Sample records for continuous wave microwave

  1. EFFECTS OF CONTINUOUS-WAVE, PULSED, AND SINUSOIDAL-AMPLITUDE-MODULATED MICROWAVES ON BRAIN ENERGY METABOLISM

    EPA Science Inventory

    A comparison of the effects of continuous wave, sinusoidal-amplitude modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague Dawley rats (175-225g). Brain NADH fluorescence, adensine triphosphate (ATP) concentrat...

  2. Longevity of microwave-treated (2. 45 GHz continuous wave) honey bees in observation hives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary, N.E.; Westerdahl, B.B.

    1981-12-15

    Adult honey bees were exposed for 30 min to 2.45 GHz of continuous wave microwave radiation at power densities ranging from 3 to 50 mW/cm/sup 2/. After exposure, bees were returned to glass-walled observation hives, and their longevity was compared with that of control bees. No significant differences were found between microwave- and sham-treated bees at any of the power densities tested.

  3. Chronic exposure of a honey bee colony to 2.45 GHz continuous wave microwaves

    NASA Technical Reports Server (NTRS)

    Westerdahl, B. B.; Gary, N. E.

    1981-01-01

    A honey bee colony (Apis mellifera L.) was exposed 28 days to 2.45 GHz continuous wave microwaves at a power density (1 mW/sq cm) expected to be associated with rectennae in the solar power satellite power transmission system. Differences found between the control and microwave-treated colonies were not large, and were in the range of normal variation among similar colonies. Thus, there is an indication that microwave treatment had little, if any, effect on (1) flight and pollen foraging activity, (2) maintenance of internal colony temperature, (3) brood rearing activity, (4) food collection and storage, (5) colony weight, and (6) adult populations. Additional experiments are necessary before firm conclusions can be made.

  4. Effects of chronic continuous wave microwave radiation (2. 45 GHz) on the foraging behavior of the white-throated sparrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasserman, F.E.; Patterson, D.A.; Kunz, T.H.

    1986-01-01

    The effect of chronic continuous wave microwave radiation on the foraging behavior of the White-throated Sparrow was examined using an optimal foraging laboratory technique. Birds were exposed to microwaves for seven days at a frequency of 2.45 GHz and power densities of 0.0, 0.1, 1.0, 10.0, and 25.0 mW/cm/sup 2/. Even though there were differences in foraging behaviors among power densities no trend was found for a dose response effect. Birds showed no significant differences in foraging behaviors among pre-exposure, exposure, and post-exposure periods.

  5. Chronic exposure of a honey bee colony to 2. 45 GHz continuous wave microwaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdahl, B.B.; Gary, N.E.

    A honey bee colony (Apis mellifera L.) was exposed 28 days to 2.45 GHz continuous wave microwaves at a power density (1 mW/sq cm) expected to be associated with rectennae in the solar power satellite power transmission system. Differences found between the control and microwave-treated colonies were not large, and were in the range of normal variation among similar colonies. Thus, there is an indication that microwave treatment had little, if any, effect on (1) flight and pollen foraging activity, (2) maintenance of internal colony temperature, (3) brood rearing activity, (4) food collection and storage, (5) colony weight, and (6)more » adult populations. Additional experiments are necessary before firm conclusions can be made.« less

  6. Microwave determination of location and speed of an object inside a pipe

    DOEpatents

    Sinha, Dipen N.

    2010-12-14

    Apparatus and method are described for measuring the location and speed of an object, such as instrumentation on a movable platform, disposed within a pipe, using continuous-wave, amplitude-modulated microwave radiation.

  7. Modern Microwave and Millimeter-Wave Power Electronics

    NASA Astrophysics Data System (ADS)

    Barker, Robert J.; Luhmann, Neville C.; Booske, John H.; Nusinovich, Gregory S.

    2005-04-01

    A comprehensive study of microwave vacuum electronic devices and their current and future applications While both vacuum and solid-state electronics continue to evolve and provide unique solutions, emerging commercial and military applications that call for higher power and higher frequencies to accommodate massive volumes of transmitted data are the natural domain of vacuum electronics technology. Modern Microwave and Millimeter-Wave Power Electronics provides systems designers, engineers, and researchers-especially those with primarily solid-state training-with a thoroughly up-to-date survey of the rich field of microwave vacuum electronic device (MVED) technology. This book familiarizes the R&D and academic communities with the capabilities and limitations of MVED and highlights the exciting scientific breakthroughs of the past decade that are dramatically increasing the compactness, efficiency, cost-effectiveness, and reliability of this entire class of devices. This comprehensive text explores a wide range of topics: * Traveling-wave tubes, which form the backbone of satellite and airborne communications, as well as of military electronic countermeasures systems * Microfabricated MVEDs and advanced electron beam sources * Klystrons, gyro-amplifiers, and crossed-field devices * "Virtual prototyping" of MVEDs via advanced 3-D computational models * High-Power Microwave (HPM) sources * Next-generation microwave structures and circuits * How to achieve linear amplification * Advanced materials technologies for MVEDs * A Web site appendix providing a step-by-step walk-through of a typical MVED design process Concluding with an in-depth examination of emerging applications and future possibilities for MVEDs, Modern Microwave and Millimeter-Wave Power Electronics ensures that systems designers and engineers understand and utilize the significant potential of this mature, yet continually developing technology. SPECIAL NOTE: All of the editors' royalties realized from the sale of this book will fund the future research and publication activities of graduate students in the vacuum electronics field.

  8. An RFI Detection Algorithm for Microwave Radiometers Using Sparse Component Analysis

    NASA Technical Reports Server (NTRS)

    Mohammed-Tano, Priscilla N.; Korde-Patel, Asmita; Gholian, Armen; Piepmeier, Jeffrey R.; Schoenwald, Adam; Bradley, Damon

    2017-01-01

    Radio Frequency Interference (RFI) is a threat to passive microwave measurements and if undetected, can corrupt science retrievals. The sparse component analysis (SCA) for blind source separation has been investigated to detect RFI in microwave radiometer data. Various techniques using SCA have been simulated to determine detection performance with continuous wave (CW) RFI.

  9. Discharge conditions for CW and pulse-modulated surface-wave plasmas in low-temperature sterilization

    NASA Astrophysics Data System (ADS)

    Xu, L.; Terashita, F.; Nonaka, H.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.

    2006-01-01

    The discharge conditions required for low-temperature plasma sterilization were investigated using low-pressure surface-wave plasma (SWP). The discharge conditions for both continuous wave (CW) and pulse-modulated SWPs in low-temperature sterilization of Geobacillus stearothermophilus with a population of 1.5 × 106 and 3.0 × 106 were studied by varying the microwave input power from 500 W to 3 kW, and the effective plasma treatment time from 40 to 300 s. Results showed that sterilization was possible in a shorter treatment time using a higher microwave power for both CW and pulse-modulated SWPs. Pulse-modulated SWPs gave effective sterilization at a temperature roughly 10 to 20 °C below that of CW SWPs under the same average microwave power.

  10. Proposed Ultra-High Sensitivity High-Frequency Gravitational Wave Detector

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Stephenson, Gary V.; Li, Fangyu

    2008-01-01

    The paper discusses the proposed improvement of a High-Frequency Relic Gravitational Wave (HFRGW) detector designed by Li, Baker, Fang, Stephenson and Chen in order to greatly improve its sensitivity. The improved detector is inspired by the Laser Interferometer Gravitational Observatory or LIGO, but is sensitive to the high-frequency end of the gravitational-wave spectrum. As described in prior papers it utilizes the Gertsenshtein effect, which introduces the conversion of gravitational waves to electromagnetic (EM) waves in the presence of a static magnetic field. Such a conversion, if it leads to photons moving in a direction perpendicular to the plane of the EM waves and the magnetic field, will allow for ultra-high sensitivity HFRGW detection. The use of sensitive microwave, single photon detectors such as a circuit QED and/or the Rydberg Atom Cavity Detector, or off-the-shelf detectors, could lead to such detection. When the EM-detection photons are focused at the microwave detectors by fractal-membrane reflectors sensitivity is also improved. Noise sources external to the HFRGW detector will be eliminated by placing a tight mosaic of superconducting tiles (e.g., YBCO) and/or fractal membranes on the interior surface of the detector's cryogenic containment vessel in order to provide a perfect Faraday cage. Internal thermal noise will be eliminated by means of a microwave absorbing (or reflecting) interior enclosure shaped to conform to a high-intensity continuous microwave Gaussian beam (GB), will reduce any background photon flux (BPF) noise radiated normal to the GB's axis. Such BPF will be further attenuated by a series of microwave absorbing baffles forming tunnels to the sensitive microwave detectors on each side of the GB and at right angles to the static magnetic field. A HFGW detector of bandwidth of 1 KHz to 10 KHz or less in the GHz band has been selected. It is concluded that the utilization of the new ultra-high-sensitivity microwave detectors, together with the increased microwave power and magnet intensity will allow for a detection of high-frequency gravitational waves (HFGWs) exhibiting amplitudes, A, of the time-varying spacetime strains on the order of 10-30 to 10-34.

  11. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.

    PubMed

    Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko

    2011-05-01

    A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

  12. Longevity and food consumption of microwave-treated (2. 45 GHz CW) honeybees in the laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdahl, B.B.; Gary, N.E.

    1981-01-01

    Adult honeybees, confined singly or in small clusters, were exposed for 0.5, 6, and 24 hours to 2.45-GHz continuous wave microwave radiation at power densities of 3, 6, 12, 25, and 50 mW/cm2. Following exposure, bees were held in the incubator for 21 days to determine the consumption of sucrose syrup and to observe mortality. No significant differences were found between microwave-treated and sham-treated or control bees.

  13. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2010-03-15

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360 degrees microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz). The proposed device exploits the phenomenon of coherent population oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations of the suggested technique, dictated by the underlying physics, are also analyzed.

  14. Determination of solid-propellant transient regression rates using a microwave Doppler shift technique

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Schultz, A. L.; Reedy, G. K.

    1972-01-01

    A microwave Doppler shift system, with increased resolution over earlier microwave techniques, was developed for the purpose of measuring the regression rates of solid propellants during rapid pressure transients. A continuous microwave beam is transmitted to the base of a burning propellant sample cast in a metal waveguide tube. A portion of the wave is reflected from the regressing propellant-flame zone interface. The phase angle difference between the incident and reflected signals and its time differential are continuously measured using a high resolution microwave network analyzer and related instrumentation. The apparent propellant regression rate is directly proportional to this latter differential measurement. Experiments were conducted to verify the (1) spatial and time resolution of the system, (2) effect of propellant surface irregularities and compressibility on the measurements, and (3) accuracy of the system for quasi-steady-state regression rate measurements. The microwave system was also used in two different transient combustion experiments: in a rapid depressurization bomb, and in the high-frequency acoustic pressure environment of a T-burner.

  15. Detecting continuous gravitational waves with superfluid 4He

    NASA Astrophysics Data System (ADS)

    Singh, S.; De Lorenzo, L. A.; Pikovski, I.; Schwab, K. C.

    2017-07-01

    Direct detection of gravitational waves is opening a new window onto our universe. Here, we study the sensitivity to continuous-wave strain fields of a kg-scale optomechanical system formed by the acoustic motion of superfluid helium-4 parametrically coupled to a superconducting microwave cavity. This narrowband detection scheme can operate at very high Q-factors, while the resonant frequency is tunable through pressurization of the helium in the 0.1-1.5 kHz range. The detector can therefore be tuned to a variety of astrophysical sources and can remain sensitive to a particular source over a long period of time. For thermal noise limited sensitivity, we find that strain fields on the order of h˜ {10}-23/\\sqrt{{Hz}} are detectable. Measuring such strains is possible by implementing state of the art microwave transducer technology. We show that the proposed system can compete with interferometric detectors and potentially surpass the gravitational strain limits set by them for certain pulsar sources within a few months of integration time.

  16. Status and Evaluation of Microwave Furnace Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lizcano, Maricela; Mackey, Jonathan A.

    2014-01-01

    The microwave (MW) furnace is a HY-Tech Microwave Systems, 2 kW 2.45 GHz Single Mode Microwave Applicator operating in continuous wave (CW) with variable power. It is located in Cleveland, Ohio at NASA Glenn Research Center. Until recently, the furnace capabilities had not been fully realized due to unknown failure that subsequently damaged critical furnace components. Although the causes of the problems were unknown, an assessment of the furnace itself indicated operational failure may have been partially caused by power quality. This report summarizes the status of the MW furnace and evaluates its capabilities in materials processing.

  17. Non-Contact Detection of Breathing Using a Microwave Sensor

    PubMed Central

    Dei, Devis; Grazzini, Gilberto; Luzi, Guido; Pieraccini, Massimiliano; Atzeni, Carlo; Boncinelli, Sergio; Camiciottoli, Gianna; Castellani, Walter; Marsili, Massimo; Dico, Juri Lo

    2009-01-01

    In this paper the use of a continuous-wave microwave sensor as a non-contact tool for quantitative measurement of respiratory tidal volume has been evaluated by experimentation in seventeen healthy volunteers. The sensor working principle is reported and several causes that can affect its response are analyzed. A suitable data processing has been devised able to reject the majority of breath measurements taken under non suitable conditions. Furthermore, a relationship between microwave sensor measurements and volume inspired and expired at quiet breathing (tidal volume) has been found. PMID:22574033

  18. Time-of-Flight Microwave Camera.

    PubMed

    Charvat, Gregory; Temme, Andrew; Feigin, Micha; Raskar, Ramesh

    2015-10-05

    Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable "stealth" regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a data fusion method to reduce stealth regions, and a frequency modulated continuous wave (FMCW) receiver to achieve depth resolution. The camera captures images with a resolution of 1.5 degrees, multispectral images across the X frequency band (8 GHz-12 GHz), and a time resolution of 200 ps (6 cm optical path in free space). Images are taken of objects in free space as well as behind drywall and plywood. This architecture allows "camera-like" behavior from a microwave imaging system and is practical for imaging everyday objects in the microwave spectrum.

  19. The Contributions Regarding the Use of Microwave to Obtain Modeling Gypsum for Phonic-Absorbent Construction and Orthopedic Materials

    NASA Astrophysics Data System (ADS)

    Pop, P. A.; Ungur, P. A.; Caraban, A.; Marcu, F.

    2009-11-01

    The paper has presented some experiments realized at "Congips" Co. Oradea and University of Oradea, regarding of increase machining efficiency and quality for modeling gypsum plaster by using of microwave energy to gypsum ore roast. The elaboration process of microwave energy for modeling gypsum plaster has done on electromagnetic waves properties and specific properties for dielectric materials. Microwaves are radiations of electromagnetic waveform nature, determine by pulsations of electrical-E) and magnetically-H components of electromagnetic wave in interdependence with Maxwell equations. The gypsum ore is calcium sulphate dehydrate (CaSO4ṡ2H2O) using at modeling gypsum plaster fabrication, which is calcium sulphate hemihydrate (CaSO4ṡ1/2H2O), that has behavior of dielectric with losses. The gypsum ore getting in microwave field, in conditions of predictable pressure and temperature has transformed in modeling gypsum plaster, by quick lost of a part from crystallization water. The processing time is very short, which due to a great productivity and machining efficiency, finally of low process cost. All of these recommend continuing the research at pilot station level.

  20. Confluence or independence of microwave plasma bullets in atmospheric argon plasma jet plumes

    NASA Astrophysics Data System (ADS)

    Li, Ping; Chen, Zhaoquan; Mu, Haibao; Xu, Guimin; Yao, Congwei; Sun, Anbang; Zhou, Yuming; Zhang, Guanjun

    2018-03-01

    Plasma bullet is the formation and propagation of a guided ionization wave (streamer), normally generated in atmospheric pressure plasma jet (APPJ). In most cases, only an ionization front produces in a dielectric tube. The present study shows that two or three ionization fronts can be generated in a single quartz tube by using a microwave coaxial resonator. The argon APPJ plumes with a maximum length of 170 mm can be driven by continuous microwaves or microwave pulses. When the input power is higher than 90 W, two or three ionization fronts propagate independently at first; thereafter, they confluence to form a central plasma jet plume. On the other hand, the plasma bullets move independently as the lower input power is applied. For pulsed microwave discharges, the discharge images captured by a fast camera show the ionization process in detail. Another interesting finding is that the strongest lightening plasma jet plumes always appear at the shrinking phase. Both the discharge images and electromagnetic simulations suggest that the confluence or independent propagation of plasma bullets is resonantly excited by the local enhanced electric fields, in terms of wave modes of traveling surface plasmon polaritons.

  1. First results of an investigation of the effects of microwave radiation with low power density on the behavior of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberti, B.; Heebels, G.H.; Hendricx, J.C.M.

    1975-01-01

    The effect of microwave radiation on the spontaneous motor activity of the male Wistar rat was investigated. Rats were exposed to microwaves of 10.7 GHz, continuous wave (CW), 3 GHz, CW or 3 GHz pulsed wave (PW) with power densities of about 1 mW/sq cm for 185 h. Moreover, a small number of rats was irradiated with 3 GHz, PW at 25 mW/sq cm for 17 days. Spontaneous activity was automatically measured and analyzed in 5 classes of movements of increasing amplitudes. After termination of the irradiation no differences were found between the irradiated rats and the non-irradiated controls. Inmore » the experiment with 3 GHz, PW at 25 mW/sq cm for 17 days, rats were used that had been pretrained to a constant top performance on a 2 m long runway. Their running-times were not influenced by the irradiation. No deleterious effects of the microwave irradiation have been found as yet. (Author)« less

  2. 17 CFR 256.931 - Rents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Rents. 256.931 Section 256.931 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) UNIFORM SYSTEM OF ACCOUNTS..., computers, data processing equipment, micro-wave and telecommunication equipment, airplanes, automobiles...

  3. Highly Efficient Optical Pumping of Spin Defects in Silicon Carbide for Stimulated Microwave Emission

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Sperlich, A.; Kraus, H.; Ohshima, T.; Astakhov, G. V.; Dyakonov, V.

    2018-05-01

    We investigate the pump efficiency of silicon-vacancy-related spins in silicon carbide. For a crystal inserted into a microwave cavity with a resonance frequency of 9.4 GHz, the spin population inversion factor of 75 with the saturation optical pump power of about 350 mW is achieved at room temperature. At cryogenic temperature, the pump efficiency drastically increases, owing to an exceptionally long spin-lattice relaxation time exceeding one minute. Based on the experimental results, we find realistic conditions under which a silicon carbide maser can operate in continuous-wave mode and serve as a quantum microwave amplifier.

  4. Plasma wave excitation by intense microwave transmission from a space vehicle

    NASA Astrophysics Data System (ADS)

    Kimura, I.; Matsumoto, H.; Kaya, N.; Miyatake, S.

    An impact of intense microwave upon the ionospheric plasma was empirically investigated by an active rocket experiment (MINIX). The rocket carried two high-power (830W) transmitters of 2.45 GHz microwave on the mother section of the rocket. The ionospheric plasma response to the intense microwave was measured by a diagnostic package installed on both mother and daughter sections. The daughter section was separated from the mother with a slow speed of 15 cm/sec. The plasma wave analyzers revealed that various plasma waves are nonlinearly excited by the microwave. Among them, the most intense are electron cyclotron waves, followed by electron plasma waves. Extremely low frequency waves (several tens of Hz) are also found. The results of the data analysis as well as comparative computer simulations are given in this paper.

  5. High Power K Sub a -band Transmitter for Planetary Radar and Spacecraft Uplink

    NASA Technical Reports Server (NTRS)

    Bhanji, A. M.; Hoppe, D. J.; Hartop, R. W.; Stone, E. W.; Imbriale, W. A.; Stone, D.; Caplan, M.

    1984-01-01

    A proposed conceptual design of a 400 kW continuous wave (CW)K sub a band transmitter and associated microwave components to be used for planetary radar and serve as a prototype for future spacecraft uplinks is discussed. System requirements for such a transmitter are presented. Performance of the proposed high-power millimeter wave tube, the gyroklystron is discussed. Parameters of the proposed power amplifier, beam supply, and monitor and control devices are also presented. Microwave transmission line components consisting of signal monitoring devices, signal filtering devices, and an overmoded corrugated feed are discussed. Finally, an assessment of the state of the art technology to meet the system requirements is given and possible areas of difficulty are summarized.

  6. Time-of-Flight Microwave Camera

    PubMed Central

    Charvat, Gregory; Temme, Andrew; Feigin, Micha; Raskar, Ramesh

    2015-01-01

    Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable “stealth” regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a data fusion method to reduce stealth regions, and a frequency modulated continuous wave (FMCW) receiver to achieve depth resolution. The camera captures images with a resolution of 1.5 degrees, multispectral images across the X frequency band (8 GHz–12 GHz), and a time resolution of 200 ps (6 cm optical path in free space). Images are taken of objects in free space as well as behind drywall and plywood. This architecture allows “camera-like” behavior from a microwave imaging system and is practical for imaging everyday objects in the microwave spectrum. PMID:26434598

  7. Time-of-Flight Microwave Camera

    NASA Astrophysics Data System (ADS)

    Charvat, Gregory; Temme, Andrew; Feigin, Micha; Raskar, Ramesh

    2015-10-01

    Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable “stealth” regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a data fusion method to reduce stealth regions, and a frequency modulated continuous wave (FMCW) receiver to achieve depth resolution. The camera captures images with a resolution of 1.5 degrees, multispectral images across the X frequency band (8 GHz-12 GHz), and a time resolution of 200 ps (6 cm optical path in free space). Images are taken of objects in free space as well as behind drywall and plywood. This architecture allows “camera-like” behavior from a microwave imaging system and is practical for imaging everyday objects in the microwave spectrum.

  8. Earth Resources. A Continuing Bibliography with Indexes

    DTIC Science & Technology

    1987-11-01

    Airborne microwave Doppler measurements of ocean of Guinea according to ground-based and satellite Coral reef remote sensing applications wave directional...understanding of internal Coral reef remote sensing applications an earth-to-satellite Hadamard transform laser long-path waves in the ocean p 20 A87-32951...classifications of coral reefs , and an are provided and new topographic features that are revealed are autocorrelation technique is being developed to

  9. 1990 MTT-S International Microwave Symposium and Exhibition and Microwave and Millimeter-Wave Monolithic IC Symposium, Dallas, TX, May 7-10, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    McQuiddy, David N., Jr.; Sokolov, Vladimir

    1990-12-01

    The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.

  10. Dielectric polarization in the Planck theory of sonoluminescence.

    PubMed

    Prevenslik, T V

    1998-11-01

    Sonoluminescence observed in the cavitation of liquid H2O may be explained by the Planck theory of SL, which treats the bubbles as collapsing miniature masers having optical waves standing in resonance with the dimensions of the bubble cavity. Microwaves are shown to be created from the Planck energy of the standing waves, provided the bubble wall can be treated as a perfect blackbody surface. Liquid H2O is strongly absorbent in the ultraviolet and there the bubble approaches a Planck blackbody enclosure. The microwaves are created at frequencies proportional to the bubble collapse velocity only to be promptly absorbed by the rotation quantum states of the H2O and other bubble wall molecules. The microwaves are absorbed discretely at rotation line frequencies, or continuously by dipole rotation at frequencies from 1 to 30 GHz. In the liquid state, molecular rotation of the H2O molecule is hindered and the microwave energy is rapidly turned into bending energy by intermolecular collisions. Subsequently, the bubble wall molecules may thereby ionize and produce visible photons. The microwaves create intense electrical fields in the bubble wall by dielectric polarization. If the gases adjacent to the bubble wall undergo electrical breakdown, free electrons are created, thereby providing sonoluminescence with a magnetic field effect.

  11. Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: Robust sub-50 fs cavity-laser phase stabilization

    PubMed Central

    Otto, M. R.; René de Cotret, L. P.; Stern, M. J.; Siwick, B. J.

    2017-01-01

    We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability (>10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization. PMID:28852686

  12. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1988-01-01

    In the first half of this grant year, laboratory measurements were conducted on the millimeter-wave properties of atmospheric gases under simulated conditions for the outer planet. Significant improvements in the current system have made it possible to accurately characterize the opacity from gaseous NH3 at longer millimeter wavelengths (7 to 10 mm) under simulated Jovian conditions. In the second half of the grant year, it is hoped to extend such measurements to even shorter millimeter-wavelengths. Further analysis and application of the laboratory results to microwave and millimeter-wave absorption data for the outer planets, such as results from Voyager Radio Occultation experiments and earth-based radio astronomical observations will be continued. The analysis of available multispectral microwave opacity data from Venus, including data from the most recent radio astronomical ovservations in the 1.3 to 3.6 cm wavelength range and newly obtained Pioneer-Venus Radio Occulatation measurements at 13 cm, using the laboratory measurements as an interpretative tool will be pursued.

  13. Magnetic Field Synthesis for Microwave Magnetics.

    DTIC Science & Technology

    1982-04-01

    Uniform Fields Ferrimagnetic Films Yettrium Iron Garnet Magnetic Fields 2.ABSTRACT (Continue en reviresde It neceeectv .. d identify by block num~ber) he...Iron Garnet ," Proc. of IEEE, 64 794 (1976). 3. J. H. Collins and F. A. Pizzarello, "Propagating Magnetic Waves in Thick Films : A Complementary...E. Wigen, "Exchange-Dominated Surface Spin Waves in Thin Yttrium-Iron- Garnet Films ," Phys. Rev. B, 11 420 (1975). 36. C. Vittoria and J. H. Schelleng

  14. Abnormal cardiovascular responses induced by localized high power microwave exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.-T; Brown, D.O.; Johnson, C.E.

    1992-05-01

    A hypothesis of microwave-induced circulatory under perfusion was tested in ketamine anesthetized rats whose heart rate, mean arterial pressure, pulse pressure, respiration rate, and body temperatures were monitored continuously. Fifty-eight ventral head and neck exposures in a waveguide consisted of sham-exposure and exposure to continuous wave (CW) and pulsed 1.25 GHz microwaves for 5 min. The 0.5 Hz and 16 Hz pulsemodulated microwaves were delivered at 400 kW peak power. The CW microwaves were 2 and 6.4 W. The average specific absorption rate was 4.75 W/kg per watt transmitted in the brain and 17.15 W/kg per watt transmitted in themore » neck. Respiration rate and mean arterial pressure were not altered. Changes in heart rate and pulse pressure were observed in rats exposed to higher power but not to the lower average power microwaves. Depression of pulse pressure, an indication of a decrease in stroke volume, and increased or decreased heart rate were noted in presence of whole-body hyperthermia. The cardiac output of those animals exposed to higher average power microwaves was considered to be below normal as hypothesized. Decreased cardiac output and normal mean arterial pressure resulted in an increase in the total peripheral resistance which was contrary to the anticipated thermal response of animals.« less

  15. Optimizing microwave photodetection: input-output theory

    NASA Astrophysics Data System (ADS)

    Schöndorf, M.; Govia, L. C. G.; Vavilov, M. G.; McDermott, R.; Wilhelm, F. K.

    2018-04-01

    High fidelity microwave photon counting is an important tool for various areas from background radiation analysis in astronomy to the implementation of circuit quantum electrodynamic architectures for the realization of a scalable quantum information processor. In this work we describe a microwave photon counter coupled to a semi-infinite transmission line. We employ input-output theory to examine a continuously driven transmission line as well as traveling photon wave packets. Using analytic and numerical methods, we calculate the conditions on the system parameters necessary to optimize measurement and achieve high detection efficiency. With this we can derive a general matching condition depending on the different system rates, under which the measurement process is optimal.

  16. Generation of propagating spin waves from regions of increased dynamic demagnetising field near magnetic antidots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V.; Sadovnikov, A. V.

    We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development ofmore » magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.« less

  17. Enhancement of anodic current attributed to oxygen evolution on α-Fe2O3 electrode by microwave oscillating electric field

    PubMed Central

    Kishimoto, Fuminao; Matsuhisa, Masayuki; Kawamura, Shinichiro; Fujii, Satoshi; Tsubaki, Shuntaro; Maitani, Masato M.; Suzuki, Eiichi; Wada, Yuji

    2016-01-01

    Various microwave effects on chemical reactions have been observed, reported and compared to those carried out under conventional heating. These effects are classified into thermal effects, which arise from the temperature rise caused by microwaves, and non-thermal effects, which are attributed to interactions between substances and the oscillating electromagnetic fields of microwaves. However, there have been no direct or intrinsic demonstrations of the non-thermal effects based on physical insights. Here we demonstrate the microwave enhancement of oxidation current of water to generate dioxygen with using an α-Fe2O3 electrode induced by pulsed microwave irradiation under constantly applied potential. The rectangular waves of current density under pulsed microwave irradiation were observed, in other words the oxidation current of water was increased instantaneously at the moment of the introduction of microwaves, and stayed stably at the plateau under continuous microwave irradiation. The microwave enhancement was observed only for the α-Fe2O3 electrode with the specific surface electronic structure evaluated by electrochemical impedance spectroscopy. This discovery provides a firm evidence of the microwave special non-thermal effect on the electron transfer reactions caused by interaction of oscillating microwaves and irradiated samples. PMID:27739529

  18. Millimeter Wave Nonreciprocal Devices.

    DTIC Science & Technology

    1983-01-03

    measures microwave magnetic field patterns of magnetostatic waves in LPE -YIG thin films has been developed. The probe’s sensing element is either a...Morgenthaler, "Workshop on Application of Garnet and Ferrite Thin Films to Microwave Devices," Session FC, Third Joint Intermag - Magnetism and...thin films Li... millimeter waves magnetostati c waves i A TRAC" =CmE4 F*91040 eEp y mnenu -d Dfenvely by Noek n.m--) The Microwave and Quantum

  19. Microwave Measurement of Refractory Materials at High-Temperature

    NASA Astrophysics Data System (ADS)

    Kharkovsky, S.; Zoughi, R.; Smith, J.; Davis, B.; Limmer, R.

    2009-03-01

    Knowledge of the electrical behavior of refractory materials may enable the development and optimization of microwave nondestructive techniques to detect and evaluate changes in their physical properties while the materials are in service. This paper presents the results of a limited and preliminary investigation in which two refractory materials (dense chrome and dense zircon) were subjected to increasing temperature in a furnace and in which a frequency-modulated continuous-wave radar operating in the frequency range of 8-18 GHz radar was used to evaluate their attenuation properties.

  20. Continuous-wave room-temperature diamond maser

    NASA Astrophysics Data System (ADS)

    Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil Mcn.; Kay, Christopher W. M.

    2018-03-01

    The maser—the microwave progenitor of the optical laser—has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen–vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.

  1. Continuous-wave room-temperature diamond maser.

    PubMed

    Breeze, Jonathan D; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN; Kay, Christopher W M

    2018-03-21

    The maser-the microwave progenitor of the optical laser-has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen-vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.

  2. The electromagnetic wave energy effect(s) in microwave-assisted organic syntheses (MAOS).

    PubMed

    Horikoshi, Satoshi; Watanabe, Tomoki; Narita, Atsushi; Suzuki, Yumiko; Serpone, Nick

    2018-03-26

    Organic reactions driven by microwaves have been subjected for several years to some enigmatic phenomenon referred to as the microwave effect, an effect often mentioned in microwave chemistry but seldom understood. We identify this microwave effect as an electromagnetic wave effect that influences many chemical reactions. In this article, we demonstrate its existence using three different types of microwave generators with dissimilar oscillation characteristics. We show that this effect is operative in photocatalyzed TiO 2 reactions; it negatively influences electro-conductive catalyzed reactions, and yet has but a negligible effect on organic syntheses. The relationship between this electromagnetic wave effect and chemical reactions is elucidated from such energetic considerations as the photon energy and the reactions' activation energies.

  3. A 1-2 GHz pulsed and continuous wave electron paramagnetic resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Quine, Richard W.; Rinard, George A.; Ghim, Barnard T.; Eaton, Sandra S.; Eaton, Gareth R.

    1996-07-01

    A microwave bridge has been constructed that performs three types of electron paramagnetic resonance experiments: continuous wave, pulsed saturation recovery, and pulsed electron spin echo. Switching between experiment types can be accomplished via front-panel switches without moving the sample. Design features and performance of the bridge and of a resonator used in testing the bridge are described. The bridge is constructed of coaxial components connected with semirigid cable. Particular attention has been paid to low-noise design of the preamplifier and stability of automatic frequency control circuits. The bridge incorporates a Smith chart display and phase adjustment meter for ease of tuning.

  4. Low dose of continuous – wave microwave irradiation did not cause temperature increase in muscles tissue adjacent to titanium alloy implants – an animal study

    PubMed Central

    2013-01-01

    Background Research studies on the influence of radiofrequency electromagnetic radiation on implants in vitro have failed to investigate temperature changes in the tissues adjacent to the implants under microwave therapy. We therefore, used a rabbit model in an effort to determine the impact of microwave therapy on temperature changes in tissues adjacent to the titanium alloy implants and the safety profile thereof. Methods Titanium alloy internal fixation plates were implanted in New Zealand rabbits in the middle of femur. Microwave therapy was performed by a 2450 MHz microwave generator 3 days after the surgery. Temperature changes of muscles adjacent to the implants were recorded under exposure to dose-gradient microwave radiation from 20w to 60w. Results Significant difference between control and microwave treatment group at peak temperatures (Tpeak) and temperature gap (Tgap= Tpeak-Tvally) were observed in deep muscles (Tpeak, 41.63 ± 0.21°C vs. 44.40 ± 0.17°C, P < 0.01; Tgap, 5.33 ± 0.21°C vs. 8.10 ± 0.36°C, P < 0.01) and superficial muscles (Tpeak, 41.53 ± 0.15°C vs. 42.03 ± 0.23°C, P = 0.04; Tgap, 5.23 ± 0.21°C vs. 5.80 ± 0.17°C, P = 0.013) under 60 w, and deep muscles (Tpeak, 40.93 ± 0.25°C vs. 41.87 ± 0.23°C, P = 0.01; Tgap, 4.73 ± 0.20°C vs. 5.63 ± 0.35°C, P = 0.037) under 50w, but not under 20, 30 and 40w. Conclusion Our results suggest that low-dose (20w-40w) continuous-wave microwave irradiation delivered by a 2450 MHz microwave generator might be a promising treatment for patients with titanium alloy internal fixation, as it did not raise temperature in muscle tissues adjacent to the titanium alloy implant. PMID:24365389

  5. Modeling of Compaction Wave Behavior in Confined Granular Energetic Material

    DTIC Science & Technology

    1990-08-01

    Compacted 65% TMD Aggregate Melamine Compaction Wave Microwave DIAGNOSTICS: Interferometry (a) Microwave Interferometry (b) 3 Wall-Mounted Pressure...involved 65% TMD melamine but was run very recently (Dec 1989) The value of compaction wave speed (from the microwave data) just after impact is...47 B. Simulation of PDC-M34 / 65% TMD Melamine (Inert Material) ........ 54 C. Influence of Energy Release / PDC Experiment

  6. Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion

    PubMed Central

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Shao, Liyang

    2016-01-01

    The control of electromagnetic waves scattering is critical in wireless communications and stealth technology. Discrete metasurfaces not only increase the design and fabrication complex but also cause difficulties in obtaining simultaneous electric and optical functionality. On the other hand, discontinuous phase profiles fostered by discrete systems inevitably introduce phase noises to the scattering fields. Here we propose the principle of a scattering-harness mechanism by utilizing continuous gradient phase stemming from the spin-orbit interaction via sinusoidal metallic strips. Furthermore, by adjusting the amplitude and period of the sinusoidal metallic strip, the scattering characteristics of the underneath object can be greatly changed and thus result in electromagnetic illusion. The proposal is validated by full-wave simulations and experiment characterization in microwave band. Our approach featured by continuous phase profile, polarization independent performance and facile implementation may find widespread applications in electromagnetic wave manipulation. PMID:27439474

  7. Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion

    NASA Astrophysics Data System (ADS)

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Shao, Liyang

    2016-07-01

    The control of electromagnetic waves scattering is critical in wireless communications and stealth technology. Discrete metasurfaces not only increase the design and fabrication complex but also cause difficulties in obtaining simultaneous electric and optical functionality. On the other hand, discontinuous phase profiles fostered by discrete systems inevitably introduce phase noises to the scattering fields. Here we propose the principle of a scattering-harness mechanism by utilizing continuous gradient phase stemming from the spin-orbit interaction via sinusoidal metallic strips. Furthermore, by adjusting the amplitude and period of the sinusoidal metallic strip, the scattering characteristics of the underneath object can be greatly changed and thus result in electromagnetic illusion. The proposal is validated by full-wave simulations and experiment characterization in microwave band. Our approach featured by continuous phase profile, polarization independent performance and facile implementation may find widespread applications in electromagnetic wave manipulation.

  8. Volumetric Near-Field Microwave Plasma Generation

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Balla, R. Jeffrey; Herring, G. C.; Popovic, S.; Vuskovic, L.

    2003-01-01

    A periodic series of microwave-induced plasmoids is generated using the outgoing wave from a microwave horn and the reflected wave from a nearby on-axis concave reflector. The plasmoids are spaced at half-wavelength separations according to a standing-wave pattern. The plasmoids are enhanced by an effective focusing in the near field of the horn (Fresnel region) as a result of a diffractive narrowing. Optical imaging, electron density, and rotational temperature measurements characterize the near field plasma region. Volumetric microwave discharges may have application to combustion ignition in scramjet engines.

  9. The electromagnetic-trait imaging computation of traveling wave method in breast tumor microwave sensor system.

    PubMed

    Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng

    2011-01-01

    Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.

  10. Breakdown simulations in a focused microwave beam within the simplified model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.

    2016-07-15

    The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime ofmore » subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.« less

  11. Detecting continuous gravitational waves with superfluid helium

    NASA Astrophysics Data System (ADS)

    Singh, Swati; de Lorenzo, Laura; Pikovski, Igor; Schwab, Keith

    2017-04-01

    We study the sensitivity to continuous-wave strain fields of a kg-scale optomechanical system formed by the acoustic motion of superfluid helium-4 parametrically coupled to a superconducting microwave cavity. This narrowband detection scheme can operate at very high Q-factors, while the resonant frequency is tunable through pressurization of the helium in the 0.1-1.5 kHz range. The detector can therefore be tuned to a variety of astrophysical sources and can remain sensitive to a particular source over a long period of time. For reasonable experimental parameters, we find that strain fields on the order of h 10-23 /√{ Hz} are detectable. We show that the proposed system can significantly improve the limits on gravitational wave strain from nearby pulsars within a few months of integration time.

  12. Development of a high power microwave thruster, with a magnetic nozzle, for space applications

    NASA Technical Reports Server (NTRS)

    Power, John L.; Chapman, Randall A.

    1989-01-01

    This paper describes the current development of a high-power microwave electrothermal thruster (MET) concept at the NASA Lewis Research Center. Such a thruster would be employed in space for applications such as orbit raining, orbit maneuvering, station change, and possibly trans-lunar or trans-planetary propulsion of spacecraft. The MET concept employs low frequency continuous wave (CW) microwave power to create and continuously pump energy into a flowing propellant gas at relative high pressure via a plasma discharge. The propellant is heated to very high bulk temperatures while passing through the plasma discharge region and then is expanded through a throat-nozzle assembly to produce thrust, as in a conventional rocket engine. Apparatus, which is described, is being assembled at NASA Lewis to test the MET concept to CW power levels of 30 kW at a frequency of 915 MHz. The microwave energy is applied in a resonant cavity applicator and is absorbed by a plasma discharge in the flowing propellant. The ignited plasma acts as a lossy load, and with optimal tuning, energy absorption efficiencies over 95 percent (based on the applied microwave power) are expected. Nitrogen, helium, and hydrogen will be tested as propellants in the MET, at discharge chamber pressures to 10 atm.

  13. Image formation in microwave holography

    NASA Technical Reports Server (NTRS)

    Cribbs, R. W.; Lamb, B. L.

    1973-01-01

    Microwave holograms are made without offset reference beam, but it has been found that Van der Lugt filter can be used to produce image offset. Also, filter permits "decoding" of holograms in contrast with usual practice of reconstructing visible-light analogs of original micro-wave wave fronts.

  14. Asymmetric Shock Wave Generation in a Microwave Rocket Using a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki

    2017-10-01

    A plasma pattern is reproduced by coupling simulations between a particle-in- cell with Monte Carlo collisions model and a finite-difference time-domain simulation for an electromagnetic wave propagation when an external magnetic field is applied to the breakdown volume inside a microwave-rocket nozzle. The propagation speed and energy-absorption rate of the plasma are estimated based on the breakdown simulation, and these are utilized to reproduce shock wave propagation, which provides impulsive thrust for the microwave rocket. The shock wave propagation is numerically reproduced by solving the compressible Euler equation with an energy source of the microwave heating. The shock wave is asymmetrically generated inside the nozzle when the electron cyclotron resonance region has a lateral offset, which generates lateral and angular impulses for postural control of the vehicle. It is possible to develop an integrated device to maintain beaming ight of the microwave rocket, achieving both axial thrust improvement and postural control, by controlling the spatial distribution of the external magnetic field.

  15. Research Plan for Study of Biological and Ecological Effects of the Solar Power Satellite Transmission System

    NASA Technical Reports Server (NTRS)

    Newsom, B. D.

    1978-01-01

    A programmatic research plan for a three year study is presented to generate knowledge on effects of the continuous wave 2.45 GHz microwave power transmission that the Solar Power Satellite might have on biological and ecological elements, within and around the rectenna receiving site.

  16. Millimeter-wave interconnects for microwave-frequency quantum machines

    NASA Astrophysics Data System (ADS)

    Pechal, Marek; Safavi-Naeini, Amir H.

    2017-10-01

    Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.

  17. Environmental assessment for the Satellite Power System (SPS): studies of honey bees exposed to 2. 45 GHz continuous-wave electromagnetic energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary, N E; Westerdahl, B B

    1980-12-01

    A system for small animal exposure was developed for treating honey bees, Apis mellifera L., in brood and adult stages, with 2.45 GHz continuous wave microwaves at selected power densities and exposure times. Post-treatment brood development was normal and teratological effects were not detected at exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment survival, longevity, orientation, navigation, and memory of adult bees were also normal after exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment longevity of confined bees in the laboratory was normal after exposures of 3 to 50 mw/cm/sup 2/ for 24 hours.more » Thermoregulation of brood nest, foraging activity, brood rearing, and social interaction were not affected by chronic exposure to 1 mw/cm/sup 2/ during 28 days. In dynamic behavioral bioassays the frequency of entry and duration of activity of unrestrained, foraging adult bees was identical in microwave-exposed (5 to 40 mw/cm/sup 2/) areas versus control areas.« less

  18. Fully reconfigurable photonic microwave transversal filter based on digital micromirror device and continuous-wave, incoherent supercontinuum source.

    PubMed

    Lee, Ju Han; Chang, You Min; Han, Young-Geun; Lee, Sang Bae; Chung, Hae Yang

    2007-08-01

    The combined use of a programmable, digital micromirror device (DMD) and an ultrabroadband, cw, incoherent supercontinuum (SC) source is experimentally demonstrated to fully explore various aspects on the reconfiguration of a microwave filter transfer function by creating a range of multiwavelength optical filter shapes. Owing to both the unique characteristic of the DMD that an arbitrary optical filter shape can be readily produced and the ultrabroad bandwidth of the cw SC source that is 3 times larger than that of Er-amplified spontaneous emission, a multiwavelength optical beam pattern can be generated with a large number of wavelength filter taps apodized by an arbitrary amplitude window. Therefore various types of high-quality microwave filter can be readily achieved through the spectrum slicing-based photonic microwave transversal filter scheme. The experimental demonstration is performed in three aspects: the tuning of a filter resonance bandwidth at a fixed resonance frequency, filter resonance frequency tuning at a fixed resonance frequency, and flexible microwave filter shape reconstruction.

  19. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1988-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The key activity for this grant year has continued to be laboratory measurements of the microwave and millimeter-wave properties of the simulated atmospheres of the outer planets and their satellites. A Fabry-Perot spectrometer system capable of operation from 32 to 41 GHz was developed. Initially this spectrometer was used to complete laboratory measurements of the 7.5 to 9.3 mm absorption spectrum of ammonia. Laboratory measurements were begun at wavelengths near 3.2 mm, where a large number of observations of the emission from the outer planets were made. A description of this system is presented.

  20. Rough surface wavelength measurement through self mixing of Doppler microwave backscatter. [from ocean waves

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1979-01-01

    A microwave backscatter technique is presented that has the ability to sense the dominant surface wavelength of a random rough surface. The purpose of this technique is to perform this measurement from an aircraft or spacecraft, wherein the horizontal velocity of the radar is an important parameter of the measurement system. Attention will be directed at water surface conditions for which a dominant wavelength can be defined, then the spatial variations of reflectivity will have a two dimensional spectrum that is sufficiently close to that of waves to be useful. The measurement concept is based on the relative motion between the water waves and a nadir looking radar, and the fact that while the instantaneous Doppler frequency at the receiver returned by any elementary group of scatterers on a water wave is monotonically changing, the difference in the Doppler frequency between any two scattering 'patches' stays approximately constant as these waves travel parallel to the major axis of an elliptical antenna footprint. The results of a theoretical analysis and a laboratory experiment with a continuous wave (CW) radar that encompasses several of the largest waves in the illuminated area show how the structure in the Doppler spectrum of the backscattered signal is related to the surface spectrum and its parameters in an especially direct and simple way when an incoherent envelope detector is the receiver.

