Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes
Xiao, Fuliang; Zhou, Qinghua; He, Yihua; ...
2015-09-11
During the small storm on 14–15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along its orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate toward lower L shells outside the plasmasphere, with rapidly increasing path gains related to the continuous proton ring distribution. The waves then graduallymore » cross the plasmapause into the deep plasmasphere, with almost unchanged path gains due to the falling proton ring distribution and higher ambient density. These results present the first report on how MS waves penetrate into the plasmasphere with the aid of the continuous proton ring distributions during weak geomagnetic activities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellinger, Petr; Trávníček, Pavel M., E-mail: petr.hellinger@asu.cas.cz
Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton–electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that timemore » owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.« less
Cluster Observations of Non-Time Continuous Magnetosonic Waves
NASA Technical Reports Server (NTRS)
Walker, Simon N.; Demekhov, Andrei G.; Boardsen, Scott A.; Ganushkina, Natalia Y.; Sibeck, David G.; Balikhin, Michael A.
2016-01-01
Equatorial magnetosonic waves are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non temporally continuous use missions. The first, referred to as rising tone emissions, are characterized by the systematic onset of wave activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements)are observed to occur periodically in the region +/- 10 off the geomagnetic equator. The sweep rate of these emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal protons in the wave field. The second form of emissions is characterized by the simultaneous onset of activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron density. Thus, these waves appear to be trapped within regions of localized enhancement of the electron density.
Acceleration and heating of heavy ions in high speed solar wind streams
NASA Technical Reports Server (NTRS)
Gomberoff, L.; Gratton, F. T.; Gnavi, G.
1995-01-01
Left hand polarized Alfven waves generated in coronal holes propagate in the direction of high speed solar wind streams, accelerating and heating heavy ions. As the solar wind expands, the ratio between the frequency of the Alfven waves and the proton gyrofrequency increases, due to the decrease of the interplanetary magnetic field, and encounter first the local ion gyrofrequency of the species with the largest M(sub l) = m(sub l)/z(sub l)m(sub p) (m(sub l) is the mass of species l, m(sub p) is the proton mass and z(sub l) is the degree of ionization of species l). It is shown that the Alfven waves experience there strong absorption and cannot propagate any further until the ions are accelerated and heated. Once this occurs, the Alfven waves continue to propagate until they meet the gyrofrequency of the next species giving rise to a similar phenomenon. In order to show this contention, we use the linear dispersion relation of ion cyclotron waves in a multicomponent plasma consisting of oxygen ions, alpha particles and protons. We assume that at any distance from the sun, the Alfven waves follow the local dispersion relation of electromagnetic ion cyclotron waves. To illustrate the results, we solve the dispersion relation for oxygen ions and alpha particles drifting relative to the protons. The dispersion relation has three branches. The first branch starts at zero frequency and goes to the Doppler-shifted oxygen ion gyrofrequency. The second branch starts close to the oxygen gyrofrequency, and goes to the Doppler-shifted alpha particle gyrofrequency. The third branch starts close to the alpha particle gyrofrequency, and goes to the proton gyrofrequency. The Alfven waves propagate following the first branch of the dispersion relation. When they reach the Doppler-shifted oxygen ion gyrofrequency, the ions are accelerated and heated to some definite values. When these values are reached, the dispersion relation changes, and it is now the first branch of the dispersion relation, the one which goes to the Doppler-shifted alpha particle gyrofrequency. The Alfven waves continue to propagate along the first branch of the dispersion relation and proceed to accelerate and heat the alpha particles.
An Integrated Laboratory Project in NMR Spectroscopy.
ERIC Educational Resources Information Center
Hudson, Reggie L.; Pendley, Bradford D.
1988-01-01
Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)
NASA Astrophysics Data System (ADS)
Sun, Jicheng; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Liu, Xu; Wang, Xueyi; Tao, Xin; Wang, Shui
2017-05-01
In this paper, we perform a 1-D particle-in-cell (PIC) simulation model consisting of three species, cold electrons, cold ions, and energetic ion ring, to investigate spectral structures of magnetosonic waves excited by ring distribution protons in the Earth's magnetosphere, and dynamics of charged particles during the excitation of magnetosonic waves. As the wave normal angle decreases, the spectral range of excited magnetosonic waves becomes broader with upper frequency limit extending beyond the lower hybrid resonant frequency, and the discrete spectra tends to merge into a continuous one. This dependence on wave normal angle is consistent with the linear theory. The effects of magnetosonic waves on the background cold plasma populations also vary with wave normal angle. For exactly perpendicular magnetosonic waves (parallel wave number k|| = 0), there is no energization in the parallel direction for both background cold protons and electrons due to the negligible fluctuating electric field component in the parallel direction. In contrast, the perpendicular energization of background plasmas is rather significant, where cold protons follow unmagnetized motion while cold electrons follow drift motion due to wave electric fields. For magnetosonic waves with a finite k||, there exists a nonnegligible parallel fluctuating electric field, leading to a significant and rapid energization in the parallel direction for cold electrons. These cold electrons can also be efficiently energized in the perpendicular direction due to the interaction with the magnetosonic wave fields in the perpendicular direction. However, cold protons can be only heated in the perpendicular direction, which is likely caused by the higher-order resonances with magnetosonic waves. The potential impacts of magnetosonic waves on the energization of the background cold plasmas in the Earth's inner magnetosphere are also discussed in this paper.
Spectra of KeV Protons Related to Ion-Cyclotron Wave Packets
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Sibeck, D. G.; Tel'Nikhin, A. A.; Kronberg, T. K.
2017-01-01
We use the Fokker-Planck-Kolmogorov equation to study the statistical aspects of stochastic dynamics of the radiation belt (RB) protons driven by nonlinear electromagnetic ion-cyclotron (EMIC) wave packets. We obtain the spectra of keV protons scattered by these waves that showsteeping near the gyroresonance, the signature of resonant wave-particle interaction that cannot be described by a simple power law. The most likely mechanism for proton precipitation events in RBs is shown to be nonlinear wave-particle interaction, namely, the scattering of RB protons into the loss cone by EMIC waves.
An analysis of beam parameters on proton-acoustic waves through an analytic approach.
Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin
2017-06-21
It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.
Proton-driven electromagnetic instabilities in high-speed solar wind streams
NASA Technical Reports Server (NTRS)
Abraham-Shrauner, B.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.
1979-01-01
Electromagnetic instabilities of the field-aligned, right-hand circularly polarized magnetosonic wave and the left-hand circularly polarized Alfven wave driven by two drifted proton components are analyzed for model parameters determined from Imp 7 solar wind proton data measured during high-speed flow conditions. Growth rates calculated using bi-Lorentzian forms for the main and beam proton as well as core and halo electron velocity distributions do not differ significantly from those calculated using bi-Maxwellian forms. Using distribution parameters determined from 17 measured proton spectra, we show that considering the uncertainties the magnetosonic wave may be linearly stable and the Alfven wave is linearly unstable. Because proton velocity distribution function shapes are observed to persist for times long compared to the proton gyroperiod, the latter result suggests that linear stability theory fails for proton-driven ion cyclotron waves in the high-speed solar wind.
Proton beam generation of whistler waves in the earth's foreshock
NASA Technical Reports Server (NTRS)
Wong, H. K.; Goldstein, M. L.
1987-01-01
It is shown that proton beams, often observed upstream of the earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T (perpendicular)/T(parallel) much greater than 1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the '1-Hz' waves often seen in the earth's foreshock.
NASA Astrophysics Data System (ADS)
Smith, C. W.; Argall, M. R.; Schwadron, N.; Joyce, C.; Isenberg, P. A.; Vasquez, B. J.; Korth, H.; Anderson, B. J.
2017-12-01
Wave excitation by pickup protons inside 1 AU have not been previously reported. Waves excited by pickup protons have a characteristic signature, a spectral peak at and above the proton gyrofrequency, that demonstrates a significant lack of particle energization beyond the initial pickup proton energy combined with pitch-angle scattering. Interstellar Hydrogen atoms cannot penetrate significantly inside about 3.5 AU due to loss of these atoms through ionization. Since the waves reported here, which are observed by the Messenger spacecraft during the cruise phase to Mercury, are not seen near the Mercury and Venus planetary encounters and there is no evidence of low-frequency waves that would indicate proximity to comets, we conclude that these waves originate from pickup protons created by the interaction of solar wind with dust relatively close to the Sun, inside 0.4 AU (Schwadron et al. 2000; Schwadron & Geiss 2000). This is the so-called inner source of pickup protons. We will present our analyses of these wave observations.Schwadron et al., J. Geophys. Res., 105, 7465, 2000.Schwadron & Geiss, J. Geophys. Res., 10, 7473, 2000.
Shock Acceleration of Solar Energetic Protons: The First 10 Minutes
NASA Technical Reports Server (NTRS)
Ng, Chee K.; Reames, Donald V.
2008-01-01
Proton acceleration at a parallel coronal shock is modeled with self-consistent Alfven wave excitation and shock transmission. 18 - 50 keV seed protons at 0.1% of plasma proton density are accelerated in 10 minutes to a power-law intensity spectrum rolling over at 300 MeV by a 2500km s-1 shock traveling outward from 3.5 solar radius, for typical coronal conditions and low ambient wave intensities. Interaction of high-energy protons of large pitch-angles with Alfven waves amplified by low-energy protons of small pitch angles is key to rapid acceleration. Shock acceleration is not significantly retarded by sunward streaming protons interacting with downstream waves. There is no significant second-order Fermi acceleration.
Intermediate energy proton-deuteron elastic scattering
NASA Technical Reports Server (NTRS)
Wilson, J. W.
1973-01-01
A fully symmetrized multiple scattering series is considered for the description of proton-deuteron elastic scattering. An off-shell continuation of the experimentally known twobody amplitudes that retains the exchange symmeteries required for the calculation is presented. The one boson exchange terms of the two body amplitudes are evaluated exactly in this off-shell prescription. The first two terms of the multiple scattering series are calculated explicitly whereas multiple scattering effects are obtained as minimum variance estimates from the 146-MeV data of Postma and Wilson. The multiple scattering corrections indeed consist of low order partial waves as suggested by Sloan based on model studies with separable interactions. The Hamada-Johnston wave function is shown consistent with the data for internucleon distances greater than about 0.84 fm.
NASA Astrophysics Data System (ADS)
Romanelli, N.; Mazelle, C.; Meziane, K.
2018-02-01
Seen from the solar wind (SW) reference frame, the presence of newborn planetary protons upstream from the Martian and Venusian bow shocks and SW protons reflected from each of them constitutes two sources of nonthermal proton populations. In both cases, the resulting proton velocity distribution function is highly unstable and capable of giving rise to ultralow frequency quasi-monochromatic electromagnetic plasma waves. When these instabilities take place, the resulting nonlinear waves are convected by the SW and interact with nonthermal protons located downstream from the wave generation region (upstream from the bow shock), playing a predominant role in their dynamics. To improve our understanding of these phenomena, we study the interaction between a charged particle and a large-amplitude monochromatic circularly polarized electromagnetic wave propagating parallel to a background magnetic field, from first principles. We determine the number of fix points in velocity space, their stability, and their dependence on different wave-particle parameters. Particularly, we determine the temporal evolution of a charged particle in the pitch angle-gyrophase velocity plane under nominal conditions expected for backstreaming protons in planetary foreshocks and for newborn planetary protons in the upstream regions of Venus and Mars. In addition, the inclusion of wave ellipticity effects provides an explanation for pitch angle distributions of suprathermal protons observed at the Earth's foreshock, reported in previous studies. These analyses constitute a mean to evaluate if nonthermal proton velocity distribution functions observed at these plasma environments present signatures that can be understood in terms of nonlinear wave-particle processes.
Overtaking collision effects in a cw double-pass proton linac
Tao, Yue; Qiang, Ji; Hwang, Kilean
2017-12-22
The recirculating superconducting proton linac has the advantage of reducing the number of cavities in the accelerator and the corresponding construction and operational costs. Beam dynamics simulations were done recently in a double-pass recirculating proton linac using a single proton beam bunch. For continuous wave (cw) operation, the high-energy proton bunch during the second pass through the linac will overtake and collide with the low-energy bunch during the first pass at a number of locations of the linac. These collisions might cause proton bunch emittance growth and beam quality degradation. Here, we study the collisional effects due to Coulomb space-chargemore » forces between the high-energy bunch and the low-energy bunch. Our results suggest that these effects on the proton beam quality would be small and might not cause significant emittance growth or beam blowup through the linac. A 10 mA, 500 MeV cw double-pass proton linac is feasible without using extra hardware for phase synchronization.« less
Overtaking collision effects in a cw double-pass proton linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Yue; Qiang, Ji; Hwang, Kilean
The recirculating superconducting proton linac has the advantage of reducing the number of cavities in the accelerator and the corresponding construction and operational costs. Beam dynamics simulations were done recently in a double-pass recirculating proton linac using a single proton beam bunch. For continuous wave (cw) operation, the high-energy proton bunch during the second pass through the linac will overtake and collide with the low-energy bunch during the first pass at a number of locations of the linac. These collisions might cause proton bunch emittance growth and beam quality degradation. Here, we study the collisional effects due to Coulomb space-chargemore » forces between the high-energy bunch and the low-energy bunch. Our results suggest that these effects on the proton beam quality would be small and might not cause significant emittance growth or beam blowup through the linac. A 10 mA, 500 MeV cw double-pass proton linac is feasible without using extra hardware for phase synchronization.« less
NASA Astrophysics Data System (ADS)
Fleurbaey, Hélène; Galtier, Sandrine; Thomas, Simon; Bonnaud, Marie; Julien, Lucile; Biraben, François; Nez, François; Abgrall, Michel; Guéna, Jocelyne
2018-05-01
We present a new measurement of the 1 S -3 S two-photon transition frequency of hydrogen, realized with a continuous-wave excitation laser at 205 nm on a room-temperature atomic beam, with a relative uncertainty of 9 ×10-13. The proton charge radius deduced from this measurement, rp=0.877 (13 ) fm , is in very good agreement with the current CODATA-recommended value. This result contributes to the ongoing search to solve the proton charge radius puzzle, which arose from a discrepancy between the CODATA value and a more precise determination of rp from muonic hydrogen spectroscopy.
Van Allen Probes Observations of Second Harmonic Poloidal Standing Alfvén Waves
NASA Astrophysics Data System (ADS)
Takahashi, Kazue; Oimatsu, Satoshi; Nosé, Masahito; Min, Kyungguk; Claudepierre, Seth G.; Chan, Anthony; Wygant, John; Kim, Hyomin
2018-01-01
Long-lasting second-harmonic poloidal standing Alfvén waves (P2 waves) were observed by the twin Van Allen Probes (Radiation Belt Storm Probes, or RBSP) spacecraft in the noon sector of the plasmasphere, when the spacecraft were close to the magnetic equator and had a small azimuthal separation. Oscillations of proton fluxes at the wave frequency (˜10 mHz) were also observed in the energy (W) range 50-300 keV. Using the unique RBSP orbital configuration, we determined the phase delay of magnetic field perturbations between the spacecraft with a 2nπ ambiguity. We then used finite gyroradius effects seen in the proton flux oscillations to remove the ambiguity and found that the waves were propagating westward with an azimuthal wave number (m) of ˜-200. The phase of the proton flux oscillations relative to the radial component of the wave magnetic field progresses with W, crossing 0 (northward moving protons) or 180° (southward moving protons) at W ˜ 120 keV. This feature is explained by drift-bounce resonance (mωd ˜ ωb) of ˜120 keV protons with the waves, where ωd and ωb are the proton drift and bounce frequencies. At lower energies, the proton phase space density (FH+) exhibits a bump-on-tail structure with ∂FH+/∂W>0 occurring in the 1-10 keV energy range. This FH+ is unstable and can excite P2 waves through bounce resonance (ω ˜ ωb), where ω is the wave frequency.
NASA Technical Reports Server (NTRS)
Isenberg, P. A.
1995-01-01
Intense MHD waves generated by the isotropization of interstellar pickup protons were predicted by Lee and Ip (1987) to appear in the solar wind whenever pickup proton fluxes were high enough. However, in reality these waves have proved surprisingly difficult to identify, even in the presence of observed pickup protons. We investigate the wave excitation by isotropization from an initially broad pitch-angle distribution instead of the narrow ring-beam assumed by Lee and Ip. The pitch angle of a newly-ionized proton is given by theta(sub o), the angle between the magnetic field (averaged over a pickup proton gyroradius) and the solar wind flow at the time of ionization. Then, a broadened distribution results from spatial transport of pickup protons prior to isotropization from regions upstream along the field containing different values of theta(sub o). The value of theta(sub o) will vary as a result of the ambient long-wavelength fluctuations in the solar wind. Thus, the range of initial pitch-angles is directly related to the amplitude of these fluctuations within a length-scale determined by the isotropization time. We show that a broad initial pitch-angle distribution can significantly modify the intensity and shape of the pickup-proton-generated wave spectrum, and we derive a criterion for the presence of observable pickup-proton generated waves given the intensity of the ambient long wavelength fluctuations.
CO2 laser annealing of 50-microns-thick silicon solar cells
NASA Technical Reports Server (NTRS)
Walker, F. E.
1979-01-01
A test program is conducted to determine thin solar cell annealing effects using a laser energy source. A CO2 continuous-wave laser was used in annealing experiments on 50 micrometers-thick silicon solar cells after proton irradiation. Test cells were irradiated to a fluence of 1.0 x 10 to the 12th power protons/sq cm with 1.9 MeV protons. After irradiation, those cells receiving full proton dosage were degraded by an average of 30% in output power. In annealing tests laser beam exposure times on the solar cell varied from 2 seconds to 16 seconds reaching cell temperatures of from 400 C to 500 C. Under those conditions annealing test results showed recovery in cell output power of from 33% to 90%.
Upstream proton cyclotron waves at Venus near solar maximum
NASA Astrophysics Data System (ADS)
Delva, M.; Bertucci, C.; Volwerk, M.; Lundin, R.; Mazelle, C.; Romanelli, N.
2015-01-01
magnetometer data of Venus Express are analyzed for the occurrence of waves at the proton cyclotron frequency in the spacecraft frame in the upstream region of Venus, for conditions of rising solar activity. The data of two Venus years up to the time of highest sunspot number so far (1 Mar 2011 to 31 May 2012) are studied to reveal the properties of the waves and the interplanetary magnetic field (IMF) conditions under which they are observed. In general, waves generated by newborn protons from exospheric hydrogen are observed under quasi- (anti)parallel conditions of the IMF and the solar wind velocity, as is expected from theoretical models. The present study near solar maximum finds significantly more waves than a previous study for solar minimum, with an asymmetry in the wave occurrence, i.e., mainly under antiparallel conditions. The plasma data from the Analyzer of Space Plasmas and Energetic Atoms instrument aboard Venus Express enable analysis of the background solar wind conditions. The prevalence of waves for IMF in direction toward the Sun is related to the stronger southward tilt of the heliospheric current sheet for the rising phase of Solar Cycle 24, i.e., the "bashful ballerina" is responsible for asymmetric background solar wind conditions. The increase of the number of wave occurrences may be explained by a significant increase in the relative density of planetary protons with respect to the solar wind background. An exceptionally low solar wind proton density is observed during the rising phase of Solar Cycle 24. At the same time, higher EUV increases the ionization in the Venus exosphere, resulting in higher supply of energy from a higher number of newborn protons to the wave. We conclude that in addition to quasi- (anti)parallel conditions of the IMF and the solar wind velocity direction, the higher relative density of Venus exospheric protons with respect to the background solar wind proton density is the key parameter for the higher number of observable proton cyclotron waves near solar maximum.
NASA Astrophysics Data System (ADS)
Yuan, Zhigang; Deng, Xiaohua; Lin, Xi; Pang, Ye; Zhou, Meng; Décréau, P. M. E.; Trotignon, J. G.; Lucek, E.; Frey, H. U.; Wang, Jingfang
2010-04-01
In this paper, we report observations from a Cluster satellite showing that ULF wave occurred in the outer boundary of a plasmaspheric plume on September 4, 2005. The band of observed ULF waves is between the He+ ion gyrofrequency and O+ ion gyrofrequency at the equatorial plane, implying that those ULF waves can be identified as EMIC waves generated by ring current ions in the equatorial plane and strongly affected by rich cold He+ ions in plasmaspheric plumes. During the interval of observed EMIC waves, the footprint of Cluster SC3 lies in a subauroral proton arc observed by the IMAGE FUV instrument, demonstrating that the subauroral proton arc was caused by energetic ring current protons scattered into the loss cone under the Ring Current (RC)-EMIC interaction in the plasmaspheric plume. Therefore, the paper provides a direct proof that EMIC waves can be generated in the plasmaspheric plume and scatter RC ions to cause subauroral proton arcs.
Fleurbaey, Hélène; Galtier, Sandrine; Thomas, Simon; Bonnaud, Marie; Julien, Lucile; Biraben, François; Nez, François; Abgrall, Michel; Guéna, Jocelyne
2018-05-04
We present a new measurement of the 1S-3S two-photon transition frequency of hydrogen, realized with a continuous-wave excitation laser at 205 nm on a room-temperature atomic beam, with a relative uncertainty of 9×10^{-13}. The proton charge radius deduced from this measurement, r_{p}=0.877(13) fm, is in very good agreement with the current CODATA-recommended value. This result contributes to the ongoing search to solve the proton charge radius puzzle, which arose from a discrepancy between the CODATA value and a more precise determination of r_{p} from muonic hydrogen spectroscopy.
Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis
NASA Technical Reports Server (NTRS)
Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.
2016-01-01
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
Electromagnetic cyclotron waves in the solar wind: Wind observation and wave dispersion analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian, L. K., E-mail: lan.jian@nasa.gov; Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771; Moya, P. S.
2016-03-25
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and α-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
Energetic Proton Spectra Measured by the Van Allen Probes
NASA Astrophysics Data System (ADS)
Summers, Danny; Shi, Run; Engebretson, Mark J.; Oksavik, Kjellmar; Manweiler, Jerry W.; Mitchell, Donald G.
2017-10-01
We test the hypothesis that pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during 17-20 March 2013 and 17-20 March 2015, we measure proton energy spectra in the region 3 ≤ L ≤ 6 using the RBSPICE-B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoretical limiting spectra show reasonable agreement. We conclude that the measurements of the most intense proton spectra are consistent with self-limiting by EMIC wave scattering.
NASA Astrophysics Data System (ADS)
Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui
2018-01-01
Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observable even only during the time period with the enhanced solar wind dynamic pressure. Our results demonstrate that the solar wind dynamic pressure is an essential parameter for modeling of magnetosonic waves and their effect on the radiation belt electrons.
Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism
NASA Astrophysics Data System (ADS)
Min, Kyungguk; Liu, Kaijun; Wang, Xueyi; Chen, Lunjin; Denton, Richard E.
2018-01-01
Linear Vlasov theory and particle-in-cell (PIC) simulations for electromagnetic fluctuations in a homogeneous, magnetized, and collisionless plasma are used to investigate a fast magnetosonic wave event observed by the Van Allen Probes. The fluctuating magnetic field observed exhibits a series of spectral peaks at harmonics of the proton cyclotron frequency Ωp and has a dominant compressional component, which can be classified as fast magnetosonic waves. Furthermore, the simultaneously observed proton phase space density exhibits positive slopes in the perpendicular velocity space, ∂fp/∂v⊥>0, which can be a source for these waves. Linear theory analyses and PIC simulations use plasma and field parameters measured in situ except that the modeled proton distribution is modified to have larger ∂fp/∂v⊥ under the assumption that the observed distribution corresponds to a marginally stable state when the distribution has already been scattered by the excited waves. The results show that the positive slope is the source of the proton cyclotron harmonic waves at propagation quasi-perpendicular to the background magnetic field, and as a result of interactions with the excited waves the evolving proton distribution progresses approximately toward the observed distribution.
Observation of proton chorus waves close to the equatorial plane by Cluster
NASA Astrophysics Data System (ADS)
Grison, B.; Pickett, J. S.; Santolik, O.; Robert, P.; Cornilleau-Wehrlin, N.; Engebretson, M. J.; Constantinescu, D. O.
2009-12-01
Whistler mode chorus waves are a widely studied phenomena. They are present in numerous regions of the magnetosphere and are presumed to originate in the magnetic equatorial region. In a spectrogram they are characterized by narrowband features with rise (or fall) in frequency over short periods of time. Being whistler mode waves around a few tenths of the electron cyclotron frequency they interact mainly with electrons. In the present study we report observations by the Cluster spacecraft of what we call proton chorus waves. They have spectral features with rising frequency, similar to the electron chorus waves, but they are detected in a frequency range that starts roughly at 0.50fH+ up to fH+ (the local proton gyro-frequency). The lower part of their spectrum seems to originate from monochromatic Pc 1 waves (1.5 Hz). Proton chorus waves are detected close to the magnetic equatorial plane in both hemispheres during the same event. Our interpretation of these waves as proton chorus is supported by polarization analysis with the Roproc procedures and the Prassadco software using both the magnetic (STAFF-SC) and electric (EFW) parts of the fluctuations spectrum.
Standing shocks in a two-fluid solar wind
NASA Technical Reports Server (NTRS)
Habbal, Shadia R.; Hu, You Qiu; Esser, Ruth
1994-01-01
We present a numerical study of the formation of standing shocks in the solar wind using a two-fluid time-dependent model in the presence of Alfven waves. Included in this model is the adiabatic cooling and thermal conduction of both electrons and protons. In this study, standing shocks develop in the flow when additional critical points form as a result of either localized momentum addition or rapid expansion of the flow tube below the existing sonic point. While the flow speed and density exhibit the same characteristics as found in earlier studies of the formation of standing shocks, the inclusion of electron and proton heat conduction produces different signatures in the electron and proton temperature profiles across the shock layer. Owing to the strong heat conduction, the electron temperature is nearly continuous across the shock, but its gradient has a negative jump across it, thus producing a net heat flux out of the shock layer. The proton temperature exhibits the same characteristics for shocks produced by momentum addition but behaves differently when the shock is formed by the rapid divergence of the flow tube. The adiabatic cooling in a rapidly diverging flow tube reduces the proton temperature so substantially that the proton heat conduction becomes negligible in the vicinity of the shock. As a result, protons experience a positive jump in temperature across the shock. While Alfven waves do not affect the formation of standing shocks, they contribute to the change of the mmomentum and energy balance across them. We also find that for this solar wind model the inclusion of thermal conduction and adiabatic cooling for the elctrons and protons increases significantly the range of parameters characterizing the formation of standing shocks over those previously found for isothermal and polytropic models.
Acceleration and heating of two-fluid solar wind by Alfven waves
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil
1994-01-01
Earlier model studies of solar wind driven by thermal pressure and Alfven waves have shown that wave amplitudes of 20-30 km/s at the coronal base are sufficient to accelerate the flow to the high speeds observed in quasi-steady streams emanating from large coronal holes. We focus on the energy balance in the proton gas and show that heat conduction from the region where the waves are dissipated may play an important role in determining the proton temperature at the orbit of Earth. In models with 'classical' heat conduction we find a correlation between high flow speed, high proton temperature, and low electron temperature at 1 AU. The effect of wave heating on the development of anisotropies in the solar wind proton gas pressure is also investigated in this study.
The ion-acoustic soliton: A gas-dynamic viewpoint
NASA Astrophysics Data System (ADS)
McKenzie, J. F.
2002-03-01
The properties of fully nonlinear ion-acoustic solitons are investigated by interpreting conservation of total momentum as the structure equation for the proton flow in the wave. In most studies momentum conservation is regarded as the first integral of the Poisson equation for the electric potential and is interpreted as being analogous to a particle moving in a pseudo-potential well. By adopting an essentially gas-dynamic viewpoint, which emphasizes momentum conservation and the properties of the Bernoulli-type energy equations, the crucial role played by the proton sonic point becomes apparent. The relationship (implied by energy conservation) between the electron and proton speeds in the transition yields a locus—the hodograph of the system-which shows that, in the first half of the soliton, the electrons initially lag behind the protons until the charge neutral point is reached, after which they run ahead of the protons. The system reaches an equilibrium point (the center of the soliton) before the proton flow goes sonic. It follows that the critical ion-acoustic Mach number, Mc, above which smooth, continuous solitons cannot be constructed, stems from the requirement that the two equilibrium points of the structure equation coalesce at the proton sonic point of the flow. In general the range of the ion-acoustic Mach numbers, Mep, in which solitons exist, is extended beyond the classical range 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xinliang; Lu, Quanming; Hao, Yufei
2014-01-01
The parametric instabilities of an Alfvén wave in a proton-electron plasma system are found to have great influence on proton dynamics, where part of the protons can be accelerated through the Landau resonance with the excited ion acoustic waves, and a beam component along the background magnetic field is formed. In this paper, with a one-dimensional hybrid simulation model, we investigate the evolution of the parametric instabilities of a monochromatic left-hand polarized Alfvén wave in a proton-electron-alpha plasma with a low beta. When the drift velocity between the protons and alpha particles is sufficiently large, the wave numbers of themore » backward daughter Alfvén waves can be cascaded toward higher values due to the modulational instability during the nonlinear evolution of the parametric instabilities, and the alpha particles are resonantly heated in both the parallel and perpendicular direction by the backward waves. On the other hand, when the drift velocity of alpha particles is small, the alpha particles are heated in the linear growth stage of the parametric instabilities due to the Landau resonance with the excited ion acoustic waves. Therefore, the heating occurs only in the parallel direction, and there is no obvious heating in the perpendicular direction. The relevance of our results to the preferential heating of heavy ions observed in the solar wind within 0.3 AU is also discussed in this paper.« less
Hugoniot Measurements at Low Pressures in Tin Using 800 MeV proton Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Cynthia; Hogan, Gary E; King, Nicholas S. P.
2009-08-05
A 2cm long 8 mm diameter cylindrical tin target has been shocked to a pressure in the region of the {beta} {yields} {gamma} phase change using a small, low density PETN charge mounted on the opposite side of a stainless steel diaphragm. The density jump and shock velocity were measured radiographically as the shock wave moved through the sample and the pressure dropped, using the proton radiography facility at LANL. This provided a quasi-continuous record of the equations of state along the Hugoniot for the P1 wave from a shock velocity of 3.25 km/sec down to near the sound speed.more » Edge release effects were removed from the data using tomographic techniques. The data show evidence for a phase transition that extends over a broad pressure range. The data and analysis will be presented.« less
Wave and particle evolution downstream of quasi-perpendicular shocks
NASA Technical Reports Server (NTRS)
Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.
1995-01-01
Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remya, B.; Reddy, R. V.; Lakhina, G. S.
