenance by a technician, and eye safety. All this requirements were taken into account during the design phase of the lidar. After a ten months test phase of the lidar at Payerne it has been in regular operation since August 2008. Selected data illustrating interesting atmospheric phenomena captured by the lidar as well as long-term intercomparison with collocated microwave radiometer, GPS, radiosonding and an airborne DIAL will be presented and discussed. The talk will address also the technical availability, alignment and calibration stabilities of the instrument.
Development of a Sodium LIDAR for Spaceborne Missions
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey
2015-01-01
We are currently developing laser and electro-optic technologies to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of a Heliophysics mission targeted to study the composition and dynamics of Earths mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. There is a pressing need in the Ionosphere Thermosphere - Mesosphere (ITM) community for high-resolution measurements that can characterize small-scale dynamics (i.e. Gravity Waves with wavelengths smaller than a few hundred km) and their effects in the Mesosphere-Lower-Termosphere (MLT) on a global basis. This is compelling because they are believed to be the dominant contributors to momentum transport and deposition in the MLT, which largely drive the global circulation and thermal structure and interactions with the tides and planetary waves in this region. We are developing a spaceborne remote sensing technique that will enable acquisition of global Na density, temperature and wind measurements in the MLT with the spatial and temporal resolution required to resolve issues associated with the structure, chemistry, dynamics, and energetics of this regionA nadir-pointing spaceborne Na Doppler resonance fluorescence LIDAR on board of the ISS will essentially make high-resolution, in time and space, Na density, temperature and vertical wind measurements, from 75-115 km (MLT region). Our instrument concept consisted of a high-energy laser transmitter at 589 nm and highly sensitive photon counting detector that allows for range-resolved atmospheric-sodium-temperature profiles. The atmospheric temperature is deduced from the linewidth of the resonant fluorescence from the atomic sodium vapor D2 line as measured by our tunable laser. We are currently developing a high power energy laser that allows for some day time sodium lidar observations with the help of a narrow bandpass filter based on etalon or atomic sodium Faraday filter with 5 to 10 pm optical bandwidth. The current baseline detector for the lidar instrument is a 16-channel Photomultiplier Tube with receiver electronics that has been space-qualified for the ICESat-2ATLAS mission. Our technique uses the 16-channels as a photon-number-resolving single detector to provide the required full-spectroscopic sodium lineshape waveform for recovering Mesospheric temperature profiles. In this paper, we will describe our instrument concept for a future Heliophysics space mission based on board of the International Space Station (ISS).
Density response of the mesospheric sodium layer to gravity wave perturbations
NASA Technical Reports Server (NTRS)
Shelton, J. D.; Gardner, C. S.; Sechrist, C. F., Jr.
1980-01-01
Lidar observations of the mesospheric sodium layer often reveal wavelike features moving through the layer. It is often assumed that these features are a layer density response to gravity waves. Chiu and Ching (1978) described the approximate form of the linear response of atmospheric layers to gravity waves. In this paper, their results are used to predict the response of the sodium layer to gravity waves. These simulations are compared with experimental observations and a good correlation is found between the two. Because of the thickness of the sodium layer and the density gradients found in it, a linear model of the layer response is not always adequate to describe gravity wave-sodium layer interactions. Inclusion of nonlinearities in the layer response is briefly discussed. Experimental data is seen to contain features consistent with the predicted nonlinearities.
A Portable Airborne Scanning Lidar System for Ocean and Coastal Applications
2009-06-26
available online at http://www.ndbc.noaa.gov/) and Hs by the Coastal Data Information Program ( CDIP ) Station 100 (available online at http...storm events (Fig. 9). Significant wave height (Hs) for Novem- ber and December 2008, measured by CDIP station 043, located 2.7 km offshore of the
Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data
NASA Astrophysics Data System (ADS)
Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.
2016-12-01
Observations of aerosol optical and microphysical properties are critical for developing and evaluating aerosol transport model parameterizations and assessing global aerosol-radiation impacts on climate. During the Combined HSRL And Raman lidar Measurement Study (CHARMS), we investigated the synergistic use of ground-based Raman lidar and High Spectral Resolution Lidar (HSRL) measurements to retrieve aerosol properties aloft. Continuous (24/7) operation of these co-located lidars during the ten-week CHARMS mission (mid-July through September 2015) allowed the acquisition of a unique, multiwavelength ground-based lidar dataset for studying aerosol properties above the Southern Great Plains (SGP) site. The ARM Raman lidar measured profiles of aerosol backscatter, extinction and depolarization at 355 nm as well as profiles of water vapor mixing ratio and temperature. The University of Wisconsin HSRL simultaneously measured profiles of aerosol backscatter, extinction and depolarization at 532 nm and aerosol backscatter at 1064 nm. Recent advances in both lidar retrieval theory and algorithm development demonstrate that vertically-resolved retrievals using such multiwavelength lidar measurements of aerosol backscatter and extinction can help constrain both the aerosol optical (e.g. complex refractive index, scattering, etc.) and microphysical properties (e.g. effective radius, concentrations) as well as provide qualitative aerosol classification. Based on this work, the NASA Langley Research Center (LaRC) HSRL group developed automated algorithms for classifying and retrieving aerosol optical and microphysical properties, demonstrated these retrievals using data from the unique NASA/LaRC airborne multiwavelength HSRL-2 system, and validated the results using coincident airborne in situ data. We apply these algorithms to the CHARMS multiwavelength (Raman+HSRL) lidar dataset to retrieve aerosol properties above the SGP site. We present some profiles of aerosol effective radius and concentration retrieved from the CHARMS data and compare column-average aerosol properties derived from the multiwavelength lidar aerosol retrievals to corresponding values retrieved from AERONET measurements.
High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar
NASA Astrophysics Data System (ADS)
Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin
2010-05-01
Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to derive vertical profiles of aerosol backscatter ratio and aerosol extinction at 355 nm. Set of Stokes and anti-Stokes PRR lines are separated by the polychromator to derive temperature profiles. The humidity profiles have vertical resolution from 15 m (within the boundary layer) to 100-450 m (within the free troposphere), time resolution of 30 min and 5 km vertical range at daytime and 10 km at night-time. The aerosol backscatter ratio and extinction profiles have similar resolution with vertical range of approximately 10 km. The temperature profiles are derived from PRR lidar signals, simultaneously recorded in analog and photon counting mode, allowing vertical range of approximately 10 km. Vaisala RS-92 and Snow-White chilled mirror hygrometer radiosondes were used for calibration of the water vapor and temperature channels. Continuous temperature profiles were obtained and were coupled with the available water vapor mixing ratio profiles to obtain relative humidity time series. Lidar derived aerosol backscatter ratio profiles will be used for estimation of the boundary layer height and validation of NWP model results. Optical thickness time series are currently compared to independent measurements from a collocated sun photometer to assess the performance of the aerosol channel.
Lidar cloud studies for FIRE and ECLIPS
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Grund, Christian J.; Spinhirne, James D.; Hardesty, Michael; Alvarez, James
1990-01-01
Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32 h period during this case study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: dissipating subvisual and thin fibrous cirrus cloud bands, an isolated mesoscale uncinus complex (MUC), a large-scale deep cloud that developed into an organized cirrus structure within the lidar array, and a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fall-streaks emanating from generating regions at or near cloud tops, glaciating supercooled (-30 to -35 C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from approximately 1.0 km cirrus uncinus cells, to organized MUC structures up to approximately 120 km across.
LiDAR observation of the flow structure in typhoons
NASA Astrophysics Data System (ADS)
Wu, Yu-Ting; Hsuan, Chung-Yao; Lin, Ta-Hui
2015-04-01
Taiwan is subject to 3.4 landfall typhoons each year in average, generally occurring in the third quarter of every year (July-September). Understanding of boundary-layer turbulence characteristics of a typhoon is needed to ensure the safety of both onshore and offshore wind turbines used for power generation. In this study, a floating LiDAR (Light Detection and Ranging) was deployed in a harbor to collect data of wind turbulence, atmospheric pressure, and temperature in three typhoon events (Matmo typhoon, Soulik typhoon, Trami typhoon). Data collected from the floating LiDAR and from meteorological stations located at Taipei, Taichung and Kaohsiung are adopted to analyse the wind turbulence characteristics in the three typhoon events. The measurement results show that the maximum 10-min average wind speed measured with the floating LiDAR is up to 24 m/s at a height of 200 m. Compared with other normal days, the turbulence intensity is lower in the three typhoon events where the wind speed has a rapid increase. Changes of wind direction take place clearly as the typhoons cross Taiwan from East to West. Within the crossing intervals, the vertical momentum flux is observed to have a significant pattern with both upward and downward propagating waves which are relevant to the flow structure of the typhoons.
Ground level and Lidar monitoring of volcanic dust and dust from Patagonia
NASA Astrophysics Data System (ADS)
Otero, L. A.; Losno, R.; Salvador, J. O.; Journet, E.; Qu, Z.; Triquet, S.; Monna, F.; Balkanski, Y.; Bulnes, D.; Ristori, P. R.; Quel, E. J.
2013-05-01
A combined approach including ground level aerosol sampling, lidar and sunphotometer measurements is used to monitor suspended particles in the atmosphere at several sites in Patagonia. Motivated by the Puyehue volcanic eruption in June 2011 two aerosol monitoring stations with several passive and active instruments were installed in Bariloche and Comodoro Rivadavia. The main goal which is to monitor ground lifted and transported ashes and dust involving danger to civil aviation, is achieved by measuring continuously aerosol concentration at ground level and aerosol vertical distribution using lidar. In addition, starting from December 2011, continuous series of weekly accumulated aerosol concentrations at Rio Gallegos are being measured to study the impact of Patagonian dust over the open ocean on phytoplankton primary productivity and CO2 removal. These measurements are going to be coupled with LIDAR monitoring and a dust optical response models to test if aerosol extrapolation can be done from the ground to the top of the layer. Laboratory chemical analysis of the aerosols will include elemental composition, solubilisation kinetic and mineralogical determination. Expected deliverables for this study is the estimation of the amount of dust exported from Patagonia towards the South Atlantic, its chemical properties, including bioavailability simulation, from model and comparison to experimental measurements.
“Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrare, Richard; Turner, David
2015-01-13
Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thinmore » continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.« less
NASA Astrophysics Data System (ADS)
Pelevin, V. V.; Zavjalov, P. O.; Belyaev, N. A.; Konovalov, B. V.; Kravchishina, M. D.; Mosharov, S. A.
2017-01-01
The article presents results of underway remote laser sensing of the surface water layer in continuous automatic mode using the UFL-9 fluorescent lidar onboard the R/V Akademik Mstislav Keldysh during cruise 59 in the Kara Sea in 2011. The description of the lidar, the approach to interpreting seawater fluorescence data, and certain methodical aspects of instrument calibration and measurement are presented. Calibration of the lidar is based on laboratory analysis of water samples taken from the sea surface during the cruise. Spatial distribution of chlorophyll a, total organic carbon and suspended matter concentrations in the upper quasi-homogeneous layer are mapped and the characteristic scales of the variability are estimated. Some dependencies between the patchiness of the upper water layer and the atmospheric forcing and freshwater runoff are shown.
NASA Astrophysics Data System (ADS)
Labzovskii, Lev D.; Papayannis, Alexandros; Binietoglou, Ioannis; Banks, Robert F.; Baldasano, Jose M.; Toanca, Florica; Tzanis, Chris G.; Christodoulakis, John
2018-02-01
Accurate continuous measurements of relative humidity (RH) vertical profiles in the lower troposphere have become a significant scientific challenge. In recent years a synergy of various ground-based remote sensing instruments have been successfully used for RH vertical profiling, which has resulted in the improvement of spatial resolution and, in some cases, of the accuracy of the measurement. Some studies have also suggested the use of high-resolution model simulations as input datasets into RH vertical profiling techniques. In this paper we apply two synergetic methods for RH profiling, including the synergy of lidar with a microwave radiometer and high-resolution atmospheric modeling. The two methods are employed for RH retrieval between 100 and 6000 m with increased spatial resolution, based on datasets from the HygrA-CD (Hygroscopic Aerosols to Cloud Droplets) campaign conducted in Athens, Greece from May to June 2014. RH profiles from synergetic methods are then compared with those retrieved using single instruments or as simulated by high-resolution models. Our proposed technique for RH profiling provides improved statistical agreement with reference to radiosoundings by 27 % when the lidar-radiometer (in comparison with radiometer measurements) approach is used and by 15 % when a lidar model is used (in comparison with WRF-model simulations). Mean uncertainty of RH due to temperature bias in RH profiling was ˜ 4.34 % for the lidar-radiometer and ˜ 1.22 % for the lidar-model methods. However, maximum uncertainty in RH retrievals due to temperature bias showed that lidar-model method is more reliable at heights greater than 2000 m. Overall, our results have demonstrated the capability of both combined methods for daytime measurements in heights between 100 and 6000 m when lidar-radiometer or lidar-WRF combined datasets are available.
An All-Fiber, Modular, Compact Wind Lidar for Wind Sensing and Wake Vortex Applications
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Sibell, Russ; Vetorino, Steve; Higgins, Richard; Tracy, Allen
2015-01-01
This paper discusses an innovative, compact and eyesafe coherent lidar system developed for wind and wake vortex sensing applications. With an innovative all-fiber and modular transceiver architecture, the wind lidar system has reduced size, weight and power requirements, and provides enhanced performance along with operational elegance. This all-fiber architecture is developed around fiber seed laser coupled to uniquely configured fiber amplifier modules. The innovative features of this lidar system, besides its all fiber architecture, include pulsewidth agility and user programmable 3D hemispherical scanner unit. Operating at a wavelength of 1.5457 microns and with a PRF of up to 20 KHz, the lidar transmitter system is designed as a Class 1 system with dimensions of 30"(W) x 46"(L) x 60"(H). With an operational range exceeding 10 km, the wind lidar is configured to measure wind velocities of greater than 120 m/s with an accuracy of +/- 0.2 m/s and allow range resolution of less than 15 m. The dynamical configuration capability of transmitted pulsewidths from 50 ns to 400 ns allows high resolution wake vortex measurements. The scanner uses innovative liquid metal slip ring and is built using 3D printer technology with light weight nylon. As such, it provides continuous 360 degree azimuth and 180 degree elevation scan angles with an incremental motion of 0.001 degree. The lidar system is air cooled and requires 110 V for its operation. This compact and modular lidar system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. Currently, this wind lidar is undergoing validation tests under various atmospheric conditions. Preliminary results of these field measurements of wind characteristics that were recently carried out in Colorado are discussed.
Diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser at 2.06 μm.
Zhang, Xinlu; Zhang, Su; Xiao, Nana; Cui, Jinhui; Zhao, Jiaqun; Li, Li
2014-03-10
We report on a laser diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser near room temperature. For transmission of 5%, the maximum single frequency output power of 221 mW at 2064.4 nm was obtained by using two uncoated etalons. The single frequency Tm, Ho:LLF laser operated on the fundamental transverse mode with an M2 factor of 1.13, and the output frequency could be tuned continuously near 1.5 GHz by angle tuning only of the 1 mm thick etalon. Furthermore, the influence of output coupler transmission on the laser performance was also investigated. The single frequency laser can be used as a seed laser for coherent Doppler lidar and differential absorption lidar systems.
Feasibility Study For A Spaceborne Ozone/Aerosol Lidar System
NASA Technical Reports Server (NTRS)
Campbell, Richard E.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Carswell, Allan I.; Ulitsky, Arkady
1997-01-01
Because ozone provides a shield against harmful ultraviolet radiation, determines the temperature profile in the stratosphere, plays important roles in tropospheric chemistry and climate, and is a health risk near the surface, changes in natural ozone layers at different altitudes and their global impact are being intensively researched. Global ozone coverage is currently provided by passive optical and microwave satellite sensors that cannot deliver high spatial resolution measurements and have particular limitations in the troposphere. Vertical profiling DIfferential Absorption Lidars (DIAL) have shown excellent range-resolved capabilities, but these systems have been large, inefficient, and have required continuous technical attention for long term operations. Recently, successful, autonomous DIAL measurements have been performed from a high-altitude aircraft (LASE - Lidar Atmospheric Sensing Experiment), and a space-qualified aerosol lidar system (LITE - Laser In-space Technology Experiment) has performed well on Shuttle. Based on the above successes, NASA and the Canadian Space Agency are jointly studying the feasibility of developing ORACLE (Ozone Research with Advanced Cooperative Lidar Experiments), an autonomously operated, compact DIAL instrument to be placed in orbit using a Pegasus class launch vehicle.
Analysis and manipulation of the induced changes in the state of polarization by mirror scanners.
Petrova-Mayor, Anna; Knudsen, Sarah
2017-05-20
The induced polarization effects of metal-coated mirrors were studied in the configurations of one- and two-mirror lidar scanners as a function of azimuth and elevation angles. The theoretical results were verified experimentally for three types of mirrors (custom enhanced gold, off-the-shelf protected gold, and protected aluminum). A method was devised and tested to maintain a desired polarization state (linear or circular) of the transmit beam for all pointing directions by means of rotating wave plates in the transmit and detection paths. Alternatively, the mirror coating can be optimized to preserve the linear polarization state of the transmitted beam. The compensation methods will enable ground-based scanning lidars to produce absolutely calibrated depolarization measurements.
Lidar on small UAV for 3D mapping
NASA Astrophysics Data System (ADS)
Tulldahl, H. Michael; Larsson, Hâkan
2014-10-01
Small UAV:s (Unmanned Aerial Vehicles) are currently in an explosive technical development phase. The performance of UAV-system components such as inertial navigation sensors, propulsion, control processors and algorithms are gradually improving. Simultaneously, lidar technologies are continuously developing in terms of reliability, accuracy, as well as speed of data collection, storage and processing. The lidar development towards miniature systems with high data rates has, together with recent UAV development, a great potential for new three dimensional (3D) mapping capabilities. Compared to lidar mapping from manned full-size aircraft a small unmanned aircraft can be cost efficient over small areas and more flexible for deployment. An advantage with high resolution lidar compared to 3D mapping from passive (multi angle) photogrammetry is the ability to penetrate through vegetation and detect partially obscured targets. Another advantage is the ability to obtain 3D data over the whole survey area, without the limited performance of passive photogrammetry in low contrast areas. The purpose of our work is to demonstrate 3D lidar mapping capability from a small multirotor UAV. We present the first experimental results and the mechanical and electrical integration of the Velodyne HDL-32E lidar on a six-rotor aircraft with a total weight of 7 kg. The rotating lidar is mounted at an angle of 20 degrees from the horizontal plane giving a vertical field-of-view of 10-50 degrees below the horizon in the aircraft forward directions. For absolute positioning of the 3D data, accurate positioning and orientation of the lidar sensor is of high importance. We evaluate the lidar data position accuracy both based on inertial navigation system (INS) data, and on INS data combined with lidar data. The INS sensors consist of accelerometers, gyroscopes, GPS, magnetometers, and a pressure sensor for altimetry. The lidar range resolution and accuracy is documented as well as the capability for target surface reflectivity estimation based on measurements on calibration standards. Initial results of the general mapping capability including the detection through partly obscured environments is demonstrated through field data collection and analysis.
Equatorial waves in temperature in the altitude range 4 to 70 km
NASA Astrophysics Data System (ADS)
Krishna Murthy, B. V.; Satheesan, K.; Parameswaran, K.; Sasi, M. N.; Ramkumar, Geetha; Bhavanikumar, Y.; Raghunath, K.; Krishniah, M.
2002-04-01
Using altitude profiles of temperature in the range 4 to 70 km derived from Mesosphere-Stratosphere- Troposphere radar and lidar observations at Gadanki (13.5°N, 79.2°E) from 18 January 1999 to 5 March 1999, characteristics of equatorial waves are studied. Two-dimensional Fourier-transform analysis of the temperature profiles is carried out to identify the periodicities and their vertical wave numbers. From the characteristics obtained, equatorial slow Kelvin waves with periodicities 15.7 d, 9.4 d, 7.8 d and 6.7 d are identified in the troposphere and stratosphere regions and among these 7.8 d and 6.7 d periodicities are found to penetrate into the mesosphere. Equatorial waves with smaller periodicities in the range 5.2 d to 3.6 d are also observed. The vertical flux of horizontal momentum (zonal) of the identified slow Kelvin-wave periodicities in the altitude region 4-25 km is estimated. It is found that equatorial waves modulate tropical tropopause temperature and altitude.
NASA Astrophysics Data System (ADS)
Thomasson, A.; Geffroy, S.; Frejafon, E.; Weidauer, D.; Fabian, R.; Godet, Y.; Nominé, M.; Ménard, T.; Rairoux, P.; Moeller, D.; Wolf, J. P.
Continuous mapping of an ozone episode in Paris in June 1999 has been performed using a differential absorption lidar system. The 2D ozone concentration vertical maps recorded over 33 h at the Champ de Mars are compiled in a video clip that gives access to local photochemical dynamics with unprecedented precision. The lidar data are compared over the whole period with point monitors located at 0-, 50-, and 300-m altitudes on the Eiffel Tower. Very good agreement is found when spatial resolution, acquisition time, and required concentration accuracy are optimized. Sensitivity to these parameters for successful intercomparison in urban areas is discussed.
Observations of beach cusp evolution using a stationary, shore-based lidar system
NASA Astrophysics Data System (ADS)
O'Dea, A.; Whitesides, E. T.; Brodie, K.; Spore, N.
2016-12-01
Although beach cusps are common features on beaches around the world, questions still remain regarding the range of conditions in which they form, the initial forcing conditions under which they form, and the erosive or accretionary nature of cusp events. While many prior studies have focused on the formation and morphology of beach cusps, many of these are limited in the spatial extent of observations, in their spatial or temporal resolution, or in the availability of accompanying hydrodynamic data. In this study, beach cusp formation and evolution is investigated using an automated lidar system that provides hourly three-dimensional scans of subaerial beach topography with high spatial resolution ([O(1 cm)]). The stationary lidar scanner is mounted on a 4-m tower located on the crest of a shore-backing dune on an Atlantic Ocean beach near Duck, North Carolina. The device measures a 237°-framescan of the nearshore region over a 15 minute period each hour. Individual scans are coregistered to a baseline scan using an iterative closest point (ICP) algorithm and then filtered to remove noise, dune vegetation, and water. To assess the accuracy of the coregistration algorithm, the 3-dimensional location of five permanent reflectors near the device are found for each scan and compared to their measured GPS location. Precisely coregistered scans allow for an assessment of elevation change across cuspate features in addition to traditional measurements of cusp wavelength. Beach cusp events are assessed over a three month period from September through November 2015. Wave and current data from a cross-shore array of sensors deployed continuously throughout the three month period as well as from two alongshore arrays of ADV sensors deployed from October 13 through November 1 are used to determine the forcing conditions under which the cusps formed and evolved. Funded by the USACE Coastal Field Data Collection Program.
Plasma-Neutral Coupling on the Dark and Bright Sides of Antarctica
NASA Astrophysics Data System (ADS)
Chu, X.; Yu, Z.; Fong, W.; Chen, C.; Zhao, J.; Huang, W.; Roberts, B. R.; Fuller-Rowell, T. J.; Richmond, A. D.; Gerrard, A. J.; Weatherwax, A. T.; Gardner, C. S.
2014-12-01
The polar mesosphere and thermosphere provide a unique natural laboratory for studying the complex physical, chemical, neutral dynamical and electrodynamics processes in the Earth's atmosphere and space environment. McMurdo (geographic 77.83S, geomagnetic 80S) is located by the poleward edge of the aurora oval; so energetic particles may penetrate into the lower thermosphere and mesosphere along nearly vertical geomagnetic field lines. Lidar observations at McMurdo from December 2010 to 2014 have discovered several neutral atmosphere phenomena closely related to ionosphereic parameters and geomagnetic activity. For example, the diurnal tidal amplitude of temperatures not only increases super-exponentially from 100 to 110 km but also its growth rate becomes larger at larger Kp index. The lidar discovery of neutral iron (Fe) layers with gravity wave signatures in the thermosphere enabled the direct measurements of neutral temperatures from 30 to 170 km, revealing the neutral-ion coupling and aurora-enhanced Joule heating. A lidar 'marathon' of 174-hour continuous observations showed dramatic changes of composition (Fe atoms and ice particles) densities (over 40 times) in the mesopause region and their correlations to solar events. In this paper we will study the plasma-neutral coupling on the dark side of Antarctica via observation analysis and numerical modeling of the thermospheric Fe layers in the 100-200 km. A newly developed thermospheric Fe/Fe+ model is used to quantify how Fe+ ions are transported from their main deposition region to the E-F region and then neutralized to form Fe layers under dark polar conditions. We will also study the plasma-neutral coupling on the bright side of Antarctica via analyzing Fe events in summer. Complementary observations will be combined to show how the extreme changes of Fe layers are related to aurora particle precipitation and visible/sub-visible ice particles. These observations and studies will open new areas of scientific inquiry regarding the composition, chemistry, neutral dynamics, thermodynamics, and electrodynamics of one of the least-understood regions in the atmosphere.
NASA Technical Reports Server (NTRS)
Yu, Jirong; Trieu, Bo; Bai, Yingxin; Koch, Grady; Chen, Songsheng; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey
2010-01-01
The design of a double pulsed, injection seeded, 2-micrometer compact coherent Differential absorption Lidar (DIAL) transmitter for CO2 sensing is presented. This system is hardened for ground and airborne applications. The design architecture includes three continuous wave lasers which provide controlled on and off line seeding, injection seeded power oscillator and a single amplifier operating in double pass configuration. As the derivative a coherent Doppler wind lidar, this instrument has the added benefit of providing wind information. The active laser material used for this application is a Ho: Tm:YLF crystal operates at the eye-safe wavelength. The 3-meter long folded ring resonator produces energy of 130-mJ (90/40) with a temporal pulse length around 220 nanoseconds and 530 nanosecond pulses for on and off lines respectively. The separation between the two pulses is on the order of 200 microseconds. The line width is in the order of 2.5MHz and the beam quality has an M(sup 2) of 1.1 times diffraction limited beam. A final output energy for a pair of both on and off pulses as high as 315 mJ (190/125) at a repetition rate of 10 Hz is achieved. The operating temperature is set around 20 C for the pump diode lasers and 10 C for the rod. Since the laser design has to meet high-energy as well as high beam quality requirements, close attention is paid to the laser head design to avoid thermal distortion in the rod. A side-pumped configuration is used and heat is removed uniformly by passing coolant through a tube slightly larger than the rod to reduce thermal gradient. This paper also discusses the advantage of using a long upper laser level life time laser crystal for DIAL application. In addition issues related to injection seeding with two different frequencies to achieve a transform limited line width will be presented.
Innovative fiber-laser architecture-based compact wind lidar
NASA Astrophysics Data System (ADS)
Prasad, Narasimha S.; Tracy, Allen; Vetorino, Steve; Higgins, Richard; Sibell, Russ
2016-03-01
This paper describes an innovative, compact and eyesafe coherent lidar system developed for use in wind and wake vortex sensing applications. This advanced lidar system is field ruggedized with reduced size, weight, and power consumption (SWaP) configured based on an all-fiber and modular architecture. The all-fiber architecture is developed using a fiber seed laser that is coupled to uniquely configured fiber amplifier modules and associated photonic elements including an integrated 3D scanner. The scanner provides user programmable continuous 360 degree azimuth and 180 degree elevation scan angles. The system architecture eliminates free-space beam alignment issues and allows plug and play operation using graphical user interface software modules. Besides its all fiber architecture, the lidar system also provides pulsewidth agility to aid in improving range resolution. Operating at 1.54 microns and with a PRF of up to 20 KHz, the wind lidar is air cooled with overall dimensions of 30" x 46" x 60" and is designed as a Class 1 system. This lidar is capable of measuring wind velocities greater than 120 +/- 0.2 m/s over ranges greater than 10 km and with a range resolution of less than 15 m. This compact and modular system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. The current lidar architecture is amenable for trace gas sensing and as such it is being evolved for airborne and space based platforms. In this paper, the key features of wind lidar instrumentation and its functionality are discussed followed by results of recent wind forecast measurements on a wind farm.
Apparent Explosion Moments from Rg Waves Recorded on SPE
Larmat, Carene; Rougier, Esteban; Patton, Howard John
2016-11-29
Seismic moments for the first four chemical tests making up phase I of the Source Physics Experiments (SPE) are estimated from 6-Hz Rg waves recorded along a single radial line of geophones under the assumption that the tests are pure explosions. These apparent explosion moments are compared with moments determined from the reduced displacement potential method applied to free-field data. Light detection and ranging (lidar) observations, strong ground motions on the free surface in the vicinity of ground zero, and moment tensor inversion results are evidence that the fourth test SPE-4P is a pure explosion, and the moments show goodmore » agreement, 8×10 10 N·m for free-field data versus 9×10 10 N·m for Rg waves. In stark contrast, apparent moments for the first three tests are smaller than near-field moments by factors of 3–4. Relative amplitudes for the three tests determined from Rg interferometry using SPE-4P as an empirical Green’s function indicate that radiation patterns are cylindrically symmetric within a factor of 1.25 (25%). This fact assures that the apparent moments are reliable even though they were measured on just one azimuth. Spallation occurred on the first three tests, and ground-based lidar detected permanent deformations. As such, the source medium suffered late-time damage. In conclusion, destructive interference between Rg waves radiated by explosion and damage sources will reduce amplitudes and explain why apparent moments are smaller than near-field moments based on compressional energy emitted directly from the source.« less
Apparent Explosion Moments from Rg Waves Recorded on SPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larmat, Carene; Rougier, Esteban; Patton, Howard John
Seismic moments for the first four chemical tests making up phase I of the Source Physics Experiments (SPE) are estimated from 6-Hz Rg waves recorded along a single radial line of geophones under the assumption that the tests are pure explosions. These apparent explosion moments are compared with moments determined from the reduced displacement potential method applied to free-field data. Light detection and ranging (lidar) observations, strong ground motions on the free surface in the vicinity of ground zero, and moment tensor inversion results are evidence that the fourth test SPE-4P is a pure explosion, and the moments show goodmore » agreement, 8×10 10 N·m for free-field data versus 9×10 10 N·m for Rg waves. In stark contrast, apparent moments for the first three tests are smaller than near-field moments by factors of 3–4. Relative amplitudes for the three tests determined from Rg interferometry using SPE-4P as an empirical Green’s function indicate that radiation patterns are cylindrically symmetric within a factor of 1.25 (25%). This fact assures that the apparent moments are reliable even though they were measured on just one azimuth. Spallation occurred on the first three tests, and ground-based lidar detected permanent deformations. As such, the source medium suffered late-time damage. In conclusion, destructive interference between Rg waves radiated by explosion and damage sources will reduce amplitudes and explain why apparent moments are smaller than near-field moments based on compressional energy emitted directly from the source.« less
Differential Absorption Lidar (DIAL) Measurements from Air and Space
NASA Technical Reports Server (NTRS)
Browell, E. V.; Ismail, S.; Grant, W. B.
1998-01-01
Differential absorption lidar (DIAL) systems have been used for the measurement of ozone, water vapor, and aerosols from aircraft platforms for over 18 years, yielding new insights into atmospheric chemistry, composition, and dynamics in large-scale field experiments conducted all over the world. The successful deployment of the lidar in-space technology experiment (LITE) in September 1994 demonstrated that space-based lidars can also collect valuable information on the global atmosphere. This paper reviews some of the contributions of the NASA Langley Research Center's airborne ozone and water vapor DIAL systems and space-based LITE system to the understanding of the atmosphere and discusses the feasibility and advantages of putting DIAL systems in space for routine atmospheric measurements of ozone and/or water vapor and aerosols and clouds. The technology and applications of the differential absorption lidar (DIAL) technique have progressed significantly since the first DIAL measurements of Schotland, and airborne DIAL measurements of ozone and water vapor are frequently being made in a wide range of field experiments. In addition, plans are underway to develop DIAL systems for use on satellites for continuous global measurements. This paper will highlight the history of airborne lidar and DIAL systems, summarize the major accomplishments of the NASA Langley DIAL program, and discuss specifications and goals for DIAL systems in space.
A nearshore processes field experiment at Cape Hatteras, North Carolina, U.S.A.
List, Jeffrey H.; Warner, John C.; Thieler, E. Robert; Haas, Kevin; Voulgaris, George; McNinch, Jesse E.; Brodie, Katherine L.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.
2011-01-01
A month-long field experiment focused on the nearshore hydrodynamics of Diamond Shoals adjacent to Cape Hatteras Point, North Carolina, was conducted in February 2010. The objectives of this multi-institutional experiment were to test hypotheses related to Diamond Shoals as a sink in the regional sediment budget and to provide data for evaluating numerical models. The experiment included in-situ instrumentation for measuring waves and currents; a video camera system for measuring surface currents at a nearshore transect; a radar system for measuring regional surface currents over Diamond Shoals and the adjacent coast; a vehicle-based scanning lidar and radar system for mapping beach topography, nearshore wave breaking intensity, bathymetry (through wave celerity inversion), and wave direction; and an amphibious vehicle system for surveying single-beam bathymetry. Preliminary results from wave and current measurements suggest that shoal-building processes were active during the experiment.
Wang, Zhangjun; Liu, Zhishen; Liu, Liping; Wu, Songhua; Liu, Bingyi; Li, Zhigang; Chu, Xinzhao
2010-12-20
An incoherent Doppler wind lidar based on iodine edge filters has been developed at the Ocean University of China for remote measurements of atmospheric wind fields. The lidar is compact enough to fit in a minivan for mobile deployment. With its sophisticated and user-friendly data acquisition and analysis system (DAAS), this lidar has made a variety of line-of-sight (LOS) wind measurements in different operational modes. Through carefully developed data retrieval procedures, various wind products are provided by the lidar, including wind profile, LOS wind velocities in plan position indicator (PPI) and range height indicator (RHI) modes, and sea surface wind. Data are processed and displayed in real time, and continuous wind measurements have been demonstrated for as many as 16 days. Full-azimuth-scanned wind measurements in PPI mode and full-elevation-scanned wind measurements in RHI mode have been achieved with this lidar. The detection range of LOS wind velocity PPI and RHI reaches 8-10 km at night and 6-8 km during daytime with range resolution of 10 m and temporal resolution of 3 min. In this paper, we introduce the DAAS architecture and describe the data retrieval methods for various operation modes. We present the measurement procedures and results of LOS wind velocities in PPI and RHI scans along with wind profiles obtained by Doppler beam swing. The sea surface wind measured for the sailing competition during the 2008 Beijing Olympics is also presented. The precision and accuracy of wind measurements are estimated through analysis of the random errors associated with photon noise and the systematic errors introduced by the assumptions made in data retrieval. The three assumptions of horizontal homogeneity of atmosphere, close-to-zero vertical wind, and uniform sensitivity are made in order to experimentally determine the zero wind ratio and the measurement sensitivity, which are important factors in LOS wind retrieval. Deviations may occur under certain meteorological conditions, leading to bias in these situations. Based on the error analyses and measurement results, we point out the application ranges of this Doppler lidar and propose several paths for future improvement.
NASA Astrophysics Data System (ADS)
Becker, Erich; Vadas, Sharon L.
2018-03-01
This study analyzes a new high-resolution general circulation model with regard to secondary gravity waves in the mesosphere during austral winter. The model resolves gravity waves down to horizontal and vertical wavelengths of 165 and 1.5 km, respectively. The resolved mean wave drag agrees well with that from a conventional model with parameterized gravity waves up to the midmesosphere in winter and up to the upper mesosphere in summer. About half of the zonal-mean vertical flux of westward momentum in the southern winter stratosphere is due to orographic gravity waves. The high intermittency of the primary orographic gravity waves gives rise to secondary waves that result in a substantial eastward drag in the winter mesopause region. This induces an additional eastward maximum of the mean zonal wind at z ˜ 100 km. Radar and lidar measurements at polar latitudes and results from other high-resolution global models are consistent with this finding. Hence, secondary gravity waves may play a significant role in the general circulation of the winter mesopause region.
Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Roback, Vincent E.; Bulyshev, Alexander E.; Brewster, Paul F.; Carrion, William A; Pierrottet, Diego F.; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Noe, Anna M.
2015-01-01
NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications.
NASA Astrophysics Data System (ADS)
Shah, A. K.; McNamara, D. E.; Odum, J. K.; Stephenson, W. J.; Kayen, R. E.; Emmett, P. F.; Herrmann, R. B.; Snyder, S. L.; Horton, J. W.; Williams, R. A.
2012-12-01
In response to the M5.8 August 23, 2011 Mineral, VA earthquake, the U.S. Geological Survey and partner organizations acquired or sponsored collection of several geophysical datasets to assist characterization of the earthquake region. Goals include the mapping of the main shock causative and aftershock faults as well as associated geologic features which may be buried or difficult to access, estimates of regional ground motion attenuation, and measurements describing local amplification of seismic energy. The deployment of 46 portable seismic stations by several organizations within days following the earthquake, along with public availability of the resulting data, has greatly aided site characterization efforts. The aftershock data recorded by these stations have allowed delineation of the probable causative fault and other faults that were active afterwards. Using the portable seismograph network and regional permanent stations, S and Lg waves were analyzed to estimate crustal attenuation characteristics. Active- and passive-source seismic experiments were also conducted at many of the portable and permanent stations to characterize site conditions and constrain local response models via estimates of Vs30 and bedrock depth. In March 2012, a LiDAR survey with 8pt/m2 resolution was flown over a ~20x35 km area covering the epicenters of the earthquake and most aftershocks. In July 2012, a high-resolution airborne magnetic, gravity, and radiometric survey was flown over a similar but slightly smaller area. Supplementary ground gravity data have been collected inside and outside of the airborne survey areas. The gravity and magnetic data reflect subsurface features in a region where outcropping rocks are sparse, while LiDAR and radiometric data, respectively, delineate subtle features at the land surface and upper few centimeters. Each of these datasets reflects the regional NE-SW striking fabric. Seismic wave analyses show preferential attenuation in a NW-SE direction, perpendicular to major structures and consistent with estimates of motion intensity such as USGS "Did you feel it?" website responses and local damage reports (Virginia DMME). Preliminary analyses of strong ground motions show measurable differences in shaking over scales of kilometers. Magnetic data show numerous NE-SW lineations, some which extend several tens of km to the northeast from near the aftershock plane, suggesting continuity of some features in that direction. Near the earthquake epicenter and primary aftershock plane, small changes in the orientation of major structures (< 20°) are apparent in magnetic, gravity and topographic data. Detailed analyses to understand possible relations are underway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Protat, Alain; Young, S.