  1. Optomechanical detection of weak microwave signals with the assistance of a plasmonic wave

    NASA Astrophysics Data System (ADS)

    Nejad, A. Asghari; Askari, H. R.; Baghshahi, H. R.

    2018-05-01

    Entanglement between optical fields and microwave signals can be used as a quantum optical sensing technique to detect received microwave signals from a low-reflecting object which is encompassed by a bright thermal environment. Here, we introduce and analyze an optomechanical system for detecting weak reflected microwave signals from an object of low reflectivity. In our system, coupling and consequently entanglement between microwave and optical photons are achieved by means of a plasmonic wave. The main problem that can be moderated in the field of quantum optical sensing of weak microwave signals is suppressing the destructive effect of high temperatures on the entanglement between microwave signals and optical photons. For this purpose, we will show that our system can perform at high temperatures as well as low ones. It will be shown that the presence of the plasmonic wave can reduce the destructive effect of the thermal noises on the entanglement between microwave and optical photons. Also, we will show that the optomechanical interaction is vital to create an appropriate entanglement between microwave and optical photons.

  2. Ex situ themo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor

    USDA-ARS?s Scientific Manuscript database

    Microwave heating offers a number of advantages over conventional heating methods, such as, rapid and volumetric heating, precise temperature control, energy efficiency and lower temperature gradient. In this article we demonstrate the use of 2450 MHz microwave traveling wave reactor to heat the cat...

  3. New Magnetic Materials and Phenomena for Radar and Microwave Signal Processing Devices - Bulk and Thin Film Ferrites and Metallic Films

    DTIC Science & Technology

    2009-02-15

    Magnon scattered light generally experiences a 90° rotation in polarization from the incident beam. The wave- vector selective BLS measurements...filters, phase locked microwave pulse sources, microwave and millimeter wave devices such as isolators, circulators, phase shifters, secure signal...Wave vector selective Brillouin light scattering measurements and analysis, " C. L. Ordofiez-Romero, B. A. Kalinikos, P. Krivosik, Wei Tong, P

  4. Microwaves and Alzheimer's disease

    PubMed Central

    Zhang, Xia; Huang, Wen-Juan; Chen, Wei-Wei

    2016-01-01

    Alzheimer's diseases (AD) is the most common type of dementia and a neurodegenerative disease that occurs when the nerve cells in the brain die. The cause and treatment of AD remain unknown. However, AD is a disease that affects the brain, an organ that controls behavior. Accordingly, anything that can interact with the brain may affect this organ positively or negatively, thereby protecting or encouraging AD. In this regard, modern life encompasses microwaves for all issues including industrial, communications, medical and domestic tenders, and among all applications, the cell phone wave, which directly exposes the brain, continues to be the most used. Evidence suggests that microwaves may produce various biological effects on the central nervous system (CNS) and many arguments relay the possibility that microwaves may be involved in the pathophysiology of CNS disease, including AD. By contrast, previous studies have reported some beneficial cognitive effects and that microwaves may protect against cognitive impairment in AD. However, although many of the beneficial effects of microwaves are derived from animal models, but can easily be extrapolated to humans, whether microwaves cause AD is an important issue that is to be addressed in the current review. PMID:27698682

  5. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1991-01-01

    Laboratory measurements of microwave and millimeter wave properties of the simulated atmosphere of the outer planets and their satellites has continued. One of the focuses is on the development of a radiative transfer model of the Jovian atmosphere at wavelengths from 1 mm to 10 cm. This modeling effort led to laboratory measurements of the millimeter wave opacity of hydrogen sulfide (H2S) under simulated Jovian conditions. Descriptions of the modeling effort, the Laboratory experiment, and the observations are presented. Correlative studies of measurements with Pioneer-Venus radio occultation measurements with longer wavelength emission measurements have provided new ways for characterizing temporal and spatial variations in the abundance of both gases H2SO4 and SO2, and for modeling their roles in the subcloud atmosphere. Laboratory measurements were conducted on 1.35 cm (and 13 cm) opacity of gaseous SO2 and absorptivity of gaseous SO2 at the 3.2 mm wavelength under simulated Venus conditions. Laboratory measurements were completed on millimeter wave dielectric properties of liquid H2SO4, in order to model the effects of the opacity of the clouds of Venus onto millimeter wave emission spectrum.

  6. Power-Efficient, High-Current-Density, Long-Life Thermionic Cathode Developed for Microwave Amplifier Applications

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.

    2002-01-01

    A power-efficient, miniature, easily manufactured, reservoir-type barium-dispenser thermionic cathode has been developed that offers the significant advantages of simultaneous high electron-emission current density (>2 A/sq cm) and very long life (>100,000 hr of continuous operation) when compared with the commonly used impregnated-type barium-dispenser cathodes. Important applications of this cathode are a wide variety of microwave and millimeter-wave vacuum electronic devices, where high output power and reliability (long life) are essential. We also expect it to enable the practical development of higher purveyance electron guns for lower voltage and more reliable device operation. The low cathode heater power and reduced size and mass are expected to be particularly beneficial in traveling-wave-tube amplifiers (TWTA's) for space communications, where future NASA mission requirements include smaller onboard spacecraft systems, higher data transmission rates (high frequency and output power) and greater electrical efficiency.

  7. Far infrared all-sky survey

    NASA Technical Reports Server (NTRS)

    Richards, Paul L.

    1991-01-01

    An all-sky survey at submillimeter waves is examined. Far-infrared all-sky surveys were performed using high-thoroughput bolometric detectors from a one-meter balloon telescope. Based on the large-bodied experience obtained with the original all-sky survey telescope, a number of radically different approaches were implemented. Continued balloon measurements of the spectrum of the cosmic microwave background were performed.

  8. Time-Domain Full-Wave Modeling of Nonlinear Air Breakdown in High-Power Microwave Devices and Systems

    DTIC Science & Technology

    2017-09-30

    AFRL-RD-PS- AFRL-RD-PS- TR-2017-0047 TR-2017-0047 TIME -DOMAIN FULL-WAVE MODELING OF NONLINEAR AIR BREAKDOWN IN HIGH-POWER MICROWAVE...Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...TITLE AND SUBTITLE Time -Domain Full-Wave Modeling of Nonlinear Air Breakdown in High-Power Microwave Devices and Systems 5a. CONTRACT NUMBER 5b

  9. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  10. Long term impairment of cognitive functions and alterations of NMDAR subunits after continuous microwave exposure.

    PubMed

    Wang, Hui; Tan, Shengzhi; Xu, Xinping; Zhao, Li; Zhang, Jing; Yao, Binwei; Gao, Yabing; Zhou, Hongmei; Peng, Ruiyun

    2017-11-01

    The long term effects of continuous microwave exposure cannot be ignored for the simulation of the real environment and increasing concerns about the negative cognitive effects of microwave exposure. In this study, 220 male Wistar rats were exposed by a 2.856GHz radiation source with the average power density of 0, 2.5, 5 and 10mW/cm 2 for 6min/day, 5days/week and up to 6weeks. The MWM task, the EEG analysis, the hippocampus structure observation and the western blot were applied until the 12months after microwave exposure to detect the spatial learning and memory abilities, the cortical electrical activity, changes of hippocampal structure and the NMDAR subunits expressions. Results found that the rats in the 10mW/cm 2 group showed the decline of spatial learning and memory abilities and EEG disorders (the decrease of EEG frequencies, and increase of EEG amplitudes and delta wave powers). Moreover, changes of basic structure and ultrastructure of hippocampus also found in the 10 and 5mW/cm 2 groups. The decrease of NR 2A, 2B and p-NR2B might contribute to the impairment of cognitive functions. Our findings suggested that the continuous microwave exposure could cause the dose-dependent long term impairment of spatial learning and memory, the abnormalities of EEG and the hippocampal structure injuries. The decrease of NMDAR key subunits and phosphorylation of NR 2B might contribute to the cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Custom chipset and compact module design for a 75-110 GHz laboratory signal source

    NASA Astrophysics Data System (ADS)

    Morgan, Matthew A.; Boyd, Tod A.; Castro, Jason J.

    2016-12-01

    We report on the development and characterization of a compact, full-waveguide bandwidth (WR-10) signal source for general-purpose testing of mm-wave components. The monolithic microwave integrated circuit (MMIC) based multichip module is designed for compactness and ease-of-use, especially in size-constrained test sets such as a wafer probe station. It takes as input a cm-wave continuous-wave (CW) reference and provides a factor of three frequency multiplication as well as amplification, output power adjustment, and in situ output power monitoring. It utilizes a number of custom MMIC chips such as a Schottky-diode limiter and a broadband mm-wave detector, both designed explicitly for this module, as well as custom millimeter-wave multipliers and amplifiers reported in previous papers.

  12. Optimized power simulation of AlGaN/GaN HEMT for continuous wave and pulse applications

    NASA Astrophysics Data System (ADS)

    Tiwat, Pongthavornkamol; Lei, Pang; Xinhua, Wang; Sen, Huang; Guoguo, Liu; Tingting, Yuan; Xinyu, Liu

    2015-07-01

    An optimized modeling method of 8 × 100 μm AlGaN/GaN-based high electron mobility transistor (HEMT) for accurate continuous wave (CW) and pulsed power simulations is proposed. Since the self-heating effect can occur during the continuous operation, the power gain from the continuous operation significantly decreases when compared to a pulsed power operation. This paper extracts power performances of different device models from different quiescent biases of pulsed current-voltage (I-V) measurements and compared them in order to determine the most suitable device model for CW and pulse RF microwave power amplifier design. The simulated output power and gain results of the models at Vgs = -3.5 V, Vds = 30 V with a frequency of 9.6 GHz are presented. Project supported by the National Natural Science Foundation of China (No. 61204086).

  13. The damping of ocean surface waves by a monomolecular film measured by wave staffs and microwave radars

    NASA Technical Reports Server (NTRS)

    Huehnerfuss, H.; Alpers, W.; Jones, W. L.; Lange, P. A.; Richter, K.

    1981-01-01

    Open ocean and wave tank experiments were carried out with the aim of studying the damping of capillary and gravity waves by a monomolecular film. These films of biogenic origin influence air-sea interaction processes and thereby affect the use of remote sensing techniques in oceanography. Measurement was carried out by wave staffs, by a coherent X band microwave scatterometer mounted on a sea-based platform, and by an incoherent K band microwave scatterometer carried by an aircraft under moderate wind conditions. A wave attenuation of about 40-60% is observed in the frequency range between 3.2 and 16 Hz. Tank experiments show that a direct influence of oleyl alcohol surface films on wave damping is confined to frequencies equal to or greater than 2 Hz; a further indirect effect of films on the damping of ocean waves in the frequency range between 0.12 and 0.7 Hz (by modifying the wind input and wave-wave interaction mechanisms) is also indicated

  14. Acoustic wave generation by microwaves and applications to nondestructive evaluation.

    PubMed

    Hosten, Bernard; Bacon, Christophe; Guilliorit, Emmanuel

    2002-05-01

    Although acoustic wave generation by electromagnetic waves has been widely studied in the case of laser-generated ultrasounds, the literature on acoustic wave generation by thermal effects due to electromagnetic microwaves is very sparse. Several mechanisms have been suggested to explain the phenomenon of microwave generation, i.e. radiation pressure, electrostriction or thermal expansion. Now it is known that the main cause is the thermal expansion due to the microwave absorption. This paper will review the recent advances in the theory and experiments that introduce a new way to generate ultrasonic waves without contact for the purpose of nondestructive evaluation and control. The unidirectional theory based on Maxwell's equations, heat equation and thermoviscoelasticity predicts the generation of acoustic waves at interfaces and inside stratified materials. Acoustic waves are generated by a pulsed electromagnetic wave or a burst at a chosen frequency such that materials can be excited with a broad or narrow frequency range. Experiments show the generation of acoustic waves in water, viscoelastic polymers and composite materials shaped as rod and plates. From the computed and measured accelerations at interfaces, the viscoelastic and electromagnetic properties of materials such as polymers and composites can be evaluated (NDE). Preliminary examples of non-destructive testing applications are presented.

  15. Nonlinear interaction of strong microwave beam with the ionosphere MINIX rocket experiment

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.

    A rocket-borne experiment called 'MINIX' was carried out to investigate the nonlinear interaction of a strong microwave energy beam with the ionosphere. The MINIX stands for Microwave-Ionosphere Nonlinear Interaction eXperiment and was carried out on August 29, 1983. The objective of the MINIX is to study possible impacts of the SPS microwave energy beam on the ionosphere, such as the ohmic heating and plasma wave excitation. The experiment showed that the microwave with f = 2.45 GHz nonlinearly excites various electrostatic plasma waves, though no ohmic heating effects were detected.

  16. Recent Progresses of Microwave Marine Remote Sensing

    NASA Astrophysics Data System (ADS)

    Yang, Jingsong; Ren, Lin; Zheng, Gang; Wang, He; He, Shuangyan; Wang, Juan; Li, Xiaohui

    2016-08-01

    It is presented in this paper the recent progresses of Dragon 3 Program (ID. 10412) in the field of microwave marine remote sensing including (1) ocean surface wind fields from full polarization synthetic aperture radars (SAR), (2) joint retrieval of directional ocean wave spectra from SAR and wave spectrometer, (3) error analysis on ENVISAT ASAR wave mode significant wave height (SWH) retrievals using triple collocation model, (4) typhoon observation from SAR and optical sensors, (5) ocean internal wave observation from SAR and optical sensors, (6) ocean eddy observation from SAR and optical sensors, (7) retrieval models of water vapor and wet tropospheric path delay for the HY-2A calibration microwave radiometer, (8) calibration of SWH from HY-2A satellite altimeter.

  17. Breakthroughs in Low-Profile Leaky-Wave HPM Antennas

    DTIC Science & Technology

    2015-03-18

    presentation of our work at the 17th annual DEPS conference. 15. SUBJECT TERMS Leaky-wave Antennas. High Power Microwaves (HPM) Antennas. Low-profile...the performance, behavior, and design of innovative High Power Microwave (HPM, GW-class) antennas of the forward-traveling, fast-wave, leaky-wave...Conformal Antennas. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON (Monitor

  18. Phased Arrays 1985 Symposium - Proceedings

    DTIC Science & Technology

    1985-08-01

    have served the logic industry well, and appropriate versions can do the same for micruwdve drid millimeter * wave technology, An aspect of phased...continuing revolutions of the logic industry and the microwave monolithic integrated circuit community are bringing relevant technology closer to the array...monolithic phased array antennas, and discuss their relative advantages and disadvantages . Considerations such as bandwidth, maxianiru scan range, feed

  19. Digital Refractometry of Piezoelectric Crystalline Media

    DTIC Science & Technology

    1988-11-01

    Research and Development Technical Report SLCET-TR-87-0727-1 III DIGITAL REFRACTOMETRY OF PIEZOELECTRIC CRYSTALLINE MEDIA CD Dr. Edward Collett...1L 1 DA313485 11. TITLE (include Security Classification) DIGITAL REFRACTOMETRY OF PIEZOELECTRIC CRYSTALLINE MEDIA (U) 12. PERSONAL AUTHOR(S) Dr...GROUP SUB-GROUP Lasers; quartz; dielectrics; permittivity; refractometry 9 U-1optics; millimeter waves; microwaves; crystals. ,𔄃. ABSTRACT (Continue on

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Deng, Yuqun; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024

    In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-longmore » SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited.« less

  1. [Physical and mechanical properties of the thermosetting resin for crown and bridge cured by micro-wave heating].

    PubMed

    Kaneko, K

    1989-09-01

    A heating method using micro-waves was utilized to obtain strong thermosetting resin for crown and bridge. The physical and mechanical properties of the thermosetting resin were examined. The resin was cured in a shorter time by the micro-waves heating method than by the conventional heat curing method and the working time was reduced markedly. The base resins of the thermosetting resin for crown and bridge for the micro-waves heating method were 2 PA and diluent 3 G. A compounding volume of 30 wt% for diluent 3 G was considered good the results of compressive strength, bending strength and diametral tensile strength. Grams of 200-230 of the filler compounded to the base resins of 2 PA-3 G system provided optimal compressive strength, bending strength and diametral tensile strength. A filler gram of 230 provided optimal hardness and curing shrinkage rate, the coefficient of thermal expansion became smaller with the increase of the compounding volume of the filler. The trial thermosetting resin for crown and bridge formed by the micro-waves heating method was not inferior to the conventional resin by the heat curing method or the light curing method.

  2. Microwave effects on isolated chick embryo hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caddemi, A.; Tamburello, C.C.; Zanforlin, L.

    1986-01-01

    This study was designed to examine the effects of microwaves on the electric activity of hearts as a means of elucidating interactive mechanisms of nonionizing radiation with cardiac tissue. Experiments were performed on isolated hearts of 9-12-day-old chick embryos placed in small petri dishes. Oxygenated isotonic Ringer's solution at 37 degrees C permitted heart survival. Samples were irradiated at 2.45 GHz with a power density of 3 mW/cm2. The heart signal was detected with a glass micropipet inserted into the sinoatrial node and examined by means of a Berg-Fourier analyzer. Pulsed microwaves caused the locking of the heartbeat to themore » modulation frequency, whereas continuous wave irradiation might have induced slight bradycardia. Pulsed fields induced stimulation or regularization of the heartbeat in arrhythmia, fibrillation, or arrest of the heart.« less

  3. Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Flanigan, D.; McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P.; Araujo, D.; Bradford, K.; Cantor, R.; Che, G.; Day, P.; Doyle, S.; Kjellstrand, C. B.; Leduc, H.; Limon, M.; Luu, V.; Mauskopf, P.; Miller, A.; Mroczkowski, T.; Tucker, C.; Zmuidzinas, J.

    2016-02-01

    We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP≈2 ×10-17 W Hz-1 /2 , referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP∝P for broadband (chaotic) illumination and NEP∝P1 /2 for continuous-wave (coherent) illumination.

  4. Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results†

    PubMed Central

    Rosay, Melanie; Tometich, Leo; Pawsey, Shane; Bader, Reto; Schauwecker, Robert; Blank, Monica; Borchard, Philipp M.; Cauffman, Stephen R.; Felch, Kevin L.; Weber, Ralph T.; Temkin, Richard J.; Griffin, Robert G.; Maas, Werner E.

    2015-01-01

    Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz 1H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water–glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period. PMID:20449524

  5. Development, Test, and Evaluation of Microwave Radar Water Level (MWWL) Sensors' Wave Measurement Capability

    NASA Astrophysics Data System (ADS)

    Iyer, S. K.; Heitsenrether, R.

    2015-12-01

    Waves can have a significant impact on many coastal operations including navigational safety, recreation, and even the economy. Despite this, as of 2009, there were only 181 in situ real-time wave observation networks nationwide (IOOS 2009). There has recently been interest in adding real-time wave measurement systems to already existing NOAA Center for Operational Oceanographic Products and Services (CO-OPS) stations. Several steps have already been taken in order to achieve this, such as integrating information from existing wave measurement buoys and initial testing of multiple different wave measurement systems (Heitsenrether et al. 2012). Since wave observations can be derived from high frequency water level changes, we will investigate water level sensors' capability to measure waves. Recently, CO-OPS has been transitioning to new microwave radar water level (MWWL) sensors which have higher resolution and theoretically a greater potential wave measurement capability than the acoustic sensors in stilling wells. In this study, we analyze the wave measurement capability of MWWL sensors at two high energy wave environments, Duck, NC and La Jolla, CA, and compare results to two "reference" sensors (A Nortek acoustic waves and currents profiler (AWAC) at Duck and a single point pressure sensor at La Jolla). A summary of results from the two field test sites will be presented, including comparisons of wave energy spectra, significant wave height, and peak period measured by the test MWWL sensors and both reference AWAC and pressure sensors. In addition, relationships between MWWL versus reference wave sensor differences and specific wave conditions will be discussed. Initial results from spectral analysis and the calculation of bulk wave parameters indicate that MWWL sensors set to the "NoFilter" processing setting can produce wave measurements capability that compare well to the two reference sensors. These results support continued development to enable the installation of MWWL sensors at CO-OPS locations as a method of measuring waves.

  6. Experimental study of microwave-induced thermoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Jacobs, Ryan T.

    Microwave-Induced Thermoacoustic Imaging (TAI) is a noninvasive hybrid modality which improves contrast by using thermoelastic wave generation induced by microwave absorption. Ultrasonography is widely used in medical practice as a low-cost alternative and supplement to magnetic resonance imaging (MRI). Although ultrasonography has relatively high image resolution (depending on the ultrasonic wavelength at diagnostic frequencies), it suffers from low image contrast of soft tissues. In this work samples are irradiated with sub-microsecond electromagnetic pulses inducing acoustic waves in the sample that are then detected with an unfocused transducer. The advantage of this hybrid modality is the ability to take advantage of the microwave absorption coefficients which provide high contrast in tissue samples. This in combination with the superior spatial resolution of ultrasound waves is important to providing a low-cost alternative to MRI and early breast cancer detection methods. This work describes the implementation of a thermoacoustic experiment using a 5 kW peak power microwave source.

  7. Microwave excitation of spin wave beams in thin ferromagnetic films

    PubMed Central

    Gruszecki, P.; Kasprzak, M.; Serebryannikov, A. E.; Krawczyk, M.; Śmigaj, W.

    2016-01-01

    An inherent element of research and applications in photonics is a beam of light. In magnonics, which is the magnetic counterpart of photonics, where spin waves are used instead of electromagnetic waves to transmit and process information, the lack of a beam source limits exploration. Here, we present an approach enabling generation of narrow spin wave beams in thin homogeneous nanosized ferromagnetic films by microwave current. We show that the desired beam-type behavior can be achieved with the aid of a properly designed coplanar waveguide transducer generating a nonuniform microwave magnetic field. We test this idea using micromagnetic simulations, confirming numerically that the resulting spin wave beams propagate over distances of several micrometers. The proposed approach requires neither inhomogeneity of the ferromagnetic film nor nonuniformity of the biasing magnetic field. It can be generalized to different magnetization configurations and yield multiple spin wave beams of different width at the same frequency. PMID:26971711

  8. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  9. Traveling-Wave Tube Cold-Test Circuit Optimization Using CST MICROWAVE STUDIO

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Kory, Carol L.; Wilson, Jeffrey D.; Wintucky, Edwin G.; Dayton, James A., Jr.

    2003-01-01

    The internal optimizer of CST MICROWAVE STUDIO (MWS) was used along with an application-specific Visual Basic for Applications (VBA) script to develop a method to optimize traveling-wave tube (TWT) cold-test circuit performance. The optimization procedure allows simultaneous optimization of circuit specifications including on-axis interaction impedance, bandwidth or geometric limitations. The application of Microwave Studio to TWT cold-test circuit optimization is described.

  10. Improved Design/Reduction of Manufacturing Costs of Space-Traveling Wave Tiube Amplifiers Final Report CRADA No. TC-0461-93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C. C.; Drasco, M.

    The purpose of the CRADA was to develop new microwave codes for analyzing both slow-,vave structures and beam-wave interactions of traveling wave tube amplifiers (TWTA), the microwave power source for satellite and radar communication systems. The scope of work also included testing and improving power modules through measurements and simulation.

  11. A linear polarization converter with near unity efficiency in microwave regime

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Wang, Shen-Yun; Geyi, Wen

    2017-04-01

    In this paper, we present a linear polarization converter in the reflective mode with near unity conversion efficiency. The converter is designed in an array form on the basis of a pair of orthogonally arranged three-dimensional split-loop resonators sharing a common terminal coaxial port and a continuous metallic ground slab. It converts the linearly polarized incident electromagnetic wave at resonance to its orthogonal counterpart upon the reflection mode. The conversion mechanism is explained by an equivalent circuit model, and the conversion efficiency can be tuned by changing the impedance of the terminal port. Such a scheme of the linear polarization converter has potential applications in microwave communications, remote sensing, and imaging.

  12. Millimeter and Submillimeter Wave Spectroscopy of Higher Energy Conformers of 1,2-PROPANEDIOL

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Bossa, Jean-Baptiste; Lewen, Frank; Schlemmer, Stephan; Müller, Holger S. P.

    2017-06-01

    We have performed a study of the millimeter/submillimeter wave spectrum of four higher energy conformers of 1,2-propanediol (continuation of the previous study on the three lowest energy conformers. The present analysis of rotational transitions carried out in the frequency range 38 - 400 GHz represents a significant extension of previous microwave work. The new data were combined with previously-measured microwave transitions and fitted using a Watson's S-reduced Hamiltonian. The final fits were within experimental accuracy, and included spectroscopic parameters up to sixth order of angular momentum, for the ground states of the four higher energy conformers following previously studied ones: g'Ga, gG'g', aGg' and g'Gg. The present analysis provides reliable frequency predictions for astrophysical detection of 1,2-propanediol by radio telescope arrays at millimeter wavelengths. J.-B. Bossa, M.H. Ordu, H.S.P. Müller, F. Lewen, S. Schlemmer, A&A 570 (2014) A12)

  13. Molding acoustic, electromagnetic and water waves with a single cloak

    PubMed Central

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-01-01

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934

  14. Molding acoustic, electromagnetic and water waves with a single cloak.

    PubMed

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-06-09

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.

  15. Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark

    2016-01-01

    In the field of microwave radiometry, Radio Frequency Interference (RFI) consistently degrades the value of scientific results. Through the use of digital receivers and signal processing, the effects of RFI on scientific measurements can be reduced depending on certain circumstances. As technology allows us to implement wider band digital receivers for radiometry, the problem of RFI mitigation changes. Our work focuses on finding a detector that outperforms real kurtosis in wide band scenarios. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The performance of both complex and real signal kurtosis is evaluated for continuous wave, pulsed continuous wave, and wide band quadrature phase shift keying (QPSK) modulations. The use of complex signal kurtosis increased the detectability of interference.

  16. Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays

    NASA Astrophysics Data System (ADS)

    Rawlins, W. T.; Galbally-Kinney, K. L.; Davis, S. J.; Hoskinson, A. R.; Hopwood, J. A.

    2014-03-01

    The optically pumped rare-gas metastable laser is a chemically inert analogue to diode-pumped alkali (DPAL) and alkali-exciplex (XPAL) laser systems. Scaling of these devices requires efficient generation of electronically excited metastable atoms in a continuous-wave electric discharge in flowing gas mixtures at atmospheric pressure. This paper describes initial investigations of the use of linear microwave micro-discharge arrays to generate metastable rare-gas atoms at atmospheric pressure in optical pump-and-probe experiments for laser development. Power requirements to ignite and sustain the plasma at 1 atm are low, <30 W. We report on the laser excitation dynamics of argon metastables, Ar (4s, 1s5) (Paschen notation), generated in flowing mixtures of Ar and He at 1 atm. Tunable diode laser absorption measurements indicate Ar(1s5) concentrations near 3 × 1012 cm-3 at 1 atm. The metastables are optically pumped by absorption of a focused beam from a continuous-wave Ti:S laser, and spectrally selected fluorescence is observed with an InGaAs camera and an InGaAs array spectrometer. We observe the optical excitation of the 1s5-->2p9 transition at 811.5 nm and the corresponding laser-induced fluorescence on the 2p10-->1s5 transition at 912.3 nm; the 2p10 state is efficiently populated by collisional energy transfer from 2p9. Using tunable diode laser absorption/gain spectroscopy, we observe small-signal gains of ~1 cm-1 over a 1.9 cm path. We also observe stable, continuous-wave laser oscillation at 912.3 nm, with preliminary optical efficiency ~55%. These results are consistent with efficient collisional coupling within the Ar(4s) manifold.

  17. Slow-wave propagation on monolithic microwave integrated circuits with layered and non-layered structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzuang, C.K.C.

    1986-01-01

    Various MMIC (monolithic microwave integrated circuit) planar waveguides have shown possible existence of a slow-wave propagation. In many practical applications of these slow-wave circuits, the semiconductor devices have nonuniform material properties that may affect the slow-wave propagation. In the first part of the dissertation, the effects of the nonuniform material properties are studied by a finite-element method. In addition, the transient pulse excitations of these slow-wave circuits also have great theoretical and practical interests. In the second part, the time-domain analysis of a slow-wave coplanar waveguide is presented.

  18. Free-space microwave-to-optical conversion via six-wave mixing in Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui

    2017-04-01

    The interconversion of millimeter waves and optical fields is an important and highly topical subject for classical and quantum technologies. In this talk, we report an experimental demonstration of coherent and efficient microwave-to-optical conversion in free space via six-wave mixing in Rydberg atoms. Our scheme utilizes the strong coupling of millimeter waves to Rydberg atoms as well as the frequency mixing based on electromagnetically induced transparency (EIT) that greatly enhances the nonlinearity for the conversion process. We achieve a free-space conversion efficiency of 0.25% with a bandwidth of about 4 MHz in our experiment. Optimized geometry and energy level configurations should enable the broadband interconversion of microwave and optical fields with near-unity efficiency. These results indicate the tremendous potential of Rydberg atoms for the efficient conversion between microwave and optical fields, and thus paves the way to many applications. This work is supported by Singapore Ministry of Education Academic Research Fund Tier 2 (Grant No. MOE2015-T2-1-085).

  19. FAST TRACK COMMUNICATION: An electromagnetically induced grating by microwave modulation

    NASA Astrophysics Data System (ADS)

    Xiao, Zhi-Hong; Shin, Sung Guk; Kim, Kisik

    2010-08-01

    We study the phenomenon of an electromagnetically induced phase grating in a double-dark state system of 87Rb atoms, the two closely placed lower fold levels of which are coupled by a weak microwave field. Owing to the existence of the weak microwave field, the efficiency of the phase grating is strikingly improved, and an efficiency of approximately 33% can be achieved. Under the action of the weak standing wave field, the high efficiency of the phase grating can be maintained by modulating the strength and detuning of the weak microwave field, increasing the strength of the standing wave field.

  20. Quantum and wave dynamical chaos in superconducting microwave billiards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietz, B., E-mail: dietz@ikp.tu-darmstadt.de; Richter, A., E-mail: richter@ikp.tu-darmstadt.de

    2015-09-15

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that weremore » performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.« less

  1. Quantum and wave dynamical chaos in superconducting microwave billiards.

    PubMed

    Dietz, B; Richter, A

    2015-09-01

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.

  2. Micro and nano devices in passive millimetre wave imaging systems

    NASA Astrophysics Data System (ADS)

    Appleby, R.

    2013-06-01

    The impact of micro and nano technology on millimetre wave imaging from the post war years to the present day is reviewed. In the 1950s whisker contacted diodes in mixers and vacuum tubes were used to realise both radiometers and radars but required considerable skill to realise the performance needed. Development of planar semiconductor devices such as Gunn and Schottky diodes revolutionised mixer performance and provided considerable improvement. The next major breakthrough was high frequency transistors based on gallium arsenide which were initially used at intermediate frequencies but later after further development at millimeter wave frequencies. More recently Monolithic Microwave Integrated circuits(MMICs) offer exceptional performance and the opportunity for innovative design in passive imaging systems. In the future the use of micro and nano technology will continue to drive system performance and we can expect to see integration of antennae, millimetre wave and sub millimetre wave circuits and signal processing.

  3. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1987-01-01

    Laboratory measurements were conducted to evaluate properties of atmospheric gases under simulated conditions for the outer planets. A significant addition to this effort was the capability to make such measurements at millimeter wavelengths. Measurements should soon be completed on the millimeter wave absorption from ammonia under Jovian conditions. Also studied will be the feasibility of measuring the microwave and millimeter wave properties of phosphine (PH3) under simulated Jovian conditions. Further analysis and application of the laboratory results to microwave and millimeter wave absorption data for the outer planet, such as Voyager Radio Occultation experiments, will be pursued.

  4. Quasi 18 h wave activity in ground-based observed mesospheric H2O over Bern, Switzerland

    NASA Astrophysics Data System (ADS)

    Lainer, Martin; Hocke, Klemens; Rüfenacht, Rolf; Kämpfer, Niklaus

    2017-12-01

    Observations of oscillations in the abundance of middle-atmospheric trace gases can provide insight into the dynamics of the middle atmosphere. Long-term, high-temporal-resolution and continuous measurements of dynamical tracers within the strato- and mesosphere are rare but would facilitate better understanding of the impact of atmospheric waves on the middle atmosphere. Here we report on water vapor measurements from the ground-based microwave radiometer MIAWARA (MIddle Atmospheric WAter vapor RAdiometer) located close to Bern during two winter periods of 6 months from October to March. Oscillations with periods between 6 and 30 h are analyzed in the pressure range 0.02-2 hPa. Seven out of 12 months have the highest wave amplitudes between 15 and 21 h periods in the mesosphere above 0.1 hPa. The quasi 18 h wave signature in the water vapor tracer is studied in more detail by analyzing its temporal evolution in the mesosphere up to an altitude of 75 km. Eighteen-hour oscillations in midlatitude zonal wind observations from the microwave Doppler wind radiometer WIRA (WInd RAdiometer) could be identified within the pressure range 0.1-1 hPa during an ARISE (Atmospheric dynamics Research InfraStructure in Europe)-affiliated measurement campaign at the Observatoire de Haute-Provence (355 km from Bern) in France in 2013. The origin of the observed upper-mesospheric quasi 18 h oscillations is uncertain and could not be determined with our available data sets. Possible drivers could be low-frequency inertia-gravity waves or a nonlinear wave-wave interaction between the quasi 2-day wave and the diurnal tide.

  5. Processing and interpretation of experiments in the microwave interferometry of shock waves in a weakly ionized plasma

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.; Klishin, S. V.; Kuzovnikov, S. V.; Ponomareva, S. E.; Pyt'ev, Iu. P.

    1990-12-01

    The reduction method is applied to the microwave interferometry of shock waves in a weakly ionized plasma, making it possible to improve the spatial resolution of the instrument. It is shown experimentally that the structure of the shock wave electron component in a high-frequency discharge plasma in atomic and molecular gases is characterized by the presence of a precursor in the form of a rarefaction wave. The origin of the precursor is examined.

  6. Continuous Beam Steering Through Broadside Using Asymmetrically Modulated Goubau Line Leaky-Wave Antennas.

    PubMed

    Tang, Xiao-Lan; Zhang, Qingfeng; Hu, Sanming; Zhuang, Yaqiang; Kandwal, Abhishek; Zhang, Ge; Chen, Yifan

    2017-09-15

    Goubau line is a single-conductor transmission line, featuring easy integration and low-loss transmission properties. Here, we propose a periodic leaky-wave antenna (LWA) based on planar Goubau transmission line on a thin dielectric substrate. The leaky-wave radiations are generated by introducing periodic modulations along the Goubau line. In this way, the surface wave, which is slow-wave mode supported by the Goubau line, achieves an additional momentum and hence enters the fast-wave region for radiations. By employing the periodic modulations, the proposed Goubau line LWAs are able to continuously steer the main beam from backward to forward within the operational frequency range. However, the LWAs usually suffer from a low radiation efficiency at the broadside direction. To overcome this drawback, we explore both transversally and longitudinally asymmetrical modulations to the Goubau line. Theoretical analysis, numerical simulations and experimental results are given in comparison with the symmetrical LWAs. It is demonstrated that the asymmetrical modulations significantly improve the radiation efficiency of LWAs at the broadside. Furthermore, the measurement results agree well with the numerical ones, which experimentally validates the proposed LWA structures. These novel Goubau line LWAs, experimentally demonstrated and validated at microwave frequencies, show also great potential for millimeter-wave and terahertz systems.

  7. Sensing and Timekeeping Using A Light Trapping

    DTIC Science & Technology

    2017-06-01

    bioassays, condensed matter physics, mate- rial science, biothermometry, bulk magnetometry for surveying, and hyper -polarized media for NMR. 1.3.2...obtained under continuous-wave (CW) microwave field excitation when a 3 mm diameter loop of 200 µm-diameter wire is placed 5 mm above the LTDW. An...frequency-locking technique was also developed to monitor both resonances simultaneously. A closed- loop system that locks to the center frequency of

  8. Nanoparticle Contrast Agents for Enhanced Microwave Imaging and Thermal Treatment of Breast Cancer

    DTIC Science & Technology

    2010-10-01

    continue to increase in step with de - creasing critical dimensions, electrodynamic effects directly influence high-frequency device performance, and...computational burden is significant. The Cellular Monte Carlo (CMC) method, originally de - veloped by Kometer et al. [50], was designed to reduce this...combination of a full-wave FDTD solver with a de - vice simulator based upon a stochastic transport kernel is conceptually straightforward, but the

  9. Ideal Directed-Energy System To Defeat Small Unmanned Aircraft System Swarms

    DTIC Science & Technology

    2017-05-21

    AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY IDEAL DIRECTED- ENERGY SYSTEM TO DEFEAT SMALL UNMANNED AIRCRAFT SYSTEM SWARMS by David F. Pina...directed energy (DE) developmental systems indicate this class of weapons is the best solution. A review of several continuous wave laser, pulsed high...powered microwave, and electronic warfare/jamming systems indicate the following attributes as ideal for a future directed energy weapon (DEW) system

  10. Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves

    NASA Astrophysics Data System (ADS)

    Shinohara, Naoki; Hatano, Ken

    2014-11-01

    In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation.

  11. Shaping Microwave Fields Using Nonlinear Unsolicited Feedback: Application to Enhance Energy Harvesting

    NASA Astrophysics Data System (ADS)

    del Hougne, Philipp; Fink, Mathias; Lerosey, Geoffroy

    2017-12-01

    Wave-front shaping has emerged over the past decade as a powerful tool to control wave propagation through complex media, initially in optics and more recently also in the microwave domain with important applications in telecommunication, imaging, and energy transfer. The crux of implementing wave-front shaping concepts in real life is often its need for (direct) feedback, requiring access to the target to focus on. Here, we present the shaping of a microwave field based on indirect, unsolicited, and blind feedback which may be the pivotal step towards practical implementations. With the example of a radio-frequency harvester in a metallic cavity, we demonstrate tenfold enhancement of the harvested power by wave-front shaping based on nonlinear signals detected at an arbitrary position away from the harvesting device.

  12. Development of a tactical high-power microwave source using the Plasma Electron Microwave Source (PEMS) concept

    NASA Astrophysics Data System (ADS)

    Dandl, R. A.; Guest, G. E.; Jory, H. R.

    1990-12-01

    The AMPHED facility was used to perform feasibility experiments to explore the generation of high-power microwave pulses from energy stored in a magnetic mirror plasma. The facility uses an open-ended magnetic mirror driven by pulsed or cw c- and x-band sources. Microwave horns were constructed to couple in the frequency range of 2.4 to 4 GHz to whistler waves in the plasma. Spontaneous bursts of microwave radiation in the range of 3 to 5 GHz were observed in the experiments. But the power levels were lower than expected for the whistler wave interaction. It is probable that the hot-electron energy densities achieved were not high enough to approach the threshold of the desired interaction.

  13. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator.

    PubMed

    Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah

    2016-05-15

    We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.

  14. Microwave Remote Sensing of Falling Snow

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Wang, J. R.; Meneghini, R.; Johnson, B.; Tanelli, S.; Roman-Nieves, J. I.; Sekelsky, S. M.; Skofronick-Jackson, G.

    2005-01-01

    This study analyzes passive and active microwave measurements during the 2003 Wakasa Bay field experiment for understanding of the electromagnetic characteristics of frozen hydrometeors at millimeter-wave frequencies. Based on these understandings, parameterizations of the electromagnetic scattering properties of snow at millimeter-wave frequencies are developed and applied to the hydrometeor profiles obtained by airborne radar measurements. Calculated brightness temperatures and radar reflectivity are compared with the millimeter-wave measurements.

  15. Proposal and performance analysis on the PDM microwave photonic link for the mm-wave signal with hybrid QAM-MPPM-RZ modulation

    NASA Astrophysics Data System (ADS)

    Tian, Bo; Zhang, Qi; Ma, Jianxin; Tao, Ying; Shen, Yufei; Wang, Yang; Zhang, Geng; Zhou, Wenmao; Zhao, Yi; Pan, Xiaolong

    2018-07-01

    A polarization division multiplexed (PDM) microwave photonic link for the millimeter (MM)-wave signal with hybrid modulation scheme is proposed in this paper, which is based on the combination of quadrature amplitude modulation, multi-pulse pulse-position modulation and return to zero modulation (QAM-MPPM-RZ). In this scheme, the two orthogonal polarization states enable simultaneous transmission of four data flows, which can provide different services for users according to the data rate requirement. To generate hybrid QAM-MPPM-RZ mm-wave signal, the QAM mm-wave signal is directly modulated by MPPM-RZ signal without using digital signal processing (DSP) devices, which reduces the overhead of the encoding process. Then, the generated QAM-MPPM-RZ mm-wave signal is transmitted in PDM microwave photonic link based on SSB modulation. The sparsity characteristic of QAM-MPPM-RZ not only improves the power efficiency, but also decreases the degradation caused by the fiber chromatic dispersion. The simulation results show that, under the constraint of the same transmitted data rate, the PDM microwave photonic link with 50 GHz QAM-MPPM-RZ mm-wave signal achieves much lower levels of bit-error rate than ordinary 32-QAM. In addition, the increase of laser linewidth brings no additional impact to the proposed scheme.

  16. Effects of atmospheric turbulence on microwave and millimeter wave satellite communications systems. [attenuation statistics and antenna design

    NASA Technical Reports Server (NTRS)

    Devasirvatham, D. M. J.; Hodge, D. B.

    1981-01-01

    A model of the microwave and millimeter wave link in the presence of atmospheric turbulence is presented with emphasis on satellite communications systems. The analysis is based on standard methods of statistical theory. The results are directly usable by the design engineer.

  17. Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography

    PubMed Central

    DeWall, Ryan J.; Varghese, Tomy; Brace, Chris L.

    2012-01-01

    Purpose: Electrode vibration elastography is a new shear wave imaging technique that can be used to visualize thermal ablation zones. Prior work has shown the ability of electrode vibration elastography to delineate radiofrequency ablations; however, there has been no previous study of delineation of microwave ablations or radiological–pathological correlations using multiple observers. Methods: Radiofrequency and microwave ablations were formed in ex vivo bovine liver tissue. Their visualization was compared on shear wave velocity and maximum displacement images. Ablation dimensions were compared to gross pathology. Elastographic imaging and gross pathology overlap and interobserver variability were quantified using similarity measures. Results: Elastographic imaging correlated with gross pathology. Correlation of area estimates was better in radiofrequency than in microwave ablations, with Pearson coefficients of 0.79 and 0.54 on shear wave velocity images and 0.90 and 0.70 on maximum displacement images for radiofrequency and microwave ablations, respectively. The absolute relative difference in area between elastographic imaging and gross pathology was 18.9% and 22.9% on shear wave velocity images and 16.0% and 23.1% on maximum displacement images for radiofrequency and microwave ablations, respectively. Conclusions: Statistically significant radiological–pathological correlation was observed in this study, but correlation coefficients were lower than other modulus imaging techniques, most notably in microwave ablations. Observers provided similar delineations for most thermal ablations. These results suggest that electrode vibration elastography is capable of imaging thermal ablations, but refinement of the technique may be necessary before it can be used to monitor thermal ablation procedures clinically. PMID:23127063

  18. SLAC All Access: Vacuum Microwave Device Department

    ScienceCinema

    Haase, Andy

    2018-05-11

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  19. SLAC All Access: Vacuum Microwave Device Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, Andy

    2012-10-09

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  20. Microwave device investigations

    NASA Technical Reports Server (NTRS)

    Choudhury, K. K. D.; Haddad, G. I.; Kwok, S. P.; Masnari, N. A.; Trew, R. J.

    1972-01-01

    Materials, devices and novel schemes for generation, amplification and detection of microwave and millimeter wave energy are studied. Considered are: (1) Schottky-barrier microwave devices; (2) intermodulation products in IMPATT diode amplifiers; and (3) harmonic generation using Read diode varactors.

  1. Wafer Scale Union.

    DTIC Science & Technology

    1992-05-31

    configuration. 25 We have tested it electronically to 26 GHz and found that the microwave loss is under 10 dB over the entire range. Our initial phase...UNION EFFORT 32 IEEE MICROWAVE AND GUIDED WAVE LETTERS. VOL. I. NO. 2. FEBRUARY 1991 Wide-Band Millimeter Wave Characterization of Sub-0.2 Micrometer...transistors (HEMT’s) ar nra- (over the frequency range of 1-26 GHz) and a network analyzer H ingly replacing GaAs MESFET’s in microwave and rail- als(ove r

  2. Non-equilibrium Numerical Analysis of Microwave-supported Detonation Threshold Propagating through Diatomic Gas

    NASA Astrophysics Data System (ADS)

    Shiraishi, Hiroyuki

    2015-09-01

    Microwave-supported Detonation (MSD), one type of Microwave-supported Plasma (MSP), is considered as one of the most important phenomena because it can generate high pressure and high temperature for beam-powered space propulsion systems. In this study, I numerically simulate MSD waves propagating through a diatomic gas. In order to evaluate the threshold of beam intensity, I use the physical-fluid dynamics scheme, which has been developed for simulating unsteady and non-equilibrium LSD waves propagating through a hydrogen gas.