2014-09-20
During 1999 August 18, both Cassini and WIND were in the Earth's magnetosheath and detected transverse electromagnetic waves instead of the more typical mirror-mode emissions. The Cassini wave amplitudes were as large as ∼14 nT (peak to peak) in a ∼55 nT ambient magnetic field B {sub 0}. A new method of analysis is applied to study these waves. The general wave characteristics found were as follows. They were left-hand polarized and had frequencies in the spacecraft frame (f {sub scf}) below the proton cyclotron frequency (f{sub p} ). Waves that were either right-hand polarized or had f {sub scf}more » > f{sub p} are shown to be consistent with Doppler-shifted left-hand waves with frequencies in the plasma frame f{sub pf} < f{sub p} . Thus, almost all waves studied are consistent with their being electromagnetic proton cyclotron waves. Most of the waves (∼55%) were found to be propagating along B {sub 0} (θ{sub kB{sub 0}}<30{sup ∘}), as expected from theory. However, a significant fraction of the waves were found to be propagating oblique to B {sub 0}. These waves were also circularly polarized. This feature and the compressive ([B {sub max} – B {sub min}]/B {sub max}, where B {sub max} and B {sub min} are the maximum and minimum field magnitudes) nature (ranging from 0.27 to 1.0) of the waves are noted but not well understood at this time. The proton cyclotron waves were shown to be quasi-coherent, theoretically allowing for rapid pitch-angle transport of resonant protons. Because Cassini traversed the entire subsolar magnetosheath and WIND was in the dusk-side flank of the magnetosheath, it is surmised that the entire region was filled with these waves. In agreement with past theory, it was the exceptionally low plasma β (0.35) that led to the dominance of the proton cyclotron wave generation during this interval. A high-speed solar wind stream ((V{sub sw} ) = 598 km s{sup –1}) was the source of this low-β plasma.« less
Simulation of electromagnetic ion cyclotron triggered emissions in the Earth's inner magnetosphere
NASA Astrophysics Data System (ADS)
Shoji, Masafumi; Omura, Yoshiharu
2011-05-01
In a recent observation by the Cluster spacecraft, emissions triggered by electromagnetic ion cyclotron (EMIC) waves were discovered in the inner magnetosphere. We perform hybrid simulations to reproduce the EMIC triggered emissions. We develop a self-consistent one-dimensional hybrid code with a cylindrical geometry of the background magnetic field. We assume a parabolic magnetic field to model the dipole magnetic field in the equatorial region of the inner magnetosphere. Triggering EMIC waves are driven by a left-handed polarized external current assumed at the magnetic equator in the simulation model. Cold proton, helium, and oxygen ions, which form branches of the dispersion relation of the EMIC waves, are uniformly distributed in the simulation space. Energetic protons with a loss cone distribution function are also assumed as resonant particles. We reproduce rising tone emissions in the simulation space, finding a good agreement with the nonlinear wave growth theory. In the energetic proton velocity distribution we find formation of a proton hole, which is assumed in the nonlinear wave growth theory. A substantial amount of the energetic protons are scattered into the loss cone, while some of the resonant protons are accelerated to higher pitch angles, forming a pancake velocity distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lecz, Zs.; Andreev, A.; Max-Born Institute, Berlin
The acceleration of protons, triggered by solitary waves in expanded solid targets is investigated using particle-in-cell simulations. The near-critical density plasma is irradiated by ultrashort high power laser pulses, which generate the solitary wave. The transformation of this soliton into a shock wave during propagation in plasma with exponentially decreasing density profile is described analytically, which allows to obtain a scaling law for the proton energy. The high quality proton bunch with small energy spread is produced by reflection from the shock-front. According to the 2D simulations, the mechanism is stable only if the laser pulse duration is shorter thanmore » the characteristic development time of the parasitic Weibel instability.« less
NASA Astrophysics Data System (ADS)
Noh, S. J.; Lee, D. Y.
2017-12-01
In the classic theory of wave-particle resonant interaction, anisotropy parameter of proton distribution is considered as an important factor to determine an instability such as ion cyclotron instability. The particle distribution function is often assumed to be a bi-Maxwellian distribution, for which the anisotropy parameter can be simplified to temperature anisotropy (T⊥/T∥-1) independent of specific energy of particles. In this paper, we studied the proton anisotropy related to EMIC waves using the Van Allen Probes observations in the inner magnetosphere. First, we found that the real velocity distribution of protons is usually not expressed with a simple bi-Maxwellian distribution. Also, we calculated the anisotropy parameter using the exact formula defined by Kennel and Petschek [1966] and investigated the linear instability criterion of them. We found that, for majority of the EMIC wave events, the threshold anisotropy condition for proton cyclotron instability is satisfied in the expected range of resonant energy. We further determined the parallel plasma beta and its inverse relationship with the anisotropy parameter. The inverse relationship exists both during the EMIC wave times and non-EMIC wave times, but with different slopes. Based on this result, we demonstrate that the parallel plasma beta can be a critical factor that determines occurrence of EMIC waves.
Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Hamilton, D. C.
1993-01-01
AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.
Multiple Ions Resonant Heating and Acceleration by Alfven/cyclotron Fluctuations in the Solar Wind
NASA Astrophysics Data System (ADS)
Xie, H.; Ofman, L.
2003-12-01
We study the interaction between protons, and multiple minor ions (O5+, He++) and a given cyclotron resonant spectra in coronal hole plasma. One-dimensional hybrid simulations are performed in initially homogeneous, collisionless, magnetized plasma with waves propagating parallel to the background magnetic field. The self-consistent hybrid simulations are used to study how multiple minor species may affect the resonance interaction between a spectrum of waves and the solar wind protons. The results of the simulations provide a clear picture of wave-particle interaction under various coronal conditions, which can explain 1) how multiple minor ions affect the resonant heating and the temperature anisotropy of the solar wind protons by a given wave spectrum; 2) how energy is distributed and transferred among waves and different ion species; 3) the growth and damping of different beam microinstability modes, including both inward and outward waves; 4) the formation of proton double-peak distribution in the solar wind.
A parametric study of the linear growth of magnetospheric EMIC waves in a hot plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Cao, Xing; Gu, Xudong, E-mail: guxudong@whu.edu.cn, E-mail: bbni@whu.edu.cn
2016-06-15
Since electromagnetic ion cyclotron (EMIC) waves in the terrestrial magnetosphere play a crucial role in the dynamic losses of relativistic electrons and energetic protons and in the ion heating, it is important to pursue a comprehensive understanding of the EMIC wave dispersion relation under realistic circumstances, which can shed significant light on the generation, amplification, and propagation of magnetospheric EMIC waves. The full kinetic linear dispersion relation is implemented in the present study to evaluate the linear growth of EMIC waves in a multi-ion (H{sup +}, He{sup +}, and O{sup +}) magnetospheric plasma that also consists of hot ring currentmore » protons. Introduction of anisotropic hot protons strongly modifies the EMIC wave dispersion surface and can result in the simultaneous growth of H{sup +}-, He{sup +}-, and O{sup +}-band EMIC emissions. Our parametric analysis demonstrates that an increase in the hot proton concentration can produce the generation of H{sup +}- and He{sup +}-band EMIC waves with higher possibility. While the excitation of H{sup +}-band emissions requires relatively larger temperature anisotropy of hot protons, He{sup +}-band emissions are more likely to be triggered in the plasmasphere or plasmaspheric plume where the background plasma is denser. In addition, the generation of He{sup +}-band waves is more sensitive to the variation of proton temperature than H{sup +}-band waves. Increase of cold heavy ion (He{sup +} and O{sup +}) density increases the H{sup +} cutoff frequency and therefore widens the frequency coverage of the stop band above the He{sup +} gyrofrequency, leading to a significant damping of H{sup +}-band EMIC waves. In contrast, O{sup +}-band EMIC waves characteristically exhibit the temporal growth much weaker than the other two bands, regardless of all considered variables, suggesting that O{sup +}-band emissions occur at a rate much lower than H{sup +}- and He{sup +}-band emissions, which is consistent with the observations.« less
Small-scale Pressure-balanced Structures Driven by Mirror-mode Waves in the Solar Wind
NASA Astrophysics Data System (ADS)
Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.
2013-10-01
Recently, small-scale pressure-balanced structures (PBSs) have been studied with regard to their dependence on the direction of the local mean magnetic field B0 . The present work continues these studies by investigating the compressive wave mode forming small PBSs, here for B0 quasi-perpendicular to the x-axis of Geocentric Solar Ecliptic coordinates (GSE-x). All the data used were measured by WIND in the quiet solar wind. From the distribution of PBSs on the plane determined by the temporal scale and angle θxB between the GSE-x and B0 , we notice that at θxB = 115° the PBSs appear at temporal scales ranging from 700 s to 60 s. In the corresponding temporal segment, the correlations between the plasma thermal pressure P th and the magnetic pressure P B, as well as that between the proton density N p and the magnetic field strength B, are investigated. In addition, we use the proton velocity distribution functions to calculate the proton temperatures T and T ∥. Minimum Variance Analysis is applied to find the magnetic field minimum variance vector BN . We also study the time variation of the cross-helicity σc and the compressibility C p and compare these with values from numerical predictions for the mirror mode. In this way, we finally identify a short segment that has T > T ∥, proton β ~= 1, both pairs of P th-P B and N p-B showing anti-correlation, and σc ≈ 0 with C p > 0. Although the examination of σc and C p is not conclusive, it provides helpful additional information for the wave mode identification. Additionally, BN is found to be highly oblique to B0 . Thus, this work suggests that a candidate mechanism for forming small-scale PBSs in the quiet solar wind is due to mirror-mode waves.
Blewett, J.P.; Kiesling, J.D.
1963-06-11
A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)
NASA Technical Reports Server (NTRS)
Habbal, Shadia R.; Gurman, Joseph (Technical Monitor)
2003-01-01
Investigations of the physical processes responsible for the acceleration of the solar wind were pursued with the development of two new solar wind codes: a hybrid code and a 2-D MHD code. Hybrid simulations were performed to investigate the interaction between ions and parallel propagating low frequency ion cyclotron waves in a homogeneous plasma. In a low-beta plasma such as the solar wind plasma in the inner corona, the proton thermal speed is much smaller than the Alfven speed. Vlasov linear theory predicts that protons are not in resonance with low frequency ion cyclotron waves. However, non-linear effect makes it possible that these waves can strongly heat and accelerate protons. This study has important implications for study of the corona and the solar wind. Low frequency ion cyclotron waves or Alfven waves are commonly observed in the solar wind. Until now, it is believed that these waves are not able to heat the solar wind plasma unless some cascading processes transfer the energy of these waves to high frequency part. However, this study shows that these waves may directly heat and accelerate protons non-linearly. This process may play an important role in the coronal heating and the solar wind acceleration, at least in some parameter space.
A Proton-Cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind
NASA Technical Reports Server (NTRS)
Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Vinas, A.; Jian, L. K.; Roberts, D. A.; O’Modhrain, S.; Gilbert, J. A.;
2016-01-01
We use audification of 0.092 seconds cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes greater than 0.1 nanoteslas near the ion gyrofrequency (approximately 0.1 hertz) with duration longer than 1 hour during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.
The acceleration of charged particles in interplanetary shock waves
NASA Technical Reports Server (NTRS)
Pesses, M. E.; Decker, R. B.; Armstrong, T. P.
1982-01-01
Consideration of the theoretical and observational literature on energetic ion acceleration in interplanetary shock waves is the basis for the present discussion of the shock acceleration of the solar wind plasma and particle transport effects. It is suggested that ISEE data be used to construct data sets for shock events that extend continuously from solar wind to galactic cosmic ray energies, including data for electrons, protons, alphas and ions with Z values greater than 2.0, and that the temporal and spatial evolution of two- and three-dimensional particle distribution functions be studied by means of two or more spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao; Chen, Yang
2016-04-10
RX J1713.7−3946 is a prototype in the γ-ray-bright supernova remnants (SNRs) and is in continuing debates on its hadronic versus leptonic origin of the γ-ray emission. We explore the role played by the diffusive relativistic protons that escape from the SNR shock wave in the γ-ray emission, apart from the high-energy particles’ emission from the inside of the SNR. In the scenario that the SNR shock propagates in a clumpy molecular cavity, we consider that the γ-ray emission from the inside of the SNR may arise either from the inverse Compton scattering or from the interaction between the trapped energetic protons and themore » shocked clumps. The dominant origin between them depends on the electron-to-proton number ratio. The diffusive protons that escaped from the shock wave during the expansion history can provide an outer hadronic γ-ray component by bombarding the surrounding dense matter. The broadband spectrum can be well explained by this two-zone model, in which the γ-ray emission from the inside governs the TeV band, while the outer emission component substantially contributes to the GeV γ-rays. The two-zone model can also explain the TeV γ-ray radial brightness profile that significantly stretches beyond the nonthermal X-ray-emitting region. In the calculation, we present a simplified algorithm for Li and Chen's “accumulative diffusion” model for escaping protons and apply the Markov Chain Monte Carlo method to constrain the physical parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, E.J.; Tsurutani, B.T.
1976-05-01
Lion roars, which are intense packets of electromagnetic waves characteristically found in the magneosheath, have been studied. On the basis of these observations, several possible wave generation mechanisms are examined. Landau resonance is considered to be an unlikely source because this mechanism requires a substantial component of the wave electric field paralle to B, and the observation that the waves propagate along the ambient field is contrary to this requirement. It is not obvious that electron cyclotron resonance is responsible, because the field magnitude decreases should cause T/sub parallel//T/sub perpendicular/ to increase, and this rise could lead to wave dampingmore » rather than wave growth. A model which is consistent with all the observations of this study is a proton cyclotron overstability involving 10-keV protons streaming through the magnetosheath. It appears possible that the streaming protons could produce both the waves and the field decreases and that all three would be coincident. (AIP)« less
Surfatron acceleration of protons by an electromagnetic wave at the heliosphere periphery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loznikov, V. M., E-mail: loznikov@yandex.ru; Erokhin, N. S.; Zol’nikova, N. N.
2013-10-15
The trapping and subsequent efficient surfatron acceleration of weakly relativistic protons by an electromagnetic wave propagating across an external magnetic field in plasma at the heliosphere periphery is considered. The problem is reduced to analysis of a second-order time-dependent nonlinear equation for the wave phase on the particle trajectory. The conditions of proton trapping by the wave, the dynamics of the components of the particle momentum and velocity, the structure of the phase plane, the particle trajectories, and the dependence of the acceleration rate on initial parameters of the problem are analyzed. The asymptotic behavior of the characteristics of acceleratedmore » particles for the heliosphere parameters is investigated. The optimum conditions for surfatron acceleration of protons by an electromagnetic wave are discussed. It is demonstrated that the experimentally observed deviation of the spectra of cosmic-ray protons from standard power-law dependences can be caused by the surfatron mechanism. It is shown that protons with initial energies of several GeV can be additionally accelerated in the heliosphere (the region located between the shock front of the solar wind and the heliopause at distances of about 100 astronomical units (a.u.) from the Sun) up to energies on the order of several thousands of GeV. In order to explain the proton spectra in the energy range of ∼20–500 GeV, a two-component phenomenological model is proposed. The first component corresponds to the constant (in this energy range) galactic contribution, while the second (variable) component corresponds to the heliospheric contribution, which appears due to the additional acceleration of soft cosmic-ray protons at the heliosphere periphery. Variations in the proton spectra measured on different time scales between 1992 and 2008 in the energy range from several tens to several hundred GeV, as well as the dependence of these spectra on the heliospheric weather, can be explained by surfatron acceleration of protons in the heliosphere.« less
Wu, Q; Ma, H Y; Yang, Y; Sun, L T; Zhang, X Z; Zhang, Z M; Zhao, H Y; He, Y; Zhao, H W
2016-02-01
Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.
NASA Astrophysics Data System (ADS)
Wu, Q.; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.
2016-02-01
Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.
A test of Lee's quasi-linear theory of ion acceleration by interplanetary traveling shocks
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Coroniti, F. V.; Scarf, F. L.; Livesey, W. A.; Russell, C. T.; Smith, E. J.
1986-01-01
Lee's (1983) quasi-linear theory of ion acceleration is tested using ISEE-3 measurements of the November 12, 1978 quasi-parallel interplanetary shock. His theory accounts with varying degrees of precision for the energetic proton spatial profiles; the dependence of the spectral index of the power law proton velocity distribution upon the shock compression ratio; the power law dependence of the upstream proton scalelength upon energy; the absolute magnitude of the upstream proton scale length; the behavior of the energetic proton anisotropy upstream and downstream of the shock; the behavior of the alpha-particle proton ratio upstream; the equality of the spatial scale lengths at the shock of the upstream waves and of the protons that resonate with them; and the dependence of the integrated wave energy density upon the proton energy density at the shock. However, the trace magnetic field frequency spectra disagree with his theory in two ways. The part of the spectrum that can resonate with the observed protons via first-order cyclotron resonance is flat, whereas Lee's theory predicts an f exp - 7/4 frequency dependence for the November 12 shock. Higher frequency waves, which could not resonate with the observed upstream protons, increased in amplitude as the shock approached, suggesting that they too were generated by the shock.
Partial-wave analysis of nucleon-nucleon elastic scattering data
Workman, Ron L.; Briscoe, William J.; Strakovsky, Igor I.
2016-12-19
Energy-dependent and single-energy fits to the existing nucleon-nucleon database have been updated to incorporate recent measurements. The fits cover a region from threshold to 3 GeV, in the laboratory kinetic energy, for proton-proton scattering, with an upper limit of 1.3 GeV for neutron-proton scattering. Experiments carried out at the COSY-WASA and COSY-ANKE facilities have had a significant impact on the partial-wave solutions. Lastly, results are discussed in terms of both partial-wave and direct reconstruction amplitudes.
NASA Astrophysics Data System (ADS)
Oimatsu, S.; Masahito, N.; Takahashi, K.; Yamamoto, K.; Keika, K.; Kletzing, C.; MacDowall, R. J.; Smith, C.; Mitchell, D. G.
2017-12-01
Poloidal Pc4 wave and proton flux oscillation due to the drift-bounce resonance are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux modulation is observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of poloidal Pc4 wave. We estimate the resonant energy to be 120 keV for pitch angle (α) of 20º-40º or 140º-160º, and 170-180 keV for α=40º-60º or 120º-140º. The drift-bounce resonance theory gives the resonant energy of 110-120 keV, which is consistent with the observation for small α (or large α when α≥90º), but slightly higher than the observation for large α (or small α when α≥90º). We consider that this discrepancy of the resonant energy is due to the drift shell splitting. In order to examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) in both outbound and inbound paths. Results showed positive gradient in both paths, which means that the energy is transferred from the protons to the wave. During the appearance of poloidal Pc4 wave, the Dst* index shows a sudden increase of 6.7 nT. We estimate the total energy loss of the ring current from the recovery of the Dst* index and the variation of proton flux by the drift-bounce resonance. The estimated energy loss is almost comparable for both cases. Therefore, we suggest that the energy transfer from the ring current protons to the wave via the drift-bounce resonance cause the increase of Dst* index.
ULF/ELF Waves in Near-Moon Space
NASA Astrophysics Data System (ADS)
Nakagawa, Tomoko
2016-02-01
The reflection of the solar wind protons is equivalent to a beam injection against the solar wind flow. It is expected to produce a ring beam with a 3D distribution function in many cases. The reflected protons are responsible for the generation of ultra-low-frequency (ULF) waves at ˜0.01 Hz and narrowband waves at ˜1 Hz in the extremely low frequency (ELF) range through resonant interaction with magnetohydrodynamic waves and whistler mode waves in the solar wind, respectively. This chapter discusses these commonly observed waves in the near-Moon space. The sinusoidal waveforms and sharp spectra of the monochromatic ELF waves are impressive, but commonly observed are non-monochromatic waves in the ELF range ˜0.03-10 Hz. Some of the solar wind protons reflected by the dayside lunar surface or crustal magnetic field gyrate around the solar wind magnetic field and can access the center of the wake owing to the large Larmour radius.
Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.
2016-02-15
In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observedmore » during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment.« less
A new 2 Kelvin Superconducting Half-Wave Cavity Cryomodule for PIP-II
NASA Astrophysics Data System (ADS)
Conway, Z. A.; Barcikowski, A.; Cherry, G. L.; Fischer, R. L.; Gerbick, S. M.; Jansma, W. G.; Kedzie, M. J.; Kelly, M. P.; Kim, S.-h.; Lebedev, V. A.; MacDonald, S. W. T.; Nicol, T. H.; Ostroumov, P. N.; Reid, T. C.; Shepard, K. W.; White, M. J.
2015-12-01
Argonne National Laboratory has developed and is implementing a novel 2 K superconducting cavity cryomodule operating at 162.5 MHz. This cryomodule is designed for the acceleration of 2 mA H-/proton beams from 2.1 to 10 MeV as part of the Fermilab Proton Improvement Project-II (PIP-II). This work is an evolution of techniques recently implemented in two previous heavy-ion accelerator cryomodules now operating at Argonne National Laboratory. The 2 K cryomodule is comprised of 8 half-wave cavities operated in the continuous wave mode with 8 superconducting magnets, one in front of each cavity. All of the solenoids and cavities operate off of a single gravity fed 2 K helium cryogenic system expected to provide up to 50 W of 2 K cooling. Here we review the mechanical design of the cavities and cryomodule which were developed using methods similar to those required in the ASME Boiler and Pressure Vessel Code. This will include an overview of the cryomodule layout, the alignment of the accelerator components via modifications of the cryomodule vacuum vessel and provide a status report on the cryomodule assembly.
Electromagnetic Waves with Frequencies Near the Local Proton Gryofrequency: ISEF-3 1 AU Observations
NASA Technical Reports Server (NTRS)
Tsurutani, B.
1993-01-01
Low Frequency electromagnetic waves with periods near the local proton gyrofrequency have been detected near 1 AU by the magnetometer onboard ISEE-3. For these 1 AU waves two physical processes are possible: solar wind pickup of nuetral (interstellar?) particles and generation by relativistic electron beams propagating from the Sun.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfon, S.; Feinberg, G.; Racah Institute of Physics, Hebrew University, Jerusalem 91904
2014-05-15
The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (∼2 × 10{sup 10} n/s having a peak energy of ∼27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q., E-mail: wuq@impcas.ac.cn; Ma, H. Y.; Yang, Y.
Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimummore » width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.« less
Three-dimensional Hybrid Simulation Study of Anisotropic Turbulence in the Proton Kinetic Regime
NASA Astrophysics Data System (ADS)
Vasquez, Bernard J.; Markovskii, Sergei A.; Chandran, Benjamin D. G.
2014-06-01
Three-dimensional numerical hybrid simulations with particle protons and quasi-neutralizing fluid electrons are conducted for a freely decaying turbulence that is anisotropic with respect to the background magnetic field. The turbulence evolution is determined by both the combined root-mean-square (rms) amplitude for fluctuating proton bulk velocity and magnetic field and by the ratio of perpendicular to parallel wavenumbers. This kind of relationship had been considered in the past with regard to interplanetary turbulence. The fluctuations nonlinearly evolve to a turbulent phase whose net wave vector anisotropy is usually more perpendicular than the initial one, irrespective of the initial ratio of perpendicular to parallel wavenumbers. Self-similar anisotropy evolution is found as a function of the rms amplitude and parallel wavenumber. Proton heating rates in the turbulent phase vary strongly with the rms amplitude but only weakly with the initial wave vector anisotropy. Even in the limit where wave vectors are confined to the plane perpendicular to the background magnetic field, the heating rate remains close to the corresponding case with finite parallel wave vector components. Simulation results obtained as a function of proton plasma to background magnetic pressure ratio β p in the range 0.1-0.5 show that the wave vector anisotropy also weakly depends on β p .
Electrostatic instability of ring current protons beyond the plasmapause during injection events
NASA Technical Reports Server (NTRS)
Coroniti, F. V.; Fredricks, R. W.; White, R.
1972-01-01
The stability of ring current protons with an injection spectrum modeled by an m = 2 mirror distribution function was examined for typical ring current parameters. It was found that the high frequency loss cone mode can be excited at wave numbers K lambda sub Di about = to 0.1 to 0.5, at frequencies omega about = to (0.2 to 0.6) omega sub pi and with growth rates up to gamma/omega about = to 0.03. These waves interact with the main body of the proton distribution and propagate nearly perpendicular to the local magnetic field. Cold particle partial densities tend to reduce the growth rate so that the waves are quenched at or near to the plasmapause boundary. Wave e-folding lengths are comparable to 0.1 R sub e, compared to the value of about 4 R sub e found for ion cyclotron waves at the same plasma conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.
In two earlier publications we analyzed 502 intervals of magnetic waves excited by newborn interstellar pickup protons that were observed by the Ulysses spacecraft. Due to the considerable effort required in identifying these events, we provide a list of the times for the 502 wave event intervals previously identified. In the process, we provide a brief description of how the waves were found and what their properties are. We also remind the reader of the conditions that permit the waves to reach observable levels and explain why the waves are not seen more often.
A Physical Model of the Proton Radiation Belts of Jupiter inside Europa's Orbit
NASA Astrophysics Data System (ADS)
Nénon, Q.; Sicard, A.; Kollmann, P.; Garrett, H. B.; Sauer, S. P. A.; Paranicas, C.
2018-05-01
A physical model of the Jovian trapped protons with kinetic energies higher than 1 MeV inward of the orbit of the icy moon Europa is presented. The model, named Salammbô, takes into account the radial diffusion process, the absorption effect of the Jovian moons, and the Coulomb collisions and charge exchanges with the cold plasma and neutral populations of the inner Jovian magnetosphere. Preliminary modeling of the wave-particle interaction with electromagnetic ion cyclotron waves near the moon Io is also performed. Salammbô is validated against in situ proton measurements of Pioneer 10, Pioneer 11, Voyager 1, Galileo Probe, and Galileo Orbiter. A prominent feature of the MeV proton intensity distribution in the modeled area is the 2 orders of magnitude flux depletion observed in MeV measurements near the orbit of Io. Our simulations reveal that this is not due to direct interactions with the moon or its neutral environment but results from scattering of the protons by electromagnetic ion cyclotron waves.
Focused interplanetary transport of solar energetic particles through self-generated Alfven waves
NASA Technical Reports Server (NTRS)
Ng, C. K.; Reames, D. V.
1991-01-01
The coupled evolution of solar-flare protons and interplanetary Alfven waves based on the quasi-linear theory implies an order of magnitude amplification (damping) in the outward (inward) propagating left helical resonant Alfven waves at less than 0.4-AU helioradius, if the proton intensity at 1 AU exceeds 300 particles/(sq cm s sr MeV) at 1 MeV, and the initial wave intensities give mean free paths of more than 0.5 AU. The wave growth significantly retards solar-particle transport, and has implications on the nature of solar-wind turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Workman, Ron L.; Briscoe, William J.; Strakovsky, Igor I.
Energy-dependent and single-energy fits to the existing nucleon-nucleon database have been updated to incorporate recent measurements. The fits cover a region from threshold to 3 GeV, in the laboratory kinetic energy, for proton-proton scattering, with an upper limit of 1.3 GeV for neutron-proton scattering. Experiments carried out at the COSY-WASA and COSY-ANKE facilities have had a significant impact on the partial-wave solutions. Lastly, results are discussed in terms of both partial-wave and direct reconstruction amplitudes.
ULF waves associated with enhanced subauroral proton precipitation
NASA Astrophysics Data System (ADS)
Immel, Thomas J.; Mende, S. B.; Frey, H. U.; Patel, J.; Bonnell, J. W.; Engebretson, M. J.; Fuselier, S. A.
Several types of sub-auroral proton precipitation events have been identified using the Spectrographic Imager (SI) onboard the NASA-IMAGE satellite, including dayside subauroral proton flashes and detached proton arcs in the dusk sector. These have been observed at various levels of geomagnetic activity and solar wind conditions and the mechanism driving the precipitation has often been assumed to be scattering of protons into the loss cone by enhancement of ion-cyclotron waves in the interaction of the thermal plasmaspheric populations and more energetic ring current particles. Indeed, recent investigation of the detached arcs using the MPA instruments aboard the LANL geosynchronous satellites has shown there are nearly always heightened densities of cold plasma on high-altitude field lines which map down directly to the sub-auroral precipitation. If the ion-cyclotron instability is a causative mechanism, the enhancement of wave activity at ion-cyclotron frequencies should be measurable. It is here reported that magnetic pulsations in the Pc1 range occur in the vicinity of each of 4 detached arcs observed in 2000-2002, though with widely varying signatures. Additionally, longer period pulsations in the Pc5 ranges are also observed in the vicinity of the arcs, leading to the conclusion that a bounce-resonance of ring-current protons with the azimuthal Pc5 wave structure may also contribute to the detached precipitation.
On the Mysterious Propulsion of Synechococcus
Ehlers, Kurt; Oster, George
2012-01-01
We propose a model for the self-propulsion of the marine bacterium Synechococcus utilizing a continuous looped helical track analogous to that found in Myxobacteria [1]. In our model cargo-carrying protein motors, driven by proton-motive force, move along a continuous looped helical track. The movement of the cargo creates surface distortions in the form of small amplitude traveling ridges along the S-layer above the helical track. The resulting fluid motion adjacent to the helical ribbon provides the propulsive thrust. A variation on the helical rotor model of [1] allows the motors to be anchored to the peptidoglycan layer, where they drive rotation of the track creating traveling helical waves along the S-layer. We derive expressions relating the swimming speed to the amplitude, wavelength, and velocity of the surface waves induced by the helical rotor, and show that they fall in reasonable ranges to explain the velocity and rotation rate of swimming Synechococcus. PMID:22567124
Kinetic Alfvén Wave Generation by Large-scale Phase Mixing
NASA Astrophysics Data System (ADS)
Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Matthaeus, W. H.; Malara, F.
2015-12-01
One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length dp may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to dp and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.
Wave-Coupled Millimeter-Wave Electro-Optic Techniques
2001-03-01
This report details results on two antenna-coupled millimeter-wave electro - optic modulators, the slot-vee antenna-coupled modulator and a 94 GHz...study of the effects of velocity mismatch on linearized electro - optic modulators was made and the results published. A key result was that directional...drift in electro - optic modulators was made and protons were determined to be the cause. Several inventions were made to reduce or eliminate proton-caused bias drift.
Energies of backstreaming protons in the foreshock
NASA Technical Reports Server (NTRS)
Greenstadt, E. W.
1976-01-01
A predicted pattern of energy vs detector location in the cislunar region is displayed for protons of zero pitch angle traveling upstream away from the quasi-parallel bow shock. The pattern is implied by upstream wave boundary properties. In the solar ecliptic, protons are estimated to have a minimum of 1.1 times the solar wind bulk energy E sub SW when the wave boundary is in the early morning sector and a maximum of 8.2 E sub SW when the boundary is near the predawn flank.