The objective of this IOP was to evaluate the performances of the new Leosphere R-MAN 510 lidar procured by the Australian Bureau of Meteorology, by testing it against the MPL and Raman lidars at the Darwin ARM site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To do so, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer for three months (from 20 January 2013 to 20 Aprilmore » 2013) in order to collect a good sample for statistical comparisons. The comparisons with the Raman lidar were not performed, since the Raman lidar attenuated backscatter and depolarization ratio product was not available. A new product has just been delivered to the ARM archive as a value-added product, hence this study will continue. Nevertheless we have developed software to match the different space and time resolutions of the other lidars and project the data onto a common grid to permit detailed comparison of the instruments’ performance and an enhanced analysis of clouds and aerosols through the use of composite data products, like the ratios of attenuated backscatters, attenuated scattering ratios and depolarization ratios. Comparisons between the MPL and R-MAN510 lidar data exhibit large differences in total attenuated backscatter at 355 and 532 nm, attenuated scattering ratios, and aerosol volume depolarization ratios. Differences in attenuated backscatter result mainly from the different relative contributions of scattering from molecules and particles at the different wavelengths, but there are some intriguing differences that will require further investigations. The differences in volume depolarization ratios are due to the much larger contribution of molecular returns to the volume depolarization ratio (5 times larger at 355 nm than at 532 nm). The R-MAN510 lidar is also found to be much less sensitive to daylight solar background illumination, which is greater at the visible wavelength than in the UV.« less
Mid-Latitude Temperatures at 87 km: Results From Multi-Instrument Fourier Analysis
NASA Technical Reports Server (NTRS)
Drob, Douglas P.; Picone, J. M.; Eckermann, Stephen D.; She, C . Y.; Kafkalidis, J. F.; Ortland, D. A.; Niciejewski, R. J.; Killeen, T. L.
2000-01-01
Using a novel Fourier fitting method we combine two years of mid-latitude temperature measurements at 87 km from the High Resolution Doppler Imager, the Colorado State University lidar, and the Peach Mountain Interferometer. After accounting for calibration bias, significant local-time variations on the order of 10 K were observed. Stationary planetary waves with amplitudes up to 10 K were observed during winter, with weaker wave amplitudes occurring during other seasons. Because of calibration biases among these instruments, we could estimate the annual mean temperature to no better than 193.5 plus or minus 8.5 K.
NASA Astrophysics Data System (ADS)
Chu, Xinzhao; Yu, Zhibin
2017-06-01
With a thermosphere-ionosphere Fe/Fe+ (TIFe) model developed from first principles at the University of Colorado, we present the first quantitative investigation of formation mechanisms of thermospheric Fe layers observed by lidar in Antarctica. These recently discovered neutral metal layers in the thermosphere between 100 and 200 km provide unique tracers for studies of fundamental processes in the space-atmosphere interaction region. The TIFe model formulates and expands the TIFe theory originally proposed by Chu et al. that the thermospheric Fe layers are produced through the neutralization of converged Fe+ layers. Through testing mechanisms and reproducing the 28 May 2011 event at McMurdo, we conceive the lifecycle of meteoric metals via deposition, transport, chemistry, and wave dynamics for thermospheric Fe layers with gravity wave signatures. While the meteor injection of iron species is negligible above 120 km, the polar electric field transports metallic ions Fe+ upward from their main deposition region into the E-F regions, providing the major source of Fe+ (and accordingly Fe) in the thermosphere. Atmospheric wave-induced vertical shears of vertical and horizontal winds converge Fe+ to form dense Fe+ layers. Direct electron-Fe+ recombination is the major channel to neutralize Fe+ layers to form Fe above 120 km. Fe layer shapes are determined by multiple factors of neutral winds, electric field, and aurora activity. Gravity-wave-induced vertical wind plays a key role in forming gravity-wave-shaped Fe layers. Aurora particle precipitation enhances Fe+ neutralization by increasing electron density while accelerating Fe loss via charge transfer with enhanced NO+ and O2+ densities.
Tulldahl, H Michael; Steinvall, K Ove
2004-04-20
A theoretical model for simulation of airborne depth-sounding lidar is presented with the purpose of analyzing the influence from water surface waves on the ability to detect 1-m3 targets placed on the sea bottom. Although water clarity is the main limitation, sea surface waves can significantly affect the detectability. The detection probability for a target at a 9-m depth can be above 90% at 1-m/s wind and below 80% at 6-m/s wind for the same water clarity. The simulation model contains both numerical and analytical components. Simulated data are compared with measured data and give realistic results for bottom depths between 3 and 10 m.
Evaluating Mesoscale Simulations of the Coastal Flow Using Lidar Measurements
NASA Astrophysics Data System (ADS)
Floors, R.; Hahmann, A. N.; Peña, A.
2018-03-01
The atmospheric flow in the coastal zone is investigated using lidar and mast measurements and model simulations. Novel dual-Doppler scanning lidars were used to investigate the flow over a 7 km transect across the coast, and vertically profiling lidars were used to study the vertical wind profile at offshore and onshore positions. The Weather, Research and Forecasting model is set up in 12 different configurations using 2 planetary boundary layer schemes, 3 horizontal grid spacings and varied sources of land use, and initial and lower boundary conditions. All model simulations describe the observed mean wind profile well at different onshore and offshore locations from the surface up to 500 m. The simulated mean horizontal wind speed gradient across the shoreline is close to that observed, although all simulations show wind speeds that are slightly higher than those observed. Inland at the lowest observed height, the model has the largest deviations compared to the observations. Taylor diagrams show that using ERA-Interim data as boundary conditions improves the model skill scores. Simulations with 0.5 and 1 km horizontal grid spacing show poorer model performance compared to those with a 2 km spacing, partially because smaller resolved wave lengths degrade standard error metrics. Modeled and observed velocity spectra were compared and showed that simulations with the finest horizontal grid spacing resolved more high-frequency atmospheric motion.
DC-8 Scanning Lidar Characterization of Aircraft Contrails and Cirrus Clouds
NASA Technical Reports Server (NTRS)
Uthe, Edward E.; Nielsen, Norman B.; Oseberg, Terje E.
1998-01-01
An angular-scanning large-aperture (36 cm) backscatter lidar was developed and deployed on the NASA DC-8 research aircraft as part of the SUCCESS (Subsonic Aircraft: Contrail and Cloud Effects Special Study) program. The lidar viewing direction could be scanned continuously during aircraft flight from vertically upward to forward to vertically downward, or the viewing could be at fixed angles. Real-time pictorial displays generated from the lidar signatures were broadcast on the DC-8 video network and used to locate clouds and contrails above, ahead of, and below the DC-8 to depict their spatial structure and to help select DC-8 altitudes for achieving optimum sampling by onboard in situ sensors. Several lidar receiver systems and real-time data displays were evaluated to help extend in situ data into vertical dimensions and to help establish possible lidar configurations and applications on future missions. Digital lidar signatures were recorded on 8 mm Exabyte tape and generated real-time displays were recorded on 8mm video tape. The digital records were transcribed in a common format to compact disks to facilitate data analysis and delivery to SUCCESS participants. Data selected from the real-time display video recordings were processed for publication-quality displays incorporating several standard lidar data corrections. Data examples are presented that illustrate: (1) correlation with particulate, gas, and radiometric measurements made by onboard sensors, (2) discrimination and identification between contrails observed by onboard sensors, (3) high-altitude (13 km) scattering layer that exhibits greatly enhanced vertical backscatter relative to off-vertical backscatter, and (4) mapping of vertical distributions of individual precipitating ice crystals and their capture by cloud layers. An angular scan plotting program was developed that accounts for DC-8 pitch and velocity.
Lidar detection of carbon dioxide in volcanic plumes
NASA Astrophysics Data System (ADS)
Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro
2015-06-01
Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.
NASA Astrophysics Data System (ADS)
Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.
2015-01-01
Repeated light detection and ranging (lidar) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 lidar-derived data set of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the conterminous United States. Independent validation data are scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation data set with substantial geographic coverage. Within 12 distinctive 500 × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 lidar acquisitions. This supplied a data set for constraining the uncertainty of upscaled lidar estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled lidar snow depths were then compared to the SNODAS estimates over the entire study area for the dates of the lidar flights. The remotely sensed snow depths provided a more spatially continuous comparison data set and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between lidar observations and SNODAS estimates were most drastic, providing insight into the causal influences of natural processes on model uncertainty.
Design and development of a compact lidar/DIAL system for aerial surveillance of urban areas
NASA Astrophysics Data System (ADS)
Gaudio, P.; Gelfusa, M.; Malizia, A.; Richetta, M.; Antonucci, A.; Ventura, P.; Murari, A.; Vega, J.
2013-10-01
Recently surveying large areas in an automatic way, for early detection of harmful chemical agents, has become a strategic objective of defence and public health organisations. The Lidar-Dial techniques are widely recognized as a cost-effective alternative to monitor large portions of the atmosphere but, up to now, they have been mainly deployed as ground based stations. The design reported in this paper concerns the development of a Lidar-Dial system compact enough to be carried by a small airplane and capable of detecting sudden releases in air of harmful and/or polluting substances. The proposed approach consists of continuous monitoring of the area under surveillance with a Lidar type measurement. Once a significant increase in the density of backscattering substances is revealed, it is intended to switch to the Dial technique to identify the released chemicals and to determine its concentration. In this paper, the design of the proposed system is described and the simulations carried out to determine its performances are reported. For the Lidar measurements, commercially available Nd- YAG laser sources have already been tested and their performances, in combination with avalanche photodiodes, have been experimentally verified to meet the required specifications. With regard to the DIAL measurements, new compact CO2 laser sources are being investigated. The most promising candidate presents an energy per pulse of about 50 mJ typical, sufficient for a range of at least 500m. The laser also provides the so called "agile tuning" option that allows to quickly tune the wavelength. To guarantee continuous, automatic surveying of large areas, innovative solutions are required for the data acquisition, self monitoring of the system and data analysis. The results of the design, the simulations and some preliminary tests illustrate the potential of the chosen, integrated approach.
Solid State Laser Technology Development for Atmospheric Sensing Applications
NASA Technical Reports Server (NTRS)
Barnes, James C.
1998-01-01
NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.
NASA Technical Reports Server (NTRS)
Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James
2002-01-01
Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.
Project ABLE: (Atmospheric Balloonborne Lidar Experiment)
NASA Astrophysics Data System (ADS)
Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Sheehan, W. H.
1985-03-01
Project ABLE (Atmospheric Balloonborne Lidar Experiment) is part of the A.F. Geophysics Laboratory's continuing interest in developing techniques for making remote measurements of atmospheric quantities such as density, pressure, temperatures, and wind motions. The system consists of a balloonborne lidar payload designed to measure neutral molecular density as a function of altitude from ground level to 70 km. The lidar provides backscatter data at the doubled and tripled frequencies of a Nd:YAG laser, which will assist in the separation of the molecular and aerosol contributions and subsequent determination of molecular and aerosol contributions and subsequent determination of molecular density vs altitude. The object of this contract was to fabricate and operate in a field test a balloonborne lidar experiment capable of performing nighttime atmospheric density measurements up to 70 km altitude with a resolution of 150 meters. The payload included a frequency-doubled and -tripled Nd:YAG laser with outputs at 355 and 532 nm; a telescoped receiver with PMT detectors; a command-controlled optical pointing system; and support system, including thermal control, telmetry, command, and power. Successful backscatter measurements were made during field operations which included a balloon launch from Roswell, NM and a flight over the White Sands Missile Range.
Determining Cloud Thermodynamic Phase from Micropulse Lidar Network Data
NASA Technical Reports Server (NTRS)
Lewis, Jasper R.; Campbell, James; Lolli, Simone; Tan, Ivy; Welton, Ellsworth J.
2017-01-01
Determining cloud thermodynamic phase is a critical factor in studies of Earth's radiation budget. Here we use observations from the NASA Micro Pulse Lidar Network (MPLNET) and thermodynamic profiles from the Goddard Earth Observing System, version 5 (GEOS-5) to distinguish liquid water, mixed-phase, and ice water clouds. The MPLNET provides sparse global, autonomous, and continuous measurements of clouds and aerosols which have been used in a number of scientific investigations to date. The use of a standardized instrument and a common suite of data processing algorithms with thorough uncertainty characterization allows for straightforward comparisons between sites. Lidars with polarization capabilities have recently been incorporated into the MPLNET project which allows, for the first time, the ability to infer a cloud thermodynamic phase. This presentation will look specifically at the occurrence of ice and mixed phase clouds in the temperature region of -10 C to -40 C for different climatological regions and seasons. We compare MPLNET occurrences of mixed-phase clouds to an historical climatology based on observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft.
Determining cloud thermodynamic phase from Micropulse Lidar Network data
NASA Astrophysics Data System (ADS)
Lewis, J. R.; Campbell, J. R.; Lolli, S.; Tan, I.; Welton, E. J.
2017-12-01
Determining cloud thermodynamic phase is a critical factor in studies of Earth's radiation budget. Here we use observations from the NASA Micropulse Lidar Network (MPLNET) and thermodynamic profiles from the Goddard Earth Observing System, version 5 (GEOS-5) to distinguish liquid water, mixed-phase, and ice water clouds. The MPLNET provides sparse global, autonomous, and continuous measurements of clouds and aerosols which have been used in a number of scientific investigations to date. The use of a standardized instrument and a common suite of data processing algorithms with thorough uncertainty characterization allows for straightforward comparisons between sites. Lidars with polarization capabilities have recently been incorporated into the MPLNET project which allows, for the first time, the ability to infer a cloud thermodynamic phase. This presentation will look specifically at the occurrence of ice and mixed phase clouds in the temperature region of 0 °C to -40 °C for different climatological regions and seasons. We compare MPLNET occurrences of mixed-phase clouds to an historical climatology based on observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft.
Entanglement-enhanced lidars for simultaneous range and velocity measurements
NASA Astrophysics Data System (ADS)
Zhuang, Quntao; Zhang, Zheshen; Shapiro, Jeffrey H.
2017-10-01
Lidar is a well-known optical technology for measuring a target's range and radial velocity. We describe two lidar systems that use entanglement between transmitted signals and retained idlers to obtain significant quantum enhancements in simultaneous measurements of these parameters. The first entanglement-enhanced lidar circumvents the Arthurs-Kelly uncertainty relation for simultaneous measurements of range and radial velocity from the detection of a single photon returned from the target. This performance presumes there is no extraneous (background) light, but is robust to the round-trip loss incurred by the signal photons. The second entanglement-enhanced lidar—which requires a lossless, noiseless environment—realizes Heisenberg-limited accuracies for both its range and radial-velocity measurements, i.e., their root-mean-square estimation errors are both proportional to 1 /M when M signal photons are transmitted. These two lidars derive their entanglement-based enhancements from the use of a unitary transformation that takes a signal-idler photon pair with frequencies ωS and ωI and converts it to a signal-idler photon pair whose frequencies are (ωS+ωI)/2 and (ωS-ωI)/2 . Insight into how this transformation provides its benefits is provided through an analogy to continuous-variable superdense coding.
NASA Astrophysics Data System (ADS)
Nelson, Douglas Harold
Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. This investigation develops a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. The simulation, previously utilized to simulate the effects of atmospheric optical turbulence alone, is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, is used to simulate the effect of atmospheric optical turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. These investigations compare the output of the numerical model with separate CO2 lidar measurements of atmospheric turbulence and reflective speckle. This work also compares the output of the model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement is found between the model and the experimental data. Good agreement is also found with analytical predictions. Additionally, results of simulation of the combined effects on a finite aperture lidar system show agreement with experimental observations of increasing RMS noise with increasing turbulence level and the behavior of the experimental integrated intensity probability distribution. Simulation studies are included that demonstrate the usefulness of the model, examine its limitations and provide greater insight into the process of combined atmospheric optical turbulence and reflective speckle. One highlight of these studies is examination of the limitations of the simulation that shows, in general, precision increases with increasing grid size. The study of the backscatter intensity enhancement predicted by analytical theory show it to behave as a multi-path effect, like scintillation, with the highest contributions from atmospheric optical turbulence weighted at the middle of the propagation path. Aperture geometry also affects the signal-to-noise ratio with thin annular apertures exhibiting lower RMS noise than circular apertures of the same active area. The simulation is capable of studying a variety of lidar schemes including varying atmospheric optical turbulence along the propagation path as well as diverse transmitter and receiver geometries.
NASA Astrophysics Data System (ADS)
Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert
2018-05-01
We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the PollyXT Raman lidar is 6.56 g kg-1 ± 0.72 g kg-1 (with a statistical uncertainty of 0.08 g kg-1 and an instrumental uncertainty of 0.72 g kg-1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full potential of a well-calibrated Raman lidar. The relative humidity profiles from lidar, GDAS (simulation) and radiosonde are compared, too. It is found that the combination of water vapor mixing ratio and GDAS temperature profiles allow us to derive relative humidity profiles with the relative uncertainty of 10-20 %.
Lidar instruments for ESA Earth observation missions
NASA Astrophysics Data System (ADS)
Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland
2017-11-01
The idea of deploying a lidar system on an Earthorbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra -Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field for Earth Observation by initiating feasibility studies of a spaceborne concept to monitor atmospheric CO2 and other greenhouse gases. The purpose of this paper is to present the instruments concept and related technology/instrument developments that are currently running at the European Space Agency. The paper will also outline the development planning proposed for future lidar systems.
Enabling Characteristics Of Optical Autocovariance Lidar For Global Wind And Aerosol Profiling
NASA Astrophysics Data System (ADS)
Grund, C. J.; Stephens, M.; Lieber, M.; Weimer, C.
2008-12-01
Systematic global wind measurements with 70 km horizontal resolution and, depending on altitude from the PBL to stratosphere, 250m-2km vertical resolution and 0.5m/s - 2 m/s velocity precision are recognized as key to the understanding and monitoring of complex climate modulations, validation of models, and improved precision and range for weather forecasts. Optical Autocovariance Wind Lidar (OAWL) is a relatively new interferometric direct detection Doppler lidar approach that promises to meet the required wind profile resolution at substantial mass, cost, and power savings, and at reduced technical risk for a space-based system meeting the most demanding velocity precision and spatial and temporal resolution requirements. A proof of concept Optical Autocovariance Wind Lidar (OAWL) has been demonstrated, and a robust multi- wavelength, field-widened (more than 100 microR) lidar system suitable for high altitude (over 16km) aircraft demonstration is under construction. Other advantages of the OAWL technique include insensitivity to aerosol/molecular backscatter mixing ratio, freedom from complex receiver/transmitter optical frequency lock loops, prospects for practical continuous large-area coverage wind profiling from GEO, and the availability of simultaneous multiple wavelength High Spectral Resolution Lidar (OA-HSRL) for aerosol identification and optical property measurements. We will discuss theory, development and demonstration status, advantages, limitations, and space-based performance of OAWL and OA-HSRL, as well as the potential for combined mission synergies.
NASA Astrophysics Data System (ADS)
Marchamalo, Miguel; Bejarano, María-Dolores; García de Jalón, Diego; Martínez Marín, Rubén
2007-10-01
This study presents the application of LIDAR data to the evaluation and quantification of fluvial habitat in river systems, coupling remote sensing techniques with hydrological modeling and ecohydraulics. Fish habitat studies depend on the quality and continuity of the input topographic data. Conventional fish habitat studies are limited by the feasibility of field survey in time and budget. This limitation results in differences between the level of river management and the level of models. In order to facilitate upscaling processes from modeling to management units, meso-scale methods were developed (Maddock & Bird, 1996; Parasiewicz, 2001). LIDAR data of regulated River Cinca (Ebro Basin, Spain) were acquired in the low flow season, maximizing the recorded instream area. DTM meshes obtained from LIDAR were used as the input for hydraulic simulation for a range of flows using GUAD2D software. Velocity and depth outputs were combined with gradient data to produce maps reflecting the availability of each mesohabitat unit type for each modeled flow. Fish habitat was then estimated and quantified according to the preferences of main target species as brown trout (Salmo trutta). LIDAR data combined with hydraulic modeling allowed the analysis of fluvial habitat in long fluvial segments which would be time-consuming with traditional survey. LIDAR habitat assessment at mesoscale level avoids the problems of time efficiency and upscaling and is a recommended approach for large river basin management.
NASA Astrophysics Data System (ADS)
Young, Joseph Swyler
This thesis investigates the utility of lidar ceilometers, a type of aerosol lidar, in improving the understanding of meteorology and air quality in persistent wintertime stable boundary layers, or cold-air pools, that form in urbanized valley and basin topography. This thesis reviews the scientific literature to survey the present knowledge of persistent cold-air pools, the operating principles of lidar ceilometers, and their demonstrated utility in meteorological investigations. Lidar ceilometer data from the Persistent Cold-Air Pool Study (PCAPS) are then used with meteorological and air quality data from other in situ and remote sensing equipment to investigate cold-air pools that formed in Utah's Salt Lake Valley during the winter of 2010-2011. The lidar ceilometer is shown to accurately measure aerosol layer depth and aerosol loading, when compared to visual observations. A linear relationship is found between low-level lidar backscatter and surface particulate measurements. Convective boundary layer lidar analysis techniques applied to cold-air pool ceilometer profiles can detect useful layer characteristics. Fine-scale waves are observed and analyzed within the aerosol layer, with emphasis on Kelvin-Helmholz waves. Ceilometer aerosol backscatter profiles are analyzed to quantify and describe mixing processes in persistent cold-air pools. Overlays of other remote and in-situ observations are combined with ceilometer particle backscatter to describe specific events during PCAPS. This analysis describes the relationship between the aerosol layer and the valley inversion as well as interactions with large-scale meteorology. The ceilometer observations of hydrometers are used to quantify cloudiness and precipitation during the project, observing that 50% of hours when a PCAP was present had clouds or precipitation below 5 km above ground level (AGL). Then, combining an objective technique for determining hourly aerosol layer depths and correcting this subjectively during periods with low clouds or precipitation, a time series of aerosol depths was obtained. The mean depth of the surface-based aerosol layer during PCAP events was 1861 m MSL with a standard deviation of 135 m. The aerosol layer depth, given the approximate 1300 m altitude of the valley floor, is thus about 550 m, about 46% of the basin depth. The aerosol layer is present during much of the winter and is removed only during strong or prolonged precipitation periods or when surface winds are strong. Nocturnal fogs that formed near the end of high-stability PCAP episodes had a limited effect on aerosol layer depth. Aerosol layer depth was relatively invariant during the winter and during the persistent cold-air pools, while PM10 concentrations at the valley floor varied with bulk atmospheric stability associated primarily with passage of large-scale high- and low-pressure weather systems. PM10 concentrations also increased with cold-air pool duration. Mean aerosol loading in the surface-based aerosol layer, as determined from ceilometer backscatter coefficients, showed weaker variations than those of surface PM10 concentrations, suggesting that ineffective vertical mixing and aerosol layering are present in the cold-air pools. This is supported by higher time-resolution backscatter data, and it distinguishes the persistent cold-air pools from well-mixed convective boundary layers where ground-based air pollution concentrations are closely related to time-dependent convective boundary layer/aerosol depths. These results are discussed along with recommendations for future explorations of the ceilometer and cold-air pool topics.
NASA Astrophysics Data System (ADS)
Wasser, L. A.; Chasmer, L. E.; Taylor, A.; Day, R.
2010-12-01
Characterization of riparian buffers is integral to understanding the landscape scale impacts of disturbance on wildlife and aquatic ecosystems. Riparian buffers may be characterized using in situ plot sampling or via high resolution remote sensing. Field measurements are time-consuming and may not cover a broad range of ecosystem types. Further, spectral remote sensing methods introduce a compromise between spatial resolution (grain) and area extent. Airborne LiDAR can be used to continuously map and characterize riparian vegetation structure and composition due to the three-dimensional reflectance of laser pulses within and below the canopy, understory and at the ground surface. The distance between reflections (or ‘returns’) allows for detection of narrow buffer corridors at the landscape scale. There is a need to compare leaf-off and leaf-on surveyed LiDAR data with in situ measurements to assess accuracy in landscape scale analysis. These comparisons are particularly important considering increased availability of leaf-off surveyed LiDAR datasets. And given this increased availability, differences between leaf-on and leaf-off derived LiDAR metrics are largely unknown for riparian vegetation of varying composition and structure. This study compares the effectiveness of leaf-on and leaf-off LiDAR in characterizing riparian buffers of varying structure and composition as compared to field measurements. Field measurements were used to validate LiDAR derived metrics. Vegetation height, canopy cover, density and overstory and understory species composition were recorded in 80 random plots of varying vegetation type, density and structure within a Pennsylvania watershed (-77.841, 40.818). Plot data were compared with LiDAR data collected during leaf on and leaf off conditions to determine 1) accuracy of LiDAR derived metrics compared to field measures and 2) differences between leaf-on and leaf-off LiDAR metrics. Results illustrate that differences exist between metrics derived from leaf on and leaf-off surveyed LiDAR. There is greater variability between the two datasets within taller deciduous and mixed (conifer and deciduous) vegetation compared to shorter deciduous and mixed vegetation. Differences decrease as stand density increases for both mixed and deciduous forests. LiDAR derived canopy height is more sensitive to understory vegetation as stand density decreases making measurement of understory vegetation in the field important in the validation process. Finally, while leaf-on LiDAR is often preferred for vegetation analysis, results suggest that leaf-off LiDAR may be sufficient to categorize vegetation into height classes to be used for landscape scale habitat models.
Lidar investigations of thermal regime and aerosol stratification of the stratosphere over tomsk
NASA Astrophysics Data System (ADS)
Matvienko, Gennady; Marichev, Valeriy; Bochkovsky, Dmitry
2018-04-01
One of the important applications of lidar techniques is the study of thermal regime and aerosol content of the stratosphere. Such investigations in monitoring mode were started at the Institute of atmospheric optics since 1994 and are continued to date. The main attention is paid for the study of the unexpected disturbances caused by winter stratospheric warming. In this paper we present the results of the study of the vertical distribution of temperature and aerosol over Tomsk of last years.
Boundary layer pollution profiles from a rural site in South Korea
NASA Astrophysics Data System (ADS)
Sullivan, John; McGee, Thomas; Thompson, Anne; Twigg, Laurence; Sumnicht, Grant; Stauffer, Ryan
2018-04-01
During the NASA 2016 KORUS-AQ campaign, the ground based NASA GSFC ozone lidar and balloon borne instrumentation were deployed to the remote Taehwa Forest site (37.3 N, 127.3 E, 151 m AGL) to characterize the transport of pollution downwind of the Seoul metropolitan region. On most days from 02 May to 10 June 2016, continuous hours of lidar profiles of ozone were measured. Select days are shown to represent key ozone events that occurred at the rural site.
Processing of 3-Dimensional Flash Lidar Terrain Images Generated From an Airborne Platform
NASA Technical Reports Server (NTRS)
Bulyshev, Alexander; Pierrottet, Diego; Amzajerdian, Farzin; Busch, George; Vanek, Michael; Reisse, Robert
2009-01-01
Data from the first Flight Test of the NASA Langley Flash Lidar system have been processed. Results of the analyses are presented and discussed. A digital elevation map of the test site is derived from the data, and is compared with the actual topography. The set of algorithms employed, starting from the initial data sorting, and continuing through to the final digital map classification is described. The accuracy, precision, and the spatial and angular resolution of the method are discussed.
High Spectral Resolution Lidar Measurements Using an I2 Absorption Filter
NASA Technical Reports Server (NTRS)
Eloranta, E. W.; Piironen, P.
1996-01-01
The University of Wisconsin high spectral resolution lidar (HSRL) measures optical properties of the atmosphere by separating the Doppler-broadened molecular backscatter return from the unbroadened aerosol return. The HSRL was modified to use an I2 absorption cell The modified HSRL transmitter uses a continuously pumped, Q-switched, injection seeded, frequency doubled Nd:YAG laser operating at a 4 kHz pulse repetition rate. This laser is tunable over a 124 GHz frequency range by temperature tuning the seed laser under computer control.
Studying turbulence by remote sensing systems during slope-2016 campaign
NASA Astrophysics Data System (ADS)
Moreira, Gregori de A.; Guerrero-Rascado, Juan L.; Benavent-Oltra, Jose A.; Ortiz-Amezcua, Pablo; Róman, Roberto; Landulfo, Eduardo; Alados-Arboledas, Lucas
2018-04-01
The Planetary Boundary Layer (PBL) is the lowermost part of the troposphere. In this work, we analysed some high order moments and PBL height detected continuously by three remote sensing systems: an elastic lidar, a Doppler lidar and a passive Microwave Radiometer, during the SLOPE-2016 campaign, which was held in Granada from May to August 2016. This study confirms the feasibility of these systems for the characterization of the PBL, helping us to justify and understand its behaviour along the day.
NASA Astrophysics Data System (ADS)
Spuler, Scott; Repasky, Kevin; Hayman, Matt; Nehrir, Amin
2018-04-01
The National Center for Atmospheric Research (NCAR) and Montana State Univeristy (MSU) are developing a test network of five micro-pulse differential absorption lidars to continuously measure high-vertical-resolution water vapor in the lower atmosphere. The instruments are accurate, yet low-cost; operate unattended, and eye-safe - all key features to enable the larger network needed to characterize atmospheric moisture variability which influences important processes related to weather and climate.
Imaging Flash Lidar for Autonomous Safe Landing and Spacecraft Proximity Operation
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Roback, Vincent E.; Brewster, Paul F.; Hines, Glenn D.; Bulyshev, Alexander E.
2016-01-01
3-D Imaging flash lidar is recognized as a primary candidate sensor for safe precision landing on solar system bodies (Moon, Mars, Jupiter and Saturn moons, etc.), and autonomous rendezvous proximity operations and docking/capture necessary for asteroid sample return and redirect missions, spacecraft docking, satellite servicing, and space debris removal. During the final stages of landing, from about 1 km to 500 m above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard fli1ght computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station from several kilometers distance. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16k pixels range images with 7 cm precision, at a 20 Hz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument design and capabilities as demonstrated by the closed-loop flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus). Then a plan for continued advancement of the flash lidar technology will be explained. This proposed plan is aimed at the development of a common sensor that with a modest design adjustment can meet the needs of both landing and proximity operation and docking applications.
NASA Astrophysics Data System (ADS)
Newchurch, M.; Al-Saadi, J. A.; Alvarez, R. J.; Burris, J.; Cantrell, W.; Chen, G.; De Young, R.; Hardesty, R.; Hoff, R. M.; Kaye, J. A.; kuang, S.; Langford, A. O.; LeBlanc, T.; McDermid, I. S.; McGee, T. J.; Pierce, R.; Senff, C. J.; Sullivan, J. T.; Szykman, J.; Tonnesen, G.; Wang, L.
2012-12-01
An interagency research initiative for ground-based ozone and aerosol lidar profiling recently funded by NASA has important applications to air-quality studies in addition to the goal of serving the GEO-CAPE and other air-quality missions. Ozone is a key trace-gas species, a greenhouse gas, and an important pollutant in the troposphere. High spatial and temporal variability of ozone affected by various physical and photochemical processes motivates the high spatio-temporal lidar profiling of tropospheric ozone for improving the simulation and forecasting capability of the photochemical/air-quality models, especially in the boundary layer where the resolution and precision of satellite retrievals are fundamentally limited. It is well known that there are large discrepancies between the surface and upper-air ozone due to titration, surface deposition, diurnal processes, free-tropospheric transport, and other processes. Near-ground ozone profiling has been technically challenging for lidars due to some engineering difficulties, such as near-range saturation, field-of-view overlap, and signal processing issues. This initiative provides an opportunity for us to solve those engineering issues and redesign the lidars aimed at long-term, routine ozone/aerosol observations from the near surface to the top of the troposphere at multiple stations (i.e., NASA/GSFC, NASA/LaRC, NASA/JPL, NOAA/ESRL, UAHuntsville) for addressing the needs of NASA, NOAA, EPA and State/local AQ agencies. We will present the details of the science investigations, current status of the instrumentation development, data access/protocol, and the future goals of this lidar network. Ozone lidar/RAQMS comparison of laminar structures.
Is chemical heating a major cause of the mesosphere inversion layer?
NASA Technical Reports Server (NTRS)
Meriwether, John W.; Mlynczak, Martin G.
1995-01-01
A region of thermal enhancement of the mesosphere has been detected on numerous occasions by in situ measurements, remote sensing from space, and lidar techniques. The source of these 'temperature inversion layers' has been attributed in the literature to the dissipation relating to dynamical forcing by gravity wave or tidal activity. However, evidence that gravity wave breaking can produce the inversion layer with amplitude as large as that observed in lidar measurements has been limited to results of numerical modeling. An alternative source for the production of the thermal inversion layer in the mesosphere is the direct deposition of heat by exothermic chemical reactions. Two-dimensional modeling combining a comprehensive model of the mesosphere photochemistry with the dynamical transport of long-lived species shows that the region from 80 to 95 km may be heated as much as 3 to 10 K/d during the night and half this rate during the day. Given the uncertainties in our understanding of the dynamics and chemistry for the mesopause region, separating the two sources by passive observations of the mesosphere thermal structure looks to be difficult. Therefore we have considered an active means for producing a mesopause thermal layer, namely the release of ozone into the upper mesosphere from a rocket payload. The induced effects would include artificial enhancements of the OH and Na airglow intensities as well as the mesopause thermal structure. The advantages of the rocket release of ozone is that detection of these effects by ground-based imaging, radar, and lidar systems and comparison of these effects with model predictions would help quantify the partition of the artificial inversion layer production into sources of dynamical and chemical forcing.
Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign
NASA Technical Reports Server (NTRS)
Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent
2008-01-01
The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite observations. The multiple-lidar data during the CATZ campaign is expected to provide additional information on regional aerosol and cloud dynamics for give overpass, and enable a more realistic assessment of ground-to-satellite correlations. Future work is anticipated to finalize calibrated lidar backscatter profiles and utilization of wind trajectory information to further enable comparisons to CALIPS data.
NASA Astrophysics Data System (ADS)
Abdelazim, S.; Santoro, D.; Arend, M.; Moshary, F.; Ahmed, S.
2011-11-01
A field deployable all-fiber eye-safe Coherent Doppler LIDAR is being developed at the Optical Remote Sensing Lab at the City College of New York (CCNY) and is designed to monitor wind fields autonomously and continuously in urban settings. Data acquisition is accomplished by sampling lidar return signals at 400 MHz and performing onboard processing using field programmable gate arrays (FPGAs). The FPGA is programmed to accumulate signal information that is used to calculate the power spectrum of the atmospherically back scattered signal. The advantage of using FPGA is that signal processing will be performed at the hardware level, reducing the load on the host computer and allowing for 100% return signal processing. An experimental setup measured wind speeds at ranges of up to 3 km.
Understanding Variability in Beach Slope to Improve Forecasts of Storm-induced Water Levels
NASA Astrophysics Data System (ADS)
Doran, K. S.; Stockdon, H. F.; Long, J.
2014-12-01
The National Assessment of Hurricane-Induced Coastal Erosion Hazards combines measurements of beach morphology with storm hydrodynamics to produce forecasts of coastal change during storms for the Gulf of Mexico and Atlantic coastlines of the United States. Wave-induced water levels are estimated using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon et al. (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. Seasonal and storm-induced changes in beach slope can lead to differences on the order of a meter in wave runup elevation, making accurate specification of this parameter essential to skillful forecasts of coastal change. Spatial variation in beach slope is accounted for through alongshore averaging, but temporal variability in beach slope is not included in the final computation of the likelihood of coastal change. Additionally, input morphology may be years old and potentially very different than the conditions present during forecast storm. In order to improve our forecasts of hurricane-induced coastal erosion hazards, the temporal variability of beach slope must be included in the final uncertainty of modeled wave-induced water levels. Frequently collected field measurements of lidar-based beach morphology are examined for study sites in Duck, North Carolina, Treasure Island, Florida, Assateague Island, Virginia, and Dauphin Island, Alabama, with some records extending over a period of 15 years. Understanding the variability of slopes at these sites will help provide estimates of associated water level uncertainty which can then be applied to other areas where lidar observations are infrequent, and improve the overall skill of future forecasts of storm-induced coastal change. Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger Jr, A. H. (2006). Empirical parameterization of setup,swash, and runup. Coastal engineering, 53(7), 573-588.
NASA Astrophysics Data System (ADS)
Sullivan, J. T.; McGee, T. J.; Rabenhorst, S. D.; Delgado, R.; Dreessen, J.; Sumnicht, G. K.; Twigg, L.
2016-12-01
A unique multi-day air quality event occurred throughout the Mid-Atlantic region from June 9-12, 2015. The June event was coupled to the advection of widespread smoke and debris from western Canada throughout the region. Observations indicated that the aged smoke impacted the Planetary Boundary Layer (PBL) and greatly enhanced ozone concentrations at the surface. Many ground sites in the region, particularly in Maryland, recorded 8-hr ozone concentrations that were in exceedance of the 75 ppb EPA National Ambient Air Quality Standard (NAAQS). After the high O3 episode occurred, a nocturnal low-level jet developed throughout the Mid-Atlantic region, which was spatially correlated with next day high O3 at several sites within the New England region. During this event, nearly continuous vertical profiles of ozone are presented at Beltsville, MD from the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL), which has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Lidar observations reveal a well-mixed polluted PBL, nocturnal residual layer, and subsequent mixing down of the residual layer in the morning. Additional measurements of surface ozone, aerosol lidar profiles, wind profiles, and balloon borne profiles are also presented. Model output and trajectory analyses are also presented to illustrate the complex flow regimes that occurred during the daytime and nighttime to help redistribute the polluted air mass.