  3. Optical-fiber-connected 300-GHz FM-CW radar system

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Sekine, Norihiko; Kasamatsu, Akifumi; Yamamoto, Naokatsu; Kawanishi, Tetsuya

    2017-05-01

    300-GHz frequency-modulated continuous-wave (FM-CW) radar system operated by radio over fiber technologies is configured and demonstrated. Centralized signal generator, which is based on an optical frequency comb generation, provides high-precise FM-CW radar signal. The optical signal is easy to be transported to radar heads through an optical fiber network. Optical-modulator-based optical frequency comb generator is utilized as an optical frequency multiplier from a microwave signal to a 300-GHz terahertz signal by an optical modulation technique. In the study, we discuss the configuration of the network, signal generator and remote radar head for terahertz-wave multi-static radar system.

  4. The Cosmic Microwave Background Radiation and its Polarization

    NASA Astrophysics Data System (ADS)

    Wollack, Edward

    2016-03-01

    The cosmic microwave background (CMB) radiation and its faint polarization have provided a unique means to constrain the physical state of the early Universe. Continued advances in instrumentation, observation, and analysis have revealed polarized radiation signatures associated with gravitational lensing and have heightened the prospects for using precision polarimetry to experimentally confront the inflationary paradigm. Characterization of this relic radiation field has the power to constrain or reveal the detailed properties of astroparticle species and long wave gravitational radiation. On going and planned CMB polarization efforts from the ground, balloon, and space borne platforms will be briefly surveyed. Recent community activities by the Inflation Probe Science Interest Group (IPSIG) will also be summarized. NASA PCOS mini-symposium (invited IPSIG talk).

  5. Physics of the Microwave Oven

    ERIC Educational Resources Information Center

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  6. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    DOEpatents

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  7. Aircraft and satellite measurement of ocean wave directional spectra using scanning-beam microwave radars

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.; Walton, W. T.; Baker, P. L.

    1982-01-01

    A microwave radar technique for remotely measuring the vector wave number spectrum of the ocean surface is described. The technique, which employs short-pulse, noncoherent radars in a conical scan mode near vertical incidence, is shown to be suitable for both aircraft and satellite application, the technique was validated at 10 km aircraft altitude, where we have found excellent agreement between buoy and radar-inferred absolute wave height spectra.

  8. RT-CW: widely tunable semiconductor THz QCL sources

    NASA Astrophysics Data System (ADS)

    Razeghi, M.; Lu, Q. Y.

    2016-09-01

    Distinctive position of Terahertz (THz) frequencies (ν 0.3 -10 THz) in the electromagnetic spectrum with their lower quantum energy compared to IR and higher frequency compared to microwave range allows for many potential applications unique to them. Especially in the security side of the THz sensing applications, the distinct absorption spectra of explosives and related compounds in the range of 0.1-5 THz makes THz technology a competitive technique for detecting hidden explosives. A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range will greatly boost the THz applications for the diagnosis and detection of explosives. Here we present a new strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based intracavity DFG. Room temperature continuous wave operation with electrical frequency tuning range of 2.06-4.35 THz is demonstrated.

  9. Linewidth and tuning characteristics of terahertz quantum cascade lasers.

    PubMed

    Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A

    2004-03-15

    We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.

  10. Microwave Three-Wave Mixing Experiments for Chirality Determination: Current Status

    NASA Astrophysics Data System (ADS)

    Perez, Cristobal; Shubert, V. Alvin; Schmitz, David; Medcraft, Chris; Krin, Anna; Schnell, Melanie

    2015-06-01

    Microwave three-wave mixing experiments have been shown to provide a novel and sensitive way to generate and measure enantiomer-specific molecular signatures. The handedness of the sample can be obtained from the phase of the molecular free induction decay whereas the enantiomeric excess can be determined by the amplitude of the chiral signal. After the introduction of this technique by Patterson et al. remarkable improvements have been realized and experimental strategies for both absolute phase determination and enantiomeric excess have been presented. This technique has been also successfully implemented at higher microwave frequencies. Here we present the current status of this technique as well future directions and perspectives. This will be illustrated through our systematic study of chiral terpenes as well as preliminary results in molecular clusters. Patterson, D.; Schnell, M.; Doyle, J. M. Enantiomer-Specific Detection of Chiral Molecules via Microwave Spectroscopy. Nature 2013, 497, 475-477. Patterson, D.; Doyle, J. M. Sensitive Chiral Analysis via Microwave Three-Wave Mixing. Phys. Rev. Lett. 2013, 111, 023008. Shubert, V. A.; Schmitz, D.; Patterson, D.; Doyle, J. M.; Schnell, M. Identifying Enantiomers in Mixtures of Chiral Molecules with Broadband Microwave Spectroscopy. Angew. Chem. Int. Ed. 2014, 53, 1152-1155. Lobsiger, S.; Perez, C.; Evangelisti, L.; Lehmann, K. K.; Pate, B. H. Molecular Structure and Chirality Detection by Fourier Transform Microwave Spectroscopy. J. Phys. Chem. Lett. 2014, 6, 196-200.

  11. Study on the characteristics of magneto-sensitive electromagnetic wave-absorbing properties of magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Yang, Pingan; Fu, Jie; Liu, Shuzhi; Qi, Song

    2016-08-01

    Magnetorheological (MR) materials are a class of materials whose mechanical and electrical properties can be reversible controlled by the magnetic field. In this study, we pioneered research on the effect of a uniform magnetic field with different strengths and directions on the microwave-absorbing properties of magnetorheological elastomers (MREs), in which the ferromagnetic particles are flower-like carbonyl iron powders (CIPs) prepared by an in situ reduction method. The electromagnetic (EM) absorbing properties of the composites have been analyzed by vector network analysis with the coaxial reflection/transmission technique. Under the magnetic field, the columnar or chainlike structures were formed, which allows EM waves to penetrate. Meanwhile, stronger Debye dipolar relaxation and attenuation constant have been obtained when changing the direction of the applied magnetic field. Compared with untreated MREs, not only have the minimum reflection loss (RL) and the effective absorption bandwidth (below -20 dB) greatly increased, the frequencies of the absorbing peaks shift about 15%. This suggests that MREs are a magnetic-field-sensitive electromagnetic wave-absorbing material and have great potential in applications such as in anti-radar camouflage, due to the fact that radar can continuously conduct detection at many electromagnetic frequencies, while the MR materials can adjust the microwave-absorption peak according to the radar frequency.

  12. Food foraging of honey bees in a microwave field (2. 45 GHz CW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary, N.E.; Westerdahl, B.B.

    1982-02-15

    Honey bees were trained to fly 400 m from their colony to an indoor laboratory foraging arena exposed to 2.45 GHz continuous wave microwaves at 5 power densities (0, 5, 10, 20, and 40 mW/cm/sup 2/). Foraging behavior did not differ from controls foraging within an unexposed sham arena in (1) number of round trips completed during a 3-h exposure session, (2) round trip time between the colony and the foraging arena, and (3) the length of time required to navigate the illuminated foraging arena. This study indicates that honey bees would not be adversely affected by foraging within amore » similar microwave field that would exist in future receiving antennae for the proposed solar power satellite energy transmission system in which power levels are expected to range from 23 mW/cm/sup 2/ at the antenna center to 1 mW/cm/sup 2/ at the edge.« less

  13. Experimental study on an S-band near-field microwave magnetron power transmission system on hundred-watt level

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Jiang, Wan; Yang, Yang; Yu, Chengyang; Huang, Kama; Liu, Changjun

    2015-11-01

    A multi-magnetron microwave source, a metamaterial transmitting antenna, and a large power rectenna array are presented to build a near-field 2.45 GHz microwave power transmission system. The square 1 m2 rectenna array consists of sixteen rectennas with 2048 Schottky diodes for large power microwave rectifying. It receives microwave power and converts them into DC power. The design, structure, and measured performance of a unit rectenna as well as the entail rectenna array are presented in detail. The multi-magnetron microwave power source switches between half and full output power levels, i.e. the half-wave and full-wave modes. The transmission antenna is formed by a double-layer metallic hole array, which is applied to combine the output power of each magnetron. The rectenna array DC output power reaches 67.3 W on a 1.2 Ω DC load at a distance of 5.5 m from the transmission antenna. DC output power is affected by the distance, DC load, and the mode of microwave power source. It shows that conventional low power Schottky diodes can be applied to a microwave power transmission system with simple magnetrons to realise large power microwave rectifying.

  14. In situ realization of particlelike scattering states in a microwave cavity

    NASA Astrophysics Data System (ADS)

    Böhm, Julian; Brandstötter, Andre; Ambichl, Philipp; Rotter, Stefan; Kuhl, Ulrich

    2018-02-01

    We realize scattering states in a lossy and chaotic two-dimensional microwave cavity which follow bundles of classical particle trajectories. To generate such particlelike scattering states, we measure the system's complex transmission matrix and apply an adapted Wigner-Smith time-delay formalism to it. The necessary shaping of the incident wave is achieved in situ using phase- and amplitude-regulated microwave antennas. Our experimental findings pave the way for establishing spatially confined communication channels that avoid possible intruders or obstacles in wave-based communication systems.

  15. Electromagnetic-radiation absorption by water

    NASA Astrophysics Data System (ADS)

    Lunkenheimer, P.; Emmert, S.; Gulich, R.; Köhler, M.; Wolf, M.; Schwab, M.; Loidl, A.

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  16. Millimeter wave generation by relativistic electron beams and microwave-plasma interaction

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer

    1990-12-01

    The design and operation of a compact, high power, millimeter wave source (cusptron) has been completed and proven successful. Extensive theoretical analysis of cusptron beam and rf dynamics has been carried out and published. Theory agrees beautifully with experiment. Microwave Bragg scattering due to been achieved by using expanding plasmas to upshift rf signal frequencies.

  17. Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T. (Inventor)

    1997-01-01

    The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.

  18. Parametric dependence of ocean wave-radar modulation transfer functions

    NASA Technical Reports Server (NTRS)

    Plant, W. J.; Keller, W. C.; Cross, A.

    1983-01-01

    Microwave techniques at X and L band were used to determine the dependence of ocean-wave radar modulation transfer functions (MTFs) on various environmental and radar parameters during the Marine Remote Sensing experiment of 1979 (MARSEN 79). These MIF are presented, as are coherence functions between the AM and FM parts of the backscattered microwave signal. It is shown that they both depend on several of these parameters. Besides confirming many of the properties of transfer functions reported by previous authors, indications are found that MTFs decrease with increasing angle between wave propagation and antenna-look directions but are essentially independent of small changes in air-sea temperature difference. However, coherence functions are much smaller when the antennas are pointed perpendicular to long waves. It is found that X band transfer functions measured with horizontally polarized microwave radiation have larger magnitudes than those obtained by using vertical polarization.

  19. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.; Gang, Guan-Wan; He, J. Q.; Ichitsubo, I.

    1988-05-01

    This final technical report presents results on the computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems. New results include analytical and computer aided device models of GaAs MESFETs and HEMTs or MODFETs, new synthesis techniques for monolithic feedback and distributed amplifiers and a new nonlinear CAD program for MIMIC called CADNON. This program incorporates the new MESFET and HEMT model and has been successfully applied to the design of monolithic millimeter-wave mixers.

  20. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  1. Probing Many-Body Interactions in an Optical Lattice Clock (Preprint)

    DTIC Science & Technology

    2013-10-23

    impressive potential gain over their microwave counterparts. Optical frequencies on the other hand are very difficult to measure, as the oscillations ...source can be compared. Here, the laboratory radiation source is an ultra-stable continuous-wave laser. It acts as the local oscillator (or pendulum...where φ Z 0 is the ground longitudinal mode in a lattice site and φn are transverse harmonic oscillator eigenmodes. ĉ†αn creates a fermion in mode n

  2. TEMPEST-D MM-Wave Radiometer

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Gaier, T.; Reising, S. C.; Lim, B.; Stachnik, R. A.; Jarnot, R.; Berg, W. K.; Kummerow, C. D.; Chandrasekar, V.

    2016-12-01

    The TEMPEST-D radiometer is a five-frequency millimeter-wave radiometer at 89, 165, 176, 180, and 182 GHz. The direct-detection architecture of the radiometer reduces its power consumption and eliminates the need for a local oscillator, reducing complexity. The Instrument includes a blackbody calibrator and a scanning reflector, which enable precision calibration and cross-track scanning. The MMIC-based millimeter-wave radiometers take advantage of the technology developed under extensive investment by the NASA Earth Science Technology Office (ESTO). The five-frequency millimeter-wave radiometer is built by Jet Propulsion Laboratory (JPL), which has produced a number of state-of-the-art spaceborne microwave radiometers, such as the Microwave Limb Sounder (MLS), Advanced Microwave Radiometer (AMR) for Jason-2/OSTM, Jason-3, and the Juno Microwave Radiometer (MWR). The TEMPEST-D Instrument design is based on a 165 to 182 GHz radiometer design inherited from RACE and an 89 GHz receiver developed under the ESTO ACT-08 and IIP-10 programs at Colorado State University (CSU) and JPL. The TEMPEST reflector scan and calibration methodology is adapted from the Advanced Technology Microwave Sounder (ATMS) and has been validated on the Global Hawk unmanned aerial vehicle (UAV) using the High Altitude MMIC Sounding radiometer (HAMSR) instrument. This presentation will focus on the design, development and performance of the TEMPEST-D radiometer instrument. The flow-down of the TEMPEST-D mission objectives to instrument level requirements will also be discussed.

  3. Computer-Aided Design of Low-Noise Microwave Circuits

    NASA Astrophysics Data System (ADS)

    Wedge, Scott William

    1991-02-01

    Devoid of most natural and manmade noise, microwave frequencies have detection sensitivities limited by internally generated receiver noise. Low-noise amplifiers are therefore critical components in radio astronomical antennas, communications links, radar systems, and even home satellite dishes. A general technique to accurately predict the noise performance of microwave circuits has been lacking. Current noise analysis methods have been limited to specific circuit topologies or neglect correlation, a strong effect in microwave devices. Presented here are generalized methods, developed for computer-aided design implementation, for the analysis of linear noisy microwave circuits comprised of arbitrarily interconnected components. Included are descriptions of efficient algorithms for the simultaneous analysis of noisy and deterministic circuit parameters based on a wave variable approach. The methods are therefore particularly suited to microwave and millimeter-wave circuits. Noise contributions from lossy passive components and active components with electronic noise are considered. Also presented is a new technique for the measurement of device noise characteristics that offers several advantages over current measurement methods.

  4. An accurate automated technique for quasi-optics measurement of the microwave diagnostics for fusion plasma

    NASA Astrophysics Data System (ADS)

    Hu, Jianqiang; Liu, Ahdi; Zhou, Chu; Zhang, Xiaohui; Wang, Mingyuan; Zhang, Jin; Feng, Xi; Li, Hong; Xie, Jinlin; Liu, Wandong; Yu, Changxuan

    2017-08-01

    A new integrated technique for fast and accurate measurement of the quasi-optics, especially for the microwave/millimeter wave diagnostic systems of fusion plasma, has been developed. Using the LabVIEW-based comprehensive scanning system, we can realize not only automatic but also fast and accurate measurement, which will help to eliminate the effects of temperature drift and standing wave/multi-reflection. With the Matlab-based asymmetric two-dimensional Gaussian fitting method, all the desired parameters of the microwave beam can be obtained. This technique can be used in the design and testing of microwave diagnostic systems such as reflectometers and the electron cyclotron emission imaging diagnostic systems of the Experimental Advanced Superconducting Tokamak.

  5. High power microwave source with a three dimensional printed metamaterial slow-wave structure.

    PubMed

    French, David M; Shiffler, Don

    2016-05-01

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  6. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, David M.; Shiffler, Don

    2016-05-15

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for buildingmore » these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.« less

  7. A Study of Mesoscale Gravity Waves over the North Atlantic with Satellite Observations and a Mesoscale Model

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Zhang, Fuqing

    2004-01-01

    Satellite microwave data are used to study gravity wave properties and variabilities over the northeastern United States and the North Atlantic in the December-January periods. The gravity waves in this region, found in many winters, can reach the stratopause with growing amplitude. The Advanced Microwave Sounding Unit-A (AMSU-A) observations show that the wave occurrences are correlated well with the intensity and location of the tropospheric baroclinic jet front systems. To further investigate the cause(s) and properties of the North Atlantic gravity waves, we focus on a series of wave events during 19-21 January 2003 and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves compare qualitatively well with the satellite observations in terms of wave structures, timing, and overall morphology. Excitation mechanisms of these large-amplitude waves in the troposphere are complex and subject to further investigations.

  8. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.

    1989-05-01

    The objectives of this research are to develop analytical and computer aided design techniques for monolithic microwave and millimeter wave integrated circuits (MMIC and MIMIC) and subsystems and to design and fabricate those ICs. Emphasis was placed on heterojunction-based devices, especially the High Electron Mobility Transition (HEMT), for both low noise and medium power microwave and millimeter wave applications. Circuits to be considered include monolithic low noise amplifiers, power amplifiers, and distributed and feedback amplifiers. Interactive computer aided design programs were developed, which include large signal models of InP MISFETs and InGaAs HEMTs. Further, a new unconstrained optimization algorithm POSM was developed and implemented in the general Analysis and Design program for Integrated Circuit (ADIC) for assistance in the design of largesignal nonlinear circuits.

  9. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber

    NASA Astrophysics Data System (ADS)

    Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Tsai, Y. F.; Ko, C. C.; Yang, E. C.; Jiang, J. A.; Barnett, L. R.; Chu, K. R.

    2014-08-01

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  10. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber.

    PubMed

    Chiang, W Y; Wu, M H; Wu, K L; Lin, M H; Teng, H H; Tsai, Y F; Ko, C C; Yang, E C; Jiang, J A; Barnett, L R; Chu, K R

    2014-08-01

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  11. Bragg scattering of electromagnetic waves by microwave-produced plasma layers

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.

    1990-01-01

    A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependencies of breakdown conditions on the pressure and pulse length are examined. The results are shown to be consistent with the appearance of tail erosion of the microwave pulse caused by air breakdown. A Bragg scattering experiment, using the plasma layers as a Bragg reflector, is then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory.

  12. Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.

    PubMed

    Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh

    2006-12-22

    If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.

  13. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles.

    PubMed

    El-Ella, Haitham A R; Ahmadi, Sepehr; Wojciechowski, Adam M; Huck, Alexander; Andersen, Ulrik L

    2017-06-26

    Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.

  14. Simulation study on the spatial and temporal characteristics of focused microwave beam discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhou, Qianhong; Dong, Zhiwei

    2018-01-01

    This paper reports a simulation study on a focused microwave (frequency 9.4 GHz, pulse width 2.5 μs, and peak electric field 1.2 kV/cm) discharge in 200 Pa nitrogen. A one-dimensional (1D) fluid model is based on the wave equation for the microwave field propagating through the gas breakdown plasma, the continuity equations for electron, ion and neutral particle densities, and the energy balance equations for mean electron temperature, and nitrogen vibrational and translational temperatures. These equations are numerically solved in a self-consistent manner with a simplified plasma chemistry set, in which the reaction rates involving electrons are calculated from the electron energy distribution function (EEDF) using a two-term expansion method. The spatial and temporal characteristics of the focused microwave breakdown in nitrogen are demonstrated, which include the amplitude of the microwave electric field, and the densities and temperatures of the plasma components. The temporal evolution of the plasma electron density agrees reasonably well with that measured with a microwave interferometer. The spatial-temporal distributions of metastable states are discussed on the plasma chemistry and the character of mean electron temperature. The spatially integrated N2(C3) density shows similar trends with the measured temporal intensity of optical emission spectroscopy, except for a time delay of 100-300 ns. The quantitative discrepancies are explained in light of limitations of the 1D model with a two-term expansion of EEDF. The theoretical model is found to describe the gas breakdown plasma generated by focused microwave beams at least qualitatively.

  15. A microwave piezoelectric transducer with a microstrip exciter system

    NASA Astrophysics Data System (ADS)

    Grigor'ev, M. A.; Petrov, V. V.; Tolstikov, A. V.

    1990-12-01

    The paper considers a microwave electroacoustic bulk-wave transducer with a microstrip exciter system. The operation of the device is analyzed on the basis of the dependence of the dimensionless radiation resistance on the phase advance in the piezoelectric. The optimal wave resistance, the area of the piezoelectric element, the length of the short-circuited section, the SWR, and the conversion factor are determined.

  16. High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation.

    PubMed

    Wang, Li Xian; Li, Wei; Zheng, Jian Yu; Wang, Hui; Liu, Jian Guo; Zhu, Ning Hua

    2013-02-15

    We propose a scheme for generating millimeter-wave (MMW) ultra-wideband (UWB) signal that is free from low-frequency components and a residual local oscillator. The system consists of two cascaded polarization modulators and is equivalent to a high-speed microwave photonic switch, which truncates a sinusoidal MMW into short pulses. The polarity switchability of the generated MMW-UWB pulse is also demonstrated.

  17. Microwave/millimeter wave technology

    NASA Astrophysics Data System (ADS)

    Abita, Joseph L.

    1988-09-01

    The microwave/millimeter-wave monolithic integrated-circuit (MIMIC) technology and systems are discussed along with the application of MIMICs in electronic warfare. The components of a MIMIC are described, with particular attention given to the active-array antenna transmit/receive module, which is at the focus of the MIMIC, and to the features of a typical MIMIC chip. The typical performance characteristics of MIMIC components are presented in tabular form.

  18. MIMIC-compatible GaAs and InP field effect controlled transferred electron (FECTED) oscillators

    NASA Astrophysics Data System (ADS)

    Scheiber, Helmut; Luebke, Kurt; Diskus, Christian G.; Thim, Hartwig W.; Gruetzmacher, D.

    1989-12-01

    A MIMIC-(millimeter and microwave integrated circuit) compatible transferred electron oscillator is investigated which utilizes the frequency-independent negative resistance of the stationary charge dipole domain that forms in the channel of a MESFET. The device structure, analysis, and simulation are described. Devices fabricated from GaAs and InP exhibit very high power levels of 56 mW at 29 GHz and 55 mW at 34 GHz, respectively. Continuous wave power levels are somewhat lower (30 mW).

  19. III-V Compounds and Alloys: An Update.

    PubMed

    Woodall, J M

    1980-05-23

    The III-V compounds and alloys have been studied for three decades. Until recently, these materials have been commercialized for only a few specialized optoelectronic devices and microwave devices. Advances in thin-film epitaxy techniques, such as liquid phase epitaxy and chemical vapor deposition, are now providing the ability to form good quality lattice-matched heterojunctions with III-V materials. New optoelectronic devices, such as room-temperature continuous-wave injection lasers, have already resulted. This newfound ability may also affect the field of highspeed integrated circuits.

  20. Conversion loss and noise of microwave and millimeter-wave mixers. I - Theory. II - Experiment

    NASA Technical Reports Server (NTRS)

    Held, D. N.; Kerr, A. R.

    1978-01-01

    The conversion loss and noise of microwave and millimeter-wave mixers are analyzed. Nonlinear capacitance, arbitrary embedding impedances, as well as shot, thermal and scattering noise arising in the diode, figure in the analysis. The anomalous mixer noise noted in millimeter-wave mixers by Kerr (1975) is shown to be explainable in terms of the correlation of down-converted components of the time-varying shot noise. A digital computer analysis of the conversion loss, noise, and output impedance of an 80-120-GHz mixer is also conducted.

  1. Mountain Waves in the Middle Atmosphere: Microwave Limb Sounder Observations and Analyses

    NASA Technical Reports Server (NTRS)

    Jiang, Jonathan H.; Wu, Dong L.; Eckermann, Stephen D.; Ma, Jun

    2003-01-01

    Observations and analyses of mesoscale gravity waves in the stratosphere from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) are summarized, with focus on global distribution of topography related wave activities. We found most of the orographical wave activities occur during the winter seasons over high latitude mountain ridges. In the northern hemisphere, the strongest waves are those over Scandinavia, Central Eurasia, and southern Greenland, whereas in the southern hemisphere, wave activities are outstanding over the Andes, New Zealand, and Antarctic rim;, MLS observations suggest that these orographic waves are located mostly on the down stream side of the mountain ridge with downward phase progression and have horizontal phase velocities opposite to the stratospheric jet-stream. Future studies using MLS data and numerical modeling will lead to better understanding of gravity wave effects on dynamics and chemistry in the middle atmosphere.

  2. Computer-Generated Microwave Holograms.

    ERIC Educational Resources Information Center

    Leming, Charles W.; Hastings, Orestes Patterson, III

    1980-01-01

    Described is the phasor method of superposition of waves. The intensity pattern from a system of microwave sources is calculated point by point on a plane corresponding to a film emulsion, and then printed and directly converted to a hologram for 3-cm microwaves. Calculations, construction, and viewing of holograms are included. (Author/DS)

  3. Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation.

    PubMed

    Thorlin, Thorleif; Rouquette, Jean-Michel; Hamnerius, Yngve; Hansson, Elisabeth; Persson, Mikael; Björklund, Ulrika; Rosengren, Lars; Rönnbäck, Lars; Persson, Mikael

    2006-08-01

    The rapid rise in the use of mobile communications has raised concerns about health issues related to low-level microwave radiation. The head and brain are usually the most exposed targets in mobile phone users. In the brain, two types of glial cells, the astroglial and the microglial cells, are interesting in the context of biological effects from microwave exposure. These cells are widely distributed in the brain and are directly involved in the response to brain damage as well as in the development of brain cancer. The aim of the present study was to investigate whether 900 MHz radiation could affect these two different glial cell types in culture by studying markers for damage-related processes in the cells. Primary cultures enriched in astroglial cells were exposed to 900 MHz microwave radiation in a temperature-controlled exposure system at specific absorption rates (SARs) of 3 W/kg GSM modulated wave (mw) for 4, 8 and 24 h or 27 W/kg continuous wave (cw) for 24 h, and the release into the extracellular medium of the two pro-inflammatory cytokines interleukin 6 (Il6) and tumor necrosis factor-alpha (Tnfa) was analyzed. In addition, levels of the astroglial cell-specific reactive marker glial fibrillary acidic protein (Gfap), whose expression dynamics is different from that of cytokines, were measured in astroglial cultures and in astroglial cell-conditioned cell culture medium at SARs of 27 and 54 W/kg (cw) for 4 or 24 h. No significant differences could be detected for any of the parameters studied at any time and for any of the radiation characteristics. Total protein levels remained constant during the experiments. Microglial cell cultures were exposed to 900 MHz radiation at an SAR of 3 W/kg (mw) for 8 h, and I16, Tnfa, total protein and the microglial reactivity marker ED-1 (a macrophage activation antigen) were measured. No significant differences were found. The morphology of the cultured astroglial cells and microglia was studied and appeared to be unaffected by microwave irradiation. Thus this study does not provide evidence for any effect of the microwave radiation used on damage-related factors in glial cells in culture.

  4. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu

    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhaustsmore » at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area {alpha}. An engine cycle and predicted thrust was explained.« less

  5. Infrastructure for the design and fabrication of MEMS for RF/microwave and millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Nerguizian, Vahe; Rafaf, Mustapha

    2004-08-01

    This article describes and provides valuable information for companies and universities with strategies to start fabricating MEMS for RF/Microwave and millimeter wave applications. The present work shows the infrastructure developed for RF/Microwave and millimeter wave MEMS platforms, which helps the identification, evaluation and selection of design tools and fabrication foundries taking into account packaging and testing. The selected and implemented simple infrastructure models, based on surface and bulk micromachining, yield inexpensive and innovative approaches for distributed choices of MEMS operating tools. With different educational or industrial institution needs, these models may be modified for specific resource changes using a careful analyzed iteration process. The inputs of the project are evaluation selection criteria and information sources such as financial, technical, availability, accessibility, simplicity, versatility and practical considerations. The outputs of the project are the selection of different MEMS design tools or software (solid modeling, electrostatic/electromagnetic and others, compatible with existing standard RF/Microwave design tools) and different MEMS manufacturing foundries. Typical RF/Microwave and millimeter wave MEMS solutions are introduced on the platform during the evaluation and development phases of the project for the validation of realistic results and operational decision making choices. The encountered challenges during the investigation and the development steps are identified and the dynamic behavior of the infrastructure is emphasized. The inputs (resources) and the outputs (demonstrated solutions) are presented in tables and flow chart mode diagrams.

  6. Introduction and analysis of several FY3C-MWHTS cloud/rain screening methods

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqing

    2017-04-01

    Data assimilation of satellite microwave sounders are very important for numerical weather prediction. Fengyun-3C (FY-3C),launched in September, 2013, has two such sounders: MWTS (MicroWave Temperature Sounder) and MWHTS (MicroWave Humidity and Temperature Sounder). These data should be quality-controlled before assimilation and cloud/rain detection is one of the crucial steps. This paper introduced different cloud/rain detection methods based on MWHTS, VIRR (Visible and InfraRed Radiometer) and MWRI (Microwave Radiation Imager) observations. We designed 6 cloud/rain detection combinations and then analyzed the application effect of these schemes. The difference between observations and model simulations for FY-3C MWHTS channels were calculated as a parameter for analysis. Both RTTOV and CRTM were used to fast simulate radiances of MWHTS channels.

  7. A repetitive S-band long-pulse relativistic backward-wave oscillator.

    PubMed

    Jin, Zhenxing; Zhang, Jun; Yang, Jianhua; Zhong, Huihuang; Qian, Baoliang; Shu, Ting; Zhang, Jiande; Zhou, Shengyue; Xu, Liurong

    2011-08-01

    This paper presents both numerical and experimental studies of a repetitive S-band long-pulse relativistic backward-wave oscillator. The dispersion relation curve of the main slow-wave structure is given by the numerical calculation. Experimental results show that a 1 GW microwaves with pulse duration of about 100 ns (full width of half magnitude) under 10 Hz repetitive operation mode are obtained. The microwave frequency is 3.6 GHz with the dominant mode of TM(01), and power conversion efficiency is about 20%. The single pulse energy is about 100 J. The experimental results are in good agreement with the simulation ones. By analyzing the experimental phenomenon, we obtain the conclusion that the explosive emission on the surface of the electrodynamics structure in intense radio frequency field mainly leads to the earlier unexpected termination of microwave output.

  8. Microwave beam broadening due to turbulent plasma density fluctuations within the limit of the Born approximation and beyond

    NASA Astrophysics Data System (ADS)

    Köhn, A.; Guidi, L.; Holzhauer, E.; Maj, O.; Poli, E.; Snicker, A.; Weber, H.

    2018-07-01

    Plasma turbulence, and edge density fluctuations in particular, can under certain conditions broaden the cross-section of injected microwave beams significantly. This can be a severe problem for applications relying on well-localized deposition of the microwave power, like the control of MHD instabilities. Here we investigate this broadening mechanism as a function of fluctuation level, background density and propagation length in a fusion-relevant scenario using two numerical codes, the full-wave code IPF-FDMC and the novel wave kinetic equation solver WKBeam. The latter treats the effects of fluctuations using a statistical approach, based on an iterative solution of the scattering problem (Born approximation). The full-wave simulations are used to benchmark this approach. The Born approximation is shown to be valid over a large parameter range, including ITER-relevant scenarios.

  9. A new pulse width reduction technique for pulsed electron paramagnetic resonance spectroscopy.

    PubMed

    Ohba, Yasunori; Nakazawa, Shigeaki; Kazama, Shunji; Mizuta, Yukio

    2008-03-01

    We present a new technique for a microwave pulse modulator that generates a short microwave pulse of approximately 1ns for use in an electron paramagnetic resonance (EPR) spectrometer. A quadruple-frequency multiplier that generates a signal of 16-20GHz from an input of 4-5GHz was employed to reduce the rise and fall times of the pulse prepared by a PIN diode switch. We examined the transient response characteristics of a commercial frequency multiplier and found that the device can function as a multiplier for pulsed signal even though it was designed for continuous wave operation. We applied the technique to a Ku band pulsed EPR spectrometer and successfully observed a spin echo signal with a broad excitation bandwidth of approximately 1.6mT using 80 degrees pulses of 1.5ns.

  10. Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser.

    PubMed

    Lo, Yen-Hua; Wu, Yu-Chang; Hsu, Shun-Chieh; Hwang, Yi-Chia; Chen, Bai-Ci; Lin, Chien-Chung

    2014-06-02

    The dynamic behavior of a monolithic dual-wavelength distributed feedback laser was fully investigated and mapped. The combination of different driving currents for master and slave lasers can generate a wide range of different operational modes, from single mode, period 1 to chaos. Both the optical and microwave spectrum were recorded and analyzed. The detected single mode signal can continuously cover from 15GHz to 50GHz, limited by photodetector bandwidth. The measured optical four-wave-mixing pattern indicates that a 70GHz signal can be generated by this device. By applying rate equation analysis, the important laser parameters can be extracted from the spectrum. The extracted relaxation resonant frequency is found to be 8.96GHz. With the full operational map at hand, the suitable current combination can be applied to the device for proper applications.

  11. Frequency-Swept Integrated Solid Effect.

    PubMed

    Can, Thach V; Weber, Ralph T; Walish, Joseph J; Swager, Timothy M; Griffin, Robert G

    2017-06-06

    The efficiency of continuous wave dynamic nuclear polarization (DNP) experiments decreases at the high magnetic fields used in contemporary high-resolution NMR applications. To recover the expected signal enhancements from DNP, we explored time domain experiments such as NOVEL which matches the electron Rabi frequency to the nuclear Larmor frequency to mediate polarization transfer. However, satisfying this matching condition at high frequencies is technically demanding. As an alternative we report here frequency-swept integrated solid effect (FS-ISE) experiments that allow low power sweeps of the exciting microwave frequencies to constructively integrate the negative and positive polarizations of the solid effect, thereby producing a polarization efficiency comparable to (±10 % difference) NOVEL. Finally, the microwave frequency modulation results in field profiles that exhibit new features that we coin the "stretched" solid effect. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electromagnetic-radiation absorption by water.

    PubMed

    Lunkenheimer, P; Emmert, S; Gulich, R; Köhler, M; Wolf, M; Schwab, M; Loidl, A

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  13. The EUMETSAT Polar System-Second Generation (EPS-SG) micro-wave and sub-millimetre wave imaging missions

    NASA Astrophysics Data System (ADS)

    Accadia, Christophe; Schlüssel, Peter; Phillips, Pepe L.; Wilson, J. Julian W.

    2013-10-01

    The EUMETSAT Polar System (EPS) will be followed by a second generation system, EPS-SG, in the 2020-2040 timeframe and contribute to the Joint Polar System being jointly set up with NOAA. Among the various missions which are part of EPS-SG, there are the Microwave Imager (MWI) and the Ice Cloud Imager (ICI). The MWI frequencies are from 18 GHz up to 183 GHz. All MWI channels up to 89 GHz measure both V and H polarisations. The primary objective of the MWI mission is to support Numerical Weather Prediction at regional and global scales. The MWI will not only provide continuity of measurements for some heritage microwave imager channels (e.g. SSM/I, AMSR-E) but will also include additional channels such as the 50-55 / 118 GHz bands. The combined use of these channels will provide more information on cloud and precipitation over sea and land. The ICI will provide measurements over the sub-millimetre spectral range contributing to an innovative characterisation of clouds over the whole globe. The ICI has channels at 183 GHz, 325 GHz and 448 GHz with single V polarisation and two channels at 243 GHz and 664 GHz with both V and H polarisation. The ICI's primary objectives are to support climate monitoring and validation of ice cloud models and the parameterisation of ice clouds in weather and climate models through the provision of ice cloud products.

  14. NASA-SETI microwave observing project: Targeted Search Element (TSE)

    NASA Technical Reports Server (NTRS)

    Webster, L. D.

    1991-01-01

    The Targeted Search Element (TSE) performs one of two complimentary search strategies of the NASA-SETI Microwave Observing Project (MOP): the targeted search. The principle objective of the targeted search strategy is to scan the microwave window between the frequencies of one and three gigahertz for narrowband microwave emissions eminating from the direction of 773 specifically targeted stars. The scanning process is accomplished at a minimum resolution of one or two Hertz at very high sensitivity. Detectable signals will be of a continuous wave or pulsed form and may also drift in frequency. The TSE will possess extensive radio frequency interference (RFI) mitigation and verification capability as the majority of signals detected by the TSE will be of local origin. Any signal passing through RFI classification and classifiable as an extraterrestrial intelligence (ETI) candidate will be further validated at non-MOP observatories using established protocol. The targeted search will be conducted using the capability provided by the TSE. The TSE provides six Targeted Search Systems (TSS) which independently or cooperatively perform automated collection, analysis, storage, and archive of signal data. Data is collected in 10 megahertz chunks and signal processing is performed at a rate of 160 megabits per second. Signal data is obtained utilizing the largest radio telescopes available for the Targeted Search such as those at Arecibo and Nancay or at the dedicated NASA-SETI facility. This latter facility will allow continuous collection of data. The TSE also provides for TSS utilization planning, logistics, remote operation, and for off-line data analysis and permanent archive of both the Targeted Search and Sky Survey data.

  15. A Numerical Simulation of the Energy Conversion Process in Microwave Rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, Teppei; Oda, Yasuhisa; Komurasaki, Kimiya

    2008-04-28

    In Microwave Rocket, a high power microwave beam ionizes atmospheric air inside of the thruster and the ionization front drives a shock wave. In this paper, CFD simulation was conducted using measured propagation velocity of the ionization front to evaluate the engine performance. As a result, maximum cycle efficiency was obtained at the power density of about 200 kW/m{sup 2} which is the transitional beam power condition between Microwave Supported Combustion and Microwave Supported Detonation regimes.

  16. Multi-point measurement using two-channel reflectometer with antenna switching for study of high-frequency fluctuations in GAMMA 10

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Okada, T.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.

    2017-03-01

    A two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile. The density fluctuations measured using this system clearly showed the high-frequency coherent fluctuations that are associated with Alfvén-ion-cyclotron (AIC) waves in GAMMA 10. A correlation analysis applied to simultaneously measured density fluctuations showed that the phase component that was included in a reflected microwave provided both high coherence and a clear phase difference for the AIC waves, while the amplitude component showed neither significant coherence nor clear phase difference. The axial phase differences of the AIC waves measured inside the hot plasma confirmed the formation of a standing wave structure. The axial variation of the radial profiles was evaluated and a clear difference was found among the AIC waves for the first time, which would be a key to clarify the unknown boundary conditions of the AIC waves.

  17. Fire detection behind a wall by using microwave techniques

    NASA Astrophysics Data System (ADS)

    Alkurt, Fatih Özkan; Baǧmancı, Mehmet; Karaaslan, Muharrem; Bakır, Mehmet; Altıntaş, Olcay; Karadaǧ, Faruk; Akgöl, Oǧuzhan; Ünal, Emin

    2018-02-01

    In this work, detection of the fire location behind a wall by using microwave techniques is illustrated. According to Planck's Law, Blackbody emits electromagnetic radiation in the microwave region of the electromagnetic spectrum. This emitted waves penetrates all materials except that metals. These radiated waves can be detected by using directional and high gain antennas. The proposed antenna consists of a simple microstrip patch antenna and a 2×2 microstrip patch antenna array. FIT based simulation results show that 2×2 array antenna can absorb emitted power from a fire source which is located behind a wall. This contribution can be inspirational for further works.

  18. Influence of wall plasma on microwave frequency and power in relativistic backward wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jun; Cao, Yibing; Teng, Yan

    2015-07-15

    The RF breakdown of the slow wave structure (SWS), which will lead to the generation of the wall plasma, is an important cause for pulse shortening in relativistic backward wave oscillators. Although many researchers have performed profitable studies about this issue, the influence mechanism of this factor on the microwave generation still remains not-so-clear. This paper simplifies the wall plasma with an “effective” permittivity and researches its influence on the microwave frequency and power. The dispersion relation of the SWS demonstrates that the introduction of the wall plasma will move the dispersion curves upward to some extent, which is confirmedmore » by particle-in-cell (PIC) simulations and experiments. The plasma density and volume mainly affect the dispersion relation at the upper and lower frequency limits of each mode, respectively. Meanwhile, PIC simulations show that even though no direct power absorption exists since the wall plasma is assumed to be static, the introduction of the wall plasma may also lead to the decrease in microwave power by changing the electrodynamic property of the SWS.« less

  19. The Cassini gravitational wave experiment

    NASA Astrophysics Data System (ADS)

    Abbate, Salvatore F.; Armstrong, John W.; Asmar, Sami W.; Barbinis, Elias; Bertotti, Bruno; Fleischman, Don U.; Gatti, Mark S.; Goltz, Gene L.; Herrera, R. G.; Iess, L.; Lee, Kyong J.; Ray, Trina L.; Tinto, Massimo; Tortora, P.; Wahlquist, Hugo D.

    2003-03-01

    Doppler tracking experiments using the earth and a distant spacecraft as separated test masses have been used for gravitational wave (GW) searches in the low-frequency band(~0.0001-0.1 Hz). The precision microwave tracking link continuously measures the relative dimensionless velocity, Δv/c, between the earth and the spacecraft. A GW incident of the systems produces a characteristic signature in the data, different from the signatures of the principal noises. For 40 days centered about its solar opposition in December 2001, the Cassini spacecraft was tracked in a search for low-frequncy GWs. Here we describe the GW experiment, including transfer functions of the signals and noises to the Doppler observable, and present noise statistics and compare them with the pre-experiment noise budget.

  20. Hyperthermia for treating cancer

    MedlinePlus

    ... forms of energy may be used, including: Radio waves Microwaves Ultrasound waves Heat may be delivered using: An external machine ... rectum. A needle-like probe to sends radio wave energy directly into the tumor to kill cancer ...

  1. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadesse, Semere A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455; Li, Huan

    2015-11-16

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Ourmore » system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.« less

  2. Low-temperature graphene synthesis using microwave plasma CVD

    NASA Astrophysics Data System (ADS)

    Yamada, Takatoshi; Kim, Jaeho; Ishihara, Masatou; Hasegawa, Masataka

    2013-02-01

    The graphene chemical vapour deposition (CVD) technique at substrate temperatures around 300 °C by a microwave plasma sustained by surface waves (surface wave plasma chemical vapour deposition, SWP-CVD) is discussed. A low-temperature, large-area and high-deposition-rate CVD process for graphene films was developed. It was found from Raman spectra that the deposited films on copper (Cu) substrates consisted of high-quality graphene flakes. The fabricated graphene transparent conductive electrode showed uniform optical transmittance and sheet resistance, which suggests the possibility of graphene for practical electrical and optoelectronic applications. It is intriguing that graphene was successfully deposited on aluminium (Al) substrates, for which we did not expect the catalytic effect to decompose hydrocarbon and hydrogen molecules. We developed a roll-to-roll SWP-CVD system for continuous graphene film deposition towards industrial mass production. A pair of winder and unwinder systems of Cu film was installed in the plasma CVD apparatus. Uniform Raman spectra were confirmed over the whole width of 297 mm of Cu films. We successfully transferred the deposited graphene onto PET films, and confirmed a transmittance of about 95% and a sheet resistance of less than 7 × 105 Ω/sq.

  3. High-power microwave generation using optically activated semiconductor switches

    NASA Astrophysics Data System (ADS)

    Nunnally, William C.

    1990-12-01

    The two prominent types of optically controlled switches, the optically controlled linear (OCL) switch and the optically initiated avalanche (OIA) switch, are described, and their operating parameters are characterized. Two transmission line approaches, one using a frozen-wave generator and the other using an injected-wave generator, for generation of multiple cycles of high-power microwave energy using optically controlled switches are discussed. The point design performances of the series-switch, frozen-wave generator and the parallel-switch, injected-wave generator are compared. The operating and performance limitations of the optically controlled switch types are discussed, and additional research needed to advance the development of the optically controlled, bulk, semiconductor switches is indicated.

  4. Microwave and Millimeter Wave Testing for the Inspection of the Space Shuttle Spray on Foam Insulations (SOFI) and the Acreage Heat Tiles

    NASA Technical Reports Server (NTRS)

    Zoughi, R.; Kharkovsky, S.; Hepburn, F. L.

    2005-01-01

    The utility of microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods, for testing the Space Shuttle's external he1 tank spray on foam insulation (SOFI) and the acreage heat tiles has been investigated during the past two years. Millimeter wave NDE techniques are capable of producing internal images of SOFI. This paper presents the results of testing several diverse panels with embedded voids and debonds at millimeter wave frequencies. Additionally, the results of testing a set of heat tiles are also presented. Finally, the attributes of these methods as well as the advantageous features associated with these systems are also provided.