NASA Technical Reports Server (NTRS)
Taylor, W. W. L.; Lyons, L. R.
1976-01-01
Eighteen events of large-amplitude (0.4-6 gammas) waves which may be propagating in the ion cyclotron mode have een observed by Explorer 45. Comparison with simultaneously measured proton distributions has allowed the events to be divided into two categories. The first category consists of waves accompanied by enhanced ion fluxes apparently injected into the plasmasphere with anisotropic pitch-angle distributions. This simultaneity suggests that these waves may be generated by the observed ring-current ions. Waves in the second category were found near or outside the plasmapause and were not correlated with any identifiable changes in the observed proton distribution. The generation mechanism for these waves remains unknown.
In situ Observations of Magnetosonic Waves Modulated by Background Plasma Density
NASA Astrophysics Data System (ADS)
Yu, X.; Yuan, Z.; Huang, S.; Wang, D.; Funsten, H. O.
2017-12-01
We report in situ observations by the Van Allen Probe mission that magnetosonic (MS) waves are clearly relevant to appear relevant to the background plasma number density. As the satellite moved across dense and tenuous plasma alternatively, MS waves occurred only in lower density region. As the observed protons with 'ring' distributions provide free energy, local linear growth rates are calculated and show that magnetosonic waves can be locally excited in tenuous plasma. With variations of the background plasma density, the temporal variations of local wave growth rates calculated with the observed proton ring distributions, show a remarkable agreement with those of the observed wave amplitude. Therefore, the paper provides a direct proof that background plasma densities can modulate the amplitudes of magnetosonic waves through controlling the wave growth rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jiansen; Tu, Chuanyi; Wang, Linghua
Magnetohydronamic turbulence is believed to play a crucial role in heating laboratory, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. As opposed to the traditional paradigm with counter-propagating Alfvén waves (AWs), anti-sunward AWs are encountered by sunward slow magnetosonic waves (SMWs) inmore » this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond, respectively, to the dominant and sub-dominant populations of the imbalanced Elsässer variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orthogonality between the possible oscillation direction of one wave and the possible propagation direction of the other. The associated protons are revealed to exhibit bi-directional asymmetric beams in their velocity distributions: sunward beams appear in short, narrow patterns and anti-sunward in broad extended tails. It is suggested that multiple types of wave–particle interactions, i.e., cyclotron and Landau resonances with AWs and SMWs at kinetic scales, are taking place to jointly heat the protons perpendicular and in parallel.« less
NASA Astrophysics Data System (ADS)
Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.
2011-12-01
Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.
NASA Astrophysics Data System (ADS)
Shoji, Masafumi; Omura, Yoshiharu; Grison, Benjamin; Pickett, Jolene; Dandouras, Iannis; Engebretson, Mark
2011-09-01
Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.
Direct observation of generation and propagation of magnetosonic waves following substorm injection
NASA Astrophysics Data System (ADS)
Su, Z.; Wang, G.; Liu, N.; Zheng, H.; Wang, Y.; Wang, S.
2017-12-01
Magnetosonic whistler mode waves play an important role in the radiation belt electron dynamics. Previous theory has suggested that these waves are excited by the ring distributions of hot protons and can propagate radially and azimuthally over a broad spatial range. However, because of the challenging requirements on satellite locations and data-processing techniques, this theory was difficult to validate directly. Here we present some experimental tests of the theory on the basis of Van Allen Probes observations of magnetosonic waves following substorm injections. At higher L-shells with significant substorm injections, the discrete magnetosonic emission lines started approximately at the proton gyrofrequency harmonics, qualitatively consistent with the prediction of linear proton Bernstein mode instability. In the frequency-time spectrograms, these emission lines exhibited a clear rising tone characteristic with a long duration of 15-25 mins, implying the additional contribution of other undiscovered mechanisms. Nearly at the same time, the magnetosonic waves arose at lower L-shells without substorm injections. The wave signals at two different locations, separated by ΔL up to 2.0 and by ΔMLT up to 4.2, displayed the consistent frequency-time structures, strongly supporting the hypothesis about the radial and azimuthal propagation of magnetosonic waves.
The Observational Consequences of Proton-Generated Waves at Shocks
NASA Technical Reports Server (NTRS)
Reames, Donald V.
2000-01-01
In the largest solar energetic particle (SEP) events, acceleration takes place at shock waves driven out from the Sun by fast coronal mass ejections. Protons streaming away from strong shocks generate Alfven waves that trap particles in the acceleration region, limiting outflowing intensities but increasing the efficiency of acceleration to higher energies. Early in the events, with the shock still near the Sun, intensities at 1 AU are bounded and spectra are flattened at low energies. Elements with different charge-to-mass ratios, Q/A, differentially probe the wave spectra near shocks, producing abundance ratios that vary in space and time. An initial rise in He/H, while Fe/O declines, is a typical symptom of the non-Kolmogorov wave spectra in the largest events. Strong wave generation can cause cross-field scattering near the shock and unusually rapid reduction in anisotropies even far from the shock. At the highest energies, shock spectra steepen to form a "knee." For protons, this spectral knee can vary from approx. 10 MeV to approx. 1 GeV depending on shock conditions for wave growth. In one case, the location of the knee scales approximately as Q/A in the energy/nucleon spectra of other species.
KINETIC ALFVÉN WAVE GENERATION BY LARGE-SCALE PHASE MIXING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vásconez, C. L.; Pucci, F.; Valentini, F.
One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length d{sub p} may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to d{sub p} and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the rolemore » of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.« less
Multi-scale analysis of compressible fluctuations in the solar wind
NASA Astrophysics Data System (ADS)
Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe
2018-01-01
Compressible plasma turbulence is investigated in the fast solar wind at proton kinetic scales by the combined use of electron density and magnetic field measurements. Both the scale-dependent cross-correlation (CC) and the reduced magnetic helicity (σm) are used in tandem to determine the properties of the compressible fluctuations at proton kinetic scales. At inertial scales the turbulence is hypothesised to contain a mixture of Alfvénic and slow waves, characterised by weak magnetic helicity and anti-correlation between magnetic field strength B and electron density ne. At proton kinetic scales the observations suggest that the fluctuations have stronger positive magnetic helicities as well as strong anti-correlations within the frequency range studied. These results are interpreted as being characteristic of either counter-propagating kinetic Alfvén wave packets or a mixture of anti-sunward kinetic Alfvén waves along with a component of kinetic slow waves.
Stochastic Acceleration of Ions Driven by Pc1 Wave Packets
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.
2015-01-01
The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweizer, W., E-mail: schweizer@physik.uni-frankfurt.de; Ratzinger, U.; Klump, B.
At the University of Frankfurt a high current proton source has been developed and tested for the FRANZ-Project [U. Ratzinger, L. P. Chau, O. Meusel, A. Schempp, K. Volk, M. Heil, F. Käppeler, and R. Stieglitz, “Intense pulsed neutron source FRANZ in the 1–500 keV range,” ICANS-XVIII Proceedings, Dongguan, April 2007, p. 210]. The ion source is a filament driven arc discharge ion source. The new design consists of a plasma generator, equipped with a filter magnet to produce nearly pure proton beams (92 %), and a compact triode extraction system. The beam current density has been enhanced up tomore » 521 mA/cm{sup 2}. Using an emission opening radius of 4 mm, a proton beam current of 240 mA at 50 keV beam energy in continuous wave mode (cw) has been extracted. This paper will present the current status of the proton source including experimental results of detailed investigations of the beam composition in dependence of different plasma parameters. Both, cw and pulsed mode were studied. Furthermore, the performance of the ion source was studied with deuterium as working gas.« less
Ensemble Simulations of Proton Heating in the Solar Wind via Turbulence and Ion Cyclotron Resonance
NASA Astrophysics Data System (ADS)
Cranmer, Steven R.
2014-07-01
Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant Alfvén waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo ensemble of realistic wind speeds, densities, magnetic field strengths, and heating rates produces a filled region of parameter space (in a plane described by the parallel plasma beta and the proton temperature anisotropy ratio) similar to what is measured. The high-beta edges of this filled region are governed by plasma instabilities and strong heating rates. The low-beta edges correspond to weaker proton heating and a range of relative contributions from cyclotron resonance. On balance, the models are consistent with other studies that find only a small fraction of the turbulent power spectrum needs to consist of ion cyclotron waves.
Stone, S R; Morrison, J F
1983-06-29
Binding theory has been developed for the reaction of an ionizing enzyme with an ionizing ligand. Consideration has been given to the most general scheme in which all possible reactions and interconversions occur as well as to schemes in which certain interactions do not take place. Equations have been derived in terms of the variation of the apparent dissociation constant (Kiapp) as a function of pH. These equations indicate that plots of pKiapp against pH can be wave-, half-bell- or bell-shaped according to the reactions involved. A wave is obtained whenever there is formation of the enzyme-ligand complexes, ionized enzyme . ionized ligand and protonated enzyme . protonated ligand. The additional formation of singly protonated enzyme-ligand complexes does not affect the wave form of the plot, but can influence the shape of the overall curve. The formation of either ionized enzyme . ionized ligand or protonated enzyme . protonated ligand, with or without singly protonated enzyme-ligand species, gives rise to a half-bell-shaped plot. If only singly protonated enzyme-ligand complexes are formed the plots are bell-shaped, but it is not possible to deduce the ionic forms of the reactants that participate in complex formation. Depending on the reaction pathways, true values for the ionization and dissociation constants may or may not be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvaro Calle Cordon,Manuel Pavon Valderrama,Enrique Ruiz Arriola
2012-02-01
We study the interplay between charge symmetry breaking and renormalization in the NN system for S-waves. We find a set of universality relations which disentangle explicitly the known long distance dynamics from low energy parameters and extend them to the Coulomb case. We analyze within such an approach the One-Boson-Exchange potential and the theoretical conditions which allow to relate the proton-neutron, proton-proton and neutron-neutron scattering observables without the introduction of extra new parameters and providing good phenomenological success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slowinski, B.; Strugalski, Z.
1977-02-20
Results are presented of an analysis of the angular distributions of protons with E/sub p/> or =30 MeV emitted with different numbers of secondary charged particles in ..pi../sup +/+Xe interactions at 2.34 GeV/c. The obtained distributions are compared with the analogous characteristics of the protons emitted in collisions of protons or ..cap alpha.. particles with heavy emulsion nuclei and with lead at 70 and 17 GeV/c. It is concluded that the investigated distributions reveal no irregularities capable of attesting to a noticable role of the shock-wave mechanism in the target nuclei.
NASA Astrophysics Data System (ADS)
Dong, Chuanfei; Winske, Dan; Cowee, Misa; Bougher, Stephen W.; Andersson, Laila; Connerney, Jack; Epley, Jared; Ergun, Robert; McFadden, James P.; Ma, Yingjuan; Toth, Gabor; Curry, Shannon; Nagy, Andrew; Jakosky, Bruce
2015-04-01
Two-dimensional hybrid simulation codes are employed to investigate the kinetic properties of plasmas and waves downstream of the Martian bow shock. The simulations are two-dimensional in space but three dimensional in field and velocity components. Simulations show that ion cyclotron waves are generated by temperature anisotropy resulting from the reflected protons around the Martian bow shock. These proton cyclotron waves could propagate downward into the Martian ionosphere and are expected to heat the O+ layer peaked from 250 to 300 km due to the wave-particle interaction. The proton cyclotron wave heating is anticipated to be a significant source of energy into the thermosphere, which impacts atmospheric escape rates. The simulation results show that the specific dayside heating altitude depends on the Martian crustal field orientations, solar cycles and seasonal variations since both the cyclotron resonance condition and the non/sub-resonant stochastic heating threshold depend on the ambient magnetic field strength. The dayside magnetic field profiles for different crustal field orientation, solar cycle and seasonal variations are adopted from the BATS-R-US Mars multi-fluid MHD model. The simulation results, however, show that the heating of O+ via proton cyclotron wave resonant interaction is not likely in the relatively weak crustal field region, based on our simplified model. This indicates that either the drift motion resulted from the transport of ionospheric O+, or the non/sub-resonant stochastic heating mechanism are important to explain the heating of Martian O+ layer. We will investigate this further by comparing the simulation results with the available MAVEN data. These simulated ion cyclotron waves are important to explain the heating of Martian O+ layer and have significant implications for future observations.
NASA Technical Reports Server (NTRS)
Convery, P. D.; Schriver, D.; Ashour-Abdalla, M.; Richard, R. L.
2002-01-01
Nongyrotropic plasma distribution functions can be formed in regions of space where guiding center motion breaks down as a result of strongly curved and weak ambient magnetic fields. Such are the conditions near the current sheet in the Earth's middle and distant magnetotail, where observations of nongyrotropic ion distributions have been made. Here a systematic parameter study of nongyrotropic proton distributions using electromagnetic hybrid simulations is made. We model the observed nongyrotropic distributions by removing a number of arc length segments from a cold ring distribution and find significant differences with the results of simulations that initially have a gyrotropic ring distribution. Model nongyrotropic distributions with initially small perpendicular thermalization produce growing fluctuations that diffuse the ions into a stable Maxwellian-like distribution within a few proton gyro periods. The growing waves produced by nongyrotropic distributions are similar to the electromagnetic proton cyclotron waves produced by a gyrotropic proton ring distribution in that they propagate parallel to the background magnetic field and occur at frequencies on the order of the proton gyrofrequency, The maximum energy of the fluctuating magnetic field increases as the initial proton distribution is made more nongyrotropic, that is, more highly bunched in perpendicular velocity space. This increase can be as much as twice the energy produced in the gyrotropic case.
NASA Astrophysics Data System (ADS)
Gourier, Didier; Binet, Laurent; Gonzalez, Victor; Vezin, Hervé; Touati, Nadia; Calligaro, Thomas
2018-01-01
Analytical techniques using proton beams with energy in the MeV range are commonly used to study archeological artefact and artistic objects. However ion beams can induce alteration of fragile materials, which is notably the case of easel paintings, limiting the use of these techniques. We used continuous wave EPR and pulse EPR spectroscopy to reveal the effect of 3 MeV proton irradiation on lead carbonates, which were extensively employed as white pigments from the antiquity to the 20th century. Two kinds of paramagnetic centers were identified in cerussite (PbCO3): the first one is CO3- radicals formed by hole trapping by CO32- ions, and the second one is NO32- radical resulting from electron trapping by NO3- impurities. Hydrocerussite (2PbCO3·Pb(OH)2) is the most darkened material under proton beam, however it exhibits no NO32- radicals and 20 times less CO3- radicals than cerussite. Consequently these paramagnetic centers are not directly responsible for the darkening of lead-white pigments. We proposed that their higher instability in hydrocerussite might be at the origin of the formation of color centers in this material.
Endpoint Model of Exclusive Processes
NASA Astrophysics Data System (ADS)
Dagaonkar, Sumeet; Jain, Pankaj; Ralston, John P.
2018-07-01
The endpoint model explains the scaling laws observed in exclusive hadronic reactions at large momentum transfer in all experimentally important regimes. The model, originally conceived by Feynman and others, assumes a single valence quark carries most of the hadron momentum. The quark wave function is directly related to the momentum transfer dependence of the reaction. After extracting the momentum dependence of the quark wave function from one process, it explains all the others. Endpoint quark-counting rules relate the number of quarks in a hadron to the power-law. A universal linear endpoint behavior explains the proton electromagnetic form factors F1 and F2, proton-proton scattering at fixed-angle, the t-dependence of proton-proton scattering at large s>> t, and Compton scattering at fixed t. The model appears to be the only comprehensive mechanism consistent with all experimental information.
Blewett, J.P.
1962-01-01
A wave guide resonator structure is described for use in separating particles of equal momentum but differing in mass and having energies exceeding one billion electron volts. The particles are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high-energy accelerator. In this wave guide construction, the particles undergo preferential deflection as a result of the presence of an electric field. The boundary conditions established in the resonator are such as to eliminate an interfering magnetic component, and to otherwise phase the electric field to obtain a traveling wave such as one which moves at the same speed as the unwanted particle. The latter undergoes continuous deflection over the whole length of the device and is, therefore, eliminated while the wanted particle is deflected in opposite directions over the length of the resonator and is thus able to enter an exit aperture. (AEC)
NASA Astrophysics Data System (ADS)
Mc Leod, Roger David; Mc Leod, David M.
2007-10-01
Vision, via transform space: ``Nature behaves in a reciprocal way;' also, Rect x pressure-input sense-reports as Sinc p, indicating brain interprets reciprocal ``p'' space as object space. Use Mott's and Sneddon's Wave Mechanics and Its Applications. Wave transformation functions are strings of positron, electron, proton, and neutron; uncertainty is a semantic artifact. Neutrino-string de Broglie-Schr"odinger wave-function models for electron, positron, suggest three-quark models for protons, neutrons. Variably vibrating neutrino-quills of this model, with appropriate mass-energy, can be a vertical proton string, quills leftward; thread string circumferentially, forming three interlinked circles with ``overpasses''. Diameters are 2:1:2, center circle has quills radially outward; call it a down quark, charge --1/3, charge 2/3 for outward quills, the up quarks of outer circles. String overlap summations are nodes; nodes also far left and right. Strong nuclear forces may be --px. ``Dislodging" positron with neutrino switches quark-circle configuration to 1:2:1, `downers' outside. Unstable neutron charge is 0. Atoms build. With scale factors, retinal/vision's, and quantum mechanics,' spatial Fourier transforms/inverses are equivalent.
First measurement of the beam asymmetry in photoproduction off the proton near threshold
NASA Astrophysics Data System (ADS)
Levi Sandri, P.; Mandaglio, G.; De Leo, V.; Bartalini, O.; Bellini, V.; Bocquet, J.-P.; Capogni, M.; Curciarello, F.; Didelez, J.-P.; D'Angelo, A.; Di Salvo, R.; Fantini, A.; Franco, D.; Gervino, G.; Ghio, F.; Girolami, B.; Giusa, A.; Lapik, A.; Lleres, A.; Mammoliti, F.; Manganaro, M.; Moricciani, D.; Mushkarenkov, A.; Nedorezov, V.; Randieri, C.; Rebreyend, D.; Rudnev, N.; Russo, G.; Schaerf, C.; Sperduto, M.-L.; Sutera, M.-C.; Turinge, A.; Vegna, V.; Zonta, I.
2015-07-01
The beam asymmetry in photoproduction off the proton was measured at the GrAAL polarised photon beam with incoming photon energies of 1.461 and 1.480 GeV. For both energies the asymmetry as a function of the meson production angle shows a clear structure, more pronounced at the lowest one, with a change of sign around . The observed behaviour is compatible with P-wave D-wave (or S-wave F-wave) interference, the closer to threshold the stronger. The results are compared to the existing state-of-the-art calculations that fail to account for the data.
Observations of discrete magnetosonic waves off the magnetic equator
Zhima, Zeren; Chen, Lunjin; Fu, Huishan; ...
2015-11-23
Fast mode magnetosonic waves are typically confined close to the magnetic equator and exhibit harmonic structures at multiples of the local, equatorial proton cyclotron frequency. Here, we report observations of magnetosonic waves well off the equator at geomagnetic latitudes from -16.5°to -17.9° and L shell ~2.7–4.6. The observed waves exhibit discrete spectral structures with multiple frequency spacings. The predominant frequency spacings are ~6 and 9 Hz, neither of which is equal to the local proton cyclotron frequency. Backward ray tracing simulations show that the feature of multiple frequency spacings is caused by propagation from two spatially narrow equatorial source regionsmore » located at L ≈ 4.2 and 3.7. The equatorial proton cyclotron frequencies at those two locations match the two observed frequency spacings. Finally, our analysis provides the first observations of the harmonic nature of magnetosonic waves well away from the equatorial region and suggests that the propagation from multiple equatorial sources contributes to these off-equatorial magnetosonic emissions with varying frequency spacings.« less
A determination of relativistic shock jump conditions using Monte Carlo techniques
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Reynolds, Stephen P.
1991-01-01
Monte Carlo techniques are used, assuming isotropic elastic scattering of all particles, to calculate jump conditions in parallel relativistic collisionless shocks in the absence of Fermi acceleration. The shock velocity and compression ratios are shown for arbitrary flow velocities and for any upstream temperature. Both single-component electron-positron plasma and two-component proton-electron plasmas are considered. It is shown that protons and electrons must share energy, directly or through the mediation of plasma waves, in order to satisfy the basic conservation conditions, and the electron and proton temperatures are determined for a particular microscopic, kinetic-theory model, namely, that protons always scatter elastically. The results are directly applicable to shocks in which waves of scattering superthermal particles are absent.
Advanced low-beta cavity development for proton and ion accelerators
NASA Astrophysics Data System (ADS)
Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.
2015-05-01
Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for β = 0.077 ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouloumvakos, A.; Patsourakos, S.; Nindos, A.
2016-04-10
On 2012 March 7, two large eruptive events occurred in the same active region within 1 hr from each other. Each consisted of an X-class flare, a coronal mass ejection (CME), an extreme-ultraviolet (EUV) wave, and a shock wave. The eruptions gave rise to a major solar energetic particle (SEP) event observed at widely separated (∼120°) points in the heliosphere. From multi-viewpoint energetic proton recordings we determine the proton release times at STEREO B and A (STB, STA) and the first Lagrange point (L1) of the Sun–Earth system. Using EUV and white-light data, we determine the evolution of the EUVmore » waves in the low corona and reconstruct the global structure and kinematics of the first CME’s shock, respectively. We compare the energetic proton release time at each spacecraft with the EUV waves’ arrival times at the magnetically connected regions and the timing and location of the CME shock. We find that the first flare/CME is responsible for the SEP event at all three locations. The proton release at STB is consistent with arrival of the EUV wave and CME shock at the STB footpoint. The proton release time at L1 was significantly delayed compared to STB. Three-dimensional modeling of the CME shock shows that the particle release at L1 is consistent with the timing and location of the shock’s western flank. This indicates that at L1 the proton release did not occur in low corona but farther away from the Sun. However, the extent of the CME shock fails to explain the SEP event observed at STA. A transport process or a significantly distorted interplanetary magnetic field may be responsible.« less
Para-hydrogen raser delivers sub-millihertz resolution in nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Suefke, Martin; Lehmkuhl, Sören; Liebisch, Alexander; Blümich, Bernhard; Appelt, Stephan
2017-06-01
The precision of nuclear magnetic resonance spectroscopy (NMR) is limited by the signal-to-noise ratio, the measurement time Tm and the linewidth Δν = 1/(πT2). Overcoming the T 2 limit is possible if the nuclear spins of a molecule emit continuous radio waves. Lasers and masers are self-organized systems which emit coherent radiation in the optical and micro-wave regime. Both are based on creating a population inversion of specific energy states. Here we show continuous oscillations of proton spins of organic molecules in the radiofrequency regime (raser). We achieve this by coupling a population inversion created through signal amplification by reversible exchange (SABRE) to a high-quality-factor resonator. For the case of 15N labelled molecules, we observe multi-mode raser activity, which reports different spin quantum states. The corresponding 1H-15N J-coupled NMR spectra exhibit unprecedented sub-millihertz resolution and can be explained assuming two-spin ordered quantum states. Our findings demonstrate a substantial improvement in the frequency resolution of NMR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Jie; Zong, Q. G.; Miyoshi, Y.
Here, we report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions thatmore » plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.« less
Ren, Jie; Zong, Q. G.; Miyoshi, Y.; ...
2017-08-30
Here, we report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions thatmore » plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.« less
New Observation of Wave Excitation and Inverse Cascade in the Foreshock Region
NASA Astrophysics Data System (ADS)
He, Jiansen; Duan, Die; Yan, Limei; Huang, Shiyong; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua; Tian, Hui
2016-04-01
Foreshock with nascent plasma turbulence is regarded as a fascinating region to understand the basic plasma physical processes, e.g., wave-particle interactions as well as wave-wave couplings. Although there have been a bunch of intensive studies on this topic, some key clues about the chain of the physical processes still lacks from observations, e.g., the co-existence of upstream energetic particles as the free energy source, excited pump waves as the wave seed, inverse cascaded daughter waves, and scattered energetic particles as the end of nonlinear processes. A relatively comprehensive case study with some new observations is presented in this work. In our case, upstream energetic protons drifting at tens of Alfvén speed with respect to the background plasma protons is observed from 3DP/PESA-High onboard the WIND spacecraft. When looking at the wave magnetic activities, we are surprised to find the co-existence of high-frequency (0.1-0.5 Hz) large-amplitude right-hand polarized (RHP) waves and low-frequency (0.02-0.1 Hz) small-amplitude left-hand polarized (LHP) waves in the spacecraft (SC) frame. The anti-correlation between magnetic and velocity fluctuations along with the sunward magnetic field direction indicates the low-frequency LHP waves in the SC frame is in fact the sunward upstream RHP waves in the solar wind frame. This new observation lays solid foundation for the applicability of plasma non-resonance instability theory and inverse cascade theory to the foreshock region, in which the downstream high-frequency RHP pump waves are excited by the upstream reflected energetic protons through non-resonance instability and low-frequency RHP daughter waves are generated by the pump waves due to nonlinear parametric decay. The weak signal of alpha particle flux in the foreshock region concerned is also favorable to the occurrence of nonlinear decay process. Furthermore, enhanced downstream energetic proton fluxes are found and inferred to be scattered by the nascent turbulent fluctuations. Therefore, some key clues about the newborn turbulence in the foreshock are supplemented in this work. Nevertheless, the more complete scenario about the fundamental plasma physical processes in the foreshock is left for the newly launched MMS project and the proposed THOR mission.
NASA Astrophysics Data System (ADS)
Moslem, W. M.; Rezk, S.; Abdelsalam, U. M.; El-Labany, S. K.
2018-04-01
This paper introduces an investigation of shocklike soliton or small amplitude Double Layers (DLs) in a collisionless plasma, consisting of positive and negative ions, nonthermal electrons, as well as solar wind streaming protons and electrons. Gardner equation is derived and its shocklike soliton solution is obtained. The model is employed to recognize a possible nonlinear wave at Venus ionosphere. The results indicate that the number densities and velocities of the streaming particles play crucial role to determine the polarity and characteristic features (amplitude and width) of the shocklike soliton waves. An electron streaming speed modifies a negative shocklike wave profile, while an ion streaming speed modulates a positive shocklike wave characteristic.
Energy-latitude dispersion patterns near the isotropy boundaries of energetic protons
NASA Astrophysics Data System (ADS)
Sergeev, V. A.; Chernyaeva, S. A.; Apatenkov, S. V.; Ganushkina, N. Y.; Dubyagin, S. V.
2015-08-01
Non-adiabatic motion of plasma sheet protons causes pitch-angle scattering and isotropic precipitation to the ionosphere, which forms the proton auroral oval. This mechanism related to current sheet scattering (CSS) provides a specific energy-latitude dispersion pattern near the equatorward boundary of proton isotropic precipitation (isotropy boundary, IB), with precipitation sharply decreasing at higher (lower) latitude for protons with lower (higher) energy. However, this boundary maps to the inner magnetosphere, where wave-induced scattering may provide different dispersion patterns as recently demonstrated by Liang et al. (2014). Motivated by the potential usage of the IBs for the magnetotail monitoring as well as by the need to better understand the mechanisms forming the proton IB, we investigate statistically the details of particle flux patterns near the proton IB using NOAA-POES polar spacecraft observations made during September 2009. By comparing precipitated-to-trapped flux ratio (J0/J90) at >30 and >80 keV proton energies, we found a relatively small number of simple CSS-type dispersion events (only 31 %). The clear reversed (wave-induced) dispersion patterns were very rare (5 %). The most frequent pattern had nearly coinciding IBs at two energies (63 %). The structured precipitation with multiple IBs was very frequent (60 %), that is, with two or more significant J0/J90 dropouts. The average latitudinal width of multiple IB structures was about 1°. Investigation of dozens of paired auroral zone crossings of POES satellites showed that the IB pattern is stable on a timescale of less than 2 min (a few proton bounce periods) but can evolve on a longer (several minutes) scale, suggesting temporal changes in some mesoscale structures in the equatorial magnetosphere. We discuss the possible role of CSS-related and wave-induced mechanisms and their possible coupling to interpret the emerging complicated patterns of proton isotropy boundaries.
Theoretical detection threshold of the proton-acoustic range verification technique.
Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei
2015-10-01
Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1-10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. The calculated noise in the transducer was 12-28 mPa, depending on the transducer central frequency (70-380 kHz). The minimum number of protons detectable by the technique was on the order of 3-30 × 10(6) per pulse, with 30-800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10(6) protons/pulse and beam current.
Theoretical detection threshold of the proton-acoustic range verification technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Moiz; Yousefi, Siavash; Xing, Lei, E-mail: lei@stanford.edu
2015-10-15
Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method.more » Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10{sup 6} protons/pulse and beam current.« less
Theoretical detection threshold of the proton-acoustic range verification technique
Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei
2015-01-01
Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 106 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 106 protons/pulse and beam current. PMID:26429247
Holography and hydrodynamics in small systems
NASA Astrophysics Data System (ADS)
Chesler, Paul M.
2016-12-01
Using holographic duality, we present results for the off-center collision of Gaussian wave packets in strongly coupled N = 4 supersymmetric Yang-Mills theory. The wave packets are thin along the collision axis and superficially at least resemble Lorentz contracted colliding protons. The collision results in the formation of a droplet of liquid of size R ∼ 1 /Teff where Teff is the effective temperature, which is the characteristic microscopic scale in strongly coupled plasma. These results demonstrate the applicability of hydrodynamics to microscopically small systems and bolster the notion that hydrodynamics can be applied to heavy-light ion collisions as well as proton-proton collisions.
Preferential Heating of Oxygen 5+ Ions by Finite-Amplitude Oblique Alfven Waves
NASA Technical Reports Server (NTRS)
Maneva, Yana G.; Vinas, Adolfo; Araneda, Jamie; Poedts, Stefaan
2016-01-01
Minor ions in the fast solar wind are known to have higher temperatures and to flow faster than protons in the interplanetary space. In this study we combine previous research on parametric instability theory and 2.5D hybrid simulations to study the onset of preferential heating of Oxygen 5+ ions by large-scale finite-amplitude Alfven waves in the collisionless fast solar wind. We consider initially non-drifting isotropic multi-species plasma, consisting of isothermal massless fluid electrons, kinetic protons and kinetic Oxygen 5+ ions. The external energy source for the plasma heating and energization are oblique monochromatic Alfven-cyclotron waves. The waves have been created by rotating the direction of initial parallel pump, which is a solution of the multi-fluid plasma dispersion relation. We consider propagation angles theta less than or equal to 30 deg. The obliquely propagating Alfven pump waves lead to strong diffusion in the ion phase space, resulting in highly anisotropic heavy ion velocity distribution functions and proton beams. We discuss the application of the model to the problems of preferential heating of minor ions in the solar corona and the fast solar wind.