Tropical Storm Isidore and Hurricane Lili: Louisiana barrier shoreline response, preliminary results
Sallenger, Asbury; Penland, Shea; Krabill, William
2003-01-01
In a cooperative effort between the U.S. Geological Survey, National Aeronautics and Space Administration, University of New Orleans, and Louisiana's Department of Natural Resources, Louisiana's barrier islands were surveyed with airborne topographic lidar and oblique aerialphotography both before and after the impacts of 2002's Tropical Storm Isidore and Hurricane Lili. The surveys were compared to quantify the magnitudes and patterns of erosion and accretion in both natural areas and areas that had been subjected to major restoration. Wave runup exceeded the elevation of the entire Isles Dernieres barrier chain creating overwash deposits that, in places, were driven landward ~ 300 m. This response was not as severe as observed during Hurricane Andrew in 1992 when the Isles Dernieres were completely and continuously inundated and sand bodies were driven landward on the order of 1 km. Based on a comparison of surveys before and after the combined impacts of Lili and Isidore, the largest shoreline change occurred at the east end of East Island and reached ~ 130 m of erosion.
Progress on Raman laser for sodium resonance fluorescence lidar
NASA Astrophysics Data System (ADS)
Li, Steven X.; Yu, Anthony W.; Krainak, Michael A.; Bai, Yingxin; Konoplev, Oleg; Fahey, Molly E.; Numata, Kenji
2018-02-01
We are developing a Q-switched narrow linewidth intra-cavity Raman laser for a space based sodium lidar application. A novel Raman laser injection seeding scheme is proposed and is experimentally verified. A Q-switched, diode pumped, c-cut Nd:YVO4 laser has been designed to emit a fundamental wavelength at 1066.6 nm. This fundamental wavelength is used as the pump in an intra-cavity Raman conversion in a Gd0.2Y0.8VO4 composite material. By tuning the temperature of the crystal, we tuned the Raman shifting to the desired sodium absorption line. A diode end pumped, T-shaped laser cavity has been built for experimental investigation. The fundamental pump laser cavity is a twisted mode cavity to eliminate the spatial hole burning for effective injection seeding. The Raman laser cavity is a linear standing wave cavity because Raman gain medium does not suffer spatial hole burning as traditional laser gain medium. The linewidth and temporal profile of the Raman laser is experimentally investigated with narrow and broadband fundamental pump emission. We have, for the first time, demonstrated an injection seeded, high peak power, narrow linewidth intra-cavity Raman laser for potential use in a sodium resonance fluorescence lidar.
Airborne Remote Sensing of River Flow and Morphology
NASA Astrophysics Data System (ADS)
Zuckerman, S.; Anderson, S. P.; McLean, J.; Redford, R.
2014-12-01
River morphology, surface slope and flow are some of the fundamental measurements required for surface water monitoring and hydrodynamic research. This paper describes a method of combining bathymetric lidar with space-time processing of mid-wave infrared (MWIR) imagery to simultaneously measure bathymetry, currents and surface slope from an airborne platform. In May 2014, Areté installed a Pushbroom Imaging Lidar for Littoral Surveillance (PILLS) and a FLIR SC8000 MWIR imaging system sampling at 2 Hz in a small twin-engine aircraft. Data was collected over the lower Colorado River between Picacho Park and Parker. PILLS is a compact bathymetric lidar based on streak-tube sensor technology. It provides channel and bank topography and water surface elevation at 1 meter horizontal scales and 25 cm vertical accuracy. Surface currents are derived from the MWIR imagery by tracking surface features using a cross correlation algorithm. This approach enables the retrieval of currents along extended reaches at the forward speed of the aircraft with spatial resolutions down to 5 m with accuracy better than 10 cm/s. The fused airborne data captures current and depth variability on scales of meters over 10's of kilometers collected in just a few minutes. The airborne MWIR current retrievals are combined with the bathymetric lidar data to calculate river discharge which is then compared with real-time streamflow stations. The results highlight the potential for improving our understanding of complex river environments with simultaneous collections from multiple airborne sensors.
Global Monitoring of Clouds and Aerosols Using a Network of Micro-Pulse Lidar Systems
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Scott, V. Stanley
2000-01-01
Long-term global radiation programs, such as AERONET and BSRN, have shown success in monitoring column averaged cloud and aerosol optical properties. Little attention has been focused on global measurements of vertically resolved optical properties. Lidar systems are the preferred instrument for such measurements. However, global usage of lidar systems has not been achieved because of limits imposed by older systems that were large, expensive, and logistically difficult to use in the field. Small, eye-safe, and autonomous lidar systems are now currently available and overcome problems associated with older systems. The first such lidar to be developed is the Micro-pulse lidar System (MPL). The MPL has proven to be useful in the field because it can be automated, runs continuously (day and night), is eye-safe, can easily be transported and set up, and has a small field-of-view which removes multiple scattering concerns. We have developed successful protocols to operate and calibrate MPL systems. We have also developed a data analysis algorithm that produces data products such as cloud and aerosol layer heights, optical depths, extinction profiles, and the extinction-backscatter ratio. The algorithm minimizes the use of a priori assumptions and also produces error bars for all data products. Here we present an overview of our MPL protocols and data analysis techniques. We also discuss the ongoing construction of a global MPL network in conjunction with the AERONET program. Finally, we present some early results from the MPL network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repasky, Kevin
2014-03-31
A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66more » {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.« less
Flash LIDAR Systems for Planetary Exploration
NASA Astrophysics Data System (ADS)
Dissly, Richard; Weinberg, J.; Weimer, C.; Craig, R.; Earhart, P.; Miller, K.
2009-01-01
Ball Aerospace offers a mature, highly capable 3D flash-imaging LIDAR system for planetary exploration. Multi mission applications include orbital, standoff and surface terrain mapping, long distance and rapid close-in ranging, descent and surface navigation and rendezvous and docking. Our flash LIDAR is an optical, time-of-flight, topographic imaging system, leveraging innovations in focal plane arrays, readout integrated circuit real time processing, and compact and efficient pulsed laser sources. Due to its modular design, it can be easily tailored to satisfy a wide range of mission requirements. Flash LIDAR offers several distinct advantages over traditional scanning systems. The entire scene within the sensor's field of view is imaged with a single laser flash. This directly produces an image with each pixel already correlated in time, making the sensor resistant to the relative motion of a target subject. Additionally, images may be produced at rates much faster than are possible with a scanning system. And because the system captures a new complete image with each flash, optical glint and clutter are easily filtered and discarded. This allows for imaging under any lighting condition and makes the system virtually insensitive to stray light. Finally, because there are no moving parts, our flash LIDAR system is highly reliable and has a long life expectancy. As an industry leader in laser active sensor system development, Ball Aerospace has been working for more than four years to mature flash LIDAR systems for space applications, and is now under contract to provide the Vision Navigation System for NASA's Orion spacecraft. Our system uses heritage optics and electronics from our star tracker products, and space qualified lasers similar to those used in our CALIPSO LIDAR, which has been in continuous operation since 2006, providing more than 1.3 billion laser pulses to date.
NASA's Space Lidar Measurements of Earth and Planetary Surfaces
NASA Technical Reports Server (NTRS)
Abshire, James B.
2010-01-01
A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.
EARLINET Single Calculus Chain - overview on methodology and strategy
NASA Astrophysics Data System (ADS)
D'Amico, G.; Amodeo, A.; Baars, H.; Binietoglou, I.; Freudenthaler, V.; Mattis, I.; Wandinger, U.; Pappalardo, G.
2015-11-01
In this paper we describe the EARLINET Single Calculus Chain (SCC), a tool for the automatic analysis of lidar measurements. The development of this tool started in the framework of EARLINET-ASOS (European Aerosol Research Lidar Network - Advanced Sustainable Observation System); it was extended within ACTRIS (Aerosol, Clouds and Trace gases Research InfraStructure Network), and it is continuing within ACTRIS-2. The main idea was to develop a data processing chain that allows all EARLINET stations to retrieve, in a fully automatic way, the aerosol backscatter and extinction profiles starting from the raw lidar data of the lidar systems they operate. The calculus subsystem of the SCC is composed of two modules: a pre-processor module which handles the raw lidar data and corrects them for instrumental effects and an optical processing module for the retrieval of aerosol optical products from the pre-processed data. All input parameters needed to perform the lidar analysis are stored in a database to keep track of all changes which may occur for any EARLINET lidar system over the time. The two calculus modules are coordinated and synchronized by an additional module (daemon) which makes the whole analysis process fully automatic. The end user can interact with the SCC via a user-friendly web interface. All SCC modules are developed using open-source and freely available software packages. The final products retrieved by the SCC fulfill all requirements of the EARLINET quality assurance programs on both instrumental and algorithm levels. Moreover, the manpower needed to provide aerosol optical products is greatly reduced and thus the near-real-time availability of lidar data is improved. The high-quality of the SCC products is proven by the good agreement between the SCC analysis, and the corresponding independent manual retrievals. Finally, the ability of the SCC to provide high-quality aerosol optical products is demonstrated for an EARLINET intense observation period.
Developing a portable, autonomous aerosol backscatter lidar for network or remote operations
NASA Astrophysics Data System (ADS)
Strawbridge, K. B.
2013-03-01
Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operated continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd : YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an Internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar network, HYSPLIT back trajectories, MODIS imagery and CALIPSO overpasses.
Developing a portable, autonomous aerosol backscatter lidar for network or remote operations
NASA Astrophysics Data System (ADS)
Strawbridge, K. B.
2012-11-01
Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well-suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operate continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd:YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar network, HYSPLIT back trajectories, MODIS imagery and CALIPSO overpasses.
NASA Technical Reports Server (NTRS)
Kolev, I.; Parvanov, O.; Kaprielov, B.; Mitev, V.; Simeonov, V.; Grigorov, I.
1992-01-01
In recent years, the processes in the atmospheric planetary boundary layer (PBL) over urban areas were intensely investigated, due to ecological problems related to the air, soil, and water pollution. New pollution sources in new residential districts, when in contradiction to the microclimate and topography requirements of that region, create a number of considerable hazards and problems. The present study is a continuation of our preceding investigations and aims at revealing the aerosol structure and stratification during the transition after sunset as measured by two lidars. Such observation of the nocturnal, stable PBL formation over an urban area in Bulgaria has not been reported before. The lidars' high time and spatial resolutions allow the changes of the internal structure of the PBL's part located above the surface layer to be observed.
sUAS for Rapid Pre-Storm Coastal Characterization and Vulnerability Assessment
NASA Astrophysics Data System (ADS)
Brodie, K. L.; Slocum, R. K.; Spore, N.
2015-12-01
Open coast beaches and surf-zones are dynamic three-dimensional environments that can evolve rapidly on the time-scale of hours in response to changing environmental conditions. Up-to-date knowledge about the pre-storm morphology of the coast can be instrumental in making accurate predictions about coastal change and damage during large storms like Hurricanes and Nor'Easters. For example, alongshore variations in the shape of ephemeral sandbars along the coastline can focus wave energy, subjecting different stretches of coastline to significantly higher waves. Variations in beach slope and width can also alter wave runup, causing higher wave-induced water levels which can cause overwash or inlet breaching. Small Unmanned Aerial Systems (sUAS) offer a new capability to rapidly and inexpensively map vulnerable coastlines in advance of approaching storms. Here we present results from a prototype system that maps coastal topography and surf-zone morphology utilizing a multi-camera sensor. Structure-from-motion algorithms are used to generate topography and also constrain the trajectory of the sUAS. These data, in combination with mount boresight information, are used to rectify images from ocean-facing cameras. Images from all cameras are merged to generate a wide field of view allowing up to 5 minutes of continuous imagery time-series to be collected as the sUAS transits the coastline. Water imagery is then analyzed using wave-kinematics algorithms to provide information on surf-zone bathymetry. To assess this methodology, the absolute and relative accuracy of topographic data are evaluated in relation to simultaneously collected terrestrial lidar data. Ortho-rectification of water imagery is investigated using visible fixed targets installed in the surf-zone, and through comparison to stationary tower-based imagery. Future work will focus on evaluating how topographic and bathymetric data from this sUAS approach can be used to update forcing parameters in both empirical and numerical models predicting coast inundation and erosion in advance of storms.
Wave Scattering and Sensing Strategies in Intermittent Terrestrial Environments
2008-01-01
objects and signal coherence (a measure of sig- nal randomness, which usually determines the sensing sys- tem performance) is strongly degraded...3.1 What are Quasi-Wavelets? Until this point, the objects in the cascades have not been explicitly described. We now associate them with wavelet, or...unsupervised clas- sification scheme used the intensity of the lidar returns to map the material types. 4.2 Seismic Measurement Procedure Thirty-six
NASA Technical Reports Server (NTRS)
1990-01-01
Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.
Lidar Wavelength Considerations and Radiometric Performance Analysis for Coastal Applications
NASA Astrophysics Data System (ADS)
Parrish, C. E.; Osiri, R.
2011-12-01
Until recently, the vast majority of commercial, topographic lidar systems operating in North America used 1064 nm lasers. However, systems employing erbium-doped fiber lasers operating at 1550 nm are becoming increasingly prevalent. An advantage of this wavelength is enhanced eye safety, as greater water absorption in the ocular components at wavelengths above ~1400 nm prevents radiation from reaching the retina. However, for related reasons, 1550 nm lidar systems may be subject to a greater decrease in signal-to-noise ratio (SNR) when the ground surface is wet. When operating near the upper limits of the system's operational altitude range-as is often done in order to maximize acquisition efficiency and minimize costs-this reduced SNR can lead to drop-outs and data gaps. The U.S. National Geodetic Survey (NGS), a program office of the National Oceanic and Atmospheric Administration (NOAA), uses lidar for coastal mapping applications. One of the primary goals is to extract tide-datum based shoreline, which is used in updating nautical charts, defining legal boundaries, and in a variety of coastal science and geomorphology studies. Mapping a tidally-referenced shoreline from topographic lidar data typically involves acquiring the data over exposed areas of the intertidal zone at low tide. Even when not submerged, these areas are frequently wet from the receding tide, wave runup, etc. If not compensated for through appropriate flight planning, the additional decrease in SNR with 1550 nm systems, due to the surface being wet, can lead to sparse, noisy data or even data voids, affecting the ability to extract a tidally-referenced shoreline. This study focuses on a theoretical and empirical investigation of 1550 nm lidar systems for coastal mapping. Lidar data were acquired over Assateague Island, Maryland with a new, dual Riegl LMS-Q680i system at a variety of flying heights. Additionally, reflectance spectra were acquired with a field spectrometer for various East Coast shorelines under differing moisture conditions, including dry, wet, and snow or ice covered. These data were used to quantify the effects on received signal strength and output data, and in determining how to best compensate for reduced SNR through proper selection of flying height and other mission parameters. We conclude with recommendations for effective and efficient operational use of 1550 nm systems for coastal applications.
NASA Astrophysics Data System (ADS)
Pye, Kenneth; Blott, Simon J.
2016-08-01
An important question for coastal management concerns the importance of individual storms and clusters of storms on longer term beach sediment budgets, beach and dune erosion, and coastal flood risk. Between October 2013 and March 2014 a series of deep Atlantic low pressure systems crossed the Northeast Atlantic, and strong winds, high waves and high water levels affected many coastal areas in the UK and other parts of western Europe. Net dune recession of up to 12.1 m occurred around Formby Point. On 5 December 2013 the highest water level ever recorded at Liverpool (6.22 m ODN) coincided with waves of Hs of 4.55 m and Tp of 9.3 s in Liverpool Bay. Wave trimming of the dune toe occurred along the entire length of the Sefton coast, but significant dune erosion occurred only where the upper beach (between the mean high water spring tide level and the dune toe) was < 25 m wide. Sediment budget calculations based on LiDAR surveys in October 2013 and May 2014 indicated a net loss of 127 × 103 m3 of sediment from the beach (above 0 m ODN) and a loss of 268 × 103 m3 from the frontal dune system, mostly at Formby Point. However, some parts of the beach to the south of Formby Point gained sediment, indicating net north to south transport over the winter. When considered in a longer term context, the 2013-14 winter represents only a small perturbation on the longer-term coast trend of erosion at Formby Point and progradation to the north and south. Analysis of LiDAR data over a longer time period 1999-2014 indicated upper beach and dune sediment loss of 780 × 103 m3 from the north-central part of Formby Point, with net gains of 806 × 103 m3 and 2116 × 103 m3 in areas to the north and south, respectively. This indicates a net onshore transport of 2142 × 103 m3 from Liverpool Bay towards the coast between Birkdale and Altcar, with a further net total of 210 × 103 m3 transported towards the shore between Altcar and Crosby. In view of the demonstrated value of airborne LiDAR surveys for the quantification of storm impacts and longer term coastal changes, it is recommended that such surveys should be undertaken before and after each winter storm period, covering the area between mean low water spring tide level and a line 200 m landward of the dune toe, of as a part of the regional coastal monitoring programme.
Improvement of Raman lidar algorithm for quantifying aerosol extinction
NASA Technical Reports Server (NTRS)
Russo, Felicita; Whiteman, David; Demoz, Belay; Hoff, Raymond
2005-01-01
Aerosols are particles of different composition and origin and influence the formation of clouds which are important in atmospheric radiative balance. At the present there is high uncertainty on the effect of aerosols on climate and this is mainly due to the fact that aerosol presence in the atmosphere can be highly variable in space and time. Monitoring of the aerosols in the atmosphere is necessary to better understanding many of these uncertainties. A lidar (an instrument that uses light to detect the extent of atmospheric aerosol loading) can be particularly useful to monitor aerosols in the atmosphere since it is capable to record the scattered intensity as a function of altitude from molecules and aerosols. One lidar method (the Raman lidar) makes use of the different wavelength changes that occur when light interacts with the varying chemistry and structure of atmospheric aerosols. One quantity that is indicative of aerosol presence is the aerosol extinction which quantifies the amount of attenuation (removal of photons), due to scattering, that light undergoes when propagating in the atmosphere. It can be directly measured with a Raman lidar using the wavelength dependence of the received signal. In order to calculate aerosol extinction from Raman scattering data it is necessary to evaluate the rate of change (derivative) of a Raman signal with respect to altitude. Since derivatives are defined for continuous functions, they cannot be performed directly on the experimental data which are not continuous. The most popular technique to find the functional behavior of experimental data is the least-square fit. This procedure allows finding a polynomial function which better approximate the experimental data. The typical approach in the lidar community is to make an a priori assumption about the functional behavior of the data in order to calculate the derivative. It has been shown in previous work that the use of the chi-square technique to determine the most likely functional behavior of the data prior to actually calculating the derivative eliminates the need for making a priori assumptions. We note that the a priori choice of a model itself can lead to larger uncertainties as compared to the method that is validated here. In this manuscript, the chi-square technique that determines the most likely functional behavior is validated through numerical simulation and by application to a large body of Raman lidar measurements. In general, we show that the chi-square approach to evaluate aerosol extinction yields lower extinction uncertainty than the traditional technique. We also use the technique to study the feasibility of developing a general characterization of the extinction uncertainty that could permit the uncertainty in Raman lidar aerosol extinction measurements to be estimated accurately without the use of the chi-square technique.
Ground-based DIAL and IPDA Systems for Remote Sensing of CO2, CH4, and H2O near 1.6 µm
NASA Astrophysics Data System (ADS)
Wagner, G. A.; Plusquellic, D. F.
2017-12-01
Integrated path differential absorption (IPDA) and differential absorption LIDAR (DIAL) are well established methods to monitor atmospheric constituents. At NIST, IPDA and DIAL systems have been developed as standoff systems and their overall performance has been evaluated through intercomparisons including the traceability to point sensor measurements. The all-fiber IPDA system is based on a low-power (< 13 mW, eye-safe) electro-optic modulated continuous-wave laser to produce 123 frequencies at a scan repetition frequency of 10 kHz.1 The transmitter-receiver system measures backscatter from natural targets and is rastered during the measurements to reduce speckle effects. The receiver consists of a 28 cm telescope, photomultiplier tube, and a streaming data acquisition system for direct photon discrimination and counting. The eye-safe DIAL system is based on an optical parametric oscillator2,3 that operates at a pulse repetition frequency of 100 Hz and alternates between on-line and off-line frequencies with pulse energies of < 10 mJ/pulse. The receivers consist of two telescopes (near field: 28 cm; far field: 40 cm), photomultiplier tubes, and a 2 GS/s hybrid data acquisition system for photon counting and current detection. We demonstrate the performance of the DIAL and IPDA systems and present results of a CO2 IPDA/DIAL/point sensor traceability study performed in Boulder (CO, USA) in summer 2017. 1. G. A. Wagner and D. F. Plusquellic, "Ground-Based, Integrated Path Differential Absorption LIDAR Measurement of CO2, CH4 and H2O near 1.6 µm," Applied Optics, 55(23), 6292-6310 (2016). 2. D. J. Armstrong, and A. V. Smith, "150-mJ 1550-nm KTA OPO with Good Beam Quality and High Efficiency," SPIE, 5337, 71-80 (2004). 3. K. O. Douglass, S. E. Maxwell, D. F. Plusquellic, J. T. Hodges, R. D. van Zee, D. V. Samarov, J. R. Whetstone, "Construction of a High Power OPO Laser System for Differential Absorption LIDAR," SPIE, 8159, 81590D (2011).
NASA Astrophysics Data System (ADS)
Sudhakar, P.; Kalavathi, P.; Ramakrishna Rao, D.; Satyanarayna, M.
2014-12-01
Industrialization can no longer sustain without internalization of the concerns of the receiving environment and land-use. Increased awareness and public pressure, coupled with regulatory instruments and bodies exert constant pressure on industries to control their emissions to a level acceptable to the receiving environment. However, when a group of industries come-up together as an industrial estate, the cumulative impacts of all the industries together often challenges the expected/desired quality of receiving environment, requiring stringent pollution control and monitoring measures. Laser remote sensing techniques provide powerful tools for environmental monitoring. These methods provide range resolved measurements of concentrations of various gaseous pollutants and suspended particulate matter (SPM) not only in the path of the beam but over the entire area. A three dimensional mapping of the pollutants and their dispersal can be estimated using the laser remote sensing methods on a continuous basis. Laser Radar (Lidar) systems are the measurements technology used in the laser remote sensing methods. Differential absorption lidar (DIAL) and Raman Lidar technologies have proved to be very useful for remote sensing of air pollutants. DIAL and Raman lidar systems can be applied for range resolved measurements of molecules like SO2, NO2, O3 Hg, CO, C2H4, H2O, CH4, hydrocarbons etc. in real time on a continuous basis. This paper describes the design details of the DAIL and Raman lidar techniques for measurement of various hazardous air pollutants which are being released into the atmosphere by the chemical industries operating in the Bachupally industrial Estate area at Hyderabad, India. The relative merits of the two techniques have been studied and the minimum concentration of pollutants that can be measured using these systems are presented. A dispersion model of the air pollutants in the selected chemical industrial estates at Hyderabad has been developed.
NASA Astrophysics Data System (ADS)
Rapp, Markus
Gravity waves (GW) play an important role in the coupling between the troposphere and the middle atmosphere (˜10 - 120 km). GWs couple different atmospheric regions both in the vertical as well as in the horizontal directions by means of momentum and energy transport. Notably, this coupling is effective both from the troposphere upwards, and also in the opposite direction by indirect effects on circulation patterns. While the importance of GW for understanding atmospheric structure, dynamics and climate is now widely recognized, surprisingly little is still known about the details of the GW life cycle, i.e., the processes of GW excitation, propagation and dissipation. To address this issue a coordinated field program - named GW-LCYCLE - has been established in which ground based observations with radars, lidars and airglow imagers are combined with airborne observations, balloon soundings, and modelling to trace GWs from their source in the troposphere to their area of dissipation in the middle atmosphere. Within GW-LCYCLE an initial field campaign was conducted in December 2013 in Northern Scandinavia. The research aircraft DLR-FALCON was deployed to Kiruna, Sweden, from where several flights (with a total of 25 flight hours) were conducted to study mountain wave generation by flow over the Scandinavian mountain ridge. The FALCON was equipped with a downward looking wind lidar operating at a wavelength of 2 mum as well as with an in-flight system to measure winds, temperatures and pressures and with several in-situ instruments to detect wave signatures in trace gases like H _{2}O, CO _{2}, CO, CH _{4}, N _{2}O, HNO _{3} and SO _{2}. Ground based observations of winds and temperatures from the troposphere to the mesosphere/lower thermosphere (MLT-) region were conducted from Kiruna as well as from Andenes, Norway. These measurements were augmented by balloon soundings from the same places as well as from Sodankylä in Finland. Coordinated observations were conducted during five intensive observations periods, IOPs, where during two IOPs strong mountain wave generation was observed. In this paper we present an overview of the initial preliminary results of this first GW-LCYCLE campaign contrasting results from selected IOPs with and without strong mountain wave generation. We will discuss in how far observed tropospheric and lower stratospheric wave signatures can be reconciled with regional modelling and whether simultaneously observed mesospheric waves can be attributed to dedicated GW sources in the troposphere using GW ray tracing as well as high-resolution idealized modelling.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee
2004-01-01
We present the formation of a new global-ground based eye-safe lidar network, the NASA Micro-Pulse Lidar Network (MPLNET). The aim of MPLNET is to acquire long- term observations of aerosol and cloud vertical profiles at unique geographic sites within the NASA Aerosol Robotic Network (AERONET). MPLNET utilizes standard instrumentation and data processing algorithms for efficient network operations and direct comparison of data between each site. The micro-pulse lidar is eye-safe, compact, and commercially available, and most easily allows growth of the network without sacrificing standardized instrumentation goals. Network growth follows a federated approach, pioneered by AERONET, wherein independent research groups may join MPLNET with their own instrument and site. MPLNET sites produce not only vertical profile data, but also column-averaged products already available from AERONET (aerosol optical depth, sky radiance, size distributions). Algorithms are presented for each MPLNET data product. Real-time Level 1 data products (next-day) include daily lidar signal images from the surface to -2Okm, and Level 1.5 aerosol extinction profiles at times co-incident with AERONET observations. Quality assured Level 2 aerosol extinction profiles are generated after screening the Level 1.5 results and removing bad data. Level 3 products include continuous day/night aerosol extinction profiles, and are produced using Level 2 calibration data. Rigorous uncertainty calculations are presented for all data products. Analysis of MPLNET data show the MPL and our analysis routines are capable of successfully retrieving aerosol profiles, with the strenuous accounting of uncertainty necessary for accurate interpretation of the results.
NASA Astrophysics Data System (ADS)
Haeffelin, Martial
2016-04-01
Radiation fog formation is largely influenced by the chemical composition, size and number concentration of cloud condensation nuclei and by heating/cooling and drying/moistening processes in a shallow mixing layer near the surface. Once a fog water layer is formed, its development and dissipation become predominantly controlled by radiative cooling/heating, turbulent mixing, sedimentation and deposition. Key processes occur in the atmospheric surface layer, directly in contact with the soil and vegetation, and throughout the atmospheric column. Recent publications provide detailed descriptions of these processes for idealized cases using very high-resolution models and proper representation of microphysical processes. Studying these processes in real fog situations require atmospheric profiling capabilities to monitor the temporal evolution of key parameters at several heights (surface, inside the fog, fog top, free troposphere). This could be done with in-situ sensors flown on tethered balloons or drones, during dedicated intensive field campaigns. In addition Backscatter Lidars, Doppler Lidars, Microwave Radiometers and Cloud Doppler Radars can provide more continuous, yet precise monitoring of key parameters throughout the fog life cycle. The presentation will describe how Backscatter Lidars can be used to study the height and kinetics of aerosol activation into fog droplets. Next we will show the potential of Cloud Doppler Radar measurements to characterize the temporal evolution of droplet size, liquid water content, sedimentation and deposition. Contributions from Doppler Lidars and Microwave Radiometers will be discussed. This presentation will conclude on the potential to use Lidar and Radar remote sensing measurements to support operational fog nowcasting.
Doran, Kara S.; Sallenger, Asbury H.; Reynolds, Billy J.; Wright, C. Wayne
2010-01-01
The NASA Experimental Advanced Airborne Lidar (EAARL) is an airborne lidar (light detection and ranging) instrument designed to map coastal topography and bathymetry. The EAARL system has the capability to capture each laser-pulse return over a large signal range and can digitize the full waveform of the backscattered energy. Because of this ability to capture the full waveform, the EAARL system can map features such as coral reefs, beaches, coastal vegetation, and trees, where extreme variations in the laser backscatter are caused by different physical and optical characteristics. Post-processing of the EAARL data is accomplished using the Airborne Lidar Processing System (ALPS) (Nayegandhi and others, 2009). In ALPS, the waveform of the lidar is analyzed and split into first and last returns. The 'first returns' are indicative of vegetation-canopy height, or bare ground in the absence of vegetation, whereas 'last returns' typically represent 'bare-earth' elevations under vegetation. To test the accuracy of the first-return and bare-earth EAARL data, topographic and vegetation height surveys were conducted in the Chandeleur Islands, concurrent with an EAARL lidar survey and an aerial oblique-photographic survey from September 20 to 27, 2006. The Chandeleur Islands are a north-south-oriented chain of low-lying islands located approximately 100 kilometers east of the city of New Orleans, Louisiana. The islands are narrow north-south strips of land with marsh on the landward (west sides) and sandy beaches on their gulfward (east sides). Prior to Hurricane Katrina, which made landfall at Buras, Louisiana, as a Category 3 storm on August 29, 2005, prominent, 3- to 4-meter-high sand dunes were present in the northern Chandeleurs. The storm removed them, leaving post-storm island elevations of generally less than 2 meters above 0.0 NAVD88. This report is part of a study of the impact of Hurricane Katrina on the Chandeleur Islands using pre-storm and post-storm lidar surveys to detect morphological changes. The islands lost over 80 percent of their land area during Hurricane Katrina, and in the first 2 years following Katrina, many of the islands experienced continued shoreline retreat (Sallenger and others, 2007). In addition to land-area losses, the loss of dunes made the islands increasingly vulnerable to future storm impacts. The U.S. Geological Survey, along with partners in the Louisiana Department of Natural Resources and the U.S. Army Corps of Engineers, continues to monitor changes in shoreline position, land area, and elevation in the Chandeleur Islands.
Modelling of pollen dispersion in the atmosphere: evaluation with a continuous 1β+1δ lidar
NASA Astrophysics Data System (ADS)
Sicard, Michaël; Izquierdo, Rebeca; Jorba, Oriol; Alarcón, Marta; Belmonte, Jordina; Comerón, Adolfo; De Linares, Concepción; Baldasano, José Maria
2018-04-01
Pollen allergenicity plays an important role on human health and wellness. It is thus of large public interest to increase our knowledge of pollen grain behavior in the atmosphere (source, emission, processes involved during their transport, etc.) at fine temporal and spatial scales. First simulations with the Barcelona Supercomputing Center NMMB/BSC-CTM model of Platanus and Pinus dispersion in the atmosphere were performed during a 5-day pollination event observed in Barcelona, Spain, between 27 - 31 March, 2015. The simulations are compared to vertical profiles measured with the continuous Barcelona Micro Pulse Lidar system. First results show that the vertical distribution is well reproduced by the model in shape, but not in intensity, the model largely underestimating in the afternoon. Guidelines are proposed to improve the dispersion of airborne pollen by numerical prediction models.
A Seamless, High-Resolution, Coastal Digital Elevation Model (DEM) for Southern California
Barnard, Patrick L.; Hoover, Daniel
2010-01-01
A seamless, 3-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the Mexican border. The goal was to integrate the most recent, high-resolution datasets available (for example, Light Detection and Ranging (Lidar) topography, multibeam and single beam sonar bathymetry, and Interferometric Synthetic Aperture Radar (IfSAR) topography) into a continuous surface from at least the 20-m isobath to the 20-m elevation contour. This dataset was produced to provide critical boundary conditions (bathymetry and topography) for a modeling effort designed to predict the impacts of severe winter storms on the Southern California coast (Barnard and others, 2009). The hazards model, run in real-time or with prescribed scenarios, incorporates atmospheric information (wind and pressure fields) with a suite of state-of-the-art physical process models (tide, surge, and wave) to enable detailed prediction of water levels, run-up, wave heights, and currents. Research-grade predictions of coastal flooding, inundation, erosion, and cliff failure are also included. The DEM was constructed to define the general shape of nearshore, beach and cliff surfaces as accurately as possible, with less emphasis on the detailed variations in elevation inland of the coast and on bathymetry inside harbors. As a result this DEM should not be used for navigation purposes.
NASA Astrophysics Data System (ADS)
Stelitano, Dario; Di Girolamo, Paolo; Summa, Donato
2013-05-01
The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapor and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behavior. The observed behavior, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic.
Characterization of Canopy Layering in Forested Ecosystems Using Full Waveform Lidar
NASA Technical Reports Server (NTRS)
Whitehurst, Amanda S.; Swatantran, Anu; Blair, J. Bryan; Hofton, Michelle A.; Dubayah, Ralph
2013-01-01
Canopy structure, the vertical distribution of canopy material, is an important element of forest ecosystem dynamics and habitat preference. Although vertical stratification, or "canopy layering," is a basic characterization of canopy structure for research and forest management, it is difficult to quantify at landscape scales. In this paper we describe canopy structure and develop methodologies to map forest vertical stratification in a mixed temperate forest using full-waveform lidar. Two definitions-one categorical and one continuous-are used to map canopy layering over Hubbard Brook Experimental Forest, New Hampshire with lidar data collected in 2009 by NASA's Laser Vegetation Imaging Sensor (LVIS). The two resulting canopy layering datasets describe variation of canopy layering throughout the forest and show that layering varies with terrain elevation and canopy height. This information should provide increased understanding of vertical structure variability and aid habitat characterization and other forest management activities.
Airborne Lidar Detection and Characterization of Internal Waves in a Shallow Fjord
2012-01-01
Graduate Center studying the statistics of optical propagation through refractive turbulence in the clear atmosphere . He then became a member of...instrumentation comprised a Seabird conductivity, temperature, depth (CTD) profiler with a Wetlabs AC-9 to measure the optical absorption and beam ...the depolarization of an initially polarized beam will be D, .=■ 2-d \\-d (10) where D is the ratio of the backscattering perpendicular to the
2014-09-30
direction Sea snake CIRES/NOAA sea-surface temperature 35-channel Radiometrics radiometer CIRES/NOAA PWV , LWP, profiles of T, q Ceilometer CIRES...size distribution Stabilized, scanning Doppler Lidar Leeds winds, cloud phase, turbulence HATPRO, scanning,12 ch radiometer Leeds PWV , LWP
NASA Technical Reports Server (NTRS)
Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta;
2010-01-01
LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.
Contemplating Synergistic Algorithms for the NASA ACE Mission
NASA Technical Reports Server (NTRS)
Mace, Gerald G.; Starr, David O.; Marchand, Roger; Ackerman, Steven A.; Platnick, Steven E.; Fridlind, Ann; Cooper, Steven; Vane, Deborah G.; Stephens, Graeme L.
2013-01-01
ACE is a proposed Tier 2 NASA Decadal Survey mission that will focus on clouds, aerosols, and precipitation as well as ocean ecosystems. The primary objective of the clouds component of this mission is to advance our ability to predict changes to the Earth's hydrological cycle and energy balance in response to climate forcings by generating observational constraints on future science questions, especially those associated with the effects of aerosol on clouds and precipitation. ACE will continue and extend the measurement heritage that began with the A-Train and that will continue through Earthcare. ACE planning efforts have identified several data streams that can contribute significantly to characterizing the properties of clouds and precipitation and the physical processes that force these properties. These include dual frequency Doppler radar, high spectral resolution lidar, polarimetric visible imagers, passive microwave and submillimeter wave radiometry. While all these data streams are technologically feasible, their total cost is substantial and likely prohibitive. It is, therefore, necessary to critically evaluate their contributions to the ACE science goals. We have begun developing algorithms to explore this trade space. Specifically, we will describe our early exploratory algorithms that take as input the set of potential ACE-like data streams and evaluate critically to what extent each data stream influences the error in a specific cloud quantity retrieval.
NASA Astrophysics Data System (ADS)
Torbert, R.
1992-12-01
The present volume on active experiments in space discusses dynamic trapping of electrons in the Porcupine ionospheric ion beam experiment, plasma wave observations during electron gun experiments on ISEE-1, spatial coherence and electromagnetic wave generation during electron beam experiments in space, and recent experimental measurements of space platform charging at LEO altitudes. Attention is given to high voltage spheres in an unmagnetized plasma, energetic ion emission for active spacecraft control, the collective gyration of a heavy ion cloud in a magnetized plasma, and remote sensing of artificial luminous clouds by lidars. Topics addressed include modulation of the background flux of energetic particles by artificial injection, wave measurements in active experiments on plasma beam injection, field formation around negatively biased solar arrays in the LEO-plasma, and the registration of ELF waves in rocket-satellite experiments with plasma injection.
NASA Astrophysics Data System (ADS)
Williams, B. P.; Kjellstrand, B.; Jones, G.; Reimuller, J. D.; Fritts, D. C.; Miller, A.; Geach, C.; Limon, M.; Hanany, S.; Kaifler, B.; Wang, L.; Taylor, M. J.
2017-12-01
PMC-Turbo is a NASA long-duration, high-altitude balloon mission that will deploy 7 high-resolution cameras to image polar mesospheric clouds (PMC) and measure gravity wave breakdown and turbulence. The mission has been enhanced by the addition of the DLR Balloon Lidar Experiment (BOLIDE) and an OH imager from Utah State University. This instrument suite will provide high horizontal and vertical resolution of the wave-modified PMC structure along a several thousand kilometer flight track. We have requested a flight from Kiruna, Sweden to Canada in June 2017 or McMurdo Base, Antarctica in Dec 2017. Three of the PMC camera systems were deployed on an aircraft and two tomographic ground sites for the High Level campaign in Canada in June/July 2017. On several nights the cameras observed PMC's with strong gravity wave breaking signatures. One PMC camera will piggyback on the Super Tiger mission scheduled to be launched in Dec 2017 from McMurdo, so we will obtain PMC images and wave/turbulence data from both the northern and southern hemispheres.