  5. The New Microwave Temperature and Humidity Profiler (MTHP) Airborne Instrument

    NASA Astrophysics Data System (ADS)

    Lim, B.; Bendig, R.; Denning, R.; Pandian, P.; Read, W. G.; Tanner, A.

    2016-12-01

    The Jet Propulsion Laboratory (JPL) has developed a next generation sensor, the Microwave Temperature and Humidity Profiler (MTHP) for use on airborne platforms. The instrument measures the 60 GHz oxygen band and 183 GHz water vapor band, and scans ahead of the aircraft flight path, allowing for atmospheric retrievals above and below the aircraft, to generate vertical profiles. The millimeter wave microwave receivers utilize low noise amplifiers made on the 35 nm indium phosphide (InP) High Electron Mobility Transistors (HEMTs) process that offer low noise figures ( 4 dB). Continuous calibration is performed with a novel rotating drum, through an aperture matched to the measurement frequencies, with two external targets - one at ambient and another heated to 55oC. The instrument performs a scan of the vertical structure of the atmosphere and calibration targets every 1.5 seconds The instrument has recently flown on the Gulfstream 2 in June 2016 and participated in the NCAR ARISTO C-130 flight test campaign in August 2016. The performance of the instrument during these campaigns, will be presented.

  6. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    PubMed

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Behaviors of printed circuit boards due to microwave supported curing process of coating materials.

    PubMed

    Bremerkamp, Felix; Nowottnick, Mathias; Seehase, Dirk; Bui, Trinh Dung

    2012-01-01

    The Application of a microwave supported curing process for coatings in the field of electronic industry poses a challenge. Here the implementation of this technology is represented. Within the scope of the investigation special PCB Test Layouts were designed and the polymer curing process examined by the method of dielectric analysis. Furthermore the coupling of microwave radiation with conductive PCB structures was analyzed experimentally by means of special test boards. The formation of standing waves and regular heating distribution along the conductive wires on the PCB could be observed. The experimental results were compared with numerical simulation. In this context the numerical analysis of microwave PCB interaction led to important findings concerning wave propagation on wired PCB. The final valuation demonstrated a substantial similarity between numerical simulations and experimental results.

  8. Three-Dimensional Simulation of Traveling-Wave Tube Cold-Test Characteristics Using CST MICROWAVE STUDIO

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Herrmann, Kimberly A.; Kory, Carol L.; Wilson, Jeffrey D.; Cross, Andrew W.; Santana , Samuel

    2003-01-01

    The electromagnetic field simulation software package CST MICROWAVE STUDIO (MWS) was used to compute the cold-test parameters - frequency-phase dispersion, on-axis impedance, and attenuation - for a traveling-wave tube (TWT) slow-wave circuit. The results were compared to experimental data, as well as to results from MAFIA, another three-dimensional simulation code from CST currently used at the NASA Glenn Research Center (GRC). The strong agreement between cold-test parameters simulated with MWS and those measured experimentally demonstrates the potential of this code to reduce the time and cost of TWT development.

  9. Approaching soft X-ray wavelengths in nanomagnet-based microwave technology

    PubMed Central

    Yu, Haiming; d' Allivy Kelly, O.; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Heimbach, F.; Grundler, D.

    2016-01-01

    Seven decades after the discovery of collective spin excitations in microwave-irradiated ferromagnets, there has been a rebirth of magnonics. However, magnetic nanodevices will enable smart GHz-to-THz devices at low power consumption only, if such spin waves (magnons) are generated and manipulated on the sub-100 nm scale. Here we show how magnons with a wavelength of a few 10 nm are exploited by combining the functionality of insulating yttrium iron garnet and nanodisks from different ferromagnets. We demonstrate magnonic devices at wavelengths of 88 nm written/read by conventional coplanar waveguides. Our microwave-to-magnon transducers are reconfigurable and thereby provide additional functionalities. The results pave the way for a multi-functional GHz technology with unprecedented miniaturization exploiting nanoscale wavelengths that are otherwise relevant for soft X-rays. Nanomagnonics integrated with broadband microwave circuitry offer applications that are wide ranging, from nanoscale microwave components to nonlinear data processing, image reconstruction and wave-based logic. PMID:27063401

  10. RF breakdown in "cold" slow wave structures operating at travelling wave mode of TM01

    NASA Astrophysics Data System (ADS)

    Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang; Zhang, Dian; Bai, Zhen; Zhu, Danni

    2018-01-01

    RF breakdown experiments and simulations in "cold" slow wave structures (SWSs) are executed. All the SWSs are designed as traveling wave structures, which operate at the π/2 mode of TM01 waves. The experimental results indicate that the input microwave energy is mainly absorbed, not reflected by the RF breakdown process in traveling wave SWSs. Both larger magnitude of Es-max and more numbers of periods of SWSs aggravate the microwave absorption in the breakdown process and bring about a shorter transmission pulse width. We think that the critical surface E-field of the multi-period SWSs is 1 MV/cm. However, little correlation between RF breakdown effects and Bext is observed in the experiments. The simulation conditions are coincident with the experimental setup. Explosive emissions of electrons in the rounded corner of SWSs together with the ionization of the gas layer close to it supply the breakdown plasma. The gas layer consists of water vapor and hydrogen gas and has a pressure of 1 Pa. Different kinds of circumstances of SWSs are simulated. We mainly concern about the characteristic of the plasma and its influence on microwave power. Comprehensive simulation results are obtained. The simulation results match the experimental results basically and are helpful in explaining the RF breakdown phenomenon physically.

  11. The COBE cosmic 3 K anisotropy experiment: A gravity wave and cosmic string probe

    NASA Technical Reports Server (NTRS)

    Bennett, Charles L.; Smoot, George F.

    1989-01-01

    Among the experiments to be carried into orbit next year, by the COBE satellite, are differential microwave radiometers. They will make sensitive all-sky maps of the temperature of the cosmic microwave background radiation at three frequencies, giving dipole, quadrupole, and higher order multipole measurements of the background radiation. The experiment will either detect, or place significant constraints on, the existence of cosmic strings and long wavelength gravity waves.

  12. Overview of Microwave and Millimeter Wave Testing Activities for the Inspection of the Space Shuttle SOH and Heat Tiles

    NASA Technical Reports Server (NTRS)

    Zoughi, R.

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation methods, have shown great potential for inspecting the Space Shuttle s external tank spray on foam insulation (SOFI) and acreage heat tiles. These methods are capable of producing high-resolution images of et interior of these structures. To this end, several different microwave and millimeter wave nondestructive testing methods have been investigated for this purpose. These methods have included near-field as well as focused approaches ranging in frequency from 10 GHz to beyond 100 GHz. Additionally, synthetic aperture focusing methods have also been developed in this regime for obtaining high-resolution images of the interior of these critical structures. These methods possess the potential for producing 3D images of these structures in a relatively short amount of time. This paper presents a summary of these activities in addition to providing examples of images produced using these diverse methods.

  13. Plasma-assisted microwave processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin (Inventor); Jackson, Henry (Inventor); Ylin, Tzu-yuan (Inventor)

    1998-01-01

    A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.

  14. INVESTIGATION OF NEW CONCEPTS AND LINEAR BEAM TECHNIQUES FOR MICROWAVE POWER GENERATION.

    DTIC Science & Technology

    ARSENIC ALLOYS, MILLIMETER WAVES, CAVITY RESONATORS, ELECTRON GUNS, ELECTRON DENSITY, EPITAXIAL GROWTH, OSCILLATORS, S BAND , X BAND , GERMANIUM...ELECTRIC FIELDS, SCATTERING, BRILLOUIN ZONES, RUBY, ELECTROSTRICTION, IONIZATION, MICROWAVE OSCILLATORS, KLYSTRONS , EXPERIMENTAL DESIGN.

  15. A Ka-band radial relativistic backward wave oscillator with GW-class output power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jiaxin; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Dang, Fangchao

    A novel radial relativistic backward wave oscillator with a reflector is proposed and designed to generate GW-level high power microwaves at Ka-band. The segmented radial slow wave structure and the reflector are matched to enhance interaction efficiency. We choose the volume wave TM{sub 01} mode as the working mode due to the volume wave characteristic. The main structural parameters of the novel device are optimized by particle-in-cell simulation. High power microwaves with power of 2 GW and a frequency of 29.4 GHz are generated with 30% efficiency when the electron beam voltage is 383 kV, the beam current is 17 kA, and themore » guiding magnetic field is only 0.6 T. Simultaneously, the highest electric field in the novel Ka-band device is just about 960 kV/cm in second slow wave structure.« less

  16. Directional spectra of ocean waves from microwave backscatter: A physical optics solution with application to the short-pulse and two-frequency measurement techniques

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1979-01-01

    Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.

  17. Para-hydrogen raser delivers sub-millihertz resolution in nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Suefke, Martin; Lehmkuhl, Sören; Liebisch, Alexander; Blümich, Bernhard; Appelt, Stephan

    2017-06-01

    The precision of nuclear magnetic resonance spectroscopy (NMR) is limited by the signal-to-noise ratio, the measurement time Tm and the linewidth Δν = 1/(πT2). Overcoming the T 2 limit is possible if the nuclear spins of a molecule emit continuous radio waves. Lasers and masers are self-organized systems which emit coherent radiation in the optical and micro-wave regime. Both are based on creating a population inversion of specific energy states. Here we show continuous oscillations of proton spins of organic molecules in the radiofrequency regime (raser). We achieve this by coupling a population inversion created through signal amplification by reversible exchange (SABRE) to a high-quality-factor resonator. For the case of 15N labelled molecules, we observe multi-mode raser activity, which reports different spin quantum states. The corresponding 1H-15N J-coupled NMR spectra exhibit unprecedented sub-millihertz resolution and can be explained assuming two-spin ordered quantum states. Our findings demonstrate a substantial improvement in the frequency resolution of NMR.

  18. Review of Microwave Photonics Technique to Generate the Microwave Signal by Using Photonics Technology

    NASA Astrophysics Data System (ADS)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash

    2017-12-01

    Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.

  19. Microwave Imaging with Infrared 2-D Lock-in Amplifier

    NASA Astrophysics Data System (ADS)

    Chiyo, Noritaka; Arai, Mizuki; Tanaka, Yasuhiro; Nishikata, Atsuhiro; Maeno, Takashi

    We have developed a 3-D electromagnetic field measurement system using 2-D lock-in amplifier. This system uses an amplitude modulated electromagnetic wave source to heat a resistive screen. A very small change of temperature on a screen illuminated with the modulated electromagnetic wave is measured using an infrared thermograph camera. In this paper, we attempted to apply our system to microwave imaging. By placing conductor patches in front of the resistive screen and illuminating with microwave, the shape of each conductor was clearly observed as the temperature difference image of the screen. In this way, the conductor pattern inside the non-contact type IC card could be visualized. Moreover, we could observe the temperature difference image reflecting the shape of a Konnyaku (a gelatinous food made from devil's-tonge starch) or a dried fishbone, both as non-conducting material resembling human body. These results proved that our method is applicable to microwave see-through imaging.

  20. Microwave Nondestructive Evaluation of Dielectric Materials with a Metamaterial Lens

    NASA Technical Reports Server (NTRS)

    Shreiber, Daniel; Gupta, Mool; Cravey, Robin L.

    2008-01-01

    A novel microwave Nondestructive Evaluation (NDE) sensor was developed in an attempt to increase the sensitivity of the microwave NDE method for detection of defects small relative to a wavelength. The sensor was designed on the basis of a negative index material (NIM) lens. Characterization of the lens was performed to determine its resonant frequency, index of refraction, focus spot size, and optimal focusing length (for proper sample location). A sub-wavelength spot size (3 dB) of 0.48 lambda was obtained. The proof of concept for the sensor was achieved when a fiberglass sample with a 3 mm diameter through hole (perpendicular to the propagation direction of the wave) was tested. The hole was successfully detected with an 8.2 cm wavelength electromagnetic wave. This method is able to detect a defect that is 0.037 lambda. This method has certain advantages over other far field and near field microwave NDE methods currently in use.

  1. Four cavity efficiency enhanced magnetically insulated line oscillator

    DOEpatents

    Lemke, Raymond W.; Clark, Miles C.; Calico, Steve E.

    1998-04-21

    A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity (C4) portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor.

  2. Four cavity efficiency enhanced magnetically insulated line oscillator

    DOEpatents

    Lemke, R.W.; Clark, M.C.; Calico, S.E.

    1998-04-21

    A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode is disclosed. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor. 34 figs.

  3. NOAA Interest in Small Satellite Solutions for Mitigation of Data Gaps

    NASA Astrophysics Data System (ADS)

    Caulfield, M.; Tewey, K.; John, P.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is undertaking a strategy to achieve satellite constellation robustness by 2023 to maintain continuity of polar satellite observations, which are central to NOAA's weather forecast capability. NOAA's plans include mitigation activities in the event of a loss of polar observations. In 2017, NOAA will begin development of the Earth Observing Nanosatellite - Microwave (EON-MW). EON-MW is a miniature microwave sounder that approximates the atmospheric profiling capabilities of the Advanced Technology Microwave Sounder (ATMS) instrument on the NOAA Joint Polar Satellite System (JPSS). NOAA is collaborating with the Massachusetts Institute of Technology's Lincoln Laboratory (MIT / LL) on EON-MW, which includes 2 years of risk reduction efforts to further define the EON-MW mission and identify and manage key technical risks. These studies will refine designs and evaluate system trades for operational earth observations from a U-class satellite platform, as well as examine microwave sensor concepts and investigated payload architecture to support microwave frequencies for atmospheric remote sensing. Similar to EON-MW, NOAA is also investigating the potential to mitigate against the loss of the JPSS Cross Track Infrared Sounder (CrIS) data with a CubeSat based mid-wave Infrared sounder. NOAA is collaborating with the Jet Propulsion Laboratory (JPL) to design the Earth Observation Nanosatellite-Infrared (EON-IR). EON-IR will leverage the NASA-JPL CubSat based infrared sounder CubSat Infrared Atmospheric Sounder (CIRAS) mission. In FY 2015 NOAA funded a study to analyze the feasibility of meeting the essential requirements of the CrIS from a CubeSat platform and began exploring the basic design of the EON-IR payload and bus. NOAA will continue to study EON-IR in 2016 by examining ways to modify the CIRAS design to better meet NOAA's observational and operational needs. These modifications will aim to increase mission reliability and increase spatial and spectral resolution.

  4. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOEpatents

    White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S

    2014-03-25

    A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.

  5. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave-particle interactions have the capacity to regulate the global structure and dominate the energy dissipation of collision-less shocks.

  6. Ocean wave-radar modulation transfer functions from the West Coast experiment

    NASA Technical Reports Server (NTRS)

    Wright, J. W.; Plant, W. J.; Keller, W. C.; Jones, W. L.

    1980-01-01

    Short gravity-capillary waves, the equilibrium, or the steady state excitations of the ocean surface are modulated by longer ocean waves. These short waves are the predominant microwave scatterers on the ocean surface under many viewing conditions so that the modulation is readily measured with CW Doppler radar used as a two-scale wave probe. Modulation transfer functions (the ratio of the cross spectrum of the line-of-sight orbital speed and backscattered microwave power to the autospectrum of the line-of-sight orbital speed) were measured at 9.375 and 1.5 GHz (Bragg wavelengths of 2.3 and 13 cm) for winds up to 10 m/s and ocean wave periods from 2-18 s. The measurements were compared with the relaxation-time model; the principal result is that a source of modulation other than straining by the horizontal component of orbital speed, possibly the wave-induced airflow, is responsible for most of the modulation by waves of typical ocean wave period (10 s). The modulations are large; for unit coherence, spectra of radar images of deep-water waves should be proportional to the quotient of the slope spectra of the ocean waves by the ocean wave frequency.

  7. Relativistic backward wave oscillator operating in TM02 with cutoff-type resonant reflector

    NASA Astrophysics Data System (ADS)

    Teng, Yan; Shi, Yanchao; Yang, Dewen; Cao, Yibing; Zhang, Zhijun

    2017-04-01

    This paper proposes an overmoded relativistic backward wave oscillator (RBWO) operating in the TM02 mode with the cutoff-type resonant reflector characterized by the advantages of the cutoff neck and the single resonant cavity. In order to protect the explosive emission of the annular cathode from the disturbance of the microwave leakage, the cutoff-type resonant reflector can effectively prevent the microwave consisting of several modes from propagating into the diode region. Attributed to the strong reflections caused by the cutoff-type resonant reflector at the front end of the overmoded slow-wave structure (SWS), the overmoded RBWO works in the state of the strong resonance, which enhances the beam-to-microwave power conversion efficiency. TM02 is selected as the operation mode so as to increase the power handling capability. The nonuniform SWS depresses the cross-excitation of the unwanted longitudinal modes of TM02 and improves the synchronous interaction between the electron beam and the structure wave. It is found that when we make the peak values of the longitudinal electric field and the modulated current appear nearly at the same position in the overmoded SWS by optimizing the electrodynamic structure, the conversion efficiency will be enhanced significantly. In the numerical simulation, the microwave generation with power 2.99 GW and efficiency 0.45 is obtained under the diode voltage 851 kV and current 7.8 kA with the guide magnetic field of 4.3 T. The microwave generation with the pure frequency spectrum of 10.083 GHz radiates in the TM01 mode. The conversion efficiency keeps above 0.40 over the diode voltage range of 220 kV.

  8. Generation of Shear Alfvén Waves by Repetitive High Power Microwave Pulses Near the Electron Plasma Frequency - A laboratory study of a ``Virtual Antenna''

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2015-11-01

    ELF / ULF waves are important in terrestrial radio communications but difficult to launch using ground-based structures due to their enormous wavelengths. In spite of this generation of such waves by field-aligned ionospheric heating modulation was first demonstrated using the HAARP facility. In the future heaters near the equator will be constructed and laboratory experiments on cross-field wave propagation could be key to the program's success. Here we report a detailed laboratory study conducted on the Large Plasma Device (LaPD) at UCLA. In this experiment, ten rapid pulses of high power microwaves (250 kW X-band) near the plasma frequency were launched transverse to the background field, and were modulated at a variable fraction (0.1-1.0) of fci. Along with bulk electron heating and density modification, the microwave pulses generated a population of fast electrons. The field-aligned current carried by the fast electrons acted as an antenna that radiated shear Alfvén waves. It was demonstrated that a controllable arbitrary frequency (f

  9. Ferrite film growth on semiconductor substrates towards microwave and millimeter wave integrated circuits

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Harris, V. G.

    2012-10-01

    It is widely recognized that as electronic systems' operating frequency shifts to microwave and millimeter wave bands, the integration of ferrite passive devices with semiconductor solid state active devices holds significant advantages in improved miniaturization, bandwidth, speed, power and production costs, among others. Traditionally, ferrites have been employed in discrete bulk form, despite attempts to integrate ferrite as films within microwave integrated circuits. Technical barriers remain centric to the incompatibility between ferrite and semiconductor materials and their processing protocols. In this review, we present past and present efforts at ferrite integration with semiconductor platforms with the aim to identify the most promising paths to realizing the complete integration of on-chip ferrite and semiconductor devices, assemblies and systems.

  10. Experimental continuous sludge microwave system to enhance dehydration ability and hydrogen production from anaerobic digestion of sludge.

    PubMed

    Zhou, Cuihong; Huang, Xintong; Zeng, Meng

    2018-05-01

    Dehydrating large amounts of sludge produced by sewage treatment plants is difficult. Microwave pretreatment can effectively and significantly improve the dewaterability and hydrogen production of sludge subjected to anaerobic digestion. The aim of this study was to investigate the effects of different microwave conditions on hydrogen production from anaerobic digestion and dewaterability of sludge. Based on an analysis of the electric field distribution, a spiral reactor was designed and a continuous microwave system was built to conduct intermittent and continuous experiments under different conditions. Settling Volume, Capillary Suction Time, particle size, and moisture content of the sludge were measured. The results show that sludge pretreatment in continuous experiments has equally remarkable dehydration performance as in intermittent experiments; the minimum moisture content was 77.29% in the intermittent experiment under a microwave power of 300W and an exposure time of 60sec, and that in the continuous experiment was 77.56% under a microwave power of 400W and an exposure time of 60sec. The peak measured by Differential Scanning Calorimeter appeared earliest under a microwave power of 600W and an exposure time of 180sec. The heat flux at the peak was 4.343W/g, which is relatively small. This indicates that microwave pretreatment induced desirable effects. The maximum yield of hydrogen production was 7.967% under the conditions of microwave power of 500W, exposure time of 120sec, and water bath at 55°C. This research provides a theoretical and experimental basis for the development of a continuous microwave sludge-conditioning system. Copyright © 2017. Published by Elsevier B.V.

  11. IMPROVED TUBULARS FOR BETTER ECONOMICS IN DEEP GAS WELL DRILLING USING MICROWAVE TECHNOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinesh Agrawal; Paul Gigl; Mahlon Dennis

    2005-03-01

    The main objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Originally, it was proposed to accomplish this by developing an efficient and economically viable continuous microwave process to sinter continuously formed/extruded steel powder for the manufacture of seamless coiled tubing and other tubular products. However, based on the results and faced with insurmountable difficulties in the extrusion and de-waxing processes,more » the approach of achieving the goals of the program has been slightly changed. In the continuation proposal an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) is adopted. This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. Originally, the entire program was spread over three phases with the following goals: Phase I: Demonstration of the feasibility concept of continuous microwave sintering process for tubular steel products. Phase II: Design, building and testing of a prototype microwave system which shall be combined with a continuous extruder for steel tubular objects. Phase III: Execution of the plan for commercialization of the technology by one of the industrial partners. However, since some of the goals of the phase I were not completed, an extension of nine months was granted and we continued extrusion experiments, designed and built semicontinuous microwave sintering unit.« less

  12. Stability of standing spin wave in permalloy thin film studied by anisotropic magnetoresistance effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanoi, K.; Yokotani, Y.; Cui, X.

    2015-12-21

    We have investigated the stability for the resonant spin precession under the strong microwave magnetic field by a specially developed detection method using the anisotropic magnetoresistance effect. The electrically separated excitation and detection circuits enable us to investigate the influence of the heating effect and the nonuniform spin dynamics independently. The large detecting current is found to induce the field shift of the resonant spectra because of the Joule heating. From the microwave power dependence, we found that the linear response regime for the standing spin wave is larger than that for the ferromagnetic resonance. This robust characteristic of themore » standing spin wave is an important advantage for the high power operation of the spin-wave device.« less

  13. High power water load for microwave and millimeter-wave radio frequency sources

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  14. Gigatron microwave amplifier

    DOEpatents

    McIntyre, P.M.

    1993-07-13

    An electron tube for achieving high power at high frequency with high efficiency is described, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot there through for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  15. Gigatron microwave amplifier

    DOEpatents

    McIntyre, Peter M.

    1993-01-01

    An electron tube for achieving high power at high frequency with high efficiency, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot therethrough for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  16. The gravitational wave contribution to cosmic microwave background anisotropies and the amplitude of mass fluctuations from COBE results

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Mollerach, Silvia

    1992-01-01

    A stochastic background of primordial gravitational waves may substantially contribute, via the Sachs-Wolfe effect, to the large-scale cosmic microwave background (CMB) anisotropies recently detected by COBE. This implies a bias in any resulting determination of the primordial amplitude of density fluctuations. We consider the constraints imposed on n is less than 1 ('tilted') power-law fluctuation spectra, taking into account the contribution from both scalar and tensor waves, as predicted by power-law inflation. The gravitational wave contribution to CMB anisotropies generally reduces the required rms level of mass fluctuation, thereby increasing the linear bias parameter, even in models where the spectral index is close to the Harrison-Zel'dovich value n = 1. This 'gravitational wave bias' helps to reconcile the predictions of CDM models with observations on pairwise galaxy velocity dispersion on small scales.

  17. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) using Synthetic Aperture Focusing Techniques (SAFT}

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkivskiy, S.; Hepburn, F.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia s catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch. These methods are capable of producing relatively high-resolution images of the interior of SOFI particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques (SAFT) are being developed. This paper presents some of the preliminary results of this investigation using SAFT-based methods and microwave holography at relatively low frequencies illustrating their potential capabilities for operation at millimeter wave frequencies.

  18. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black

    NASA Astrophysics Data System (ADS)

    Liu, Lidong; Duan, Yuping; Ma, Lixin; Liu, Shunhua; Yu, Zhen

    2010-11-01

    To prevent serious electromagnetic interference, a single-layer wave-absorbing coating employing complex absorbents composed of carbonyl-iron powder (CIP) and carbon black (CB) with epoxy resin as matrix was prepared. The morphologies of CIP and CB were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. The electromagnetic parameters of CIP and CB were measured in the frequency range of 2-18 GHz by transmission/reflection technology, and the electromagnetic loss mechanisms of the two particles were discussed, respectively. The microwave absorption properties of the coatings were investigated by measuring reflection loss (RL) using arch method. The effects of CIP ratio, CB content and thickness on the microwave absorption properties were discussed, respectively. The results showed that the higher thickness, CIP or CB content could make the absorption band shift towards the lower frequency range. Significantly, the wave-absorbing coating could be applied in different frequency ranges according to actual demand by controlling the content of CIP or CB in composites.

  19. Simulation of a gigawatt level Ku-band overmoded Cerenkov type oscillator operated at low guiding magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hua; Shu, Ting, E-mail: mrtingshu@qq.com; Ju, Jinchuan

    2014-03-15

    We present the simulation results of a Ku-band overmoded Cerenkov type high power microwave oscillator. A guiding magnetic field as low as 0.6 T has been operated in the device. Overmoded slow wave structures with gradually tapered vanes are used in order to increase power capacity and the efficiency of beam-wave interaction. The drift cavity is adopted to enhance the beam-wave interaction of the device. After numerical optimization, the designed generator with an output microwave power of 1.2 GW, a frequency of 13.8 GHz, and a power conversion efficiency as high as 38% can be achieved, when the diode voltage and currentmore » are, respectively, 540 kV and 5.8 kA. The power compositions of TM{sub 0n} modes of the output microwave have been analyzed, the results of which show that TM{sub 01} mode takes over almost 95% of the power proportion.« less

  20. Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De Lucia last year at the final meeting in Columbus - is what problems can we solve when real, fully capable spectrometers become essentially free to build?

  1. Tibet's window on primordial gravitational waves

    NASA Astrophysics Data System (ADS)

    Li, Hong; Li, Si-Yu; Liu, Yang; Li, Yong-Ping; Zhang, Xinmin

    2018-02-01

    The Ali Cosmic Microwave Background Polarization Telescope — currently under construction in the Ngari prefecture of Tibet — will search for primordial gravitational waves and probe the origin of the Universe.

  2. Upgrade to the control system of the reflectometry diagnostic of ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Graça, S.; Santos, J.; Manso, M. E.

    2004-10-01

    The broadband frequency modulation-continuous wave microwave/millimeter wave reflectometer of ASDEX upgrade tokamak (Institut für Plasma Physik (IPP), Garching, Germany) developed by Centro de Fusão Nuclear (Lisboa, Portugal) with the collaboration of IPP, is a complex system with 13 channels (O and X modes) and two types of operation modes (swept and fixed frequency). The control system that ensures remote operation of the diagnostic incorporates VME and CAMAC bus based acquisition/timing systems. Microprocessor input/output boards are used to control and monitor the microwave circuitry and associated electronic devices. The implementation of the control system is based on an object-oriented client/server model: a centralized server manages the hardware and receives input from remote clients. Communication is handled through transmission control protocol/internet protocol sockets. Here we describe recent upgrades of the control system aiming to: (i) accommodate new channels; (ii) adapt to the heterogeneity of computing platforms and operating systems; and (iii) overcome remote access restrictions. Platform and operating system independence was achieved by redesigning the graphical user interface in JAVA. As secure shell is the standard remote access protocol adopted in major fusion laboratories, secure shell tunneling was implemented to allow remote operation of the diagnostic through the existing firewalls.

  3. Mechanism of phase control in a klystron-like relativistic backward wave oscillator by an input signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Renzhen; Song, Zhimin; Deng, Yuqun

    Theoretical analyses and particle-in-cell (PIC) simulations are carried out to understand the mechanism of microwave phase control realized by the external RF signal in a klystron-like relativistic backward wave oscillator (RBWO). Theoretical calculations show that a modulated electron beam can lead the microwave field with an arbitrary initial phase to the same equilibrium phase, which is determined by the phase factor of the modulated current, and the difference between them is fixed. Furthermore, PIC simulations demonstrate that the phase of input signal has a close relation to that of modulated current, which initiates the phase of the irregularly microwave duringmore » the build-up of oscillation. Since the microwave field is weak during the early time of starting oscillation, it is easy to be induced, and a small input signal is sufficient to control the phase of output microwave. For the klystron-like RBWO with two pre-modulation cavities and a reentrant input cavity, an input signal with 100 kW power and 4.21 GHz frequency can control the phase of 5 GW output microwave with relative phase difference less than 6% when the diode voltage is 760 kV, and beam current is 9.8 kA, corresponding to a power ratio of output microwave to input signal of 47 dB.« less

  4. Microwave Triggered Laser Ionization of Air

    NASA Astrophysics Data System (ADS)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl

    2012-10-01

    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  5. Electromagnetic properties of polycrystalline diamond from 35 K to room temperature and microwave to terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Floch, Jean-Michel Le; Bara, Romain; Hartnett, John G.; Tobar, Michael E.; Mouneyrac, David; Passerieux, Damien; Cros, Dominique; Krupka, Jerzy; Goy, Philippe; Caroopen, Sylvain

    2011-05-01

    Dielectric resonators are key components for many microwave and millimeter wave applications, including high-Q filters and frequency-determining elements for precision frequency synthesis. These often depend on the quality of the dielectric material. The commonly used material for building the best cryogenic microwave oscillators is sapphire. However, sapphire is becoming a limiting factor for higher frequency designs. It is, then, important to find new candidates that can fulfill the requirements for millimeter wave low noise oscillators at room and cryogenic temperatures. These clocks are used as a reference in many fields, such as modern telecommunication systems, radio astronomy (very-long-baseline interferometry), and precision measurements at the quantum limit. High resolution measurements were taken of the temperature-dependence of the electromagnetic properties of a polycrystalline diamond disk at temperatures between 35 and 330 K at microwave to submillimeter wave frequencies. The cryogenic measurements were made using a TE01δ dielectric mode resonator placed inside a vacuum chamber connected to a single-stage pulse-tube cryocooler. The high frequency characterization was performed at room temperature using a combination of a quasi-optical two-lens transmission setup, a Fabry-Perot cavity, and a whispering gallery mode resonator excited with waveguides. Our CVD diamond sample exhibits a decreasing loss tangent with increasing frequencies. We compare the results with well known crystals. This comparison makes it clear that polycrystalline diamond could be an important material for generating stable frequencies at millimeter waves.

  6. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Scott, Faith J.; Saliba, Edward P.; Albert, Brice J.; Alaniva, Nicholas; Sesti, Erika L.; Gao, Chukun; Golota, Natalie C.; Choi, Eric J.; Jagtap, Anil P.; Wittmann, Johannes J.; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th. Sigurdsson, Snorri; Barnes, Alexander B.

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.

  7. Tunable short-wavelength spin wave excitation from pinned magnetic domain walls

    PubMed Central

    Van de Wiele, Ben; Hämäläinen, Sampo J.; Baláž, Pavel; Montoncello, Federico; van Dijken, Sebastiaan

    2016-01-01

    Miniaturization of magnonic devices for wave-like computing requires emission of short-wavelength spin waves, a key feature that cannot be achieved with microwave antennas. In this paper, we propose a tunable source of short-wavelength spin waves based on highly localized and strongly pinned magnetic domain walls in ferroelectric-ferromagnetic bilayers. When driven into oscillation by a microwave spin-polarized current, the magnetic domain walls emit spin waves with the same frequency as the excitation current. The amplitude of the emitted spin waves and the range of attainable excitation frequencies depend on the availability of domain wall resonance modes. In this respect, pinned domain walls in magnetic nanowires are particularly attractive. In this geometry, spin wave confinement perpendicular to the nanowire axis produces a multitude of domain wall resonances enabling efficient spin wave emission at frequencies up to 100 GHz and wavelengths down to 20 nm. At high frequency, the emission of spin waves in magnetic nanowires becomes monochromatic. Moreover, pinning of magnetic domain wall oscillators onto the same ferroelectric domain boundary in parallel nanowires guarantees good coherency between spin wave sources, which opens perspectives towards the realization of Mach-Zehnder type logic devices and sensors. PMID:26883893

  8. Microwave and continuous flow technologies in drug discovery.

    PubMed

    Sadler, Sara; Moeller, Alexander R; Jones, Graham B

    2012-12-01

    Microwave and continuous flow microreactors have become mainstream heating sources in contemporary pharmaceutical company laboratories. Such technologies will continue to benefit from design and engineering improvements, and now play a key role in the drug discovery process. The authors review the applications of flow- and microwave-mediated heating in library, combinatorial, solid-phase, metal-assisted, and protein chemistries. Additionally, the authors provide a description of the combination of microwave and continuous flow platforms, with applications in the preparation of radiopharmaceuticals and in drug candidate development. Literature reviewed is chiefly 2000 - 2012, plus key citations from earlier reports. With the advent of microwave irradiation, reactions that normally took days to complete can now be performed in a matter of minutes. Coupled with the introduction of continuous flow microreactors, pharmaceutical companies have an easy way to improve the greenness and efficiency of many synthetic operations. The combined force of these technologies offers the potential to revolutionize discovery and manufacturing processes.

  9. Circuit-based versus full-wave modelling of active microwave circuits

    NASA Astrophysics Data System (ADS)

    Bukvić, Branko; Ilić, Andjelija Ž.; Ilić, Milan M.

    2018-03-01

    Modern full-wave computational tools enable rigorous simulations of linear parts of complex microwave circuits within minutes, taking into account all physical electromagnetic (EM) phenomena. Non-linear components and other discrete elements of the hybrid microwave circuit are then easily added within the circuit simulator. This combined full-wave and circuit-based analysis is a must in the final stages of the circuit design, although initial designs and optimisations are still faster and more comfortably done completely in the circuit-based environment, which offers real-time solutions at the expense of accuracy. However, due to insufficient information and general lack of specific case studies, practitioners still struggle when choosing an appropriate analysis method, or a component model, because different choices lead to different solutions, often with uncertain accuracy and unexplained discrepancies arising between the simulations and measurements. We here design a reconfigurable power amplifier, as a case study, using both circuit-based solver and a full-wave EM solver. We compare numerical simulations with measurements on the manufactured prototypes, discussing the obtained differences, pointing out the importance of measured parameters de-embedding, appropriate modelling of discrete components and giving specific recipes for good modelling practices.

  10. From Radio to X-rays--Some 'Real' Electrical Applications.

    ERIC Educational Resources Information Center

    Freeman, J. C.

    1986-01-01

    Describes practical applications related to X-rays, ultra-violet radiation, light radiation, short-wave infra-red radiation, medium-wave infra-red radiation, long-wave infra-red radiation, microwave radiation, and radio frequency radiation. Suggests that these applications be used during instruction on electricity. (JN)

  11. Ultrabright continuously tunable terahertz-wave generation at room temperature

    PubMed Central

    Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki

    2014-01-01

    The hottest frequency region in terms of research currently lies in the ‘frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm2, brightness temperature of ~1018 K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~1016 K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region. PMID:24898269

  12. Ultrabright continuously tunable terahertz-wave generation at room temperature.

    PubMed

    Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki

    2014-06-05

    The hottest frequency region in terms of research currently lies in the 'frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm(2), brightness temperature of ~10(18) K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~10(16) K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region.

  13. High Frequency Magnetic Field Direction Finding Using MGL-S9A B-dot Sensors

    DTIC Science & Technology

    2013-03-21

    relationship for incident plane wave on a linear array . . . . . . . . . . . 26 3.1 B-dot sensor design in CST Microwave Studio...CST Microwave Studio with an infinite PEC ground plane. . . . . . . . . . . . . . . 50 4.2 Radiation pattern of a single B-dot sensor at 32 MHz...simulated in CST Microwave Studio with an infinite PEC ground plane. . . . . . . . . . . . . . . 50 4.3 Radiation efficiency of single loop versus B-dot

  14. An Experiment on Repetitive Pulse Operation of Microwave Rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Yasuhisa; Shibata, Teppei; Komurasaki, Kimiya

    2008-04-28

    Microwave Rocket was operated with repetitive pulses. The microwave rocket model with forced breathing system was used. The pressure history in the thruster was measured and the thrust impulse was deduced. As a result, the impulse decreased at second pulse and impulses at latter pulses were constant. The dependence of the thrust performance on the partial filling rate of the thruster was compared to the thrust generation model based on the shock wave driven by microwave plasma. The experimental results showed good agreement to the predicted dependency.

  15. High-Power Microwave Transmission and Mode Conversion Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design formore » high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.« less

  16. Multi-wavelength lenses for terahertz surface wave.

    PubMed

    Wei, Minggui; Yang, Quanlong; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2017-10-16

    Metasurface-based surface wave (SW) devices working at multi-wavelength has been continuously arousing enormous curiosity recently, especially in the terahertz community. In this work, we propose a multi-layer metasurface structure composed of metallic slit pairs to build terahertz SW devices. The slit pair has a narrow bandwidth and its response frequency can be altered by its geometric parameter, thereby suppressing the frequency crosstalk and reducing the difficulty of design. By elaborately tailoring the distribution of the slit pairs, a series of achromatic SW lenses (SWLs) working at 0.6, 0.75 and 1 THz are experimentally demonstrated by the near field scanning terahertz microscope (NSTM) system. In addition, a wavelength-division-multiplexer (WDM) is further designed and implemented, which is promising in building multiplexed devices for plasmonic circuits. The structure proposed here cannot only couple the terahertz wave from free space to SWs, but also control its propagation. Moreover, our findings demonstrate the great potential to design multi-wavelength plasmonic metasurface devices, which can be extended to microwave and visible frequencies as well.

  17. Pre-launch simulation experiment of microwave-ionosphere nonlinear interaction rocket experiment in the space plasma chamber

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Tsutsui, M.; Matsumoto, H.; Kimura, I.

    1980-09-01

    A pre-flight test experiment of a microwave-ionosphere nonlinear interaction rocket experiment (MINIX) has been carried out in a space plasma simulation chamber. Though the first rocket experiment ended up in failure because of a high voltage trouble, interesting results are observed in the pre-flight experiment. A significant microwave heating of plasma up to 300% temperature increase is observed. Strong excitations of plasma waves by the transmitted microwaves in the VLF and HF range are observed as well. These microwave effects may have to be taken into account in solar power satellite projects in the future.

  18. Microwave remote sensing: Active and passive. Volume 1 - Microwave remote sensing fundamentals and radiometry

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1981-01-01

    The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.

  19. Microwave processes in the SPD-ATON stationary plasma thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirdyashev, K. P., E-mail: kpk@ms.ire.rssi.ru

    2016-09-15

    Results of experimental studies of microwave processes accompanying plasma acceleration in the SPD-ATON stationary plasma thruster are presented. Specific features of the generation of microwave oscillations in both the acceleration channel and the plasma flow outgoing from the thruster are analyzed on the basis of local measurements of the spectra of the plasma wave fields. Mechanisms for generation of microwave oscillations are considered with allowance for the inhomogeneity of the electron density and magnetic field behind the edge of the acceleration channel. The effect of microwave oscillations on the electron transport and the formation of the discharge current in themore » acceleration channel is discussed.« less

  20. Status of experiments at LLNL on high-power X-band microwave generators

    NASA Astrophysics Data System (ADS)

    Houck, Timothy L.; Westenskow, Glen A.

    1994-05-01

    The Microwave Source Facility at the Lawrence Livermore National Laboratory (LLNL) is studying the application of induction accelerator technology to high-power microwave generators suitable for linear collider power sources. We report on the results of two experiments, both using the Choppertron's 11.4 GHz modulator and a 5-MeV, 1-kA induction beam. The first experimental configuration has a single traveling-wave output structure designed to produce in excess of 300 MW in a single fundamental waveguide. This output structure consists of 12 individual cells, the first two incorporating de-Q-ing circuits to dampen higher order resonant modes. The second experiment studies the feasibility of enhancing beam to microwave power conversion by accelerating a modulated beam with induction cells. Referred to as the `reacceleration experiment,' this experiment consists of three traveling-wave output structures designed to produce about 125 MW per output and two induction cells located between the outputs. Status of current and planned experiments are presented.

  1. High performance TWT development for the microwave power module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whaley, D.R.; Armstrong, C.M.; Groshart, G.

    1996-12-31

    Northrop Grumman`s ongoing development of microwave power modules (MPM) provides microwave power at various power levels, frequencies, and bandwidths for a variety of applications. Present day requirements for the vacuum power booster traveling wave tubes of the microwave power module are becoming increasingly more demanding, necessitating the need for further enhancement of tube performance. The MPM development program at Northrop Grumman is designed specifically to meet this need by construction and test of a series of new tubes aimed at verifying computation and reaching high efficiency design goals. Tubes under test incorporate several different helix designs, as well as varyingmore » electron gun and magnetic confinement configurations. Current efforts also include further development of state-of-the-art TWT modeling and computational methods at Northrop Grumman incorporating new, more accurate models into existing design tools and developing new tools to be used in all aspects of traveling wave tube design. Current status of the Northrop Grumman MPM TWT development program will be presented.« less

  2. K-Band Substrate Integrated Waveguide (SIW) Coupler

    NASA Astrophysics Data System (ADS)

    Khalid, N.; Ibrahim, S. Z.; Hoon, W. F.

    2018-03-01

    This paper presents a designed coupler by using substrate Roger RO4003. The four port network coupler operates at (18-26 GHz) and designed by using substrate integrated waveguide (SIW) method. Substrate Integrated Waveguide (SIW) are high performance broadband interconnects with excellent immunity to electromagnetic interference and suitable in microwave and millimetre-wave electronics applications, as well as wideband systems. The designs of the coupler are investigated using CST Microwave Studio simulation tool. These proposed couplers are capable of covering the frequency range and provide better performance of scattering parameter (S-parameter). This technology is successfully approached for millimetre-wave and microwave applications. Designs and results are presented and discussed in this paper. The overall simulated percentage bandwidth of the proposed coupler is covered from 18 to 26 GHz with percentage bandwidth of 36.36%.

  3. Microwave Heating of Metal Power Clusters

    NASA Astrophysics Data System (ADS)

    Rybakov, K. I.; Semenov, V. E.; Volkovskaya, I. I.

    2018-01-01

    The results of simulating the rapid microwave heating of spherical clusters of metal particles to the melting point are reported. In the simulation, the cluster is subjected to a plane electromagnetic wave. The cluster size is comparable to the wavelength; the perturbations of the field inside the cluster are accounted for within an effective medium approximation. It is shown that the time of heating in vacuum to the melting point does not exceed 1 s when the electric field strength in the incident wave is about 2 kV/cm at a frequency of 24 GHz or 5 kV/cm at a frequency of 2.45 GHz. The obtained results demonstrate feasibility of using rapid microwave heating for the spheroidization of metal particles with an objective to produce high-quality powders for additive manufacturing technologies.

  4. The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer

    NASA Technical Reports Server (NTRS)

    Jackson, Frederick C.

    1987-01-01

    The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.

  5. Excitation and tailoring of diffractive spin-wave beams in NiFe using nonuniform microwave antennas

    NASA Astrophysics Data System (ADS)

    Körner, H. S.; Stigloher, J.; Back, C. H.

    2017-09-01

    We experimentally demonstrate by time-resolved scanning magneto-optical Kerr microscopy the possibility to locally excite multiple spin-wave beams in the dipolar-dominated regime in metallic NiFe films. For this purpose we employ differently shaped nonuniform microwave antennas consisting of several coplanar waveguide sections different in size, thereby adapting an approach for the generation of spin-wave beams in the exchange-dominated regime suggested by Gruszecki et al. [Sci. Rep. 6, 22367 (2016), 10.1038/srep22367]. The occurring spin-wave beams are diffractive and we show that the width of the beam and its widening as it propagates can be tailored by the shape and the length of the nonuniformity. Moreover, the propagation direction of the diffractive beams can be manipulated by changing the bias field direction.

  6. Microwave interferometry technique for obtaining gas interface velocity measurements in an expansion tube facility

    NASA Technical Reports Server (NTRS)

    Laney, C. C., Jr.

    1974-01-01

    A microwave interferometer technique to determine the front interface velocity of a high enthalpy gas flow, is described. The system is designed to excite a standing wave in an expansion tube, and to measure the shift in this standing wave as it is moved by the test gas front. Data, in the form of a varying sinusoidal signal, is recorded on a high-speed drum camera-oscilloscope combination. Measurements of average and incremental velocities in excess of 6,000 meters per second were made.