The Interaction of Coronal Mass Ejections with Alfvénic Turbulence
NASA Astrophysics Data System (ADS)
Manchester, Ward, IV; Van Der Holst, Bart
2017-09-01
We provide a first attempt to understand the interaction between Alfvén wave turbulence, kinetic instabilities and temperature anisotropies in the environment of a fast coronal mass ejection (CME) near the Sun. The impact of a fast CME on the solar corona causes turbulent energy, thermal energy and dissipative heating to increase by orders of magnitude, and produces conditions suitable for a host of kinetic instabilities. We study these CME-induced effects with the recently developed Alfvén Wave Solar Model, with which we are able to self-consistently simulate the turbulent energy transport and dissipation as well as isotropic electron heating and anisotropic proton heating. Furthermore, the model also offers the capability to address the effects of fire hose, mirror mode, and cyclotron kinetic instabilities on proton energy partitioning all in a global-scale numerical simulation. We find amplified turbulent energy in the CME sheath, along with strong wave reflection at the shock combine to cause wave dissipation rates to increase by more than a factor of 100. In contrast, wave energy is greatly diminished by adiabatic expansion in the flux rope. Finally, we find proton temperature anisotropies are limited by kinetic instabilities to a level consistent with solar wind observations.
The Interaction of Coronal Mass Ejections with Alfvenic Turbulence
NASA Astrophysics Data System (ADS)
Manchester, W.; van der Holst, B.
2017-12-01
We provide a first attempt to understand the interaction between Alfven wave turbulence, kinetic instabilities and temperature anisotropies in the environment of a fast coronal mass ejection (CME). The impact of a fast CME on the solar corona causes turbulent energy, thermal energy and dissipative heating to increase by orders of magnitude, and produces conditions suitable for a host of kinetic instabilities. We study these CME-induced effects with the recently developed Alfven Wave Solar Model, with which we are able to self-consistently simulate the turbulent energy transport and dissipation as well as isotropic electron heating and anisotropic proton heating. Furthermore, the model also offers the capability to address the effects of firehose, mirror mode, and cyclotron kinetic instabilities on proton energy partitioning, all in a global-scale numerical simulation. We find turbulent energy greatly enhanced in the CME sheath, strong wave reflection at the shock, which leads to wave dissipation rates increasing by more than a factor of 100. In contrast, wave energy is greatly diminished by adiabatic expansion in the flux rope. Finally, we find proton temperature anisotropies are limited by kinetic instabilities to a level consistent with solar wind observations.
Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Wenzel, K.-P.; Sanderson, T. R.; Van Nes, P.; Smith, E. J.; Tsurutani, B. T.; Scudder, J. D.
1984-01-01
ISEE 1, 2 and 3 data from 1978 on interplanetary magnetic fields, shock waves and particle energetics are examined to characterize a quasi-parallel shock. The intense shock studied exhibited a 640 km/sec velocity. The data covered 1-147 keV protons and electrons and ions with energies exceeding 30 keV in regions both upstream and downstream of the shock, and also the magnitudes of ion-acoustic and MHD waves. The energetic particles and MHD waves began being detected 5 hr before the shock. Intense halo electron fluxes appeared ahead of the shock. A closed magnetic field structure was produced with a front end 700 earth radii from the shock. The energetic protons were cut off from the interior of the magnetic bubble, which contained a markedly increased density of 2-6 keV protons as well as the shock itself.
Spin Dependence of η Meson Production in Proton-Proton Collisions Close to Threshold.
Adlarson, P; Augustyniak, W; Bardan, W; Bashkanov, M; Bass, S D; Bergmann, F S; Berłowski, M; Bondar, A; Büscher, M; Calén, H; Ciepał, I; Clement, H; Czerwiński, E; Demmich, K; Engels, R; Erven, A; Erven, W; Eyrich, W; Fedorets, P; Föhl, K; Fransson, K; Goldenbaum, F; Goswami, A; Grigoryev, K; Gullström, C-O; Heijkenskjöld, L; Hejny, V; Hüsken, N; Jarczyk, L; Johansson, T; Kamys, B; Kemmerling, G; Khatri, G; Khoukaz, A; Khreptak, O; Kirillov, D A; Kistryn, S; Kleines, H; Kłos, B; Krzemień, W; Kulessa, P; Kupść, A; Kuzmin, A; Lalwani, K; Lersch, D; Lorentz, B; Magiera, A; Maier, R; Marciniewski, P; Mariański, B; Morsch, H-P; Moskal, P; Ohm, H; Parol, W; Perez Del Rio, E; Piskunov, N M; Prasuhn, D; Pszczel, D; Pysz, K; Pyszniak, A; Ritman, J; Roy, A; Rudy, Z; Rundel, O; Sawant, S; Schadmand, S; Schätti-Ozerianska, I; Sefzick, T; Serdyuk, V; Shwartz, B; Sitterberg, K; Skorodko, T; Skurzok, M; Smyrski, J; Sopov, V; Stassen, R; Stepaniak, J; Stephan, E; Sterzenbach, G; Stockhorst, H; Ströher, H; Szczurek, A; Trzciński, A; Wolke, M; Wrońska, A; Wüstner, P; Yamamoto, A; Zabierowski, J; Zieliński, M J; Złomańczuk, J; Żuprański, P; Żurek, M
2018-01-12
Taking advantage of the high acceptance and axial symmetry of the WASA-at-COSY detector, and the high polarization degree of the proton beam of COSY, the reaction p[over →]p→ppη has been measured close to threshold to explore the analyzing power A_{y}. The angular distribution of A_{y} is determined with the precision improved by more than 1 order of magnitude with respect to previous results, allowing a first accurate comparison with theoretical predictions. The determined analyzing power is consistent with zero for an excess energy of Q=15 MeV, signaling s-wave production with no evidence for higher partial waves. At Q=72 MeV the data reveal strong interference of Ps and Pp partial waves and cancellation of (Pp)^{2} and Ss^{*}Sd contributions. These results rule out the presently available theoretical predictions for the production mechanism of the η meson.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferdinand, Robin; Beauvais, Pierre-Yves
High Power Proton Accelerators (HPPAs) are studied for several projects based on high-flux neutron sources driven by proton or deuteron beams. Since the front end is considered as the most critical part of such accelerators, the two French national research agencies CEA and CNRS decided to collaborate in 1997 to study and build a High-Intensity Proton Injector (IPHI). The main objective of this project is to master the complex technologies used and the concepts of manufacturing and controlling the HPPAs. Recently, a collaboration agreement was signed with CERN and led to some evolutions in the design and in the schedule.more » The IPHI design current was maintained at 100 mA in Continuous Wave mode. This choice should allow to produce a high reliability beam at reduced intensity (typically 30 mA) tending to fulfill the Accelerator Driven System requirements. The output energy of the Radio Frequency Quadrupole (RFQ), was reduced from 5 to 3 MeV, allowing then the adjunction and the test, in pulsed operation of a chopper line developed by CERN for the Superconducting Proton Linac (SPL). In a final step, the IPHI RFQ and the chopper line should become parts of the SPL injector. In this paper, the IPHI project and the recent evolutions are reported together with the construction and operation schedule.« less
Advanced low-beta cavity development for proton and ion accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.
2015-05-01
Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review thismore » work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for beta = 0.077 ions.« less
Comparative study of ion cyclotron waves at Mars, Venus and Earth
NASA Astrophysics Data System (ADS)
Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.
2011-08-01
Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which the fast neutrals are produced and where they are re-ionized and picked up. While these waves were discovered early in the magnetospheric exploration, their generation was not understood until after we had observed similar waves in the exospheres of Mars and Venus.
NASA Astrophysics Data System (ADS)
Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.
2018-03-01
In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.
Deformation dependence of proton decay rates and angular distributions in a time-dependent approach
NASA Astrophysics Data System (ADS)
Carjan, N.; Talou, P.; Strottman, D.
1998-12-01
A new, time-dependent, approach to proton decay from axially symmetric deformed nuclei is presented. The two-dimensional time-dependent Schrödinger equation for the interaction between the emitted proton and the rest of the nucleus is solved numerically for well defined initial quasi-stationary proton states. Applied to the hypothetical proton emission from excited states in deformed nuclei of 208Pb, this approach shows that the problem cannot be reduced to one dimension. There are in general more than one directions of emission with wide distributions around them, determined mainly by the quantum numbers of the initial wave function rather than by the potential landscape. The distribution of the "residual" angular momentum and its variation in time play a major role in the determination of the decay rate. In a couple of cases, no exponential decay was found during the calculated time evolution (2×10-21 sec) although more than half of the wave function escaped during that time.
Significant initial results from the environmental measurements experiment on ATS-6
NASA Technical Reports Server (NTRS)
Fritz, T. A.; Arthur, C. W.; Blake, J. B.; Coleman, P. J., Jr.; Corrigan, J. P.; Cummings, W. D.; Deforest, S. E.; Erickson, K. N.; Konradi, A.; Lennartsson, W.
1977-01-01
The Applications Technology Satellite (ATS-6), launched into synchronous orbit on 30 May 1974, carried a set of six particle detectors and a triaxial fluxgate magnetometer. The particle detectors were able to determine the ion and electron distribution functions from 1 to greater than 10 to the 8th power eV. It was found that the magnetic field is weaker and more tilted than predicted by models which neglect internal plasma and that there is a seasonal dependence to the magnitude and tilt. ATS-6 magnetic field measurements showed the effects of field-aligned currents associated with substorms, and large fluxes of field-aligned particles were observed with the particle detectors. Encounters with the plasmasphere revealed the existence of warm plasma with temperatures up to 30 eV. A variety of correlated waves in both the particles and fields were observed: pulsation continuous oscillations, seen predominantly in the plasmasphere bulge; ultralow frequency (ULF) standing waves; ring current proton ULF waves; and low frequency waves that modulate the energetic electrons. In additon, large scale waves on the energetic-ion-trapping boundary were observed, and the intensity of energetic electrons was modulated in association with the passage of sector boundaries of the interplanetary magnetic field.
NASA Astrophysics Data System (ADS)
Kitamura, N.; Kitahara, M.; Shoji, M.; Miyoshi, Y.; Hasegawa, H.; Nakamura, S.; Katoh, Y.; Saito, Y.; Yokota, S.; Gershman, D. J.; Vinas, A. F.; Giles, B. L.; Moore, T. E.; Paterson, W.; Pollock, C. J.; Russell, C. T.; Strangeway, R. J.; Fuselier, S. A.; Burch, J. L.
2017-12-01
Wave-particle interactions have been suggested to play a crucial role in energy transfer in collisionless space plasmas in which the motion of charged particles is controlled by electromagnetic fields. Using an electromagnetic ion cyclotron (EMIC) wave event observed by MMS, we investigate energy transfer between ions and EMIC waves via cyclotron type interactions. To directly detect energy exchange between ions and EMIC waves, we apply the Wave-Particle Interaction Analyzer (WPIA) method that is to calculate the dot product between the wave electric field (Ewave) and ion current perpendicular to the background magnetic field (j). In the cases of resonance, this current is called the resonant current. Near the beginning of the wave event, 15-second averages of j • Ewave reached -0.3 pW/m3 for ions with energies of 14-30 keV and pitch angles of 33.25°-78.75°. The negative value in this pitch angle range indicates that the perpendicular energy of ions was being transferred to the EMIC waves propagating toward Southern higher latitudes at the MMS location by cyclotron resonance. Ion data show non-gyrotropic distributions around the resonance velocity, and that is consistent with the nonlinear trapping of protons by the wave and formation of an electromagnetic proton hole. Near the beginning of the same wave event, strongly phase bunched He+ up to 2 keV with pitch angles slightly larger than 90° were also detected. A positive j • Ewave for the phase bunched He+ indicates that the He+ was being accelerated by the electric field of the EMIC waves. The observed feature of He+ ions is consistent with non-resonant interaction with the wave but is inconsistent with cyclotron resonance. Significantly non-gyrotropic distributions observed in this event demonstrate that different particle populations can strongly couple through wave-particle interactions in the collisionless plasma.
Formation of the wave compressional boundary in the earth's foreshock
NASA Technical Reports Server (NTRS)
Skadron, George; Holdaway, Robert D.; Lee, Martin A.
1988-01-01
Using an evolutionary model and allowing for nonuniform proton injection and wave growth rates, the compressional wave boundaries corresponding to IMF inclinations to the solar wind of theta(BV) equal to 45 and 25 deg were located. The compressional boundaries deduced from this model were found to support the results of Greenstadt and Baum (1986) who have concluded that the observed compressional boundaries are incompatible with wave growth at a fixed growth rate, due to the interaction of a uniform beam with the solar wind. The results indicate, however, that the compressional boundaries are quite compatible with nonuniform beams and growth rates which result from the coupled evolution of the energetic protons and the waves with which they interact. It was found that, in the solar wind frame, the dominant wave-particle interaction in the outer foreshock is the damping of inward propagating (toward the shock) left-polarized waves, producing a magnetically quiet region immediately downstream of the foreshock boundary.
How big are the smallest drops of quark-gluon plasma?
NASA Astrophysics Data System (ADS)
Chesler, Paul M.
2016-03-01
Using holographic duality, we present results for both head-on and off-center collisions of Gaussian shock waves in strongly coupled {N}=4 supersymmetric Yang-Mills theory. The shock waves superficially resemble Lorentz contracted colliding protons. The collisions results in the formation of a plasma whose evolution is well described by viscous hydrodynamics. The size of the produced droplet is R ˜ 1 /T eff where T eff is the effective temperature, which is the characteristic microscopic scale in strongly coupled plasma. These results demonstrate the applicability of hydrodynamics to microscopically small systems and bolster the notion that hydrodynamics can be applied to heavy-light ion collisions as well as some proton-proton collisions.
Electromagnetic waves with frequencies near the local proton gyrofrequency: ISEE-3 1 AU observations
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.; Arballo, John K.; Mok, John; Smith, Edward J.; Mason, Glenn M.; Tan, Lun C.
1994-01-01
Low Frequency (LF) electromagnetic waves with periods near the local proton gyrofrequency have been detected in interplanetary space by the magnetometer onboard International-Sun-Earth-Explorer-3 (ISEE-3). Transverse peak-to-peak amplitudes as large as delta vector B/absolute value of B approximately 0.4 have been noted with compressional components (Delta absolute value of B/absolute value of B) typically less than or = 0.1. Generally, the waves have even smaller amplitudes, or are not detectable within the solar wind turbulence. The waves are elliptically/linearly polarized and are often, but not always, found to propagate nearly along vector B(sub zero). Both right- and left-hand polarizations in the spacecraft-frame have been detected. The waves are observed during all orientations of the interplanetary magnetic field, with the Parker spiral orientation being the most common case. Because the waves are detected at and near the local proton cyclotron frequency, the generation mechanism must almost certainly be solar wind pickup of freshly created hydrogen ions. Possible sources for the hydrogen are the Earth's atmosphere, coronal mass ejections from the Sun, comets and interstellar neutral atoms. At this time it is not obvious which potential source is the correct one. Statistical tests employing over one year of ISEE-3 data will be done in the near future to eliminate/confirm some of these possibilities.
Ion Bernstein instability dependence on the proton-to-electron mass ratio: Linear dispersion theory
NASA Astrophysics Data System (ADS)
Min, Kyungguk; Liu, Kaijun
2016-07-01
Fast magnetosonic waves, which have as their source ion Bernstein instabilities driven by tenuous ring-like proton velocity distributions, are frequently observed in the inner magnetosphere. One major difficulty in the simulation of these waves is that they are excited in a wide frequency range with discrete harmonic nature and require time-consuming computations. To overcome this difficulty, recent simulation studies assumed a reduced proton-to-electron mass ratio, mp/me, and a reduced light-to-Alfvén speed ratio, c/vA, to reduce the number of unstable modes and, therefore, computational costs. Although these studies argued that the physics of wave-particle interactions would essentially remain the same, detailed investigation of the effect of this reduced system on the excited waves has not been done. In this study, we investigate how the complex frequency, ω = ωr+iγ, of the ion Bernstein modes varies with mp/me for a sufficiently large c/vA (such that ωpe2/Ωe2≡(me/mp)(c/vA)2≫1) using linear dispersion theory assuming two different types of energetic proton velocity distributions, namely, ring and shell. The results show that low- and high-frequency harmonic modes respond differently to the change of mp/me. For the low harmonic modes (i.e., ωr˜Ωp), both ωr/Ωp and γ/Ωp are roughly independent of mp/me, where Ωp is the proton cyclotron frequency. For the high harmonic modes (i.e., Ωp≪ωr≲ωlh, where ωlh is the lower hybrid frequency), γ/ωlh (at fixed ωr/ωlh) stays independent of mp/me when the parallel wave number, k∥, is sufficiently large and becomes inversely proportional to (mp/me)1/4 when k∥ goes to zero. On the other hand, the frequency range of the unstable modes normalized to ωlh remains independent of mp/me, regardless of k∥.
do N Varella, Márcio T; Arasaki, Yasuki; Ushiyama, Hiroshi; Takatsuka, Kazuo; Wang, Kwanghsi; McKoy, Vincent
2007-02-07
The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.
NASA Astrophysics Data System (ADS)
Ryazanov, A. I.; Stepakov, A. V.; Vasilyev, Ya. S.; Ferrari, A.
2014-02-01
The interaction of 450-GeV protons with copper, which is the material of the collimators of the Large Hadron Collider, has been theoretically studied. A theoretical model for the formation and propagation of shock waves has been proposed on the basis of the analysis of the energy released by a proton beam in the electronic subsystem of the material owing to the deceleration of secondary particles appearing in nuclear reactions induced by this beam on the electronic subsystem of the material. The subsequent transfer of the energy from the excited electronic subsystem to the crystal lattice through the electron-phonon interaction has been described within the thermal spike model [I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957); I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, At. Energ. 6, 391 (1959); K. Yasui, Nucl. Instrum. Methods Phys. Res., Sect. B 90, 409 (1994)]. The model of the formation of shock waves involves energy exchange processes between excited electronic and ionic subsystems of the irradiated material and is based on the hydrodynamic approximation proposed by Zel'dovich [Ya.B. Zel'dovich and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002)]. This model makes it possible to obtain the space-time distributions of the main physical characteristics (temperatures of the ionic and electronic subsystems, density, pressure, etc.) in materials irradiated by high-energy proton beams and to analyze the formation and propagation of shock waves in them. The nonlinear differential equations describing the conservation laws of mass, energy, and momentum of electrons and ions in the Euler variables in the case of the propagation of shock waves has been solved with the Godunov scheme [S. K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, and G.P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian
Model for energy transfer in the solar wind: Model results
NASA Technical Reports Server (NTRS)
Barnes, A. A., Jr.; Hartle, R. E.
1972-01-01
A description is given of the results of solar wind flow in which the heating is due to (1) propagation and dissipation of hydromagnetic waves generated near the base of the wind, and (2) thermal conduction. A series of models is generated for fixed values of density, electron and proton temperature, and magnetic field at the base by varying the wave intensity at the base of the model. This series of models predicts the observed correlation between flow speed and proton temperature for a large range of velocities. The wave heating takes place in a shell about the sun greater than or approximately equal to 10 R thick. We conclude that large-scale variations observed in the solar wind are probably due mainly to variation in the hydromagnetic wave flux near the sun.
Jones, Kevin C; Seghal, Chandra M; Avery, Stephen
2016-03-21
The unique dose deposition of proton beams generates a distinctive thermoacoustic (protoacoustic) signal, which can be used to calculate the proton range. To identify the expected protoacoustic amplitude, frequency, and arrival time for different proton pulse characteristics encountered at hospital-based proton sources, the protoacoustic pressure emissions generated by 150 MeV, pencil-beam proton pulses were simulated in a homogeneous water medium. Proton pulses with Gaussian widths ranging up to 200 μs were considered. The protoacoustic amplitude, frequency, and time-of-flight (TOF) range accuracy were assessed. For TOF calculations, the acoustic pulse arrival time was determined based on multiple features of the wave. Based on the simulations, Gaussian proton pulses can be categorized as Dirac-delta-function-like (FWHM < 4 μs) and longer. For the δ-function-like irradiation, the protoacoustic spectrum peaks at 44.5 kHz and the systematic error in determining the Bragg peak range is <2.6 mm. For longer proton pulses, the spectrum shifts to lower frequencies, and the range calculation systematic error increases (⩽ 23 mm for FWHM of 56 μs). By mapping the protoacoustic peak arrival time to range with simulations, the residual error can be reduced. Using a proton pulse with FWHM = 2 μs results in a maximum signal-to-noise ratio per total dose. Simulations predict that a 300 nA, 150 MeV, FWHM = 4 μs Gaussian proton pulse (8.0 × 10(6) protons, 3.1 cGy dose at the Bragg peak) will generate a 146 mPa pressure wave at 5 cm beyond the Bragg peak. There is an angle dependent systematic error in the protoacoustic TOF range calculations. Placing detectors along the proton beam axis and beyond the Bragg peak minimizes this error. For clinical proton beams, protoacoustic detectors should be sensitive to <400 kHz (for -20 dB). Hospital-based synchrocyclotrons and cyclotrons are promising sources of proton pulses for generating clinically measurable protoacoustic emissions.
Exact solution of equations for proton localization in neutron star matter
NASA Astrophysics Data System (ADS)
Kubis, Sebastian; Wójcik, Włodzimierz
2015-11-01
The rigorous treatment of proton localization phenomenon in asymmetric nuclear matter is presented. The solution of proton wave function and neutron background distribution is found by the use of the extended Thomas-Fermi approach. The minimum of energy is obtained in the Wigner-Seitz approximation of a spherically symmetric cell. The analysis of four different nuclear models suggests that the proton localization is likely to take place in the interior of a neutron star.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolfe, R.M.
1976-12-01
The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed.
Gamayunov, Konstantin V.; Zhang, Ming; Pogorelov, Nikolai V.; ...
2012-09-05
In this study, a self-consistent model of the interstellar pickup protons, the slab component of the Alfvénic turbulence, and core solar wind (SW) protons is presented for r ≥ 1 along with the initial results of and comparison with the Voyager 2 (V2) observations. Two kinetic equations are used for the pickup proton distribution and Alfvénic power spectral density, and a third equation governs SW temperature including source due to the Alfvén wave energy dissipation. A fraction of the pickup proton free energy, fD , which is actually released in the waveform during isotropization, is taken from the quasi-linear considerationmore » without preexisting turbulence, whereas we use observations to specify the strength of the large-scale driving, C sh, for turbulence. The main conclusions of our study can be summarized as follows. (1) For C sh ≈ 1-1.5 and f D ≈ 0.7-1, the model slab component agrees well with the V2 observations of the total transverse magnetic fluctuations starting from ~8 AU. This indicates that the slab component at low-latitudes makes up a majority of the transverse magnetic fluctuations beyond 8-10 AU. (2) The model core SW temperature agrees well with the V2 observations for r ≳ 20 AU if f D ≈ 0.7-1. (3) A combined effect of the Wentzel-Kramers-Brillouin attenuation, large-scale driving, and pickup proton generated waves results in the energy sink in the region r ≲ 10 AU, while wave energy is pumped in the turbulence beyond 10 AU. Without energy pumping, the nonlinear energy cascade is suppressed for r ≲ 10 AU, supplying only a small energy fraction into the k-region of dissipation by the core SW protons. A similar situation takes place for the two-dimensional turbulence. (4) The energy source due to the resonant Alfvén wave damping by the core SW protons is small at heliocentric distances r ≲ 10 AU for both the slab and the two-dimensional turbulent components. As a result, adiabatic cooling mostly controls the model SW temperature in this region, and the model temperature disagrees with the V2 observations in the region r ≲ 20 AU.« less
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Aggson, T. L.; Mangeney, A.; Lacombe, C.; Harvey, C. C.
1986-01-01
Data collected by the ISEE dual-spacecraft mission (on November 7, 1977) on a slowly moving, supercritical, high-beta, quasi-perpendicular bow shock are presented, and the local geometry, spatial scales, and stationarity of this shock wave are assessed in a self-consistent Rankine-Hugoniot-constrained frame of reference. Included are spatial profiles of the ac and dc magnetic and electric fields, electron and proton fluid velocities, current densities, electron and proton number densities, temperatures, pressures, and partial densities of the reflected protons. The observed layer profile is shown to be nearly phase standing and one-dimensional in a Rankine-Hugoniot frame, empirically determined by the magnetofluid parameters outside the layer proper.
Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; ...
2016-08-16
To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N 2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroralmore » intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less
Landau damping and steepening of interplanetary nonlinear hydromagnetic waves
NASA Technical Reports Server (NTRS)
Barnes, A.; Chao, J. K.
1977-01-01
According to collisionless shock theories, the thickness of a shock front should be of the order of the characteristic lengths of the plasmas (the Debye length, the proton and Larmor radii, etc.). Chao and Lepping (1974), found, however, that 30% of the observed interplanetary shocks at 1 AU have thicknesses much larger than these characteristic lengths. It is the objective of the present paper to investigate whether the competition between nonlinear steepening and Landau damping can result in a wave of finite width that does not steepen into a shock. A heuristic model of such a wave is developed and tested by the examples of two structures that are qualitatively shocklike, but thicker than expected from theory. It is found that both events are in the process of steepening and their limiting thicknesses due to Landau damping are greater than the corresponding proton Larmor radius for both structures as observed at Mariner 5 (nearer the sun than 1 AU) but are comparable to the proton Larmor radius for Explorer (near 1 AU) observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaki, M.; Shiokawa, K.; Miyoshi, Y.
To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N 2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroralmore » intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less
NASA Astrophysics Data System (ADS)
Koike, Kazuto; Yano, Mitsuaki; Gonda, Shun-ichi; Uedono, Akira; Ishibashi, Shoji; Kojima, Kazunobu; Chichibu, Shigefusa F.
2018-04-01
The polarity dependence of the radiation hardness of single-crystalline ZnO bulk crystals is studied by irradiating the Zn-polar and O-polar c-planes with an 8 MeV proton beam up to the fluence of 4.2 × 1016 p/cm2. To analyze the hardness, radiation-induced defects were evaluated using positron annihilation (PA) analysis, and the recovery by post-annealing was examined using continuous-wave photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. It was suggested by the PA and PL analyses that the major defects in both polarities were VZnVO divacancies. While the PA data did not show the clear dependence on the polarity, the PL and TRPL results showed that the Zn-polar c-plane had a little higher radiation tolerance than that of the O-polar c-plane, which was consistent with the result that the increase in the electrical resistance by proton beam irradiation was smaller for the former one. Considering these results in total, the polarity dependence is considered to be not so large, but the Zn-polar c-plane has a little higher tolerance than that of the O-polar one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isenberg, Philip A.; Vasquez, Bernard J.
We extend the kinetic guiding-center model of collisionless coronal hole protons presented in Isenberg and Vasquez to consider driving by imbalanced spectra of obliquely propagating ion-cyclotron waves. These waves are assumed to be a small by-product of the imbalanced turbulent cascade to high perpendicular wavenumber, and their total intensity is taken to be 1% of the total fluctuation energy. We also extend the kinetic solutions for the proton distribution function in the resulting fast solar wind to heliocentric distances of 20 solar radii, which will be attainable by the Solar Probe Plus spacecraft. We consider three ratios of outward-propagating tomore » inward-propagating resonant intensities: 1, 4, and 9. The self-consistent bulk flow speed reaches fast solar wind values in all cases, and these speeds are basically independent of the intensity ratio. The steady-state proton distribution is highly organized into nested constant-density shells by the resonant wave-particle interaction. The radial evolution of this kinetic distribution as the coronal hole plasma flows outward is understood as a competition between the inward- and outward-directed large-scale forces, causing an effective circulation of particles through the (v{sub ∥}, v{sub ⊥}) phase space and a characteristic asymmetric shape to the distribution. These asymmetries are substantial and persist to the outer limit of the model computation, where they should be observable by the Solar Probe Plus instruments.« less
The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon
2014-07-20
The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagatesmore » in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.« less
Growth rates of new parametric instabilities occurring in a plasma with streaming He(2+)
NASA Technical Reports Server (NTRS)
Jayanti, V.; Hollweg, Joseph V.
1994-01-01
We consider parametic instabilities of a circularly polarized pump Alfven wave, which propagates parallel to the ambient magnetic field; the daughter waves are also parallel-propagating. We follow Hollweg et al. (1993) and consider several new instabilites that owe their existence to the presence of streaming alpha particles. One of the new instabilites is similar to the famililar decay instability, but the daughter waves are a forward going alpha sound wave and a backward going Alfven wave. The growth rate of this instability is usually small if the alpha abundance is small. The other three new instabilities occur at high frequencies and small wavelengths. We find that the new instability which involves the proton cyclotron wave and alpha sound (i.e., the +f, - alpha) instability, which involves both the proton and alpha cycltron resonances, but if the pump wave must have low frequency and large amplitude. These instabilities may be a means of heating and accelerating alpha particles in the solar wind, but this claim is unproven until a fully kinetic study is carried out.
SUNWARD PROPAGATING ALFVÉN WAVES IN ASSOCIATION WITH SUNWARD DRIFTING PROTON BEAMS IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jiansen; Pei, Zhongtian; Wang, Linghua
Using measurements from the WIND spacecraft, here we report the observation of sunward propagating Alfvén waves (AWs) in solar wind that is magnetically disconnected from the Earth's bow shock. In the sunward magnetic field sector, we find a period lasting for more than three days in which there existed (during most time intervals) a negative correlation between the flow velocity and magnetic field fluctuations, thus indicating that the related AWs are mainly propagating sunward. Simultaneous observations of counter-streaming suprathermal electrons suggest that these sunward AWs may not simply be due to the deflection of an open magnetic field line. Moreover,more » no interplanetary coronal mass ejection appears to be associated with the counter-streaming suprathermal electrons. As the scale goes from the magnetohydrodynamic down to the ion kinetic regime, the wave vector of magnetic fluctuations usually becomes more orthogonal to the mean magnetic field direction, and the fluctuations become increasingly compressible, which are both features consistent with quasi-perpendicular kinetic AWs. However, in the case studied here, we find clear signatures of quasi-parallel sunward propagating ion-cyclotron waves. Concurrently, the solar wind proton velocity distribution reveals a sunward field-aligned beam that drifts at about the local Alfvén speed. This beam is found to run in the opposite direction of the normally observed (anti-sunward) proton beam, and is apparently associated with sunward propagating Alfvén/ion-cyclotron waves. The results and conclusions of this study enrich our knowledge of solar wind turbulence and foster our understanding of proton heating and acceleration within a complex magnetic field geometry.« less
Electromagnetic Ion Cyclotron Waves in the High Altitude Cusp: Polar Observations
NASA Technical Reports Server (NTRS)
Le, Guan; Blanco-Cano, X.; Russell, C. T.; Zhou, X.-W.; Mozer, F.; Trattner, K. J.; Fuselier, S. A.; Anderson, B. J.; Vondrak, Richard R. (Technical Monitor)
2001-01-01
High-resolution magnetic field data from the Polar Magnetic Field Experiment (MFE) show that narrow band waves at frequencies approximately 0.2 to 3 Hz are a permanent feature in the vicinity of the polar cusp. The waves have been found in the magnetosphere adjacent to the cusp (both poleward and equatorward of the cusp) and in the cusp itself. The occurrence of waves is coincident with depression of magnetic field strength associated with enhanced plasma density, indicating the entry of magnetosheath plasma into the cusp region. The wave frequencies are generally scaled by the local proton cyclotron frequency, and vary between 0.2 and 1.7 times local proton cyclotron frequency. This suggests that the waves are generated in the cusp region by the precipitating magnetosheath plasma. The properties of the waves are highly variable. The waves exhibit both lefthanded and right-handed polarization in the spacecraft frame. The propagation angles vary from nearly parallel to nearly perpendicular to the magnetic field. We find no correlation among wave frequency, propagation angle and polarization. Combined magnetic field and electric field data for the waves indicate that the energy flux of the waves is guided by the background magnetic field and points downward toward the ionosphere.