NASA Astrophysics Data System (ADS)
Chowdhary, J.; Brian, C.; Stamnes, S.; Hostetler, C. A.; Cetinic, I.; Slade, W. H.; Hu, Y.
2017-12-01
Ocean spectra typically contribute less than 10% to top-of-atmosphere (TOA) radiance observations in the visible (VIS). The remaining 90% of TOA radiance originates from scattering in the atmosphere which needs to be removed (i.e. corrected) but varies substantially with the aerosol present at the time of observation. The traditional approach for atmospheric correction (AC), used for ocean color sensors such as SeaWiFS, MODIS, and VIIRS, estimates aerosol scattering properties from TOA radiance observations in the near-infrared/short-wave infrared (NIR/SWIR) where the ocean becomes dark. The aerosol model is subsequently used to compute the atmospheric scattering contribution to the TOA radiance in the VIS. The final step is to subtract this computed scattering contribution from the real (i.e. observed) TOA radiance. As an alternative to the traditional approach for AC, we retrieve the atmosphere (i.e., aerosol) and ocean (i.e., color) properties simultaneously from measurements in the VIS. To separate the information content for the atmosphere and ocean, we use lidar measurements and multi-angle polarization measurements. Lidar and polarimeter measurements are powerful tools to enhance the ocean product retrievals from conventional ocean color sensors, and are under consideration to accompany future generation ocean color sensors. Here, we present results of simultaneous atmosphere-ocean retrievals using collocated airborne lidar and polarimeter data that were acquired during the Ship-Aircraft Bio-Optical Research (SABOR) campaign. We discuss 2 hydrosol models (which differ in number of free parameters) that were used for these inversions. We then compare our ocean retrievals with measurements obtained from the accompanying cruise ship. Finally, we touch upon a next generation of hydrosol models that accommodates the unique sensitivity of ocean lidar profiles to plankton morphology.
Improved simulation of aerosol, cloud, and density measurements by shuttle lidar
NASA Technical Reports Server (NTRS)
Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. W.
1981-01-01
Data retrievals are simulated for a Nd:YAG lidar suitable for early flight on the space shuttle. Maximum assumed vertical and horizontal resolutions are 0.1 and 100 km, respectively, in the boundary layer, increasing to 2 and 2000 km in the mesosphere. Aerosol and cloud retrievals are simulated using 1.06 and 0.53 microns wavelengths independently. Error sources include signal measurement, conventional density information, atmospheric transmission, and lidar calibration. By day, tenuous clouds and Saharan and boundary layer aerosols are retrieved at both wavelengths. By night, these constituents are retrieved, plus upper tropospheric, stratospheric, and mesospheric aerosols and noctilucent clouds. Density, temperature, and improved aerosol and cloud retrievals are simulated by combining signals at 0.35, 1.06, and 0.53 microns. Particlate contamination limits the technique to the cloud free upper troposphere and above. Error bars automatically show effect of this contamination, as well as errors in absolute density nonmalization, reference temperature or pressure, and the sources listed above. For nonvolcanic conditions, relative density profiles have rms errors of 0.54 to 2% in the upper troposphere and stratosphere. Temperature profiles have rms errors of 1.2 to 2.5 K and can define the tropopause to 0.5 km and higher wave structures to 1 or 2 km.
Error suppression and correction for quantum annealing
NASA Astrophysics Data System (ADS)
Lidar, Daniel
While adiabatic quantum computing and quantum annealing enjoy a certain degree of inherent robustness against excitations and control errors, there is no escaping the need for error correction or suppression. In this talk I will give an overview of our work on the development of such error correction and suppression methods. We have experimentally tested one such method combining encoding, energy penalties and decoding, on a D-Wave Two processor, with encouraging results. Mean field theory shows that this can be explained in terms of a softening of the closing of the gap due to the energy penalty, resulting in protection against excitations that occur near the quantum critical point. Decoding recovers population from excited states and enhances the success probability of quantum annealing. Moreover, we have demonstrated that using repetition codes with increasing code distance can lower the effective temperature of the annealer. References: K.L. Pudenz, T. Albash, D.A. Lidar, ``Error corrected quantum annealing with hundreds of qubits'', Nature Commun. 5, 3243 (2014). K.L. Pudenz, T. Albash, D.A. Lidar, ``Quantum annealing correction for random Ising problems'', Phys. Rev. A. 91, 042302 (2015). S. Matsuura, H. Nishimori, T. Albash, D.A. Lidar, ``Mean Field Analysis of Quantum Annealing Correction''. arXiv:1510.07709. W. Vinci et al., in preparation.
Improved TDEM formation using fused ladar/digital imagery from a low-cost small UAV
NASA Astrophysics Data System (ADS)
Khatiwada, Bikalpa; Budge, Scott E.
2017-05-01
Formation of a Textured Digital Elevation Model (TDEM) has been useful in many applications in the fields of agriculture, disaster response, terrain analysis and more. Use of a low-cost small UAV system with a texel camera (fused lidar/digital imagery) can significantly reduce the cost compared to conventional aircraft-based methods. This paper reports continued work on this problem reported in a previous paper by Bybee and Budge, and reports improvements in performance. A UAV fitted with a texel camera is flown at a fixed height above the terrain and swaths of texel image data of the terrain below is taken continuously. Each texel swath has one or more lines of lidar data surrounded by a narrow strip of EO data. Texel swaths are taken such that there is some overlap from one swath to its adjacent swath. The GPS/IMU fitted on the camera also give coarse knowledge of attitude and position. Using this coarse knowledge and the information from the texel image, the error in the camera position and attitude is reduced which helps in producing an accurate TDEM. This paper reports improvements in the original work by using multiple lines of lidar data per swath. The final results are shown and analyzed for numerical accuracy.
NASA Astrophysics Data System (ADS)
Yang, Shu; Nína Petersen, Guðrún; Finger, David C.
2017-04-01
Turbulence and wind shear are a major natural hazards for aviation safety in Iceland. The temporal and spatial scale of atmospheric turbulence is very dynamic, requiring an adequate method to detect and monitor turbulence with high resolution. The Doppler Light Detection and Ranging (LiDAR) system can provide continuous information about the wind field using the Doppler effect form emitted light signals. In this study, we use a Leosphere Windcube 200s LiDAR systems stationed near Reykjavik city Airport and at Keflavik International Airport, Iceland, to evaluate turbulence intensity by estimating eddy dissipation rate (EDR). For this purpose, we retrieved radial wind velocity observations from Velocity Azimuth Display (VAD) scans (360°scans at 15° and 75° elevation angle) to compute EDR. The method was used to monitor and characterize storm events in fall 2016 and the following winter. The preliminary result reveal that the LiDAR observations can detect and quantify atmospheric turbulence with high spatial and temporal resolution. This finding is an important step towards enhanced aviation safety in subpolar climate characterized by sever wind turbulence.
NASA Astrophysics Data System (ADS)
Patton, H. J.; Larmat, C. S.; Rougier, E.
2016-12-01
Seismic moments for chemical shots making up Phase I of the Source Physics Experiments (SPE) are estimated from 6 Hz Rg waves under the assumption that the shots are pure explosions. These apparent explosion moments are compared to moments determined using the Reduced Displacement Potential (RDP) method applied to free field data. LIDAR/photogrammetry observations, strong ground motions on the free surface near ground zero, and moment tensor inversion results are evidence in support of the fourth shot SPE-4P being essentially a pure explosion. The apparent moment for SPE-4P is 9 × 1010 Nm in good agreement with the RDP moment 8 × 1010 Nm. In stark contrast, apparent moments for the first three shots are three to four times smaller than RDP moments. Data show that spallation occurred on these shots, as well as permanent deformations detected with ground-based LIDAR. As such, the source medium suffered late-time damage. The late-time damage source model predicts destructive interference between Rg waves radiated by explosion and damage sources, which reduces amplitudes and explains why apparent moments are smaller than RDP moments based on compressional energy emitted directly from the source. SPE-5 was conducted at roughly the same yield-scaled burial depth as SPE-2 and -3, but with five times the yield. As such, the damage source model predicts less reduction of apparent moment. At this writing, preliminary results from Rg interferometry and RDP moments confirm this prediction. SPE-6 is scheduled for the fall of 2016, and it should have the strongest damage source of all SPE shots. The damage model predicts that the polarity of Rg waves could be reversed. Realization of this prediction will be strong confirmation of the late-time damage source model. This abstract has a Los Alamos National Laboratory Unlimited Release Number LA-UR-16-25709.
Network of LAMP systems for atmospheric monitoring in India
NASA Astrophysics Data System (ADS)
Yellapragada, Bhavani Kumar; Jayaraman, Achuthan
2012-07-01
A systematic knowledge of the vertical distribution of aerosol particles in the atmosphere is required for understanding many atmospheric processes such as dynamics of boundary layer, pollution transport, modification of cloud microphysics etc. At present, the information on the particle distribution in the atmosphere is far from sufficient to estimate properly the load of aerosols in the atmosphere. Light detection and ranging (LIDAR) has been demonstrated to be a reliable remote sensing technique to obtain altitude profiles of atmospheric cloud and aerosol scattering. A LIDAR network is being implemented by National Atmospheric Research Laboratory (NARL), a Department of Space unit, in India for the measurement and monitoring of the atmospheric aerosols and clouds. Towards this, the technology of boundary layer lidar (BLL) (Bhavani Kumar, 2006) has been exploited. Several industrial grade BLL systems are being fabricated at a private industry in India through technological transfer from NARL. The industrial BLL lidar is named as LAMP, stands for LIDAR for Atmospheric Measurement and Probing. Five LAMP systems have already been fabricated and deployed at several locations of the country for continuous monitoring of aerosols and clouds under the Indian Lidar network (I-LINK) programme. The LAMP system employs a single barrel construction so that no realignment is required in future. Moreover, the network lidar system employs several features like rotation facility about the elevation (EL) axis, a provision of front window for environmental protection to the telescope optics and a silica gel pocket for desiccation (for transmit and receive assembly) and a provision of nitrogen purging to overcome the humidity effects. The LAMP system is an autonomous system equipped with a diode pumped Nd-YAG laser, a PMT for the detection of the backscattered photons, and a PC based photon counting electronics for recording the photon returns. In this paper, a report describing LAMP hardware components, acceptance test results and sample atmospheric measurements obtained from different locations across the country will be presented. Reference Bhavani Kumar, Y., Portable lidar system for atmospheric boundary layer measurements, Opt. Eng., 45, 076201, 2006 (doi: 10.1117/1.2221555)
Discriminating crop, weeds and soil surface with a terrestrial LIDAR sensor.
Andújar, Dionisio; Rueda-Ayala, Victor; Moreno, Hugo; Rosell-Polo, Joan Ramón; Escolá, Alexandre; Valero, Constantino; Gerhards, Roland; Fernández-Quintanilla, César; Dorado, José; Griepentrog, Hans-Werner
2013-10-29
In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12-14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.
Discriminating Crop, Weeds and Soil Surface with a Terrestrial LIDAR Sensor
Andújar, Dionisio; Rueda-Ayala, Victor; Moreno, Hugo; Rosell-Polo, Joan Ramón; Escolà, Alexandre; Valero, Constantino; Gerhards, Roland; Fernández-Quintanilla, César; Dorado, José; Griepentrog, Hans-Werner
2013-01-01
In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12–14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying. PMID:24172283
Aboveground Biomass Variability Across Intact and Degraded Forests in the Brazilian Amazon
NASA Technical Reports Server (NTRS)
Longo, Marcos; Keller, Michael; Dos-Santos, Maiza N.; Leitold, Veronika; Pinage, Ekena R.; Baccini, Alessandro; Saatchi, Sassan; Nogueira, Euler M.; Batistella, Mateus; Morton, Douglas C.
2016-01-01
Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, re, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n 359) and airborne lidar data (18,000 ha) assembled to date for the Brazilian Amazon. We developed statistical models relating inventory ACD estimates to lidar metrics that explained70 of the variance across forest types. Airborne lidar-ACD estimates for intact forests ranged between 5.0 +/- 2.5 and 31.9 +/- 10.8 kg C m(exp -2). Degradation carbon losses were large and persistent. Sites that burned multiple times within a decade lost up to 15.0 +/- 0.7 kg C m(-2)(94%) of ACD. Forests that burned nearly15 years ago had between 4.1 +/- 0.5 and 6.8 +/- 0.3 kg C m(exp -2) (22-40%) less ACD than intact forests. Even for low-impact logging disturbances, ACD was between 0.7 +/- 0.3 and 4.4 +/- 0.4 kg C m(exp -2)(4-21%) lower than unlogged forests. Comparing biomass estimates from airborne lidar to existing biomass maps, we found that regional and pan-tropical products consistently overestimated ACD in degraded forests, under-estimated ACD in intact forests, and showed little sensitivity to res and logging. Fine-scale heterogeneity in ACD across intact and degraded forests highlights the benefits of airborne lidar for carbon mapping. Differences between airborne lidar and regional biomass maps underscore the need to improve and update biomass estimates for dynamic land use frontiers, to better characterize deforestation and degradation carbon emissions for regional carbon budgets and Reduce Emissions from Deforestation and forest Degradation(REDD+).
NASA Astrophysics Data System (ADS)
Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.
2014-06-01
Repeated Light Detection and Ranging (LiDAR) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 LiDAR-derived dataset of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically-based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the coterminous United States. Independent validation data is scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation dataset with substantial geographic coverage. Within twelve distinctive 500 m × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 LiDAR acquisitions. This supplied a dataset for constraining the uncertainty of upscaled LiDAR estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled LiDAR snow depths were then compared to the SNODAS-estimates over the entire study area for the dates of the LiDAR flights. The remotely-sensed snow depths provided a more spatially continuous comparison dataset and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between LiDAR observations and SNODAS estimates were most drastic, suggesting natural processes specific to these regions as causal influences on model uncertainty.
Cloud and Aerosol Retrieval for the 2001 GLAS Satellite Lidar Mission
NASA Technical Reports Server (NTRS)
Hart, William D.; Palm, Stephen P.; Spinhirne, James D.
2000-01-01
The Geoscience Laser Altimeter System (GLAS) is scheduled for launch in July of 2001 aboard the Ice, Cloud and Land Elevation Satellite (ICESAT). In addition to being a precision altimeter for mapping the height of the Earth's icesheets, GLAS will be an atmospheric lidar, sensitive enough to detect gaseous, aerosol, and cloud backscatter signals, at horizontal and vertical resolutions of 175 and 75m, respectively. GLAS will be the first lidar to produce temporally continuous atmospheric backscatter profiles with nearly global coverage (94-degree orbital inclination). With a projected operational lifetime of five years, GLAS will collect approximately six billion lidar return profiles. The large volume of data dictates that operational analysis algorithms, which need to keep pace with the data yield of the instrument, must be efficient. So, we need to evaluate the ability of operational algorithms to detect atmospheric constituents that affect global climate. We have to quantify, in a statistical manner, the accuracy and precision of GLAS cloud and aerosol observations. Our poster presentation will show the results of modeling studies that are designed to reveal the effectiveness and sensitivity of GLAS in detecting various atmospheric cloud and aerosol features. The studies consist of analyzing simulated lidar returns. Simulation cases are constructed either from idealized renditions of atmospheric cloud and aerosol layers or from data obtained by the NASA ER-2 Cloud Lidar System (CLS). The fabricated renditions permit quantitative evaluations of operational algorithms to retrieve cloud and aerosol parameters. The use of observational data permits the evaluations of performance for actual atmospheric conditions. The intended outcome of the presentation is that climatology community will be able to use the results of these studies to evaluate and quantify the impact of GLAS data upon atmospheric modeling efforts.
Numerical Modeling of Infragravity Wave Runup on Steep and Mildly Sloping Natural Beaches
NASA Astrophysics Data System (ADS)
Fiedler, J. W.; Smit, P.; Brodie, K. L.; McNinch, J.; Guza, R. T.; Gallien, T.
2016-12-01
We present ongoing work which aims to validate the non-hydrostatic model SWASH for wave runup and infragravity waves generated by a range of different incident wave spectra at the offshore boundary, including the effect of finite directional spread. Flume studies of wave runup are limited to normally incident (1D) sea and infragravity waves, but natural waves are directionally spread (2D), with substantially different dynamics from 1D. For example, refractive trapping (edge waves) is only possible with 2D waves, and the bound infragravity wave response to short wave groups is highly amplified for the special case of normal incidence. Selected case studies are modeled at Agate Beach, Oregon, a low slope (1:80) beach with maximum offshore wave heights greater than 7m, and Cardiff, California, a steep (1:8) beach with maximum wave heights of 2m. Peak periods ranged between 5-20 s at both sites. On both beaches, waves were measured on a transect from approximately 10m depth to the runup, using pressure sensors, current meters, and a scanning lidar. Bulk short wave quantities, wave runup, infragravity frequency spectra and energy fluxes are compared with SWASH. On the low slope beach with energetic incident waves, the observed horizontal runup excursions reach 140m ( 100s periods). Swash front velocities reached up to several m/s, causing short waves to stack up during runup drawdown. On reversal of the infragravity phase, the stacked short waves are swept onshore with the long wave front, effectively enhancing runup by phase coupling long and short waves. Statistical variability and nonlinearity in swash generation lead to time-varying runup heights. Here, we test these observations with 2D SWASH, as well as the sensitivity of modeled runup to the parameterization of bottom friction.
NASA Astrophysics Data System (ADS)
Wang, Zhenzhu; Liu, Dong; Wang, Yingjian; Wang, Bangxin; Zhong, Zhiqing; Xie, Chenbo; Wu, Decheng; Bo, Guangyu; Shao, Jie
2014-11-01
A Dual-wavelength Mie Polarization Raman Lidar has been developed for cloud and aerosol optical properties measurement. This idar system has built in Hefei and passed the performance assessment in 2012, and then moved to Jinhua city to carry out the long-term continuous measurements of vertical distribution of regional cloud and aerosol. A double wavelengths (532 and 1064 nm) Nd-YAG laser is employed as emitting source and four channels are used for detecting back-scattering signals from atmosphere aerosol and cloud including 1064 nm Mie, 607 nm N2 Raman, two 532 nm Orthogonal Polarization channels. The temporal and spatial resolutions for this system, which is operating with a continuing mode (24/7) automatically, are 30s and 7.5m, respectively. The measured data are used for investigating the aerosol and cloud vertical structure and cloud phase from combining of cloud signal intensity, polarization ratio and color ratio.
NASA Astrophysics Data System (ADS)
Manuri, Solichin; Andersen, Hans-Erik; McGaughey, Robert J.; Brack, Cris
2017-04-01
The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition can vary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed the effect of lidar return density on the accuracy of lidar metrics and regression models for estimating aboveground biomass (AGB) and basal area (BA) in tropical peat swamp forests (PSF) in Kalimantan, Indonesia. A large dataset of ALS covering an area of 123,000 ha was used in this study. This study found that cumulative return proportion (CRP) variables represent a better accumulation of AGB over tree heights than height-related variables. The CRP variables in power models explained 80.9% and 90.9% of the BA and AGB variations, respectively. Further, it was found that low-density (and low-cost) lidar should be considered as a feasible option for assessing AGB and BA in vast areas of flat, lowland PSF. The performance of the models generated using reduced return densities as low as 1/9 returns per m2 also yielded strong agreement with the original high-density data. The use model-based statistical inferences enabled relatively precise estimates of the mean AGB at the landscape scale to be obtained with a fairly low-density of 1/4 returns per m2, with less than 10% standard error (SE). Further, even when very low-density lidar data was used (i.e., 1/49 returns per m2) the bias of the mean AGB estimates were still less than 10% with a SE of approximately 15%. This study also investigated the influence of different DTM resolutions for normalizing the elevation during the generation of forest-related lidar metrics using various return densities point cloud. We found that the high-resolution digital terrain model (DTM) had little effect on the accuracy of lidar metrics calculation in PSF. The accuracy of low-density lidar metrics in PSF was more influenced by the density of aboveground returns, rather than the last return. This is due to the flat topography of the study area. The results of this study will be valuable for future economical and feasible assessments of forest metrics over large areas of tropical peat swamp ecosystems.
NASA Astrophysics Data System (ADS)
Rosoldi, Marco; Madonna, Fabio; Pappalardo, Gelsomina; Vande Hey, Joshua; Zheng, Yunhui; Vaisala Team
2017-04-01
Knowledge of aerosol spatio-temporal distribution in troposphere is essential for the study of climate and air quality. For this purpose, global scale high resolution continuous measurements of tropospheric aerosols are needed. Global coverage high resolution networks of ground-based low-cost and low-maintenance remote sensing instruments, such as commercial automatic lidars and ceilometers, can strongly contribute to this scientific mission. Therefore, it is very interesting for scientific community to understand to which extent these instruments are able to provide reliable aerosol measurements and fill in the geographical gaps of existing networks of the advanced lidars, like EARLINET (European Aerosol Research LIdar NETwork). The INTERACT-II (INTERcomparison of Aerosol and Cloud Tracking) campaign, carried out at CIAO (CNR-IMAA Atmospheric Observatory) in Tito Scalo, Potenza, Italy (760m a.s.l., 40.60°N, 15.72°E), aims to evaluate the performances of commercial automatic lidars and ceilometers for tropospheric aerosol profiling. The campaign has been performed in the period from July 2016 to January 2017 in the framework of ACTRIS-2 (Aerosol Clouds Trace gases Research InfraStructure) H2020 research infrastructure project. Besides the commercial ceilometers operational at CIAO (VAISALA CT25K and Luftt CHM15k), the performance of a CL51 VAISALA ceilometer, a Campbell CS135 ceilometer and a mini-Micro Pulse Lidar (MPL) have been assessed using the EARLINET multi-wavelengths Raman lidars operative at CIAO as reference. Following a similar approach used in the first INTERACT campaign (Madonna et al., AMT 2015), attenuated backscatter coefficient profiles and signals obtained from all the instruments have been compared, over a vertical resolution of 60 meters and a temporal integration ranging between 1 and 2 hours, depending on the observed atmospheric scenario. CIAO lidars signals have been processed using the EARLINET Single Calculus Chain (SCC) also with the aim to improve the data consistency and comparability (D'Amico et al., 2016; Mattis et al., 2016). A first statistical analysis of simultaneous observations performed by all the instruments during the campaign reveals that ceilometers have fairly good performances in aerosol profiling in the lower troposphere, up to an altitude of about 2000 m above the ground, but they are limited at higher altitudes. Among the considered devices, the mini-MPL shows the best performances with discrepancies limited to 10 % throughout the troposphere. Further analysis is ongoing also to assess the stability of the considered lidar technologies with respect to variation of working and environment temperature, aerosol loading, laser operation.
Planetary and Gravity Waves in the Mesosphere and Lower Thermosphere
NASA Technical Reports Server (NTRS)
Vincent, R. A.
1985-01-01
Rocket and ground based studies of the mesosphere and lower thermosphere show that waves play an important role in the dynamics of their region. The waves manifest themselves in wind, temperature, density, pressure, ionization and airglow fluctuations in the 80-120 km height range. Rockets have enabled the density and temperature structure to be measured with excellent height resolution, while long term studies of wind motions using MST, partial reflection and meteor radars and, more recently, lidar investigations of temperature and density, have enabled the temporal behaviour of the waves to be better understood. A composite of power spectra is shown of wind motions measured near the mesopause at widely separated locations and illustrates how wave energy is distributed as a function of frequency. The spectra show three distinct parts; (1) a long period section corresponding to periods longer than 24 h; (2) a section between 12 and 24 h priod where the spectra are dominated by narrow; peaks associated with the semidiurnal and diurnal tides and (3) a section at periods less than 12 h where the spectral density decreases montonically (except for the 8 h tidal peak). The long period section is associated with transient planetary scale waves while the short period motions are caused by gravity waves.
NASA Astrophysics Data System (ADS)
Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.
2015-12-01
Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.
Real-time surveillance system for marine environment based on HLIF LiDAR
NASA Astrophysics Data System (ADS)
Babichenko, Sergey; Sobolev, Innokenti; Aleksejev, Valeri; Sõro, Oliver
2017-10-01
The operational monitoring of the risk areas of marine environment requires cost-effective solutions. One of the options is the use of sensor networks based on fixed installations and moving platforms (coastal boats, supply-, cargo-, and passenger vessels). Such network allows to gather environmental data in time and space with direct links to operational activities in the controlled area for further environmental risk assessment. Among many remote sensing techniques the LiDAR (Light Detection And Ranging) based on Light Induced Fluorescence (LIF) is the tool of direct assessment of water quality variations caused by chemical pollution, colored dissolved organic matter, and phytoplankton composition. The Hyperspectral LIF (HLIF) LiDAR acquires comprehensive LIF spectra and analyses them by spectral pattern recognition technique to detect and classify the substances in water remotely. Combined use of HLIF LiDARs with Real-Time Data Management System (RTDMS) provides the economically effective solution for the regular monitoring in the controlled area. OCEAN VISUALS in cooperation with LDI INNOVATION has developed Oil in Water Locator (OWL™) with RTDMS (OWL MAP™) based on HLIF LiDAR technique. This is a novel technical solution for monitoring of marine environment providing continuous unattended operations. OWL™ has been extensively tested on board of various vessels in the North Sea, Norwegian Sea, Barents Sea, Baltic Sea and Caribbean Sea. This paper describes the technology features, the results of its operational use in 2014-2017, and outlook for the technology development.
NASA Astrophysics Data System (ADS)
Cooper, C.; Nayegandhi, A.; Faux, R.
2013-12-01
Small-footprint, green wavelength airborne LiDAR systems can provide seamless topography across the land-water interface at very high spatial resolution. These data have the potential to improve floodplain modeling, fisheries habitat assessments, stream restoration efforts, and other applications by continuously mapping shallow water depths that are difficult or impossible to measure using traditional ground-based or water-borne survey techniques. WSI (Corvallis, Oregon) in collaboration with Dewberry, (Tampa, Florida) and Riegl (Orlando, Florida), deployed the Riegl VQ-820-G hydrographic airborne laser scanner to map riverine and lacustrine environments from Oregon to Minnesota. Discussion will focus on the ability to accurately map depth and underwater structure, as well as riparian vegetation and terrain under different conditions. Results indicate that depth penetration varies with both water (i.e. clarity and surface conditions) and bottom conditions (i.e. substrate, depth, and landform). Depth penetration was typically limited to 1 Secchi depth or less across selected project areas. As an example, the green LiDAR system effectively mapped 83% of a shallow water river system, the Sandy River, with typical depths ranging from 0-2.5 meters. WSI will show quantitative comparisons of Green LiDAR surveys against more traditional methods such as rod or sonar surveys. WSI will also discuss advantages and limitations of Green LiDAR surveys for bathymetric modeling including survey accuracy, density, and efficiency along with data processing challenges not inherent with traditional NIR LiDAR processing.
Ancellet, G; Ravetta, F
2003-02-01
Ozone vertical profiling with a lidar is well adapted to the spatial and temporal O3 variability analysis either in the free troposphere, when studying the respective impact of chemical production and dynamical processes, or in the planetary boundary layer (PBL) when characterizing the diurnal evolution of ozone plumes during pollution episodes. Comparisons with other measuring techniques (ozonesonde and aircraft in-situ measurements) demonstrate the lidar ability to characterize narrow layers (< 500 m) with a good accuracy (deltaO3 < 5-10 ppb). Application of airborne or ground-based operation of the CNRS airborne ozone lidar show its ability (i) to observe O3 layering above the PBL during two field experiments held to study air pollution in the Po Valley, Northern Italy, and the city of Marseille, Southern France, (ii) to improve airborne campaign planning (real time information on position of O3 layers) and analysis (three-dimensional perspective for layers detected by in-situ measurements) when chemical characterization of narrow O3 layers in the free troposphere is sought, (iii) to map O3 inhomogeneity down to an horizontal scale of 10-20 km within or above the polluted PBL by airborne measurements. For O3 pollution studies, understanding the origin and the life cycle of O3 layering is the first priority, and in this case the optimum use of the lidar remains the continuous operation of a ground-based instrument.
NASA Astrophysics Data System (ADS)
Eswaraiah, S.; Venkata Chalapathi, G.; Niranjan Kumar, K.; Venkat Ratnam, M.; Kim, Yong Ha; Vishnu Prasanth, P.; Lee, Jaewook; Rao, S. V. B.
2018-04-01
We have utilized the Gadanki MST Radar and Rayleigh LIDAR to understand the vertical coupling between the lower atmosphere and mesosphere through the short-period gravity waves (GWs). The short-period GWs (20 min-2 h) are noticed both in the troposphere and in the mesosphere during the deep convection. During the convection, the large vertical velocities (>5 m/s) and significant variations in the momentum flux (∼3 m2/s2) are noticed in the troposphere and higher fluxes (∼45 m2/s2) are evidenced in the mesosphere. The observations suggest the vertical coupling between the lower and middle atmosphere during convection.
Remote sensing of atmospheric winds using a coherent, CW lidar and speckle-turbulence interaction
NASA Technical Reports Server (NTRS)
Holmes, J. F.; Amzajerdian, F.; Gudimetla, V. S. R.; Hunt, J. M.
1986-01-01
Speckle turbulence interaction has the potential for allowing single ended remote sensing of the path averaged vector crosswind in a plane perpendicular to the line of sight to a target. If a laser transmitter is used to illuminate a target, the resultant speckle field generated by the target is randomly perturbed by the atmospheric turbulence as it propagates back to the location of the transmitter-receiver. When a cross wind is present, this scintillation pattern will move with time across the receiver. A continuous wave (cw) laser transmitter of modest power level in conjunction with optical heterodyne detection was used to exploit the speckel turbulence interaction and measure the crosswind. The use of a cw transmitter at 10.6 microns and optical heterodyne detection has many advantages over direct detection and a double pulsed source in the visible or near infrared. These advantages include the availability of compact, reliable and inexpensive transmitters, better penetration of smoke, dust and fog; stable output power; low beam pointing jitter; and considerably reduced complexity in the receiver electronics.
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.
2011-01-01
NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a pseudo noise (PN) code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths.
Monolithic all-fiber repetition-rate tunable gain-switched single-frequency Yb-doped fiber laser.
Hou, Yubin; Zhang, Qian; Qi, Shuxian; Feng, Xian; Wang, Pu
2016-12-12
We report a monolithic gain-switched single-frequency Yb-doped fiber laser with widely tunable repetition rate. The single-frequency laser operation is realized by using an Yb-doped distributed Bragg reflection (DBR) fiber cavity, which is pumped by a commercial-available laser diode (LD) at 974 nm. The LD is electronically modulated by the driving current and the diode output contains both continuous wave (CW) and pulsed components. The CW component is set just below the threshold of the single-frequency fiber laser for reducing the requirement of the pump pulse energy. Above the threshold, the gain-switched oscillation is trigged by the pulsed component of the diode. Single-frequency pulsed laser output is achieved at 1.063 μm with a pulse duration of ~150 ns and a linewidth of 14 MHz. The repetition rate of the laser output can be tuned between 10 kHz and 400 kHz by tuning the electronic trigger signal. This kind of lasers shows potential for the applications in the area of coherent LIDAR etc.
NASA Technical Reports Server (NTRS)
Manson, A. H.; Meek, C. E.
1989-01-01
A real time winds (RTW) system from Saskatoon operated with the Tromsoe M.F. (partial reflection) radar on a continuous basis, June to December 1987. Profiles with 3 km resolution were obtained every 5 minutes with weak ionization, and few geomagnetic disturbances limited the observations normally to 80 to 110 km. However, daily mean winds, tidal characteristics (24, 12 h) such as amplitudes, phases and wavelengths, and gravity wave characteristics (intensities, mean directions) are available throughout this interval, which includes MAC-SINE and Epsilon. This is particularly valuable in defining the background state for some experiments, e.g., rockets, and for comparison with related parameters from the lidar and other radars (EISCAT, SOUSY-VHF). Comparisons with dynamical parameters from Saskatoon (52 N) are made: the zonal circulation was weaker at Tromsoe, tidal amplitudes smaller, and summer 12 h tidal wavelengths shorter (approx. 80 km vs approx. 100 km). The fall transition for this tide occurred in September, earlier than observed elsewhere. Initial comparisons with other experimental systems are also made.
NASA Astrophysics Data System (ADS)
Laurenzis, Martin; Hengy, Sebastien; Hommes, Alexander; Kloeppel, Frank; Shoykhetbrod, Alex; Geibig, Thomas; Johannes, Winfried; Naz, Pierre; Christnacher, Frank
2017-05-01
Small unmanned aerial vehicles (UAV) flying at low altitude are becoming more and more a serious threat in civilian and military scenarios. In recent past, numerous incidents have been reported where small UAV were flying in security areas leading to serious danger to public safety or privacy. The detection and tracking of small UAV is a widely discussed topic. Especially, small UAV flying at low altitude in urban environment or near background structures and the detection of multiple UAV at the same time is challenging. Field trials were carried out to investigate the detection and tracking of multiple UAV flying at low altitude with state of the art detection technologies. Here, we present results which were achieved using a heterogeneous sensor network consisting of acoustic antennas, small frequency modulated continuous wave (FMCW) RADAR systems and optical sensors. While acoustics, RADAR and LiDAR were applied to monitor a wide azimuthal area (360°) and to simultaneously track multiple UAV, optical sensors were used for sequential identification with a very narrow field of view.
NASA Astrophysics Data System (ADS)
Rapp, Markus; Dörnbrack, Andreas; Kaifler, Bernd
2018-02-01
Temperature profiles based on radio occultation (RO) measurements with the operational European METOP satellites are used to derive monthly mean global distributions of stratospheric (20-40 km) gravity wave (GW) potential energy densities (EP) for the period July 2014-December 2016. In order to test whether the sampling and data quality of this data set is sufficient for scientific analysis, we investigate to what degree the METOP observations agree quantitatively with ECMWF operational analysis (IFS data) and reanalysis (ERA-Interim) data. A systematic comparison between corresponding monthly mean temperature fields determined for a latitude-longitude-altitude grid of 5° by 10° by 1 km is carried out. This yields very low systematic differences between RO and model data below 30 km (i.e., median temperature differences is between -0.2 and +0.3 K), which increases with height to yield median differences of +1.0 K at 34 km and +2.2 K at 40 km. Comparing EP values for three selected locations at which also ground-based lidar measurements are available yields excellent agreement between RO and IFS data below 35 km. ERA-Interim underestimates EP under conditions of strong local mountain wave forcing over northern Scandinavia which is apparently not resolved by the model. Above 35 km, RO values are consistently much larger than model values, which is likely caused by the model sponge layer, which damps small-scale fluctuations above ˜ 32 km altitude. Another reason is the well-known significant increase of noise in RO measurements above 35 km. The comparison between RO and lidar data reveals very good qualitative agreement in terms of the seasonal variation of EP, but RO values are consistently smaller than lidar values by about a factor of 2. This discrepancy is likely caused by the very different sampling characteristics of RO and lidar observations. Direct comparison of the global data set of RO and model EP fields shows large correlation coefficients (0.4-1.0) with a general degradation with increasing altitude. Concerning absolute differences between observed and modeled EP values, the median difference is relatively small at all altitudes (but increasing with altitude) with an exception between 20 and 25 km, where the median difference between RO and model data is increased and the corresponding variability is also found to be very large. The reason for this is identified as an artifact of the EP algorithm: this erroneously interprets the pronounced climatological feature of the tropical tropopause inversion layer (TTIL) as GW activity, hence yielding very large EP values in this area and also large differences between model and observations. This is because the RO data show a more pronounced TTIL than IFS and ERA-Interim. We suggest a correction for this effect based on an estimate of this artificial
EP using monthly mean zonal mean temperature profiles. This correction may be recommended for application to data sets that can only be analyzed using a vertical background determination method such as the METOP data with relatively scarce sampling statistics. However, if the sampling statistics allows, our analysis also shows that in general a horizontal background determination is advantageous in that it better avoids contributions to EP that are not caused by gravity waves.
NASA Astrophysics Data System (ADS)
Geiß, Alexander; Wiegner, Matthias
2014-05-01
The knowledge of the spatiotemporal distribution of atmospheric aerosols and its optical characterization is essential for the understanding of the radiation budget, air quality, and climate. For this purpose, lidar is an excellent system as it is an active remote sensing technique. As multi-wavelength research lidars with depolarization channels are quite complex and cost-expensive, increasing attention is paid to so-called ceilometers. They are simple one-wavelength backscatter lidars with low pulse energy for eye-safe operation. As maintenance costs are low and continuous and unattended measurements can be performed, they are suitable for long-term aerosol monitoring in a network. However, the signal-to-noise ratio is low, and the signals are not calibrated. The only optical property that can be derived from a ceilometer is the particle backscatter coefficient, but even this quantity requires a calibration of the signals. With four years of measurements from a Jenoptik ceilometer CHM15k-x, we developed two methods for an absolute calibration on this system. This advantage of our approach is that only a few days with favorable meteorological conditions are required where Rayleigh-calibration and comparison with our research lidar is possible to estimate the lidar constant. This method enables us to derive the particle backscatter coefficient at 1064 nm, and we retrieved for the first time profiles in near real-time within an accuracy of 10 %. If an appropriate lidar ratio is assumed the aerosol optical depth of e.g. the mixing layer can be determined with an accuracy depending on the accuracy of the lidar ratio estimate. Even for 'simple' applications, e.g. assessment of the mixing layer height, cloud detection, detection of elevated aerosol layers, the particle backscatter coefficient has significant advantages over the measured (uncalibrated) attenuated backscatter. The possibility of continuous operation under nearly any meteorological condition with temporal resolution in the order of 30 seconds makes it also possible to apply time-height-tracking methods for detecting mixing layer heights. The combination of methods for edge detection (e.g. wavelet covariance transform, gradient method, variance method) and edge tracking techniques is used to increase the reliability of the layer detection and attribution. Thus, a feature mask of aerosols and clouds can be derived. Four years of measurements constitute an excellent basis for a climatology including a homogeneous time series of mixing layer heights, aerosol layers and cloud base heights of the troposphere. With a low overlap region of 180 m of the Jenoptik CHM15k-x even very narrow mixing layers, typical for winter conditions, can be considered.