  7. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes are developed that provide low-loss, hermetic enclosure for enhanced monolithic microwave and millimeter-wave integrated circuits. These package schemes are based on a fused quartz substrate material offering improved RF performance through 44 GHz. The small size and weight of the packages make them useful for a number of applications, including phased array antenna systems. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices.

  8. Particle energy distributions and metastable atoms in transient low pressure interpulse microwave plasma

    NASA Astrophysics Data System (ADS)

    Pandey, Shail; Nath Patel, Dudh; Ram Baitha, Anuj; Bhattacharjee, Sudeep

    2015-12-01

    The electron energies and its distribution function are measured in non-equilibrium transient pulsed microwave plasmas in the interpulse regime using a retarding field electron energy analyzer. The plasmas are driven to different initial conditions by varying the electromagnetic (EM) wave pulse duration, peak power, or the wave frequency. Two cases of wave excitation are investigated: (i) short-pulse (pulse duration, t w ~ 1 μs), high-power (~60 kW) waves of 9.45 GHz and (ii) medium-pulse (t w ~ 20 μs), and moderate power waves of ~3 kW at 2.45 GHz. It is found that high-power, short-duration pulses lead to a significantly different electron energy probability function (EEPF) in the interpulse phase—a Maxwellian with a bump on the tail, although the average energy per pulse (~60 mJ) is maintained the same in the two modes of wave excitation. Electrons with energies  >250 eV are found to exist in the discharge in the both cases. Another subset of experiments is performed to delineate the effect of the wave frequency and the peak power on EEPF. A traveling wave tube (TWT) amplifier based microwave source for generating pulsed plasma (t w  =  230 μs) in a wide frequency range (6-18 GHz) is employed for this purpose. Further experiments on measurements of metastable density using optical emission spectroscopy and ion energy analyzer have been carried out. By tailoring the EEPF of the transient plasma and metastable densities, new applications in plasma processing, chemistry and biology can be realized in the interpulse phase of the discharge.

  9. Imaging Gravity Waves in Lower Stratospheric AMSU-A Radiances. Part 1: Simple Forward Model

    DTIC Science & Technology

    2006-08-14

    brightening” of microwave radiances acquired from purely vertical background temperature profiles by cross- track scanners. Waves propagating along track...three-dimensional wave fields. For example, some limb sensors return high- resolution vertical temperature profiles with wave oscilla- tions...provide only ver- tical profiles of wave oscillations, similar to radiosonde and rocketsonde data. Similarly, limb-tracking measurements from the

  10. The Atacama B-mode Search: Status and Prospect

    NASA Astrophysics Data System (ADS)

    Kusaka, Akito

    2013-04-01

    The Atacama B-mode Search (ABS) experiment is a 145 GHz polarimeter designed to measure the B-mode polarization of the Cosmic Microwave Background (CMB) at degre angular scales. In January 2012, ABS has deployed 240 polarimeters employing transition-edge sensor (TES) bolometers. ABS has unique advantages for the measurement of B modes. This includes a continuously rotating half-wave plate that provides fast and clean modulation, as well as systematically clean optics that consist of a cryogenic side-fed Dragone telescope and feedhorn coupled TES polarimeters. In this talk, we will present the status and prospect of ABS.

  11. Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam; Kim, Seung-Jun; Mohammed-Tano, Priscilla

    2017-01-01

    Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interferece-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.

  12. Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam J.; Kim, Seung-Jun; Mohammed, Priscilla N.

    2017-01-01

    Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interference-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.

  13. Effects of soil and canopy characteristics on microwave backscattering of vegetation

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Ranson, K. J.

    1991-01-01

    A frequency modulated continuous wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck and backscatter coefficients of corn were acquired as functions of polarizations, view angles, and row directions. As phytomass and green leaf area index increased, the backscatter also increased. Near anthesis when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level. C-band backscatter data could provide information to monitor vegetation at large view zenith angles.

  14. The Correlation Radiometer - A New Application in MM-Wave Total Power Radiometry

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Tanner, Alan; Kangaslahti, Pekka; Lim, Boon

    2013-01-01

    We describe the design and performance of a 180 GHz correlation radiometer suitable for remote sensing. The radiometer provides continuous comparisons between a the observed signal and a reference load to provide stable radiometric baselines. The radiometer was assembled and tested using parts from the GeoSTAR-II instrument and is fully compatible with operation in a synthetic aperture radiometer or as a standalone technology for use in microwave sounding and imaging. This new radiometer was tested over several days easily demonstrating the required 6 hour stability requirement for observations of mean brightness temperature for a geostationary instrument.

  15. Waves in Nature, Lasers to Tsumanis and Beyond

    ScienceCinema

    LLNL - University of California Television

    2017-12-09

    Waves are everywhere. Microwaves, laser beams, music, tsunamis. Electromagnetic waves emanating from the Big Bang fill the universe. Learn about the similarities and difference in all of these wavy phenomena with Ed Moses and Rick Sawicki, Lawrence Livermore National Laboratory scientists Series: Science on Saturday [10/2006] [Science] [Show ID: 11541

  16. Waves in Nature, Lasers to Tsumanis and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LLNL - University of California Television

    2008-05-01

    Waves are everywhere. Microwaves, laser beams, music, tsunamis. Electromagnetic waves emanating from the Big Bang fill the universe. Learn about the similarities and difference in all of these wavy phenomena with Ed Moses and Rick Sawicki, Lawrence Livermore National Laboratory scientists Series: Science on Saturday [10/2006] [Science] [Show ID: 11541

  17. Generation of powerful microwave pulses by channel power summation of two X-band phase-locked relativistic backward wave oscillators

    NASA Astrophysics Data System (ADS)

    Xiao, Renzhen; Deng, Yuqun; Chen, Changhua; Shi, Yanchao; Sun, Jun

    2018-03-01

    We demonstrate both theoretically and experimentally the possibility of the generation of powerful microwave pulses by channel power summation of two X-band phase-locked relativistic backward wave oscillators (RBWOs). A modulated electron beam induced by an external signal can lead the microwave field with an arbitrary initial phase to the same equilibrium phase, which is determined by the initial phase of the external signal. A high-current dual-beam accelerator was built to drive the two RBWOs. An external signal was divided into two channels with an adjusted relative phase and injected into the two RBWOs through two TE10-TEM mode converters. The generated microwaves were combined with a power combiner consisting of two TM01-TE11 serpentine mode converters with a common output. In the experiments, as the input power for each channel was 150 kW, the two RBWOs output 3.1 GW and 3.7 GW, respectively, the jitter of the relative phase of two output microwaves was about 20°, and the summation power from the power combiner is 6.2 GW, corresponding to a combination efficiency of 91%.

  18. Quantum non-demolition detection of an itinerant microwave photon

    NASA Astrophysics Data System (ADS)

    Kono, S.; Koshino, K.; Tabuchi, Y.; Noguchi, A.; Nakamura, Y.

    2018-06-01

    Photon detectors are an elementary tool to measure electromagnetic waves at the quantum limit1,2 and are heavily demanded in the emerging quantum technologies such as communication3, sensing4 and computing5. Of particular interest is a quantum non-demolition (QND)-type detector, which projects an electromagnetic wave onto the photon-number basis6-10. This is in stark contrast to conventional photon detectors2 that absorb a photon to trigger a `click'. The long-sought QND detection of a flying photon was recently demonstrated in the optical domain using a single atom in a cavity11,12. However, the counterpart for microwaves has been elusive despite the recent progress in microwave quantum optics using superconducting circuits13-19. Here, we implement a deterministic entangling gate between a superconducting qubit and an itinerant microwave photon reflected by a cavity containing the qubit. Using the entanglement and the high-fidelity qubit readout, we demonstrate a QND detection of a single photon with the quantum efficiency of 0.84 and the photon survival probability of 0.87. Our scheme can serve as a building block for quantum networks connecting distant qubit modules as well as a microwave-photon-counting device for multiple-photon signals.

  19. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.

    PubMed

    Wen, Liewei; Ding, Wenzheng; Yang, Sihua; Xing, Da

    2016-01-01

    The ultra-short pulse microwave could excite to the strong thermoacoustic (TA) shock wave and deeply penetrate in the biological tissues. Based on this, we developed a novel deep-seated tumor therapy modality with mitochondria-targeting single wall carbon nanotubes (SWNTs) as microwave absorbing agents, which act efficiently to convert ultra-short microwave energy into TA shock wave and selectively destroy the targeted mitochondria, thereby inducing apoptosis in cancer cells. After the treatment of SWNTs (40 μg/mL) and ultra-short microwave (40 Hz, 1 min), 77.5% of cancer cells were killed and the vast majority were caused by apoptosis that initiates from mitochondrial damage. The orthotopic liver cancer mice were established as deep-seated tumor model to investigate the anti-tumor effect of mitochondria-targeting TA therapy. The results suggested that TA therapy could effectively inhibit the tumor growth without any observable side effects, while it was difficult to achieve with photothermal or photoacoustic therapy. These discoveries implied the potential application of TA therapy in deep-seated tumor models and should be further tested for development into a promising therapeutic modality for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Variable frequency microwave furnace system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal inputmore » to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.« less

  1. Variable frequency microwave furnace system

    DOEpatents

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  2. Novel Low-Cost, Low-Power Miniature Thermionic Cathode Developed for Microwave/Millimeter Wave Tube and Cathode Ray Tube Applications

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.

    1999-01-01

    A low cost, small size and mass, low heater power, durable high-performance barium dispenser thermionic cathode has been developed that offers significant advancements in the design, manufacture, and performance of the electron sources used in vacuum electronic devices--such as microwave (and millimeter wave) traveling-wave tubes (TWT's)--and in display devices such as high-brightness, high-resolution cathode ray tubes (CRT's). The lower cathode heater power and the reduced size and mass of the new cathode are expected to be especially beneficial in TWT's for deep space communications, where future missions are requiring smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. Also expected to benefit are TWT's for commercial and government communication satellites, for both low and geosynchronous Earth orbit, with additional benefits offered by lower cost and potentially higher cathode current loading. A particularly important TWT application is in the microwave power module (MPM), which is a hybrid microwave (or millimeter wave) amplifier consisting of a low-noise solid state driver, a vacuum power booster (small TWT), and an electronic power conditioner integrated into a single compact package. The attributes of compactness and potentially high electrical efficiency make the MPM very attractive for many commercial and government (civilian and defense) applications in communication and radar systems. The MPM is already finding application in defense electronic systems and is under development by NASA for deep space communications. However, for the MPM to become competitive and commercially successful, a major reduction in cost must be achieved.

  3. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  4. 47 CFR 101.141 - Microwave modulation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Microwave modulation. 101.141 Section 101.141 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.141 Microwave modulation. (a) Microwave transmitters employing digital...

  5. 47 CFR 101.141 - Microwave modulation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Microwave modulation. 101.141 Section 101.141 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.141 Microwave modulation. (a) Microwave transmitters employing digital...

  6. Mapping of spin wave propagation in a one-dimensional magnonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordóñez-Romero, César L., E-mail: cloro@fisica.unam.mx; Lazcano-Ortiz, Zorayda; Aguilar-Huerta, Melisa

    2016-07-28

    The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show thatmore » the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch′s theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.« less

  7. A Model Simulation of Mountain Waves in the Middle Atmosphere and Its Comparison with Microwave Limb Sounder Observations

    NASA Astrophysics Data System (ADS)

    Jiang, J. H.; Eckermann, S. D.; Wu, D. L.; Ma, J.; Wang, D. Y.

    2003-04-01

    Topography-related wintertime stratospheric gravity waves in both Northern and Southern Hemisphere are simulated using the Naval Research Laboratory Mountain Wave Forecast Model (MWFM). The results agree well with the observations from Upper Atmospheric Research Satellite Microwave Limb Sounder (MLS). Both the MWFM simulation and MLS observations found strong wave activities over the high-latitude mountain ridges of Scandinavia, Central Eurasia, Alaska, southern Greenland in Northern Hemisphere, and Andes, New Zealand, Antarctic rim in Southern Hemisphere. These mountain waves are dominated by wave modes with downward phase progression and horizontal phase velocities opposite to the stratospheric jet-stream. Agreements of minor wave activities are also found at low- to mid-latitudes over Zagros Mountains of Middle East, Colorado Rocky Mountains, Appalachians, and Sierra Madres of Central America. Some differences between the MWFM results and MLS data are explained by different horizontal resolution between the model and observation, and the fact that MLS may also see the non-orographic wave sources, such as mesoscale storms and jet-stream instabilities. The findings from this model-measurement comparison study demonstrate that satellite instruments such as MLS can provide global data needed to characterize mountain wave sources, their inter-annual variations, and to improve gravity wave parameterizations in global climate and forecast models.

  8. PASOTRON high-energy microwave source

    NASA Astrophysics Data System (ADS)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  9. Coherent Microwave-to-Optical Conversion via Six-Wave Mixing in Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui

    2018-03-01

    We present an experimental demonstration of converting a microwave field to an optical field via frequency mixing in a cloud of cold 87Rb atoms, where the microwave field strongly couples to an electric dipole transition between Rydberg states. We show that the conversion allows the phase information of the microwave field to be coherently transferred to the optical field. With the current energy level scheme and experimental geometry, we achieve a photon-conversion efficiency of ˜0.3 % at low microwave intensities and a broad conversion bandwidth of more than 4 MHz. Theoretical simulations agree well with the experimental data, and they indicate that near-unit efficiency is possible in future experiments.

  10. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo

    2016-06-01

    We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

  11. Omnidirectional spin-wave nanograting coupler

    PubMed Central

    Yu, Haiming; Duerr, G.; Huber, R.; Bahr, M.; Schwarze, T.; Brandl, F.; Grundler, D.

    2013-01-01

    Magnonics as an emerging nanotechnology offers functionalities beyond current semiconductor technology. Spin waves used in cellular nonlinear networks are expected to speed up technologically, demanding tasks such as image processing and speech recognition at low power consumption. However, efficient coupling to microelectronics poses a vital challenge. Previously developed techniques for spin-wave excitation (for example, by using parametric pumping in a cavity) may not allow for the relevant downscaling or provide only individual point-like sources. Here we demonstrate that a grating coupler of periodically nanostructured magnets provokes multidirectional emission of short-wavelength spin waves with giantly enhanced amplitude compared with a bare microwave antenna. Exploring the dependence on ferromagnetic materials, lattice constants and the applied magnetic field, we find the magnonic grating coupler to be more versatile compared with gratings in photonics and plasmonics. Our results allow one to convert, in particular, straight microwave antennas into omnidirectional emitters for short-wavelength spin waves, which are key to cellular nonlinear networks and integrated magnonics. PMID:24189978

  12. A Wave Chaotic Study of Quantum Graphs with Microwave Networks

    NASA Astrophysics Data System (ADS)

    Fu, Ziyuan

    Quantum graphs provide a setting to test the hypothesis that all ray-chaotic systems show universal wave chaotic properties. I study the quantum graphs with a wave chaotic approach. Here, an experimental setup consisting of a microwave coaxial cable network is used to simulate quantum graphs. Some basic features and the distributions of impedance statistics are analyzed from experimental data on an ensemble of tetrahedral networks. The random coupling model (RCM) is applied in an attempt to uncover the universal statistical properties of the system. Deviations from RCM predictions have been observed in that the statistics of diagonal and off-diagonal impedance elements are different. Waves trapped due to multiple reflections on bonds between nodes in the graph most likely cause the deviations from universal behavior in the finite-size realization of a quantum graph. In addition, I have done some investigations on the Random Coupling Model, which are useful for further research.

  13. Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Jones, W. L.; Weissman, D. E.

    1981-01-01

    A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.

  14. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique

    NASA Astrophysics Data System (ADS)

    Rakvin, B.; Carić, D.; Kveder, M.

    2018-02-01

    The microwave magnetic field strength, B1, in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ωrf, which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B1, decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed.

  15. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique.

    PubMed

    Rakvin, B; Carić, D; Kveder, M

    2018-02-01

    The microwave magnetic field strength, B 1 , in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ω rf , which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B 1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B 1 , decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling.

    PubMed

    Sun, Dali; van Schooten, Kipp J; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z

    2016-08-01

    Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule's surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.

  17. Ultra-Wideband Radar Measurements of Thickness of Snow Over Sea Ice

    NASA Technical Reports Server (NTRS)

    Kanagaratnam, P.; Markus, T.; Lytle, V.; Heavey, B.; Jansen, P.; Prescott, G.; Gogineni, S.

    2007-01-01

    An accurate knowledge of snow thickness and its variability over sea ice is crucial for determining the overall polar heat and freshwater budget, which influences the global climate. Recently, algorithms have been developed to extract snow thicknesses from passive microwave satellite data. However, validation of these data over the large footprint of the passive microwave sensor has been a challenge. The only method used thus far has been with meter sticks during ship cruises. To address this problem, we developed an ultra wideband frequency-modulated continuous-wave (FM-CW) radar to measure snow thickness over sea ice. We made snow-thickness measurements over Antarctic sea ice by operating the radar from a sled during September and October, 2003. We performed radar measurements over 11 stations with varying snow thickness between 4 and 85 cm. We observed excellent agreement between radar estimates of snow thickness with physical measurements, achieving a correlation coefficient of 0.95 and a vertical resolution of about 3 cm.

  18. Terahertz imaging using photomixers based on quantum well photodetectors

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Li, H.; Wan, W. J.; Fu, Z. L.; Cao, J. C.

    2017-10-01

    Due to the fast intersubband transitions, the terahertz (THz) quantum well photodetector (QWP) is supposed to work fast. Recently it has been demonstrated that the THz QWP can detect the THz light modulated at 6.2 GHz and therefore it can be used as a photomixer [H. Li et al., Sci. Rep. 7, 3452 (2017)]. In this work, the authors report a novel active THz imaging using THz QWP photomixers. The THz radiation source used for this imaging application is a multi-mode THz quantum cascade laser (QCL) operating in continuous wave mode. When the fast THz QWP is illuminated by the multi-mode THz radiation, the intermediate frequency signal that is resulted from the frequency beating between the neighbouring THz modes of the QCL can be extracted from the QWP mesa for imaging applications. Employing the technique, the frequency can be down-converted from the THz range to the microwave regime. And therefore, the signal can then be amplified, filtered, and detected using the mature microwave technology.

  19. Overview of the NASA SETI Program

    NASA Technical Reports Server (NTRS)

    Oliver, B. M.

    1986-01-01

    The NASA Search of Extraterrestrial Intelligence (SETI) program plan is to scan the microwave window from 1 to 10 GHz with existing radio telescopes and sophisticated signal processing equipment looking for narrow band features that might represent artificial signals. A microwave spectrometer was built and is being field tested. A pattern recognition computer to search for drifting continuous wave signals and pulse trains in the output spectra is being designed. Equipment to characterize the radio frequency interference environment was also built. The plan is to complete the hardware and software by FY-88. Then, with increased funding, this equipment will be replicated in Very Large Scale Integration form. Observations, both a complete sky survey and a search fo nearby solar type stars, will begin in about 1990. The hypothesis that very powerful signals exist or that signals are being beamed at us will be tested. To detect the kinds of signals radiated at distances of 100 light years will require a collecting area kilometers in diameter.

  20. Towards the Detection of Explosive Taggants: Microwave and Millimetre-Wave Gas-Phase Spectroscopies of 3-Nitrotoluene.

    PubMed

    Roucou, Anthony; Kleiner, Isabelle; Goubet, Manuel; Bteich, Sabath; Mouret, Gael; Bocquet, Robin; Hindle, Francis; Meerts, W Leo; Cuisset, Arnaud

    2018-05-07

    The monitoring of gas-phase mononitrotoluenes is crucial for defence, civil security and environmental interests because they are used as taggant for TNT detection and in the manufacturing of industrial compounds such as dyestuffs. In this study, we have succeeded to measure and analyse at high-resolution a room temperature rotationally resolved millimetre-wave spectrum of meta-nitrotoluene (3-NT). Experimental and theoretical difficulties have been overcome, in particular, those related to the low vapour pressure of 3-NT and to the presence of a CH 3 internal rotation in an almost free rotation regime (V 3 =6.7659(24) cm -1 ). Rotational spectra have been recorded in the microwave and millimetre-wave ranges using a supersonic jet Fourier Transform microwave spectrometer (T rot <10 K) and a millimetre-wave frequency multiplication chain (T=293 K), respectively. Spectral analysis of pure rotation lines in the vibrational ground state and in the first torsional excited state supported by quantum chemistry calculations permits the rotational energy of the molecule, the hyperfine structure due to the 14 N nucleus, and the internal rotation of the methyl group to be characterised. A line list is provided for future in situ detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Millimeter radiometer system technology

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Swanson, P. N.

    1989-01-01

    JPL has had a large amount of experience with spaceborne microwave/millimeter wave radiometers for remote sensing. All of the instruments use filled aperture antenna systems from 5 cm diameter for the microwave Sounder Units (MSU), 16 m for the microwave limb sounder (MLS) to 20 m for the large deployable reflector (LDR). The advantages of filled aperture antenna systems are presented. The requirements of the 10 m Geoplat antenna system, 10 m multified antenna, and the MLS are briefly discussed.

  2. Millimeter radiometer system technology

    NASA Astrophysics Data System (ADS)

    Wilson, W. J.; Swanson, P. N.

    1989-07-01

    JPL has had a large amount of experience with spaceborne microwave/millimeter wave radiometers for remote sensing. All of the instruments use filled aperture antenna systems from 5 cm diameter for the microwave Sounder Units (MSU), 16 m for the microwave limb sounder (MLS) to 20 m for the large deployable reflector (LDR). The advantages of filled aperture antenna systems are presented. The requirements of the 10 m Geoplat antenna system, 10 m multified antenna, and the MLS are briefly discussed.

  3. Newly assigned microwave transitions and a global analysis of the combined microwave/millimeter wave rotational spectra of 9-fluorenone and benzophenone

    NASA Astrophysics Data System (ADS)

    West, Channing; Sedo, Galen; van Wijngaarden, Jennifer

    2017-05-01

    Microwave spectra of 9-fluorenone and benzophenone have been observed using a broadband chirped-pulse Fourier Transform Microwave (cp-FTMW) Spectrometer. An analysis of the microwave spectra allowed for the assignment of 178 b-type rotational transitions for 9-fluorenone in the 8.0-13.0 GHz region, the assignment of 166 b-type transitions for benzophenone in the 8.0-14.0 GHz region, and effectively quadrupled the total number of pure rotational transitions observed for these molecules. This new microwave data and the previously published millimeter wave data of Maris et al. have been analyzed together in a global fit, where the resulting rotational constants accurately reproduce the spectra over the entire 8-80 GHz region for both molecules. In addition, the resulting constants have been found to be consistent with the expected planar C2v structure for 9-fluorenone and the paddle-wheel like C2 structure of benzophenone. The rotational constants of the combined global fit have allowed for a more precise determination of the inertial defects (Δ) and second moments of inertia (Pcc) for 9-fluoreneone and benzophenone. Specific focus has been paid to the second moment of benzophenone, which when used in conjunction with theory strongly suggests an ∼32.9° torsional angle out of the ab-plane for the paddle-wheel structure of the gas-phase molecule.

  4. Optimization of continuous and intermittent microwave extraction of pectin from banana peels.

    PubMed

    Swamy, Gabriela John; Muthukumarappan, Kasiviswanathan

    2017-04-01

    Continuous and intermittent microwave-assisted extractions were used to extract pectin from banana peels. Extraction parameters which were employed in the continuous process were microwave power (300-900W), time (100-300s), pH (1-3) and in the intermittent process were microwave power (300-900W), pulse ratio (0.5-1), pH (1-3). The independent factors were optimized with the Box-Behnken response surface design (BBD) (three factor three level) with the desirability function methodology. Results indicate that the independent factors have substantial effect on the pectin yield. Optimized solutions for highest pectin yield (2.18%) from banana peels were obtained with microwave power of 900W, time 100s and pH 3.00 in the continuous method while the intermittent process yielded the highest pectin content (2.58%) at microwave power of 900W, pulse ratio of 0.5 and pH of 3.00. The optimized conditions were validated and close agreement was observed with the validation experiment and predicted value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Microwave and Millimeter Wave Imaging Using Synthetic Aperture Focusing and Holographical Techniques

    NASA Technical Reports Server (NTRS)

    Case, Joseph Tobias

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods have shown great potential for determining material composition in composite structures, determining material thickness or debond thickness between two layers, and determining the location and size of flaws, defects, and anomalies. The same testing methods have also shown great potential to produce relatively high-resolution images of voids inside Spray On Foam Insulation (SOFI) test panels using real focused methods employing lens antennas. An alternative to real focusing methods are synthetic focusing methods. The essence of synthetic focusing is to match the phase of the scattered signal to measured points spaced regularly on a plane. Many variations of synthetic focusing methods have already been developed for radars, ultrasonic testing applications, and microwave concealed weapon detection. Two synthetic focusing methods were investigated; namely, a) frequency-domain synthetic aperture focusing technique (FDSAFT), and b) wide-band microwave holography. These methods were applied towards materials whose defects were of low dielectric contrast like air void in SOFI. It is important to note that this investigation used relatively low frequencies from 8.2 GHz to 26.5 GHz that are not conducive for direct imaging of the SOFI. The ultimate goal of this work has been to demonstrate the capability of these methods before they are applied to much higher frequencies such as the millimeter wave frequency spectrum (e.g., 30-300 GHz).

  6. Computer simulation of electron flow in linear-beam microwave tubes

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit

    1990-12-01

    The computer simulation of electron flow in linear-beam microwave tubes, such as a travelling-wave tube (TWT) and klystron, is used for designing and optimising the electron gun and collector and for analysing the large-signal beam-wave interaction phenomenon. Major aspects of simulation of electron flow in static and rf fields present in such tubes are discussed. Some advancements made in this respect and results obtained from computer programs developed by the research group at CEERI for a gridded electron gun, depressed collector, and large-signal analysis of TWT and klystron are presented.

  7. Anomalous cosmic-microwave-background polarization and gravitational chirality.

    PubMed

    Contaldi, Carlo R; Magueijo, João; Smolin, Lee

    2008-10-03

    We consider the possibility that gravity breaks parity, with left and right-handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous cosmic microwave background polarization. Nonvanishing temperature-magnetic (TB) mode [and electric-magnetic mode] components emerge, revealing interesting experimental targets. Indeed, if reasonable chirality is present a TB measurement would provide the easiest way to detect a gravitational wave background. We speculate on the theoretical implications of such an observation.

  8. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  9. Experimental evidence on microwave induced electron losses from ECRIS plasma

    NASA Astrophysics Data System (ADS)

    Sakildien, M.; Tarvainen, O.; Kronholm, R.; Izotov, I.; Skalyga, V.; Kalvas, T.; Jones, P.; Koivisto, H.

    2018-06-01

    The balance between warm and hot (>1 keV) electron density and their losses from the magnetic confinement system of an Electron Cyclotron Resonance Ion Source (ECRIS) plasma is considered to be one of the main factors determining the rate of the high charge state ion production. One of the key loss channels for heated electrons is thought to be induced by the injected microwaves. While this loss mechanism, referred to as rf-induced pitch angle scattering, has been studied theoretically and with computational tools, direct experimental evidence of its significance in minimum-B ECRIS plasmas remains limited. In this work, experimental evidence of microwave induced electron losses in the axial direction is presented in both continuous wave (CW) and pulsed operation of a 14 GHz ECRIS. In the CW mode, the experiment was carried out by comparing the characteristic X-ray emission from the plasma volume and from the surface of the biased disc located in the flux of the escaping electron at the axial magnetic mirror. Parametric sweeps of magnetic field, neutral gas pressure, and microwave power were conducted to determine their effect on electron losses. In the pulsed mode, the experiment was conducted by measuring the flux of escaping electrons through aluminum foils of different thicknesses providing some energy resolution. Both diagnostics support the view that rf-induced losses account for up to 70% of total hot electron losses and their importance depends on the source parameters, especially power and neutral gas pressure.

  10. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization.

    PubMed

    Scott, Faith J; Saliba, Edward P; Albert, Brice J; Alaniva, Nicholas; Sesti, Erika L; Gao, Chukun; Golota, Natalie C; Choi, Eric J; Jagtap, Anil P; Wittmann, Johannes J; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th Sigurdsson, Snorri; Barnes, Alexander B

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources. Copyright © 2018. Published by Elsevier Inc.

  11. The dissipation of electromagnetic waves in plasmas

    NASA Astrophysics Data System (ADS)

    Basov, N. G.

    The present anthology includes articles concerning the experimental study of the interaction of high power electromagnetic waves with collisionless plasmas and with electrons. Among the topics covered are the nonlinear dissipation of electromagnetic waves in inhomogeneous collisionless plasmas, the collisionless absorption of electromagnetic waves in plasmas and 'slow' nonlinear phenomena, the nonlinear effects of electron plasma waves propagating in an inhomogeneous plasma layer, and secondary-emission microwave discharges having large electron transit angles.

  12. Microwave mediated synthesis of ZnS spherical nanoparticles for IR optical ceramics

    NASA Astrophysics Data System (ADS)

    Ravichandran, D.; Wharton, T.; Devan, B.; Korenstein, R.; Tustison, R.; Komarneni, S.

    2011-06-01

    The existing material choice for long-wave infrared (LWIR) and semi-active laser domes is multispectral zinc sulfide (ZnS), made by chemical vapor deposition. An alternative route to make more erosion-resistant ZnS could be through hot pressing ZnS nanoparticles into small-grain material. We have attempted to produce ZnS nanoparticles both by microwave and microwave-hydrothermal methods. Microwave route produced ultrahigh purity, homogeneous, well dispersed, and uniformly spherical ZnS nanoparticles. Microwave-hydrothermal route produced equiaxed cubic-faceted nanoparticles. The powder X-ray diffraction patterns of ZnS shows the presence of broad reflections corresponding to the (1 1 1), (2 2 0), and (3 1 1) planes of the cubic crystalline ZnS material. The domain size of the particles estimated from the Debye-Scherrer formula for the main reflection (111) gives a value of 2.9 and 2.5 for the microwave and microwave-hydrothermal methods respectively.

  13. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator.

    PubMed

    Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J

    2005-01-01

    We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.

  14. Air Force Science and Technology Plan

    DTIC Science & Technology

    2011-01-01

    charged particles and guide high- power microwaves and radiofrequency waves in the air • Bioenergy – developing renewable biosolar hydrogen...Aeronautical sciences, control sciences, structures and integration Directed Energy High- power microwaves , lasers, beam control, space situational...Propulsion Turbine and rocket engines, advanced propulsion systems , system -level thermal management, and propulsion fuels and propellants Sensors Air

  15. Frequency scaling with miniature COmpact MIcrowave and Coaxial ion sources

    NASA Astrophysics Data System (ADS)

    Sortais, Pascal; André, Thomas; Angot, Julien; Bouat, Sophie; Jacob, Josua; Lamy, Thierry; Sole, Patrick

    2014-02-01

    We will present recent basic developments about possible extension of the COMIC (for COmpact MIcrowave and Coaxial) devices up to 5.8 GHz in place of the present 2.45 GHz operation [P. Sortais, T. Lamy, J. Médard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B314 (2010)]. New applications associating multiple COMIC devices for thin film deposition will be described and we will explain why an increase of the current density delivered by each individual ion source could lead to the increase of the deposition rate. For this purpose, we will present results of about two devices working at 5.8 GHz. The first one is a tiny ion source, the world smallest microwave ion source, exactly similar to COMIC but operating at 5.8 GHz with a quarter wave cavity structure and a few watts microwave power consumption. We will show that the frequency scaling effect is effective inside such small machines. The second one is a more ambitious ion source designed around a three quarter wave structure that works with a few tens of watts at 5.8 GHz.

  16. [Research progress of Terahertz wave technology in quality measurement of food and agricultural products].

    PubMed

    Yan, Zhan-Ke; Zhang, Hong-Jian; Ying, Yi-Bin

    2007-11-01

    The quality concern of food and agricultural products has become more and more significant. The related technologies for nondestructive measurement or quality control of food products have been the focus of many researches. Terahertz (THz) radiation, or THz wave, the least explored region of the spectrum, is the electromagnetic wave that lies between mid-infrared and microwave radiation, which has very important research and application values. THz spectroscopy and THz imaging technique are the two main applications of THz wave. During the past decade, THz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials. Recently, THz technology has gained a lot of attention of researchers in various fields from biological spectral analysis to bio-medical imaging due to its unique features compared with microwave and optical waves. In the present paper, the properties of THz wave and its uniqueness in sensing and imaging applications were discussed. The most recent researches on THz technology used in food quality control and agricultural products inspection were summarized. The prospect of this novel technology in agriculture and food industry was also discussed.

  17. Modeling of the response of the POLARBEAR bolometers with a continuously rotating half-wave plate

    NASA Astrophysics Data System (ADS)

    Takakura, Satoru; POLARBEAR Collaboration

    2018-01-01

    The curly pattern, the so-called B-mode, in the polarization anisotropy of the cosmic microwave background (CMB) is a powerful probe to measure primordial gravitational waves from the cosmic inflation, as well as the weak lensing due to the large scale structure of the Universe. At present, ground-based CMB experiments with a few arcminutes resolution such as POLARBEAR, SPTpol, and ACTPol have successfully measured the angular power spectrum of the B-mode only in sub-degree scales, though these experiments also have potential to measure the inflationary B-modes in degree scales in absence of the low-frequency noise (1/f noise). Thus, techniques of polarization signal modulation such as a continuously rotating half-wave plate (CRHWP) are widely investigated to suppress the 1/f noise and also to reduce instrumental systematic errors. In this study, we have implemented a CRHWP placed around the prime focus of the POLARBEAR telescope and operated at ambient temperatures. We construct a comprehensive model including half-wave plate synchronous signals, detector non-linearities, beam imperfections, and all noise sources. Using this model, we show that, in practice, the 1/f noise and instrumental systematics could remain even with the CRHWP. However, we also evaluate those effects from test observations using a prototype CRHWP on the POLARBEAR telescope and find that the residual 1/f noise is sufficiently small for POLARBEAR to probe the multipoles about 40. We will also discuss prospects for future CMB experiments with better sensitivities.

  18. Nonreciprocal Gain in Non-Hermitian Time-Floquet Systems

    NASA Astrophysics Data System (ADS)

    Koutserimpas, Theodoros T.; Fleury, Romain

    2018-02-01

    We explore the unconventional wave scattering properties of non-Hermitian systems in which amplification or damping are induced by time-periodic modulation. These non-Hermitian time-Floquet systems are capable of nonreciprocal operations in the frequency domain, which can be exploited to induce novel physical phenomena such as unidirectional wave amplification and perfect nonreciprocal response with zero or even negative insertion losses. This unique behavior is obtained by imparting a specific low-frequency time-periodic modulation to the complex coupling between lossless resonators, promoting only upward frequency conversion, and leading to nonreciprocal parametric gain. We provide a full-wave demonstration of our findings in a one-way microwave amplifier, and establish the potential of non-Hermitian time-Floquet devices for insertion-loss free microwave isolation and unidirectional parametric amplification.

  19. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Dynamic nuclear polarisation via the integrated solid effect II: experiments on naphthalene-h8 doped with pentacene-d14

    NASA Astrophysics Data System (ADS)

    Eichhorn, T. R.; van den Brandt, B.; Hautle, P.; Henstra, A.; Wenckebach, W. Th.

    2014-07-01

    In dynamic nuclear polarisation (DNP), also called hyperpolarisation, a small amount of unpaired electron spins is added to the sample containing the nuclear spins, and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP polarises the electron spin of stable paramagnetic centres by cooling down to low temperature and applying a strong magnetic field. Then weak continuous wave microwave fields are used to induce the polarisation transfer. Complicated cryogenic equipment and strong magnets can be avoided using short-lived photo-excited triplet states that are strongly aligned in the optical excitation process. However, a much faster transfer of the electron spin polarisation is needed and pulsed DNP methods like nuclear orientation via electron spin locking (NOVEL) and the integrated solid effect (ISE) are used. To describe the polarisation transfer with the strong microwave fields in NOVEL and ISE, the usual perturbation methods cannot be used anymore. In the previous paper, we presented a theoretical approach to calculate the polarisation transfer in ISE. In the present paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 yielding the photo-excited triplet states and compared with experimental results.

  1. Variable frequency microwave furnace system

    DOEpatents

    Bible, Don W.; Lauf, Robert J.

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  2. Survival of Listeria monocytogenes, E.coli 0157:H7 and Salmonella spp. on catfish fillets exposed to microwave heating in a continuous mode

    USDA-ARS?s Scientific Manuscript database

    Microwave (MW) heating using continuous power output with feedback control and a modified ingredient formulation, may provide better and consistent cooking of foods. Currently, household units with build-in inverter power supply units are available. These new generation microwave ovens provide con...

  3. The EUMETSAT Polar System - Second Generation (EPS-SG) micro-wave imaging (MWI) mission

    NASA Astrophysics Data System (ADS)

    Bojkov, B. R.; Accadia, C.; Klaes, D.; Canestri, A.; Cohen, M.

    2017-12-01

    The EUMETSAT Polar System (EPS) will be followed by a second generation system called EPS-SG. This new family of missions will contribute to the Joint Polar System being jointly set up with NOAA in the timeframe 2020-2040. These satellites will fly, like Metop (EPS), in a sun synchronous, low earth orbit at 830 km altitude and 09:30 local time descending node, providing observations over the full globe with revisit times of 12 hours. EPS-SG consists of two different satellites configurations, the EPS-SGa series dedicated to IR and MW sounding, and the EPS-SGb series dedicated to microwave imaging and scatterometry. The EPS-SG family will consist of three successive launches of each satellite-type. The Microwave Imager (MWI) will be hosted on Metop-SGb series of satellites, with the primary objective of supporting Numerical Weather Prediction (NWP) at regional and global scales. Other applications will be observation of surface parameters such as sea ice concentration and hydrology applications. The 18 MWI instrument frequencies range from 18.7 GHz to 183 GHz. All MWI channels up to 89 GHz will measure V- and H polarizations. The MWI was also designed to provide continuity of measurements for select heritage microwave imager channels (e.g. SSM/I, AMSR-E). The additional sounding channels such as the 50-55 and 118 GHz bands will provide additional cloud and precipitation information over sea and land. This combination of channels was successfully tested on the NPOESS Aircraft Sounder Testbed - Microwave Sounder (NAST-M) airborne radiometer, and it is the first time that will be implemented in a conical scanning configuration in a single instrument. An overview of the EPS-SG programme and the MWI instrument will be presented.

  4. A high-gain and high-efficiency X-band triaxial klystron amplifier with two-stage cascaded bunching cavities

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang

    2017-12-01

    To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.

  5. Physics Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Describes computer measurement of capacitor charge decay, change of fringe width with color, computer simulation of color mixing, Doppler effect/carrier waves, gravitational waves, microwave apparatus, computer simulation of Brownian motion, search coils and problems with the teaching of the relationships of velocity, frequency, and wavelength in…

  6. Millimeter-Wave Generation with Spiraling Electron Beams

    DOT National Transportation Integrated Search

    1971-02-01

    An investigation has been carried out of the feasibility : of using the interaction between a thin, solid, : spiraling electron beam of 10-20kV energy and a microwave : cavity to generate watts of CW millimeter-wave power. : Experimental results are ...

  7. An X-band phase-locked relativistic backward wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y.; Science and Technology on High Power Microwave Laboratory, Mianyang 621900; Li, Z. H.

    2015-08-15

    For the purpose of coherent high power microwave combining at high frequency band, an X-band phase-locked relativistic backward wave oscillator is presented and investigated. The phase-locking of the oscillator is accomplished by modulation of the electron beam before it reaches the oscillator. To produce a bunched beam with an acceptable injected RF power requirement, an overmoded input cavity is employed to provide initial density modulation. And a buncher cavity is introduced to further increase the modulation depth. When the beam enters the oscillator, the modulation depth is enough to lock the frequency and phase of the output microwave generated bymore » the oscillator. Particle-in-cell simulation shows that an input power of 90 kW is sufficient to lock the frequency and phase of 1.5 GW output microwave with locking bandwidth of 60 MHz.« less

  8. Extremely High Peak Power Obtained at 29 GHZ Microwave Pulse Generation

    NASA Astrophysics Data System (ADS)

    Rostov, V. V.; Gunin, A. V.; Romanchenko, I. V.; Pedos, M. S.; Rukin, S. N.; Sharypov, K. A.; Shunailov, S. A.; Ul'maskulov, M. R.; Yalandin, M. I.

    2017-12-01

    The paper presents research results on enhancing the peak power of microwave pulses with sub- and nanosecond length using a backward-wave oscillator (BWO) operating at 29 GHz frequency and possessing a reproducible phase structure. Experiments are conducted in two modes on a high-current electron accelerator with the required electron beam power. In the first (superradiation) mode, which utilizes the elongated slow-wave structure, the BWO peak power is 3 GW at 180 ns pulse duration (full width at halfmaximum, FWHM). In the second (quasi-stationary) mode, the BWO peak power reaches 600 MW at 2 ns pulse duration (FWHM). The phase spread from pulse to pulse can vary from units to several tens of percent in a nanosecond pulse mode. The experiments do not show any influence of microwave breakdown on the BWO power generation and radiation pulse duration.

  9. Recent advances in remote sensing; Proceedings of the First International Geoscience and Remote Sensing Symposium, Washington, DC, June 8-10, 1981

    NASA Technical Reports Server (NTRS)

    Mcintosh, R.

    1982-01-01

    The state of the art in remote sensing of the earth and the planets was discussed in terms of sensor performance, signal processing, and data interpretation. Particular attention was given to lidar for characterizing atmospheric particulates, the modulation of short waves by long ocean gravity waves, and runoff modeling for snow-covered areas. The use of NOAA-6 spacecraft AVHRR data to explore hydrologic land surface features, the effects of soil moisture and vegetation canopies on microwave and thermal microwave emissions, and regional scale evapotranspiration rate determination through satellite IR data are examined. A Shuttle experiment to demonstrate high accuracy global time and frequency transfer is described, along with features of the proposed Gravsat, radar image processing for rock-type discrimination, and passive microwave sensing of temperature and salinity in coastal zones.

  10. Planar resonator and integrated oscillator using magnetostatic waves.

    PubMed

    Kinoshita, Y; Kubota, S; Takeda, S; Nakagoshi, A

    1990-01-01

    A simple planar resonator using a magnetostatic wave (MSW) excited by aluminum finger electrodes with two bonding pads was realized on YIG/GGG (yttrium-iron-garnet film on a gadolinium-gallium-garnet crystal) substrate with two reflection edges. The tunable MSW resonator chip (2 mmx5 mm) exhibited a sharp notch filter response, as deep as 20-35 dB, and a high loaded Q up to 2000, which was tunable over the microwave frequency range from 2 to 4 GHz. A small tunable oscillator (8 cm(3)) was experimentally demonstrated using the MSW planar resonator and a silicon bipolar transistor integrated on a ceramic microwave circuit substrate. Microwave oscillation with spectral purity, at the same level as that of YIG sphere technology, was observed at 3 GHz. The experimental results indicate the technical areas where improvement must be made to realize a practical oscillator configuration.

  11. Overtone, 2OH spectroscopy of H2Osbnd Kr

    NASA Astrophysics Data System (ADS)

    Vanfleteren, Thomas; Földes, Tomas; Rizopoulos, Athéna; Herman, Michel

    2017-12-01

    We have used continuous-wave cavity ring-down spectroscopy to record the spectrum of H2Osbnd Kr in the 2OH excitation range of H2O. 11 sub-bands have been observed for the main krypton isotope, 84 Kr. Their rotational structure (Trot = 18 K) is analyzed and the lines fitted together with literature microwave data, with a unitless standard deviation σ = 0.86 and 1.32 for ortho and para species, respectively. 4 more sub-bands are observed for the three other isotopes and are also analyzed. The upper state vibrational predissociation lifetime is estimated to 4 ns from observed spectral linewidths.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Terry L.; Paulauskas, Felix L.; Bigelow, Timothy S.

    A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber havingmore » the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.« less

  13. Localized Defect Modes in a Two-Dimensional Array of Magnetic Nanodots

    DTIC Science & Technology

    2013-06-22

    number of defects it is possible to obtain the information about the entire spin-wave spectrum of the array. Index Terms—Spin waves, magnonic crystal...multistability opens a way for the development of a novel type of artificial materials with tunable microwave properties – reconfigurable magnonic ...information about the entire spin-wave spectrum of the array. 15. SUBJECT TERMS Spin waves, magnonic crystal, magnetic dot, ferromagnetic resonance

  14. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation

    NASA Astrophysics Data System (ADS)

    Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong

    2016-06-01

    According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.