Electromagnetic Ion Cyclotron Waves in the High-Altitude Cusp: Polar Observations
NASA Technical Reports Server (NTRS)
Le, G.; Blanco-Cano, X.; Russell, C. T.; Zhou, X.-W.; Mozer, F.; Trattner, K. J.; Fuselier, S. A.; Anderson, B. J.
2005-01-01
High-resolution magnetic field data from the Polar Magnetic Field Experiment (MFE) show that narrow-band waves at frequencies approx. 0.2-3 Hz are a permanent feature in the vicinity of the polar cusp. The waves have been found in the magnetosphere adjacent to the cusp (both poleward and equatorward of the cusp) and in the cusp itself. The occurrence of waves is coincident with depression of magnetic field strength associated with enhanced plasma density, indicating the entry of magnetosheath plasma into the cusp region. The wave frequencies are generally scaled by the local proton cyclotron frequency and vary between 0.2 and 1.7 times local proton cyclotron frequency. This suggests that the waves are generated in the cusp region by the precipitating magnetosheath plasma. The properties of the waves are highly variable. The waves exhibit both left-handed and right-handed polarization in the spacecraft frame. The propagation angles vary from nearly parallel to nearly perpendicular to the magnetic field. We find no correlation among wave frequency, propagation angle, and polarization. Combined magnetic field and electric field data for the waves indicate that the energy flux of the waves is guided by the background magnetic field and points downward toward the ionosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L. Y.; Yu, J.; Cao, J. B.
After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less
Li, L. Y.; Yu, J.; Cao, J. B.; ...
2016-11-05
After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less
Ion acoustic waves in the solar wind
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Frank, L. A.
1978-01-01
Plasma wave measurements on the Helios 1 and 2 spacecraft have revealed the occurrence of electric field turbulence in the solar wind at frequencies between the electron and ion plasma frequencies. Wavelength measurements with the Imp 6 spacecraft now provide strong evidence that these waves are shortwavelength ion acoustic waves which are Doppler-shifted upward in frequency by the motion of the solar wind. Comparison of the Helios results with measurements from the earth-orbiting Imp 6 and 8 spacecraft shows that the ion acoustic wave turbulence detected in interplanetary space has characteristics essentially identical to those of bursts of electrostatic turbulence generated by protons streaming into the solar wind from the earth's bow shock. In a few cases, enhanced ion acoustic wave intensities have been observed in direct association with abrupt increases in the anisotropy of the solar wind electron distribution. This relationship strongly suggests that the ion acoustic waves detected by Helios far from the earth are produced by an electron heat flux instability, as was suggested by Forslund. Possible related mechanisms which could explain the generation of ion acoustic waves by protons streaming into the solar wind from the earth's bow shock are also considered.
Electron- and proton-induced ionization of pyrimidine
Champion, Christophe; Quinto, Michele; Weck, Philippe F
2015-03-27
This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolutemore » total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.« less
Exploring the relative boundaries of the patchy pulsating aurora
NASA Astrophysics Data System (ADS)
Carlisle, E.; Donovan, E.; Jackel, B. J.
2017-12-01
Pulsating aurora is a common auroral feature that occurs most frequently on the nightside, in the equatorward part of the auroral oval. It is caused by pitch angle scattering of electrons due to wave-particle interactions near the equatorial plane. As such, observations of pulsating aurora provide information about the distribution of the plasma waves in the magnetosphere. Anecdotal evidence suggests that pulsating aurora occur equatorward of the proton aurora, and hence in the largely dipolar region at or inside the inner edge of the plasma sheet. Here we present results of a statistical survey of photometer observations of proton aurora and simultaneous all-sky imager observations of electron aurora. Our objective is to provide a definitive statement regarding the location of pulsating aurora relative to the proton aurora.
Plasma and field observations of a compressional Pc 5 wave event
NASA Astrophysics Data System (ADS)
Baumjohann, W.; Sckopke, N.; LaBelle, J.; Klecker, B.; Lühr, H.; Glassmeier, K. H.
1987-11-01
The full complement of data obtained by all the instruments on board the AMPTE/IRM satellite during a Pc 5 wave event on October 24, 1984 is analyzed. Both energetic proton and electron fluxes were anticorrelated with the compressional magnetic field oscillations, indicating that the event belongs to the class of 'in-phase events'. The energetic proton data also exhibited a new feature: flux minima and maxima at low energies were observed somewhat later than those at higher energies. The magnetic and plasma pressure oscillations satisfy the pressure balance equation for the drift mirror mode much better than that for drift compressional Alfven waves. However, the classical criterion for the onset of the mirror instability is not satisfied.
Theoretical studies of the solar atmosphere and interstellar pickup ions
NASA Technical Reports Server (NTRS)
1994-01-01
Solar atmosphere research activities are summarized. Specific topics addressed include: (1) coronal mass ejections and related phenomena; (2) parametric instabilities of Alfven waves; (3) pickup ions in the solar wind; and (4) cosmic rays in the outer heliosphere. Also included is a list of publications covering the following topics: catastrophic evolution of a force-free flux rope; maximum energy release in flux-rope models of eruptive flares; sheet approximations in models of eruptive flares; material ejection, motions of loops and ribbons of two-ribbon flares; dispersion relations for parametric instabilities of parallel-propagating; parametric instabilities of parallel-propagating Alfven waves; beat, modulation, and decay instabilities of a circularly-polarized Alfven wave; effects of time-dependent photoionization on interstellar pickup helium; observation of waves generated by the solar wind pickup of interstellar hydrogen ions; ion thermalization and wave excitation downstream of the quasi-perpendicular bowshock; ion cyclotron instability and the inverse correlation between proton anisotrophy and proton beta; and effects of cosmic rays and interstellar gas on the dynamics of a wind.
The Importance of Protons in Reactive Transport Modeling
NASA Astrophysics Data System (ADS)
McNeece, C. J.; Hesse, M. A.
2014-12-01
The importance of pH in aqueous chemistry is evident; yet, its role in reactive transport is complex. Consider a column flow experiment through silica glass beads. Take the column to be saturated and flowing with solution of a distinct pH. An instantaneous change in the influent solution pH can yield a breakthrough curve with both a rarefaction and shock component (composite wave). This behavior is unique among aqueous ions in transport and is more complex than intuition would tell. Analysis of the hyperbolic limit of this physical system can explain these first order transport phenomenon. This analysis shows that transport behavior is heavily dependent on the shape of the adsorption isotherm. Hence it is clear that accurate surface chemistry models are important in reactive transport. The proton adsorption isotherm has nonconstant concavity due to the proton's ability to partition into hydroxide. An eigenvalue analysis shows that an inflection point in the adsorption isotherm allows the development of composite waves. We use electrostatic surface complexation models to calculate realistic proton adsorption isotherms. Surface characteristics such as specific surface area, and surface site density were determined experimentally. We validate the model by comparison against silica glass bead flow through experiments. When coupled to surface complexation models, the transport equation captures the timing and behavior of breakthrough curves markedly better than with commonly used Langmuir assumptions. Furthermore, we use the adsorption isotherm to predict, a priori, the transport behavior of protons across pH composition space. Expansion of the model to multicomponent systems shows that proton adsorption can force composite waves to develop in the breakthrough curves of ions that would not otherwise exhibit such behavior. Given the abundance of reactive surfaces in nature and the nonlinearity of chemical systems, we conclude that building a greater understanding of proton adsorption is of utmost importance to reactive transport modeling.
NASA Astrophysics Data System (ADS)
Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Murphy, Neil; Nuno, Raquel G.
2014-04-01
We have examined Ulysses magnetic field data using dynamic spectrogram techniques that compute wave amplitude, polarization, and direction of propagation over a broad range of frequencies and time. Events were identified that showed a strong polarization signature and an enhancement of power above the local proton gyrofrequency. We perform a statistical study of 502 wave events in an effort to determine when, where, and why they are observed. Most notably, we find that waves arising from newborn interstellar pickup ions are relatively rare and difficult to find. The quantities normally employed in theories of wave growth are neutral atom density and quantities related to their ionization and the subsequent dynamics such as wind speed, solar wind flux, and magnetic field orientation. We find the observations of waves to be largely uncorrelated to these quantities except for mean field direction where quasi-radial magnetic fields are favored and solar wind proton flux where wave observations appear to be favored by low flux conditions which runs contrary to theoretical expectations of wave generation. It would appear that an explanation based on source physics and instability growth rates alone is not adequate to account for the times when these waves are seen.
NASA Astrophysics Data System (ADS)
Matsuda, S.; Kasahara, Y.; Goto, Y.
2012-12-01
The AKEBONO satellite has been operated continuously over 2 cycles of solar activity. Long-term observation data obtained by the AKEBONO satellite is very valuable to clarify plasma dynamics in the magnetosphere. Recently, the mechanism of wave-particle interaction around the radiation belt has attracted considerable attention. The ELF receiver, which is a sub-system of the VLF instruments onboard AKEBONO, measures waveforms below 50Hz for one component of electric field and three components of magnetic field, or waveforms below 100Hz for one component of electric and magnetic field, respectively. It was reported that ion cyclotron waves were observed near magnetic equator by the receiver [1] . It is well known that ion cyclotron wave generally propagates with a left-handed circularly polarization, but there exists right-handed polarized ion cyclotron wave below a characteristic frequency called 'crossover' in the presence of two or more kinds of ions such as oxygen and helium ions besides proton. As the crossover frequency can be derived theoretically from relative constituents of ions in plasma, it is possible to estimate the ion constituents by identifying the crossover frequency observationally. In this study, we analyze polarization of the ion cyclotron waves observed around the magnetic equator by the ELF receiver onboard AKEBONO, and report an example of ion cyclotron wave whose polarization changes from left-handed to right-handed at crossover frequency. As a next step, we estimate the ion constituents according to the polarization analysis. Furthermore, these phenomena sometimes have characteristic lower cut-off frequencies changing along the trajectories of Akebono. According to our work, it was found that the cutoff frequency is frequently in agreement with 1/n of proton's cyclotron frequency, where "n" is integer. The lower cut-off of ion cyclotron wave can be theoretically derived considering certain ion constituents of the background cold plasma. However, it remains several different interpretations depending on the species of ions and their ion constituents. In this study, we set up the following two hypotheses which shall satisfy dozens of such phenomena observed in 1989 and 1990: 1) Constituents of major ions in the plasmasphere (i.e., H^{+}, He^{+}) happened to coincide the condition that gives observed lower cut-off frequency along the trajectory. 2) There exists minor ions (i.e., D^{+}, T^{+}) that have cyclotron frequencies at 1/n of proton's cyclotron frequency. We examine the validity of the above hypotheses referring electron density and Dst index of the corresponding period. The present study could be a promising technique to estimate ion constituents from plasma wave observation by Akebono in the radiation belt. It is also noted that it can be also applicable to the ERG mission, which is expected to provide important clues for solving plasma dynamics in the Earth's radiation belt by means of integrated observation of electric and magnetic fields, particles and waves. [1] Y. Kasahara, A. Sawada, M. Yamamoto, I. Kimura, S. Kokubun, and K. Hayashi, Ion Cyclotron Emissions Observed by the Satellite Akebono in the vicinity of the Magnetic Equator, Radio Science, 27, 347-362, 1992.
Solar energetic particles and space weather
NASA Astrophysics Data System (ADS)
Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.
2001-02-01
The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of >10 MeV protons occur at an average rate of ~13 yr-1 near solar maximum and several events with high intensities of >100 MeV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the ``streaming limit.'' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a `delayed' radiation hazard, even for protons with energies up to ~1 GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral `knee.' The location of the proton spectral knee can vary from ~10 MeV to ~1 GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars. .
Solar Energetic Particles and Space Weather
NASA Technical Reports Server (NTRS)
Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.
2001-01-01
The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of greater than ten MeV protons occur at an average rate of approx. 13 per year near solar maximum and several events with high intensities of > 100 McV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the 'streaming limit.' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a 'delayed' radiation hazard, even for protons with energies up to approx. one GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral 'knee'. The location of the proton spectral knee can vary from approx. ten MeV to approx. one GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars.
Whistlers in space plasma, their role for particle populations in the inner magnetosphere
NASA Astrophysics Data System (ADS)
Shklyar, David
Of many wave modes, which propagate in the plasmaspheric region of the magnetosphere, whistler waves play the most important role in the dynamics of energetic particles (chiefly elec-trons, but not excepting protons), as their resonant interactions are very efficient. There are three main sources of whistler mode waves in the magnetosphere, namely, lightning strokes, VLF transmitter signals, and far and away various kinds of kinetic instabilities leading to generation of whistler mode waves. Resonant interactions of energetic electrons with whistlers may lead to electron acceleration, scattering into loss-cone, and consequent precipitation into the iono-sphere and atmosphere. While electron resonant interaction with lightning-induced whistlers and VLF transmitter signals may, to a certain approximation, be considered as particle dy-namics in given electromagnetic fields, resonant wave-particle interaction in the case of plasma instability is intrinsically a self-consistent process. An important aspect of whistler-electron interactions (particularly in the case of plasma instability) is the possibility of energy exchange between different energetic electron populations. Thus, in many cases, whistler wave growth rate is determined by "competition" between the first cyclotron and Cerenkov resonances, one (depending on energetic electron distribution) leading to wave growth and the other one to wave damping. Since particles which give rise to wave growth loose their energy, while parti-cles which lead to wave damping gain energy at the expense of the wave, and since the first cyclotron and Cerenkov resonances correspond to different particle energies, wave generation as the result of plasma instability may lead, at the same time, to energy exchange between two populations of energetic particles. While the role of whistlers in dynamics of energetic electrons in the magnetosphere is gener-ally recognized, their role for protons seems to be underestimated. At the same time, quasi-electrostatic lower-hybrid resonance (LHR) waves (to which non-ducted whistler mode waves originating from lightning strokes naturally evolve while propagating in the magnetosphere) may efficiently interact with energetic protons at higher order cyclotron resonances. Thus, whistler mode waves may mediate energy transfer not only between different populations of energetic electrons, but also between various plasma species. Theoretical discussion of various aspects of resonant wave-particle interactions in the magne-tosphere, those mentioned above and others, will be the subject of the report.
Transition region, coronal heating and the fast solar wind
NASA Astrophysics Data System (ADS)
Li, Xing
2003-07-01
It is assumed that magnetic flux tubes are strongly concentrated at the boundaries of supergranule convection cells. A power law spectrum of high frequency Alfvén waves with a spectral index -1 originating from the sun is assumed to supply all the energy needed to energize the plasma flowing in such magnetic flux tubes. At the high frequency end, the waves are eroded by ions due to ion cyclotron resonance. The magnetic flux concentration is essential since it allows a sufficiently strong energy flux to be carried by high frequency ion cyclotron waves and these waves can be readily released at the coronal base by cyclotron resonance. The main results are: 1. The waves are capable of creating a steep transition region, a hot corona and a fast solar wind if both the wave frequency is high enough and the magnetic flux concentration is sufficiently strong in the boundaries of the supergranule convection zone. 2. By primarily heating alpha particles only, it is possible to produce a steep transition region, a hot corona and a fast solar wind. Coulomb coupling plays a key role in transferring the thermal energy of alpha particles to protons and electrons at the corona base. The electron thermal conduction then does the remaining job to create a sharp transition region. 3. Plasma species (even ions) may already partially lose thermal equilibrium in the transition region, and minor ions may already be faster than protons at the very base of the corona. 4. The model predicts high temperature alpha particles (Talpha ~ 2 x 107 K) and low proton temperatures (Tp < 106 K) between 2 and 4 solar radii, suggesting that hydrogen Lyman lines observed by UVCS above coronal holes may be primarily broadened by Alfvén waves in this range.
Beam commissioning for a superconducting proton linac
NASA Astrophysics Data System (ADS)
Wang, Zhi-Jun; He, Yuan; Jia, Huan; Dou, Wei-ping; Chen, Wei-long; Zhang, X. L.; Liu, Shu-hui; Feng, Chi; Tao, Yue; Wang, Wang-sheng; Wu, Jian-qiang; Zhang, Sheng-hu; Zhao, Hong-Wei
2016-12-01
To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS) system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today's nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS) proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW) superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.
NASA Astrophysics Data System (ADS)
Usta, Metin; Tufan, Mustafa Çağatay
2017-11-01
The object of this work is to present the consequences for the stopping power and range values of some human tissues at energies ranging from 1 MeV to 1 GeV and 1-500 MeV, respectively. The considered human tissues are lung, intestine, skin, larynx, breast, bladder, prostate and ovary. In this work, the stopping power is calculated by considering the number of velocity-dependent effective charge and effective mean excitation energies of the target material. We used the Hartree-Fock-Roothaan (HFR) atomic wave function to determine the charge density and the continuous slowing down approximation (CSDA) method for the calculation of the proton range. Electronic stopping power values of tissues results have been compared with the ICRU 44, 46 reports, SRIM, Janni and CasP data over the percent error rate. Range values relate to tissues have compared the range results with the SRIM, FLUKA and Geant4 data. For electronic stopping power results, ICRU, SRIM and Janni's data indicated the best fit with our values at 1-50, 50-250 MeV and 250 MeV-1 GeV, respectively. For range results, the best accordance with the calculated values have been found the SRIM data and the error level is less than 10% in proton therapy. However, greater 30% errors were observed in the 250 MeV and over energies.
Suprathermal protons in the interplanetary solar wind
NASA Technical Reports Server (NTRS)
Goodrich, C. C.; Lazarus, A. J.
1976-01-01
Using the Mariner 5 solar wind plasma and magnetic field data, we present observations of field-aligned suprathermal proton velocity distributions having pronounced high-energy shoulders. These observations, similar to the interpenetrating stream observations of Feldman et al. (1974), are clear evidence that such proton distributions are interplanetary rather than bow shock associated phenomena. Large Alfven speed is found to be a requirement for the occurrence of suprathermal proton distribution; further, we find the proportion of particles in the shoulder to be limited by the magnitude of the Alfven speed. It is suggested that this last result could indicate that the proton thermal anisotropy is limited at times by wave-particle interactions
Effect of short-range correlations on the single proton 3s1/2 wave function in 206Pb
NASA Astrophysics Data System (ADS)
Shlomo, S.; Talmi, I.; Anders, M. R.; Bonasera, G.
2018-02-01
We consider the experimental data for difference, Δρc (r), between the charge density distributions of the isotones 206Pb - 205Tl, deduced by analysis of elastic electron scattering measurements and corresponds to the shell model 3s1/2 proton orbit. We investigate the effects of two-body short-range correlations. This is done by: (a) Determining the corresponding single particle potential (mean-field), employing a novel method, directly from the single particle proton density and its first and second derivatives. We also carried out least-square fits to parametrized single particle potentials; (b) Determining the short-range correlations effect by employing the Jastrow correlated many-body wave function to derive a correlation factor for the single particle density distribution. The 3s 1/2 wave functions of the determined potentials reproduce fairly well the experimental data within the quoted errors. The calculated charge density difference, Δρc (r), obtained with the inclusion of the short-range correlation effect does not reproduce the experimental data.
Min, Kyungguk; Liu, Kaijun; Gary, S. Peter
2016-03-18
Here, a ring-like proton velocity distribution with ∂f p(v ⊥)/∂v ⊥>0 and which is sufficiently anisotropic can excite two distinct types of growing modes in the inner magnetosphere: ion Bernstein instabilities with multiple ion cyclotron harmonics and quasi-perpendicular propagation and an Alfvén-cyclotron instability at frequencies below the proton cyclotron frequency and quasi-parallel propagation. Recent particle-in-cell simulations have demonstrated that even if the maximum linear growth rate of the latter instability is smaller than the corresponding growth of the former instability, the saturation levels of the fluctuating magnetic fields can be greater for the Alfvén-cyclotron instability than for the ion Bernsteinmore » instabilities. In this study, linear dispersion theory and two-dimensional particle-in-cell simulations are used to examine scalings of the linear growth rate and saturation level of the two types of growing modes as functions of the temperature anisotropy T ⊥/T || for a general ring-like proton distribution with a fixed ring speed of 2v A, where v A is the Alfvén speed. For the proton distribution parameters chosen, the maximum linear theory growth rate of the Alfvén-cyclotron waves is smaller than that of the fastest-growing Bernstein mode for the wide range of anisotropies (1≤T ⊥/T ||≤7) considered here. Yet the corresponding particle-in-cell simulations yield a higher saturation level of the fluctuating magnetic fields for the Alfvén-cyclotron instability than for the Bernstein modes as long as inline image. Since fast magnetosonic waves with ion Bernstein instability properties observed in the magnetosphere are often not accompanied by electromagnetic ion cyclotron waves, the results of the present study indicate that the ring-like proton distributions responsible for the excitation of these fast magnetosonic waves should not be very anisotropic.« less
Effect of wave function on the proton induced L XRP cross sections for 62Sm and 74W
NASA Astrophysics Data System (ADS)
Shehla, Kaur, Rajnish; Kumar, Anil; Puri, Sanjiv
2015-08-01
The Lk(k= 1, α, β, γ) X-ray production cross sections have been calculated for 74W and 62Sm at different incident proton energies ranging 1-5 MeV using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell X-ray emission rates based on the Dirac-Fork (DF) model, the fluorescence and Coster Kronig yields based on the Dirac- Hartree-Slater (DHS) model and two sets the proton ionization cross sections based on the DHS model and the ECPSSR in order to assess the influence of the wave function on the XRP cross sections. The calculated cross sections have been compared with the measured cross sections reported in the recent compilation to check the reliability of the calculated values.
A new medium energy beam transport line for the proton injector of AGS-RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, M.; Briscoe, B.; Fite, J.
2010-09-12
In Brookhaven National Laboratory (BNL), a 750 keV medium energy beam transport line between the 201 MHz 750 keV proton RFQ and the 200 MeV Alvarez DTL is being modified to get a better transmission of the beam. Within a tight space, high field gradient quadrupoles (65 Tm) and newly designed steering magnets (6.5 mm in length) will be installed considering the cross-talk effects. Also a new half wave length 200 MHz buncher is being prepared. The beam commissioning will be done in this year. To enhance the performance of the proton linacs, the MEBT is being modified. New quadrupolemore » magnets, steering magnets and a half wave length buncher as shown in Figure 7 will be installed and be commissioned soon.« less
NASA Technical Reports Server (NTRS)
Maneva, Y.; Lazar, M.; Vinas, A.; Poedts, S.
2016-01-01
The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons,? unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma ß and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.
On the equilibrium between proton kappa distribution and compressible kinetic Alfvenic fluctuations
NASA Astrophysics Data System (ADS)
Yoon, P. H.
2017-12-01
Protons with a quasi inverse power law energetic population featuring the property f v-α, with α close to 5, are pervasively observed in the heliosphere. While many theoretical attempts have been made in order to describe such a feature, the so-called pump acceleration mechanism put forth by Fisk & Gloeckler is one of the most prominent theories. Their mechanism involves the low-frequency compressional fluctuations accelerating the protons. This presentation aims to reformulate the problem from the perspective of the steady state solution of the self-consistent plasma kinetic theory involving compressible kinetic Alfvenic fluctuations. By considering the steady state proton particle kinetic equation and quasi-linear wave kinetic for the kinetic Alfvenic turbulence we seek to obtain concomitant solutions for both proton velocity distribution function and the spectral intensity for kinetic Alfvenic fluctuation. It is found that the kappa distribution for the protons is a legitimate, if not unique, solution. The steady state spectrum of kinetic Alfvenic fluctuation is also obtained. The present investigation demonstrates that the kappa distribution for the protons featuring energetic tail population characterized by f v-2κ-2, where κ is the parameter for kappa distribution, may represent the background population of the protons in the heliosphere. However, it is speculated that in order to uniquely determine the value of κ, which must be close to 1.5 for asymptotic behavior of f v-5, one must have an additional constraint that involves the balance of nonlinear mode coupling terms in the wave kinetic equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maneva, Y.; Lazar, M.; Poedts, S.
2016-11-20
The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons, unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much fastermore » and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma β and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.« less
Spin-isospin excitation of 3He with three-proton final state
NASA Astrophysics Data System (ADS)
Ishikawa, Souichi
2018-01-01
Spin-isospin excitation of the {}^3He nucleus by a proton-induced charge exchange reaction, {}^3He(p,n)ppp, at forward neutron scattering angle is studied in a plane wave impulse approximation (PWIA). In PWIA, cross sections of the reaction are written in terms of proton-neutron scattering amplitudes and response functions of the transition from {}3He to the three-proton state by spin-isospin transition operators. The response functions are calculated with realistic nucleon-nucleon potential models using a Faddeev three-body method. Calculated cross sections agree with available experimental data in substance. Possible effects arising from the uncertainty of proton-neutron amplitudes and three-nucleon interactions in the three-proton system are examined.
NASA Astrophysics Data System (ADS)
Xie, Ya-Ping; Chen, Xurong
2018-05-01
Photoproduction of vector mesons is computed with dipole model in proton-proton ultraperipheral collisions (UPCs) at the CERN Large Hadron Collider (LHC). The dipole model framework is employed in the calculations of vector mesons production in diffractive processes. Parameters of the bCGC model are refitted with the latest inclusive deep inelastic scattering experimental data. Employing the bCGC model and boosted Gaussian light-cone wave function for vector mesons, we obtain the prediction of rapidity distributions of J/ψ and ψ(2s) mesons in proton-proton ultraperipheral collisions at the LHC. The predictions give a good description of the experimental data of LHCb. Predictions of ϕ and ω mesons are also evaluated in this paper.
Acceleration of the Fast Solar Wind through Minor Ions
NASA Astrophysics Data System (ADS)
Li, X.
2004-01-01
It is assumed that the magnetic flux tubes are strongly concentrated at the boundaries of the supergranule convection cells. A power law spectrum of high frequency Alfvén waves with a spectral index -1 originating from the sun is assumed to supply all the energy needed to energize the plasma flowing in such magnetic flux tubes. At the high frequency end, the waves are eroded by ions due to ion cyclotron resonance. The magnetic flux concentration is essential since it allows a sufficiently strong energy flux to be carried by high frequency ion cyclotron waves and these waves can be readily released at the coronal base by cyclotron resonance. The main results are: 1. By primarily heating alpha particles only, it is possible to produce a steep transition region, a hot corona and a fast solar wind. Coulomb coupling plays a key role in transferring the thermal energy of alpha particles to protons and electrons at the corona base. The electron thermal conduction then does the remaining job to create a sharp transition region. 2. Plasma species may already partially lose thermal equilibrium in the transition region, minor ions may already be faster than protons at the very bottom of the corona. 3. The model predicts high temperature alpha particles (T 2 × 107 K) and low proton temperatures (Tp < 106 K) between 2 and 4 solar radii, suggests that hydrogen Lyman lines observed by UVCS above coronal holes may be primarily broadened by Alfvén waves in this range.
NASA Technical Reports Server (NTRS)
Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Lyons, L. R.
1994-01-01
Protons that are convected into the inner magnetosphere in response to enhanced magnetic activity can resonate with ducted plasmaspheric hiss in the outer plasmasphere via an anomalous Doppler-shifted cyclotron resonance. Plasmaspheric hiss is a right-hand-polarized electromagnetic emission that is observed to fill the plasmasphere on a routine basis. When plasmaspheric hiss is confined within field-aligned ducts or guided along density gradients, wave normal angles remain largely below 45 deg. This allows resonant interactions with ions at typical ring current and radiation belt energies to take place. Such field-aligned ducts have been observed both within the plasmasphere and in regions outside of the plasmasphere. Wave intensities are estimated using statistical information from studies of detached plasma regions. Diffusion coefficients are presented for a range of L shells and proton energies for a fixed wave distribution. Harmonic resonances in the range N = +/-100 are considered in order to include interactions between hiss at 100 Hz to 2 kHz frequencies, and protons in the energy range between approximately 10 keV and 1000 keV. Diffusion timescales are estimated to be of the order of tens of days and comparable to or shorter than lifetimes for Coulomb decay and charge exchange losses over most of the energy and spatial ranges of interest.
Empirical Constraints on Proton and Electron Heating in the Fast Solar Wind
NASA Technical Reports Server (NTRS)
Cranmer, Steven R.; Matthaeus, William H.; Breech, Benjamin A.; Kasper, Justin C.
2009-01-01
This paper presents analyses of measured proton and electron temperatures in the high-speed solar wind that are used to calculate the separate rates of heat deposition for protons and electrons. It was found that the protons receive about 60% of the total plasma heating in the inner heliosphere, and that this fraction increases to approximately 80% by the orbit of Jupiter. The empirically derived partitioning of heat between protons and electrons is in rough agreement with theoretical predictions from a model of linear Vlasov wave damping. For a modeled power spectrum consisting only of Alfvenic fluctuations, the best agreement was found for a distribution of wavenumber vectors that evolves toward isotropy as distance increases.
NASA Astrophysics Data System (ADS)
Sharma, A.; Tibai, Z.; Hebling, J.; Fülöp, J. A.