CO2 lidar observations of Mount Pinatubo debris: FIRE 2 and longer-term measurements
NASA Technical Reports Server (NTRS)
Levinson, David H.; Post, Madison J.; Grund, Christian J.
1993-01-01
The volcanic debris in the stratosphere from the June 1991 eruption of Mt. Pinatubo first appeared over the NOAA Wave Propagation Laboratory (WPL) field site near Boulder, Colorado (40.15 N, 105.23 W), in July of 1991. The presence of the Pinatubo cloud has allowed us to characterize both the tropospheric and stratospheric aerosol backscatter using the NOAA/WPL CO2 Doppler lidar. The lidar has measured vertical backscatter profiles at lambda = 10.59 mu m for over a decade. Analysis of this dense set of profiles reveals the effects of atmospheric and microphysical processes during the buildup and decay of Mt. Pinatubo's clouds. Further information on the NOAA lidar, specifically calibrations using a hard target, can be found in Post and Cupp (1990). We present results of those measurements for June 15, 1991, through December 31, 1992. During that period of longer-term measurements, WPL took part in FIRE II (First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment II), from November 12 through December 8, 1991, measuring vertical backscatter profiles almost daily. One of the mechanisms for purging stratospheric aerosols is tropopause folding, which occurs in cold-core extratropical cyclones. Tropospheric mass loading occurs during folding events which can substantially increase the amount of ice nuclei in the upper troposphere, and may affect the formation of cirrus in that region. Spring and fall are prominent times for tropopause folding events because of the migration of the subtropical and polar jet streams during the transition seasons. Sassen has suggested that the volcanic aerosols from Pinatubo played a role in the formation of cirrus during FIRE II, particularly during a period of moist subtropical flow on December 5-6, 1991.
NASA Astrophysics Data System (ADS)
Urbanek, Benedikt; Groß, Silke; Wirth, Martin
2017-04-01
Cirrus clouds impose high uncertainties on weather and climate prediction, as knowledge on important processes is still incomplete. For instance it remains unclear how cloud optical, microphysical, and radiative properties change as the cirrus evolves. To gain better understanding of cirrus clouds, their optical and microphysical properties and their changes with cirrus cloud evolution the ML-CIRRUS campaign was conducted in March and April 2014. Measurements with a combined in-situ and remote sensing payload were performed with the German research aircraft HALO based in Oberpfaffenhofen. 16 research flights with altogether 88 flight hours were performed over the North-Atlantic, western and central Europe to probe different cirrus cloud regimes and cirrus clouds at different stages of evolution. One of the key remotes sensing instruments during ML-CIRRUS was the airborne differential absorption and high spectral lidar system WALES. It measures the 2-dimensional distribution of water vapor inside and outside of cirrus clouds as well as the optical properties of the clouds. Bases on these airborne lidar measurements a novel classification scheme to derive the stage of cirrus cloud evolution was developed. It identifies regions of ice nucleation, particle growth by deposition of water vapor, and ice sublimation. This method is used to investigate differences in the distribution and value of optical properties as well as in the distribution of water vapor and relative humidity depending on the stage of evolution of the cloud. We will present the lidar based classification scheme and its application on a wave driven cirrus cloud case, and we will show first results of the dependence of optical cloud properties and relative humidity distributions on the determined stage of evolution.
Stockdon, H.F.; Doran, K.S.; Sallenger, A.H.
2009-01-01
The morphology of coastal sand dunes plays an important role in determining how a beach will respond to a hurricane. Accurate measurements of dune height and position are essential for assessing the vulnerability of beaches to extreme coastal change during future landfalls. Lidar topographic surveys provide rapid, accurate, high-resolution datasets for identifying the location, position, and morphology of coastal sand dunes over large stretches of coast. An algorithm has been developed for identification of the crest of the most seaward sand dune that defines the landward limit of the beach system. Based on changes in beach slope along cross-shore transects of lidar data, dune elevation and location can automatically be extracted every few meters along the coastline. Dune elevations in conjunction with storm-induced water levels can be used to predict the type of coastal response (e.g., beach erosion, dune erosion, overwash, or inundation) that may be expected during hurricane landfall. The vulnerability of the beach system at Fire Island National Seashore in New York to the most extreme of these changes, inundation, is assessed by comparing lidar-derived dune elevations to modeled wave setup and storm surge height. The vulnerability of the beach system to inundation during landfall of a Category 3 hurricane is shown to be spatially variable because of longshore variations in dune height (mean elevation 5.44 m, standard deviation 1.32 m). Hurricane-induced mean water levels exceed dune elevations along 70 of the coastal park, making these locations more vulnerable to inundation during a Category 3 storm. ?? 2009 Coastal Education and Research Foundation.
LiDAR Vegetation Investigation and Signature Analysis System (LVISA)
NASA Astrophysics Data System (ADS)
Höfle, Bernhard; Koenig, Kristina; Griesbaum, Luisa; Kiefer, Andreas; Hämmerle, Martin; Eitel, Jan; Koma, Zsófia
2015-04-01
Our physical environment undergoes constant changes in space and time with strongly varying triggers, frequencies, and magnitudes. Monitoring these environmental changes is crucial to improve our scientific understanding of complex human-environmental interactions and helps us to respond to environmental change by adaptation or mitigation. The three-dimensional (3D) description of the Earth surface features and the detailed monitoring of surface processes using 3D spatial data have gained increasing attention within the last decades, such as in climate change research (e.g., glacier retreat), carbon sequestration (e.g., forest biomass monitoring), precision agriculture and natural hazard management. In all those areas, 3D data have helped to improve our process understanding by allowing quantifying the structural properties of earth surface features and their changes over time. This advancement has been fostered by technological developments and increased availability of 3D sensing systems. In particular, LiDAR (light detection and ranging) technology, also referred to as laser scanning, has made significant progress and has evolved into an operational tool in environmental research and geosciences. The main result of LiDAR measurements is a highly spatially resolved 3D point cloud. Each point within the LiDAR point cloud has a XYZ coordinate associated with it and often additional information such as the strength of the returned backscatter. The point cloud provided by LiDAR contains rich geospatial, structural, and potentially biochemical information about the surveyed objects. To deal with the inherently unorganized datasets and the large data volume (frequently millions of XYZ coordinates) of LiDAR datasets, a multitude of algorithms for automatic 3D object detection (e.g., of single trees) and physical surface description (e.g., biomass) have been developed. However, so far the exchange of datasets and approaches (i.e., extraction algorithms) among LiDAR users lacks behind. We propose a novel concept, the LiDAR Vegetation Investigation and Signature Analysis System (LVISA), which shall enhance sharing of i) reference datasets of single vegetation objects with rich reference data (e.g., plant species, basic plant morphometric information) and ii) approaches for information extraction (e.g., single tree detection, tree species classification based on waveform LiDAR features). We will build an extensive LiDAR data repository for supporting the development and benchmarking of LiDAR-based object information extraction. The LiDAR Vegetation Investigation and Signature Analysis System (LVISA) uses international web service standards (Open Geospatial Consortium, OGC) for geospatial data access and also analysis (e.g., OGC Web Processing Services). This will allow the research community identifying plant object specific vegetation features from LiDAR data, while accounting for differences in LiDAR systems (e.g., beam divergence), settings (e.g., point spacing), and calibration techniques. It is the goal of LVISA to develop generic 3D information extraction approaches, which can be seamlessly transferred to other datasets, timestamps and also extraction tasks. The current prototype of LVISA can be visited and tested online via http://uni-heidelberg.de/lvisa. Video tutorials provide a quick overview and entry into the functionality of LVISA. We will present the current advances of LVISA and we will highlight future research and extension of LVISA, such as integrating low-cost LiDAR data and datasets acquired by highly temporal scanning of vegetation (e.g., continuous measurements). Everybody is invited to join the LVISA development and share datasets and analysis approaches in an interoperable way via the web-based LVISA geoportal.
The GEDI Strategy for Improved Mapping of Forest Biomass and Structure
NASA Astrophysics Data System (ADS)
Dubayah, R.
2017-12-01
In 2014 the Committee on Earth Observation Satellites (CEOS) published a comprehensive report on approaches to meet future requirements for space-based observations of carbon. Entitled the CEOS Strategy for Carbon Observations from Space and endorsed by its member space agencies, the report outlines carbon information needs for climate and other policy, and how these needs may be met through existing and planned satellite missions. The CEOS Strategymakes recommendations for new, high-priority measurements. Among these is that space-based measurements using lidar should have priority to provide information on height, structure and biomass, complementing the existing and planned suite of SAR missions, such as the NASA NISAR and ESA BIOMASS missions. NASA's Global Ecosystem Dynamics Investigation (GEDI) directly meets this challenge. Scheduled for launch in late 2018 for deployment on the International Space Station, GEDI will provide more than 12 billion observations of canopy height, vertical structure and topography using a 10-beam lidar optimized for ecosystem measurements. Central to the success of GEDI is the development of calibration equations that relate observed forest structure to biomass at a variety of spatial scales. GEDI creates these calibrations by combining a large data base of field plot measurements with coincident airborne lidar observations that are used to simulate GEDI lidar waveforms. GEDI uses these relatively sparse footprint estimates of structure and biomass to create lower resolution, but spatially continuous grids of structure and biomass. GEDI is also developing radar/lidar fusion algorithms to produce higher-resolution, spatially continuous estimates of canopy height and biomass in collaboration with the German Aerospace Center (DLR). In this talk we present the current status of the GEDI calibration and validation program, and its approach for fusing its observations with the next generation of SAR sensors for improved mapping of forest structure from space. As stressed by the CEOS Strategy, the success of these efforts will critically depend on enhanced intra- and inter-mission calibration and validation activities, underpinned by an expanding network of in situ field observations, such as being implemented by GEDI.
Laser Remote Sensing From ISS: CATS Cloud and Aerosol Level 2 Data Products (Heritage Edition)
NASA Technical Reports Server (NTRS)
Rodier, Sharon; Vaughan, Mark; Palm, Steve; Jensen, Mike; Yorks, John; McGill, Matt; Trepte, Chip; Murray, Tim; Lee, Kam-Pui
2015-01-01
The Cloud-Aerosol Transport System (CATS) instrument was developed at NASA's Goddard Space Flight Center (GSFC) and deployed to the International Space Station (ISS) on 10 January 2015. CATS is mounted on the Japanese Experiment Module's Exposed Facility (JEM_EF) and will provide near-continuous, altitude-resolved measurements of clouds and aerosols in the Earth's atmosphere. The CATS ISS orbit path provides a unique opportunity to capture the full diurnal cycle of cloud and aerosol development and transport, allowing for studies that are not possible with the lidar aboard the CALIPSO platform, which flies in the sun-synchronous A-Train orbit." " One of the primary science objectives of CATS is to continue the CALIPSO aerosol and cloud profile data record to provide continuity of lidar climate observations during the transition from CALIPSO to EarthCARE. To accomplish this, the CATS project at NASA's Goddard Space Flight Center (GSFC) and the CALIPSO project at NASA's Langley Research Center (LaRC) are closely collaborating to develop and deliver a full suite of CALIPSO-like level 2 data products that will be produced using the newly acquired CATS level 1B data whenever CATS is operating in science modes 1. The CALIPSO mission is now well into its ninth year of on-orbit operations, and has developed a robust set of mature and well-validated science algorithms to retrieve the spatial and optical properties of clouds and aerosols from multi-wavelength lidar backscatter signals. By leveraging both new and existing NASA technical resources, this joint effort by the CATS and CALIPSO teams will deliver validated lidar data sets to the user community at the earliest possible opportunity. The science community will have access to two sets of CATS Level 2 data products. The "Operational" data products will be produced by the GSFC CATS team utilizing the new instrument capabilities (e.g., multiple FOVs and 1064 nm depolarization), while the "Heritage" data products created using the existing CALIPSO algorithms and the CATS 532 nm channels and the total 1064 nm channel. " Below is the development of the CATS "Heritage" level 2 software and data along with some initial results with operational data."
NASA Technical Reports Server (NTRS)
Pagan, Kathy L.; Tabazadeh, Azadeh; Drdla, Katja; Hervig, Mark E.; Eckermann, Stephen D.; Browell, Edward V.; Legg, Marion J.; Foschi, Patricia G.
2004-01-01
A number of recently published papers suggest that mountain-wave activity in the stratosphere, producing ice particles when temperatures drop below the ice frost point, may be the primary source of large NAT particles. In this paper we use measurements from the Advanced Very High Resolution Radiometer (AVHRR) instruments on board the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites to map out regions of ice clouds produced by stratospheric mountain-wave activity inside the Arctic vortex. Lidar observations from three DC-8 flights in early December 1999 show the presence of solid nitric acid (Type Ia or NAT) polar stratospheric clouds (PSCs). By using back trajectories and superimposing the position maps on the AVHRR cloud imagery products, we show that these observed NAT clouds could not have originated at locations of high-amplitude mountain-wave activity. We also show that mountain-wave PSC climatology data and Mountain Wave Forecast Model 2.0 (MWFM-2) raw hemispheric ray and grid box averaged hemispheric wave temperature amplitude hindcast data from the same time period are in agreement with the AVHRR data. Our results show that ice cloud formation in mountain waves cannot explain how at least three large scale NAT clouds were formed in the stratosphere in early December 1999.
NASA Technical Reports Server (NTRS)
Hlavka, Dennis L.; Palm, S. P.; Welton, E. J.; Hart, W. D.; Spinhirne, J. D.; McGill, M.; Mahesh, A.; Starr, David OC. (Technical Monitor)
2001-01-01
The Geoscience Laser Altimeter System (GLAS) is scheduled for launch on the ICESat satellite as part of the NASA EOS mission in 2002. GLAS will be used to perform high resolution surface altimetry and will also provide a continuously operating atmospheric lidar to profile clouds, aerosols, and the planetary boundary layer with horizontal and vertical resolution of 175 and 76.8 m, respectively. GLAS is the first active satellite atmospheric profiler to provide global coverage. Data products include direct measurements of the heights of aerosol and cloud layers, and the optical depth of transmissive layers. In this poster we provide an overview of the GLAS atmospheric data products, present a simulated GLAS data set, and show results from the simulated data set using the GLAS data processing algorithm. Optical results from the ER-2 Cloud Physics Lidar (CPL), which uses many of the same processing algorithms as GLAS, show algorithm performance with real atmospheric conditions during the Southern African Regional Science Initiative (SAFARI 2000).
NASA Technical Reports Server (NTRS)
Kaufman, Yoram; Mattoo, Shana; Tanre, Didier; Kleidman, Richard; Lau, William K. M. (Technical Monitor)
2001-01-01
The ESSP3-CENA space mission (formally PICASSO-CENA) will provide continues global observations with a two wavelength lidar. The attenuated backscattering coefficients measured by the lidar, have valuable information about the vertical distribution of aerosol particles and their sizes. However the information cannot be mapped into unique aerosol physical properties. Infinite number of physical solutions with different attenuations through the atmosphere can reconstruct the same two wavelength backscattered profile measured from space. Spectral radiance measured by MODIS simultaneously with the ESSP3 data can constrain the problem and resolve this ambiguity to a large extent. Sensitivity study shows that inversion of the integrated MODIS+ESSP3 data can derive the vertical profiles of the fine and coarse modes mixed in the same atmospheric column in the presence of moderate calibration uncertainties and electronic noise (approx. 10%). We shall present the sensitivity study and results from application of the technique to measurements in the SAFARI-2000 and SHADE experiments.
An Overview of the Micro Pulse Lidar Network (MPLNET)
NASA Technical Reports Server (NTRS)
Welton, Ellsworth
2010-01-01
The NASA Micro Pulse Lidar Network (MPLNET) is a federated network of Micro Pulse Lidar (MPL) systems designed to measure aerosol and cloud vertical structure continuously, day and night, over long time periods required to contribute to climate change studies and provide ground validation for models and satellite sensors in the NASA Earth Observing System (FOS). At present, there are eighteen active sites worldwide, and several more in the planning stage. Numerous temporary sites are deployed in support of various field campaigns. Most MPLNET sites are co-located with sites in the NASA Aerosol Robotic Network (AERONET) to provide both column and vertically resolved aerosol and cloud data. MPLNET data and more information on the project are available at http://mpinet.gsfc.nasa.gov . Here we present a summary of the first ten years of MPLNET, along with an overview of our current status, specifically our version two data products and applications. Future network plans will be presented, with a focus on our activities in South East Asia.
2010-09-01
Electra Doppler Radar (ELDORA), dropwindsonde capability, a Doppler wind lidar , and the ability to collect flight-level data] flew aircraft research...ELDORA Electra Doppler Radar ECMWF European Center for Medium-range Weather Prediction Forecasts ER Equatorial Rossby ERA-40 ECMWF Reanalysis Data...2006) use Dual Doppler radar and rain gauge data to evaluate the performance of the TRMM TMI V6 rainfall algorithm. They 23 conclude that: “In
Terrestrial lidar measurement of an ongoing calving event on Lange Glacier.
NASA Astrophysics Data System (ADS)
Pętlicki, Michał
2017-04-01
Increased tourist and scientific marine traffic along the fronts of tidewater glaciers face a security risk due to possible calving-related hazards. A series of serious accidents involving the falling ice block, calving-generated tsunami wave and the ice projectile impacts were reported. Despite the large interest in calving mechanics, still little is known about the impact range of calving events. Three ongoing calving events on Lange Glacier, King George Island, South Shetland Islands were measured with a terrestrial lidar, giving an insight to the mechanics of the calving processes including the subsequent splash of sea water and the range of ice projectiles released from the front. During the acquisition of the point cloud of the ice front, three calving events of different size occurred. The volume of the calved ice, its potential energy and free-fall velocity was computed and compared with the range of the water splash and ice projectiles. Such measurements can be used in future to mitigate the risk of calving-related marine accidents.
Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements
NASA Astrophysics Data System (ADS)
Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.
2016-06-01
Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgeworth R. Westwater; Kenneth S. Gage; Yong Han
1996-09-06
From January 6 to February 28, 1993, the second phase of the Prototype Radiation Observation Experiment (PROBE) was conducted in Kavieng, Papua New Guinea. Data taken during PROBE included frequent radiosondes, 915 MHz Wind profiler/Radio Acoustic Sounding System (RASS) observations of winds and temperatures, and lidar measurements of cloud-base heights. In addition, a dual-channel Microwave Water Substance Radiometer (MWSR) at 23.87 and 31.65 GHz and a Fourier Transform Infrared Radiometer (FTIR) were operated. The FTIR operated between 500 and 2000 cm{sup -1} and measured some of the first high spectral resolution (1 cm{sup -1}) radiation data taken in the tropics.more » The microwave radiometer provided continuous measurements with 30-second resolution of precipitable water vapor (PWV) and integrated cloud liquid (ICL), the RASS measured virtual temperature profiles every 30 minutes, and the cloud lidar provided episodic measurements of clouds every minute. The RASS, MWSR, and FTIR data taken during PROBE were compared with radiosonde data. Broadband longwave and shortwave irradiance data and lidar data were used to identify the presence of cirrus clouds and clear conditions. Comparisons were made between measured and calculated radiance during clear conditions, using radiosonde data as input to a Line-By-Line Radiative Transfer Model. Comparisons of RASS-measured virtual temperature with radiosonde data revealed a significant cold bias below 500 m.« less
NASA Astrophysics Data System (ADS)
Qi, Zhong; Zhang, Teng; Han, Ge; Li, Dongcang; Ma, Xin; Gong, Wei
2017-04-01
The current acquisition system of a lidar detects return signals in two modes (i.e., analog and photon counting); resulting in the lower (below 1500 m) and upper (higher than 1100 m) atmospheric parameters need analog and photon counting signal to retrieve, respectively. Hence, a lidar cannot obtain a continuous column of the concentrations of atmospheric components. For carbon cycle studies, the range-resolved concentration of atmospheric CO2 in the lower troposphere (below 1500 m) is one of the most significant parameters that should be determined. This study proposes a novel gluing method that merges the CO2 signal detected by ground-based DIAL in the lower troposphere. Through simulation experiments, the best uniform approximation polynomial theorem is utilized to determine the transformation coefficient to correlate signals from the different modes perfectly. The experimental results (both simulation experiments and actual measurement of signals) show that the proposed method is suitable and feasible for merging data in the region below 1500 m. Hence, the photon-counting signals whose SNRs are higher than those of the analog signals can be used to retrieve atmospheric parameters at an increased near range, facilitating atmospheric soundings using ground-based lidar in various fields.
Geodetic imaging with airborne LiDAR: the Earth's surface revealed.
Glennie, C L; Carter, W E; Shrestha, R L; Dietrich, W E
2013-08-01
The past decade has seen an explosive increase in the number of peer reviewed papers reporting new scientific findings in geomorphology (including fans, channels, floodplains and landscape evolution), geologic mapping, tectonics and faulting, coastal processes, lava flows, hydrology (especially snow and runoff routing), glaciers and geo-archaeology. A common genesis of such findings is often newly available decimeter resolution 'bare Earth' geodetic images, derived from airborne laser swath mapping, a.k.a. airborne LiDAR, observations. In this paper we trace nearly a half century of advances in geodetic science made possible by space age technology, such as the invention of short-pulse-length high-pulse-rate lasers, solid state inertial measurement units, chip-based high speed electronics and the GPS satellite navigation system, that today make it possible to map hundreds of square kilometers of terrain in hours, even in areas covered with dense vegetation or shallow water. To illustrate the impact of the LiDAR observations we present examples of geodetic images that are not only stunning to the eye, but help researchers to develop quantitative models explaining how terrain evolved to its present form, and how it will likely change with time. Airborne LiDAR technology continues to develop quickly, promising ever more scientific discoveries in the years ahead.
NASA airborne laser altimetry and ICESat-2 post-launch data validation
NASA Astrophysics Data System (ADS)
Brunt, K. M.; Neumann, T.; Studinger, M.; Hawley, R. L.; Markus, T.
2016-12-01
A series of NASA airborne lidars have made repeated surveys over an 11,000-m ground-based kinematic GPS traverse near Summit Station, Greenland. These ground-based data were used to assess the surface elevation bias and measurement precision of two airborne laser altimeters: Airborne Topographic Mapper (ATM) and Land, Vegetation, and Ice Sensor (LVIS). Data from the ongoing monthly traverses allowed for the assessment of 8 airborne lidar campaigns; elevation biases for these altimeters were less than 12.2 cm, while assessments of surface measurement precision were less than 9.1 cm. Results from the analyses of the Greenland ground-based GPS and airborne lidar data provide guidance for validation strategies for Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products. Specifically, a nested approach to validation is required, where ground-based GPS data are used to constrain the bias and measurement precision of the airborne lidar data; airborne surveys can then be designed and conducted on longer length-scales to provide the amount of airborne data required to make more statistically meaningful assessments of satellite elevation data. This nested validation approach will continue for the ground-traverse in Greenland; further, the ICESat-2 Project Science Office has plans to conduct similar coordinated ground-based and airborne data collection in Antarctica.
Investigating mesospheric mountain wave characteristics over New Zealand during DEEPWAVE
NASA Astrophysics Data System (ADS)
McLaughlin, P.; Taylor, M. J.; Pautet, P. D.; Kaifler, B.; Smith, S. M.
2017-12-01
The Deep Propagating Gravity Wave Experiment, "DEEPWAVE" was an international measurement and modelling program designed to characterize and predict the generation and propagation of a broad range of atmospheric gravity waves (GWs) with measurements extending from the ground to 100 km altitude. An analysis of 2 months of GW image data obtained during 2014 in New Zealand by a ground-based Advanced Mesospheric Temperature Mapper (AMTM) identified 19 events with clear signatures of orographic forcing. This is by far the largest occurrence of MW activity ever recorded at MLT heights. The observed events were quasi-stationary, exhibited a variety of horizontal wavelengths and lasted for > 1 hour. One prior study has reported such waves in the mesosphere over the Andes Mountain Range. We utilize data obtained by a collection of ground-based instrumentation operated at NIWA Lauder Station, NZ [45.0°S] to perform a detailed investigation of the generation and propagation of mountain waves into the upper mesosphere and to quantify their impact on this region using their measured momentum fluxes (MF). Instruments included an AMTM, a Rayleigh Lidar and an all-sky imager. The results focus on the derived MFs, comparing and contrasting their magnitudes and variability under different forcing conditions.
NASA Technical Reports Server (NTRS)
Shelton, J. D.; Gardner, C. S.
1981-01-01
The density response of atmospheric layers to gravity waves is developed in two forms, an exact solution and a perturbation series solution. The degree of nonlinearity in the layer density response is described by the series solution whereas the exact solution gives insight into the nature of the responses. Density perturbation in an atmospheric layer are shown to be substantially greater than the atmospheric density perturbation associated with the propagation of a gravity wave. Because of the density gradients present in atmospheric layers, interesting effects were observed such as a phase reversal in the linear layer response which occurs near the layer peak. Once the layer response is understood, the sodium layer can be used as a tracer of atmospheric wave motions. A two dimensional digital signal processing technique was developed. Both spatial and temporal filtering are utilized to enhance the resolution by decreasing shot noise by more han 10 dB. Many of the features associated with a layer density response to gravity waves were observed in high resolution density profiles of the mesospheric sodium layer. These include nonlinearities as well as the phase reversal in the linear layer response.
Lidar Remote Sensing for Industry and Environment Monitoring
NASA Technical Reports Server (NTRS)
Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)
2000-01-01
Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space Station. 13. Space lidar II: Using coherent Doppler lidar to estimate river discharge. 14. Poster session: Lidar technology, optics for lidar. Laser for lidar. Middle atmosphere observations. Tropospheric observations (aerosols, clouds). Boundary layer, urban pollution. Differential absorption lidar. Doppler lidar. and Space lidar.
Hindcasting Storm-Induced Erosional Hazards for the Outer Banks, NC.
NASA Astrophysics Data System (ADS)
Wetzell, L. M.; Howd, P. A.; Sallenger, A. H.
2002-12-01
The spatial variability of dune response along a section of the NC Outer Banks has been examined for the 1999 Hurricane Dennis. Dennis generated some of the largest wave heights recorded in the past 20 years along the Outer Banks of North Carolina, reaching 6.3 meters (measured at the U.S. Army Corps of Engineers Field Research Facility at Duck, North Carolina). Pre and post-storm topography was measured as part of a joint USGS-NASA program using lidar technology. These data were used to calculate changes in the elevation and location of the dune crest and dune base (Dhi and Dlo). Roughly 66% of the region from Cape Hatteras to Ocracoke Inlet experienced some dune erosion. The spatial variability in dune response is compared to hindcast erosion hazard predictions. Observations of maximum wave conditions are used as input to SWAN, a 3rd generation and shoaling wave model, output from which is used to drive empirical relationships for wave runup. Estimates of hazard potential are derived from Sallenger's recently proposed storm impact scale. The hindcast hazard potentials are then compared to direct observations.
NASA Astrophysics Data System (ADS)
Leblanc, T.; Walsh, T. D.; McDermid, I. S.; Toon, G. C.; Blavier, J.-F.; Haines, B.; Read, W. G.; Herman, B.; Fetzer, E.; Sander, S.; Pongetti, T.; Whiteman, D. N.; McGee, T. G.; Twigg, L.; Sumnicht, G.; Venable, D.; Calhoun, M.; Dirisu, A.; Hurst, D.; Jordan, A.; Hall, E.; Miloshevich, L.; Vömel, H.; Straub, C.; Kampfer, N.; Nedoluha, G. E.; Gomez, R. M.; Holub, K.; Gutman, S.; Braun, J.; Vanhove, T.; Stiller, G.; Hauchecorne, A.
2011-05-01
The Measurements of Humidity in the Atmosphere and Validation Experiment (MOHAVE) 2009 campaign took place on 11-27 October 2009 at the JPL Table Mountain Facility in California (TMF). The main objectives of the campaign were to (1) validate the water vapor measurements of several instruments, including, three Raman lidars, two microwave radiometers, two Fourier-Transform spectrometers, and two GPS receivers (column water), (2) cover water vapor measurements from the ground to the mesopause without gaps, and (3) study upper tropospheric humidity variability at timescales varying from a few minutes to several days. A total of 58 radiosondes and 20 Frost-Point hygrometer sondes were launched. Two types of radiosondes were used during the campaign. Non negligible differences in the readings between the two radiosonde types used (Vaisala RS92 and InterMet iMet-1) made a small, but measurable impact on the derivation of water vapor mixing ratio by the Frost-Point hygrometers. As observed in previous campaigns, the RS92 humidity measurements remained within 5 % of the Frost-point in the lower and mid-troposphere, but were too dry in the upper troposphere. Over 270 h of water vapor measurements from three Raman lidars (JPL and GSFC) were compared to RS92, CFH, and NOAA-FPH. The JPL lidar profiles reached 20 km when integrated all night, and 15 km when integrated for 1 h. Excellent agreement between this lidar and the frost-point hygrometers was found throughout the measurement range, with only a 3 % (0.3 ppmv) mean wet bias for the lidar in the upper troposphere and lower stratosphere (UTLS). The other two lidars provided satisfactory results in the lower and mid-troposphere (2-5 % wet bias over the range 3-10 km), but suffered from contamination by fluorescence (wet bias ranging from 5 to 50 % between 10 km and 15 km), preventing their use as an independent measurement in the UTLS. The comparison between all available stratospheric sounders allowed to identify only the largest biases, in particular a 10 % dry bias of the Water Vapor Millimeter-wave Spectrometer compared to the Aura-Microwave Limb Sounder. No other large, or at least statistically significant, biases could be observed. Total Precipitable Water (TPW) measurements from six different co-located instruments were available. Several retrieval groups provided their own TPW retrievals, resulting in the comparison of 10 different datasets. Agreement within 7 % (0.7 mm) was found between all datasets. Such good agreement illustrates the maturity of these measurements and raises confidence levels for their use as an alternate or complementary source of calibration for the Raman lidars. Tropospheric and stratospheric ozone and temperature measurements were also available during the campaign. The water vapor and ozone lidar measurements, together with the advected potential vorticity results from the high-resolution transport model MIMOSA, allowed the identification and study of a deep stratospheric intrusion over TMF. These observations demonstrated the lidar strong potential for future long-term monitoring of water vapor in the UTLS.
NASA Astrophysics Data System (ADS)
Leblanc, T.; Walsh, T. D.; McDermid, I. S.; Toon, G. C.; Blavier, J.-F.; Haines, B.; Read, W. G.; Herman, B.; Fetzer, E.; Sander, S.; Pongetti, T.; Whiteman, D. N.; McGee, T. G.; Twigg, L.; Sumnicht, G.; Venable, D.; Calhoun, M.; Dirisu, A.; Hurst, D.; Jordan, A.; Hall, E.; Miloshevich, L.; Vömel, H.; Straub, C.; Kampfer, N.; Nedoluha, G. E.; Gomez, R. M.; Holub, K.; Gutman, S.; Braun, J.; Vanhove, T.; Stiller, G.; Hauchecorne, A.
2011-12-01
The Measurements of Humidity in the Atmosphere and Validation Experiment (MOHAVE) 2009 campaign took place on 11-27 October 2009 at the JPL Table Mountain Facility in California (TMF). The main objectives of the campaign were to (1) validate the water vapor measurements of several instruments, including, three Raman lidars, two microwave radiometers, two Fourier-Transform spectrometers, and two GPS receivers (column water), (2) cover water vapor measurements from the ground to the mesopause without gaps, and (3) study upper tropospheric humidity variability at timescales varying from a few minutes to several days. A total of 58 radiosondes and 20 Frost-Point hygrometer sondes were launched. Two types of radiosondes were used during the campaign. Non negligible differences in the readings between the two radiosonde types used (Vaisala RS92 and InterMet iMet-1) made a small, but measurable impact on the derivation of water vapor mixing ratio by the Frost-Point hygrometers. As observed in previous campaigns, the RS92 humidity measurements remained within 5% of the Frost-point in the lower and mid-troposphere, but were too dry in the upper troposphere. Over 270 h of water vapor measurements from three Raman lidars (JPL and GSFC) were compared to RS92, CFH, and NOAA-FPH. The JPL lidar profiles reached 20 km when integrated all night, and 15 km when integrated for 1 h. Excellent agreement between this lidar and the frost-point hygrometers was found throughout the measurement range, with only a 3% (0.3 ppmv) mean wet bias for the lidar in the upper troposphere and lower stratosphere (UTLS). The other two lidars provided satisfactory results in the lower and mid-troposphere (2-5% wet bias over the range 3-10 km), but suffered from contamination by fluorescence (wet bias ranging from 5 to 50% between 10 km and 15 km), preventing their use as an independent measurement in the UTLS. The comparison between all available stratospheric sounders allowed to identify only the largest biases, in particular a 10% dry bias of the Water Vapor Millimeter-wave Spectrometer compared to the Aura-Microwave Limb Sounder. No other large, or at least statistically significant, biases could be observed. Total Precipitable Water (TPW) measurements from six different co-located instruments were available. Several retrieval groups provided their own TPW retrievals, resulting in the comparison of 10 different datasets. Agreement within 7% (0.7 mm) was found between all datasets. Such good agreement illustrates the maturity of these measurements and raises confidence levels for their use as an alternate or complementary source of calibration for the Raman lidars. Tropospheric and stratospheric ozone and temperature measurements were also available during the campaign. The water vapor and ozone lidar measurements, together with the advected potential vorticity results from the high-resolution transport model MIMOSA, allowed the identification and study of a deep stratospheric intrusion over TMF. These observations demonstrated the lidar strong potential for future long-term monitoring of water vapor in the UTLS.
NASA Astrophysics Data System (ADS)
Hofer, Julian; Althausen, Dietrich; Abdullaev, Sabur F.; Makhmudov, Abduvosit N.; Nazarov, Bakhron I.; Schettler, Georg; Engelmann, Ronny; Baars, Holger; Wadinga Fomba, K.; Müller, Konrad; Heinold, Bernd; Kandler, Konrad; Ansmann, Albert
2017-12-01
For the first time, continuous vertically resolved aerosol measurements were performed by lidar in Tajikistan, Central Asia. Observations with the multiwavelength polarization Raman lidar PollyXT were conducted during CADEX (Central Asian Dust EXperiment) in Dushanbe, Tajikistan, from March 2015 to August 2016. Co-located with the lidar, a sun photometer was also operated. The goal of CADEX is to provide an unprecedented data set on vertically resolved aerosol optical properties in Central Asia, an area highly affected by climate change but largely missing vertically resolved aerosol measurements. During the 18-month measurement campaign, mineral dust was detected frequently from ground to the cirrus level height. In this study, an overview of the measurement period is given and four typical but different example measurement cases are discussed in detail. Three of them are dust cases and one is a contrasting pollution aerosol case. Vertical profiles of the measured optical properties and the calculated dust and non-dust mass concentrations are presented. Dust source regions were identified by means of backward trajectory analyses. A lofted layer of Middle Eastern dust with an aerosol optical thickness (AOT) of 0.4 and an extinction-related Ångström exponent of 0.41 was measured. In comparison, two near-ground dust cases have Central Asian sources. One is an extreme dust event with an AOT of 1.5 and Ångström exponent of 0.12 and the other one is a most extreme dust event with an AOT of above 4 (measured by sun photometer) and an Ångström exponent of -0.08. The observed lidar ratios (and particle linear depolarization ratios) in the presented dust cases range from 40.3 to 46.9 sr (and 0.18-0.29) at 355 nm and from 35.7 to 42.9 sr (0.31-0.35) at 532 nm wavelength. The particle linear depolarization ratios indicate almost unpolluted dust in the case of a lofted dust layer and pure dust in the near-ground dust cases. The lidar ratio values are lower than typical lidar ratio values for Saharan dust (50-60 sr) and comparable to Middle Eastern or west-Asian dust lidar ratios (35-45 sr). In contrast, the presented case of pollution aerosol of local origin has an Ångström exponent of 2.07 and a lidar ratio (particle linear depolarization ratio) of 55.8 sr (0.03) at 355 nm and 32.8 sr (0.08) at 532 nm wavelength.
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Abshire, James B.
2011-01-01
Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW seeder lasers, one on-line and one offline that are intensity modulated by two different frequency sine-waves signals before being amplified by a common laser amplifier. The receiver uses narrowband amplitude demodulation, or lock-in, Signal processing at the given laser modulation frequencies [3,4]. The laser transmitter operates in a quasi CW mode with the peak power equal to twice the average power. The on-line and off-line lasers can be transmitted at the same time without interference. Another direct detection technique uses a low duty cycle pulsed laser modulation [5,6] with the laser wavelengths alternating between on-line and off-line on successive pulses. The receiver uses time resolved detection and can also provide simultaneous target range measurement. With a lower laser duty cycle it requires a much higher peak laser power for the same average power.
Future Plans in US Flight Missions: Using Laser Remote Sensing for Climate Science Observations
NASA Technical Reports Server (NTRS)
Callahan, Lisa W.