  15. "Hearing" Electromagnetic Waves

    ERIC Educational Resources Information Center

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  16. Microwave phase conjugation using artificial nonlinear microwave surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Yian

    1997-09-01

    A new technique is developed and demonstrated to simulate nonlinear materials in the microwave and millimeter wave regime. Such materials are required to extend nonlinear optical techniques into longer wavelength areas. Using an array of antenna coupled mixers as an artificial nonlinear surface, we have demonstrated two-dimensional free space microwave phase conjugation at 10 GHz. The basic concept is to replace the weak nonlinearity of electron distribution in a crystal with the strong nonlinear V-I response of a P-N junction. This demnstration uses a three-wave mixing method with the effective nonlinear susceptibility χ(2) provided by an artificial nonlinear surface. The pump signal at 2ω (20 GHz) can be injected to the mixing elements electrically or optically. Electrical injection was first used to prove the concept of artificial nonlinear surfaces. However, due to the loss and size of microwave components, electrical injection is not practical for an array of artificial nonlinear surfaces, as would be needed in a three-dimensional free space phase conjugation setup. Therefore optical injection was implemented to carry the 2ω microwave pump signal in phase to all mixing elements. In both cases, two-dimensional free space phase conjugation was observed by directly measuring the electric field amplitude and phase distribution. The electric field wavefronts exhibited retro-directivity and auto- correction characteristics of phase conjugation. This demonstration surface also shows a power gain of 10 dB, which is desired for potential communication applications.

  17. Metamaterial Absorbers for Microwave Detection

    DTIC Science & Technology

    2015-06-01

    duration, high-power electrical pulses into electromagnetic waves. 6  A mode converter to tailor the spatial distribution of the electromagnetic ...congressional-report/113th-congress/senate- report/211/1. [16] C. Wilson, “High altitude electromagnetic pulse and high power microwave devices...and Communications CRS Congressional Report Services DE Directed Energy DEW Directed Energy Weapons EM Electromagnetic EMS

  18. 77 FR 1017 - Export and Reexport License Requirements for Certain Microwave and Millimeter Wave Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... * * * * * Related Controls: * * * (3) See ECCN 3A982.a for discrete microwave transistors not controlled by...) power amplifiers other than those controlled by this entry. (2) See ECCN 3A001.b.3 for discrete... mobility transistors that are solid state semiconductor switches, diodes or modules rather than discrete...

  19. Simple Optoelectronic Feedback in Microwave Oscillators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Iltchenko, Vladimir

    2009-01-01

    A proposed method of stabilizing microwave and millimeter-wave oscillators calls for the use of feedback in optoelectronic delay lines characterized by high values of the resonance quality factor (Q). The method would extend the applicability of optoelectronic feedback beyond the previously reported class of optoelectronic oscillators that comprise two-port electronic amplifiers in closed loops with high-Q feedback circuits.

  20. Review on Photonic Generation of Chirp Arbitrary Microwave Waveforms for Remote Sensing Application

    NASA Astrophysics Data System (ADS)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash; Athokpam, Bidhanshel Singh

    2017-12-01

    A novel technique to generate an arbitrary chirped waveform by harnessing features of lithium niobate (LiNb O_3) Mach-Zehnder modulator is proposed and demonstrated. The most important application of chirped microwave waveform is that, it improves the range resolution of radar. Microwave photonics system provides high bandwidth capabilities of fiber-optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, it should be consider that microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper, we have thoroughly reviewed the arbitrary chirped microwave generation techniques by using photonics technology.

  1. Wireless Power Transmission Options for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Potter, Seth D.; Howell, J.; Mankins, J. C.; Fikes, John C. (Technical Monitor)

    2002-01-01

    Space Solar Power (SSP). combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In this paper WPT options using radio waves and light waves are considered for both long-term and near-term SSP applications. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even from the moon. Accordingly, radio- and light- wave WPT options are compared through a wide range of criteria, each showing certain strengths. In the near-term. we plan to beam power over more moderate distances, but still stretch the limits of today's technology. For the near-term, a 100 kWe-class 'Power Plug' Satellite and a 10 kWe-class Lunar Polar Solar Power outpost are considered as the first steps in using these WPT options for SSP. By using SSP and WPT technology in near-term space science and exploration missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from Space to Earth. Power Relay Satellites are also considered as a potential near- to mid-term means to transmit power from Earth to Space and back to distant receiving sites on Earth. This paper briefly considers microwave and laser beaming for an initial Power Relay Satellite system, and concludes that anticipated advancements in laser technology make laser-based concepts more attractive than microwave-based concepts. Social and economic considerations are briefly discussed, and a conceptual description for a laser-based system is offered for illustrative purposes. Continuing technological advances are needed if laser-based systems are to become practical and efficient or near- and far-term applications.

  2. Mesoscale Gravity Wave Variances from AMSU-A Radiances

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2004-01-01

    A variance analysis technique is developed here to extract gravity wave (GW) induced temperature fluctuations from NOAA AMSU-A (Advanced Microwave Sounding Unit-A) radiance measurements. By carefully removing the instrument/measurement noise, the algorithm can produce reliable GW variances with the minimum detectable value as small as 0.1 K2. Preliminary analyses with AMSU-A data show GW variance maps in the stratosphere have very similar distributions to those found with the UARS MLS (Upper Atmosphere Research Satellite Microwave Limb Sounder). However, the AMSU-A offers better horizontal and temporal resolution for observing regional GW variability, such as activity over sub-Antarctic islands.

  3. Separation of gravitational-wave and cosmic-shear contributions to cosmic microwave background polarization.

    PubMed

    Kesden, Michael; Cooray, Asantha; Kamionkowski, Marc

    2002-07-01

    Inflationary gravitational waves (GW) contribute to the curl component in the polarization of the cosmic microwave background (CMB). Cosmic shear--gravitational lensing of the CMB--converts a fraction of the dominant gradient polarization to the curl component. Higher-order correlations can be used to map the cosmic shear and subtract this contribution to the curl. Arcminute resolution will be required to pursue GW amplitudes smaller than those accessible by the Planck surveyor mission. The blurring by lensing of small-scale CMB power leads with this reconstruction technique to a minimum detectable GW amplitude corresponding to an inflation energy near 10(15) GeV.

  4. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.

    1987-08-01

    This interim technical report presents results of research on the computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems. A specific objective is to extend the state-of-the-art of the Computer Aided Design (CAD) of the monolithic microwave and millimeter wave integrated circuits (MIMIC). In this reporting period, we have derived a new model for the high electron mobility transistor (HEMT) based on a nonlinear charge control formulation which takes into consideration the variation of the 2DEG distance offset from the heterointerface as a function of bias. Pseudomorphic InGaAs/GaAs HEMT devices have been successfully fabricated at UCSD. For a 1 micron gate length, a maximum transconductance of 320 mS/mm was obtained. In cooperation with TRW, devices with 0.15 micron and 0.25 micron gate lengths have been successfully fabricated and tested. New results on the design of ultra-wideband distributed amplifiers using 0.15 micron pseudomorphic InGaAs/GaAs HEMT's have also been obtained. In addition, two-dimensional models of the submicron MESFET's, HEMT's and HBT's are currently being developed for the CRAY X-MP/48 supercomputer. Preliminary results obtained are also presented in this report.

  5. Theory of Microwave 5-WAVE Mixing of Chiral Molecules

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin

    2016-06-01

    Microwave three-wave mixing spectroscopy produces a Free Induction Decay Field that is proportional to the enantiomeric excess ( ee ) of a sample of chiral molecules. However, since there is an unavoidable loss of measured signal strength due to dephasing of the molecular emission, it is not possible to quantitate this ee unless one has an enantiomeric pure sample of the same molecule with which to compare the amplitude of the signal of a sample of unknown ee. In this talk, I will demonstrate that it is in principle possible to use a 5 wave mixing experiment, based upon AC Stark shifts produced by nearly resonant fields, to produce a differential splitting of a transition such that one has frequency resolved peaks for the two enantiomers. The peaks corresponding to the two enantiomers can be switched by phase cycling of the fields. This method is promising to allow the quantitative measurement of molecular ee's by microwave spectroscopy. There are experimental issues that make such an experiment difficult. It will likely be required to use of skimmed molecular beam (which will substantially reduce the number of molecular emitters and thus signal level) in order to reduce the field amplitude and phase inhomogeneity of the excited molecules.

  6. EDITORIAL: Microwave Moisture Measurements

    NASA Astrophysics Data System (ADS)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of microwave applications. Dr Kraszewski was a pioneer in moisture content sensing and the founder of microwave aquametry. He organized the first conferences on electromagnetic wave interactions with water and moist substances and helped to maintain the progress of microwave aquametry research internationally. Andrzej Kraszewski is missed by the microwave moisture measurement community who appreciated both his unusual technical ability and his pleasant and endearing character. Andrzej W Kraszewski, 1933-2006 We hope you will enjoy reading these papers and will extend your scientific curiosity to this field. Finally, we would like to thank all the authors, referees and the staff of Measurement Science and Technology for their contributions and support which have made the publication of this special issue possible.

  7. Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure.

    PubMed

    Liu, Xiaoyong; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian

    2016-02-04

    Backward wave with anti-parallel phase and group velocities is one of the basic properties associated with negative refraction and sub-diffraction image that have attracted considerable interest in the context of photonic metamaterials. It has been predicted theoretically that some plasmonic structures can also support backward wave propagation of surface plasmon polaritons (SPPs), however direct experimental demonstration has not been reported, to the best of our knowledge. In this paper, a specially designed plasmonic metamaterial of corrugated metallic strip has been proposed that can support backward spoof SPP wave propagation. The dispersion analysis, the full electromagnetic field simulation and the transmission measurement of the plasmonic metamaterial waveguide have clearly validated the backward wave propagation with dispersion relation possessing negative slope and opposite directions of group and phase velocities. As a further verification and application, a contra-directional coupler is designed and tested that can route the microwave signal to opposite terminals at different operating frequencies, indicating new application opportunities of plasmonic metamaterial in integrated functional devices and circuits for microwave and terahertz radiation.

  8. 47 CFR 101.107 - Frequency tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...

  9. 47 CFR 101.107 - Frequency tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...

  10. 47 CFR 101.107 - Frequency tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave... noted in the table of paragraph (a) of this section. (b) Heterodyne microwave radio systems may be...

  11. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection.

    PubMed

    Wang, Yanqin; Pu, Mingbo; Zhang, Zuojun; Li, Xiong; Ma, Xiaoliang; Zhao, Zeyu; Luo, Xiangang

    2015-12-04

    Two-dimensional metasurface has attracted growing interest in recent years, owing to its ability in manipulating the phase, amplitude and polarization state of electromagnetic wave within a single interface. However, most existing metasurfaces rely on the collective responses of a set of discrete meta-atoms to perform various functionalities. In this paper, we presented a quasi-continuous metasurface for high-efficiency and broadband beam steering in the microwave regime. It is demonstrated both in simulation and experiment that the incident beam deviates from the normal direction after transmitting through the ultrathin metasurface. The efficiency of the proposed metasurface approximates to the theoretical limit of the single-layer metasurface in a broad frequency range, owing to the elimination of the circuit resonance in traditional discrete structures. The proposed scheme promises potential applications in broadband electromagnetic modulation and communication systems, etc.

  12. A high frequency GaAlAs travelling wave electro-optic modulator at 0.82 micrometers

    NASA Technical Reports Server (NTRS)

    Chorey, Christopher M.; Ferendeci, Altan; Bhasin, Kul B.

    1988-01-01

    Experimental GaAlAs modulators operating at 0.82 micrometers using a Mach-Zehnder interferometer configuration were designed and fabricated. Coplanar 50 ohm travelling wave microwave electrodes were used to obtain a bandwidth length product of 11.95 GHz-cm. The design, fabrication and dc performance of the GaAlAs travelling wave modulator is presented.

  13. Electromagnetic wave propagation in rain and polarization effects

    PubMed Central

    OKAMURA, Sogo; OGUCHI, Tomohiro

    2010-01-01

    This paper summarizes our study on microwave and millimeter-wave propagation in rain with special emphasis on the effects of polarization. Starting from a recount of our past findings, we will discuss developments with these and how they are connected with subsequent research. PMID:20551593

  14. Military microwaves '84; Proceedings of the Conference, London, England, October 24-26, 1984

    NASA Astrophysics Data System (ADS)

    The present conference on microwave frequency electronic warfare and military sensor equipment developments consider radar warning receivers, optical frequency spread spectrum systems, mobile digital communications troposcatter effects, wideband bulk encryption, long range air defense radars (such as the AR320, W-2000 and Martello), multistatic radars, and multimode airborne and interceptor radars. IR system and subsystem component topics encompass thermal imaging and active IR countermeasures, class 1 modules, and diamond coatings, while additional radar-related topics include radar clutter in airborne maritime reconnaissance systems, microstrip antennas with dual polarization capability, the synthesis of shaped beam antenna patterns, planar phased arrays, radar signal processing, radar cross section measurement techniques, and radar imaging and pattern analysis. Attention is also given to optical control and signal processing, mm-wave control technology and EW systems, W-band operations, planar mm-wave arrays, mm-wave monolithic solid state components, mm-wave sensor technology, GaAs monolithic ICs, and dielectric resonator and wideband tunable oscillators.

  15. Effect of the load size on the efficiency of microwave heating under stop flow and continuous flow conditions.

    PubMed

    Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C

    2012-01-01

    A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.

  16. Megahertz-resolution programmable microwave shaper.

    PubMed

    Li, Jilong; Dai, Yitang; Yin, Feifei; Li, Wei; Li, Ming; Chen, Hongwei; Xu, Kun

    2018-04-15

    A novel microwave shaper is proposed and demonstrated, of which the microwave spectral transfer function could be fully programmable with high resolution. We achieve this by bandwidth-compressed mapping a programmable optical wave-shaper, which has a lower frequency resolution of tens of gigahertz, to a microwave one with resolution of tens of megahertz. This is based on a novel technology of "bandwidth scaling," which employs bandwidth-stretched electronic-to-optical conversion and bandwidth-compressed optical-to-electronic conversion. We demonstrate the high resolution and full reconfigurability experimentally. Furthermore, we show the group delay variation could be greatly enlarged after mapping; this is then verified by the experiment with an enlargement of 194 times. The resolution improvement and group delay magnification significantly distinguish our proposal from previous optics-to-microwave spectrum mapping.

  17. Quantum-enabled temporal and spectral mode conversion of microwave signals

    PubMed Central

    Andrews, R. W.; Reed, A. P.; Cicak, K.; Teufel, J. D.; Lehnert, K. W.

    2015-01-01

    Electromagnetic waves are ideal candidates for transmitting information in a quantum network as they can be routed rapidly and efficiently between locations using optical fibres or microwave cables. Yet linking quantum-enabled devices with cables has proved difficult because most cavity or circuit quantum electrodynamics systems used in quantum information processing can only absorb and emit signals with a specific frequency and temporal envelope. Here we show that the temporal and spectral content of microwave-frequency electromagnetic signals can be arbitrarily manipulated with a flexible aluminium drumhead embedded in a microwave circuit. The aluminium drumhead simultaneously forms a mechanical oscillator and a tunable capacitor. This device offers a way to build quantum microwave networks using separate and otherwise mismatched components. Furthermore, it will enable the preparation of non-classical states of motion by capturing non-classical microwave signals prepared by the most coherent circuit quantum electrodynamics systems. PMID:26617386

  18. Cosmological gravitational waves

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.

    1988-01-01

    A cosmological background of gravitational waves would alter the propagation of radiation, inducing redshift fluctuations, apparent source position deflections, and luminosity variations. By comparing these astrophysical effects with observations, it is possible to deduce upper limits on the energy density present in gravitational waves. Emphasis is placed on microwave background anisotropy from the redshift deviations and galaxy clustering correlation functions from the angular deviations. Many of the gravitational wave effects are shown to be generalizations of the gravitational lensing formalism.

  19. 47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...

  20. 47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...

  1. 47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...

  2. 47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...

  3. 47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.137 Interconnection of private operational fixed point-to-point microwave stations. Private...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogatskaya, A. V., E-mail: annabogatskaya@gmail.com; Volkova, E. A.; Popov, A. M.

    The time evolution of a nonequilibrium plasma channel created in a noble gas by a high-power femtosecond KrF laser pulse is investigated. It is shown that such a channel possesses specific electrodynamic properties and can be used as a waveguide for efficient transportation and amplification of microwave pulses. The propagation of microwave radiation in a plasma waveguide is analyzed by self-consistently solving (i) the Boltzmann kinetic equation for the electron energy distribution function at different spatial points and (ii) the wave equation in the parabolic approximation for a microwave pulse transported along the plasma channel.

  5. A microwave field-driven transistor-like skyrmionic device with the microwave current-assisted skyrmion creation

    NASA Astrophysics Data System (ADS)

    Xia, Jing; Huang, Yangqi; Zhang, Xichao; Kang, Wang; Zheng, Chentian; Liu, Xiaoxi; Zhao, Weisheng; Zhou, Yan

    2017-10-01

    Magnetic skyrmion is a topologically protected domain-wall structure at nanoscale, which could serve as a basic building block for advanced spintronic devices. Here, we propose a microwave field-driven skyrmionic device with the transistor-like function, where the motion of a skyrmion in a voltage-gated ferromagnetic nanotrack is studied by micromagnetic simulations. It is demonstrated that the microwave field can drive the motion of a skyrmion by exciting the propagating spin waves, and the skyrmion motion can be governed by a gate voltage. We also investigate the microwave current-assisted creation of a skyrmion to facilitate the operation of the transistor-like skyrmionic device on the source terminal. It is found that the microwave current with an appropriate frequency can reduce the threshold current density required for the creation of a skyrmion from the ferromagnetic background. The proposed transistor-like skyrmionic device operated with the microwave field and current could be useful for building future skyrmion-based circuits.

  6. Incentive and Architecture of Multi-Band Enabled Small Cell and UE for Up-/Down-Link and Control-/User-Plane Splitting for 5G Mobile Networks

    NASA Astrophysics Data System (ADS)

    Saha, Rony Kumer; Aswakul, Chaodit

    2017-01-01

    In this paper, a multi-band enabled femtocell base station (FCBS) and user equipment (UE) architecture is proposed in a multi-tier network that consists of small cells, including femtocells and picocells deployed over the coverage of a macrocell for splitting uplink and downlink (UL/DL) as well as control-plane and user-plane (C-/U-plane) for 5G mobile networks. Since splitting is performed at the same FCBS, we define this architecture as the same base station based split architecture (SBSA). For multiple bands, we consider co-channel (CC) microwave and different frequency (DF) 60 GHz millimeter wave (mmWave) bands for FCBSs and UEs with respect to the microwave band used by their over-laid macrocell base station. All femtocells are assumed to be deployed in a 3-dimensional multi-storage building. For CC microwave band, cross-tier CC interference of femtocells with macrocell is avoided using almost blank subframe based enhanced inter-cell interference coordination techniques. The co-existence of CC microwave and DF mmWave bands for SBSA on the same FCBS and UE is first studied to show their performance disparities in terms of system capacity and spectral efficiency in order to provide incentives for employing multiple bands at the same FCBS and UE and identify a suitable band for routing decoupled UL/DL or C-/U-plane traffic. We then present a number of disruptive architectural design alternatives of multi-band enabled SBSA for 5G mobile networks for UL/DL and C-/U-plane splitting, including a disruptive and complete splitting of UL/DL and C-/U-plane as well as a combined UL/DL and C-/U-plane splitting, by exploiting dual connectivity on CC microwave and DF mmWave bands. The outperformances of SBSA in terms of system level capacity, average spectral efficiency, energy efficiency, and control-plane overhead traffic capacity in comparison with different base stations based split architecture (DBSA) are shown. Finally, a number of technical and business perspectives as well as key research issues of SBSA are discussed.

  7. Non-Reciprocal on Wafer Microwave Devices

    DTIC Science & Technology

    2015-05-27

    filter uses a barium hexagonal ferrite film incorporated into the dielectric layer of a microstrip transmission line. The zero-field operational...Fal,, Robert E. Camley. Millimeter wave phase shifter based on ferromagnetic resonancein a hexagonal barium ferrite thin film, Applied Physics...materials for on-wafer microwave devices concentrated on barium hexagonal ferrite (BaM) films grown on Si because these material is a good candidate

  8. Time-Domain Finite Element Analysis of Nonlinear Breakdown Problems in High-Power-Microwave Devices and Systems

    DTIC Science & Technology

    2015-12-24

    simulation of the electromagnetic- plasma interaction and the high-power microwave breakdown in air. Under the high pressure and high frequency condition of...the high-power air breakdown, the physical phenomenon is described using a nonlinearly coupled full-wave Maxwell and fluid plasma system. This...Challenges ........................................................................... 3 3.1.1 Plasma Fluid Model

  9. Air Force Technical Objective Document, FY89.

    DTIC Science & Technology

    1988-04-01

    threat warning; multimegawatt stand-off jammers; a family of new, broadband , active decoy expendables; E4? subsystems and EW suites for Military...and monolithic integrated circuits. (3) Microwave TWTs Develop microwave tube technology and selected thermionic power sources and amplifiers for ECM...Improved design reliability and multiple application of tube technology are stressed. Improve Traveling Wave Tube ( TWT ) reliability by instrumenting a TWT

  10. Millimeter transient point sources in the SPTpol 100 square degree survey

    DOE PAGES

    Whitehorn, N.; Natoli, T.; Ade, P. A. R.; ...

    2016-10-18

    The millimeter transient sky is largely unexplored, with measurements limited to follow-up of objects detected at other wavelengths. High-angular-resolution telescopes, designed for measurement of the cosmic microwave background (CMB), offer the possibility to discover new, unknown transient sources in this band—particularly the afterglows of unobserved gamma-ray bursts (GRBs). Here, we use the 10 m millimeter-wave South Pole Telescope, designed for the primary purpose of observing the CMB at arcminute and larger angular scales, to conduct a search for such objects. During the 2012–2013 season, the telescope was used to continuously observe a 100 deg 2 patch of sky centered atmore » R.A. 23 h30 m and decl. –55° using the polarization-sensitive SPTpol camera in two bands centered at 95 and 150 GHz. These 6000 hr of observations provided continuous monitoring for day- to month-scale millimeter-wave transient sources at the 10 mJy level. As a result, one candidate object was observed with properties broadly consistent with a GRB afterglow, but at a statistical significance too low (p = 0.01) to confirm detection.« less

  11. MILLIMETER TRANSIENT POINT SOURCES IN THE SPTpol 100 SQUARE DEGREE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehorn, N.; Haan, T. de; George, E. M.

    The millimeter transient sky is largely unexplored, with measurements limited to follow-up of objects detected at other wavelengths. High-angular-resolution telescopes, designed for measurement of the cosmic microwave background (CMB), offer the possibility to discover new, unknown transient sources in this band—particularly the afterglows of unobserved gamma-ray bursts (GRBs). Here, we use the 10 m millimeter-wave South Pole Telescope, designed for the primary purpose of observing the CMB at arcminute and larger angular scales, to conduct a search for such objects. During the 2012–2013 season, the telescope was used to continuously observe a 100 deg{sup 2} patch of sky centered atmore » R.A. 23{sup h}30{sup m} and decl. −55° using the polarization-sensitive SPTpol camera in two bands centered at 95 and 150 GHz. These 6000 hr of observations provided continuous monitoring for day- to month-scale millimeter-wave transient sources at the 10 mJy level. One candidate object was observed with properties broadly consistent with a GRB afterglow, but at a statistical significance too low ( p = 0.01) to confirm detection.« less

  12. Millimeter transient point sources in the SPTpol 100 square degree survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehorn, N.; Natoli, T.; Ade, P. A. R.

    The millimeter transient sky is largely unexplored, with measurements limited to follow-up of objects detected at other wavelengths. High-angular-resolution telescopes, designed for measurement of the cosmic microwave background (CMB), offer the possibility to discover new, unknown transient sources in this band—particularly the afterglows of unobserved gamma-ray bursts (GRBs). Here, we use the 10 m millimeter-wave South Pole Telescope, designed for the primary purpose of observing the CMB at arcminute and larger angular scales, to conduct a search for such objects. During the 2012–2013 season, the telescope was used to continuously observe a 100 deg 2 patch of sky centered atmore » R.A. 23 h30 m and decl. –55° using the polarization-sensitive SPTpol camera in two bands centered at 95 and 150 GHz. These 6000 hr of observations provided continuous monitoring for day- to month-scale millimeter-wave transient sources at the 10 mJy level. As a result, one candidate object was observed with properties broadly consistent with a GRB afterglow, but at a statistical significance too low (p = 0.01) to confirm detection.« less

  13. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab

    2012-02-15

    Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profilemore » of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.« less

  14. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator.

    PubMed

    Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab; Yang, J J; Hwang, Y S

    2012-02-01

    Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profile of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.

  15. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOEpatents

    White, Terry L [Knoxville, TN; Paulauskas, Felix L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN

    2010-11-02

    A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.

  16. The energy balance of wind waves and the remote sensing problem

    NASA Technical Reports Server (NTRS)

    Hasselmann, K.

    1972-01-01

    Measurements of wave growth indicate an energy balance of the wave spectrum governed primarily by input from the atmosphere, nonlinear transfer to shorter and longer waves, and advection. The pronounced spectral peak and sharp low frequency cut-off characteristic of fetch-limited spectra are explained as a self-stabilizing feature of the nonlinear wave-wave interactions. The momentum transferred from the atmosphere to the wind waves accounts for a large part of the wind drag. These findings are relevant for remote microwave sensing of the sea surface by backscatter and passive radiometry methods.

  17. Continuous microwave pasteurization of a vegetable smoothie improves its physical quality and hinders detrimental enzyme activity.

    PubMed

    Arjmandi, Mitra; Otón, Mariano; Artés, Francisco; Artés-Hernández, Francisco; Gómez, Perla A; Aguayo, Encarna

    2017-01-01

    The effect of a pasteurization treatment at 90 ± 2 ℃ for 35 s provided by continuous microwave under different doses (low power/long time and high power/short time) or conventional pasteurization on the quality of orange-colored smoothies and their changes throughout 45 days of storage at 5 ℃ was investigated. A better color retention of the microwave pasteurization- treated smoothie using high power/short time than in conventionally processed sample was evidenced by the stability of the hue angle. The continuous microwave heating increased the viscosity of the smoothie more than the conventional pasteurization in comparison with non-treated samples. Lower residual enzyme activities from peroxidase, pectin methylesterase and polygalacturonase were obtained under microwave heating, specifically due to the use of higher power/shorter time. For this kind of smoothie, polygalacturonase was the more thermo-resistant enzyme and could be used as an indicator of pasteurization efficiency. The use of a continuous semi-industrial microwave using higher power and shorter time, such as 1600 W/206 s and 3600 W/93 s, resulted in better quality smoothies and greater enzyme reduction than conventional thermal treatment. © The Author(s) 2016.

  18. Microwave reflection, transmission, and absorption by human brain tissue

    NASA Astrophysics Data System (ADS)

    Ansari, M. A.; Akhlaghipour, N.; Zarei, M.; Niknam, A. R.

    2018-04-01

    These days, the biological effects of electromagnetic (EM) radiations on the brain, especially in the frequency range of mobile communications, have caught the attention of many scientists. Therefore, in this paper, the propagation of mobile phone electromagnetic waves in the brain tissues is investigated analytically and numerically. The brain is modeled by three layers consisting of skull, grey and white matter. First, we have analytically calculated the microwave reflection, transmission, and absorption coefficients using signal flow graph technique. The effect of microwave frequency and variations in the thickness of layers on the propagation of microwave through brain are studied. Then, the penetration of microwave in the layers is numerically investigated by Monte Carlo method. It is shown that the analytical results are in good agreement with those obtained by Monte Carlo method. Our results indicate the absorbed microwave energy depends on microwave frequency and thickness of brain layers, and the absorption coefficient is optimized at a number of frequencies. These findings can be used for comparing the microwave absorbed energy in a child's and adult's brain.

  19. Effect of microwave radiation on inactivation of Clostridium sporogenes (PA 3679) spores.

    PubMed Central

    Welt, B A; Tong, C H; Rossen, J L; Lund, D B

    1994-01-01

    Three techniques for studying effects of microwave radiation on microorganisms were introduced. Spores of Clostridium sporogenes (PA 3679) were chosen as a test organism because the kinetic parameters for thermal inactivation are well known and because of the importance of the genus Clostridium to the food industry. For the first technique, a specially designed kinetics vessel was used to compare inactivation rates of microwave-heated and conventionally heated spores at steady-state temperatures of 90, 100, and 110 degrees C. Rates were found to be similar at the 95% confidence level. The second and third techniques were designed to study the effect of relatively high power microwave exposure at sublethal temperatures. In the second approach, the suspension was continuously cooled via direct contact with a copper cooling coil in a well-mixed vessel, outside the microwave oven. The suspension was pumped through a Teflon loop in the oven, where it continuously absorbed approximately 400 W of microwave power. Inactivation occurred in both irradiated and unirradiated samples. It was suspected that copper ions entered the suspension from the copper coil and were toxic to the spores. The fact that the results were similar, however, implied the absence of nonthermal microwave effects. In the third approach, the copper coil was replaced with a silicone tubing loop in a microwave transparent vessel. The suspension was continuously irradiated at 150 W of microwave power. No detectable inactivation occurred. Results indicated that the effect of microwave energy on viability of spores was indistinguishable from the effect of conventional heating. PMID:8135512

  20. Spin-wave interference in microscopic permalloy tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balhorn, Felix; Nagrodzki, Lukas; Mendach, Stefan

    2013-06-03

    We present permalloy coated needles which act as spin-wave resonators. The permalloy coated needles were investigated using microwave absorption spectroscopy. Thereby, we found up to three resonant modes which correspond to constructively interfering azimuthal spin waves. The resonant modes are well reproduced in calculations based on an analytical model for the spin-wave dispersion employing periodic boundary conditions. The dependence of the resonance frequencies on the needles' radii and the external magnetic field is demonstrated experimentally.

  1. Comparison between off-resonance and electron Bernstein waves heating regime in a microwave discharge ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, G.; Di Giugno, R.; Miracoli, R.

    2012-02-15

    A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electronsmore » will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.« less

  2. Test-Wave Measurements of Microwave Absorption Efficiency in a Planar Surface-Wave Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Ghanashev, Ivan; Morita, Shin; \\scToyoda, Naoki; Nagatsu, Masaaki; Sugai, Hideo

    1999-07-01

    A major obstacle for experimental surface-wave (SW) excitationand propagation studies in SW plasma is the self-consistentbehaviour of the latter, which does not permit continuousvariation of the electron density ne. In the presentstudy, we demonstrate how this obstacle can be overcome by anindependent plasma source, in our case, an inductively coupledplasma (ICP) created by a high-power RF (13.56 MHz) generator.Through a rectangular waveguide short-circuited at its end by amovable plunger, we introduced into the ICP a weak (powerless than 20 W) nonionising 2.4 GHz microwave.This permitted us to highlight important SW excitation andpropagation phenomena. In particular, we confirmed the existenceof the predicted [Jpn. J. Appl. Phys. 36 (1997) 4704]resonance minima in the ne dependence of the powerreflection coefficient. The influence of the plunger positionon the chamber matching was studied systematically and fourdifferent coupling aperture geometries were compared.

  3. Long-range mutual synchronization of spin Hall nano-oscillators

    NASA Astrophysics Data System (ADS)

    Awad, A. A.; Dürrenfeld, P.; Houshang, A.; Dvornik, M.; Iacocca, E.; Dumas, R. K.; Åkerman, J.

    2017-03-01

    The spin Hall effect in a non-magnetic metal with spin-orbit coupling injects transverse spin currents into adjacent magnetic layers, where the resulting spin transfer torque can drive spin wave auto-oscillations. Such spin Hall nano-oscillators (SHNOs) hold great promise as extremely compact and broadband microwave signal generators and magnonic spin wave injectors. Here we show that SHNOs can also be mutually synchronized with unprecedented efficiency. We demonstrate mutual synchronization of up to nine individual SHNOs, each separated by 300 nm. Through further tailoring of the connection regions we can extend the synchronization range to 4 μm. The mutual synchronization is observed electrically as an increase in the power and coherence of the microwave signal, and confirmed optically using micro-Brillouin light scattering microscopy as two spin wave regions sharing the same spectral content, in agreement with our micromagnetic simulations.

  4. A Polarization Responsive System for Microwaves

    DTIC Science & Technology

    1980-12-01

    radioastronomy employs much longer wave- lengths than optics, but the electromagnetic wave formulation of polari- zation is the same for optics as it is for... Radioastronomy . New York: McGraw-Hill, 1966. 8. Kuck, D. J., D. Lawrie and A. H. Samek. High Speed Computer and Algorithm Organization. New York: Academic

  5. Fundamentals handbook of electrical and computer engineering. Volume 1 Circuits fields and electronics

    NASA Astrophysics Data System (ADS)

    Chang, S. S. L.

    State of the art technology in circuits, fields, and electronics is discussed. The principles and applications of these technologies to industry, digital processing, microwave semiconductors, and computer-aided design are explained. Important concepts and methodologies in mathematics and physics are reviewed, and basic engineering sciences and associated design methods are dealt with, including: circuit theory and the design of magnetic circuits and active filter synthesis; digital signal processing, including FIR and IIR digital filter design; transmission lines, electromagnetic wave propagation and surface acoustic wave devices. Also considered are: electronics technologies, including power electronics, microwave semiconductors, GaAs devices, and magnetic bubble memories; digital circuits and logic design.

  6. Experimental demonstration of chaotic scattering of microwaves

    NASA Astrophysics Data System (ADS)

    Doron, E.; Smilansky, U.; Frenkel, A.

    1990-12-01

    Reflection of microwaves from a cavity is measured in a frequency domain where the underlying classical chaotic scattering leaves a clear mark on the wave dynamics. We check the hypothesis that the fluctuations of the S matrix can be described in terms of parameters characterizing the chaotic classical scatteirng. Absorption of energy in the cavity walls is shown to significantly affect the results, and is linked to time-domain properties of the scattering in a general way. We also show that features whose origin is entirely due to wave dynamics (e.g., the enhancement of the Wigner time delay due to time-reversal symmetry) coexist with other features which characterize the underlying classical dynamics.

  7. Modifying the ionosphere with intense radio waves.

    PubMed

    Utlaut, W F; Cohen, R

    1971-10-15

    The ionospheric modification experiments provide an opportunity to better understand the aeronomy of the natural ionosphere and also afford the control of a naturally occurring plasma, which will make possible further progress in plasma physics. The ionospheric modification by powerful radio waves is analogous to studies of laser and microwave heating of laboratory plasmas (20). " Anomalous" reflectivity effects similar to the observed ionospheric attenuation have already been noted in plasmas modulated by microwaves, and anomalous heating may have been observed in plasmas irradiated by lasers. Contacts have now been established between the workers in these diverse areas, which span a wide range of the electromagnetic spectrum. Perhaps ionospheric modification will also be a valuable technique in radio communications.

  8. Microwave focusing with uniaxially symmetric gradient index metamaterials

    NASA Astrophysics Data System (ADS)

    Wheeland, Sara; Sternberg, Oren; Perez, Israel; Rockway, John D.

    2016-09-01

    Previous efforts to create a metamaterial lens in the microwave X band frequency range focused on the development of a device with biaxial symmetry. This allows for focusing solely along the central axis of propagation. For applications involving wave direction or energy diversion, focusing may be required off the central axis. This work explores a metamaterial device with uniaxial symmetry, namely in the direction of propagation. Ray-trace optimization and full-wave finite element simulations contribute to the design of the lens. By changing the placement of the focus, we achieve further control of the focus parameters. While the present work uses coils, the unit cell can consist of any structure or material.

  9. Schenberg microwave cabling seismic isolation.

    NASA Astrophysics Data System (ADS)

    Bortoli, F. S.; Frajuca, C.; Aguiar, O. D.

    2018-02-01

    SCHENBERG is a resonant-mass gravitational wave detector with a frequency about 3.2 kHz. Its spherical antenna, weighing 1.15 metric ton, is connected to the external world by a system which must attenuate seismic noise. When a gravitational wave passes the antenna vibrates, its motion is monitored by transducers. These parametric transducers uses microwaves carried by coaxial cables that are also connected to the external world, they also carry seismic noise. In this analysis the system was modeled using finite element method. This work shows that the addition of masses along these cables can decrease this noise, so that this noise is below the thermal noise of the detector when operating at 50 mK.

  10. Modeling dielectric half-wave plates for cosmic microwave background polarimetry using a Mueller matrix formalism.

    PubMed

    Bryan, Sean A; Montroy, Thomas E; Ruhl, John E

    2010-11-10

    We derive an analytic formula using the Mueller matrix formalism that parameterizes the nonidealities of a half-wave plate (HWP) made from dielectric antireflection-coated birefringent slabs. This model accounts for frequency-dependent effects at normal incidence, including effects driven by the reflections at dielectric boundaries. The model also may be used to guide the characterization of an instrument that uses a HWP. We discuss the coupling of a HWP to different source spectra, and the potential impact of that effect on foreground removal for the SPIDER cosmic microwave background experiment. We also describe a way to use this model in a mapmaking algorithm that fully corrects for HWP nonidealities.

  11. Microwave Memristive-like Nonlinearity in a Dielectric Metamaterial

    NASA Astrophysics Data System (ADS)

    Wu, Hongya; Zhou, Ji; Lan, Chuwen; Guo, Yunsheng; Bi, Ke

    2014-06-01

    Memristor exhibit interesting and valuable circuit properties and have thus become the subject of increasing scientific interest. Scientists wonder if they can conceive a microwave memristor that behaves as a memristor operating with electromagnetic fields. Here, we report a microwave memristive-like nonlinear phenomenon at room temperature in dielectric metamaterials consisting of CaTiO3-ZrO2 ceramic dielectric cubes. Hysteretic transmission-incident field power loops (similar to the hysteretic I-V loop of memristor which is the fingerprint of memristor) with various characteristics were systematically observed in the metamaterials, which exhibited designable microwave memristive-like behavior. The effect is attributed to the decreasing permittivity of the dielectric cubes with the increasing temperature generated by the interaction between the electromagnetic waves and the dielectric cubes. This work demonstrates the feasibility of fabrication transient photonic memristor at microwave frequencies with metamaterials.

  12. Emitron: microwave diode

    DOEpatents

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  13. AC Josephson effect applications in microwave systems

    NASA Astrophysics Data System (ADS)

    Larkin, Serguey Y.

    1996-12-01

    A complication of the tasks solving by the modem radliolocation, radionavigation and communication systems connected with the demand promotion to the resolution and accuracy of coordinates definition and increase in the volumes of transmitted information in satellite communication systems has resulted in boisterous mastering of millimeter wave bands. Success in microwave technology reached in 80' allowed such leading instrument developing companies as Hewlett Packard; EIP, lB millimeter etc. to set up an output of mm- and submm-wave bands devices and systems. It has streamlined Scientific Technological Progress in several spheres, since millimeter, through infra-red frequency range was closed to researchers for a long period of time because of the absence of necessary equipment. At present microwave devices of the short-wave part of mm- wave band and of submm- wave bands are used not only in radiolocation and communications. Unique diagnostic systems based on the analysis of the radiation parameters of different microwave sources were created. They have their application in medicine, thermonuclear energetics, radioastronomy, biology, nuclear physics, the physics of the solid state body, geology, etc. The above circumstances caused the beginning of the measuring microwave technology researches in 60 to 600 GHz frequency range: generators, power and frequency meters, spectrum analyzers. The task of working out equipment and techniques of the effective control as well as frequency and intensity measurements of the microwave signals in the investigated range is of the special interest. Here are some examples. The creation of a thermonuclear reactor in ITER project is considered to be the project of the century in the energetics sphere. One of the basic engineering tasks in the course of project realization is the creation of the diagnostic equipment realizing in real time spectrum analysis of thermonuclear plasma radiation at the so called cyclotron hannonics. Such analysis allow to get the picture of temperature distribution along the plasma cord diameter in accordance with dynamics of thermonuclear process development. Modem raclioastronomic research gives scientists the unique information on the world tructure. It is also necessary to analyze Space microwave radiation providing exclusive sensitivity of the equipment. In both cases equipment is required to be superwide band, to have high sensitivity and ability to operate at more than 300 GHz frequencies. Today all these requirements are met by the devices using the ac Josephson effect. The Josephson junctions are used as an active transforming element in such devices. At the end of 20 century the sphere of their utilization embraces medicine, communications, radiophysics, space exploration, ecology, military use, etc. The State Research Center "Fonon" ( SRC "Fonon") of the State Committee on Science and Technology of Ukraine was founded in 1991. The main aim of its creation was to concentrate the scientific and financial efforts for development and production of unique devices based on the results of fundamental study in physics of high T superconductivity. First of all we were interested in technological research on the obtaining of low impedance Josephson junctions out of the High T thin films. Using such junctions in combination with our original techniques developed in our Center we have succeed in creating the following new generation equipment: industrial set-up of the frequency meter in the range of 60 ... 600 GHz; experimental set-up of the spectrum analyzer operating in the range of 50 250 GHz; experimental model of radiometric receiver in 180...260 GHz range. All the above devices are based on the using ac Josephson effect for the receiving and processing mm- and submm- microwave signals.

  14. Experimental study of an X-band phase-locked relativistic backward wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y.; Science and Technology on High Power Microwave Laboratory, Mianyang 621900; Li, Z. H.

    2015-11-15

    To achieve high power microwave combined with high frequency band, an X-band phase-locked relativistic backward wave oscillator (RBWO) is proposed and investigated theoretically and experimentally using a modulated electron beam. In the device, an overmoded input cavity and a buncher cavity are employed to premodulate the electron beam. Particle-in-cell simulation shows that an input power of 90 kW is sufficient to lock the frequency and phase of 1.5 GW output microwave with the locking bandwidth of 60 MHz. Moreover, phase and frequency locking of an RBWO has been accomplished experimentally with an output power of 1.5 GW. The fluctuation of the relative phase differencemore » between output microwave and input RF signal is less than ±20° with the locking duration of about 50 ns. The input RF power required to lock the oscillator is only 90 kW.« less

  15. The Impact of Standard Semiconductor Fabrication Processes on Polycrystalline Nb Thin Film Surfaces

    NASA Technical Reports Server (NTRS)

    Brown, Ari David; Barrentine, Emily M.; Moseley, Samuel H.; Noroozian, Omid; Stevenson, Thomas

    2011-01-01

    Polycrystalline superconducting Nb thin films are extensively used for submillimeter and millimeter transmission line applications and, less commonly, used in microwave kinetic inductance detector (MKID) applications. The microwave and mm-wave loss in these films is impacted, in part, by the presence of surface nitrides and oxides. In this study, glancing incidence x-ray diffraction was used to identify the presence of niobium nitride and niobium monoxide surface layers on Nb thin films which had been exposed to chemicals used in standard photolithographic processing. A method of mitigating the presence of ordered niobium monoxide surface layers is presented. Furthermore, we discuss the possibility of using glancing incidence x-ray diffraction as a non-destructive diagnostic tool for evaluating the quality of Nb thin films used in MKIDs and transmission lines. For a given fabrication process, we have both the x-ray diffraction data of the surface chemistry and a measure of the mm-wave and microwave loss, the latter being made in superconducting resonators.

  16. Dynamically reconfigurable holographic metasurface aperture for a Mills-Cross monochromatic microwave camera.

    PubMed

    Yurduseven, Okan; Marks, Daniel L; Fromenteze, Thomas; Smith, David R

    2018-03-05

    We present a reconfigurable, dynamic beam steering holographic metasurface aperture to synthesize a microwave camera at K-band frequencies. The aperture consists of a 1D printed microstrip transmission line with the front surface patterned into an array of slot-shaped subwavelength metamaterial elements (or meta-elements) dynamically tuned between "ON" and "OFF" states using PIN diodes. The proposed aperture synthesizes a desired radiation pattern by converting the waveguide-mode to a free space radiation by means of a binary modulation scheme. This is achieved in a holographic manner; by interacting the waveguide-mode (reference-wave) with the metasurface layer (hologram layer). It is shown by means of full-wave simulations that using the developed metasurface aperture, the radiated wavefronts can be engineered in an all-electronic manner without the need for complex phase-shifting circuits or mechanical scanning apparatus. Using the dynamic beam steering capability of the developed antenna, we synthesize a Mills-Cross composite aperture, forming a single-frequency all-electronic microwave camera.

  17. A novel approach to photonic generate microwave signals based on optical injection locking and four-wave mixing

    NASA Astrophysics Data System (ADS)

    Zhu, Huatao; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zheng, Jilin; Li, Yuandong

    2017-10-01

    In this paper, a novel approach for photonic generation of microwave signals based on frequency multiplication using an injected distributed-feedback (DFB) semiconductor laser is proposed and demonstrated by a proof-of-concept experiment. The proposed system is mainly made up of a dual-parallel Mach-Zehnder modulator (DPMZM) and an injected DFB laser. By properly setting the bias voltage of the DPMZM, ±2-order sidebands with carrier suppression are generated, which are then injected into the slave laser. Due to the optical sideband locking and four-wave mixing (FWM) nonlinearity in the slave laser, new sidebands are generated. Then these sidebands are sent to an optical notch filter where all the undesired sidebands are removed. Finally, after photodetector detection, frequency multiplied microwave signals can be generated. Thanks to the flexibility of the optical sideband locking and FWM, frequency octupling, 12-tupling, 14-tupling and 16-tupling can be obtained.