2018-03-01
Laser-driven proton acceleration from a micron-sized cryogenic hydrogen microjet target is investigated using multi-dimensional particle-in-cell simulations. With few-cycle (20-fs) ultraintense (2-PW) laser pulses, high-energy quasi-monoenergetic proton acceleration is predicted in a new regime. A collisionless shock-wave acceleration mechanism influenced by Weibel instability results in a maximum proton energy as high as 160 MeV and a quasi-monoenergetic peak at 80 MeV for 1022 W/cm2 laser intensity with controlled prepulses. A self-generated strong quasi-static magnetic field is also observed in the plasma, which modifies the spatial distribution of the proton beam.
Stochastic Particle Acceleration in Impulsive Solar Flares
NASA Technical Reports Server (NTRS)
Miller, James A.
2001-01-01
The acceleration of a huge number of electrons and ions to relativistic energies over timescales ranging from several seconds to several tens of seconds is the fundamental problem in high-energy solar physics. The cascading turbulence model we have developed has been shown previously (e.g., Miller 2000; Miller & Roberts 1995; Miner, LaRosa, & Moore 1996) to account for all the bulk features (such as acceleration timescales, fluxes, total number of energetic particles, and maximum energies) of electron and proton acceleration in impulsive solar flares. While the simulation of this acceleration process is involved, the essential idea of the model is quite simple, and consists of just a few parts: 1. During the primary flare energy release phase, we assume that low-amplitude MHD Alfven and fast mode waves are excited at long wavelengths, say comparable to the size of the event (although the results are actually insensitive to this initial wavelength). While an assumption, this appears reasonable in light of the likely highly turbulent nature of the flare. 2. These waves then cascade in a Kolmogorov-like fashion to smaller wavelengths (e.g., Verma et al. 1996), forming a power-law spectral density in wavenumber space through the inertial range. 3. When the mean wavenumber of the fast mode waves has increased sufficiently, the transit-time acceleration rate (Miller 1997) for superAlfvenic electrons can overcome Coulomb energy losses, and these electrons are accelerated out of the thermal distribution and to relativistic energies (Miller et al. 1996). As the Alfven waves cascade to higher wavenumbers, they can cyclotron resonate with progressively lower energy protons. Eventually, they will resonate with protons in the tail of the thermal distribution, which will then be accelerated to relativistic energies as well (Miller & Roberts 1995). Hence, both ions and electrons are stochastically accelerated, albeit by different mechanisms and different waves. 4. When the protons become superAlfvenic (above about 1 MeV/nucleon), they too can suffer transit-time acceleration by the fast mode waves and will receive an extra acceleration "kick." The basic overall objective of this 1 year effort was to construct a spatially-dependent version of this acceleration model and this has been realized.
NASA Astrophysics Data System (ADS)
Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Yao, Fei; Wang, Dedong; Funsten, Herbert O.; Wygant, John R.
2018-02-01
A typical case of electromagnetic ion cyclotron (EMIC) emissions with both He+ band and O+ band waves was observed by Van Allen Probe A on 14 July 2014. These emissions occurred in the morning sector on the equator inside the plasmasphere, in which region O+ band EMIC waves prefer to appear. Through property analysis of these emissions, it is found that the He+ band EMIC waves are linearly polarized and propagating quasi-parallelly along the background magnetic field, while the O+ band ones are of linear and left-hand polarization and propagating obliquely with respect to the background magnetic field. Using the in situ observations of plasma environment and particle data, excitation of these O+ band EMIC waves has been investigated with the linear growth theory. The calculated linear growth rate shows that these O+ band EMIC waves can be locally excited by ring current protons with ring velocity distributions. The comparison of the observed wave spectral intensity and the calculated growth rate suggests that the density of H+ rings providing the free energy for the instability has decreased after the wave grows. Therefore, this paper provides a direct observational evidence to the excitation mechanism of O+ band EMIC waves: ring current protons with ring distributions provide the free energy supporting the instability in the presence of rich O+ in the plasmasphere.
Efficiency of centrifugal mechanism in producing PeV neutrinos from active galactic nuclei
NASA Astrophysics Data System (ADS)
Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino
2018-05-01
A several-step theoretical model is constructed to trace the origin of ultra high energy (UHE) [ 1 - 2 ] PeV neutrinos detected, recently, by the IceCube collaboration. Protons in the AGN magnetosphere, experiencing different gravitational centrifugal force, provide free energy for the parametric excitation of Langmuir waves via a generalized two-stream instability. Landau damping of these waves, outside the AGN magnetosphere, can accelerate protons to ultra high energies. The ultimate source for this mechanism, the Langmuir-Landau-Centrifugal-Drive (LLCD), is the gravitational energy of the compact object. The LLCD generated UHE protons provide the essential ingredient in the creation of UHE neutrinos via appropriate hadronic reactions; protons of energy 1017 eV can be generated in the plasmas surrounding AGN with bolometric luminosities of the order of 1043 ergs s-1. By estimating the diffusive energy flux of extragalactic neutrinos in the energy interval [ 1 - 2 ] PeV, we find that an acceptably small fraction 0.003% of the total bolometric luminosity will suffice to create the observed fluxes of extragalactic ultra-high energy neutrinos.
Investigation of the 9B nucleus and its cluster-nucleon correlations
NASA Astrophysics Data System (ADS)
Zhao, Qing; Ren, Zhongzhou; Lyu, Mengjiao; Horiuchi, Hisashi; Funaki, Yasuro; Röpke, Gerd; Schuck, Peter; Tohsaki, Akihiro; Xu, Chang; Yamada, Taiichi; Zhou, Bo
2018-05-01
In order to study the correlations between clusters and nucleons in light nuclei, we formulate a new superposed Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function which describes both spatially large spreading and cluster-correlated dynamics of valence nucleons. Using this new THSR wave function, the binding energy of 9B is significantly improved in comparison with our previous studies. We calculate the excited states of 9B and obtain an energy spectrum of 9B which is consistent with the experimental results. This includes the prediction of the first 1 /2+ excited state of 9B which is not yet fixed experimentally. We study the proton dynamics in 9B and find that the cluster-proton correlation plays an essential role for the proton dynamics in the ground state of 9B. Furthermore, we discuss the density distribution of the valence proton with special attention to its tail structure. Finally, the resonance nature of excited states of 9B is illustrated comparing root-mean-square radii between the ground and excited states.
Towards laser spectroscopy of the proton-halo candidate boron-8
NASA Astrophysics Data System (ADS)
Maaß, Bernhard; Müller, Peter; Nörtershäuser, Wilfried; Clark, Jason; Gorges, Christian; Kaufmann, Simon; König, Kristian; Krämer, Jörg; Levand, Anthony; Orford, Rodney; Sánchez, Rodolfo; Savard, Guy; Sommer, Felix
2017-11-01
We propose to determine the nuclear charge radius of 8B by high-resolution laser spectroscopy. 8B (t 1/2 = 770 ms) is perhaps the best candidate of a nucleus exhibiting an extended proton wave-function or "one-proton-halo" in a more descriptive picture. Laser spectroscopic measurements of the isotope shift will be used to probe the change in nuclear charge radius along the three boron isotopes 8B, 10B and 11B. The change in nuclear charge radius directly correlates with the extent of the proton wave function. In-flight production and preparation of sufficient yields of 8B ions at low energies is provided by the Argonne Tandem Linac Accelerator System (ATLAS) at Argonne National Laboratory (ANL) in Chicago, IL, USA. Subsequently, the ions will be guided through a charge exchange cell for neutralization and the fluorescence signal of the atoms which interact with the resonant laser light will be detected. The charge radius can then be extracted from the measured isotope shift by employing highly accurate atomic theory calculations of this five-electron system which are carried out presently.
Material issues relating to high power spallation neutron sources
NASA Astrophysics Data System (ADS)
Futakawa, M.
2015-02-01
Innovative researches using neutrons are being performed at the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), in which a mercury target system is installed for MW-class pulse spallation neutron sources. In order to produce neutrons by the spallation reaction, proton beams are injected into the mercury target. At the moment, when the intense proton beam hits the target, pressure waves are generated in mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel, leading to negative pressure that may cause cavitation along the vessel wall, i.e. on the interface between liquid and solid metals. On the other hand, the structural materials are subjected to irradiation damage due to protons and neutrons, very high cycle fatigue damages and so-called "liquid metal embrittlement". That is, the structural materials must be said to be exposed to the extremely severe environments. In the paper, research and development relating to the material issues in the high power spallation neutron sources that has been performed so far at J-PARC is summarized.
Electronic wave function and binding effects in M-shell ionization of gold by protons
NASA Astrophysics Data System (ADS)
Pajek, M.; Banaś, D.; Jabłoński, Ł.; Mukoyama, T.
2018-02-01
The measured M-X-ray production cross sections for protons, which are used in the particle induced X-ray emission (PIXE) technique, are systematically underestimated for low impact energies by the ECPSSR and ECUSAR theories. These theories, which are based on the plane wave Born approximation (PWBA) and use the screened hydrogenic wave functions, include corrections for the projectile Coulomb deflection and electron relativistic and binding effects. In the present paper, in order to interpret the observed disagreement at low impact energies, the systematic calculations of the M-shell ionization cross sections for gold were performed using the semiclassical (SCA) and the binary encounter (BEA) approximations in order to identify a role of the electronic wave function and electron binding effects. In these calculations the different wave functions, from nonrelativistic hydrogenic to selfconsistent Dirac-Hartree-Fock, were considered and the binding effect was treated within extreme separated- (SA) and united-atoms (UA) limits. The results are discussed in details and the observed discrepancies are attributed to inadequate description of the electron binding effect at the lowest impact energies for which the molecular approach is required.
Electron- and proton-induced ionization of pyrimidine
NASA Astrophysics Data System (ADS)
Champion, Christophe; Quinto, Michele A.; Weck, Philippe F.
2015-05-01
The present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. The theoretical predictions obtained are in good agreement with experimental absolute total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.
Classical electromagnetic fields from quantum sources in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Holliday, Robert; McCarty, Ryan; Peroutka, Balthazar; Tuchin, Kirill
2017-01-01
Electromagnetic fields are generated in high energy nuclear collisions by spectator valence protons. These fields are traditionally computed by integrating the Maxwell equations with point sources. One might expect that such an approach is valid at distances much larger than the proton size and thus such a classical approach should work well for almost the entire interaction region in the case of heavy nuclei. We argue that, in fact, the contrary is true: due to the quantum diffusion of the proton wave function, the classical approximation breaks down at distances of the order of the system size. We compute the electromagnetic field created by a charged particle described initially as a Gaussian wave packet of width 1 fm and evolving in vacuum according to the Klein-Gordon equation. We completely neglect the medium effects. We show that the dynamics, magnitude and even sign of the electromagnetic field created by classical and quantum sources are different.
The Supercritical Pile Model: Prompt Emission Across the Electromagnetic Spectrum
NASA Technical Reports Server (NTRS)
Kazanas, Demos; Mastichiadis, A.
2008-01-01
The "Supercritical Pile" GRB model is an economical model that provides the dissipation necessary to convert explosively the energy stored in relativistic protons in the blast wave of a GRB into radiation; at the same time it produces spectra whose luminosity peaks at 1 MeV in the lab frame, the result of the kinematics of the proton-photon - pair production reaction that effects the conversion of proton energy to radiation. We outline the fundamental notions behind the "Supercritical Pile" model and discuss the resulting spectra of the prompt emission from optical to gamma-ray energies of order Gamma^2 m_ec^2, (Gamma is the Lorentz factor of the blast wave) present even in the absence of an accelerated particle distribution and compare our results to bursts that cover this entire energy range. Particular emphasis is given on the emission at the GLAST energy range both in the prompt and the afterglow stages of the burst.
Effect of wave function on the proton induced L XRP cross sections for {sub 62}Sm and {sub 74}W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shehla,; Kaur, Rajnish; Kumar, Anil
The L{sub k}(k= 1, α, β, γ) X-ray production cross sections have been calculated for {sub 74}W and {sub 62}Sm at different incident proton energies ranging 1-5 MeV using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell X-ray emission rates based on the Dirac-Fork (DF) model, the fluorescence and Coster Kronig yields based on the Dirac- Hartree-Slater (DHS) model and two sets the proton ionization cross sections based on the DHS model and the ECPSSR in order to assess the influence of the wave function on the XRP cross sections. The calculated cross sections have been compared withmore » the measured cross sections reported in the recent compilation to check the reliability of the calculated values.« less
On the Origin of Long-duration Solar Gamma-ray Flares and Their Connection with SEPs
NASA Astrophysics Data System (ADS)
Bernstein, V.; Winter, L. M.; Cliver, E. W.; Omodei, N.; Pesce-Rollins, M.
2016-12-01
The mechanism producing long-duration solar gamma-ray events (LDGREs) is unresolved. Such events are characterized by high-energy (>100 MeV) pion-decay emission that can be detected for up to 10 hours after the flare impulsive phase. Candidate processes include: (1) prolonged acceleration/trapping of high-energy (> 300 MeV) protons in flare loops and (2) precipitation of energetic protons to the Sun's surface from the CME-driven coronal shock waves. LDGREs, or events with delayed/prolonged pion-dominated emission, have been detected by the SMM GRS, GRO EGRET, and Fermi LAT. To gain insight on their origin, we examine associated GOES X-ray bursts, LASCO CMEs, Wind Waves low-frequency radio bursts, and GOES high-energy proton events, and compare the properties of these various phenomena with the intensities and durations of the observed LDGREs.
WE-D-17A-06: Optically Stimulated Luminescence Detectors as ‘LET-Meters’ in Proton Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granville, D; Sahoo, N; Sawakuchi, GO
Purpose: To demonstrate and evaluate the potential of optically stimulated luminescence (OSL) detectors (OSLDs) for measurements of linear energy transfer (LET) in therapeutic proton beams. Methods: Batches of Al2O2:C OSLDs were irradiated with an absorbed dose of 0.2 Gy in un-modulated proton beams of varying LET (0.67 keV/μm to 2.58 keV/μm). The OSLDs were read using continuous wave (CW-OSL) and pulsed (P-OSL) stimulation modes. We parameterized and calibrated three characteristics of the OSL signals as functions of LET: CW-OSL curve shape, P-OSL curve shape and the ratio of the two OSL emission band intensities (ultraviolet/blue ratio). Calibration curves were createdmore » for each of these characteristics to describe their behaviors as functions of LET. The true LET values were determined using a validated Monte Carlo model of the proton therapy nozzle used to irradiate the OSLDs. We then irradiated batches of OSLDs with an absorbed dose of 0.2 Gy at various depths in two modulated proton beams (140 MeV, 4 cm wide spread-out Bragg peak (SOBP) and 250 MeV, 10 cm wide SOBP). The LET values were calculated using the OSL response and the calibration curves. Finally, measured LET values were compared to the true values determined using Monte Carlo simulations. Results: The CW-OSL curve shape, P-OSL curve shape and the ultraviolet/blue-ratio provided proton LET estimates within 12.4%, 5.7% and 30.9% of the true values, respectively. Conclusion: We have demonstrated that LET can be measured within 5.7% using Al2O3:C OSLDs in the therapeutic proton beams used in this investigation. From a single OSLD readout, it is possible to measure both the absorbed dose and LET. This has potential future applications in proton therapy quality assurance, particularly for treatment plans based on optimization of LET distributions. This research was partially supported by the Natural Sciences and Engineering Research Council of Canada.« less
NASA Technical Reports Server (NTRS)
Cranmer, Steven R.; Wagner, William (Technical Monitor)
2004-01-01
The PI (Cranmer) and Co-I (A. van Ballegooijen) made substantial progress toward the goal of producing a unified model of the basic physical processes responsible for solar wind acceleration. The approach outlined in the original proposal comprised two complementary pieces: (1) to further investigate individual physical processes under realistic coronal and solar wind conditions, and (2) to extract the dominant physical effects from simulations and apply them to a 1D model of plasma heating and acceleration. The accomplishments in Year 2 are divided into these two categories: 1a. Focused Study of Kinetic Magnetohydrodynamic (MHD) Turbulence. lb. Focused Study of Non - WKB Alfven Wave Rejection. and 2. The Unified Model Code. We have continued the development of the computational model of a time-study open flux tube in the extended corona. The proton-electron Monte Carlo model is being tested, and collisionless wave-particle interactions are being included. In order to better understand how to easily incorporate various kinds of wave-particle processes into the code, the PI performed a detailed study of the so-called "Ito Calculus", i.e., the mathematical theory of how to update the positions of particles in a probabilistic manner when their motions are governed by diffusion in velocity space.
NASA Astrophysics Data System (ADS)
Zhou, Su; Luan, Xiaoli; Søraas, Finn; Østgaard, Nikolai; Raita, Tero
2018-04-01
This paper presents simultaneous detached proton auroras that appeared in both hemispheres at 11:06 UT, 08 March 2012, just 2 min after a sudden solar wind pressure enhancement ( 11:04 UT) hit the Earth. They were observed under northward interplanetary magnetic field Bz condition and during the recovery phase of a moderate geomagnetic storm. In the Northern Hemisphere, Defense Meteorological Satellite Program/Special Sensor Ultraviolet Spectrographic Imager observed that the detached arc occurred within 60°-65° magnetic latitude and covered a few magnetic local time (MLT) hours ranging from 0530 to 0830 MLT with a possible extension toward noon. At the same time (11:06 UT), Polar Orbiting Environment Satellites 19 detected a detached proton aurora around 1300 MLT in the Southern Hemisphere, centering 62° magnetic latitude, which was at the same latitudes as the northern detached arc. This southern aurora was most probably a part of a dayside detached arc that was conjugate to the northern one. In situ particle observations indicated that the detached auroras were dominated by protons/ions with energies ranging from around 20 keV to several hundreds of keV, without obvious electron precipitations. These detached arcs persisted for less than 6 min, consistent with the impact from pressure enhancement and the observed electromagnetic ion cyclotron (EMIC) waves. It is suggested that the increasing solar wind pressure pushed the hot ions in the ring current closer to Earth where the steep gradient of cold plasma favored EMIC wave growth. By losing energy to EMIC waves the energetic protons (>20 keV) were scattered into the loss cone and produced the observed detached proton auroras.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlickeiser, R.; Lazar, M.; Vukcevic, M., E-mail: rsch@tp4.rub.d, E-mail: mlazar@tp4.ruhr-uni-bochum.d, E-mail: vuk.mira@gmail.co
2010-08-20
The influence of the polarization state and the dissipation range spectral steepening of slab plasma waves on the scattering mean free path of single-charged cosmic-ray particles is investigated in a turbulence model, where the crucial scattering of cosmic-ray particles with small pitch-angle cosines is caused by resonant cyclotron interactions with slab plasma waves. Analytical expressions for the mean free path of protons, antiprotons, negatrons, and positrons are derived for the case of constant frequency-independent magnetic helicity values {sigma} and different values of the dissipation range spectral index k for characteristic interplanetary and interstellar plasma conditions. The positron mean free pathmore » is not affected by the dissipation range spectral index k as these particles can only cyclotron-resonate for rigidity values larger than R {sub 0} = m{sub p}c = 938 MV. Proton and antiproton mean free paths are only slightly affected by the dissipation range spectral index k at small rigidities R < R {sub 0}. The negatron mean free path is severely affected by the dissipation range spectral index k at rigidities smaller than R {sub 0}. At high rigidities R >> R {sub 0}, all particle species approach the same power-law dependence {proportional_to}R {sup 2-s} determined by the inertial range spectral index s = 5/3. The magnetic helicity value {sigma} affects the value of the mean free path. At all rigidities, the ratio of the antiproton to proton mean free paths equals the constant (1 + {sigma})/(1 - {sigma}), which also agrees with the ratio of the negatron to the proton and positron mean free paths at relativistic rigidities. At relativistic rigidities the positron and proton mean free paths agree, as do the negatron and antiproton mean free paths.« less
Extended wave-packet model to calculate energy-loss moments of protons in matter
NASA Astrophysics Data System (ADS)
Archubi, C. D.; Arista, N. R.
2017-12-01
In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions. The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all the significant terms of the inelastic interaction of light ions with any element of the periodic table.
Instantaneous Frequency Analysis on Nonlinear EMIC Emissions: Arase Observation
NASA Astrophysics Data System (ADS)
Shoji, M.; Yoshizumi, M.; Omura, Y.; Kasaba, Y.; Ishisaka, K.; Matsuda, S.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Teramoto, M.; Takashima, T.; Shinohara, I.
2017-12-01
In the inner magnetosphere, electromagnetic ion cyclotron (EMIC) waves cause nonlinear interactions with energetic protons. The waves drastically modify the proton distribution function, resulting in the particle loss in the radiation belt. Arase spacecraft, launched in late 2016, observed a nonlinear EMIC falling tone emission in the high magnetic latitude (MLAT) region of the inner magnetosphere. The wave growth with sub-packet structures of the falling tone emission is found by waveform data from PWE/EFD instrument. The evolution of the instantaneous frequency of the electric field of the EMIC falling tone emission is analyzed by Hilbert-Huang transform (HHT). We find several sub-packets with rising frequency in the falling tone wave. A self-consistent hybrid simulation suggested the complicate frequency evolution of the EMIC sub-packet emissions in the generation region. The intrinsic mode functions of Arase data derived from HHT are compared with the simulation data. The origin of the falling tone emission in the high MLAT region is also discussed.
Linear analysis of ion cyclotron interaction in a multicomponent plasma
NASA Technical Reports Server (NTRS)
Gendrin, R.; Ashour-Abdalla, M.; Omura, Y.; Quest, K.
1984-01-01
The mechanism by which hot anisotropic protons generate electromagnetic ion cyclotron waves in a plasma containing cold H(+) and He(+) ions is quantitatively studied. Linear growth rates (both temporal and spatial) are computed for different plasma parameters: concentration, temperature,and anisotropy of cold He(+) ions and of hot protons. It is shown that: (1) for parameters typical of the geostationary altitude the maximum growth rates are not drastically changed when a small proportion (about 1 to 20 percent) of cold He(+) ions is present; (2) because of the important cyclotron absorption by thermal He(+) ions in the vicinity of the He(+) gyrofrequency, waves which could resonate with the bulk of the He(+) distribution cannot be generated. Therefore quasi-linear effects, in a homogeneous medium at least, cannot be responsible for the heating of He(+) ions which is often observed in conjunction with ion cyclotron waves. The variation of growth rate versus wave number is also studied for its importance in selecting suitable parameters in numerical simulation experiments.
Large amplitude MHD waves upstream of the Jovian bow shock
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Smith, C. W.; Matthaeus, W. H.
1983-01-01
Observations of large amplitude magnetohydrodynamics (MHD) waves upstream of Jupiter's bow shock are analyzed. The waves are found to be right circularly polarized in the solar wind frame which suggests that they are propagating in the fast magnetosonic mode. A complete spectral and minimum variance eigenvalue analysis of the data was performed. The power spectrum of the magnetic fluctuations contains several peaks. The fluctuations at 2.3 mHz have a direction of minimum variance along the direction of the average magnetic field. The direction of minimum variance of these fluctuations lies at approximately 40 deg. to the magnetic field and is parallel to the radial direction. We argue that these fluctuations are waves excited by protons reflected off the Jovian bow shock. The inferred speed of the reflected protons is about two times the solar wind speed in the plasma rest frame. A linear instability analysis is presented which suggests an explanation for many of the observed features of the observations.
NASA Astrophysics Data System (ADS)
Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.
2017-10-01
In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.
Response of thermal ions to electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.
1994-01-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
Particle irradiation induces FGF2 expression in normal human lens cells
NASA Technical Reports Server (NTRS)
Chang, P. Y.; Bjornstad K, A.; Chang, E.; McNamara, M.; Barcellos-Hoff, M. H.; Lin, S. P.; Aragon, G.; Polansky, J. R.; Lui, G. M.; Blakely, E. A.
2000-01-01
Particle Irradiation Induces FGF2 Expression in Normal Human Lens Cells. Particle radiations, including both proton and helium-ion beams, have been used to successfully treat choroidal melanoma, but with the complication of radiation-induced cataract. We have investigated a role for radiation-induced changes in the expression of basic fibroblast growth factor (FGF2) gene expression as part of the mechanism(s) underlying lens cell injury associated with cataract. Normal human lens epithelial (HLE) cells were cultured in vitro on extracellular matrix (ECM) originated from bovine corneal endothelial cells. This study reports evidence for rapid but transient induction of FGF2 transcripts, an increase of between 5- and 8-fold, within 0.5 h after exposure to particle radiation, followed by another wave of increased transcription at 2-3 h postirradiation. Immunofluorescence results confirm the enhanced levels of FGF2 protein rapidly after exposure to protons or helium ions, followed by another wave of increased activity unique to helium at 6 h postirradiation. This second wave of increased immunoreactivity was not observed in the proton-irradiated samples. Total FGF2 protein analysis after helium-ion exposures shows induced expression of three FGF2 isoforms, with an increase of up to 2-fold in the 18-kDa low-molecular-weight species. Studies of the effects of protons on individual FGF2 protein isoforms are in progress. Several mechanisms involving a role for FGF2 in radiation-induced cataract are discussed.
Superconductivity and fast proton transport in nanoconfined water
NASA Astrophysics Data System (ADS)
Johnson, K. H.
2018-04-01
A real-space molecular-orbital density-wave description of Cooper pairing in conjunction with the dynamic Jahn-Teller mechanism for high-Tc superconductivity predicts that electron-doped water confined to the nanoscale environment of a carbon nanotube or biological macromolecule should superconduct below and exhibit fast proton transport above the transition temperature, Tc ≅ 230 K (-43 °C).
Exclusive photoproduction of vector mesons in proton-lead ultraperipheral collisions at the LHC
NASA Astrophysics Data System (ADS)
Xie, Ya-Ping; Chen, Xurong
2018-02-01
Rapidity distributions of vector mesons are computed in dipole model proton-lead ultraperipheral collisions (UPCs) at the CERN Larger Hadron Collider (LHC). The dipole model framework is implemented in the calculations of cross sections in the photon-hadron interaction. The bCGC model and Boosted Gaussian wave functions are employed in the scattering amplitude. We obtain predictions of rapidity distributions of J / ψ meson proton-lead ultraperipheral collisions. The predictions give a good description to the experimental data of ALICE. The rapidity distributions of ϕ, ω and ψ (2 s) mesons in proton-lead ultraperipheral collisions are also presented in this paper.
Nanotechnology in lithium niobate for integrated optic frequency conversion in the UV
NASA Astrophysics Data System (ADS)
Busacca, Alessandro C.; Santini, Claudia; Oliveri, Luigi; Riva-Sanseverino, Stefano; Parisi, Antonino; Cino, Alfonso C.; Assanto, Gaetano
2017-11-01
In the domain of Earth Explorer satellites nanoengineered nonlinear crystals can optimize UV tunable solid-state laser converters. Lightweight sources can be based on Lithium Niobate (LN) domain engineering by electric field poling and guided wave interactions. In this Communication we report the preliminary experimental results and the very first demonstration of UltraViolet second-harmonic generation by first-order quasi-phase-matching in a surface-periodically-poled proton-exchanged LN waveguide. The pump source was a Ti-Sapphire laser with a tunability range of 700- 980 nm and a 40 GHz linewidth. We have measured UV continuous-wave light at 390 nm by means of a lock-in amplifier and of a photodiode with enhanced response in the UV. Measured conversion efficiency was about 1%W-1cm-2. QPM experiments show good agreement with theory and pave the way for a future implementation of the technique in materials less prone to photorefractive damage and wider transparency in the UV, such as Lithium Tantalate.
NASA Astrophysics Data System (ADS)
Jiansen, He; Xingyu, Zhu; Yajie, Chen; Chadi, Salem; Michael, Stevens; Hui, Li; Wenzhi, Ruan; Lei, Zhang; Chuanyi, Tu
2018-04-01
The magnetic reconnection exhaust is a pivotal region with enormous magnetic energy being continuously released and converted. The physical processes of energy conversion involved are so complicated that an all-round understanding based on in situ measurements is still lacking. We present the evidence of plasma heating by illustrating the broadening of proton and electron velocity distributions, which are extended mainly along the magnetic field, in an exhaust of interchange reconnection between two interplanetary magnetic flux tubes of the same polarity on the Sun. The exhaust is asymmetric across an interface, with both sides being bounded by a pair of compound discontinuities consisting of rotational discontinuity and slow shock. The energized plasmas are found to be firehose unstable, and responsible for the emanation of Alfvén waves during the second step of energy conversion. It is realized that the energy conversion in the exhaust can be a two-step process involving both plasma energization and wave emission.
Deformation mechanism of the Cryostat in the CADS Injector II
NASA Astrophysics Data System (ADS)
Yuan, Jiandong; Zhang, Bin; Wan, Yuqin; Sun, Guozhen; Bai, Feng; Zhang, Juihui; He, Yuan
2018-01-01
Thermal contraction and expansion of the Cryostat will affect its reliability and stability. To optimize and upgrade the Cryostat, we analyzed the heat transfer in a cryo-vacuum environment from the theoretical point first. The simulation of cryo-vacuum deformation based on a finite element method was implemented respectively. The completed measurement based on a Laser Tracker and a Micro Alignment Telescope was conducted to verify its correctness. The monitored deformations were consistent with the simulated ones. After the predictable deformations in vertical direction have been compensated, the superconducting solenoids and Half Wave Resonator cavities approached the ideal "zero" position under liquid helium conditions. These guaranteed the success of 25 MeV@170 uA continuous wave protons of Chinese accelerator driven subcritical system Injector II. By correlating the vacuum and cryo-deformation, we have demonstrated that the complete deformation was the superposition effect of the atmospheric pressure, gravity and thermal stress during both the process of cooling down and warming up. The results will benefit to an optimization for future Cryostat's design.
A Data Analysis Center for Electromagnetic and Hadronic Interaction. Products of the DAC members
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briscoe, William John; Strakovsky, Igor I.; Workman, Ronald L.