2010-01-01
Laser Remote Sensing provides critical climate science observations necessary to better measure, understand, model and predict the Earth's water, carbon and energy cycles. Laser Remote Sensing applications for studying the Earth and other planets include three dimensional mapping of surface topography, canopy height and density, atmospheric measurement of aerosols and trace gases, plume and cloud profiles, and winds measurements. Beyond the science, data from these missions will produce new data products and applications for a multitude of end users including policy makers and urban planners on local, national and global levels. NASA Missions in formulation including Ice, Cloud, and land Elevation Satellite (ICESat 2) and the Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI), and future missions such as the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS), will incorporate the next generation of LIght Detection And Ranging (lidar) instruments to measure changes in the surface elevation of the ice, quantify ecosystem carbon storage due to biomass and its change, and provide critical data on CO 2 in the atmosphere. Goddard's plans for these instruments and potential uses for the resulting data are described below. For the ICESat 2 mission, GSFC is developing a micro-pulse multi-beam lidar. This instrument will provide improved ice elevation estimates over high slope and very rough areas and result in improved lead detection for sea ice estimates. Data about the sea ice and predictions related to sea levels will continue to help inform urban planners as the changes in the polar ice accelerate. DESDynI is planned to be launched in 2017 and includes both lidar and radar instruments. GSFC is responsible for the lidar portion of the DESDynI mission and is developing a scanning laser altimeter that will measure the Earth's topography, the structure of tree canopies, biomass, and surface roughness. The DESDynI lidar will also measure and predict the response of ice masses to climate change and impact on sea level. Data from the lidar will ultimately be fused with radar data products with heretofore unseen results and applications. The 3-D structure of forests is critical to understanding the impact of land use and associated landscape changes on the habitat of life forms and consequently on their biodiversity. Lidar instruments are also under development to measure trace gases in the atmospheric such as CO2 and methane. GSFC is developing an active measurement approach to determine the CO2 column density and surface pressure for the proposed ASCENDS mission. The objective of this approach is to produce data on the amounts of anthropogenic and organic CO2 in the atmosphere with sufficient accuracy to meet the needs of target users including state, federal and international users as well as policy-related legislative, regulatory, and voluntary carbon-related management groups local to international interests. In summary, NASA will continue to rely on laser remote sensing for critical climate science observations and is committed to the development of the next generation of lidar instruments for a range of applications.
Let’s agree on the casing of Lidar
Deering, Carol; Stoker, Jason M.
2014-01-01
Is it lidar, Lidar, LiDAR, LIDAR, LiDar, LiDaR, or liDAR? A comprehensive review of the scientific/technical literature reveals seven different casings of this short form for light detection and ranging. And there could be more.
NASA Astrophysics Data System (ADS)
Thomas, Valerie Anne
This research models canopy-scale photosynthesis at the Groundhog River Flux Site through the integration of high-resolution airborne remote sensing data and micrometeorological measurements collected from a flux tower. Light detection and ranging (lidar) data are analysed to derive models of tree structure, including: canopy height, basal area, crown closure, and average aboveground biomass. Lidar and hyperspectral remote sensing data are used to model canopy chlorophyll (Chl) and carotenoid concentrations (known to be good indicators of photosynthesis). The integration of lidar and hyperspectral data is applied to derive spatially explicit models of the fraction of photosynthetically active radiation (fPAR) absorbed by the canopy as well as a species classification for the site. These products are integrated with flux tower meteorological measurements (i.e., air temperature and global solar radiation) collected on a continuous basis over 2004 to apply the C-Fix model of carbon exchange to the site. Results demonstrate that high resolution lidar and lidar-hyperspectral integration techniques perform well in the boreal mixedwood environment. Lidar models are well correlated with forest structure, despite the complexities introduced in the mixedwood case (e.g., r2=0.84, 0.89, 0.60, and 0.91, for mean dominant height, basal area, crown closure, and average aboveground biomass). Strong relationships are also shown for canopy scale chlorophyll/carotenoid concentration analysis using integrated lidar-hyperspectral techniques (e.g., r2=0.84, 0.84, and 0.82 for Chl(a), Chl(a+b), and Chl(b)). Examination of the spatially explicit models of fPAR reveal distinct spatial patterns which become increasingly apparent throughout the season due to the variation in species groupings (and canopy chlorophyll concentration) within the 1 km radius surrounding the flux tower. Comparison of results from the modified local-scale version of the C-Fix model to tower gross ecosystem productivity (GEP) demonstrate a good correlation to flux tower measured GEP (r2=0.70 for 10 day averages), with the largest deviations occurring in June-July. This research has direct benefits for forest inventory mapping and management practices; mapping of canopy physiology and biochemical constituents related to forest health; and scaling and direct comparison to large resolution satellite models to help bridge the gap between the local-scale measurements at flux towers and predictions derived from continental-scale carbon models.
Further studies with data collected by NASA's airborne Doppler lidar in Oklahoma in 1981
NASA Technical Reports Server (NTRS)
Bluestein, H. B.; Mccaul, E. W., Jr.
1986-01-01
Continued study of the lidar data collected in 1981 has resulted in significant new improvements in the analysis techniques reported by Bluestein et al. (1985) and McCaul (1985). Through comparison of fore- and aft-derived scalar fields of intensity and spectral width, the self-consistency of the lidar moment estimates was assessed. Reflectivity estimates were found to be quite stable and reliable, while spectral widths were prone to become noisy if signal to noise ratio (SNR) fell below 12 dB. In addition, spectral widths contained a significant component due to radial velocity gradients in areas along gust fronts, and these components were different along the fore and aft lines of sight. Significant improvement in agreement between the fore and aft fields of spectral width was obtained by estimating the radial velocity gradient component and then removing it from the raw measured widths to yield only the turbulent portion of the contribution to width. Additional analyses showed that lidar-derived vorticity estimates were consistent with several approximate models of vorticity growth along gust front zones, and with the hypothesis that Helmholtz instability could have been responsible for vortices seen along part of the gust front of 30 June 1981. Computations of divergence transverse to axes through an isolated cumulus congestus indicated that the strongest convergence tended to lie along an axis parallel to the congestus. This and the results of other additional analyses seem to suggest that the lidar winds do indeed accurately reflected the basic features of the real wind field.
Long term observation of low altitude atmosphere by high precision polarization lidar
NASA Astrophysics Data System (ADS)
Shiina, Tatsuo; Noguchi, Kazuo; Fukuchi, Tetsuo
2011-11-01
Prediction of weather disaster such as heavy rain and light strike is an earnest desire. Successive monitoring of the low altitude atmosphere is important to predict it. The weather disaster often befalls with a steep change in a local area. It is hard for usual meteorological equipments to capture and alert it speedily. We have been developed the near range lidar to capture and analyze the low altitude atmosphere. In this study, high precision polarization lidar was developed to observe the low altitude atmosphere. This lidar has the high extinction ratio of polarization of >30dB to detect the small polarization change of the atmosphere. The change of the polarization in the atmosphere leads to the detection of the depolarization effect and the Faraday effect, which are caused by ice-crystals and lightning discharge, respectively. As the lidar optics is "inline" type, which means common use of optics for transmitter and receiver, it can observe the near range echo with the narrow field of view. The long-term observation was accomplished at low elevation angle. It aims to monitor the low altitude atmosphere under the cloud base and capture its spatial distribution and convection process. In the viewpoint of polarization, the ice-crystals' flow and concentration change of the aerosols are monitored. The observation has been continued in the cloudy and rainy days. The thunder cloud is also a target. In this report, the system specification is explained to clear the potential and the aims. The several observation data including the long-term observation will be shown with the consideration of polarization analysis.
Non-Hydrostatic Modelling of Waves and Currents over Subtle Bathymetric Features
NASA Astrophysics Data System (ADS)
Gomes, E.; Mulligan, R. P.; McNinch, J.
2014-12-01
Localized areas with high rates of shoreline erosion on beaches, referred to as erosional hotspots, can occur near clusters of relict shore-oblique sandbars. Wave transformation and wave-driven currents over these morphological features could provide an understanding of the hydrodynamic-morphologic coupling mechanism that connects them to the occurrence of erosional hotspots. To investigate this, we use the non-hydrostatic SWASH model that phase-resolves the free surface and fluid motions throughout the water column, allowing for high resolution of wave propagation and breaking processes. In this study we apply a coupled system of nested models including SWAN over a large domain of the North Carolina shelf with smaller nested SWASH domains in areas of interest to determine the hydrodynamic processes occurring over shore oblique bars. In this presentation we focus on a high resolution grid (10 vertical layers, 10 m horizontal resolution) applied to the Duck region with model validation from acoustic wave and current data, and observations from the Coastal Lidar And Radar Imaging System (CLARIS). By altering the bathymetry input for each model run based on bathymetric surveys and comparing the predicted and observed wave heights and current profiles, the effects of subtle bathymetric perturbations have on wave refraction, wave breaking, surf zone currents and vorticity are investigated. The ability to predict wave breaking and hydrodynamics with a non-hydrostatic model may improve our understanding of surf zone dynamics in relation to morphologic conditions.
NASA Astrophysics Data System (ADS)
Makino, T.; Okamoto, H.; Sato, K.; Tanaka, K.; Nishizawa, T.; Sugimoto, N.; Matsui, I.; Jin, Y.; Uchiyama, A.; Kudo, R.
2014-12-01
We have developed a new type of ground-based lidar, Multi-Field of view-Multiple-Scattering-Polarization Lidar (MFMSPL), to analyze multiple scattering contribution due to low-level clouds. One issue of the ground based lidar is the limitation of optical thickness of about 3 due to the strong attenuation in the lidar signals so that only the cloud bottom part can be observed. In order to overcome the problem, we have proposed the MFMSPL that has been designed to observe similar degree of multiple scattering contribution expected from space-borne lidar CALIOP on CALIPSO satellite. The system consists of eight detectors; four telescopes for parallel channels and four for perpendicular channels. The four pairs of telescope have been mounted with four different off-beam angles, ranging from -5 to 35mrad, where the angle is defined as the one between the direction of laser beam and the direction of telescope. Consequently, similar large foot print (100m) as CALIOP can be achieved in the MFMSPL observations when the altitude of clouds is located at about 1km. The use of multi-field of views enables to measure depolarization ratio from optically thick clouds. The outer receivers attached with larger angles generally detect backscattered signals from clouds located at upper altitudes due to the enhanced multiple scattering compared with the inner receiver that detects signals only from cloud bottom portions. Therefore the information of cloud microphysics from optically thicker regions is expected by the MFMSPL observations compared with the conventional lidar with small FOV. The MFMSPL have been continuously operated in Tsukuba, Japan since June 2014.Initial analyses have indicated expected performances from the theoretical estimation by backward Monte-Carlo simulations. The depolarization ratio from deeper part of the clouds detected by the receiver with large off-beam angle showed much larger values than those from the one with small angle. The calibration procedures and summary of initial observations will be presented. The observed data obtained by the MFMSPL will be used to develop and evaluate the retrieval algorithms for cloud microphysics applied to the CALIOP data.
Three-Dimensional Super-Resolution: Theory, Modeling, and Field Tests Results
NASA Technical Reports Server (NTRS)
Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Vincent E.; Hines, Glenn; Pierrottet, Diego; Reisse, Robert
2014-01-01
Many flash lidar applications continue to demand higher three-dimensional image resolution beyond the current state-of-the-art technology of the detector arrays and their associated readout circuits. Even with the available number of focal plane pixels, the required number of photons for illuminating all the pixels may impose impractical requirements on the laser pulse energy or the receiver aperture size. Therefore, image resolution enhancement by means of a super-resolution algorithm in near real time presents a very attractive solution for a wide range of flash lidar applications. This paper describes a superresolution technique and illustrates its performance and merits for generating three-dimensional image frames at a video rate.
A Novel Approach to Mapping Intertidal Areas Using Shore-Based X-band Marine Radar
NASA Astrophysics Data System (ADS)
Bird, Cai; Bell, Paul
2014-05-01
Monitoring the morphology of coastal zones in response to high energy weather events and changing patterns of erosion and deposition over time is vital in enabling effective decision-making at the coast. Common methods of mapping intertidal bathymetry currently include vessel-based sonar and airborne LiDAR surveys, which are expensive and thus not routinely collected on a continuous basis. Marine radar is a ubiquitous technology in the marine industry and many ports operate a system to guide ships into port, this work aims to utilise this already existing infrastructure to determine bathymetry over large intertidal areas, currently up to 4 km from the radar. Standard X-band navigational radar has been used in the marine industry to measure hydrodynamics and derive bathymetry using empirical techniques for several decades. Methods of depth mapping thus far have relied on the electromagnetic backscattering from wind-roughened water surface, which allows a radar to gather sea surface image data but requires the waves to be clearly defined. The work presented here does not rely on identifying and measuring these spatial wave features, which increases the robustness of the method. Image data collected by a 9.4Ghz Kelvin Hughes radar from a weather station on Hilbre Island at the mouth of the River Dee estuary, UK were used in the development of this method. Image intensity at each pixel is a function of returned electromagnetic energy, which in turn can be related to the roughness of the sea surface. Images collected over time periods of 30 minutes show general patterns of wave breaking and mark the advance and retreat of the waterline in accordance with the tidal cycle and intertidal morphology. Each pixel value can be extracted from these mean images and analysed over the course of several days, giving a fluctuating time series of pixel intensity, the gradient of which gives a series of pulses representing transitions between wet and dry at each location. A tidal elevation record collected from a gauge at the Island is used to generate a similar series of pulses for each elevation above chart datum. A matching algorithm compares these pulse sequences at each tide level and determines a bed elevation value for each pixel location. Values derived have a maximum error of 1 m when compared to a LiDAR survey of the area during the same time period. Refinements of this technique could form the basis of a long-term automated monitoring system for the morphology of intertidal coastal areas allowing varying scales of sedimentary features to be tracked. This may allow the optimisation of maintenance dredging and quantify the effects of beach nourishment and capital dredging along a shoreline.
Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland
NASA Astrophysics Data System (ADS)
Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. P.; Lüthi, T.; Wernli, H.
2003-11-01
A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. Is was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~3 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several instability diagnostics near the tropopause level provide consistent evidence that the wave is emitted by the geostrophic adjustment of a jet instability associated with an intense, rapidly evolving, anticyclonically curved jet stream. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, an approximate jet instability diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from an unstable jet.
In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In re...
Studying the MLT by a Combined Analysis of SABER/TIMED and Lidar Measurements
NASA Technical Reports Server (NTRS)
Feofilov, A. G.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.; Zecha, M.; Gerding, M.; Luebken, F. J.; Fiedler, J.; vonZhan, U.; Russell, J. M., III
2006-01-01
The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The measurements have been performed continuously since January 25, 2002 to provide excellent coverage for both hemispheres. The Leibniz-Institute of Atmospheric Physics (LAP) at Kuehlungsborn, Germany (54N, 12E) operates two lidar instruments, using three different temperature measurement methods, optimized for three altitude ranges. The total altitude range of the lidar installation lies from 1 to 105 km. Another instrument used for intercomparison is the ALOMAR RMR lidar, located at Andoya, Norway (69N, 16E). We have searched the SABER and lidar datasets for coincidental common volume measurements within plus or minus 1 degree in latitude, plus or minus 2 degrees in longitude and approx. 1 hour in time for the sake of (a) comparison of measured temperatures; (b) validation of the models used in SABER data analysis; and (c) extracting new information about MLT parameters. In this work we applied the non-LTE ALI-ARMS code designed to calculate the nonequilibrium radiance in different viewing geometries to the analysis of measurements which satisfied these search criteria. The results of this analysis (a) support the application of higher value of CO2-O quenching rate (6e-12 cubic centimeters per second) by the non-LTE temperature retrievals from the SABER 15 micrometer limb radiance data, and (b) demonstrate the importance of accounting for the vibrational-vibrational energy exchange among the CO2 isotopes for accurate temperature retrievals. Using temperature profiles obtained in lidar measurements as inputs for the retrieval algorithm we also retrieved the nighttime CO2 densities from the SABER 15 micrometer limb radiances and compared them with the model and climatology CO2 data used in the SABER nighttime temperature retrievals.
High Spectral Resolution Lidar: System Calibration
NASA Astrophysics Data System (ADS)
Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin
2015-04-01
One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical Sciences, Springer-Verlag, New York, 2005. Hair, JW; Caldwell, LM; Krueger, D. A.Krueger, and C.Y. She 2001: High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles. Appl. Optics, 40, 5280-5294.
NASA Astrophysics Data System (ADS)
Barrera Verdejo, M.; Crewell, S.; Loehnert, U.; Di Girolamo, P.
2016-12-01
Continuous monitoring of thermodynamic atmospheric profiles is important for many applications, e.g. assessment of atmospheric stability and cloud formation. Nowadays there is a wide variety of ground-based sensors for atmospheric profiling. However, no single instrument is able to simultaneously provide measurements with complete vertical coverage, high vertical and temporal resolution, and good performance under all weather conditions. For this reason, instrument synergies of a wide range of complementary measurements are more and more considered for improving the quality of atmospheric observations. The current work presents synergetic use of a microwave radiometer (MWR) and Raman lidar (RL) within a physically consistent optimal estimation approach. On the one hand, lidar measurements provide humidity and temperature measurements with a high vertical resolution albeit with limited vertical coverage, due to overlapping function problems, sunlight contamination and the presence of clouds. On the other hand, MWRs obtain humidity, temperature and cloud information throughout the troposphere, with however only a very limited vertical resolution. The benefits of MWR+RL synergy have been previously demonstrated for clear sky cases. This work expands this approach to cloudy scenarios. Consistent retrievals of temperature, absolute and relative humidity as well as liquid water path are analyzed. In addition, different measures are presented to demonstrate the improvements achieved via the synergy compared to individual retrievals, e.g. degrees of freedom or theoretical error. We also demonstrate that, compared to the lidar, the higher temporal resolution of the MWR presents a strong advantage for capturing the high temporal variability of the liquid water cloud.. Finally, the results are compared with independent information sources, e.g. GPS or radiosondes, showing good consistency. The study demonstrates the benefits of the sensor combination, being especially strong in regions where lidar data is not available, whereas if both instruments are available, the lidar measurements dominate the retrieval.
2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Bai, Yingxin; Yu, Jirong
2009-01-01
Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam size is suitable for high efficiency. For Q-switched operation, the optimal energy extraction relies on the pump intensity, pump volume, and pump duration which is inversely proportion to the repetition rate. CW and Q-switched Ho:YLF lasers with different linear cavity configurations have been designed and demonstrated for a 30 W Tm:fiber pump laser. The CW Ho laser slope efficiency and optical-to-optical efficiencies reach 65% and 55%, respectively. The pulsed laser efficiency depends on the repetition rate. For 1 kHz operation, the optical-to-optical efficiency is 39% when the pump power is 14.5W. Currently, the injection seeding success rate is between 99.4% and 99.95%. After a ten thousand pulses, the standard deviation of the laser frequency jitter is about 3 MHz. It meets the requirements of highly precise CO2 concentration measurement. In conclusion, an injection seeded, high repetition rate, Q-switched Ho:YLF laser has been developed for a coherent CO2 differential absorption lidar. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. It can potentially meet the requirements of the coherent detection of CO2 concentration by a differential absorption lidar technique.
NASA Astrophysics Data System (ADS)
Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. B.; Lüthi, D.; Wernli, H.
2004-08-01
A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. It was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~4.5 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several diagnostics near the tropopause level provide evidence that the wave is emitted from an intense, rapidly evolving, anticyclonically curved jet stream. The precise physical process responsible for the wave emission could not be identified definitely, but geostrophic adjustment and shear instability are likely candidates.
In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, the non-linear balance equation diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from spontaneous adjustment.
EARLINET: towards an advanced sustainable European aerosol lidar network
NASA Astrophysics Data System (ADS)
Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D'Amico, G.; Mattis, I.; Mona, L.; Wandinger, U.; Amiridis, V.; Alados-Arboledas, L.; Nicolae, D.; Wiegner, M.
2014-08-01
The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue, which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 stations in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multiwavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase in the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite community, linking the research community with the operational world, with the aim of establishing of the atmospheric part of the European component of the integrated global observing system.
NASA Astrophysics Data System (ADS)
Malmqvist, Elin; Jansson, Samuel; Zhu, Shiming; Li, Wansha; Svanberg, Katarina; Svanberg, Sune; Rydell, Jens; Song, Ziwei; Bood, Joakim; Brydegaard, Mikkel; Åkesson, Susanne
2018-04-01
We present the results of, to our knowledge, the first Lidar study applied to continuous and simultaneous monitoring of aerial insects, bats and birds. It illustrates how common patterns of flight activity, e.g. insect swarming around twilight, depend on predation risk and other constraints acting on the faunal components. Flight activity was monitored over a rice field in China during one week in July 2016, using a high-resolution Scheimpflug Lidar system. The monitored Lidar transect was about 520 m long and covered approximately 2.5 m3. The observed biomass spectrum was bimodal, and targets were separated into insects and vertebrates in a categorization supported by visual observations. Peak flight activity occurred at dusk and dawn, with a 37 min time difference between the bat and insect peaks. Hence, bats started to feed in declining insect activity after dusk and stopped before the rise in activity before dawn. A similar time difference between insects and birds may have occurred, but it was not obvious, perhaps because birds were relatively scarce. Our observations are consistent with the hypothesis that flight activity of bats is constrained by predation in bright light, and that crepuscular insects exploit this constraint by swarming near to sunset/sunrise to minimize predation from bats.
EARLINET observations of the Eyjafjallajökull ash plume over Europe
NASA Astrophysics Data System (ADS)
Pappalardo, Gelsomina; Amodeo, Aldo; Ansmann, Albert; Apituley, Arnoud; Alados Arboledas, Lucas; Balis, Dimitris; Böckmann, Christine; Chaikovsky, Anatoli; Comeron, Adolfo; D'Amico, Giuseppe; De Tomasi, Ferdinando; Freudenthaler, Volker; Giannakaki, Elina; Giunta, Aldo; Grigorov, Ivan; Gustafsson, Ove; Gross, Silke; Haeffelin, Martial; Iarlori, Marco; Kinne, Stefan; Linné, Holger; Madonna, Fabio; Mamouri, Rodanthi; Mattis, Ina; McAuliffe, Michael; Molero, Francisco; Mona, Lucia; Müller, Detlef; Mitev, Valentin; Nicolae, Doina; Papayannis, Alexandros; Perrone, Maria Rita; Pietruczuk, Aleksander; Pujadas, Manuel; Putaud, Jean-Philippe; Ravetta, Francois; Rizi, Vincenzo; Serikov, Ilya; Sicard, Michael; Simeonov, Valentin; Spinelli, Nicola; Stebel, Kerstin; Trickl, Thomas; Wandinger, Ulla; Wang, Xuan; Wagner, Frank; Wiegner, Matthias
2010-10-01
EARLINET, the European Aerosol Research Lidar NETwork, established in 2000, is the first coordinated lidar network for tropospheric aerosol study on the continental scale. The network activity is based on scheduled measurements, a rigorous quality assurance program addressing both instruments and evaluation algorithms, and a standardised data exchange format. At present, the network includes 27 lidar stations distributed over Europe. EARLINET performed almost continuous measurements since 15 April 2010 in order to follow the evolution of the volcanic plume generated from the eruption of the Eyjafjallajökull volcano, providing the 4-dimensional distribution of the volcanic ash plume over Europe. During the 15-30 April period, volcanic particles were detected over Central Europe over a wide range of altitudes, from 10 km down to the local planetary boundary layer (PBL). Until 19 April, the volcanic plume transport toward South Europe was nearly completely blocked by the Alps. After 19 April volcanic particles were transported to the south and the southeast of Europe. Descending aerosol layers were typically observed all over Europe and intrusion of particles into the PBL was observed at almost each lidar site that was affected by the volcanic plume. A second event was observed over Portugal and Spain (6 May) and then over Italy on 9 May 2010. The volcanic plume was then observed again over Southern Germany on 11 May 2010.
Manninen, Antti J.; O'Connor, Ewan J.; Vakkari, Ville; ...
2016-03-03
Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Anymore » bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. Furthermore the reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manninen, Antti J.; O'Connor, Ewan J.; Vakkari, Ville
Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Anymore » bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. Furthermore the reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.« less
NASA Astrophysics Data System (ADS)
Hutchison, Keith D.; Faruqui, Shazia J.; Smith, Solar
The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar.
Numerical Investigation of a Heated, Sheared Planetary Boundary Layer
NASA Astrophysics Data System (ADS)
Liou, Yu-Chieng
1996-01-01
A planetary boundary layer (PBL) developed on 11 July, 1987 during the First International Satellites Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) is investigated numerically by a two dimensional and a three dimensional large eddy simulation (LES) model. Most of the simulated mean and statistical properties are utilized to compare or verify against the observational results extracted from single Doppler lidar scans conducted by Gal-Chen et al. (1992) on the same day. Through the methods of field measurements and numerical simulations, it is found that this PBL, in contrast to the well-known convective boundary layer (CBL), is driven by not only buoyancy but also wind shear. Large eddies produced by the surface heating, as well as internal gravity waves excited by the convection, are both present in the boundary layer. The most unique feature is that in the stable layer, the momentum flux ({overlinerm u^' w^'}), transported by the gravity waves, is counter-gradient. The occurrence of this phenomenon is interpreted by Gal-Chen et al. (1992) using the theory of critical layer singularity, and is confirmed by the numerical simulations in this study. Qualitative agreements are achieved between the model-generated and lidar-derived results. However, quantitative comparisons are less satisfactory. The most serious discrepancy is that in the stable layer the magnitudes of the observed momentum flux ({overlinerm u^ ' w^'}) and vertical velocity variance ({overlinerm w^'^2}) are much larger than their simulated counterparts. Nevertheless, through the technique of numerical simulation, evidence is collected to show inconsistencies among the observations. Thus, the lidar measurements of {overline rm u^' w^'} and {overlinerm w^ '^2} seem to be doubtful. A Four Dimensional Data Assimilation (FDDA) experiment is performed in order to connect the evolution of the model integration with the observations. The results indicate that the dynamical relaxation (nudging) scheme appears to be an appropriate method by which the observed mean quantities such as mean wind ({overline u}) and potential temperature ({ overlinetheta}) can be assimilated into the model without causing data rejection.
Atmospheric remote sensing of water vapor, HCl and CH4 using a continuously tunable Co:MgF2 laser
NASA Technical Reports Server (NTRS)
Menyuk, Norman; Killinger, Dennis K.
1987-01-01
A differential-absorption lidar system has been developed which uses a continuously tunable (1.5-2.3 micron) cobalt-doped magnesium fluoride laser as the radiation source. Preliminary atmospheric measurements of water vapor, HCl, and CH4 have been made with this system, including both path-averaged and ranged-resolved DIAL measurements at ranges up to 6 and 3 km, respectively.
NASA Astrophysics Data System (ADS)
Costantino, Lorenzo; Heinrich, Philippe
2014-05-01
Small scale atmospheric waves, usually referred as internal of Gravity Waves (GW), represent an efficient transport mechanism of energy and momentum through the atmosphere. They propagate upward from their sources in the lower atmosphere (flow over topography, convection and jet adjustment) to the middle and upper atmosphere. Depending on the horizontal wind shear, they can dissipate at different altitudes and force the atmospheric circulation of the stratosphere and mesosphere. The deposition of momentum associated with the dissipation, or wave breaking, exerts an acceleration to the mean flow, that can significantly alter the thermal and dynamical structure of the atmosphere. GW may have spatial scales that range from few to hundreds of kilometers and range from minutes to hours. For that reason, General Circulation Model (GCM) used in climate studies have generally a coarse resolution, of approximately 2-5° horizontally and 3 km vertically, in the stratosphere. This resolution is fine enough to resolve Rossby-waves but not the small-scale GW activity. Hence, to calculate the momentum-forcing generated by the unresolved waves, they use a drag parametrization which mainly consists in some tuning parameters, constrained by observations of wind circulation and temperature in the upper troposphere and middle atmosphere (Alexander et al., 2010). Traditionally, the GW Drag (GWD) parametrization is used in climate and forecasting models to adjust the structure of winter jets and the horizontal temperature gradient. It was firstly based on the parametrization of orographic waves, which represent zero-phase-speed waves generated by sub-grid topography. Regional models, with horizontal resolutions that can reach few tens or hundreds of meters, are able to directly resolve small-scale GW and may represent a valuable addition to direct observations. In the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project, this study tests the capability of the Weather Research and Forecasting (WRF) model to generate and propagate GW forced by convection and orography, without any GW parametrization. Results from model simulations are compared with in-situ observations of potential energy vertical profiles in the stratosphere, measured by a LIDAR located at the Observatoire de Haute Provence (Southern France). This comparison allows, to a certain extent, to validate WRF numerical results and quantify some of those wave parameters (e.g., GW drag force, intrinsic frequency, breaking level altitude, etc..) that are fundamental for a deeper understanding of GW role in atmospheric dynamics, but that are not easily measurable by ground- or space-based systems (limited to specific region or certain latitude band). Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R. and Watanabe, S. (2010), Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q.J.R. Meteorol. Soc., 136: 1103-1124. doi: 10.1002/qj.637
Monitoring individual tree-based change with airborne lidar.
Duncanson, Laura; Dubayah, Ralph
2018-05-01
Understanding the carbon flux of forests is critical for constraining the global carbon cycle and managing forests to mitigate climate change. Monitoring forest growth and mortality rates is critical to this effort, but has been limited in the past, with estimates relying primarily on field surveys. Advances in remote sensing enable the potential to monitor tree growth and mortality across landscapes. This work presents an approach to measure tree growth and loss using multidate lidar campaigns in a high-biomass forest in California, USA. Individual tree crowns were delineated in 2008 and again in 2013 using a 3D crown segmentation algorithm, with derived heights and crown radii extracted and used to estimate individual tree aboveground biomass. Tree growth, loss, and aboveground biomass were analyzed with respect to tree height and crown radius. Both tree growth and loss rates decrease with increasing tree height, following the expectation that trees slow in growth rate as they age. Additionally, our aboveground biomass analysis suggests that, while the system is a net source of aboveground carbon, these carbon dynamics are governed by size class with the largest sources coming from the loss of a relatively small number of large individuals. This study demonstrates that monitoring individual tree-based growth and loss can be conducted with multidate airborne lidar, but these methods remain relatively immature. Disparities between lidar acquisitions were particularly difficult to overcome and decreased the sample of trees analyzed for growth rate in this study to 21% of the full number of delineated crowns. However, this study illuminates the potential of airborne remote sensing for ecologically meaningful forest monitoring at an individual tree level. As methods continue to improve, airborne multidate lidar will enable a richer understanding of the drivers of tree growth, loss, and aboveground carbon flux.
NASA Astrophysics Data System (ADS)
Das, Subrata Kumar; Das, Siddarth Shankar; Saha, Korak; Murali Krishna, U. V.; Dani, K. K.
2018-04-01
Characteristics of Kelvin Helmholtz Instability (KHI) using Doppler wind lidar observation have rarely been reported during the Indian summer monsoon season. In this paper, we present a case study of KHI near planetary boundary layer using Doppler wind lidar and radiosonde measurements at Mahabubnagar, a tropical Indian station. The data was collected during the Integrated Ground Observation Campaign (June-October 2011) under the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment-2011. The continuous wind lidar observation during 10-16 August 2011 shows there is an increase in carrier-to-noise ratio values near planetary boundary layer from 03:00 to 11:00 LT on 13 August; reveals the formation of KHI. There is a strong power bursts pattern corresponding to high turbulence characteristics in the early half of the day. The KHI temporal evolution from initial to dissipating stage is observed with clear variation in the carrier-to-noise ratio values. The observed KHI billows are in the height between 600 and 1200 m and lasted for about 7.5 h. The vertical velocity from Doppler lidar measurement shows the presence of updrafts after breaking of KHI in the boundary layer. The presence of strong wind shear, high stability parameter, low Richardson number and high relative humidity during the enhanced carrier-to-noise ratio period indicates the ideal condition for the formation and persistence of this dynamic instability. A typical characteristic of trapped humidity above the KHI billows suggest the presence of strong inversion. A wavelet analysis of 3-dimensional wind components show dominant periodicity of 45-65 min and the periodicity in vertical wind is more prominent.
MARLI: MARs LIdar for global climate measurements from orbit
NASA Astrophysics Data System (ADS)
Allan, G. R.; Riris, H.; Sun, X.; Yu, A. W.; Abshire, J. B.
2017-12-01
NASA-GSFC is developing a pulsed multifunction lidar instrument to remotely measure winds in the Martian atmosphere from orbit. The key capabilities of this multifunctional atmospheric pulsed lidar will include continuous measurement of the aerosol backscatter profiles, the cross polarized (ice) backscatter profiles, the Doppler (wind profiles), and the range to the scattering surface from orbit. Our approach for MARLI is to use a direct detection lidar with efficient lasers, a large area low-mass telescope, a simple and rugged Doppler discriminator and with photon-sensitive detectors. The induced Doppler shifts on laser backscattered from aerosols in the Martian atmosphere will be detected using a time-resolved change in transmission through a solid etalon from two, slightly off-axis backscattered beams and the edge technique. In this presentation we report on the current progress of the core measurement of wind. We have demonstrated in the lab Doppler measurements down to 5m/s using a spinning target a pulsed lidar and edge technique. The laser is a seeded, pulsed-YAG in a MOPA configuration, operating at 1064nm producing pulses of 20ns and at a few mJ at 4KHz. Center frequency drift is less than 10MHz per minute. The Doppler discriminator is a solid etalon of 60 mm diameter and 40 mm thick with a peak transmission of over 65% and a bandpass of 100MHz FWHM. The detector is a cooled MCT array. We will also report on the deployment of the breadboard instrument to the GGAO to directly measure surface winds using the 48" telescope. The results from our field trials, the laser, detector and instrument will be more fully described in the presentation.
NASA Astrophysics Data System (ADS)
Khaykin, Sergey M.; Godin-Beekmann, Sophie; Keckhut, Philippe; Hauchecorne, Alain; Jumelet, Julien; Vernier, Jean-Paul; Bourassa, Adam; Degenstein, Doug A.; Rieger, Landon A.; Bingen, Christine; Vanhellemont, Filip; Robert, Charles; DeLand, Matthew; Bhartia, Pawan K.
2017-02-01
The article presents new high-quality continuous stratospheric aerosol observations spanning 1994-2015 at the French Observatoire de Haute-Provence (OHP, 44° N, 6° E) obtained by two independent, regularly maintained lidar systems operating within the Network for Detection of Atmospheric Composition Change (NDACC). Lidar series are compared with global-coverage observations by Stratospheric Aerosol and Gas Experiment (SAGE II), Global Ozone Monitoring by Occultation of Stars (GOMOS), Optical Spectrograph and InfraRed Imaging System (OSIRIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and Ozone Mapping Profiling Suite (OMPS) satellite instruments, altogether covering the time span of OHP lidar measurements. Local OHP and zonal-mean satellite series of stratospheric aerosol optical depth are in excellent agreement, allowing for accurate characterization of stratospheric aerosol evolution and variability at northern midlatitudes during the last 2 decades. The combination of local and global observations is used for a careful separation between volcanically perturbed and quiescent periods. While the volcanic signatures dominate the stratospheric aerosol record, the background aerosol abundance is found to be modulated remotely by the poleward transport of convectively cleansed air from the deep tropics and aerosol-laden air from the Asian monsoon region. The annual cycle of background aerosol at midlatitudes, featuring a minimum during late spring and a maximum during late summer, correlates with that of water vapor from the Aura Microwave Limb Sounder (MLS). Observations covering two volcanically quiescent periods over the last 2 decades provide an indication of a growth in the nonvolcanic component of stratospheric aerosol. A statistically significant factor of 2 increase in nonvolcanic aerosol since 1998, seasonally restricted to late summer and fall, is associated with the influence of the Asian monsoon and growing pollution therein.
Mid-latitude Rayleigh-Mie-Raman Lidar for Observations from 15 to 120 km
NASA Astrophysics Data System (ADS)
Wickwar, V. B.; Sox, L.; Heron, J. P.; Emerick, M. T.
2013-12-01
The original Rayleigh scatter lidar system that ran from 1993-2004 at the Atmospheric Lidar Observatory (ALO; 41.7° N, 111.8° W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU) is undergoing a series of upgrades to transform it into a Rayleigh-Mie-Raman (RMR) scatter lidar. The original lidar covered the mesosphere from 45 to 90 km. The upgraded system will cover the region from approximately 15 to 120 km. The scientific impetus for these upgrades is to enable measurements of densities and temperatures throughout the middle atmosphere, covering most of the stratosphere, all of the mesosphere and well into the lower thermosphere. Initially, at the upper end, this will provide good information about the poorly observed region between 90 and 120 km. When the whole system comes on line, it will better enable coupling studies across these regions. By normalizing the relative densities to NCEP reanalysis or radiosonde densities below 30 km, the densities will become absolute all the way up to 120 km. By adding these new observations to those from the original data set, we will continue to examine temperature trends in the mesosphere. The upgrade is based on increasing the telescope collecting area to almost 5 m2 and increasing the 532 nm laser power to 42 W at 30 Hz. The combined effect is a 70 times increase in sensitivity. This increase enables us to go higher. It will also enable us to go lower by making Raman observations possible in the stratosphere, which will allow us to untangle the Rayleigh and Mie returns. Initial observations are approaching 120 km. These observations show significant temperature differences at the highest altitudes when compared to the MSISe00 empirical model.
Raman lidar observations of particle hygroscopicity during COPS
NASA Astrophysics Data System (ADS)
Stelitano, D.; Di Girolamo, P.; Summa, D.
2012-04-01
The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. The relationship between aerosol backscattering and relative humidity has been investigated in numerous studies (among others, Pahlow et al., 2006; Wulfmeyer and Feingold, 2000; Veselovskii et al., 2009). Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapour and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). During COPS, BASIL collected more than 500 hours of measurements, distributed over 58 measurement days and 34 intensive observation periods (IOPs). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behaviour. The observed behaviour, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic. Results from the different case studies will be illustrated and discussed at the Conference.
1994-01-01
data acquisition systems and run radio, but due to the short wave length the synchronously. light is more sensible to scattering by small Lidar...the raingauge records from the stations Jaen, in the central part of Andalusia, and Badajoz located in this region (Valladolid, Zamora, and Ciudad Real...EN 20-20.0.72H -- CIUDAD REAL Ix ( > to.I to- t-’l PERCENTAGE OF TIME ()PERCENTAGE OF ’TIME() Figure 9. Relative errors for Western Andalusia Figure 10
Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI)
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Rosen, Paul; Ranson, Jon; Zebker, Howard
2008-01-01
The National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommends that DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice), an integrated L-band InSAR and multibeam Lidar mission, launch in the 2010- 2013 timeframe. The mission will measure surface deformation for solid Earth and cryosphere objectives and vegetation structure for understanding the carbon cycle. InSAR has been used to study surface deformation of the solid Earth and cryosphere and more recently vegetation structure for estimates of biomass and ecosystem function. Lidar directly measures topography and vegetation structure and is used to estimate biomass and detect changes in surface elevation. The goal of DESDynI is to take advantage of the spatial continuity of InSAR and the precision and directness of Lidar. There are several issues related to the design of the DESDynI mission, including combining the two instruments into a single platform, optimizing the coverage and orbit for the two techniques, and carrying out the science modeling to define and maximize the scientific output of the mission.