  18. The Impact of Standard Semiconductor Fabrication Processes on Polycrystalline Nb Thin Film Surfaces

    NASA Technical Reports Server (NTRS)

    Brown, Ari David; Barrentine, Emily M.; Moseley, Samuel H.; Noroozian, Omid; Stevenson, Thomas

    2016-01-01

    Polycrystalline Nb thin films are extensively used for microwave kinetic inductance detectors (MKIDs) and superconducting transmission line applications. The microwave and mm-wave loss in these films is impacted, in part, by the presence of surface nitrides and oxides. In this study, glancing incidence x-ray diffraction was used to identify the presence of niobium nitride and niobium monoxide surface layers on Nb thin films which had been exposed to chemicals used in standard photolithographic processing. A method of mitigating the presence of ordered niobium monoxide surface layers is presented. Furthermore, we discuss the possibility of using glancing incidence x-ray diffraction as a non-destructive diagnostic tool for evaluating the quality of Nb thin films used in MKIDs and transmission lines. For a given fabrication process, we have both the X-ray diffraction data of the surface chemistry and a measure of the mm-wave and microwave loss, the latter being made in superconducting resonators.

  19. Precise and continuous time and frequency synchronisation at the 5×10⁻¹⁹ accuracy level.

    PubMed

    Wang, B; Gao, C; Chen, W L; Miao, J; Zhu, X; Bai, Y; Zhang, J W; Feng, Y Y; Li, T C; Wang, L J

    2012-01-01

    The synchronisation of time and frequency between remote locations is crucial for many important applications. Conventional time and frequency dissemination often makes use of satellite links. Recently, the communication fibre network has become an attractive option for long-distance time and frequency dissemination. Here, we demonstrate accurate frequency transfer and time synchronisation via an 80 km fibre link between Tsinghua University (THU) and the National Institute of Metrology of China (NIM). Using a 9.1 GHz microwave modulation and a timing signal carried by two continuous-wave lasers and transferred across the same 80 km urban fibre link, frequency transfer stability at the level of 5×10⁻¹⁹/day was achieved. Time synchronisation at the 50 ps precision level was also demonstrated. The system is reliable and has operated continuously for several months. We further discuss the feasibility of using such frequency and time transfer over 1000 km and its applications to long-baseline radio astronomy.

  20. Precise and Continuous Time and Frequency Synchronisation at the 5×10-19 Accuracy Level

    PubMed Central

    Wang, B.; Gao, C.; Chen, W. L.; Miao, J.; Zhu, X.; Bai, Y.; Zhang, J. W.; Feng, Y. Y.; Li, T. C.; Wang, L. J.

    2012-01-01

    The synchronisation of time and frequency between remote locations is crucial for many important applications. Conventional time and frequency dissemination often makes use of satellite links. Recently, the communication fibre network has become an attractive option for long-distance time and frequency dissemination. Here, we demonstrate accurate frequency transfer and time synchronisation via an 80 km fibre link between Tsinghua University (THU) and the National Institute of Metrology of China (NIM). Using a 9.1 GHz microwave modulation and a timing signal carried by two continuous-wave lasers and transferred across the same 80 km urban fibre link, frequency transfer stability at the level of 5×10−19/day was achieved. Time synchronisation at the 50 ps precision level was also demonstrated. The system is reliable and has operated continuously for several months. We further discuss the feasibility of using such frequency and time transfer over 1000 km and its applications to long-baseline radio astronomy. PMID:22870385

  1. Broadband Transmission EPR Spectroscopy

    PubMed Central

    Hagen, Wilfred R.

    2013-01-01

    EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9–10 GHz range. Most (bio)molecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin – nuclear spin interactions and electron spin – electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8–2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed. PMID:23555819

  2. Microwave Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Parkin, Kevin L. G.; Lambot, Thomas

    2017-01-01

    We have conducted research in microwave thermal propulsion as part of the space exploration access technologies (SEAT) research program, a cooperative agreement (NNX09AF52A) between NASA and Carnegie Mellon University. The SEAT program commenced on the 19th of February 2009 and concluded on the 30th of September 2015. The DARPA/NASA Millimeter-wave Thermal Launch System (MTLS) project subsumed the SEAT program from May 2012 to March 2014 and one of us (Parkin) served as its principal investigator and chief engineer. The MTLS project had no final report of its own, so we have included the MTLS work in this report and incorporate its conclusions here. In the six years from 2009 until 2015 there has been significant progress in millimeter-wave thermal rocketry (a subset of microwave thermal rocketry), most of which has been made under the auspices of the SEAT and MTLS programs. This final report is intended for multiple audiences. For researchers, we present techniques that we have developed to simplify and quantify the performance of thermal rockets and their constituent technologies. For program managers, we detail the facilities that we have built and the outcomes of experiments that were conducted using them. We also include incomplete and unfruitful lines of research. For decision-makers, we introduce the millimeter-wave thermal rocket in historical context. Considering the economic significance of space launch, we present a brief but significant cost-benefit analysis, for the first time showing that there is a compelling economic case for replacing conventional rockets with millimeter-wave thermal rockets.

  3. Gravitational-wave cosmology across 29 decades in frequency

    DOE PAGES

    Lasky, Paul D.; Mingarelli, Chiara M. F.; Smith, Tristan L.; ...

    2016-03-31

    Here, quantum fluctuations of the gravitational field in the early Universe, amplified by inflation, produce a primordial gravitational-wave background across a broad frequency band. We derive constraints on the spectrum of this gravitational radiation, and hence on theories of the early Universe, by combining experiments that cover 29 orders of magnitude in frequency. These include Planck observations of cosmic microwave background temperature and polarization power spectra and lensing, together with baryon acoustic oscillations and big bang nucleosynthesis measurements, as well as new pulsar timing array and ground-based interferometer limits. While individual experiments constrain the gravitational-wave energy density in specific frequencymore » bands, the combination of experiments allows us to constrain cosmological parameters, including the inflationary spectral index n t and the tensor-to-scalar ratio r. Results from individual experiments include the most stringent nanohertz limit of the primordial background to date from the Parkes Pulsar Timing Array, Ω GW(f) < 2.3 × 10 -10. Observations of the cosmic microwave background alone limit the gravitational-wave spectral index at 95% confidence to n t ≲ 5 for a tensor-toscalar ratio of r = 0.11. However, the combination of all the above experiments limits n t < 0.36. Future Advanced LIGO observations are expected to further constrain n t < 0.34 by 2020. When cosmic microwave background experiments detect a nonzero r, our results will imply even more stringent constraints on n t and, hence, theories of the early Universe.« less

  4. Water Surface Currents, Short Gravity-Capillary Waves and Radar Backscatter

    NASA Technical Reports Server (NTRS)

    Atakturk, Serhad S.; Katsaros, Kristina B.

    1993-01-01

    Despite their importance for air-sea interaction and microwave remote sensing of the ocean surface, intrinsic properties of short gravity-capillary waves are not well established. This is largely due to water surface currents and their effects on the direct measurements of wave parameters conducted at a fixed point. Frequencies of small scale waves propagating on a surface which itself is in motion, are subject to Doppler shifts. Hence, the high frequency tail of the wave spectra obtained from such temporal observations is smeared. Conversion of this smeared measured-frequency spectra to intrinsic-frequency (or wavenumber) spectra requires corrections for the Doppler shifts. Such attempts in the past have not been very successful in particular when field data were used. This becomes evident if the amplitude modulation of short waves by underlying long waves is considered. Microwave radar studies show that the amplitude of a short wave component attains its maximum value near the crests and its minimum in the troughs of the long waves. Doppler-shifted wave data yield similar results but much larger in modulation magnitude, as expected. In general, Doppler shift corrections reduce the modulation magnitude. Overcorrection may result in a negligible modulation or even in a strong modulation with the maximum amplitude in the wave troughs. The latter situation is clearly contradictory to our visual observations as well as the radar results and imply that the advection by currents is overestimated. In this study, a differential-advection approach is used in which small scale waves are advected by the currents evaluated not at the free surface, but at a depth proportional to their wavelengths. Applicability of this approach is verified by the excellent agreement in phase and magnitude of short-wave modulation between results based on radar and on wave-gauge measurements conducted on a lake.

  5. Ultra-High Q Acoustic Resonance in Superfluid ^4He

    NASA Astrophysics Data System (ADS)

    De Lorenzo, L. A.; Schwab, K. C.

    2017-02-01

    We report the measurement of the acoustic quality factor of a gram-scale, kilohertz-frequency superfluid resonator, detected through the parametric coupling to a superconducting niobium microwave cavity. For temperatures between 400 mK and 50 mK, we observe a T^{-4} temperature dependence of the quality factor, consistent with a 3-phonon dissipation mechanism. We observe Q factors up to 1.4× 10^8, consistent with the dissipation due to dilute ^3He impurities, and expect that significant further improvements are possible. These experiments are relevant to exploring quantum behavior and decoherence of massive macroscopic objects, the laboratory detection of continuous gravitational waves from pulsars, and the probing of possible limits to physical length scales.

  6. Application of fluorescent dyes for some problems of bioelectromagnetics

    NASA Astrophysics Data System (ADS)

    Babich, Danylo; Kylsky, Alexandr; Pobiedina, Valentina; Yakunov, Andrey

    2016-04-01

    Fluorescent organic dyes solutions are used for non-contact measurement of the millimeter wave absorption in liquids simulating biological tissue. There is still not any certain idea of the physical mechanism describing this process despite the widespread technology of microwave radiation in the food industry, biotechnology and medicine. For creating adequate physical model one requires an accurate command of knowledge concerning to the relation between millimeter waves and irradiated object. There were three H-bonded liquids selected as the samples with different coefficients of absorption in the millimeter range like water (strong absorption), glycerol (medium absorption) and ethylene glycol (light absorption). The measurements showed that the greatest response to the action of microwaves occurs for glycerol solutions: R6G (building-up luminescence) and RC (fading luminescence). For aqueous solutions the signal is lower due to lower quantum efficiency of luminescence, and for ethylene glycol — due to the low absorption of microwaves. In the area of exposure a local increase of temperature was estimated. For aqueous solutions of both dyes the maximum temperature increase is about 7° C caused with millimeter waves absorption, which coincides with the direct radio physical measurements and confirmed by theoretical calculations. However, for glycerol solution R6G temperature equivalent for building-up luminescence is around 9° C, and for the solution of ethylene glycol it's about 15°. It is assumed the possibility of non-thermal effect of microwaves on the different processes and substances. The application of this non-contact temperature sensing is a simple and novel method to detect temperature change in small biological objects.

  7. RLE progress report no. 133, 1 January - 31 December 1990

    NASA Technical Reports Server (NTRS)

    Allen, Jonathan; Kleppner, Daniel; Ziegler, Mary J. (Editor); Passero, Barbara (Editor)

    1990-01-01

    Activities of the Research Laboratory of Electronics at MIT are summarized. NASA-sponsored research in the area of synthetic aperture radar image interpretation and simulation is described. Other government-sponsored and industry-sponsored studies are also described which address the following topics: microwave and millimeter wave integrated circuits, high-speed integrated circuit interconnects, Instrument Landing System/Microwave Landing System frequency management assessment, and superconducting electronics.

  8. Electromagnetic scattering from microwave absorbers - Laboratory verification of the coupled wave theory

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Jackson, D. M.

    1992-01-01

    W-band measurements of the bistatic scattering function of some common microwave absorbing structures, including periodic wedge-type and pyramid-type iron-epoxy calibration loads and flat carbon-foam 'Echosorb' samples, were made using a network analyzer interface to a focused-lens scattering range. Swept frequency measurements over the 75-100 GHz band revealed specular and Bragg reflection characteristics in the measured data.

  9. Survival of Listeria monocytogenes and Salmonella spp. on catfish exposed to microwave heating in a continuous mode

    USDA-ARS?s Scientific Manuscript database

    Microwave (MW) heating using continuous output may provide better and consistent cooking for foods. Currently, household units with a build-in inverter device are available in which the output is continuous vs. the traditional on-off mode. With an inverter, these MW ovens may provide consistent he...

  10. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) Using Synthetic Aperture Focusing Techniques (SAFT)

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Robbins, J.; Kharkovshy, S.; Hepburn, F. L.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods, have shown great potential for inspecting the SOFI for the purpose of detecting anomalies such as small voids that may cause separation of the foam from the external tank during the launch. These methods are capable of producing relatively high-resolution images of the interior of SOH particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques are being deveioped for this purpose. These iechniqiies pradiice high-resolution images that are independent of the distance of the imaging probe to the SOFI with spatial resolution in the order of the half size of imaging probe aperture. At microwave and millimeter wave frequencies these apertures are inherently small resulting in high-resolution images. This paper provides the results of this investigation using 2D and 3D SAF based methods and holography. The attributes of these methods and a full discussion of the results will also be provided.

  11. Fabrication of a Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors

    NASA Technical Reports Server (NTRS)

    Crowe, Erik J.; Bennett, Charles L.; Chuss, David T.; Denis, Kevin L.; Eimer, Joseph; Lourie, Nathan; Marriage, Tobias; Moseley, Samuel H.; Rostem, Karwan; Stevenson, Thomas R.; hide

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for evidence for gravitational waves from a posited epoch of inflation early in the Universe s history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with excellent control of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs we present work on the fabrication of micromachined silicon, producing conductive quarter-wave backshort assemblies for the CLASS 40 GHz focal plane. Each 40 GHz backshort assembly consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through-wafer vias to provide a 2.04 mm long square waveguide delay section. The third wafer terminates the waveguide delay in a short. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detector chips with the quarter-wave backshort assemblies.

  12. Microwave generation with photonic frequency octupling using a DPMZM in a Sagnac loop

    NASA Astrophysics Data System (ADS)

    Gao, Yongsheng; Wen, Aijun; Li, Ningning; Wu, Xiaohui; Zhang, Huixing

    2015-09-01

    A photonic microwave signal generation scheme with frequency octupling is proposed and experimentally demonstrated. The scheme is based on bi-directional use of a dual-parallel Mach-Zehnder modulator (DPMZM) in a Sagnac loop. The two sub-modulators in the DPMZM are driven by two low-frequency signals with a π/2 phase difference, and the dc biases of the modulator are all set at the maximum transmission points. Due to the velocity mismatch of the modulator, only the light wave along the clockwise direction is effectively modulated by the drive signals to generate an optical signal with a carrier and ±4th order sidebands, while the modulation of the light wave along the counterclockwise direction is far less effective and can be ignored. By properly adjusting the polarization of the light wave output from the Sagnac loop, the optical carrier can be significantly suppressed at a polarizer, and then an optical signal with only ±4th order sidebands is generated. In the experiment, a pure 24-GHz microwave signal without additional phase noise from the optical system is generated using a 3-GHz local oscillator signal. As no electrical or optical filter is used, the photonic frequency octupler is of good frequency tunability.

  13. Application of Atmospheric-Pressure Microwave Line Plasma for Low Temperature Process

    NASA Astrophysics Data System (ADS)

    Suzuki, Haruka; Nakano, Suguru; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka

    2015-09-01

    Atmospheric pressure (AP) plasmas have been given much attention because of its high cost benefit and a variety of possibilities for industrial applications. In various kinds of plasma production technique, pulsed-microwave discharge plasma using slot antenna is attractive due to its ability of high-density and stable plasma production. In this plasma source, however, size of the plasma has been limited up to a few cm in length due to standing wave inside a waveguide. To solve this, we have proposed a newly-developed AP microwave plasma source that utilizes not standing wave but travelling wave. By using this plasma source, spatially-uniform AP line plasma with 40 cm in length was realized by pure helium discharge in 60 cm slot and with nitrogen gas additive of 1%. Furthermore, gas temperature as low as 400 K was realized in this device. In this study, as an example of low temperature processes, hydrophilic treatment of PET films was performed. Processing speed increased with pulse frequency and a water contact angle of ~20° was easily obtained within 5 s with no thermal damage to the substrate. To evaluate treatment-uniformity of long line length, PET films were treated by 90 cm slot-antenna plasma and uniform treatment performance was confirmed.

  14. Space-Qualified Traveling-Wave Tube

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Krawczyk, Richard; Simons, Rainee N.; Williams, Wallace D.; Robbins, Neal R.; Dibb, Daniel R.; Menninger, William L.; Zhai, Xiaoling; Benton, Robert T.

    2010-01-01

    The L-3 Communications Electron Technologies, Inc. Model 999HA traveling-wave tube (TWT), was developed for use as a high-power microwave amplifier for high-rate transmission of data and video signals from deep space to Earth (see figure). The 999HA is a successor to the 999H a non-space qualified TWT described in High-Power, High-Efficiency Ka-Band Traveling-Wave Tube (LEW-17900-1), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 32. Operating in the 31.8-to-32.3 GHz frequency band, the 999HA has been shown to generate 252 W of continuous- wave output power at 62 percent overall power efficiency a 75-percent increase in output power over the 999H. The mass of the 999HA is 35 percent less than that of the 999H. Moreover, taking account of the elimination of a Faraday cage that is necessary for operation of the 999H but is obviated by a redesign of high-voltage feed-throughs for the 999HA, the overall reduction in mass becomes 57 percent with an 82 percent reduction in volume. Through a series of rigorous tests, the 999HA has been qualified for operation aboard spacecraft with a lifetime exceeding seven years. Offspring of the 999HA will fly on the Kepler and Lunar Reconnaissance Orbiter missions.

  15. Characterization and Applications of Micro- and Nano- Ferrites at Microwave and Millimeter Waves

    NASA Astrophysics Data System (ADS)

    Chao, Liu

    Ferrite materials are one of the most widely used magnetic materials in microwave and millimeter wave applications such as radar, wireless communication. They provide unique properties for microwave and millimeter wave devices especially non-reciprocal devices. Some ferrite materials with strong magnetocrystalline anisotropy fields can extend these applications to tens of GHz range while reducing the size, weight and cost. This thesis focuses on characterization of such ferrite materials as micro- and nano-powder and the fabrication of the devices. The ferrite materials with strong magnetocrystalline anisotropy field are metal/non-metal substituted iron oxides oriented in low crystal symmetry. The ferrite materials characterized in this thesis include M-type hexagonal ferrites such as barium ferrite (BaFe12O19), strontium ferrite (SrFe12O19), epsilon phase iron oxide (epsilon-Fe 2O3), substituted epsilon phase iron oxide (epsilon-Ga xFe2-xO3, epsilon-AlxFe2-xO 3). These ferrites exhibit great anisotropic magnetic fields. A transmission-reflection based in-waveguide technique that employs a vector network analyzer was used to determine the scattering parameters for each sample in the microwave bands (8.2--40 GHz). From the S-parameters, complex dielectric permittivity and complex magnetic permeability are evaluated by an improved algorithm. The millimeter wave measurement is based on a free space quasi-optical spectrometer. Initially precise transmittance spectra over a broad millimeter wave frequency range from 40 GHz to 120 GHz are acquired. Later the transmittance spectra are converted into complex permittivity and permeability spectra. These ferrite powder materials are further characterized by x-ray diffraction (XRD) to understand the crystalline structure relating to the strength and the shift of the ferromagnetic resonance affected by the particle size. A Y-junction circulator working in the 60 GHz frequency band is designed based on characterized M-type barium micro- and nano-ferrite. A new fabrication process using ferrite composite is proposed to integrate the Y-junction circulator into the semiconductor substrate. Theoretical design of a high gain Traveling Wave Tube (TWT) amplifier using a metamaterial (MTM) structure and cold-test of the MTM structure are also included in this dissertation. An SWS working around 6 GHz below the X-band waveguide TE10 cutoff frequency is fabricated.

  16. Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD

    NASA Astrophysics Data System (ADS)

    Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group

    2006-10-01

    In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis.

  17. Development of microwave assisted spectrophotometric method for the determination of glucose

    NASA Astrophysics Data System (ADS)

    Ali, Asif; Hussain, Zahid; Arain, Muhammad Balal; Shah, Nasrullah; Khan, Khalid Mohammad; Gulab, Hussain; Zada, Amir

    2016-01-01

    A spectrophotometric method was developed based on the microwave assisted synthesis of Maillard product. Various conditions of the reaction were optimized by varying the relative concentration of the reagents, operating temperature and volume of solutions used in the reaction in the microwave synthesizer. The absorbance of the microwave synthesized Maillard product was measured in the range of 360-740 nm using UV-Visible spectrophotometer. Based on the maximum absorbance, 370 nm was selected as the optimum wave length for further studies. The LOD and LOQ of glucose was found 3.08 μg mL- 1 and 9.33 μg mL- 1 with standard deviation of ± 0.05. The developed method was also applicable to urine sample.

  18. SITE project. Phase 1: Continuous data bit-error-rate testing

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene; Kerczewski, Robert J.

    1992-01-01

    The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER.

  19. Interferometric imaging of nonlocal electromechanical power transduction in ferroelectric domains.

    PubMed

    Zheng, Lu; Dong, Hui; Wu, Xiaoyu; Huang, Yen-Lin; Wang, Wenbo; Wu, Weida; Wang, Zheng; Lai, Keji

    2018-05-22

    The electrical generation and detection of elastic waves are the foundation for acoustoelectronic and acoustooptic systems. For surface acoustic wave devices, microelectromechanical/nanoelectromechanical systems, and phononic crystals, tailoring the spatial variation of material properties such as piezoelectric and elastic tensors may bring significant improvements to the system performance. Due to the much slower speed of sound than speed of light in solids, it is desirable to study various electroacoustic behaviors at the mesoscopic length scale. In this work, we demonstrate the interferometric imaging of electromechanical power transduction in ferroelectric lithium niobate domain structures by microwave impedance microscopy. In sharp contrast to the traditional standing-wave patterns caused by the superposition of counterpropagating waves, the constructive and destructive fringes in microwave dissipation images exhibit an intriguing one-wavelength periodicity. We show that such unusual interference patterns, which are fundamentally different from the acoustic displacement fields, stem from the nonlocal interaction between electric fields and elastic waves. The results are corroborated by numerical simulations taking into account the sign reversal of piezoelectric tensor in oppositely polarized domains. Our work paves ways to probe nanoscale electroacoustic phenomena in complex structures by near-field electromagnetic imaging.

  20. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes

    PubMed Central

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-01-01

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions. PMID:27698443

  1. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Yan; Chen, Changhua; Sun, Jun

    2015-11-07

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the frontmore » end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.« less

  2. Receivers for the Microwave Radiometer on Juno

    NASA Technical Reports Server (NTRS)

    Maiwald, F.; Russell, D.; Dawson, D.; Hatch, W.; Brown, S.; Oswald, J.; Janssen, M.

    2009-01-01

    Six receivers for the MicroWave Radiometer (MWR) are currently under development at JPL. These receivers cover a frequency range of 0.6 to 22 GHz in approximately octave steps, with 4 % bandwidth. For calibration and diagnosis three noise diodes and a Dicke switch are integrated into each receiver. Each receiver is connected to its own antenna which is mounted with its bore sights perpendicular to the spin axis of the spacecraft. As the spacecraft spins at 2 RPM, the antenna field of view scans Jupiter's atmosphere from limb to nadir to limb, measuring microwave emission down to 1000-bar.

  3. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  4. Observational clues to the energy release process in impulsive solar bursts

    NASA Technical Reports Server (NTRS)

    Batchelor, David

    1990-01-01

    The nature of the energy release process that produces impulsive bursts of hard X-rays and microwaves during solar flares is discussed, based on new evidence obtained using the method of Crannell et al. (1978). It is shown that the hard X-ray spectral index gamma is negatively correlated with the microwave peak frequency, suggesting a common source for the microwaves and X-rays. The thermal and nonthermal models are compared. It is found that the most straightforward explanations for burst time behavior are shock-wave particle acceleration in the nonthermal model and thermal conduction fronts in the thermal model.

  5. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  6. Plasma Metamaterials for Arbitrary Complex-Amplitude Wave Filters

    DTIC Science & Technology

    2013-09-10

    plasmas as reflectors , 4 absorbers, 4,5 and antennae 6 of electromagnetic waves. In contrast with the other materials in these devices, parameters...are controlled using launching antenna and high-power wave sources. One of the fundamental facts we have learned in microwave plasmas is that...metamaterials.” 29 In this report, we demonstrate the functional composites of plasmas and metamaterials, and the focusing point is verification of

  7. The Application of the FDTD Method to Millimeter-Wave Filter Circuits Including the Design and Analysis of a Compact Coplanar

    NASA Technical Reports Server (NTRS)

    Oswald, J. E.; Siegel, P. H.

    1994-01-01

    The finite difference time domain (FDTD) method is applied to the analysis of microwave, millimeter-wave and submillimeter-wave filter circuits. In each case, the validity of this method is confirmed by comparison with measured data. In addition, the FDTD calculations are used to design a new ultra-thin coplanar-strip filter for feeding a THz planar-antenna mixer.

  8. Exciting Alfven Waves using Modulated Electron Heating by High Power Microwaves

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2014-10-01

    Experiments exploring the physics of ionospheric modification with intense perpendicular propagating waves (k-> ⊥B->0) on the Large Plasma Device (LaPD) at UCLA have been upgraded with the addition of a high power rapidly pulsed microwave source. The plasma is irradiated with ten pulses (250 kW X-band) near the upper-hybrid frequency. The pulses are modulated at a frequency of a fraction (0.1-1.0) of fci (ion cyclotron frequency). Based on a previous single-pulse experiment, the modulated electron heating may drive a large amplitude shear Alfvén wave (f

  9. MOD Tool (Microwave Optics Design Tool)

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Borgioli, Andrea; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.

    1999-01-01

    The Jet Propulsion Laboratory (JPL) is currently designing and building a number of instruments that operate in the microwave and millimeter-wave bands. These include MIRO (Microwave Instrument for the Rosetta Orbiter), MLS (Microwave Limb Sounder), and IMAS (Integrated Multispectral Atmospheric Sounder). These instruments must be designed and built to meet key design criteria (e.g., beamwidth, gain, pointing) obtained from the scientific goals for the instrument. These criteria are frequently functions of the operating environment (both thermal and mechanical). To design and build instruments which meet these criteria, it is essential to be able to model the instrument in its environments. Currently, a number of modeling tools exist. Commonly used tools at JPL include: FEMAP (meshing), NASTRAN (structural modeling), TRASYS and SINDA (thermal modeling), MACOS/IMOS (optical modeling), and POPO (physical optics modeling). Each of these tools is used by an analyst, who models the instrument in one discipline. The analyst then provides the results of this modeling to another analyst, who continues the overall modeling in another discipline. There is a large reengineering task in place at JPL to automate and speed-up the structural and thermal modeling disciplines, which does not include MOD Tool. The focus of MOD Tool (and of this paper) is in the fields unique to microwave and millimeter-wave instrument design. These include initial design and analysis of the instrument without thermal or structural loads, the automation of the transfer of this design to a high-end CAD tool, and the analysis of the structurally deformed instrument (due to structural and/or thermal loads). MOD Tool is a distributed tool, with a database of design information residing on a server, physical optics analysis being performed on a variety of supercomputer platforms, and a graphical user interface (GUI) residing on the user's desktop computer. The MOD Tool client is being developed using Tcl/Tk, which allows the user to work on a choice of platforms (PC, Mac, or Unix) after downloading the Tcl/Tk binary, which is readily available on the web. The MOD Tool server is written using Expect, and it resides on a Sun workstation. Client/server communications are performed over a socket, where upon a connection from a client to the server, the server spawns a child which is be dedicated to communicating with that client. The server communicates with other machines, such as supercomputers using Expect with the username and password being provided by the user on the client.

  10. 17 CFR 256.931 - Rents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... property of others used, occupied or operated in connection with service company functions. Provide..., computers, data processing equipment, micro-wave and telecommunication equipment, airplanes, automobiles...

  11. PROCESS INTENSIFICATION: MICROWAVE INITIATED REACTIONS USING A CONTINUOUS FLOW REACTOR

    EPA Science Inventory

    The concept of process intensification has been used to develop a continuous narrow channel reactor at Clarkson capable of carrying out reactions under isothermal conditions whilst being exposed to microwave (MW) irradiation thereby providing information on the true effect of mi...

  12. Continuous microwave regeneration apparatus for absorption media

    DOEpatents

    Smith, Douglas D.

    1999-01-01

    A method and apparatus for continuously drying and regenerating ceramic beads for use in process gas moisture drying operations such as glove boxes. A microwave energy source is coupled to a process chamber to internally heat the ceramic beads and vaporize moisture contained therein. In a preferred embodiment, the moisture laden ceramic beads are conveyed toward the microwave source by a screw mechanism. The regenerated beads flow down outside of the screw mechanism and are available to absorb additional moisture.

  13. A study of rain effects on radar scattering from water waves

    NASA Technical Reports Server (NTRS)

    Bliven, Larry F.; Giovanangeli, Jean-Paul; Norcross, George

    1988-01-01

    Results are presented from a laboratory investigation of microwave power return due to rain-generated short waves on a wind wave surface. The wind wave tank, sensor, and data processing methods used in the study are described. The study focuses on the response of a 36-GHz radar system, orientated 30 deg from nadir and pointing upwind, to surface waves generated by various combinations of rain and wind. The results show stronger radar signal levels due to short surface waves generated by rain impacting the wind wave surface, supporting the results of Moore et al. (1979) for a 14-GHz radar.

  14. 47 CFR 101.701 - Eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...

  15. 47 CFR 101.701 - Eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...

  16. 47 CFR 101.701 - Eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...

  17. 47 CFR 101.701 - Eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Common Carrier Fixed Point-to-Point Microwave Service § 101.701 Eligibility. (a) Authorizations... the customers (or points of service) on the microwave system involved, including those served through...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ruilin; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Jia, Jieshu

    The interaction between microwave and large area plasma is crucially important for space communication. Gas pressure, input power, and plasma volume are critical to both the microwave electromagnetic wave phase shift and electron density. This paper presents a novel type of large coaxial gridded hollow cathode plasma having a 50 cm diameter and a 40 cm thickness. Microwave characteristics are studied using a microwave measurement system that includes two broadband antennae in the range from 2 GHz to 18 GHz. The phase shift under varying gas pressure and input power is shown. In addition, the electron density n{sub e}, whichmore » varies from 1.2 × 10{sup 16} m{sup −3} to 8.7 × 10{sup 16} m{sup −3} under different discharge conditions, is diagnosed by the microwave system. The measured results accord well with those acquired by Langmuir Probe measurement and show that the microwave properties in the large volume hollow cathode discharge significantly depend on the input power and gas pressure.« less

  19. Analog of Optical Elements for Sound Waves in Air

    ERIC Educational Resources Information Center

    Gluck, Paul; Perkalskis, Benjamin

    2009-01-01

    Optical elements manipulate light waves. They may be used to focus the light or to change the phase, the polarization, the direction, or the intensity of light. Many of these functions are often demonstrated with microwaves, since the devices normally available in teaching laboratories produce wavelengths in the centimeter range and are therefore…

  20. New materials and techniques for improved mm wave devices

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.

    1991-01-01

    Current research on microwave and mm wave three terminal semiconductor devices is summarized with particular attention given to the development of the pseudomorphic InGaAs modulation-doped field effect transistor (MODFET). Application of the high-indium-concentration MODFET grown on InP in the temperature range of 120-150 K is also described.

  1. Microwave remote sensing from space

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Elachi, C.; Ulaby, F. T.

    1985-01-01

    Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms - soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries.

  2. Analysis of temperature profile and electric field in natural rubber glove due to microwave heating: effects of waveguide position

    NASA Astrophysics Data System (ADS)

    Keangin, P.; Narumitbowonkul, U.; Rattanadecho, P.

    2018-01-01

    Natural rubber (NR) is the key raw material used in the manufacture of other products such as rubber band, tire and shoes. Recently, the NR is used in natural rubber glove ( NRG) manufacturing in the industrial and medical fields. This research aims to investigate the electromagnetic wave propagation and heat transfer in NRG due to heating with microwave energy within the microwave oven at a microwave frequency of 2.45 GHz. Three-dimensional model of NRG and microwave oven are considered in this work. The comparative effects of waveguide position on the electric field and temperature profile in NRG when subjected to microwave energy are discussed. The finite element method (FEM) is used to solve the transient Maxwell’s equation coupled with the transient heat transfer equation. The simulation results with computer programs are validated with experimental results. The placement of waveguides in three cases are left hand side of microwave oven, right hand side of microwave oven and left and right hand sides of microwave oven are investigated. The findings revealed that the placing the waveguide on the right side of the microwave oven gives the highest electric field and temperature profile. The values obtained provide an indication toward understanding the study of heat transfer in NRG during microwave heating in the industry.

  3. Microwave Memristive-like Nonlinearity in a Dielectric Metamaterial

    PubMed Central

    Wu, Hongya; Zhou, Ji; Lan, Chuwen; Guo, Yunsheng; Bi, Ke

    2014-01-01

    Memristor exhibit interesting and valuable circuit properties and have thus become the subject of increasing scientific interest. Scientists wonder if they can conceive a microwave memristor that behaves as a memristor operating with electromagnetic fields. Here, we report a microwave memristive-like nonlinear phenomenon at room temperature in dielectric metamaterials consisting of CaTiO3-ZrO2 ceramic dielectric cubes. Hysteretic transmission-incident field power loops (similar to the hysteretic I-V loop of memristor which is the fingerprint of memristor) with various characteristics were systematically observed in the metamaterials, which exhibited designable microwave memristive-like behavior. The effect is attributed to the decreasing permittivity of the dielectric cubes with the increasing temperature generated by the interaction between the electromagnetic waves and the dielectric cubes. This work demonstrates the feasibility of fabrication transient photonic memristor at microwave frequencies with metamaterials. PMID:24975455

  4. Analytical scanning evanescent microwave microscope and control stage

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2013-01-22

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  5. Analytical scanning evanescent microwave microscope and control stage

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  6. Spectral shape deformation in inverse spin Hall voltage in Y{sub 3}Fe{sub 5}O{sub 12}|Pt bilayers at high microwave power levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustikova, J., E-mail: lustikova@imr.tohoku.ac.jp; Shiomi, Y.; Handa, Y.

    2015-02-21

    We report on the deformation of microwave absorption spectra and of the inverse spin Hall voltage signals in thin film bilayers of yttrium iron garnet (YIG) and platinum at high microwave power levels in a 9.45-GHz TE{sub 011} cavity. As the microwave power increases from 0.15 to 200 mW, the resonance field shifts to higher values, and the initially Lorentzian spectra of the microwave absorption intensity as well as the inverse spin Hall voltage signals become asymmetric. The contributions from opening of the magnetization precession cone and heating of YIG cannot well reproduce the data. Control measurements of inverse spinmore » Hall voltages on thin-film YIG|Pt systems with a range of line widths underscore the role of spin-wave excitations in spectral deformation.« less

  7. Tunable Microwave Transversal Filters.

    DTIC Science & Technology

    1984-05-01

    magnetostatic waves MSW propagating at microwave frequency in magnetically biased, liquid phase epitaxial films of yttrium iron garnet (YIG) grown on...25 uM-thick 3 mm-wide and 15 mm-long YIG film grown by liquid phase epitaxy On a 500 uM-thick ( ) gadolinium gallium garnet (GGG) substrate was used...obtained. The delay line material was prepared by growing YIG films on one inch diameter gallium gadolinium garnet (GGG) wafers using the liquid

  8. Atmospheric microwave refractivity and refraction

    NASA Technical Reports Server (NTRS)

    Yu, E.; Hodge, D. B.

    1980-01-01

    The atmospheric refractivity can be expressed as a function of temperature, pressure, water vapor content, and operating frequency. Based on twenty-year meteorological data, statistics of the atmospheric refractivity were obtained. These statistics were used to estimate the variation of dispersion, attenuation, and refraction effects on microwave and millimeter wave signals propagating along atmospheric paths. Bending angle, elevation angle error, and range error were also developed for an exponentially tapered, spherical atmosphere.

  9. SUNIST Microwave Power System

    NASA Astrophysics Data System (ADS)

    Feng, Songlin; Yang, Xuanzong; Feng, Chunhua; Wang, Long; Rao, Jun; Feng, Kecheng

    2005-06-01

    Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device. The 2.45 GHz/100kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.

  10. Emission, absorption and group delay of microwaves in the atmosphere in relation to water vapour content over the Indian subcontinent

    NASA Technical Reports Server (NTRS)

    Sen, A. K.; Gupta, A. K. D.; Karmakar, P. K.; Barman, S. D.; Bhattacharya, A. B.; Purkait, N.; Gupta, M. K. D.; Sehra, J. S.

    1985-01-01

    The advent of satellite communication for global coverage has apparently indicated a renewed interest in the studies of radio wave propagation through the atmosphere, in the VHF, UHF and microwave bands. The extensive measurements of atmosphere constituents, dynamics and radio meterological parameters during the Middle Atmosphere Program (MAP) have opened up further the possibilities of studying tropospheric radio wave propagation parameters, relevant to Earth/space link design. The three basic parameters of significance to radio propagation are thermal emission, absorption and group delay of the atmosphere, all of which are controlled largely by the water vapor content in the atmosphere, particular at microwave bands. As good emitters are also good absorbers, the atmospheric emission as well as the absorption attains a maximum at the frequency of 22.235 GHz, which is the peak of the water vapor line. The group delay is practically independent of frequency in the VHF, UHF and microwave bands. However, all three parameters exhibit a similar seasonal dependence originating presumably from the seasonal dependence of the water vapor content. Some of the interesting results obtained from analyses of radiosonde data over the Indian subcontinent collected by the India Meteorological Department is presented.

  11. Characterization of microwave plasma in a multicusp using 2D emission based tomography: Bessel modes and wave absorption

    NASA Astrophysics Data System (ADS)

    Rathore, Kavita; Bhattacharjee, Sudeep; Munshi, Prabhat

    2017-06-01

    A tomographic method based on the Fourier transform is used for characterizing a microwave plasma in a multicusp (MC), in order to obtain 2D distribution of plasma emissions, plasma (electron) density (Ne) and temperature (Te). The microwave plasma in the MC is characterized as a function of microwave power, gas pressure, and axial distance. The experimentally obtained 2D emission profiles show that the plasma emissions are generated in a circular ring shape. There are usually two bright rings, one at the plasma core and another near the boundary. The experimental results are validated using a numerical code that solves Maxwell's equations inside a waveguide filled with a plasma in a magnetic field, with collisions included. It is inferred that the dark and bright circular ring patterns are a result of superposition of Bessel modes (TE11 and TE21) of the wave electric field inside the plasma filled MC, which are in reasonable agreement with the plasma emission profiles. The tomographically obtained Ne and Te profiles indicate higher densities in the plasma core (˜1010 cm-3) and enhanced electron temperature in the ECR region (˜13 eV), which are in agreement with earlier results using a Langmuir probe and optical emission spectroscopy (OES) diagnostics.

  12. 47 CFR 101.101 - Frequency availability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... Television Relay Service—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101...-Point Microwave Service—(Part 101, Subparts C & H) PCS: Personal Communications Service—(Part 24) PET...

  13. Microwave and millimeter-wave resonant tunneling diodes

    NASA Technical Reports Server (NTRS)

    Sollner, T. C. L. Gerhard; Brown, Elliott R.; Goodhue, W. D.

    1987-01-01

    Several demonstrated resonant tunneling devices including oscillators, mixers, multiplexers, and a variable negative resistance are discussed. Techniques of the millimeter/submillimeter regime are also discussed.

  14. Scattering of magnetic mirror trapped electrons by an Alfven wave

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.; Karavaev, A. V.; Shao, X.; Sharma, A. S.

    2010-12-01

    Highly energetic particles from large solar flares or other events can be trapped in the Earth’s magnetic mirror field and pose a danger to intricate space satellites. Aiming for artificially de-trapping these particles, an experimental and theoretical study of the interactions of a shear Alfven wave with electrons trapped in a magnetic mirror was performed on the Large Plasma Device (LaPD) at UCLA, with critical parameter ratios matched in the lab plasma to those in space. The experiment was done in a quiescent afterglow plasma with ne≈5×1011cm-3, Te≈0.5eV, B0≈1000G, L=18m, and diameter=60cm. A magnetic mirror was established in LaPD (mirror ratio≈1.5, Lmirror≈3m). An electron population with large v⊥ (E⊥≈1keV) was introduced by microwave heating at upper-hybrid frequency with a 2.45GHz pulsed microwave source at up to 5kW. A shear Alfven wave with arbitrary polarization (fwave≈0.5fci , Bwave/B0≈0.5%) was launched by a Rotating Magnetic Field (RMF) antenna axially 2m away from the center of the mirror. It was observed that the Alfven wave effectively eliminated the trapped electrons. A diagnostic probe was developed for this experiment to measure electrons with large v⊥ in the background plasma. Plasma density and temperature perturbations from the Alfven wave were observed along with electron scattering. Computer simulations tracking single particle motion with wave field are ongoing. In these the Alfven wave’s effect on the electrons pitch angle distribution by a Monte-Carlo method is studied. Planned experiments include upgrading the microwave source for up to 100kW pulses to make electrons with higher transverse energy and longer mirror trapping time. This work is supported by The Office of Naval Research under a MURI award. Work was done at the Basic Plasma Science Facility which is supported by DOE and NSF.

  15. The Effects of Cell Phone Waves (900 MHz-GSM Band) on Sperm Parameters and Total Antioxidant Capacity in Rats.

    PubMed

    Ghanbari, Masoud; Mortazavi, Seyed Bagher; Khavanin, Ali; Khazaei, Mozafar

    2013-04-01

    There is tremendous concern regarding the possible adverse effects of cell phone microwaves. Contradictory results, however, have been reported for the effects of these waves on the body. In the present study, the effect of cell phone microwaves on sperm parameters and total antioxidant capacity was investigated with regard to the duration of exposure and the frequency of these waves. This experimental study was performed on 28 adult male Wistar rats (200-250 g). The animals were randomly assigned to four groups (n=7): i. control; ii. two-week exposure to cell phone-simulated waves; iii. three-week exposure to cell phonesimulated waves; and iv. two-week exposure to cell phone antenna waves. In all groups, sperm analysis was performed based on standard methods and we determined the mean sperm total antioxidant capacity according to the ferric reducing ability of plasma (FRAP) method. Data were analyzed by one-way ANOVA followed by Tukey's test using SPSS version 16 software. The results indicated that sperm viability, motility, and total antioxidant capacity in all exposure groups decreased significantly compared to the control group (p<0.05). Increasing the duration of exposure from 2 to 3 weeks caused a statistically significant decrease in sperm viability and motility (p<0.05). Exposure to cell phone waves can decrease sperm viability and motility in rats. These waves can also decrease sperm total antioxidant capacity in rats and result in oxidative stress.

  16. Development and Implementation of Nationally Recognized Laboratory for Material Characterization in the Microwave and Millimeter Wave Bands

    NASA Technical Reports Server (NTRS)

    Hepburn, Frank L.; Russell, Samuel S.

    2010-01-01

    This report provides a progress update for establishing a laboratory for material characterization in the microwave and millimeter wave bands. During the launch of STS-124 a large area of refractory bricks was liberated from the flame trench built for the exhaust of the solid rocket motors (SRM). The inspection of the liberated area revealed many defects, debonds, corrosion and voids that are a cause for concern relating to the health of the entire flame trench wall. A request for assistance was received for the nondestructive evaluation (NDE) of these anomalies behind the refractory bricks, with the primary interest being a health assessment based on the quality of the brick, epoxy and concrete bond.

  17. High-temperature superconductor antenna investigations

    NASA Technical Reports Server (NTRS)

    Karasack, Vincent G.

    1990-01-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  18. Design of a high efficiency relativistic backward wave oscillator with low guiding magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoze; Song, Wei; Tan, Weibing

    2016-07-15

    A high efficiency relativistic backward wave oscillator working at a low guiding magnetic field is designed and simulated. A trapezoidal resonant reflector is used to reduce the modulation field in the resonant reflector to avoid overmodulation of the electron beam which will lead to a large momentum spread and then low conversion efficiency. The envelope of the inner radius of the slow wave structure (SWS) increases stepwise to keep conformal to the trajectory of the electron beam which will alleviate the bombardment of the electron on the surface of the SWS. The length of period of the SWS is reducedmore » gradually to make a better match between phase velocity and electron beam, which decelerates continually and improves the RF current distribution. Meanwhile the modulation field is reduced by the introduction of nonuniform SWS also. The particle in cell simulation results reveal that a microwave with a power of 1.8 GW and a frequency of 14.7 GHz is generated with an efficiency of 47% when the diode voltage is 620 kV, the beam current 6.1 kA, and the guiding magnetic field 0.95 T.« less

  19. Modular Low-Heater-Power Cathode/Electron Gun Assembly for Microwave and Millimeter Wave Traveling Wave Tubes

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.