The Data Analysis Center (DAC) of the Center for Nuclear Studies (CNS) at the George Washington University (GW) has made significant progress in its program to enhance and expand the partial-wave (and multipole) analyses of fundamental two- and three-body reactions (such as pion-nucleon, photon-nucleon, and nucleon-nucleon scattering) by maintaining and augmenting the analysis codes and databases associated with these reactions. These efforts provide guidance to experimental groups at the international level, forming an important link between theory and experiment. A renaissance in light hadron spectroscopy is underway as a continuous stream of polarization data issues from existing precision electromagnetic facilitiesmore » and the coming Jefferson Lab 12 GeV Upgrade. Our principal goals have been focused on supporting the national N* resonance physics program. We have also continued to study topics more generally related to the problems associated with partial-wave analysis. On the Experimental side of the CNS DAC. Its primary goal is the enhancement of the body of data necessary for our analyses of fundamental γ - N reactions. We perform experiments that study the dynamics responsible for the internal structure of the nucleon and its excitations. Our principal focus is on the N* programs at JLab and MAMI. At JLab we study spin-polarization observables using polarized photons, protons and neutrons and yielding charged final states. Similarly at MAMI we study neutral meson photoproduction off polarized protons and neutrons. We use the Crystal Ball and TAPS spectrometers (CBT) to detect photons and neutrons to measure the photoproduction of π0, η, 2π0, π0η, and K0 off the neutron. The CBT program complements our program at JLab, which studies reactions resulting in charged final states. We are also involved in a renewed effort to make neutral pion photoproduction measurements close to threshold at Mainz. In addition to the programs underway, we are contributing to the future by participation in preparations for the coming JLab 12 GeV Upgrade. GW students are involved in tests of the detectors proposed to be used with CLAS12, i.e., for the CentralTime-of-Flight Barrel (CTOF). WJB is heavily involved in the MUSE quest at PSI to solve the Proton Radius Puzzle.« less
DNP enhanced NMR with flip-back recovery
NASA Astrophysics Data System (ADS)
Björgvinsdóttir, Snædís; Walder, Brennan J.; Pinon, Arthur C.; Yarava, Jayasubba Reddy; Emsley, Lyndon
2018-03-01
DNP methods can provide significant sensitivity enhancements in magic angle spinning solid-state NMR, but in systems with long polarization build up times long recycling periods are required to optimize sensitivity. We show how the sensitivity of such experiments can be improved by the classic flip-back method to recover bulk proton magnetization following continuous wave proton heteronuclear decoupling. Experiments were performed on formulations with characteristic build-up times spanning two orders of magnitude: a bulk BDPA radical doped o-terphenyl glass and microcrystalline samples of theophylline, L-histidine monohydrochloride monohydrate, and salicylic acid impregnated by incipient wetness. For these systems, addition of flip-back is simple, improves the sensitivity beyond that provided by modern heteronuclear decoupling methods such as SPINAL-64, and provides optimal sensitivity at shorter recycle delays. We show how to acquire DNP enhanced 2D refocused CP-INADEQUATE spectra with flip-back recovery, and demonstrate that the flip-back recovery method is particularly useful in rapid recycling regimes. We also report Overhauser effect DNP enhancements of over 70 at 592.6 GHz/900 MHz.
Alfven wave cyclotron resonance heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R.B.; Yosikawa, S.; Oberman, C.
1981-02-01
The resonance absorption of fast Alfven waves at the proton ctclotron resonance of a predominately deuterium plasma is investigated. An approximate dispersion relation is derived, valid in the vicinity of the resonance, which permits an exact calculation of transmission and reflection coefficients. For reasonable plasma parameters significant linear resonance absorption is found.
NASA Astrophysics Data System (ADS)
Lee, Justin H.; Angelopoulos, Vassilis
2014-11-01
Electromagnetic ion cyclotron (EMIC) wave generation and propagation in Earth's magnetosphere depend on readily measurable hot (a few to tens of keV) plasma sheet ions, elusive plasmaspheric or ionospheric cold (sub-eV to a few eV) ions, and partially heated warm ions (tens to hundreds of eV). Previous work has assumed all low-energy ions are cold and not considered possible effects of warm ions. Using measurements by multiple Time History of Events and Macroscale Interactions during Substorms spacecraft, we analyze four typical EMIC wave events in the four magnetic local time sectors and consider the properties of both cold and warm ions supplied from previous statistical studies to interpret the wave observations using linear theory. As expected, we find that dusk EMIC waves grow due to the presence of drifting hot anisotropic protons and cold plasmaspheric ions with a dominant cold proton component. Near midnight, EMIC waves are less common because warm heavy ions that suppress wave growth are more abundant there. The waves can grow when cold, plume-like density enhancements are present, however. Dawn EMIC waves, known for their peculiar properties, are generated away from the equator and change polarization during propagation through the warm plasma cloak. Noon EMIC waves can also be generated nonlocally and their properties modified during propagation by a plasmaspheric plume combined with low-energy ions from solar and terrestrial sources. Accounting for multiple ion species, measured wave dispersion, and propagation characteristics can explain previously elusive EMIC wave properties and are therefore important for future studies of EMIC wave effects on energetic particle depletion.
Measurement of direct f0(980) photoproduction on the proton.
Battaglieri, M; De Vita, R; Szczepaniak, A P; Adhikari, K P; Aghasyan, M; Amaryan, M J; Ambrozewicz, P; Anghinolfi, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Batourine, V; Bedlinskiy, I; Bellis, M; Benmouna, N; Berman, B L; Bibrzycki, L; Biselli, A S; Bookwalter, C; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Bültmann, S; Burkert, V D; Calarco, J R; Careccia, S L; Carman, D S; Casey, L; Chen, S; Cheng, L; Clinton, E; Cole, P L; Collins, P; Crabb, D; Crannell, H; Crede, V; Cummings, J P; Dale, D; Daniel, A; Dashyan, N; De Masi, R; De Sanctis, E; Degtyarenko, P V; Deur, A; Dhamija, S; Dharmawardane, K V; Dickson, R; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dugger, M; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fersch, R; Forest, T A; Fradi, A; Gabrielyan, M Y; Gan, L; Garçon, M; Gasparian, A; Gavalian, G; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Glamazdin, O; Goett, J; Goetz, J T; Gohn, W; Golovatch, E; Gordon, C I O; Gothe, R W; Graham, L; Griffioen, K A; Guidal, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, H; Hakobyan, R S; Hanretty, C; Hardie, J; Hassall, N; Heddle, D; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Johnstone, J R; Joo, K; Juengst, H G; Kageya, T; Kalantarians, N; Keller, D; Kellie, J D; Khandaker, M; Khetarpal, P; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Konczykowski, P; Kossov, M; Krahn, Z; Kramer, L H; Kubarovsky, V; Kuhn, J; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Lee, T; Lesniak, L; Li, Ji; Livingston, K; Lowry, M; Lu, H Y; Maccormick, M; Malace, S; Markov, N; Mattione, P; McCracken, M E; McKinnon, B; Mecking, B A; Melone, J J; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Mineeva, T; Minehart, R; Mirazita, M; Miskimen, R; Mochalov, V; Mokeev, V; Moreno, B; Moriya, K; Morrow, S A; Moteabbed, M; Munevar, E; Mutchler, G S; Nadel-Turonski, P; Nakagawa, I; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; Osipenko, M; Ostrovidov, A I; Park, K; Park, S; Pasyuk, E; Paris, M; Paterson, C; Pereira, S Anefalos; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Pozdniakov, S; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Rosner, G; Rossi, P; Sabatié, F; Saini, M S; Salamanca, J; Salgado, C; Sandorfi, A; Santoro, J P; Sapunenko, V; Schott, D; Schumacher, R A; Serov, V S; Sharabian, Y G; Sharov, D; Shvedunov, N V; Smith, E S; Smith, L C; Sober, D I; Sokhan, D; Starostin, A; Stavinsky, A; Stepanyan, S; Stepanyan, S S; Stokes, B E; Stoler, P; Stopani, K A; Strakovsky, I I; Strauch, S; Taiuti, M; Tedeschi, D J; Teymurazyan, A; Tkabladze, A; Tkachenko, S; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Watts, D P; Wei, X; Weinstein, L B; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Yurov, M; Zana, L; Zhang, J; Zhao, B; Zhao, Z W
2009-03-13
We report on the results of the first measurement of exclusive f_{0}(980) meson photoproduction on protons for E_{gamma}=3.0-3.8 GeV and -t=0.4-1.0 GeV2. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The resonance was detected via its decay in the pi;{+}pi;{-} channel by performing a partial wave analysis of the reaction gammap-->ppi;{+}pi;{-}. Clear evidence of the f_{0}(980) meson was found in the interference between P and S waves at M_{pi;{+}pi;{-}} approximately 1 GeV. The S-wave differential cross section integrated in the mass range of the f_{0}(980) was found to be a factor of about 50 smaller than the cross section for the rho meson. This is the first time the f_{0}(980) meson has been measured in a photoproduction experiment.
Measurement of Direct f0(980) Photoproduction on the Proton
NASA Astrophysics Data System (ADS)
Battaglieri, M.; de Vita, R.; Szczepaniak, A. P.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Batourine, V.; Bedlinskiy, I.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bibrzycki, L.; Biselli, A. S.; Bookwalter, C.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Casey, L.; Chen, S.; Cheng, L.; Clinton, E.; Cole, P. L.; Collins, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Dale, D.; Daniel, A.; Dashyan, N.; de Masi, R.; de Sanctis, E.; Degtyarenko, P. V.; Deur, A.; Dhamija, S.; Dharmawardane, K. V.; Dickson, R.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Forest, T. A.; Fradi, A.; Gabrielyan, M. Y.; Gan, L.; Garçon, M.; Gasparian, A.; Gavalian, G.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glamazdin, O.; Goett, J.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gordon, C. I. O.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hakobyan, R. S.; Hanretty, C.; Hardie, J.; Hassall, N.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Johnstone, J. R.; Joo, K.; Juengst, H. G.; Kageya, T.; Kalantarians, N.; Keller, D.; Kellie, J. D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Konczykowski, P.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Lesniak, L.; Li, Ji; Livingston, K.; Lowry, M.; Lu, H. Y.; MacCormick, M.; Malace, S.; Markov, N.; Mattione, P.; McCracken, M. E.; McKinnon, B.; Mecking, B. A.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Mineeva, T.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mochalov, V.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Munevar, E.; Mutchler, G. S.; Nadel-Turonski, P.; Nakagawa, I.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Park, S.; Pasyuk, E.; Paris, M.; Paterson, C.; Pereira, S. Anefalos; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Sandorfi, A.; Santoro, J. P.; Sapunenko, V.; Schott, D.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Sharov, D.; Shvedunov, N. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Sokhan, D.; Starostin, A.; Stavinsky, A.; Stepanyan, S.; Stepanyan, S. S.; Stokes, B. E.; Stoler, P.; Stopani, K. A.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Teymurazyan, A.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yurov, M.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.
2009-03-01
We report on the results of the first measurement of exclusive f0(980) meson photoproduction on protons for Eγ=3.0-3.8GeV and -t=0.4-1.0GeV2. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The resonance was detected via its decay in the π+π- channel by performing a partial wave analysis of the reaction γp→pπ+π-. Clear evidence of the f0(980) meson was found in the interference between P and S waves at Mπ+π-˜1GeV. The S-wave differential cross section integrated in the mass range of the f0(980) was found to be a factor of about 50 smaller than the cross section for the ρ meson. This is the first time the f0(980) meson has been measured in a photoproduction experiment.
NASA Astrophysics Data System (ADS)
Ganushkina, N. Y.; Dubyagin, S.; Liemohn, M. W.
2017-12-01
The isotropic boundaries of the energetic protons, which can be routinely observed by low-altitude satellites, have been used as a tool to probe remotely the nightside magnetic configuration in the near-Earth region. The validity of this method is based on the assumption that the isotropic boundary is formed by the particle scattering on the curved field lines in the magnetotail current sheet. However recent results revealed that the wave-particle interaction process often can be responsible for the isotropic boundary formation especially during active times. Using numerous observations of the 30 keV proton isotropic boundaries and conjugated measurements of the magnetic field in the equatorial magnetosphere we demonstrate that isotropic boundary location can be used as a proxy of the magnetotail stretching even during magnetic storms. The results imply that the scattering on the curved field lines still plays major role as a mechanism of the isotropic boundary formation during storm-time. We found that the wave-particle interaction could lead to isotropic boundary formation in 15% of events. In addition, we discuss the morphology of the storm-time energetic proton precipitations.
The effects of 8 Helios observed solar proton events of interplanetary magnetic field fluctuations
NASA Technical Reports Server (NTRS)
ValdezGalicia, J. F.; Alexander, P.; Otaola, J. A.
1995-01-01
There have been recent suggestions that large fluxes during solar energetic particle events may produce their own turbulence. To verify this argument it becomes essential to find out whether these flows cause an enhancement of interplanetary magnetic field fluctuations. In the present work, power and helicity spectra of the IMF before, during and after 8 Helios-observed solar proton events in the range 0.3 - 1 AU are analyzed. In order to detect proton self generated waves, the time evolution of spectra are followed.
Infrared laser driven double proton transfer. An optimal control theory study
NASA Astrophysics Data System (ADS)
Abdel-Latif, Mahmoud K.; Kühn, Oliver
2010-02-01
Laser control of ultrafast double proton transfer is investigated for a two-dimensional model system describing stepwise and concerted transfer pathways. The pulse design has been done by employing optimal control theory in combination with the multiconfiguration time-dependent Hartree wave packet propagation. The obtained laser fields correspond to multiple pump-dump pulse sequences. Special emphasis is paid to the relative importance of stepwise and concerted transfer pathways for the driven wave packet and its dependence on the parameters of the model Hamiltonian as well as on the propagation time. While stepwise transfer is dominating in all cases considered, for high barrier systems concerted transfer proceeding via tunneling can make a contribution.
Comparing simulated and observed EMIC wave amplitudes using in situ Van Allen Probes’ measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikin, A. A.; Jordanova, Vania Koleva; Zhang, J. C.
In this study, we perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes’ (1.1–5.8 R e) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave eventsmore » with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H +-band and 129 He +-band) were selected for this comparison. Nearly all events selected are observed beyond L = 4. Results show that calculated wave amplitudes exclusively using the in situ HOPE measurements produce amplitudes too low compared to the observed EMIC wave amplitudes. Hot proton anisotropy (Ahp) distributions are asymmetric in MLT within the inner (L < 7) magnetosphere with peak (minimum) A hp, ~0.81 to 1.00 (~0.62), observed in the dawn (dusk), 0000 < MLT ≤ 1200 (1200 < MLT ≤ 2400), sectors. Measurements of A hp are found to decrease in the presence of EMIC wave activity. A hp amplification factors are determined and vary with respect to EMIC wave-band and MLT. Lastly, He +-band events generally require double (quadruple) the measured A hp for the dawn (dusk) sector to reproduce the observed EMIC wave amplitudes.« less
Comparing simulated and observed EMIC wave amplitudes using in situ Van Allen Probes’ measurements
Saikin, A. A.; Jordanova, Vania Koleva; Zhang, J. C.; ...
2018-02-02
In this study, we perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes’ (1.1–5.8 R e) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave eventsmore » with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H +-band and 129 He +-band) were selected for this comparison. Nearly all events selected are observed beyond L = 4. Results show that calculated wave amplitudes exclusively using the in situ HOPE measurements produce amplitudes too low compared to the observed EMIC wave amplitudes. Hot proton anisotropy (Ahp) distributions are asymmetric in MLT within the inner (L < 7) magnetosphere with peak (minimum) A hp, ~0.81 to 1.00 (~0.62), observed in the dawn (dusk), 0000 < MLT ≤ 1200 (1200 < MLT ≤ 2400), sectors. Measurements of A hp are found to decrease in the presence of EMIC wave activity. A hp amplification factors are determined and vary with respect to EMIC wave-band and MLT. Lastly, He +-band events generally require double (quadruple) the measured A hp for the dawn (dusk) sector to reproduce the observed EMIC wave amplitudes.« less
Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M
2015-12-01
A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.
Acoustic-based proton range verification in heterogeneous tissue: simulation studies
NASA Astrophysics Data System (ADS)
Jones, Kevin C.; Nie, Wei; Chu, James C. H.; Turian, Julius V.; Kassaee, Alireza; Sehgal, Chandra M.; Avery, Stephen
2018-01-01
Acoustic-based proton range verification (protoacoustics) is a potential in vivo technique for determining the Bragg peak position. Previous measurements and simulations have been restricted to homogeneous water tanks. Here, a CT-based simulation method is proposed and applied to a liver and prostate case to model the effects of tissue heterogeneity on the protoacoustic amplitude and time-of-flight range verification accuracy. For the liver case, posterior irradiation with a single proton pencil beam was simulated for detectors placed on the skin. In the prostate case, a transrectal probe measured the protoacoustic pressure generated by irradiation with five separate anterior proton beams. After calculating the proton beam dose deposition, each CT voxel’s material properties were mapped based on Hounsfield Unit values, and thermoacoustically-generated acoustic wave propagation was simulated with the k-Wave MATLAB toolbox. By comparing the simulation results for the original liver CT to homogenized variants, the effects of heterogeneity were assessed. For the liver case, 1.4 cGy of dose at the Bragg peak generated 50 mPa of pressure (13 cm distal), a 2× lower amplitude than simulated in a homogeneous water tank. Protoacoustic triangulation of the Bragg peak based on multiple detector measurements resulted in 0.4 mm accuracy for a δ-function proton pulse irradiation of the liver. For the prostate case, higher amplitudes are simulated (92-1004 mPa) for closer detectors (<8 cm). For four of the prostate beams, the protoacoustic range triangulation was accurate to ⩽1.6 mm (δ-function proton pulse). Based on the results, application of protoacoustic range verification to heterogeneous tissue will result in decreased signal amplitudes relative to homogeneous water tank measurements, but accurate range verification is still expected to be possible.
Jones, Kevin C; Vander Stappen, François; Bawiec, Christopher R; Janssens, Guillaume; Lewin, Peter A; Prieels, Damien; Solberg, Timothy D; Sehgal, Chandra M; Avery, Stephen
2015-12-01
To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.
Mercury Cavitation Phenomenon in Pulsed Spallation Neutron Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Futakawa, Masatoshi; Naoe, Takashi; Kawai, Masayoshi
2008-06-24
Innovative researches will be performed at Materials and Life Science Experimental Facility in J-PARC, in which a mercury target system will be installed as MW-class pulse spallation neutron sources. Proton beams will be injected into mercury target to induce the spallation reaction. At the moment the intense proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by micro-jets and/or shock waves which are caused by cavitation bubble collapse imposemore » pitting damage on the vessel wall. The pitting damage which degrades the structural integrity of target vessels is a crucial issue for high power mercury targets. Micro-gas-bubbles injection into mercury may be useful to mitigate the pressure wave and the pitting damage. The visualization of cavitation-bubble and gas-bubble collapse behaviors was carried out by using a high-speed video camera. The differences between them are recognized.« less
THE COUPLED EVOLUTION OF ELECTRONS AND IONS IN CORONAL MASS EJECTION-DRIVEN SHOCKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manchester IV, W. B.; Van der Holst, B.; Toth, G.
2012-09-01
We present simulations of coronal mass ejections (CMEs) performed with a new two-temperature coronal model developed at the University of Michigan, which is able to address the coupled thermodynamics of the electron and proton populations in the context of a single fluid. This model employs heat conduction for electrons, constant adiabatic index ({gamma} = 5/3), and includes Alfven wave pressure to accelerate the solar wind. The Wang-Sheeley-Arge empirical model is used to determine the Alfven wave pressure necessary to produce the observed bimodal solar wind speed. The Alfven waves are dissipated as they propagate from the Sun and heat protonsmore » on open magnetic field lines to temperatures above 2 MK. The model is driven by empirical boundary conditions that includes GONG magnetogram data to calculate the coronal field, and STEREO/EUVI observations to specify the density and temperature at the coronal boundary by the Differential Emission Measure Tomography method. With this model, we simulate the propagation of fast CMEs and study the thermodynamics of CME-driven shocks. Since the thermal speed of the electrons greatly exceeds the speed of the CME, only protons are directly heated by the shock. Coulomb collisions low in the corona couple the protons and electrons allowing heat exchange between the two species. However, the coupling is so brief that the electrons never achieve more than 10% of the maximum temperature of the protons. We find that heat is able to conduct on open magnetic field lines and rapidly propagates ahead of the CME to form a shock precursor of hot electrons.« less
Deformation of the proton emitter 113Cs from electromagnetic transition and proton-emission rates
NASA Astrophysics Data System (ADS)
Hodge, D.; Cullen, D. M.; Taylor, M. J.; Nara Singh, B. S.; Ferreira, L. S.; Maglione, E.; Smith, J. F.; Scholey, C.; Rahkila, P.; Grahn, T.; Braunroth, T.; Badran, H.; Capponi, L.; Girka, A.; Greenlees, P. T.; Julin, R.; Konki, J.; Mallaburn, M.; Nefodov, O.; O'Neill, G. G.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Smolen, M.; Sorri, J.; Stolze, S.; Uusitalo, J.
2016-09-01
The lifetime of the (11 /2+ ) state in the band above the proton-emitting (3 /2+ ) state in 113Cs has been measured to be τ =24 (6 ) ps from a recoil-decay-tagged differential-plunger experiment. The measured lifetime was used to deduce the deformation of the states using wave functions from a nonadiabatic quasiparticle model to independently calculate both proton-emission and electromagnetic γ -ray transition rates as a function of deformation. The only quadrupole deformation, which was able to reproduce the experimental excitation energies of the states, the electromagnetic decay rate of the (11 /2+ ) state and the proton-emission rate of the (3 /2+ ) state, was found to be β2=0.22 (6 ) . This deformation is in agreement with the earlier proton emission studies which concluded that 113Cs was best described as a deformed proton emitter, however, it is now more firmly supported by the present measurement of the electromagnetic transition rate.
Martínez-González, Eduardo; González, Felipe J; Ascenso, José R; Marcos, Paula M; Frontana, Carlos
2016-08-05
Competition between hydrogen bonding and proton transfer reactions was studied for systems composed of electrogenerated dianionic species from dinitrobenzene isomers and substituted dihomooxacalix[4]arene bidentate urea derivatives. To analyze this competition, a second-order ErCrCi mechanism was considered where the binding process is succeeded by proton transfer and the voltammetric responses depend on two dimensionless parameters: the first related to hydrogen bonding reactions, and the second one to proton transfer processes. Experimental results indicated that, upon an increase in the concentration of phenyl-substituted dihomooxacalix[4]arene bidentate urea, voltammetric responses evolve from diffusion-controlled waves (where the binding process is at chemical equilibrium) into irreversible kinetic responses associated with proton transfer. In particular, the 1,3-dinitrobenzene isomer showed a higher proton transfer rate constant (∼25 M(-1) s(-1)) compared to that of the 1,2-dinitrobenzene (∼5 M(-1) s(-1)), whereas the 1,4-dinitrobenzene did not show any proton transfer effect in the experimental conditions employed.
PERPENDICULAR ION HEATING BY LOW-FREQUENCY ALFVEN-WAVE TURBULENCE IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandran, Benjamin D. G.; Germaschewski, Kai; Li Bo
We consider ion heating by turbulent Alfven waves (AWs) and kinetic Alfven waves (KAWs) with wavelengths (measured perpendicular to the magnetic field) that are comparable to the ion gyroradius and frequencies {omega} smaller than the ion cyclotron frequency {Omega}. We focus on plasmas in which {beta} {approx}< 1, where {beta} is the ratio of plasma pressure to magnetic pressure. As in previous studies, we find that when the turbulence amplitude exceeds a certain threshold, an ion's orbit becomes chaotic. The ion then interacts stochastically with the time-varying electrostatic potential, and the ion's energy undergoes a random walk. Using phenomenological arguments,more » we derive an analytic expression for the rates at which different ion species are heated, which we test by simulating test particles interacting with a spectrum of randomly phased AWs and KAWs. We find that the stochastic heating rate depends sensitively on the quantity {epsilon} = {delta}v {sub {rho}/}v{sub perpendicular}, where v{sub perpendicular} (v {sub ||}) is the component of the ion velocity perpendicular (parallel) to the background magnetic field B {sub 0}, and {delta}v {sub {rho}} ({delta}B {sub {rho}}) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius scale. In the case of thermal protons, when {epsilon} << {epsilon}{sub crit}, where {epsilon}{sub crit} is a constant, a proton's magnetic moment is nearly conserved and stochastic heating is extremely weak. However, when {epsilon}>{epsilon}{sub crit}, the proton heating rate exceeds half the cascade power that would be present in strong balanced KAW turbulence with the same value of {delta}v {sub {rho}}, and magnetic-moment conservation is violated even when {omega} << {Omega}. For the random-phase waves in our test-particle simulations, {epsilon}{sub crit} = 0.19. For protons in low-{beta} plasmas, {epsilon} {approx_equal} {beta}{sup -1/2{delta}}B{sub {rho}/}B {sub 0}, and {epsilon} can exceed {epsilon}{sub crit} even when {delta}B{sub {rho}/}B {sub 0} << {epsilon}{sub crit}. The heating is anisotropic, increasing v {sup 2}{sub perpendicular} much more than v {sup 2}{sub ||} when {beta} << 1. (In contrast, at {beta} {approx}> 1 Landau damping and transit-time damping of KAWs lead to strong parallel heating of protons.) At comparable temperatures, alpha particles and minor ions have larger values of {epsilon} than protons and are heated more efficiently as a result. We discuss the implications of our results for ion heating in coronal holes and the solar wind.« less
Noninterceptive transverse emittance measurements using BPM for Chinese ADS R&D project
NASA Astrophysics Data System (ADS)
Wang, Zhi-Jun; Feng, Chi; He, Yuan; Dou, Weiping; Tao, Yue; Chen, Wei-long; Jia, Huan; Liu, Shu-hui; Wang, Wang-sheng; Zhang, Yong; Wu, Jian-qiang; Zhang, Sheng-hu; Zhang, X. L.
2016-04-01
The noninterceptive four-dimensional transverse emittance measurements are essential for commissioning the high power continue-wave (CW) proton linacs as well as their operations. The conventional emittance measuring devices such as slits and wire scanners are not well suited under these conditions due to sure beam damages. Therefore, the method of using noninterceptive Beam Position Monitor (BPM) is developed and demonstrated on Injector Scheme II at the Chinese Accelerator Driven Sub-critical System (China-ADS) proofing facility inside Institute of Modern Physics (IMP) [1]. The results of measurements are in good agreements with wire scanners and slits at low duty-factor pulsed (LDFP) beam. In this paper, the detailed experiment designs, data analysis and result benchmarking are presented.
Survival of tumor cells after proton irradiation with ultra-high dose rates
2011-01-01
Background Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >109 Gy s-1may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. Methods The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. Results At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. Conclusions At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly. PMID:22008289
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Lepping, R. P.; Weber, R.; Armstrong, T.; Goodrich, C.; Sullivan, J.; Gurnett, D.; Kellogg, P.; Keppler, E.; Mariani, F.
1979-01-01
The principal interplanetary events observed are described and analyzed. Three flow systems were observed: (1) a corotating stream and a stream interface associated with a coronal hole; (2) a shock wave and an energetic particle event associated with a 2-B flare; and (3) an isolated shock wave of uncertain origin. Data from 28 experiments and 6 spacecraft provide measurements of solar wind plasma, magnetic fields, plasma waves, radio waves, energetic electrons, and low energy protons.
Periodic annealing of radiation damage in GaAs solar cells
NASA Technical Reports Server (NTRS)
Loo, R. Y.; Knechtli, R. C.; Kamath, G. S.
1980-01-01
Continuous annealing of GaAs solar cells is compared with periodic annealing to determine their relative effectiveness in minimizing proton radiation damage. It is concluded that continuous annealing of the cells in space at 150 C can effectively reduce the proton radiation damage to the GaAs solar cells. Periodic annealing is most effective if it can be initiated at relatively low fluences (approximating continuous annealing), especially if low temperatures of less than 200 C are to be used. If annealing is started only after the fluence of the damaging protons has accumulated to a high value 10 to the 11th power sq/pcm), effective annealing is still possible at relatively high temperatures. Finally, since electron radiation damage anneals even more easily than proton radiation damage, substantial improvements in GaAs solar cell life can be achieved by incorporating the proper annealing capabilities in solar panels for practical space missions where both electron and proton radiation damage have to be minimized.
NASA Astrophysics Data System (ADS)
Bingham, S.; Mouikis, C.; Kistler, L. M.; Farrugia, C. J.; Paulson, K. W.; Huang, C. L.; Boyd, A. J.; Spence, H. E.; Kletzing, C.
2017-12-01
Whistler mode chorus waves are electromagnetic waves that have been shown to be a major contributor to enhancements in the outer radiation belt during geomagnetic storms. The temperature anisotropy of source electrons (10s of keV) provides the free energy for chorus waves, which can accelerate sub-relativistic seed electrons (100s of keV) to relativistic energies. This study uses Van Allen Probe observations to examine the excitation and plasma conditions associated with chorus wave observations, the development of the seed population, and the outer radiation belt response in the inner magnetosphere, for 25 ICME and 35 CIR storms. Plasma data from the Helium Oxygen Proton Electron (HOPE) instrument and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) are used to identify chorus wave activity and to model a linear theory based proxy for chorus wave growth. A superposed epoch analysis shows a peak of chorus wave power on the dawnside during the storm main phase that spreads towards noon during the storm recovery phase. According to the linear theory results, this wave activity is driven by the enhanced convection driving plasma sheet electrons across the dayside. Both ICME and CIR storms show comparable levels of wave growth. Plasma data from the Magnetic Electron Ion Spectrometer (MagEIS) and the Relativistic Electron Proton Telescope (REPT) are used to observe the seed and relativistic electrons. A superposed epoch analysis of seed and relativistic electrons vs. L shows radiation belt enhancements with much greater frequency in the ICME storms, coinciding with a much stronger and earlier seed electron enhancement in the ICME storms.
Tunneling induced electron transfer between separated protons
NASA Astrophysics Data System (ADS)
Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.
2018-04-01
We study electron transfer between two separated protons using local control theory. In this symmetric system one can favour a slow transfer by biasing the algorithm, achieving high efficiencies for fixed nuclei. The solution can be parametrized using a sequence of a pump followed by a dump pulse that lead to tunneling-induced electron transfer. Finally, we study the effect of the nuclear kinetic energy on the efficiency. Even in the absence of relative motion between the protons, the spreading of the nuclear wave function is enough to reduce the yield of electronic transfer to less than one half.
NASA Astrophysics Data System (ADS)
Capman, N.; Engebretson, M.; Posch, J. L.; Cattell, C. A.; Tian, S.; Wygant, J. R.; Kletzing, C.; Lessard, M.; Anderson, B. J.; Russell, C. T.; Reeves, G. D.; Fuselier, S. A.
2016-12-01
A 0.5-1.0 Hz electromagnetic ion cyclotron (EMIC) wave event was observed on December 14, 2015 from 13:26 to 13:28 UT at the four MMS satellites (L= 9.5, MLT= 13.0, MLAT= -24.4, peak amplitude 7 nT), and both Van Allen probes (RBSP-A: L= 5.7, MLT= 12.8, MLAT= 19.5, peak amplitude 5 nT; RBSP-B: L= 4.3, MLT= 14.2, MLAT= 11.3, peak amplitude 1 nT). On the ground, it was observed by search coil magnetometers at Halley Bay and South Pole, Antarctica, and Sondrestromfjord, Greenland, and by fluxgate magnetometers of the MACCS array at Pangnirtung and Cape Dorset in Arctic Canada. This event was preceded by a small increase of the solar wind pressure of 3 nPa from 13:10 to 13:20 UT. The proton distributions at Van Allen probe A confirm that the compression increased the pitch angle anisotropy in 10 keV ring current protons. The wave forms were very similar at the four MMS spacecraft indicating that the coherence-scale of the wave packets is larger than the inter-spacecraft separations of 20 km at the time. Inter-comparison of the wave signals at the four MMS spacecraft are used to assess the characteristics of the waves and estimate their spatial scales transverse and parallel to the background magnetic field.