NASA Astrophysics Data System (ADS)
Lolli, S.; Welton, E. J.; Holben, B. N.; Campbell, J. R.
2013-12-01
In August and September 2012, as part of the continuing Seven South East Asian Studies (7-SEAS) project, three autonomous elastic-scattering 355 nm lidars were deployed by the NASA Micro Pulse Lidar Network (MPLNET) to Sumatra and Borneo, measuring the vertical profile of aerosol particle scattering during peak burning season. In coordination with the Aerosol Robotic Network (AERONET), a regional characterization of aerosol particle physical properties and distribution was performed. In addition to a permanent regional network site at Singapore, the three temporary sites established for this research include Jambi (Sumatra, Indonesia), Kuching (northwest Borneo, Malaysia) and Palangkaraya (south-central Borneo, Indonesia). In this paper, we discuss the mission and instruments, and introduce data products available to the community through the MPLNET online website. We further describe initial results of the study, including a contrast of mean vertical scattering profiles versus those observed near active fire sources at Jambi and Palangkaraya, and resolve longer-range particle evolution at receptor sites, like Kuching, that are most commonly 1-2 days downwind of larger fire complexes.
Estimations of ABL fluxes and other turbulence parameters from Doppler lidar data
NASA Technical Reports Server (NTRS)
Tzvi, Gal-Chen; Mei, XU; Eberhard, Wynn
1990-01-01
Techniques for extracting boundary layer parameters from measurements of a short pulse CO2 Doppler Lidar are described. The radial velocity measurements have a range resolution of 150 m. With a pulse repetition rate of 20 Hz, it is possible to perform scannings in two perpendicular vertical planes in approx. 72 s. By continuously operating the Lidar for about an hour, one can extract stable statistics of the radial velocities. Assuming that the turbulence is horizontally homogeneous, the mean wind, its standard deviations, and the momentum fluxes were estimated. From the vertically pointing beam, the first, second, and third moments of the vertical velocity were also estimated. Spectral analysis of the radial velocities is also performed from which, by examining the amplitude of the power spectrum at the inertial range, the kinetic energy dissipation was deduced. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation.
NASA Astrophysics Data System (ADS)
Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.
2015-03-01
Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.
Impacts of an "extreme" storm on a low-lying embayed sandy beach (Pals Bay, NW Mediterranean)
NASA Astrophysics Data System (ADS)
Durán, Ruth; Sagristà, Enric; Guillen, Jorge; Ruiz, Antonio; Jiménez, José Antonio
2014-05-01
The present study aims to assess the effects of an extreme storm in the medium-term evolution of a low-lying, low-tidal sandy coast based on airborne LIDAR (LIght Detection and Ranging) derived high-resolution topographic data. LIDAR data were acquired by the Institut Cartogràfic de Catalunya and analyzed in a Geographical Information System (GIS) environment in order to estimate the shoreline displacement (advance or retreat), volumetric changes of the emerged beach, dune erosion and overswash. LIDAR surveys were undertaken in October 2008 and August 2009 to evaluate the impact of an extreme storm that severely hit the north-west Mediterranean coast on 26 December 2008. During this storm, maximum significant wave heights of 7.5 m (with peaks of 14.4 m of maximum wave height) and maximum wave peak period of 12.8 s were recorded at the Palamós buoy, located at 90 m depth. In addition, several weak to moderate storms also occurred during the study period. The Pals Bay in the northern of Catalonia (NW Mediterranean) has been chosen for this study because: (i) it is a low-lying coastal land, which makes the coastline highly susceptible to flooding by waves during storms; and (ii) it includes high natural value areas and urbanized ones that show different behavior under the impact of storms. It comprises three beaches: the Pals Bay beach that extends along 6840 m between L'Estartit and Begur promontories, and two pocket beaches located at the southern end of the Pals Bay, Cala Moreta and Sa Riera, which are only 185 m and 188 m long, respectively. During the study period, shoreline position and volumetric changes in the large bay beach were not homogeneous. The coastline variations showed alongshore fluctuations up to 40 m, probably related to the development of rhythmic topographies in form of beach cups. Overall, the emerged beach experienced a net volumetric loss of -62 516 m3 (-9.14 m3/m). However, the loss of sediment was not uniform. In urbanized areas, sediment erosion occurred along the whole beach profile, whereas in natural areas foreshore erosion was accompanied by net accumulation of sediment in the backshore. This positive volumetric gain in the upper beach could be largely attributed to overwash processes during the extreme storm, which also caused dune erosion and overwash fan deposition. Nevertheless, the smaller pocked beaches behaved differently. In Cala Moreta, shoreline evolution presented an anti-clockwise rotation of the beach, with a small net loss of sediment of -265 m3 (-1.43 m3/m). Sa Riera showed a small retreat of the shoreline and an important accumulation of sediment in the backshore that resulted in a net positive volume balance in the emerged beach of +2515 m3 (+13.38 m3/m).
Observations of Subvisible Cirrus Clouds and Gravity Waves at the Tropical Tropopause
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Browell, E. V.; Hipskind, R. Stephen (Technical Monitor)
1998-01-01
Thin, subvisible cirrus (SVC) clouds at the tropical tropopause have been observed by a number of methods in a variety of observational programs, including in situ sampling and aircraft and space-based lidar. Modeling studies suggest that these clouds play an important role in dehydrating tropospheric air as it enters the stratosphere. This is because particles large enough to have significant fall speeds can form under the conditions of slow cooling that are implied by the large horizontal extent of the SVC sheets. The IR radiation that these clouds absorb, and the upward vertical motion this implies, also makes them candidates for a tropical troposphere-to-stratosphere mass transfer mechanism. They may also play a role in the earth's radiation budget. These sheets were observed on five flights during the Tropical Ozone Transport Experiment (TOTE) by the NASA Langley DIAL lidar aboard NASA's DC-8 research aircraft operating during December 1995 and February 1996 south of Hawaii. The relationship of the SVC's observed during TOTE to convection was not a simple one. One class of SVC's are within 1000 km of the persistent strong convection near 15S (the SPCZ). Trajectory analyses indicated that the SVC air masses have in fact passed through the SPCZ within a few days of observation. These clouds are very close to the tropopause, with maximum potential temperatures not much higher than 370K, consistent with in situ water and total water measurements near the tropopause made during the Stratosphere Troposphere Exchange Project in January 1987 at Darwin, Australia. A second class of SVC's are not immediately downstream of convection. These clouds tend to be higher, reaching potential temperatures of 390K or more. Trajectory analyses indicate that the air in these SVC's originates either in the equatorial western Pacific or along the subtropical jet. In any case, the warm temperatures the SVC air masses encounter just prior to the observation time along the back trajectory imply that the clouds cannot be residual particles from cirrus blowoff, but must form locally as the air move upward and equatorward south of Hawaii. Since all the parcels have encountered colder temperatures than those at the time of observation early in their history, subsynoptic scale temperatures colder than the analysis temperatures appear to be required to explain the formation of ice particles. In fact, the sloping shapes of the SVC's do suggest that they are gravity or inertia-gravity waves. In situ meteorological measurements made by the ER-2 within a day of the DC-8 remote lidar observations show a gravity wave structure near the equator with an estimated period of about 30 hours. This is sufficiently long to allow large particles to form and fall out (thus allowing dehydration). Other ER-2 flights south of Hawaii at other times of year show gravity and inertia-gravity waves with a poleward wavenumber component and significant (5 degrees peak to peak) temperature perturbation.
Quantifying landscape change in an arctic coastal lowland using repeat airborne LiDAR
Jones, Benjamin M.; Stoker, Jason M.; Gibbs, Ann E.; Grosse, Guido; Romanovsky, Vladimir E.; Douglas, Thomas A.; Kinsman, Nichole E.M.; Richmond, Bruce M.
2013-01-01
Increases in air, permafrost, and sea surface temperature, loss of sea ice, the potential for increased wave energy, and higher river discharge may all be interacting to escalate erosion of arctic coastal lowland landscapes. Here we use airborne light detection and ranging (LiDAR) data acquired in 2006 and 2010 to detect landscape change in a 100 km2 study area on the Beaufort Sea coastal plain of northern Alaska. We detected statistically significant change (99% confidence interval), defined as contiguous areas (>10 m2) that had changed in height by at least 0.55 m, in 0.3% of the study region. Erosional features indicative of ice-rich permafrost degradation were associated with ice-bonded coastal, river, and lake bluffs, frost mounds, ice wedges, and thermo-erosional gullies. These features accounted for about half of the area where vertical change was detected. Inferred thermo-denudation and thermo-abrasion of coastal and river bluffs likely accounted for the dominant permafrost-related degradational processes with respect to area (42%) and volume (51%). More than 300 thermokarst pits significantly subsided during the study period, likely as a result of storm surge flooding of low-lying tundra (<1.4 m asl) as well as the lasting impact of warm summers in the late-1980s and mid-1990s. Our results indicate that repeat airborne LiDAR can be used to detect landscape change in arctic coastal lowland regions at large spatial scales over sub-decadal time periods.
Weather Radars and Lidar for Observing the Atmosphere
NASA Astrophysics Data System (ADS)
(Vivek) Vivekanandan, J.
2010-05-01
The Earth Observing Laboratory (EOL) at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado develops and deploys state-of-the-art ground-based radar, airborne radar and lidar instruments to advance scientific understanding of the earth system. The ground-based radar (S-Pol) is equipped with dual-wavelength capability (S-band and Ka-band). S-Pol is the only transportable radar in the world. In order to capture faster moving weather events such as tornadoes and record observations of clouds over rugged mountainous terrain and ocean, an airborne radar (ELDORA) is used. It is the only airborne Doppler meteorological radar that is able to detect motions in the clear air. The EOL is in the process of building the first phase of a three phase dual wavelength W/Ka-band airborne cloud radar to be called the HIAPER Cloud Radar (HCR). This phase is a pod based W-band radar system with scanning capability. The second phase will add pulse compression and polarimetric capability to the W-band system, while the third phase will add complementary Ka-band radar. The pod-based radar is primarily designed to fly on the Gulfstream V (GV) and C-130 aircraft. The envisioned capability of a millimeter wave radar system on GV is enhanced by coordination with microwave radiometer, in situ probes, and especially by the NCAR GV High-Spectral Resolution Lidar (HSRL) which is also under construction. The presentation will describe the capabilities of current instruments and also planned instrumentation development.
A new cloud and aerosol layer detection method based on micropulse lidar measurements
NASA Astrophysics Data System (ADS)
Zhao, Chuanfeng; Wang, Yuzhao; Wang, Qianqian; Li, Zhanqing; Wang, Zhien; Liu, Dong
2014-06-01
This paper introduces a new algorithm to detect aerosols and clouds based on micropulse lidar measurements. A semidiscretization processing technique is first used to inhibit the impact of increasing noise with distance. The value distribution equalization method which reduces the magnitude of signal variations with distance is then introduced. Combined with empirical threshold values, we determine if the signal waves indicate clouds or aerosols. This method can separate clouds and aerosols with high accuracy, although differentiation between aerosols and clouds are subject to more uncertainties depending on the thresholds selected. Compared with the existing Atmospheric Radiation Measurement program lidar-based cloud product, the new method appears more reliable and detects more clouds with high bases. The algorithm is applied to a year of observations at both the U.S. Southern Great Plains (SGP) and China Taihu sites. At the SGP site, the cloud frequency shows a clear seasonal variation with maximum values in winter and spring and shows bimodal vertical distributions with maximum occurrences at around 3-6 km and 8-12 km. The annual averaged cloud frequency is about 50%. The dominant clouds are stratiform in winter and convective in summer. By contrast, the cloud frequency at the Taihu site shows no clear seasonal variation and the maximum occurrence is at around 1 km. The annual averaged cloud frequency is about 15% higher than that at the SGP site. A seasonal analysis of cloud base occurrence frequency suggests that stratiform clouds dominate at the Taihu site.
Coherent dual-frequency lidar system design for distance and speed measurements
NASA Astrophysics Data System (ADS)
Zheng, Xingyuan; Zhao, Changming; Zhang, Haiyang; Zheng, Zheng; Yang, Hongzhi
2018-01-01
Lidars have a wide range of applications in military detection and civilian remote sensing. Coherent Dual-Frequency Lidar (CDFL) is a new concept of laser radar that is using electrical coherence instead of optical coherence. It uses laser with two coherent frequency components as transmitting wave. The method is based on the use of an optically-carried radio frequency (RF) signal, which is the frequency difference between the two components, which is specially designed for distance and speed measurements. It not only ensures the system has the characteristics of high spatial resolution, high ranging and velocity precision of laser radar, but also can use mature signal processing technology of microwave radar, and it is a research direction that attracts more concern in recent years. A CDFL detection system is constructed and field experiment is carried out. In the system, a narrow linewidth fiber laser with a wavelength of 1064nm is adopted. The dual-frequency laser with frequency difference of 200MHz and 200.6MHz is obtained by acousto-optic frequency shift and recombination. The maximum output power of dual frequency laser is 200mW. The receiver consists of all-fiber balanced InGaAs photo-detector and homemade analog signal processing board. The experimental results show that the distance resolution and velocity resolution of the system are 0.1m and 0.1m/s separately when the working distance is greater than 200m, and the spatial resolution is 0.5mrad.
NASA Astrophysics Data System (ADS)
Wildmann, N.; Kigle, S.; Gerz, T.; Bell, T.; Klein, P. M.
2017-12-01
For onshore wind energy production, the highest wind potential is often found on exposed spots like hilltops, mountain ridges or escarpments with heterogeneous land cover. The understanding of the flow field in such complex terrain in the relevant heights where wind power is generated is an ongoing field of research. The German Aerospace Center (DLR) contributed to the NEWA (New European Wind Atlas) experiment in the province of Perdigão (Portugal) with three long-range Doppler wind lidar of type Leosphere Windcube-200S from May to June 2017. In the experiment, a single wind energy converter (WEC) of type Enercon E82 is situated on a forested mountain ridge. In main wind direction, which is from South-West and almost perpendicular to the ridge, a valley and then a second mountain ridge in a distance of approximately 1.4 km follow. Two of the DLR lidar instruments are placed downstream and in line with the main wind direction and the WEC. One of these instruments is placed in the valley, and the other one on the distant mountain ridge. This line-up allows coplanar scanning of the flow in the valley and over the ridge tops and thus the determination of horizontal and vertical wind components. The third DLR system, placed on the WEC ridge, and an additional scanning lidar from the University of Oklahoma, placed in the valley, are used to determine the cross-wind component of the flow. Regular flow features that were observed with this lidar setup in the six weeks of the intensive operation period are jet-like layers of high wind speeds that occur during the night from a North-Easterly direction. These jets are found to have wind speeds up to 13 m s-1 and are very variable with regards to their maximum speed, height and broadness. Depending on the Froude number of the flow, waves are forming over the two mountain ridges with either a stable wavelength that equals the mountain ridge distance, or more dynamic higher frequency oscillations. All of these flow features are highly relevant for the efficiency and lifetime of the WEC on site, because strong shear, dynamically changing winds and significant vertical wind components can be found in the rotor plane depending on the height and intensity of the jet flow. This presentation will demonstrate how these effects can be quantified by the described lidar measurement setup.
NASA Astrophysics Data System (ADS)
Le Mauff, Baptiste; Juigner, Martin; Ba, Antoine; Robin, Marc; Launeau, Patrick; Fattal, Paul
2018-03-01
Three beach and dune systems located in the northeastern part of the Bay of Biscay in France were monitored over 5 years with a time series of three airborne LiDAR datasets. The three study sites illustrate a variety of morphological beach types found in this region. Reproducible monitoring solutions adapted to basic and complex beach and dune morphologies using LiDAR time series were investigated over two periods bounded by the three surveys. The first period (between May 2008 and August 2010) is characterized by a higher prevalence of storm events, and thus has a greater potential for eroding the coast, than the second period (between August 2010 and September 2013). During the first period, the central and northeastern part of the Bay of Biscay was notably impacted by Storm Xynthia, with water levels and wave heights exceeding the 10-year return period and 1-year return period, respectively. Despite differences in dune morphology between the sites, the dune crest (Dhigh) and the dune base (Dlow) are efficiently extracted from each DEM. Based on the extracted dune base, an original shoreline mobility indicator is built displaying a combination of the horizontal and vertical migrations of this geomorphic indicator between two LiDAR datasets. A 'Geomorphic Change Detection' is also completed by computing DEMs of Difference (DoD) resulting in segregated maps of erosion and deposition and sediment budgets. Accounting for the accuracy of LiDAR datasets, a probabilistic approach at a 95% confidence interval is used as a threshold for the Geomorphic Change Detection showing more reliable results. However, caution should be taken when interpreting thresholded maps of changes and sediment budgets because some beach processes may be masked, especially on wide tidal beaches, by only keeping the most significant changes. The results of the shoreline mobility and Geomorphic Change Detection show a high variability in the beach responses between and within the three study sites, explained mainly by beach orientation and local factors. Despite variable site-specific mechanisms, the recovery processes redistribute the available sand more on the upper parts of the beach, producing significant deposition generally in the form of embryo dunes. The monitoring of the beach and dune systems with airborne LiDAR datasets reveals that the three study sites show diverse behaviours during the first period likely associated with storms, while the analysis show more homogenous beach responses during the second period likely associated with a recovery phase.
In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In re...
In traditional watershed delineation and topographic modelling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In r...
First results of cirrus clouds properties by means of a pollyxt raman lidar at two measurement sites
NASA Astrophysics Data System (ADS)
Voudouri, Kalliopi-Artemis; Giannakaki, Elina; Komppula, Mika; Balis, Dimitris
2018-04-01
Geometrical and optical characteristics of cirrus clouds using Raman lidar PollyXT measurements at different locations are presented. The PollyXT has been participated in two long-term experimental campaigns, one close to New Delhi in India and one at Elandsfontein in South Africa, providing continuous measurements and covering a wide range of cloud types. First results of cirrus cloud properties at different latitudes, as well as their temporal distributions are presented in this study. An automatic cirrus clouds detection algorithm is applied based on the wavelet covariance transform. The measurements at New Delhi performed from March 2008 to February 2009, while at Elandsfontein measurements were performed from December 2009 to January 2011.
NASA Astrophysics Data System (ADS)
Piotrowski, J.; Goska, R.; Chen, B.; Krajewski, W. F.; Young, N.; Weber, L.
2009-12-01
In June 2008, the state of Iowa experienced an unprecedented flood event which resulted in an economic loss of approximately $2.88 billion. Flooding in the Iowa River corridor, which exceeded the previous flood of record by 3 feet, devastated several communities, including Coralville and Iowa City, home to the University of Iowa. Recognizing an opportunity to capture a unique dataset detailing the impacts of the historic flood, the investigators contacted the National Center for Airborne Laser Mapping (NCALM), which performed an aerial Light Detection and Ranging (LiDAR) survey along the Iowa River. The survey, conducted immediately following the flood peak, provided coverage of a 60-mile reach. The goal of the present research is to develop a process by which flood extents and water surface elevations can be accurately extracted from the LiDAR data set and to evaluate the benefit of such data in calibrating one- and two-dimensional hydraulic models. Whereas data typically available for model calibration include sparsely distributed point observations and high water marks, the LiDAR data used in the present study provide broad-scale, detailed, and continuous information describing the spatial extent and depth of flooding. Initial efforts were focused on a 10-mile, primarily urban reach of the Iowa River extending from Coralville Reservoir, a United States Army Corps of Engineers flood control project, downstream through the Coralville and Iowa City. Spatial extent and depth of flooding were estimated from the LiDAR data. At a given cross-sectional location, river channel and floodplain measurements were compared. When differences between floodplain and river channel measurements were less than a standard deviation of the vertical uncertainty in the LiDAR survey, floodplain measurements were classified as flooded. A flood water surface DEM was created using measurements classified as flooded. A two-dimensional, depth-averaged numerical model of a 10-mile reach of the Iowa River corridor was developed using the United States Bureau of Reclamation SRH-2D hydraulic modeling software. The numerical model uses an unstructured numerical mesh and variable surface roughness, assigned according to observed land use and cover. The numerical model was calibrated using inundation extents and water surface elevations derived from the LiDAR data. It was also calibrated using high water marks and land survey data collected daily during the 2008 flood. The investigators compared the two calibrations to evaluate the benefit of high-resolution LiDAR data in improving the accuracy of a two-dimensional urban flood simulation.
G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager
NASA Technical Reports Server (NTRS)
Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth
2012-01-01
Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation in the CONUS and Mexico in support of NASA's Carbon Monitoring System (CMS) and AMIGA-Carb (AMerican Icesat Glas Assessment of Carbon). For NASA's CMS, wall-to-wall G-LiHT data have been acquired over intensive study sites with historic LiDAR datasets, dense inventory data, stem maps and flux tower observations. For AMIGA-Carb, G-LiHT transects have been acquired over ICESat tracks and USDA-FS inventory plots throughout the CONUS, and similar data will be acquired in Mexico during 2013. This talk will highlight recent science results from continental-scale transects landscape-scale deployments of G-LiHT, as well as seasonal forest dynamics from repeat pass G-LiHT acquisitions.
New Airborne LiDAR Survey of the Hayward Fault, Northern California
NASA Astrophysics Data System (ADS)
Brocher, T. M.; Prentice, C. S.; Phillips, D. A.; Bevis, M.; Shrestha, R. L.
2007-12-01
We present a digital elevation model (DEM) constructed from newly acquired high-resolution LIght Detection and Ranging (LIDAR) data along the Hayward Fault in Northern California. The data were acquired by the National Center for Airborne Laser Mapping (NCALM) in the spring of 2007 in conjunction with a larger regional airborne LIDAR survey of the major crustal faults in northern California coordinated by UNAVCO and funded by the National Science Foundation as part of GeoEarthScope. A consortium composed of the U. S. Geological Survey, Pacific Gas & Electric Company, the San Francisco Public Utilities Commission, and the City of Berkeley separately funded the LIDAR acquisition along the Hayward Fault. Airborne LIDAR data were collected within a 106-km long by 1-km wide swath encompassing the Hayward Fault that extended from San Pablo Bay on the north to the southern end of its restraining stepover with the Calaveras Fault on the south. The Hayward Fault is among the most urbanized faults in the nation. With its most recent major rupture in 1868, it is well within the time window for its next large earthquake, making it an excellent candidate for a "before the earthquake" DEM image. After the next large Hayward Fault event, this DEM can be compared to a post-earthquake LIDAR DEM to provide a means for a detailed analysis of fault slip. In order to minimize location errors, temporary GPS ground control stations were deployed by Ohio State University, UNAVCO, and student volunteers from local universities to augment the available continuous GPS arrays operated in the study area by the Bay Area Regional Deformation (BARD) Network and the Plate Boundary Observatory (PBO). The vegetation cover varies along the fault zone: most of the vegetation is non-native species. Photographs from the 1860s show very little tall vegetation along the fault zone. A number of interesting geomorphic features are associated with the Hayward Fault, even in urbanized areas. Sag ponds and push up ridges can easily be followed along the fault zone, as well as more subtle features. Landslides along the western flanks of the East Bay Hills were also imaged. We expect that these new LIDAR images will allow us to detect subtle geomorphic features associated with active faulting that may reveal previously undetected active strands or better delineate active strands in areas of pervasive landsliding (as well as better mapping of the landslides themselves). We also anticipate that they will aid in land use planning and identification of new paleoseismic sites. The LIDAR data are freely available at www.earthscope.org.
Long range lidar data processing for validating LES of wind turbine wakes
NASA Astrophysics Data System (ADS)
Trabucchi, D.; van Dooren, M.; Vollmer, L.; Schneemann, J.; Trujillo, J. J.; Witha, B.; Kühn, M.
2014-12-01
Scanning wind lidars offer the possibility to compare full-scale measurements in the wake of a wind turbine with LES wind fields calculated for the same test case. Due to the novelty and the peculiarity of lidar measurements, a comparison between experimental data and simulation results is non-trivial and several methods can be applied. This study presents validation methods for single and dual-doppler lidar measurements respectively.Consecutive azimuthal scans - commonly indicated as Plan Position Indicator (PPI) - at a low fixed elevation and centered on the wind turbine wake provide the radial wind speed, i.e. the wind component along the laser beam, on an almost flat polar grid. This data can be directly compared with the radial wind speed evaluated at the measurement point from the simulated wind field. This approach provides a detailed spatial description of the wind field and can be applied to averaged data for steady analysis. For the comparison with LES results, time average and spatial interpolation of the computed wind field are needed. Moreover, a proper wind direction should be chosen to evaluate the radial wind speed.With two lidars performing consecutive PPI scans over the same region from different places it is possible to estimate the horizontal wind field where the scanned regions overlap. Due to the limits in the synchronization of the PPI scans by the lidars, only steady analysis based on time averaged data can be done. A horizontal grid based on the one used for the LES is overlapped to the region covered by the two non-co-planar scans. The horizontal wind field at a considered point can be evaluated solving the system given by at least two non-aligned radial directions about this point. For each node, the data sampled by the lidars in a well defined volume during the considered time interval is used to write this system. Moreover, a discrete approximation of the continuity equation is applied to link the solutions for all the grid nodes. Instead of an interpolation on the LES wind field, this approach requires a temporal and vertical average over the considered time and height intervals.The application of these two approaches to lidar measurements performed in the offshore wind farm »alpha ventus« is presented in this work. The results are going to be used to evaluate different wind turbine wake models applied to LES.
NASA Astrophysics Data System (ADS)
Schoeberl, Mark; Dessler, Andrew; Ye, Hao; Wang, Tao; Avery, Melody; Jensen, Eric
2016-08-01
Using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and MERRA-2 reanalysis winds, temperatures, and anvil cloud ice, we explore the impact of varying the cloud nucleation threshold relative humidity (RH) and high-frequency gravity waves on stratospheric water vapor (H2O) and upper tropical tropopause cloud fraction (TCF). Our model results are compared to 2008/2009 winter TCF derived from Cloud-Aerosol Lidar with Orthogonal Polarization and H2O observations from the Microwave Limb Sounder (MLS). The RH threshold affects both model H2O and TCF, while high-frequency gravity waves mostly impact TCF. Adjusting the nucleation RH and the amplitude of high-frequency gravity waves allows us to tune the model to observations. Reasonable observational agreement is obtained with a nucleation threshold between 130% and 150% RH consistent with airborne observations. For the MERRA reanalysis, we lower the tropopause temperature by 0.5 K roughly consistent with GPS radio occultation measurements and include ~0.1 K high-frequency gravity wave temperature oscillations in order to match TCF and H2O observations. For MERRA-2 we do not need to adjust the tropopause temperature nor add gravity waves, because there are sufficient high-frequency temperature oscillations already present in the MERRA-2 reanalysis to reproduce the observed TCF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Jui-Yuan
2010-10-19
Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the "solar-background" mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM's zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to developmore » better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS's 1 Hz sampling to study the "twilight zone" around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM's 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM's operational data processing.« less
Indoor imagery with a 3D through-wall synthetic aperture radar
NASA Astrophysics Data System (ADS)
Sévigny, Pascale; DiFilippo, David J.; Laneve, Tony; Fournier, Jonathan
2012-06-01
Through-wall radar imaging is an emerging technology with great interest to military and police forces operating in an urban environment. A through-wall imaging radar can potentially provide interior room layouts as well as detection and localization of targets of interest within a building. In this paper, we present our through-wall radar system mounted on the side of a vehicle and driven along a path in front of a building of interest. The vehicle is equipped with a LIDAR (Light Detection and Ranging) and motion sensors that provide auxiliary information. The radar uses an ultra wideband frequency-modulated continuous wave (FMCW) waveform to obtain high range resolution. Our system is composed of a vertical linear receive array to discriminate targets in elevation, and two transmit elements operated in a slow multiple-input multiple output (MIMO) configuration to increase the achievable elevation resolution. High resolution in the along-track direction is obtained through synthetic aperture radar (SAR) techniques. We present experimental results that demonstrate the 3-D capability of the radar. We further demonstrate target detection behind challenging walls, and imagery of internal wall features. Finally, we discuss future work.
Boulder-based wave hindcasting underestimates storm size
NASA Astrophysics Data System (ADS)
Kennedy, David; Woods, Joesphine; Rosser, Nick; Hansom, James; Naylor, Larissa
2017-04-01
Large boulder-size clasts represent an important archive of erosion and wave activity on the coast. From tropical coral reefs to eroding cliffs in the high-latitudes, boulders have been used to hindcast the frequency and magnitude of cyclones and tsunami. Such reconstructions are based on the balance between the hydrodynamic forces acting on individual clasts and the counteracting resistive forces of friction and gravity. Here we test the three principle hindcasting relationships on nearly 1000 intertidal boulders in North Yorkshire, U.K using a combination of field and airborne terrestrial LiDAR data. We quantify the predicted versus actual rates of movement and the degree to which local geomorphology can retard or accelerate transport. Actual clast movement is significantly less than predicted values, regardless of boulder volume, shape or location. In situ cementation of clasts to the substrate by marine organisms and clustering of clasts increases friction thereby preventing transport. The implication is that boulders do not always provide a reliable estimation of wave height on the coast and reliance solely on hindcasting relationships leads to an under prediction of the frequency and magnitude of past storm wave activity. The crucial need for process field studies to refine boulder transport models is thus demonstrated.
NASA Astrophysics Data System (ADS)
Sridharan, S.; Raghunath, K.; Sathishkumar, S.; Nath, D.
2011-03-01
During a major sudden stratospheric warming event (21-27 January 2009), Mie-lidar observations at Gadanki (13.5°N, 79.2°E) show persistent occurrence of cirrus clouds. Outgoing long-wave radiation averaged for 70°E-90°E, decreases to a low value (170 W/m2) on 27 January 2009 over equator indicating deep convection. The zonal mean ERA-Interim data reveal large northward and upward circulation over equatorial upper troposphere. The latitude-longitude map of ERA-Interim zonal mean potential vorticity (PV) indicates two tongues of high PV emanating from polar latitudes and extending further down to equator. Radiosonde observations at Gadanki show the presence of ∼40% relative humidity at 11-13 km and lower tropopause temperature. It is inferred that the tropical circulation change due to PV intrusion leads to deep convection, which along with high humidity and low tropopause temperature leading to the formation of persistent cirrus clouds, the occurrence frequency of which is normally less during winter season over Gadanki.
NASA Technical Reports Server (NTRS)
Ismail, Syed; Ferrare, Richard; Browell, Edward; Kooi, Susan; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Dunion, Jason;
2008-01-01
LASE (Lidar Atmospheric Sensing Experiment) onboard the NASA DC-8 was used to measure high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern Atlantic region during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment, which was conducted from August 15 to September 12, 2006. These measurements were made in conjunction with flights designed to study African Easterly Waves (AEW), Tropical Disturbances (TD), and Saharan Aerosol Layers (SALs) as well as flights performed in clear air and convective regions. As a consequence of their unique radiative properties and dynamics, SAL layers have a significant influence in the development of organized convection associated with TD. Interactions of the SAL with tropical air during early stages of the development of TD were observed. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on TDs and hurricanes. Seven AEWs were studied and four of these evolved into tropical storms and three did not. Three out of the four tropical storms evolved into hurricanes.
Automated Feature Extraction of Foredune Morphology from Terrestrial Lidar Data
NASA Astrophysics Data System (ADS)
Spore, N.; Brodie, K. L.; Swann, C.
2014-12-01
Foredune morphology is often described in storm impact prediction models using the elevation of the dune crest and dune toe and compared with maximum runup elevations to categorize the storm impact and predicted responses. However, these parameters do not account for other foredune features that may make them more or less erodible, such as alongshore variations in morphology, vegetation coverage, or compaction. The goal of this work is to identify other descriptive features that can be extracted from terrestrial lidar data that may affect the rate of dune erosion under wave attack. Daily, mobile-terrestrial lidar surveys were conducted during a 6-day nor'easter (Hs = 4 m in 6 m water depth) along 20km of coastline near Duck, North Carolina which encompassed a variety of foredune forms in close proximity to each other. This abstract will focus on the tools developed for the automated extraction of the morphological features from terrestrial lidar data, while the response of the dune will be presented by Brodie and Spore as an accompanying abstract. Raw point cloud data can be dense and is often under-utilized due to time and personnel constraints required for analysis, since many algorithms are not fully automated. In our approach, the point cloud is first projected into a local coordinate system aligned with the coastline, and then bare earth points are interpolated onto a rectilinear 0.5 m grid creating a high resolution digital elevation model. The surface is analyzed by identifying features along each cross-shore transect. Surface curvature is used to identify the position of the dune toe, and then beach and berm morphology is extracted shoreward of the dune toe, and foredune morphology is extracted landward of the dune toe. Changes in, and magnitudes of, cross-shore slope, curvature, and surface roughness are used to describe the foredune face and each cross-shore transect is then classified using its pre-storm morphology for storm-response analysis.
NASA Astrophysics Data System (ADS)
Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Robertie, N. F.
1991-06-01
This is Volume 3 of a three volume final report on the design, development and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the August 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks have been successfully completed, and recommendations for further lidar measurements and data analysis have been made.
Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project
NASA Astrophysics Data System (ADS)
Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro
2016-04-01
Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data. Degradation of transmission power was monitored and sensitivity of receiving system was derived with estimating antenna gain by using radio wave absorber and considering antenna geometry of two antenna system. In order to estimate final results, altitude dependent detection limit curve was also calculated. Original intensity data in real time and calibrated radar reflectivity data are archived on "Arctic Data archive System (ADS)". Other collocated observations were made with fog monitor (particle size distribution), MPS (particle image) for continuous measurements at Zeppelin Mountain, 450 m height a. s. l., and tethered balloon for intense observing period. From these measurements together with aerosol and meteorological monitoring made by collaborating institutes (Stockholm University, University of Florence, AWI, NILU, NCAR and NPI) microphysics of low level cloud and aerosol-cloud interactions are discussed. Ground based remote sensors provide a powerful validation for satellite cloud observations. Radar reflectivity (dBZ) by FALCON-A was compared with that by CPR on CloudSAT during several overpasses around Ny-Ålesund, and though some difference due to the different vertical resolution was seen, overall agreement was confirmed. We are planning to establish Ny-Ålesund observatory as the super site for validation for EarthCARE (JAXA-ESA) mission.
Quantifying TOLNet Ozone Lidar Accuracy During the 2014 DISCOVER-AQ and FRAPPE Campaigns
NASA Technical Reports Server (NTRS)
Wang, Lihua; Newchurch, Michael J.; Alvarez, Raul J., II; Berkoff, Timothy A.; Brown, Steven S.; Carrion, William; De Young, Russell J.; Johnson, Bryan J.; Ganoe, Rene; Gronoff, Guillaume;
2017-01-01
The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry Experiment (FRAPPA) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than +/-15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than +/-5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts.
Quantifying TOLNet ozone lidar accuracy during the 2014 DISCOVER-AQ and FRAPPÉ campaigns
NASA Astrophysics Data System (ADS)
Wang, Lihua; Newchurch, Michael J.; Alvarez, Raul J., II; Berkoff, Timothy A.; Brown, Steven S.; Carrion, William; De Young, Russell J.; Johnson, Bryan J.; Ganoe, Rene; Gronoff, Guillaume; Kirgis, Guillaume; Kuang, Shi; Langford, Andrew O.; Leblanc, Thierry; McDuffie, Erin E.; McGee, Thomas J.; Pliutau, Denis; Senff, Christoph J.; Sullivan, John T.; Sumnicht, Grant; Twigg, Laurence W.; Weinheimer, Andrew J.
2017-10-01
The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than ±15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than ±5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts.
Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars.
Feiyue, Mao; Wei, Gong; Yingying, Ma
2012-02-15
The aerosol lidar ratio is a key parameter for the retrieval of aerosol optical properties from elastic lidar, which changes largely for aerosols with different chemical and physical properties. We proposed a method for retrieving the aerosol lidar ratio profile by combining simultaneous ground- and space-based elastic lidars. The method was tested by a simulated case and a real case at 532 nm wavelength. The results demonstrated that our method is robust and can obtain accurate lidar ratio and extinction coefficient profiles. Our method can be useful for determining the local and global lidar ratio and validating space-based lidar datasets.
NASA Astrophysics Data System (ADS)
Smart, L.; Taillie, P. J.; Smith, J. W.; Meentemeyer, R. K.
2017-12-01
Sound coastal land-use policy and management decisions to mitigate or adapt to sea level rise impacts depend on understanding vegetation responses to sea level rise over large extents. Accurate methodologies to quantify these changes are necessary to understand the continued production of the ecosystem services upon which human health and well-being depend. This research quantifies spatio-temporal changes in aboveground biomass altered by sea level rise across North Carolina's coastal plain using a combination of repeat-acquisition lidar data and multi-temporal satellite imagery. Using field data from across the study area, we evaluated the reliability of multi-temporal lidar data with disparate densities and accuracies to detect changes along a coastal vegetation gradient from marsh to forested wetland. Despite an 18 fold increase in lidar point density between survey years (2001, 2014), the relationships between lidar-derived heights and field-measured heights were similar (adjusted r2; 0.6 -0.7). Random Forest, a machine learning algorithm, was used to separately predict above-ground biomass pools at the landscape-scale for the two time periods using the 98 field plots as reference data. Models performed well for both years (adjusted r2; 0.67-0.85). The 2001 model required the addition of Landsat spectral indices to meet the same adjusted r2 values as the 2014 model, which utilized lidar-derived metrics alone. Of the many potential lidar-derived predictor metrics, median and mean vegetation height were the best predictors in both time periods. To measure the spatial patterns of biomass change across the landscape, we subtracted the 2001 biomass model from the 2014 model and found significant spatial heterogeneity in biomass change across both the vegetation gradient and across the peninsula over the 12-year time period. In forested areas, we found a mean increase in aboveground biomass whereas in transition zones, marshes and freshwater emergent wetlands we found overall decreases in aboveground biomass. These changes were correlated with distance to estuarine shoreline - areas closest to the shoreline exhibiting the strongest biomass declines. Results from this study have allowed us to better understand climate change-related vegetation dynamics in a sensitive coastal region.