    2000-01-01

    A low-cost, low-mass, electrically efficient, modular cathode/electron gun assembly has been developed by FDE Inc. of Beaverton, Oregon, under a Small Business Innovation Research (SBIR) contract with the NASA Glenn Research Center at Lewis Field. This new assembly offers significant improvements in the design and manufacture of microwave and millimeter wave traveling-wave tubes (TWT's) used for radar and communications. It incorporates a novel, low-heater-power, reduced size and mass, high-performance barium dispenser type thermionic cathode and provides for easy integration of the cathode into a large variety of conventional TWT circuits. Among the applications are TWT's for Earth-orbiting communication satellites and for deep space communications, where future missions will require smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. A particularly important TWT application is in the microwave power module (a hybrid microwave/millimeter wave amplifier consisting of a low-noise solid-state driver, a small TWT, and an electronic power conditioner integrated into a single compact package), where electrical efficiency and thermal loading are critical factors and lower cost is needed for successful commercialization. The design and fabrication are based on practices used in producing cathode ray tubes (CRT's), which is one of the most competitive and efficient manufacturing operations in the world today. The approach used in the design and manufacture of thermionic cathodes and electron guns for CRT's has been optimized for fully automated production, standardization of parts, and minimization of costs. It is applicable to the production of similar components for microwave tubes, with the additional benefits of low mass and significantly lower cathode heater power (less than half that of dispenser cathodes presently used in TWT s). Modular cathode/electron gun assembly. The modular cathode/electron gun assembly consists of four subassemblies the cathode, the focus electrode, the header (including the electrical feedthroughs), and the gun envelope (including the anode) a diagram of which is shown. The modular construction offers a number of significant advantages, including flexibility of design, interchangeability of parts, and a drop-in final assembly procedure for quick and accurate alignment. The gun can accommodate cathodes ranging in size from 0.050 to 0.250-in. in diameter and is applicable to TWT's over a broad range of sizes and operating parameters, requiring the substitution of only a few parts: that is, the cathode, focus electrode, and anode. The die-pressed cathode pellets can be made with either flat or concave (Pierce gun design) emitting surfaces. The gun can be either gridded (pulse operation) or ungridded (continuous operation). Important factors contributing to low cost are the greater use of CRT materials and parts, the standardization of processes (welding and mechanical capture), and tooling amenable to automated production. Examples are the use of simple shapes, drawn or stamped metal parts, and parts joined by welding or mechanical capture. Feasibility was successfully demonstrated in the retrofit and testing of a commercial Kaband (22-GHz) TWT. The modular cathode/electron gun assembly was computer modeled to replicate the performance of the original electron gun and fabricated largely from existing CRT parts. Significant test results included demonstration of low heater power (1.5-W, 1010 C brightness temperature for a 0.085-in.-diameter cathode), mechanical ruggedness (100g shock and vibration tests in accordance with military specifications (MIL specs)), and a very fast warmup. The results of these tests indicate that the low-cost CRT manufacturing approach can be used without sacrificing performance and reliability.

  20. Preface to the special issue on "Integrated Microwave Photonic Signal Processing"

    NASA Astrophysics Data System (ADS)

    Azaña, José; Yao, Jianping

    2016-08-01

    As Guest Editors, we are pleased to introduce this special issue on ;Integrated Microwave Photonic Signal Processing; published by the Elsevier journal Optics Communications. Microwave photonics is a field of growing importance from both scientific and practical application perspectives. The field of microwave photonics is devoted to the study, development and application of optics-based techniques and technologies aimed to the generation, processing, control, characterization and/or distribution of microwave signals, including signals well into the millimeter-wave frequency range. The use of photonic technologies for these microwave applications translates into a number of key advantages, such as the possibility of dealing with high-frequency, wide bandwidth signals with minimal losses and reduced electromagnetic interferences, and the potential for enhanced reconfigurability. The central purpose of this special issue is to provide an overview of the state of the art of generation, processing and characterization technologies for high-frequency microwave signals. It is now widely accepted that the practical success of microwave photonics at a large scale will essentially depend on the realization of high-performance microwave-photonic signal-processing engines in compact and integrated formats, preferably on a chip. Thus, the focus of the issue is on techniques implemented using integrated photonic technologies, with the goal of providing an update of the most recent advances toward realization of this vision.

  1. 47 CFR 101.1 - Scope and authority.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... applications for radio station licenses in the fixed microwave services. (b) The purpose of the rules in this..., microwave operations that require transmitting facilities on land or in specified offshore coastal areas...

  2. 47 CFR 101.101 - Frequency availability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...

  3. 47 CFR 101.101 - Frequency availability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...

  4. 47 CFR 101.1 - Scope and authority.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... applications for radio station licenses in the fixed microwave services. (b) The purpose of the rules in this..., microwave operations that require transmitting facilities on land or in specified offshore coastal areas...

  5. 47 CFR 101.1 - Scope and authority.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... applications for radio station licenses in the fixed microwave services. (b) The purpose of the rules in this..., microwave operations that require transmitting facilities on land or in specified offshore coastal areas...

  6. 47 CFR 101.1 - Scope and authority.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... applications for radio station licenses in the fixed microwave services. (b) The purpose of the rules in this..., microwave operations that require transmitting facilities on land or in specified offshore coastal areas...

  7. 47 CFR 101.107 - Frequency tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... to private operational fixed point-to-point microwave and stations providing MVDDS. 5 For private operational fixed point-to-point microwave systems, with a channel greater than or equal to 50 KHz bandwidth...

  8. 47 CFR 101.101 - Frequency availability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE...—(Part 78) CC: Common Carrier Fixed Point-to-Point Microwave Service—(Part 101, Subparts C & I) DBS... Distribution Service—(Part 21) OFS: Private Operational Fixed Point-to-Point Microwave Service—(Part 101...

  9. 47 CFR 101.1 - Scope and authority.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... applications for radio station licenses in the fixed microwave services. (b) The purpose of the rules in this..., microwave operations that require transmitting facilities on land or in specified offshore coastal areas...

  10. Nearshore Processes, Currents and Directional Wave Spectra Monitoring Using Coherent and Non-coherent Imaging Radars

    NASA Astrophysics Data System (ADS)

    Trizna, D.; Hathaway, K.

    2007-05-01

    Two new radar systems have been developed for real-time measurement of near-shore processes, and results are presented for measurements of ocean wave spectra, near-shore sand bar structure, and ocean currents. The first is a non-coherent radar based on a modified version of the Sitex radar family, with a data acquisition system designed around an ISR digital receiver card. The card operates in a PC computer with inputs from a Sitex radar modified for extraction of analogue signals for digitization. Using a 9' antenna and 25 kW transmit power system, data were collected during 2007 at the U.S. Army Corps of Engineers Field Research Facility (FRF), Duck, NC during winter and spring of 2007. The directional wave spectrum measurements made are based on using a sequence of 64 to 640 antenna rotations to form a snapshot series of radar images of propagating waves. A square window is extracted from each image, typically 64 x 64 pixels at 3-m resolution. Then ten sets of 64 windows are submitted to a three-dimensional Fast Fourier Transform process to generate radar image spectra in the frequency-wavenumber space. The relation between the radar image spectral intensity and wave spectral intensity derived from the FRF pressure gauge array was used for a test set of data, in order to establish a modulation transfer function (MTF) for each frequency component. For 640 rotations, 10 of such spectra are averaged for improved statistics. The wave spectrum so generated was compared for extended data sets beyond those used to establish the MTF, and those results are presented here. Some differences between the radar and pressure sensor data that are observed are found to be due to the influence of the wind field, as the radar echo image weakens for light winds. A model is developed to account for such an effect to improve the radar estimate of the directional wave spectrum. The radar ocean wave imagery is severely influenced only by extremely heavy rain-fall rates, so that acceptable quality were assured for most weather conditions on a diurnal basis using a modest tower height. A new coherent microwave radar has recently been developed by ISR and preliminary testing was conducted in the spring of 2007. The radar is based on the Quadrapus four-channel transceiver card, mixed up to microwave frequencies for pulse transmission and back down to base-band for reception. We use frequency-modulated pulse compression methods to obtain 3-m spatial resolution. A standard marine radar pedestal is used to house the microwave components, and rotating radar PPI images similar to marine radar images are obtained. Many of the methods used for the marine radar system have been transferred to the coherent imaging radar. New processing methods applied to the coherent data allow summing of radial velocity images to map mean currents in the near shore zone, such as rip currents. A pair of such radars operating with a few hundred meter separation can be used to map vector currents continuously in the near shore zone and in harbors on a timely basis. Results of preliminary testing of the system will be presented.

  11. Microwave heat treating of manufactured components

    DOEpatents

    Ripley, Edward B.

    2007-01-09

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  12. Microwave generation in an electro-absorption modulator integrated with a DFB laser subject to optical injection.

    PubMed

    Zhu, Ning Hua; Zhang, Hong Guang; Man, Jiang Wei; Zhu, Hong Liang; Ke, Jian Hong; Liu, Yu; Wang, Xin; Yuan, Hai Qing; Xie, Liang; Wang, Wei

    2009-11-23

    This paper presents a new technique to generate microwave signal using an electro-absorption modulator (EAM) integrated with a distributed feedback (DFB) laser subject to optical injection. Experiments show that the frequency of the generated microwave can be tuned by changing the wavelength of the external laser or adjusting the bias voltage of the EAM. The frequency response of the EAM is studied and found to be unsmooth due to packaging parasitic effects and four-wave mixing effect occurring in the active layer of the DFB laser. It is also demonstrated that an EA modulator integrated in between two DFB lasers can be used instead of the EML under optical injection. This integrated chip can be used to realize a monolithically integrated tunable microwave source.

  13. On-chip integration of a superconducting microwave circulator and a Josephson parametric amplifier

    NASA Astrophysics Data System (ADS)

    Rosenthal, Eric I.; Chapman, Benjamin J.; Moores, Bradley A.; Kerckhoff, Joseph; Malnou, Maxime; Palken, D. A.; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; Lehnert, K. W.

    Recent progress in microwave amplification based on parametric processes in superconducting circuits has revolutionized the measurement of feeble microwave signals. These devices, which operate near the quantum limit, are routinely used in ultralow temperature cryostats to: readout superconducting qubits, search for axionic dark matter, and characterize astrophysical sensors. However, these amplifiers often require ferrite circulators to separate incoming and outgoing traveling waves. For this reason, measurement efficiency and scalability are limited. In order to facilitate the routing of quantum signals we have created a superconducting, on-chip microwave circulator without permanent magnets. We integrate our circulator on-chip with a Josephson parametric amplifier for the purpose of near quantum-limited directional amplification. In this talk I will present a design overview and preliminary measurements.

  14. Recording and reproduction of microwave holograms using a scanning procedure and their subsequent optical processing

    NASA Technical Reports Server (NTRS)

    Hetsch, J.

    1983-01-01

    Intensity distributions in nonoptical wave fields can be visualized and stored on photosensitive material. In the case of microwaves, temperature effects can be utilized with the aid of liquid crystals to visualize intensity distributions. Particular advantages for the study of intensity distributions in microwave fields presents a scanning procedure in which a microcomputer is employed for the control of a probe and the storage of the measured data. The present investigation is concerned with the employment of such a scanning procedure for the recording and the reproduction of microwave holograms. The scanning procedure makes use of an approach discussed by Farhat, et al. (1973). An eight-bit microprocessor with 64 kBytes of RAM is employed together with a diskette storage system.

  15. Probing pre-inflationary anisotropy with directional variations in the gravitational wave background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuya, Yu; Niiyama, Yuki; Sendouda, Yuuiti, E-mail: furuya@tap.st.hirosaki-u.ac.jp, E-mail: niiyama@tap.st.hirosaki-u.ac.jp, E-mail: sendouda@hirosaki-u.ac.jp

    We perform a detailed analysis on a primordial gravitational-wave background amplified during a Kasner-like pre-inflationary phase allowing for general triaxial anisotropies. It is found that the predicted angular distribution map of gravitational-wave intensity on large scales exhibits topologically distinctive patterns according to the degree of the pre-inflationary anisotropy, thereby serving as a potential probe for the pre-inflationary early universe with future all-sky observations of gravitational waves. We also derive an observational limit on the amplitude of such anisotropic gravitational waves from the B -mode polarisation of the cosmic microwave background.

  16. Microwave emission and scattering from Earth surface and atmosphere

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Lee, M. C.

    1986-01-01

    Nonlinear Electromagnetic (EM) wave interactions with the upper atmosphere were investigated during the period 15 December 1985 to 15 June 1986. Topics discussed include: the simultaneous excitation of ionospheric density irregularities and Earth's magnetic field fluctuations; the electron acceleration by Langmuir wave turbulence; and the occurrence of artificial spread F. The role of thermal effects in generating ionospheric irregularities by Whistler waves, intense Quasi-DC electric fields, atmospheric gravity waves, and electrojets was investigated. A model was developed to explain the discrete spectrum of the resonant ultralow frequency (ULF) waves that are commonly observed in the magnetosphere.

  17. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors

    NASA Astrophysics Data System (ADS)

    Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick

    2010-08-01

    This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH3)2]+, with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 °C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH3)2]+, by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size ~3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min-1) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).

  18. Path Entanglement of Continuous-Variable Quantum Microwaves

    NASA Astrophysics Data System (ADS)

    Menzel, E. P.; Deppe, F.; Eder, P.; Zhong, L.; Haeberlein, M.; Baust, A.; Hoffmann, E.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ballester, D.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.

    2013-03-01

    Entanglement is a quantum mechanical phenomenon playing a key role in quantum communication and information processing protocols. Here, we report on frequency-degenerate entanglement between continuous-variable quantum microwaves propagating along two separated paths. In our experiment, we combine a squeezed and a vacuum state via a beam splitter. Overcoming the challenges imposed by the low photon energies in the microwave regime, we reconstruct the squeezed state and, independently from this, detect and quantify the produced entanglement via correlation measurements (E. P. Menzel et al., arXiv:1210.4413). Our work paves the way towards quantum communication and teleportation with continuous variables in the microwave regime. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED and PROMISCE, MEXT Kakenhi ``Quantum Cybernetics'', JSPS FIRST Program, the NICT Commissioned Research, EPSRC EP/H050434/1, Basque Government IT472-10, and Spanish MICINN FIS2009-12773-C02-01.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.L.; Foster, D. Jr.; Wilson, C.T.

    The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collectedmore » by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm{sup 2}/s and 4.9 cm{sup 3}/S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard.« less

  20. Oil extraction from Scenedesmus obliquus using a continuous microwave system--design, optimization, and quality characterization.

    PubMed

    Balasubramanian, Sundar; Allen, James D; Kanitkar, Akanksha; Boldor, Dorin

    2011-02-01

    A 1.2 kW, 2450 MHz resonant continuous microwave processing system was designed and optimized for oil extraction from green algae (Scenedesmus obliquus). Algae-water suspension (1:1 w/w) was heated to 80 and 95°C, and subjected to extraction for up to 30 min. Maximum oil yield was achieved at 95°C and 30 min. The microwave system extracted 76-77% of total recoverable oil at 20-30 min and 95°C, compared to only 43-47% for water bath control. Extraction time and temperature had significant influence (p<0.0001) on extraction yield. Oil analysis indicated that microwaves extracted oil containing higher percentages of unsaturated and essential fatty acids (indicating higher quality). This study validates for the first time the efficiency of a continuous microwave system for extraction of lipids from algae. Higher oil yields, faster extraction rates and superior oil quality demonstrate this system's feasibility for oil extraction from a variety of feedstock. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Development of New Electro-Optic and Acousto-Optic Materials.

    DTIC Science & Technology

    1983-11-01

    Improved materials are required for active optical devices, including electro - optic and acousto-optic modulators, switches and tunable filters, as...many microwave applications. In addition, electro - optic and acousto-optic devices are materials limited because the materials currently available are...these materials for applications involving the electro - optic effect, degenerate four-wave mixing and surface acoustic wave technology.

  2. Microwave bale moisture sensing: Field trial continued

    USDA-ARS?s Scientific Manuscript database

    A microwave moisture measurement technique was developed at the USDA, ARS Cotton Production and Processing Research Unit for moisture sensing of cotton bales after the bale press. The technique measures the propagation delay of a microwave signal that is transmitted through the cotton bale. This res...

  3. CONTINUOUS FLOW MICROWAVE REACTORS FOR ORGANIC SYNTHESIS: HYDRODECHLORINATION, HETROCYCLIZATION, ISOMERIZATION

    EPA Science Inventory

    Microwave heating has been sought as a convenient way of enhancing chemical processes. The advantages of microwave heating, such as selective direct heating of materials of a catalytic site, minimized fouling on hot surfaces, process simplicity, rapid startup, as well as the pos...

  4. CONTINUOUS MICROWAVE REACTORS FOR ORGANIC SYNTHESIS: HYDRODECHLORINATION AND HYDROLYSIS

    EPA Science Inventory

    Microwave heating has been sought as a convenient way of enhancing chemical processes. The advantages of microwave heating, such as selective direct heating of materials of a catalytic site, minimized fouling on hot surfaces, process simplicity, rapid startup, as well as the poss...

  5. Fabrication and characterization of GaAs Schottky barrier photodetectors for microwave fiber optic links

    NASA Astrophysics Data System (ADS)

    Blauvelt, H.; Thurmond, G.; Parsons, J.; Lewis, D.; Yen, H.

    1984-08-01

    High-speed GaAs Schottky barrier photodiodes have been fabricated and characterized. These detectors have 3-dB bandwidths of 20 GHz and quantum efficiencies as high as 70 percent. The response of the detectors to light modulated at 1-18 GHz has been directly measured. Microwave modulated optical signals were obtained by using a LiNbO3 traveling wave modulator and by heterodyning two laser diodes.

  6. Radar System Characterization Extended to Hardware-in-the-Loop Simulation for the Lab-Volt (Trademark) Training System

    DTIC Science & Technology

    2007-09-01

    devices such as klystrons , magnetrons, and traveling wave tubes. These microwave devices produce high power levels but may have limited bandwidths [20...diagram. The specific arrangement of components within a RADAR transmitter varies with operational specifications. Two options exist to produce high power ...cascading to generate sufficient power [20]. The second option to generate high power levels is to replace RF oscillators and amplifiers with microwave

  7. Bioelectromagnetic Effects of EMP: Preliminary Findings

    DTIC Science & Technology

    1988-06-01

    microwave hearing effect in which low- level microwave pulses are absorbed in the head and transduced into thermoelastic stress waves which are audible to...cycles can be used to hold SARs down to reasonable levels . 2.4 INTERNAL FIELD STRENGTHS PRODUCED IN HUMANS AND LABORATORY ANIMALS DURING EMP...rcplicate tests just like this one would be expected to detect that change? Answer: 69.85% of them could detect that change. dGenerally, a 90% level of

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ioannisian, Ara N.; Kazarian, Narine; Millar, Alexander J.

    Axion-photon conversion at dielectric interfaces, immersed in a near-homogeneous magnetic field, is the basis for the dielectric haloscope method to search for axion dark matter. In analogy to transition radiation, this process is possible because the photon wave function is modified by the dielectric layers ('Garibian wave function') and is no longer an eigenstate of momentum. A conventional first-order perturbative calculation of the transition probability between a quantized axion state and these distorted photon states provides the microwave production rate. It agrees with previous results based on solving the classical Maxwell equations for the combined system of axions and electromagneticmore » fields. We argue that in general the average photon production rate is given by our result, independently of the detailed quantum state of the axion field. Moreover, our result provides a new perspective on axion-photon conversion in dielectric haloscopes because the rate is based on an overlap integral between unperturbed axion and photon wave functions, in analogy to the usual treatment of microwave-cavity haloscopes.« less

  9. A high-power microwave circular polarizer and its application on phase shifter.

    PubMed

    Shao, Hao; Hu, Yongmei; Chang, Chao; Guo, Letian

    2016-04-01

    A high-power waveguide dual circular polarizer was theoretically designed and proof-of-principle was experimentally tested. It consists of two incident rectangular waveguides with a perpendicular H-plane junction, one circular waveguide with a pair of trapezoidal grooves coupled in E-plane at the top, a spherical crown located at the bottom, and an iris at the perpendicular junction of two rectangular waveguides. When wave incidents at one of the two separated rectangular waveguides, it, respectively, generates a left-hand circular polarized wave or a right-hand circular polarized wave in the circular waveguide. By adding a dumbbell-like metal plug driven with a high speed servomotor, a movable short circuit is formed along the circular waveguide to adjust the output RF phase of the rectangular port, realizing a high-speed high-power phase shifter. The C-band high power microwave (HPM) experiments were carried out, and the power capacity of the HPM polarizer and phase shifter was demonstrated to reach gigawatt level.

  10. Antenna-coupled Superconducting Bolometers for Observations of the Cosmic Microwave Background Polarization

    NASA Astrophysics Data System (ADS)

    Myers, Michael James

    We describe the development of a novel millimeter-wave cryogenic detector. The device integrates a planar antenna, superconducting transmission line, bandpass filter, and bolometer onto a single silicon wafer. The bolometer uses a superconducting Transition-Edge Sensor (TES) thermistor, which provides substantial advantages over conventional semiconductor bolometers. The detector chip is fabricated using standard micro-fabrication techniques. This highly-integrated detector architecture is particularly well-suited for use in the de- velopment of polarization-sensitive cryogenic receivers with thousands of pixels. Such receivers are needed to meet the sensitivity requirements of next-generation cosmic microwave background polarization experiments. The design, fabrication, and testing of prototype array pixels are described. Preliminary considerations for a full array design are also discussed. A set of on-chip millimeter-wave test structures were developed to help understand the performance of our millimeter-wave microstrip circuits. These test structures produce a calibrated transmission measurement for an arbitrary two-port circuit using optical techniques, rather than a network analyzer. Some results of fabricated test structures are presented.

  11. Experimental Verification of Guided-Wave Lumped Circuits Using Waveguide Metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Yue; Zhang, Zhijun

    2018-04-01

    Through the construction and characterization in microwave frequencies, we experimentally demonstrate our recently developed theory of waveguide lumped circuits, i.e., waveguide metatronics [Sci. Adv. 2, e1501790 (2016), 10.1126/sciadv.1501790], as a method to design subwavelength-scaled analog circuits. In the paradigm of waveguide metatronics, numbers of lumped inductors and capacitors are easily integrated functionally inside the waveguide, which is an irreplaceable transmission line in millimeter-wave and terahertz systems with the advantages of low radiation loss and low crosstalk. An example of multiple-ordered metatronic filters with layered structures is fabricated utilizing the technique of substrate integrated waveguides, which can be easily constructed by the printed-circuit-board process. The materials used in the construction are also typical microwave materials with positive permittivity, low loss, and negligible dispersion, imitating the plasmonic materials with negative permittivity in the optical domain. The results verify the theory of waveguide metatronics, which provides an efficient platform of functional lumped circuit design for guided-wave processing.

  12. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization.

    PubMed

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic; Gear, Walter K

    2006-09-20

    An achromatic half-wave plate (HWP) to be used in millimeter cosmic microwave background (CMB) polarization experiments has been designed, manufactured, and tested. The design is based on the 5-plates Pancharatnam recipe and it works in the frequency range 85-185 GHz. A model has been used to predict the transmission, reflection, absorption, and phase shift as a function of frequency. The HWP has been tested by using coherent radiation from a back-wave oscillator to investigate its modulation efficiency and with incoherent radiation from a polarizing Fourier transform spectrometer (FTS) to explore its frequency behavior. The FTS measurements have been fitted with an optical performance model which is in excellent agreement with the data. A detailed analysis of the data also allows a precise determination of the HWP fast and slow axes in the frequency band of operation. A list of the HWP performance characteristics is reported including estimates of its cross polarization.

  13. Low-current traveling wave tube for use in the microwave power module

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond W.; Ramins, Peter; Force, Dale A.; Dayton, James A.; Ebihara, Ben T.; Gruber, Robert P.

    1993-01-01

    The results of a traveling-wave-tube/multistage depressed-collector (TWT-MDC) design study in support of the Advanced Research Projects Agency/Department of Defense (ARPA/DOD) Microwave Power Module (MPM) Program are described. The study stressed the possible application of dynamic and other tapers to the RF output circuit of the MPM traveling wave tube as a means of increasing the RF and overall efficiencies and reducing the required beam current (perveance). The results indicate that a highly efficient, modified dynamic velocity taper (DVT) circuit can be designed for the broadband MPM application. The combination of reduced cathode current (lower perveance) and increased RF efficiency leads to (1) a substantially higher overall efficiency and reduction in the prime power to the MPM, and (2) substantially reduced levels of MDC and MPM heat dissipation, which simplify the cooling problems. However, the selected TWT circuit parameters need to be validated by cold test measurements on actual circuits.

  14. The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD

    NASA Astrophysics Data System (ADS)

    Yin, Lianhua; Chen, Qiang

    2017-12-01

    In this paper we report the investigation of diamond-like carbon (DLC) deposited by microwave surface-wave plasma enhanced chemical vapor deposition (PECVD) on the polyethylene terephthalate (PET) web for the purpose of the barrier property improvement. In order to characterize the properties of DLC coatings, we used several substrates, silicon wafer, glass, and PET web and KBr tablet. The deposition rate was obtained by surface profiler based on the DLC deposited on glass substrates; Fourier transform infrared spectroscope (FTIR) was carried out on KBr tablets to investigate chemical composition and bonding structure; the morphology of the DLC coating was analyzed by atomic force microscope (AFM) on Si substrates. For the barrier properties of PET webs, we measured the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) after coated with DLC films. We addressed the film barrier property related to process parameters, such as microwave power and pulse parameter in this work. The results show that the DLC coatings can greatly improve the barrier properties of PET webs.

  15. Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background.

    PubMed

    Luminet, Jean-Pierre; Weeks, Jeffrey R; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Philippe

    2003-10-09

    The current 'standard model' of cosmology posits an infinite flat universe forever expanding under the pressure of dark energy. First-year data from the Wilkinson Microwave Anisotropy Probe (WMAP) confirm this model to spectacular precision on all but the largest scales. Temperature correlations across the microwave sky match expectations on angular scales narrower than 60 degrees but, contrary to predictions, vanish on scales wider than 60 degrees. Several explanations have been proposed. One natural approach questions the underlying geometry of space--namely, its curvature and topology. In an infinite flat space, waves from the Big Bang would fill the universe on all length scales. The observed lack of temperature correlations on scales beyond 60 degrees means that the broadest waves are missing, perhaps because space itself is not big enough to support them. Here we present a simple geometrical model of a finite space--the Poincaré dodecahedral space--which accounts for WMAP's observations with no fine-tuning required. The predicted density is Omega(0) approximately 1.013 > 1, and the model also predicts temperature correlations in matching circles on the sky.

  16. High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies.

    PubMed

    Zhang, Dawei; Zhang, Kuang; Wu, Qun; Ding, Xumin; Sha, Xuejun

    2017-02-06

    In this paper, a planar waveguide based on spoof surface plasmon polaritons (SSPPs) with metals on both sides of the corrugated strip as grounds is firstly proposed in microwave region. Simple and efficient conversion between guided waves and SSPPs is realized by gradient corrugated strip with grounds on both sides. Compared with plasmonic waveguide with flaring ground [Laser Photonics Rev. 8, 146 (2014)], the addition of grounds suppresses the radiation loss effectively and improves the low-frequency performance with tighter field confinement, which leads to a wider operating bandwidth. Moreover, as the asymptotic frequency of SSPPs decreasing, the confinement of SSPPs is further enhanced by a defected ground structure (DGS), which is achieved by the periodic grooves symmetrical to those on the corrugated strip. Therefore, miniaturization of the proposed waveguide can be realized. Measured results validate both high efficiency of momentum and impedance matching and enhanced performance in the region of lower frequencies with the wave vectors close to those in free space. Such results have significant values in plasmonic functional devices and integrated circuits in microwave frequencies.

  17. Apparatus with moderating material for microwave heat treatment of manufactured components

    DOEpatents

    Ripley, Edward B [Knoxville, TN

    2011-05-10

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  18. Apparatus for microwave heat treatment of manufactured components

    DOEpatents

    Babcock & Wilcox Technical Services Y-12, LLC

    2008-04-15

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  19. Methods for microwave heat treatment of manufactured components

    DOEpatents

    Ripley, Edward B.

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  20. Dielectric Haloscopes: A New Way to Detect Axion Dark Matter.

    PubMed

    Caldwell, Allen; Dvali, Gia; Majorovits, Béla; Millar, Alexander; Raffelt, Georg; Redondo, Javier; Reimann, Olaf; Simon, Frank; Steffen, Frank

    2017-03-03

    We propose a new strategy to search for dark matter axions in the mass range of 40-400 μeV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks with adjustable distances boost the microwave signal (10-100 GHz) to an observable level and allow one to scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of 1  m^{2} area contained in a 10 T field.

  1. Wavelength locking of CW and Q-switched Er(3+) microchip lasers to acetylene absorption lines using pump-power modulation.

    PubMed

    Brunel, Marc; Vallet, Marc

    2007-02-19

    We show that modulating the diode-pump power of a microchip solid-state laser enables to lock its wavelength to a reference molecular line. The method is applied to two different types of Er,Yb:glass monolithic microchip lasers operating at 1.53 microm. First, wavelength locking of a continuous-wave dual-polarization microchip laser to acetylene absorption lines is demonstrated, without using any additional modulator, internal or external. We then show that, remarkably, this simple method is also suitable for stabilizing a passively Q-switched microchip laser. A pulsed wavelength stability of 10(-8) over 1 hour is readily observed. Applications to lidars and to microwave photonics are discussed.

  2. Second Beamed Space-Power Workshop

    NASA Technical Reports Server (NTRS)

    Deyoung, Russell J. (Editor)

    1989-01-01

    Potential missions for microwave and laser power beaming in space are discussed. Power beaming options, millimeter wave technology, laser technology, lunar bases, spacecraft propulsion, and near-Earth applications are covered.

  3. Measurement of ICRF wave propagation using a microwave reflectometer with fast antenna switching on GAMMA 10

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Sekine, R.; Kubota, Y.; Shima, Y.; Kohagura, J.; Yoshikawa, M.; Sakamoto, M.; Nakashima, Y.

    2017-12-01

    Slow Alfvén wave in ion cyclotron range of frequency (ICRF) is a powerful tool to heat ions confined in a mirror field. In spite of its efficient heating effect that has been attained in the central cell of GAMMA 10, there are still unknown characteristics concerning boundary condition, transient variation of heating effect, exact picture of cyclotron damping, and so on. To study these characteristics in detail, a multi-point measurement of the waves inside the hot plasma has been recently developed by using a microwave reflectometer. In addition to a radial profile measurement that is available by a usual reflectometer, an axial measurement has been achieved by arraying transmitting and receiving horn antennas in the axial direction, which are repeatedly switched in time during a discharge with PIN diode switches. Another transmitting and receiving horn antenna pair was newly added to the system and probing at five cross sections was achieved in a single discharge with time resolution of about 1 ms at each antenna pair position. With the upgraded reflectometer system, axial and radial distributions of wave-induced fluctuations and those temporal behavior were clearly observed, offering valuable data on wave physics in a hot mirror plasma.

  4. Strip dielectric wave guide antenna-for the measurement of dielectric constant of low-loss materials

    NASA Astrophysics Data System (ADS)

    Rastogi, Alok Kumar; Tiwari, A. K.; Shrivastava, R. P.

    1993-07-01

    The value of dielectric constant are the most important parameters in material science technology. In micro-wave and millimeter wave circuits using dielectric materials the values of this parameters should be known accurately. It is observed that the number of methods are reported in litrature, however these methods impose difficulties in experimentation and are not very accurate. In this paper a novel approach to the measurement of the dielectric constant of low loss materials at micro-wave and millimeter wave frequencies has been discussed. In this method by using antenna theory, a metallic strip dielectric guide is taken in to constideration and band reject phenomenon of dielectric antenna is used. Frequency response of an antenna in band reject mode is a function of the dimensional parameters, such as the metallic strip period, the profile of the metallic strip and the dielectric constant of the material used. Hence if one measure the frequency responce of the antenna in band reject mode, the dielectric constant of the material is determined provided all other parameters are known. This method gives a direct measure of dielectric constant and is quite accurate as computer techniques are used for evaluating the dielectric constant. This method verified experimentally also.

  5. Communications Transceivers for Venus Surface Missions

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2004-01-01

    The high temperature of the surface of Venus poses many difficulties. Previous Venus landers have only operated for short durations before succumbing to the heat. NASA Glenn Research Center conducted a study on communications for long duration Venus surface missions. I report the findings in this presentation. Current technology allows production of communications transceivers that can operate on the surface of Venus, at temperatures above 450 C and pressures of over 90 atmospheres. While these transceivers would have to be relatively simple, without much of the advanced signal processing often used in modern transceivers, since current and near future integrated circuits cannot operate at such high temperatures, the transceivers will be able to meet the requirements of proposed Venus Surface mission. The communication bands of interest are High Frequency or Very High Frequency (HFNHF) for communication between Venus surface and airborne probes (including surface to surface and air to air), and Ultra High Frequency (UHF) to Microwave bands for communication to orbiters. For HFNHF, transceivers could use existing vacuum tube technology. The packaging of the vacuum tubes may need modification, but the internal operating structure already operates at high temperatures. Using metal vacuum structures instead of glass, allows operation at high pressure. Wide bandgap transistors and diodes may be able to replace some of the thermionic components. VHF communications would be useful for line-of- sight operations, while HF would be useful for short-wave type communications using the Venusian ionosphere. UHF and microwave communications use magnetically focused thermionic devices, such as traveling wave tubes (TWTs), magnetron (M-type) amplifiers, and klystrons for high power amplifiers, and backward wave oscillators (BWOs) and reflex klystrons for oscillators. Permanent magnets are already in use in industry that can operate at 500 C. These magnets could focus electron beam tubes on the surface of Venus. While microwave windows will need to be designed for the high pressure, diamond windows have already been demonstrated, so high-pressure microwave windows can be designed and built. Thus, all of these devices could be useful for Venus surface missions. Current electronic power conditioners to supply the high voltages used in these microwave devices cannot operate at high temperatures, but earlier electronic power conditioners that used vacuum tubes can be modified to work at high temperature. Evaluating the various devices in this study, the M-type traveling wave tube (where a traveling wave structure is used in a crossed-field device, similar to the Amplitron used on the Apollo missions) stood out for the high power amplifier since it requires a single high voltage, simplifying the power supply design. Since the receiver amplifier is a low power amplifier, the loss of efficiency in linear beam devices without a depressed collector (and thus needing a single high voltage) is not important; a low noise TWT is a possible solution. Before solid-state microwave amplifiers were available, such TWTs were built with a 1-2 dB noise figure. A microwave triode or transistor made from a wide bandgap material may be preferable, if available. Much of the development work needed for Venusian communication devices will need to focus on the packaging of the devices, and their connections, but the technology is available to build transceivers that can operate on the surface of Venus indefinitely.

  6. Current Operational Use of and Future Needs for Microwave Imagery at NOAA

    NASA Astrophysics Data System (ADS)

    Goldberg, M.; McWilliams, G.; Chang, P.

    2017-12-01

    There are many applications of microwave imagery served by NOAA's operational products and services. They include the use of microwave imagery and derived products for monitoring precipitation, tropical cyclones, sea surface temperature under all weather conditions, wind speed, snow and ice cover, and even soil moisture. All of NOAA's line offices including the National Weather Service, National Ocean Service, National Marine Fisheries Service, and Office of Oceanic and Atmospheric Research rely on microwave imagery. Currently microwave imagery products used by NOAA come from a constellation of satellites that includes Air Force's Special Sensor Microwave Imager Sounder (SSMIS), the Japanese Advanced Microwave Scanning Radiometer (AMSR), the Navy's WindSat, and NASA's Global Precipitation Monitoring (GPM) Microwave Imager (GMI). Follow-on missions for SSMIS are very uncertain, JAXA approval for a follow-on to AMSR2 is still pending, and GMI is a research satellite (lacking high-latitude coverage) with no commitment for operational continuity. Operational continuity refers to a series of satellites, so when one satellite reaches its design life a new satellite is launched. EUMETSAT has made a commitment to fly a microwave imager in the mid-morning orbit. China and Russia have demonstrated on-orbit microwave imagers. Of utmost importance to NOAA, however, is the quality, access, and latency of the data This presentation will focus on NOAA's current requirements for microwave imagery data which, for the most part, are being fulfilled by AMSR2, SSMIS, and WindSat. It will include examples of products and applications of microwave imagery at NOAA. We will also discuss future needs, especially for improved temporal resolution which hopefully can be met by an international constellation of microwave imagers. Finally, we will discuss what we are doing to address the potential gap in imagery.

  7. Continuity of Climate Data Records derived from Microwave Observations

    NASA Astrophysics Data System (ADS)

    Mears, C. A.; Wentz, F. J.; Brewer, M.; Meissner, T.; Ricciardulli, L.

    2017-12-01

    Remote Sensing Systems (www.remss.com) has been producing and distributing microwave climate data products from microwave imagers (SSMI, TMI, AMSR, WindSat, GMI, Aquarius, SMAP) over the global oceans since the launch of the first SSMI in 1987. Interest in these data products has been significant as researchers around the world have downloaded the approximate equivalent of 1 million satellite years of processed data. Users, including NASA, NOAA, US National Laboratories, US Navy, UK Met, ECMWF, JAXA, JMA, CMC, the Australian Bureau of Meteorology, as well as many hundreds of other agencies and universities routinely access these microwave data products. The quality of these data records has increased as more observations have become available and inter-calibration techniques have improved. The impending end of missions for WindSat, AMSR-2, and the remaining SSMIs will have significant impact on the quality and continuity of long term microwave climate data records. In addition to the problem of reduced numbers of observations, there is a real danger of losing overlapping observations. Simultaneous operation of satellites, especially when the observations are at similar local crossing times, provides a significant benefit in the effort to inter-calibrate satellites to yield accurate and stable long-term records. The end of WindSat and AMSR-2 will leave us without microwave SSTs in cold water, as there will be no microwave imagers with C-band channels. Microwave SSTs have a crucial advantage over IR SSTs, which is not able to measure SST in clouds or if aerosols are present. The gap in ocean wind vectors will be somewhat mitigated as the European ASCAT C-band scatterometer mission on MetOp is continuing. Nonetheless, the anticipated cease of several microwave satellite radiometers retrieving ocean winds in the coming years will lead to a significant gap in temporal coverage. Atmospheric water vapor, cloud liquid water, and rain rate are all important climate variables whose long-term records will inevitably degrade as the microwave imagery constellation fades.

  8. A Microwave Tunable Bandpass Filter for Liquid Crystal Applications

    NASA Astrophysics Data System (ADS)

    Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan

    2017-07-01

    In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.

  9. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Radiofrequency radiation for the heating of food, including microwave frequencies. 179.30 Section 179.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE...

  10. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Radiofrequency radiation for the heating of food, including microwave frequencies. 179.30 Section 179.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE...

  11. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Radiofrequency radiation for the heating of food, including microwave frequencies. 179.30 Section 179.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE...

  12. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Radiofrequency radiation for the heating of food, including microwave frequencies. 179.30 Section 179.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE...

  13. Microwave-to-Optical Conversion in WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute

    2008-01-01

    Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.

  14. Shaping complex microwave fields in reverberating media with binary tunable metasurfaces

    PubMed Central

    Kaina, Nadège; Dupré, Matthieu; Lerosey, Geoffroy; Fink, Mathias

    2014-01-01

    In this article we propose to use electronically tunable metasurfaces as spatial microwave modulators. We demonstrate that like spatial light modulators, which have been recently proved to be ideal tools for controlling light propagation through multiple scattering media, spatial microwave modulators can efficiently shape in a passive way complex existing microwave fields in reverberating environments with a non-coherent energy feedback. Unlike in free space, we establish that a binary-only phase state tunable metasurface allows a very good control over the waves, owing to the random nature of the electromagnetic fields in these complex media. We prove in an everyday reverberating medium, that is, a typical office room, that a small spatial microwave modulator placed on the walls can passively increase the wireless transmission between two antennas by an order of magnitude, or on the contrary completely cancel it. Interestingly and contrary to free space, we show that this results in an isotropic shaped microwave field around the receiving antenna, which we attribute again to the reverberant nature of the propagation medium. We expect that spatial microwave modulators will be interesting tools for fundamental physics and will have applications in the field of wireless communications. PMID:25331498

  15. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp; Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192; Kawamura, S.

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. Themore » resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.« less

  16. Modelling the descent of nitric oxide during the elevated stratopause event of January 2013

    NASA Astrophysics Data System (ADS)

    Orsolini, Yvan J.; Limpasuvan, Varavut; Pérot, Kristell; Espy, Patrick; Hibbins, Robert; Lossow, Stefan; Raaholt Larsson, Katarina; Murtagh, Donal

    2017-03-01

    Using simulations with a whole-atmosphere chemistry-climate model nudged by meteorological analyses, global satellite observations of nitrogen oxide (NO) and water vapour by the Sub-Millimetre Radiometer instrument (SMR), of temperature by the Microwave Limb Sounder (MLS), as well as local radar observations, this study examines the recent major stratospheric sudden warming accompanied by an elevated stratopause event (ESE) that occurred in January 2013. We examine dynamical processes during the ESE, including the role of planetary wave, gravity wave and tidal forcing on the initiation of the descent in the mesosphere-lower thermosphere (MLT) and its continuation throughout the mesosphere and stratosphere, as well as the impact of model eddy diffusion. We analyse the transport of NO and find the model underestimates the large descent of NO compared to SMR observations. We demonstrate that the discrepancy arises abruptly in the MLT region at a time when the resolved wave forcing and the planetary wave activity increase, just before the elevated stratopause reforms. The discrepancy persists despite doubling the model eddy diffusion. While the simulations reproduce an enhancement of the semi-diurnal tide following the onset of the 2013 SSW, corroborating new meteor radar observations at high northern latitudes over Trondheim (63.4°N), the modelled tidal contribution to the forcing of the mean meridional circulation and to the descent is a small portion of the resolved wave forcing, and lags it by about ten days.

  17. Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    2016-05-15

    A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more broadband than commercially available windows, which are usually optimized for single band operation. It is demonstrated that high-density polyethylene with urethane adhesive can be used as a low loss microwave vacuum window in multiband DNP systems. The overall assembly performance and dimensions are found using full-wave simulations. The practical aspects of the window implementation inmore » the waveguide are discussed. To verify the design and simulation results, the window is tested experimentally at the three frequencies of interest.« less

  18. Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Zhang, Cheng; Ma, Hui Feng; Zhao, Jie; Dai, Jun Yan; Yuan, Wei; Yang, Liu Xi; Cheng, Qiang; Cui, Tie Jun

    2018-05-01

    We propose a strategy to convert a linearly polarized wave from a single point source to an orbital angular momentum (OAM) wave by arbitrary polarization via an anisotropic frequency selective surface (FSS) in the microwave frequency. By tailoring the geometries of FSS elements, reflection-phases in x and y polarizations are engineered and encoded independently, which allows us to design the eventual polarization state of the generated OAM vortex beam by elaborately selecting individual coding sequences for each polarization. Two types of FSSs are designed and experimentally characterized to demonstrate the capability of OAM generation with circular and linear polarizations, respectively, showing excellent performance in a wide bandwidth from 14 to 16 GHz. This method provides opportunities for polarization multiplexing in microwave OAM communication systems.

  19. Helicons, magnetoplasma edge, and faraday rotation in solid state plasmas at microwave frequencies.

    PubMed

    Furdyna, J K

    1967-04-01

    The effect of magnetic field on propagation of electromagnetic waves through free carrier plasmas in semiconductors is discussed. The Faraday configuration and the parameter ranges omega(c),omega(p) > omega and omega(c) > tau(-1) are specifically considered. Dispersion of helicon waves, propagation near the magnetoplasma edge (omega(p)(2) = omegaomega(c)), and the Faraday rotation are developed in terms of the one-electron Drude theory. Microwave transmission measurements at 35 Gc/s on n-type InSb are presented. Experiments near the magnetoplasma edge yield the value of the static dielectric constant of the InSb lattice K(l) = 19.3 +/- 0.8. Faraday rotation, observed beyond the edge, is found to be extremely large. Some practical possibilities for this effect are considered.

  20. High frequency optical communications; Proceedings of the Meeting, Cambridge, MA, Sept. 23, 24, 1986

    NASA Astrophysics Data System (ADS)

    Ramer, O. Glenn; Sierak, Paul

    Topics discussed in this volume include systems and applications, detectors, sources, and coherent communications. Papers are presented on RF fiber optic links for avionics applications, fiber optics and optoelectronics for radar and electronic warfare applications, symmetric coplanar electrodes for high-speed Ti:LiNbO3 devices, and surface wave electrooptic modulator. Attention is given to X-band RF fiber-optic links, fiber-optic links for microwave signal transmission, GaAs monolithic receiver and laser driver for GHz transmission rates, and monolithically integrable high-speed photodetectors. Additional papers are on irregular and chaotic behavior of semiconductor lasers under modulation, high-frequency laser package for microwave optical communications, receiver modeling for coherent light wave communications, and polarization sensors and controllers for coherent optical communication systems.

Top