NASA Astrophysics Data System (ADS)
Brodie, Katherine L.
Elevated water levels and large waves during storms cause beach erosion, overwash, and coastal flooding, particularly along barrier island coastlines. While predictions of storm tracks have greatly improved over the last decade, predictions of maximum water levels and variations in the extent of damage along a coastline need improvement. In particular, physics based models still cannot explain why some regions along a relatively straight coastline may experience significant erosion and overwash during a storm, while nearby locations remain seemingly unchanged. Correct predictions of both the timing of erosion and variations in the magnitude of erosion along the coast will be useful to both emergency managers and homeowners preparing for an approaching storm. Unfortunately, research on the impact of a storm to the beach has mainly been derived from "pre" and "post" storm surveys of beach topography and nearshore bathymetry during calm conditions. This has created a lack of data during storms from which to ground-truth model predictions and test hypotheses that explain variations in erosion along a coastline. We have developed Coastal Lidar and Radar Imaging System (CLARIS), a mobile system that combines a terrestrial scanning laser and an X-band marine radar system using precise motion and location information. CLARIS can operate during storms, measuring beach topography, nearshore bathymetry (from radar-derived wave speed measurements), surf-zone wave parameters, and maximum water levels remotely. In this dissertation, we present details on the development, design, and testing of CLARIS and then use CLARIS to observe a 10 km section of coastline in Kitty Hawk and Kill Devil Hills on the Outer Banks of North Carolina every 12 hours during a Nor'Easter (peak wave height in 8 m of water depth = 3.4 m). High decadal rates of shoreline change as well as heightened erosion during storms have previously been documented to occur within the field site. In addition, complex bathymetric features that traverse the surf-zone into the nearshore are present along the southern six kilometers of the field site. In addition to the CLARIS observations, we model wave propagation over the complex nearshore bathymetry for the same storm event. Data reveal that the complex nearshore bathymetry is mirrored by kilometer scale undulations in the shoreline, and that both morphologies persist during storms, contrary to common observations of shoreline and surf-zone linearization by large storm waves. We hypothesize that wave refraction over the complex nearshore bathymetry forces flow patterns which may enhance or stabilize the shoreline and surf-zone morphology during storms. In addition, our semi-daily surveys of the beach indicate that spatial and temporal patterns of erosion are strongly correlated to the steepness of the waves. Along more than half the study site, fifty percent or more of the erosion that occurred during the first 12 hours of the storm was recovered within 24 hours of the peak of the storm as waves remained large (>2.5 m), but transitioned to long period swell. In addition, spatial variations in the amount of beach volume change during the building portion of the storm were strongly correlated with observed wave dissipation within the inner surf zone, as opposed to predicted inundation elevations or alongshore variations in wave height.
Morton, Robert A.; Miller, Tara L.; Moore, Laura J.
2004-01-01
EXECUTIVE SUMMARY Beach erosion is a chronic problem along most open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There is also a need for a comprehensive analysis of shoreline movement that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey is conducting an analysis of historical shoreline changes along open-ocean sandy shores of the conterminous United States and parts of Hawaii and Alaska. One purpose of this work is to develop standard repeatable methods for mapping and analyzing shoreline movement so that periodic updates regarding coastal erosion and land loss can be made nationally that are systematic and internally consistent. This report on states bordering the Gulf of Mexico (Florida, Alabama, Mississippi, Louisiana, and Texas) represents the first in a series that will eventually include the Atlantic Coast, Pacific Coast, and parts of Hawaii and Alaska. The report summarizes the methods of analysis, interprets the results, provides explanations regarding the historical and present trends and rates of change, and describes how different coastal communities are responding to coastal erosion. Shoreline change evaluations are based on comparing three historical shorelines with a recent shoreline derived from lidar (Light Detection and Ranging) topographic surveys. The historical shorelines generally represent the following periods: 1800s, 1920s-1930s, and 1970s, whereas the lidar shoreline is 1998-2002. Long-term rates of change are calculated using all four shorelines (1800s to lidar shoreline), whereas short-term rates of change are calculated for the most recent period (1970s to lidar shoreline). The historical rates of change presented in this report represent past conditions and therefore are not intended for predicting future shoreline positions or rates of change. Rates of erosion for the Gulf of Mexico region are generally highest in Louisiana along barrier island and headland shores associated with the Mississippi delta. Erosion is also rapid along some barrier islands and headlands in Texas, and barrier islands in Mississippi are migrating laterally. Highest rates of erosion in Florida are generally localized around tidal inlets. The most stable Gulf beaches are along the west coast of Florida where low wave energy and frequent beach nourishment minimize erosion. Some beach segments in Texas have accreted as a result of net longshore drift convergence, and around tidal inlets that have been stabilized by long jetties. Seawalls and riprap revetments were constructed in all the Gulf Coast states as initial community responses to long-term beach erosion. Although some states, such as Florida, still permit shoreline stabilization structures, beach nourishment has become the preferred method of mitigating long-term erosion.
Morton, Robert A.; Miller, Tara L.
2005-01-01
EXECUTIVE SUMMARY Beach erosion is a chronic problem along most open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There is also a need for a comprehensive analysis of shoreline movement that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey is conducting an analysis of historical shoreline changes along open-ocean sandy shores of the conterminous United States and parts of Hawaii and Alaska. One purpose of this work is to develop standard repeatable methods for mapping and analyzing shoreline movement so that periodic updates regarding coastal erosion and land loss can be made nationally that are systematic and internally consistent. This report on states comprising the Southeast Atlantic Coast (east Florida, Georgia, South Carolina, North Carolina) represents the second in a series that already includes the Gulf of Mexico and will eventually include the Northeast Atlantic Coast, Pacific Coast, and parts of Hawaii and Alaska. The report summarizes the methods of analysis, interprets the results, provides explanations regarding the historical and present trends and rates of change, and describes how different coastal communities are responding to coastal erosion. Shoreline change evaluations are based on comparing three historical shorelines with a recent shoreline derived from lidar (Light Detection and Ranging) topographic surveys. The historical shorelines generally represent the following periods: 1800s, 1920s-1930s, and 1970s, whereas the lidar shoreline is 1998-2002. Long-term rates of change are calculated using four shorelines (1800s to lidar shoreline), whereas short-term rates of change are calculated for the most recent period (1970s to lidar shoreline). The historical rates of change presented in this report represent past conditions and therefore are not intended for predicting future shoreline positions or rates of change. Rates of erosion for the Southeast Atlantic region were generally highest in South Carolina along barrier islands and headland shores associated with the Santee delta. Erosion was also rapid along some barrier islands in North Carolina. Highest rates of erosion in Florida were generally localized around tidal inlets. The most stable Southeast Atlantic beaches were along the east coast of Florida where low wave energy and frequent beach nourishment minimized erosion. Some beach segments in Florida accreted as a result of net longshore drift convergence around Cape Canaveral and around tidal inlets that were stabilized by jetties. Seawalls, riprap revetments, and groins were constructed in all the Southeast Atlantic states as initial community responses to long-term beach erosion. Although some states, such as Florida, still permit shoreline stabilization structures, beach nourishment has become the preferred method of mitigating long-term erosion. Beach nourishment is common in all of the Southeast Atlantic states except Georgia.
Using Kinect to Measure Wave Spectrum
NASA Astrophysics Data System (ADS)
Fong, J.; Loose, B.; Lovely, A.
2012-12-01
Gas exchange at the air-sea interface is enhanced by aqueous turbulence generated by capillary-gravity waves, affecting the absorption of atmospheric carbon dioxide by the ocean. The mean squared wave slope
NASA Astrophysics Data System (ADS)
Foubert, K.; Lasfargues, G.; Mathieu, L.; Benahmed, S.; Vojetta, G.; Rothman, J.; Benoît à la Guillaume, Q.; Calvo, Vincent; Picot-Clemente, Jérémy; Le Mounier, Florent; Gibert, Fabien
2013-03-01
The remarkable properties (internal gain larger than 100 and close to unity excess noise factor) of Short Wave Infrared (SWIR) HgCdTe electron-initiated Avalanche Photodiodes (e-APDs) are put to good use to demanding applications, i.e. spectroscopy and LIDAR. Knowing the requirements of both situations, we have designed specific models based on highly sensitive single elements APDs and adapted proximity electronics. On one hand, we use the e-APDs low noise equivalent power (NEP) at 180K (few fW/Hz1/2). We simultaneously designed a specific Transimpedance Amplifier (TIA) which allows us to take advantage of the low APD NEP. The combination of both elements along with a dedicated cryostat enables direct LIDAR detection at moderate bandwidth (BW = 20 MHz) without the need for long time averaging, which is crucial in far field (>= 5 km) analysis. One the other hand, we have optimized a low-noise and low-frequency LN2 cooled prototype operating with an external commercial amplifier. It allows us to observe the photoluminescence of Ge nanostructures in the range 1.5-2.5 μm with a significantly increased SNR along with a reduce pump laser power. The possibility to use these detectors in the photon counting limit will be discussed in light of our recent results. In parallel, we present preliminary time response measurements performed on SWIR APD suggesting that a higher GHz BW could be reached with this type of detector. This is however subjected to optical optimization at the moment.
NASA Astrophysics Data System (ADS)
Wilcox, William Edward, Jr.
1995-01-01
A computer program (LIDAR-PC) and associated atmospheric spectral databases have been developed which accurately simulate the laser remote sensing of the atmosphere and the system performance of a direct-detection Lidar or tunable Differential Absorption Lidar (DIAL) system. This simulation program allows, for the first time, the use of several different large atmospheric spectral databases to be coupled with Lidar parameter simulations on the same computer platform to provide a real-time, interactive, and easy to use design tool for atmospheric Lidar simulation and modeling. LIDAR -PC has been used for a range of different Lidar simulations and compared to experimental Lidar data. In general, the simulations agreed very well with the experimental measurements. In addition, the simulation offered, for the first time, the analysis and comparison of experimental Lidar data to easily determine the range-resolved attenuation coefficient of the atmosphere and the effect of telescope overlap factor. The software and databases operate on an IBM-PC or compatible computer platform, and thus are very useful to the research community for Lidar analysis. The complete Lidar and atmospheric spectral transmission modeling program uses the HITRAN database for high-resolution molecular absorption lines of the atmosphere, the BACKSCAT/LOWTRAN computer databases and models for the effects of aerosol and cloud backscatter and attenuation, and the range-resolved Lidar equation. The program can calculate the Lidar backscattered signal-to-noise for a slant path geometry from space and simulate the effect of high resolution, tunable, single frequency, and moderate line width lasers on the Lidar/DIAL signal. The program was used to model and analyze the experimental Lidar data obtained from several measurements. A fixed wavelength, Ho:YSGG aerosol Lidar (Sugimoto, 1990) developed at USF and a tunable Ho:YSGG DIAL system (Cha, 1991) for measuring atmospheric water vapor at 2.1 μm were analyzed. The simulations agreed very well with the measurements, and also yielded, for the first time, the ability to easily deduce the atmospheric attentuation coefficient, alpha, from the Lidar data. Simulations and analysis of other Lidar measurements included that of a 1.57 mu m OPO aerosol Lidar system developed at USF (Harrell, 1995) and of the NASA LITE (Laser-in-Space Technology Experiment) Lidar recently flown in the Space shuttle. Finally, an extensive series of laboratory experiments were made with the 1.57 μm OPO Lidar system to test calculations of the telescope/laser overlap and the effect of different telescope sizes and designs. The simulations agreed well with the experimental data for the telescope diameter and central obscuration test cases. The LIDAR-PC programs are available on the Internet from the USAF Lidar Home Page Web site, http://www.cas.usf.edu/physics/lidar.html/.
Poppe, L.J.; Danforth, W.W.; McMullen, K.Y.; Parker, Castle E.; Doran, E.F.
2011-01-01
Detailed bathymetric maps of the sea floor in Long Island Sound are of great interest to the Connecticut and New York research and management communities because of this estuary's ecological, recreational, and commercial importance. The completed, geologically interpreted digital terrain models (DTMs), ranging in area from 12 to 293 square kilometers, provide important benthic environmental information, yet many applications require a geographically broader perspective. For example, individual surveys are of limited use for the planning and construction of cross-sound infrastructure, such as cables and pipelines, or for the testing of regional circulation models. To address this need, we integrated 12 multibeam and 2 LIDAR (Light Detection and Ranging) contiguous bathymetric DTMs, produced by the National Oceanic and Atmospheric Administration during charting operations, into one dataset that covers much of eastern Long Island Sound and extends into westernmost Block Island Sound. The new dataset is adjusted to mean lower low water, is gridded to 4-meter resolution, and is provided in UTM Zone 18 NAD83 and geographic WGS84 projections. This resolution is adequate for sea floor-feature and process interpretation but is small enough to be queried and manipulated with standard Geographic Information System programs and to allow for future growth. Natural features visible in the grid include exposed bedrock outcrops, boulder lag deposits of submerged moraines, sand-wave fields, and scour depressions that reflect the strength of the oscillating and asymmetric tidal currents. Bedform asymmetry allows interpretations of net sediment transport. Anthropogenic artifacts visible in the bathymetric data include a dredged channel, shipwrecks, dredge spoils, mooring anchors, prop-scour depressions, buried cables, and bridge footings. Together the merged data reveal a larger, more continuous perspective of bathymetric topography than previously available, providing a fundamental framework for research and resource management activities in this major east-coast estuary.
Charactering lidar optical subsystem using four quadrants method
NASA Astrophysics Data System (ADS)
Tian, Xiaomin; Liu, Dong; Xu, Jiwei; Wang, Zhenzhu; Wang, Bangxin; Wu, Decheng; Zhong, Zhiqing; Xie, Chenbo; Wang, Yingjian
2018-02-01
Lidar is a kind of active optical remote sensing instruments , can be applied to sound atmosphere with a high spatial and temporal resolution. Many parameter of atmosphere can be get by using different inverse algorithm with lidar backscatter signal. The basic setup of a lidar consist of a transmitter and a receiver. To make sure the quality of lidar signal data, the lidar must be calibrated before being used to measure the atmospheric variables. It is really significant to character and analyze lidar optical subsystem because a well equiped lidar optical subsystem contributes to high quality lidar signal data. we pay close attention to telecover test to character and analyze lidar optical subsystem.The telecover test is called four quadrants method consisting in dividing the telescope aperture in four quarants. when a lidar is well configured with lidar optical subsystem, the normalized signal from four qudrants will agree with each other on some level. Testing our WARL-II lidar by four quadrants method ,we find the signals of the four basically consistent with each other both in near range and in far range. But in detail, the signals in near range have some slight distinctions resulting from overlap function, some signals distinctions are induced by atmospheric instability.
NASA Technical Reports Server (NTRS)
Killinger, Dennis
1991-01-01
The development of eye-safe, solid-state Lidar systems is discussed, with an emphasis on Coherent Doppler Lidar for Atmospheric Wind Measurements. The following subject areas are covered: tunable Ho DIAL (Differential Absorption Lidar)/lidar atmospheric measurements; atmospheric turbulence measurements and detector arrays; diurnal measurements of C(sub n)(sup 2) for KSC lidar measurements; and development of single-frequency Ho laser/lidar.
NASA Astrophysics Data System (ADS)
Shepherd, O.; Bucknam, R. D.; Hurd, A. G.; Sheehan, W. H.
1991-06-01
This is Volume 3 of a three volume final report on the design, development, and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the Aug. 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks were successfully completed, and recommendations for further lidar measurements and data analysis were made.
Aerosols and polar stratospheric clouds measurements during the EASOE campaign
NASA Technical Reports Server (NTRS)
Haner, D.; Godin, S.; Megie, G.; David, C.; Mitev, V.
1992-01-01
Preliminary results of observations performed using two different lidar systems during the EASOE (European Arctic Stratospheric Ozone Experiment), which has taken place in the winter of 1991-1992 in the northern hemisphere lattitude regions, are presented. The first system is a ground based multiwavelength lidar intended to perform measurements of the ozone vertical distribution in the 5 km to 40 km altitude range. It was located in Sodankyla (67 degrees N, 27 degrees E) as part of the ELSA experiment. The objectives of the ELSA cooperative project is to study the relation between polar stratospheric cloud events and ozone depletion with high vertical resolution and temporal continuity, and the evolution of the ozone distribution in relation to the position of the polar vortex. The second system is an airborne backscatter lidar (Leandre) which allows for the study of the 3-D structure and the optical properties of polar stratospheric clouds. The Leandre instrument is a dual-polarization lidar system, emitting at 532 nm, which allows for the determination of the type of clouds observed, according to the usual classification of polar stratospheric clouds. More than 60 hours of flight were performed in Dec. 1991, and Jan. and Feb. 1992 in Kiruna, Sweden. The operation of the Leandre instrument has led to the observation of the short scale variability of the Pinatubo volcanic cloud in the high latitude regions and to several episodes of polar stratospheric clouds. Preliminary analysis of the data is presented.
Ground-based lidar measurements from Ny-Ålesund during ASTAR 2007: a statistical overview
NASA Astrophysics Data System (ADS)
Hoffmann, A.; Ritter, C.; Stock, M.; Shiobara, M.; Lampert, A.; Maturilli, M.; Orgis, T.; Neuber, R.; Herber, A.
2009-07-01
During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) in March and April 2007, measurements obtained at the AWIPEV Research station in Ny-Ålesund, Spitsbergen (operated by the Alfred-Wegener-Institute for Polar and Marine Research and the Institut polaire français Paul-Emile Victor), supported the airborne campaign. This included Lidar data from the Koldewey Aerosol Raman Lidar (KARL) and the Micro Pulse Lidar (MPL), located in the atmospheric observatory as well as photometer data and the daily launched radiosonde. The MPL features nearly continuous measurements; the KARL was switched on whenever weather conditions allowed observations (145 h in 61 days). From 1 March to 30 April, 71 meteorological balloon soundings were performed and compared with the corresponding MPL measurements; photometer measurements are available from 18 March. For the KARL data, a statistical overview based on the optical properties backscatter ratio and volume depolarization can be given. The altitudes of the occurrence of the named features (subvisible and visible ice and water as well as mixed-phase clouds, aerosol layers) as well as their dependence on different air mass origins are analyzed. Although the spring 2007 was characterized by rather clean conditions, diverse case studies of cloud and aerosol occurrence during March and April 2007 are presented in more detail, including temporal development and main optical properties as backscatter, depolarization and extinction coefficients. Links between air mass origins and optical properties can be presumed but need further evidence.
NASA Astrophysics Data System (ADS)
Sullivan, John T.; Rabenhorst, Scott D.; Dreessen, Joel; McGee, Thomas J.; Delgado, Ruben; Twigg, Laurence; Sumnicht, Grant
2017-06-01
Remotely sensed profiles of ozone (O3) and wind are presented continuously for the first time during a nocturnal low-level jet (NLLJ) event occurring after a severe O3 episode in the Baltimore-Washington D.C. (BW) urban corridor throughout 11-12 June 2015. High-resolution O3 lidar observations indicate a well-mixed and polluted daytime O3 reservoir, which decayed into a contaminated nocturnal residual layer (RL) with concentrations between 70 and 100 ppbv near 1 km above the surface. Observations indicate the onset of the NLLJ was responsible for transporting polluted O3 away from the region, while simultaneously affecting the height and location of the nocturnal residual layer. High-resolution modeling analyses and next-day (12 June) lidar, surface, and balloon-borne observations indicate the trajectory of the NLLJ and polluted residual layer corresponds with "next-day" high O3 at sites throughout the southern New England region (New York, Connecticut, Massachusetts). The novel O3 lidar observations are evidence of both nocturnal advection (via high NLLJ wind fields) and entrainment of the polluted residual layer in the presence of the "next-day" convectively growing boundary layer. In the greater context, the novel observational suite described in this work has shown that the chemical budget in areas downwind of major urban centers can be altered significantly overnight during transport events such as the NLLJ.
The Role of Atmospheric Measurements in Wind Power Statistical Models
NASA Astrophysics Data System (ADS)
Wharton, S.; Bulaevskaya, V.; Irons, Z.; Newman, J. F.; Clifton, A.
2015-12-01
The simplest wind power generation curves model power only as a function of the wind speed at turbine hub-height. While the latter is an essential predictor of power output, it is widely accepted that wind speed information in other parts of the vertical profile, as well as additional atmospheric variables including atmospheric stability, wind veer, and hub-height turbulence are also important factors. The goal of this work is to determine the gain in predictive ability afforded by adding additional atmospheric measurements to the power prediction model. In particular, we are interested in quantifying any gain in predictive ability afforded by measurements taken from a laser detection and ranging (lidar) instrument, as lidar provides high spatial and temporal resolution measurements of wind speed and direction at 10 or more levels throughout the rotor-disk and at heights well above. Co-located lidar and meteorological tower data as well as SCADA power data from a wind farm in Northern Oklahoma will be used to train a set of statistical models. In practice, most wind farms continue to rely on atmospheric measurements taken from less expensive, in situ instruments mounted on meteorological towers to assess turbine power response to a changing atmospheric environment. Here, we compare a large suite of atmospheric variables derived from tower measurements to those taken from lidar to determine if remote sensing devices add any competitive advantage over tower measurements alone to predict turbine power response.
The operational use of ceilometers across the United States has been limited to detection of cloud-base heights across the Automatic Surface Observing Systems (ASOS) primarily operated by the National Weather Service and the Federal Aviation Administration. Continued improvements...
Application of ground-based LIDAR for fine-scale forest fuel modeling
E. Louise Loudermilk; Abhinav Singhania; Juan C. Fernandez; J. Kevin Hiers; Joseph J. O' Brien; Wendell P. Cropper Jr.; K. Clint Slatton; Robert J. Mitchell
2007-01-01
Frequent (1 to 5 year) low intensity fire regimes of longleaf pine (Pinus palustris) savannas of the Southeastern United States create a continuous fuelbed of understory grasses, forbs, flammable pine needle litter, with interstitial hardwood shrubs. Measuring the spatial heterogeneity of these fine-fuels can be difficult, requiring intensive field...
NASA Astrophysics Data System (ADS)
Van-Wierts, S.; Bernatchez, P.
2012-04-01
Coastal erosion is an important issue within the St-Lawrence estuary and gulf, especially in zones of unconsolidated material. Wide beaches are important coastal environments; they act as a buffer against breaking waves by absorbing and dissipating their energy, thus reducing the rate of coastal erosion. They also offer protection to humans and nearby ecosystems, providing habitat for plants, animals and lifeforms such as algae and microfauna. Conventional methods, such as aerial photograph analysis, fail to adequately quantify the morphosedimentary behavior of beaches at the scale of a hydrosedimentary cells. The lack of reliable and quantitative data leads to considerable errors of overestimation and underestimation of sediment budgets. To address these gaps and to minimize acquisition costs posed by airborne LiDAR survey, a mobile terrestrial LiDAR has been set up to acquire topographic data of the coastal zone. The acquisition system includes a LiDAR sensor, a high precision navigation system (GPS-INS) and a video camera. Comparison of LiDAR data with 1050 DGPS control points shows a vertical mean absolute error of 0.1 m in beach areas. The extracted data is used to calculate sediment volumes, widths, slopes, and a sediment budget index. A high accuracy coastal characterization is achieved through the integration of laser data and video. The main objective of this first project using this system is to quantify the impact of rigid coastal protective structures on sediment budget and beach morphology. Results show that the average sediment volume of beaches located before a rock armour barrier (12 m3/m) were three times narrower than for natural beaches (35,5 m3/m). Natural beaches were also found to have twice the width (25.4 m) of the beaches bordering inhabited areas (12.7 m). The development of sediment budget index for beach areas is an excellent proxy to quickly identify deficit areas and therefore the coastal segments most at risk of erosion. The obtained LiDAR coverage also revealed that beach profiles made at an interval of more than 200 m on diversified coasts lead to results significantly different from reality. However, profile intervals have little impact on long uniform beaches.
Test Bed Doppler Wind Lidar and Intercomparison Facility At NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Koch, Grady J.; Petros, Mulugeta; Barnes, Bruce W.; Beyon, Jeffrey; Amzajerdian, Farzin; Yu, Ji-Rong; Singh, Upendra N.
2004-01-01
State of the art 2-micron lasers and other lidar components under development by NASA are being demonstrated and validated in a mobile test bed Doppler wind lidar. A lidar intercomparison facility has been developed to ensure parallel alignment of up to 4 Doppler lidar systems while measuring wind. Investigations of the new components; their operation in a complete system; systematic and random errors; the hybrid (joint coherent and direct detection) approach to global wind measurement; and atmospheric wind behavior are planned. Future uses of the VALIDAR (VALIDation LIDAR) mobile lidar may include comparison with the data from an airborne Doppler wind lidar in preparation for validation by the airborne system of an earth orbiting Doppler wind lidar sensor.
Occurrence and characteristics of mutual interference between LIDAR scanners
NASA Astrophysics Data System (ADS)
Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan
2015-05-01
The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.
An overview of NASA's ASCENDS Mission's Lidar Measurement Requirements
NASA Astrophysics Data System (ADS)
Abshire, J. B.; Browell, E. V.; Menzies, R. T.; Lin, B.; Spiers, G. D.; Ismail, S.
2014-12-01
The objectives of NASA's ASCENDS mission are to improve the knowledge of global CO2 sources and sinks by precisely measuring the tropospheric column abundance of atmospheric CO2 and O2. The mission will use a continuously operating nadir-pointed integrated path differential absorption (IPDA) lidar in a polar orbit. The lidar offers a number of important new capabilities and will measure atmospheric CO2 globally over a wide range of challenging conditions, including at night, at high latitudes, through hazy and thin cloud conditions, and to cloud tops. The laser source enables a measurement of range, so that the absorption path length to the scattering surface will be always accurately known. The lidar approach also measures consistently in a nadir-zenith path and the narrow laser linewidth allows weighting the measurement to the lower troposphere. Using these measurements with atmospheric and flux models will allow improved estimates of CO2 fluxes and hence better understanding of the processes that exchange CO2 between the surface and atmosphere. The ASCENDS formulation team has developed a preliminary set of requirements for the lidar measurements. These were developed based on experience gained from the numerous ASCENDS airborne campaigns that have used different candidate lidar measurement techniques. They also take into account the complexity of making precise measurement of atmospheric gas columns when viewing the Earth from space. Some of the complicating factors are the widely varying reflectance and topographic heights of the Earth's land and ocean surfaces, the variety of cloud types, and the degree of cloud and aerosol absorption and scattering in the atmosphere. The requirements address the precision and bias in the measured column mixing ratio, the dynamic range of the expected surface reflected signal, the along-track sampling resolution, measurements made through thin clouds, measurements to forested and slope surfaces, range precision, measurements to cloud tops, knowledge of the laser spot position, and off-nadir pointing. These requirements are independent of the measurement approach, and are consistent with the initial mission simulation studies performed by the formulation team. This presentation will summarize the requirements along with examples that have guided their selection.
A system design of data acquisition and processing for side-scatter lidar
NASA Astrophysics Data System (ADS)
Zhang, ZhanYe; Xie, ChenBo; Wang, ZhenZhu; Kuang, ZhiQiang; Deng, Qian; Tao, ZongMing; Liu, Dong; Wang, Yingjian
2018-03-01
A system for collecting data of Side-Scatter lidar based on Charge Coupled Device (CCD),is designed and implemented. The system of data acquisition is based on Microsoft. Net structure and the language of C# is used to call dynamic link library (DLL) of CCD for realization of the real-time data acquisition and processing. The software stores data as txt file for post data acquisition and analysis. The system has ability to operate CCD device in all-day, automatic, continuous and high frequency data acquisition and processing conditions, which will catch 24-hour information of the atmospheric scatter's light intensity and retrieve the spatial and temporal properties of aerosol particles. The experimental result shows that the system is convenient to observe the aerosol optical characteristics near surface.
First results of eclipse induced pressure and turbulence changes in South Carolina
NASA Astrophysics Data System (ADS)
Hiscox, A.; McCombs, A. G.; Stewart, M. J.
2017-12-01
Total solar eclipses supply both visual captivation and a controlled meteorological experiment by reason of a sudden decrease in radiation from the Sun. This presentation will provide first results from a field experiment focused on the atmospheric surface layer changes before, during, and after a total solar eclipse. A suite of instruments including radiosondes, aerosol lidar, sonic anemometers, and microbarographs will be deployed one mile from the total eclipse centerline outside Columbia, South Carolina. The results should not only confirm the commonly expected changes in sensible weather, but also provide insight into the generation and propagation of internal gravity waves. These waves propagate and transfer both energy and momentum vertically to and from the upper levels of the atmosphere. Early scientific results are expected to provide IGW vertical propagation speeds from succesive radiosonde measurements, while triangulated surface pressure measurements will provide timing of wave activity. Other anticipated results to be presented are changes in turbulence turbulence stationarity and pressure pertubations. Finally, the sucess of a major outreach event held in tandem with the scientific experiement will be discussed.
Testing model parameters for wave-induced dune erosion using observations from Hurricane Sandy
NASA Astrophysics Data System (ADS)
Overbeck, J. R.; Long, J. W.; Stockdon, H. F.
2017-01-01
Models of dune erosion depend on a set of assumptions that dictate the predicted evolution of dunes throughout the duration of a storm. Lidar observations made before and after Hurricane Sandy at over 800 profiles with diverse dune elevations, widths, and volumes are used to quantify specific dune erosion model parameters including the dune face slope, which controls dune avalanching, and the trajectory of the dune toe, which controls dune migration. Wave-impact models of dune erosion assume a vertical dune face and erosion of the dune toe along the foreshore beach slope. Observations presented here show that these assumptions are not always valid and require additional testing if these models are to be used to predict coastal vulnerability for decision-making purposes. Observed dune face slopes steepened by 43% yet did not become vertical faces, and only 50% of the dunes evolved along a trajectory similar to the foreshore beach slope. Observations also indicate that dune crests were lowered during dune erosion. Moreover, analysis showed a correspondence between dune lowering and narrower beaches, smaller dune volumes, and/or longer wave impact.
NASA Technical Reports Server (NTRS)
Naesset, Erik; Gobakken, Terje; Bollandsas, Ole Martin; Gregoire, Timothy G.; Nelson, Ross; Stahl, Goeran
2013-01-01
Airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool to provide auxiliary data for sample surveys aiming at estimation of above-ground tree biomass (AGB), with potential applications in REDD forest monitoring. For larger geographical regions such as counties, states or nations, it is not feasible to collect airborne LiDAR data continuously ("wall-to-wall") over the entire area of interest. Two-stage cluster survey designs have therefore been demonstrated by which LiDAR data are collected along selected individual flight-lines treated as clusters and with ground plots sampled along these LiDAR swaths. Recently, analytical AGB estimators and associated variance estimators that quantify the sampling variability have been proposed. Empirical studies employing these estimators have shown a seemingly equal or even larger uncertainty of the AGB estimates obtained with extensive use of LiDAR data to support the estimation as compared to pure field-based estimates employing estimators appropriate under simple random sampling (SRS). However, comparison of uncertainty estimates under SRS and sophisticated two-stage designs is complicated by large differences in the designs and assumptions. In this study, probability-based principles to estimation and inference were followed. We assumed designs of a field sample and a LiDAR-assisted survey of Hedmark County (HC) (27,390 km2), Norway, considered to be more comparable than those assumed in previous studies. The field sample consisted of 659 systematically distributed National Forest Inventory (NFI) plots and the airborne scanning LiDAR data were collected along 53 parallel flight-lines flown over the NFI plots. We compared AGB estimates based on the field survey only assuming SRS against corresponding estimates assuming two-phase (double) sampling with LiDAR and employing model-assisted estimators. We also compared AGB estimates based on the field survey only assuming two-stage sampling (the NFI plots being grouped in clusters) against corresponding estimates assuming two-stage sampling with the LiDAR and employing model-assisted estimators. For each of the two comparisons, the standard errors of the AGB estimates were consistently lower for the LiDAR-assisted designs. The overall reduction of the standard errors in the LiDAR-assisted estimation was around 40-60% compared to the pure field survey. We conclude that the previously proposed two-stage model-assisted estimators are inappropriate for surveys with unequal lengths of the LiDAR flight-lines and new estimators are needed. Some options for design of LiDAR-assisted sample surveys under REDD are also discussed, which capitalize on the flexibility offered when the field survey is designed as an integrated part of the overall survey design as opposed to previous LiDAR-assisted sample surveys in the boreal and temperate zones which have been restricted by the current design of an existing NFI.
Nineteenth International Laser Radar Conference. Part 2
NASA Technical Reports Server (NTRS)
Singh, Upendra N. (Editor); Ismail, Syed (Editor); Schwemmer, Geary K. (Editor)
1998-01-01
This publication contains extended abstracts of papers presented at the Nineteenth International Laser Radar Conference, held at Annapolis, Maryland, July 6-10, 1998; 260 papers were presented in both oral and poster sessions. The topics of the conference sessions were Aerosol Clouds, Multiple Scattering; Tropospheric Profiling, Stratospheric/Mesospheric Profiling; Wind Profiling; New Lidar Technology and Techniques; Lidar Applications, Including Altimetry and Marine; Space and Future Lidar; and Lidar Commercialization/Eye Safety. This conference reflects the breadth of research activities being conducted in the lidar field. These abstracts address subjects from lidar-based atmospheric investigations, development of new lasers and lidar system technology, and current and future space-based lidar systems.
Nineteenth International Laser Radar Conference. Part 1
NASA Technical Reports Server (NTRS)
Singh, Upendra N. (Editor); Ismail, Syed (Editor); Schwemmer, Geary K. (Editor)
1998-01-01
This publication contains extended abstracts of papers presented at the Nineteenth International Laser Radar Conference, held at Annapolis, Maryland, July 6-10, 1998; 260 papers were presented in both oral and poster sessions. The topics of the conference sessions were Aerosol Clouds, Multiple Scattering; Tropospheric Profiling; Stratospheric/Mesospheric Profiling; Wind Profiling; New Lidar Technology and Techniques; Lidar Applications, including Altimetry and Marine; Space and Future Lidar; and Lidar Commercialization/Eye Safety. This conference reflects the breadth of research activities being conducted in the lidar field. These abstracts address subjects from lidar-based atmospheric investigations, development of new lasers and lidar system technology, and current and future space-based lidar systems.
Doppler lidar signal and turbulence study
NASA Technical Reports Server (NTRS)
Frost, W.; Huang, K. H.; Fitzjarrald, D. F.
1983-01-01
Comparison of the second moments of the Doppler lidar signal with aircraft and tower measured parameters is being carried out. Lidar binary data tapes were successfully converted to ASCII Code on the VAX 11/780. These data were used to develop the computer programs for analyzing data from the Marshall Space Flight Center field test. Raw lidar amplitude along the first 50 forward and backward beams of Run No. 2, respectively was plotted. Plotting techniques for the same beams except with the amplitude thresholded and range corrected were developed. Plotting routines for the corresponding lidar width of the first 50 forward and backward beams were also established. The relationship between raw lidar amplitude and lidar width was examined. The lidar width is roughly constant for lidar amplitudes less than 120 dB. A field test with the NASA/MSFC ground based Doppler lidar, the instrumented NASA B-57B gust gradient aircraft, and the NASA/MSFC eight tower array was carried out. The data tape for the lidar was received and read. The aircraft data and tower data are being digitized and converted to engineering units. Velocities computed sequentially along each of the lidar beams beginning at 16:40:00, May 12, 1983 were plotted for Run No. 1.
Profiling of Atmospheric Water Vapor from the SSM/T-2 Radiometric Measurements
NASA Technical Reports Server (NTRS)
Wang, J. R.
2000-01-01
An advantage of using the millimeter-wave measurements for water vapor profiling is the ability to probe beyond a moderate cloud cover. Such a capability has been demonstrated from an airborne MIR (Millimeter-wave Imaging Radiometer) flight over the Pacific Ocean during an intense observation period of TOGA/COARE (Tropical Ocean Global Atmosphere/ Couple Ocean Atmospheric Response Experiment) in early 1993. A Cloud Lidar System (CLS) and MODIS Airborne Simulator (MAS) were on board the same aircraft to identify the presence of clouds and cloud type. The retrieval algorithm not only provides output of a water vapor profile, but also the cloud liquid water and approximate cloud altitude required to satisfy convergence of the retrieval. The validity of these cloud parameters has not been verified previously. In this document, these cloud parameters are compared with those derived from concurrent measurements from the CLS and AMPR (Advanced Microwave Precipitation Radiometer).
NASA Technical Reports Server (NTRS)
Mcintosh, R.
1982-01-01
The state of the art in remote sensing of the earth and the planets was discussed in terms of sensor performance, signal processing, and data interpretation. Particular attention was given to lidar for characterizing atmospheric particulates, the modulation of short waves by long ocean gravity waves, and runoff modeling for snow-covered areas. The use of NOAA-6 spacecraft AVHRR data to explore hydrologic land surface features, the effects of soil moisture and vegetation canopies on microwave and thermal microwave emissions, and regional scale evapotranspiration rate determination through satellite IR data are examined. A Shuttle experiment to demonstrate high accuracy global time and frequency transfer is described, along with features of the proposed Gravsat, radar image processing for rock-type discrimination, and passive microwave sensing of temperature and salinity in coastal zones.
Practical Approach To Building A Mid-Wave Remote Sensing System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyke, Benjamin J.
The purpose of this project, Laser Active Transmitter & Receiver (LATR), was to build a mobile ground based remote sensing system that can detect, identify and quantify a specific gaseous species using Differential Absorption LIDAR (DIAL). This thesis project is concerned with the development and field testing of a mid-wave infrared active remote sensing system, capable of identifying and quantifying emissions in the 3.2 – 3.5 micron range. The goal is to give a brief description of what remote sensing is about and the specific technique used to analyze the collected data. The thesis will discuss the transmitter and themore » associated subsystems used to create the required wavelength, and the receiver used to collect the returns. And finally, the thesis will discuss the process of collecting the data and some of the results from field and lab collections.« less