Parallel proton fire hose instability in the expanding solar wind: Hybrid simulations
NASA Astrophysics Data System (ADS)
Matteini, Lorenzo; Landi, Simone; Hellinger, Petr; Velli, Marco
2006-10-01
We report a study of the properties of the parallel proton fire hose instability comparing the results obtained by the linear analysis, from one-dimensional (1-D) standard hybrid simulations and 1-D hybrid expanding box simulations. The three different approaches converge toward the same instability threshold condition which is in good agreement with in situ observations, suggesting that such instability is relevant in the solar wind context. We investigate also the effect of the wave-particle interactions on shaping the proton distribution function and on the evolution of the spectrum of the magnetic fluctuations during the expansion. We find that the resonant interaction can provide the proton distribution function to depart from the bi-Maxwellian form.
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Poedts, S.
2017-12-01
Non-thermal kinetic components such as deformed velocity distributions, temperature anisotropies and relative drifts between the multiple ion populations are frequently observed features in the collisionless fast solar wind streams near the Earth whose origin is still to be better understood. Some of the traditional models consider the formation of the temperature anisotropies through the effect of the solar wind expansion, while others assume in situ heating and particle acceleration by local fluctuations, such as plasma waves, or by spacial structures, such as advected or locally generated current sheets. In this study we consider the evolution of initial ion temperature anisotropies and relative drifts in the presence of plasma oscillations, such as ion-cyclotron and kinetic Alfven waves. We perform 2.5D hybrid simulations to study the evolution of observed fast solar wind plasma parcels, including the development of the plasma micro-instabilities, the field-particle correlations and the energy transfer between the multiple ion species. We consider two distinct cases of highly anisotropic and quickly drifting protons which excite ion-cyclotron waves and of moderately anisotropic slower protons, which co-exist with kinetic Alfven waves. The alpha particles for both cases are slightly anisotropic in the beginning and remain anisotropic throughout the simulation time. Both the imposed magnetic fluctuations and the initial differential streaming decrease in time for both cases, while the minor ions are getting heated. Finally we study the effects of the solar wind expansion and discuss its implications for the nonlinear evolution of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacalone, J.
We investigate the physics of charged-particle acceleration at spherical shocks moving into a uniform plasma containing a turbulent magnetic field with a uniform mean. This has applications to particle acceleration at astrophysical shocks, most notably, to supernovae blast waves. We numerically integrate the equations of motion of a large number of test protons moving under the influence of electric and magnetic fields determined from a kinematically defined plasma flow associated with a radially propagating blast wave. Distribution functions are determined from the positions and velocities of the protons. The unshocked plasma contains a magnetic field with a uniform mean andmore » an irregular component having a Kolmogorov-like power spectrum. The field inside the blast wave is determined from Maxwell’s equations. The angle between the average magnetic field and unit normal to the shock varies with position along its surface. It is quasi-perpendicular to the unit normal near the sphere’s equator, and quasi-parallel to it near the poles. We find that the highest intensities of particles, accelerated by the shock, are at the poles of the blast wave. The particles “collect” at the poles as they approximately adhere to magnetic field lines that move poleward from their initial encounter with the shock at the equator, as the shock expands. The field lines at the poles have been connected to the shock the longest. We also find that the highest-energy protons are initially accelerated near the equator or near the quasi-perpendicular portion of the shock, where the acceleration is more rapid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen, E-mail: Stephen.Avery@uphs.upenn.edu
Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be onmore » the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.« less
On the Generation of Hydrodynamic Shocks by Mixed Beams and Occurrence of Sunquakes in Flares
NASA Astrophysics Data System (ADS)
Zharkova, Valentina; Zharkov, Sergei
2015-11-01
Observations of solar flares with sunquakes by space- and ground-based instruments reveal essentially different dynamics of seismic events in different flares. Some sunquakes are found to be closely associated with the locations of hard X-ray (HXR) and white-light (WL) emission, while others are located outside either of them. In this article we investigate possible sources causing a seismic response in a form of hydrodynamic shocks produced by the injection of mixed (electron plus proton) beams, discuss the velocities of these shocks, and the depths where they deposit the bulk of their energy and momentum. The simulation of hydrodynamic shocks in flaring atmospheres induced by electron-rich and proton-rich beams reveals that the linear depth of the shock termination is shifted beneath the level of the quiet solar photosphere on a distance from 200 to 5000 km. The parameters of these atmospheric hydrodynamic shocks are used as initial condition for another hydrodynamic model developed for acoustic-wave propagation in the solar interior (Zharkov, Mon. Not. Roy. Astron. Soc. 431, 3414, 2013). The model reveals that the depth of energy and momentum deposition by the atmospheric shocks strongly affects the propagation velocity of the acoustic-wave packet in the interior. The locations of the first bounces from the photosphere of acoustic waves generated in the vicinity of a flare are seen as ripples on the solar surface, or sunquakes. Mixed proton-dominated beams are found to produce a strong supersonic shock at depths 200 - 300 km under the level of the quiet-Sun photosphere and in this way produce well-observable acoustic waves, while electron-dominated beams create a slightly supersonic shock propagating down to 5000 km under the photosphere. This shock can only generate acoustic waves at the top layers beneath the photosphere since the shock velocity very quickly drops below the local sound speed. The distance Δ of the first bounce of the generated acoustic waves is discussed in relation to the minimal phase velocities of wave packets defined by the acoustic cutoff frequency and the parameters of atmospheric shock termination beneath the photosphere.
NASA Astrophysics Data System (ADS)
Kesler, Benjamin; O'Brien, Thomas; Dallesasse, John M.
2017-02-01
A novel method for controlling the transverse lasing modes in both proton implanted and oxide-confined vertical- cavity surface-emitting lasers (VCSELs) with a multi-layer, patterned, dielectric anti-phase (DAP) filter is pre- sented. Using a simple photolithographic liftoff process, dielectric layers are deposited and patterned on individual VCSELs to modify (increase or decrease) the mirror reflectivity across the emission aperture via anti-phase reflections, creating spatially-dependent threshold material gain. The shape of the dielectric pattern can be tailored to overlap with specific transverse VCSEL modes or subsets of transverse modes to either facilitate or inhibit lasing by decreasing or increasing, respectively, the threshold modal gain. A silicon dioxide (SiO2) and titanium dioxide (TiO2) anti-phase filter is used to achieve a single-fundamental-mode, continuous-wave output power greater than 4.0 mW in an oxide-confined VCSEL at a lasing wavelength of 850 nm. A filter consisting of SiO2 and TiO2 is used to facilitate injection-current-insensitive fundamental mode and lower order mode lasing in proton implanted VCSELs at a lasing wavelength of 850 nm. Higher refractive index dielectric materials such as amorphous silicon (a-Si) can be used to increase the effectiveness of the anti-phase filter on proton implanted devices by reducing the threshold modal gain of any spatially overlapping modes. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for semiconductor etching or epitaxial regrowth. It also offers the capability of designing a filter based upon available optical coating materials.
Jun, Sangmi; Gillespie, Joel R; Shin, Byong-kyu; Saxena, Sunil
2009-11-17
The overall morphology and Cu(II) ion coordination for the aggregated amyloid-beta(1-40) [Abeta(1-40)] in N-ethylmorpholine (NEM) buffer are affected by Cu(II) ion concentration. This effect is investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM), and electron spin echo envelope modulation (ESEEM) spectroscopy. At lower than equimolar concentrations of Cu(II) ions, fibrillar aggregates of Abeta(1-40) are observed. At these concentrations of Cu(II), the monomeric and fibrillar Abeta(1-40) ESEEM data indicate that the Cu(II) ion is coordinated by histidine residues. For aggregated Abeta(1-40) at a Cu(II):Abeta molar ratio of 2:1, TEM and AFM images show both linear fibrils and granular amorphous aggregates. The ESEEM spectra show that the multi-histidine coordination for Cu(II) ion partially breaks up and becomes exposed to water or exchangeable protons of the peptide at a higher Cu(II) concentration. Since the continuous-wave electron spin resonance results also suggest two copper-binding sites in Abeta(1-40), the proton ESEEM peak may arise from the second copper-binding site, which may be significantly involved in the formation of granular amorphous aggregates. Thioflavin T fluorescence and circular dichroism experiments also show that Cu(II) inhibits the formation of fibrils and induces a nonfibrillar beta-sheet conformation. Therefore, we propose that Abeta(1-40) has a second copper-binding site in a proton-rich environment and the second binding Cu(II) ion interferes with a conformational transition into amyloid fibrils, inducing the formation of granular amorphous aggregates.
Dynamics of Intense Currents in the Solar Wind
NASA Astrophysics Data System (ADS)
Artemyev, Anton V.; Angelopoulos, Vassilis; Halekas, Jasper S.; Vinogradov, Alexander A.; Vasko, Ivan Y.; Zelenyi, Lev M.
2018-06-01
Transient currents in the solar wind are carried by various magnetic field discontinuities that contribute significantly to the magnetic field fluctuation spectrum. Internal instabilities and dynamics of these discontinuities are believed to be responsible for magnetic field energy dissipation and corresponding charged particle acceleration and heating. Accurate modeling of these phenomena requires detailed investigation of transient current formation and evolution. By examining such evolution using a unique data set compiled from observations of the same solar wind flow by two spacecraft at Earth’s and Mars’s orbits, we show that it consists of several processes: discontinuity thinning (decrease in thickness normalized by the ion inertial length), intensification of currents normalized to the proton thermal current (i.e., the product of proton charge, density, and thermal velocity), and increase in the compressional component of magnetic field variations across discontinuities. The significant proton temperature variation around most observed discontinuities indicates possible proton heating. Plasma velocity jumps across the discontinuities are well correlated with Alfvén velocity changes. We discuss possible explanations of the observed discontinuity evolution. We also compare the observed evolution with predictions of models describing discontinuity formation due to Alfvén wave steepening. Our results show that discontinuity modeling likely requires taking into account both the effects of nonlinear Alfvén wave dynamics and solar wind expansion.
Shen, Ming; Trébosc, J; Lafon, O; Pourpoint, F; Hu, Bingwen; Chen, Qun; Amoureux, J-P
2014-08-01
Connectivities and proximities between protons and low-gamma nuclei can be probed in solid-state NMR spectroscopy using two-dimensional (2D) proton-detected heteronuclear correlation, through Heteronuclear Multiple Quantum Correlation (HMQC) pulse sequence. The indirect detection via protons dramatically enhances the sensitivity. However, the spectra are often broadened along the indirect F1 dimension by the decay of heteronuclear multiple-quantum coherences under the strong (1)H-(1)H dipolar couplings. This work presents a systematic comparison of the performances of various decoupling schemes during the indirect t1 evolution period of dipolar-mediated HMQC (D-HMQC) experiment. We demonstrate that (1)H-(1)H dipolar decoupling sequences during t1, such as symmetry-based schemes, phase-modulated Lee-Goldburg (PMLG) and Decoupling Using Mind-Boggling Optimization (DUMBO), provide better resolution than continuous wave (1)H irradiation. We also report that high resolution requires the preservation of (1)H isotropic chemical shifts during the decoupling sequences. When observing indirectly broad spectra presenting numerous spinning sidebands, the D-HMQC sequence must be fully rotor-synchronized owing to the rotor-synchronized indirect sampling and dipolar recoupling sequence employed. In this case, we propose a solution to reduce artefact sidebands caused by the modulation of window delays before and after the decoupling application during the t1 period. Moreover, we show that (1)H-(1)H dipolar decoupling sequence using Smooth Amplitude Modulation (SAM) minimizes the t1-noise. The performances of the various decoupling schemes are assessed via numerical simulations and compared to 2D (1)H-{(13)C} D-HMQC experiments on [U-(13)C]-L-histidine⋅HCl⋅H2O at various magnetic fields and Magic Angle spinning (MAS) frequencies. Great resolution and sensitivity enhancements resulting from decoupling during t1 period enable the detection of heteronuclear correlation between aliphatic protons and ammonium (14)N sites in L-histidine⋅HCl⋅H2O. Copyright © 2014 Elsevier Inc. All rights reserved.
Wave Effects Related to Altitude Variations in the Ion Composition of the Ionosphere
NASA Astrophysics Data System (ADS)
Vavilov, D. I.; Shklyar, D. R.
2016-12-01
Properties of the waves, which can propagate in a magnetized plasma in the frequency range below the proton gyrofrequency, depend strongly on the ion composition of the plasma. Addition of a new sort of ions leads to the appearance of a new resonance frequency, at which the refractive index becomes infinite, and a new cutoff frequency, at which the refractive index becomes zero. In this case, the topology of frequency dependence of the squared refractive index changes. Specifically, a new oscillation branch appears, which is located above the cutoff frequency. A question arises whether these oscillations are excited if radiation with the corresponding frequency, which propagates in a different mode, is present in the plasma. A linear transformation of the waves is another important effect, which is related to variations in the ion plasma composition. These two issues, which are directly related to the theory of formation of proton whistlers in the ionosphere, where the ion composition varies with altitude, are considered in this work.
Particle Acceleration by Cme-driven Shock Waves
NASA Technical Reports Server (NTRS)
Reames, Donald V.
1999-01-01
In the largest solar energetic particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). Peak particle intensities are a strong function of CME speed, although the intensities, spectra, and angular distributions of particles escaping the shock are highly modified by scattering on Alfven waves produced by the streaming particles themselves. Element abundances vary in complex ways because ions with different values of Q/A resonate with different parts of the wave spectrum, which varies with space and time. Just recently, we have begun to model these systematic variations theoretically and to explore other consequences of proton-generated waves.
Charge radius of the 13N* proton halo nucleus with Halo Effective Field Theory
NASA Astrophysics Data System (ADS)
Mosavi Khansari, M.; Khalili, H.; Sadeghi, H.
2018-02-01
We evaluated the charge radius of the first excited state of 13N with halo Effective Field Theory (hEFT) at the low energies. The halo effective field theory without pion is used to examine the halo nucleus bound state with a large S-wave scattering length. We built Lagrangian from the effective core and the valence proton of the fields and obtained the charge form factor at Leading-Order (LO). The charge radius at leading order for the first excited state of the proton halo nucleus, 13N, has been estimated as rc = 2.52 fm. This result is without any finite-size contributions included from the core and the proton. If we consider the contributions of the charge radius of the proton and the core, the result will be [rC]13N* = 5.85 fm.
NASA Astrophysics Data System (ADS)
Niu, Xiaojie; Sun, Shiyan; Wang, Fujun; Jia, Xiangfu
2017-08-01
The effect of final-state dynamic correlation is investigated for helium single ionization by 75-keV proton impact analyzing fully differential cross sections (FDCS). The final state is represented by a continuum correlated wave (CCW-PT) function which accounts for the interaction between the projectile and the residual target ion (PT interaction). This continuum correlated wave function partially includes the correlation of electron-projectile and electron-target relative motion as coupling terms of the wave equation. The transition matrix is evaluated using the CCW-PT function and the Born initial state. The analytical expression of the transition matrix has been obtained. We have shown that this series is strongly convergent and analyzed the contribution of their different terms to the FDCS within the perturbation method. Illustrative computations are performed in the scattering plane and in the perpendicular plane. Both the correlation effects and the PT interaction are checked by the preset calculations. Our results are compared with absolute experimental data as well as other theoretical models. We have shown that the dynamic correlation plays an important role in the single ionization of atoms by proton impact at intermediate projectile energies, especially at large transverse momentum transfer. While overall agreement between theory and the experimental data is encouraging, detailed agreement is lacking. The need for more theoretical and experimental work is emphasized.
Use of multi-coil parallel-gap resonators for co-registration EPR/NMR imaging
NASA Astrophysics Data System (ADS)
Kawada, Yuuki; Hirata, Hiroshi; Fujii, Hirodata
2007-01-01
This article reports experimental investigations on the use of RF resonators for continuous-wave electron paramagnetic resonance (cw-EPR) and proton nuclear magnetic resonance (NMR) imaging. We developed a composite resonator system with multi-coil parallel-gap resonators for co-registration EPR/NMR imaging. The resonance frequencies of each resonator were 21.8 MHz for NMR and 670 MHz for EPR. A smaller resonator (22 mm in diameter) for use in EPR was placed coaxially in a larger resonator (40 mm in diameter) for use in NMR. RF magnetic fields in the composite resonator system were visualized by measuring a homogeneous 4-hydroxy-2,2,6,6-tetramethyl-piperidinooxy (4-hydroxy-TEMPO) solution in a test tube. A phantom of five tubes containing distilled water and 4-hydroxy-TEMPO solution was also measured to demonstrate the potential usefulness of this composite resonator system in biomedical science. An image of unpaired electrons was obtained for 4-hydroxy-TEMPO in three tubes, and was successfully mapped on the proton image for five tubes. Technical problems in the implementation of a composite resonator system are discussed with regard to co-registration EPR/NMR imaging for animal experiments.
Installation, high-power conditioning and beam commissioning of the upgraded SARAF 4-rods RFQ
NASA Astrophysics Data System (ADS)
Weissman, L.; Perry, A.; Bechtold, A.; Berkovits, D.; Kaizer, B.; Luner, Y.; Niewieczerzal, P.; Rodnizki, J.; Silverman, I.; Shor, A.; Nusbaum, D.
2018-05-01
The original SARAF 3.8 m long 4-rod Radio Frequency Quadrupole (RFQ) has been successful in acceleration of 4 mA Continuous Wave (CW) proton beam and pulsed deuteron beam to 1.5 MeV/u. However, conditions for running CW deuteron beam have not been achieved in the original design. A new 4-rod structure has been designed and implemented, with the goal of reducing the RF power required for CW deuteron operation while slightly compromising the RFQ exit energy to 1.27 MeV/u. The new 4-rod structure was manufactured, and installed in place of the old rod electrodes. Superior field homogeneity was achieved. The RFQ was successfully conditioned to the RF power 200 kW required for CW deuteron operation, with sufficient power margin. The commissioning with proton and deuteron beams showed that most of beam parameters are close to the designed specifications. The first operation with CW RF power of 5 mA deuteron beam was demonstrated. In addition, a 1.1 mA CW deuteron beam was transported through the superconducting module. The future scope of RFQ improvements is discussed.
Dynamics of Proton Spin: Role of qqq Force
NASA Astrophysics Data System (ADS)
Mitra, A. N.
The analytic structure of the qqq wave function, obtained recently in the high momentum regime of QCD, is employed for the formulation of baryonic transition amplitudes via quark loops. A new aspect of this study is the role of a direct (Y -shaped, Mercedes-Benz type) qqq force in generating the qqq wave function The dynamics is that of a Salpeter-like equation (3D support for the kernel) formulated covariantly on the light front, a la Markov-Yukawa Transversality Principle (MYTP) which warrants a 2-way interconnection between the 3D and 4D Bethe-Salpeter (BSE) forms for 2 as well as 3 fermion quarks. The dynamics of this 3-body force shows up through a characteristic singularity in the hypergeometric differential equation for the 3D wave function ϕ, corresponding to a negative eigenvalue of the spin operator iσ1·σ2 × σ3 which is an integral part of the qqq force. As a first application of this wave function to the problem of the proton spin anomaly, the two-gluon contribution to the anomaly yields an estimate of the right sign, although somewhat smaller in magnitude.
NASA Astrophysics Data System (ADS)
Anderson, T.; Holzworth, R. H., II; Brundell, J. B.
2017-12-01
Energetic particle precipitation associated with solar events have been known to cause changes in the Earth-ionosphere waveguide. Previous studies of solar proton events (SPEs) have shown that high-energy protons can ionize lower-altitude layers of the ionosphere, leading to changes in Schumann resonance parameters (Schlegel and Fullekrug, 1999) and absorption of radio waves over the polar cap (Kundu and Haddock, 1960). We use the World-Wide Lightning Location Network (WWLLN) to study propagation of VLF waves during SPEs. WWLLN detects lightning-generated sferics in the VLF band using 80 stations distributed around the world. By comparing received power at individual stations from specific lightning source regions during SPEs, we can infer changes in the lower ionosphere conductivity profile caused by high-energy proton precipitation. In particular, we find that some WWLLN stations see different distributions of sferic power and range during SPEs. We also use the power/propagation analysis to improve WWLLN's lightning detection accuracy, by developing a better model for ionosphere parameters and speed of light in the waveguide than we have previously used.
Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreeraj, T., E-mail: sreerajt13@iigs.iigm.res.in; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: gslakhina@gmail.com
2016-08-15
The coupling of electrostatic ion cyclotron and ion acoustic waves is examined in three component magnetized plasma consisting of electrons, protons, and alpha particles. In the theoretical model relevant to solar wind plasma, electrons are assumed to be superthermal with kappa distribution and protons as well as alpha particles follow the fluid dynamical equations. A general linear dispersion relation is derived for such a plasma system which is analyzed both analytically and numerically. For parallel propagation, electrostatic ion cyclotron (proton and helium cyclotron) and ion acoustic (slow and fast) modes are decoupled. For oblique propagation, coupling between the cyclotron andmore » acoustic modes occurs. Furthermore, when the angle of propagation is increased, the separation between acoustic and cyclotron modes increases which is an indication of weaker coupling at large angle of propagation. For perpendicular propagation, only cyclotron modes are observed. The effect of various parameters such as number density and temperature of alpha particles and superthermality on dispersion characteristics is examined in details. The coupling between various modes occurs for small values of wavenumber.« less
Turbulent Equilibria for Charged Particles in Space
NASA Astrophysics Data System (ADS)
Yoon, Peter
2017-04-01
The solar wind electron distribution function is apparently composed of several components including non-thermal tail population. The electron distribution that contains energetic tail feature is well fitted with the kappa distribution function. The solar wind protons also possess quasi power-law tail distribution function that is well fitted with an inverse power law model. The present paper discusses the latest theoretical development regarding the dynamical steady-state solution of electrons and Langmuir turbulence that are in turbulent equilibrium. According to such a theory, the Maxwellian and kappa distribution functions for the electrons emerge as the only two possible solution that satisfy the steady-state weak turbulence plasma kinetic equation. For the proton inverse power-law tail problem, a similar turbulent equilibrium solution can be conceived of, but instead of high-frequency Langmuir fluctuation, the theory involves low-frequency kinetic Alfvenic turbulence. The steady-state solution of the self-consistent proton kinetic equation and wave kinetic equation for Alfvenic waves can be found in order to obtain a self-consistent solution for the inverse power law tail distribution function.
NASA Astrophysics Data System (ADS)
Liu, M.; Weng, S. M.; Wang, H. C.; Chen, M.; Zhao, Q.; Sheng, Z. M.; He, M. Q.; Li, Y. T.; Zhang, J.
2018-06-01
We propose a hybrid laser-driven ion acceleration scheme using a combination target of a solid foil and a density-tailored background plasma. In the first stage, a sub-relativistic proton beam can be generated by radiation pressure acceleration in intense laser interaction with the solid foil. In the second stage, this sub-relativistic proton beam is further accelerated by the laser wakefield driven by the same laser pulse in a near-critical-density background plasma with decreasing density profile. The propagating velocity of the laser front and the phase velocity of the excited wakefield wave are effectively lowered at the beginning of the second stage. By decreasing the background plasma density gradually from near critical density along the laser propagation direction, the wake travels faster and faster, while it accelerates the protons. Consequently, the dephasing between the protons and the wake is postponed and an efficient wakefield proton acceleration is achieved. This hybrid laser-driven proton acceleration scheme can be realized by using ultrashort laser pulses at the peak power of 10 PW for the generation of multi-GeV proton beams.
Waves in the Magnetic Field and Solar Wind Flow Outside the Bow Shock at Comet Halley
NASA Astrophysics Data System (ADS)
Johnstone, A. D.; Glassmeier, K.H.; Acuna, M.; Borg, H.; Byrant, D.; Coates, A.J.; Formisano, V.; Health, J.W.; Mariani, S.; Musmann, G.; Neubauer, F.M.; Thomsen, M.; Wilken, B.; Winningham, J.
1986-12-01
An investigation of the low frequency waves, upstream from the bow shock, has been carried out using data from the JPA and MAG instruments on Giotto. The former obtains a snapshot of the solar wind distribution every two spins of the spacecraft, i.e. 8 s. From this data the components of the flow velocity, density and temperature of both protons and alpha particles can be obtained. To compare with these data the magnetic field components, obtained at a rate of 28 values-per-second, have been averaged over the same period of 8 secs. The two data sets can be used to study frequencies up to 60 milliherz, well above the H2O+ gyrofrequency at 6 milliherz, but below the proton gyrofrequency of 100 milliherz.
Comparative analysis of proton- and neutron-halo breakups
NASA Astrophysics Data System (ADS)
Mukeru, B.
2018-06-01
A detailed analysis of the proton- and neutron-halo breakup cross sections is presented. Larger neutron-halo breakup cross sections than proton-halo breakup cross sections are obtained. This is found to be mainly due to the projectile structure, namely the ground state wave function and the dipole electric response function. It is also found that the continuum–continuum couplings are stronger in the proton-halo breakup than in the neutron-halo breakup. The increase of proton- and neutron-halo ground state separation energy slightly strengthens these couplings in the proton- and neutron-halo total and nuclear breakups, while they are weakened in the proton- and neutron-halo Coulomb breakups. The Coulomb-nuclear interference remains strongly destructive in both proton- and neutron-halo breakups and this is independent of the ground state separation energy. The results also show that the increase of the neutron-halo ground state separation energy decreases significantly the agreement between the proton- and neutron-halo breakup cross sections, both qualitatively and quantitatively. It is obtained that when the proton-halo ground state separation energy is increased by a factor of 4.380, the proton-halo breakup cross section is reduced by a factor of 4.392, indicating a clear proportionality. However, when the neutron-halo ground state separation energy is increased by the same factor, the neutron-halo total breakup cross section is reduced by a factor of 8.522.
Submillimeter ionoacoustic range determination for protons in water at a clinical synchrocyclotron.
Lehrack, Sebastian; Assmann, Walter; Bertrand, Damien; Henrotin, Sebastien; Herault, Joel; Heymans, Vincent; Stappen, Francois Vander; Thirolf, Peter G; Vidal, Marie; Van de Walle, Jarno; Parodi, Katia
2017-08-18
Proton ranges in water between 145 MeV to 227 MeV initial energy have been measured at a clinical superconducting synchrocyclotron using the acoustic signal induced by the ion dose deposition (ionoacoustic effect). Detection of ultrasound waves was performed by a very sensitive hydrophone and signals were stored in a digital oscilloscope triggered by secondary prompt gammas. The ionoacoustic range measurements were compared to existing range data from a calibrated range detector setup on-site and agreement of better than 1 mm was found at a Bragg peak dose of about 10 Gy for 220 MeV initial proton energy, compatible with the experimental errors. Ionoacoustics has thus the potential to measure the Bragg peak position with submillimeter accuracy during proton therapy, possibly correlated with ultrasound tissue imaging.
Double-polarization observable G in neutral-pion photoproduction off the proton
NASA Astrophysics Data System (ADS)
Thiel, A.; Eberhardt, H.; Lang, M.; Afzal, F.; Anisovich, A. V.; Bantes, B.; Bayadilov, D.; Beck, R.; Bichow, M.; Brinkmann, K.-T.; Böse, S.; Crede, V.; Dieterle, M.; Dutz, H.; Elsner, D.; Ewald, R.; Fornet-Ponse, K.; Friedrich, St.; Frommberger, F.; Funke, Ch.; Goertz, St.; Gottschall, M.; Gridnev, A.; Grüner, M.; Gutz, E.; Hammann, D.; Hammann, Ch.; Hannappel, J.; Hartmann, J.; Hillert, W.; Hoffmeister, Ph.; Honisch, Ch.; Jude, T.; Kaiser, D.; Kalinowsky, H.; Kalischewski, F.; Kammer, S.; Keshelashvili, I.; Klassen, P.; Kleber, V.; Klein, F.; Klempt, E.; Koop, K.; Krusche, B.; Kube, M.; Lopatin, I.; Mahlberg, Ph.; Makonyi, K.; Metag, V.; Meyer, W.; Müller, J.; Müllers, J.; Nanova, M.; Nikonov, V.; Piontek, D.; Reeve, S.; Reicherz, G.; Runkel, S.; Sarantsev, A.; Schmidt, Ch.; Schmieden, H.; Seifen, T.; Sokhoyan, V.; Spieker, K.; Thoma, U.; Urban, M.; van Pee, H.; Walther, D.; Wendel, Ch.; Wilson, A.; Winnebeck, A.; Witthauer, L.
2017-01-01
This paper reports on a measurement of the double-polarization observable G in π^0 photoproduction off the proton using the CBELSA/TAPS experiment at the ELSA accelerator in Bonn. The observable G is determined from reactions of linearly polarized photons with longitudinally polarized protons. The polarized photons are produced by bremsstrahlung off a diamond radiator of well-defined orientation. A frozen spin butanol target provides the polarized protons. The data cover the photon energy range from 617 to 1325 MeV and a wide angular range. The experimental results for G are compared to predictions by the Bonn-Gatchina (BnGa), Jülich-Bonn (JüBo), MAID and SAID partial wave analyses. Implications of the new data for the pion photoproduction multipoles are discussed.
Proton impact charge transfer on hydantoin - Prebiotic implications
NASA Astrophysics Data System (ADS)
Bacchus-Montabonel, Marie-Christine
2016-11-01
Formation and destruction of prebiotic compounds in astrophysical environments is a major issue in reactions concerning the origin of life. Detection of hydantoin in laboratory irradiation of interstellar ice analogues has confirmed evidence of this prebiotic compound and its stability to UV radiation or collisions may be crucial. Considering the different astrophysical environments, we have investigated theoretically proton-induced collisions with hydantoin in a wide energy range, from eV in the interstellar medium, up to keV for processes involving solar wind or supernovae shock-waves protons. Results are compared to previous investigations and qualitative trends on damage under spatial radiations are suggested.
A surface hopping algorithm for nonadiabatic minimum energy path calculations.
Schapiro, Igor; Roca-Sanjuán, Daniel; Lindh, Roland; Olivucci, Massimo
2015-02-15
The article introduces a robust algorithm for the computation of minimum energy paths transiting along regions of near-to or degeneracy of adiabatic states. The method facilitates studies of excited state reactivity involving weakly avoided crossings and conical intersections. Based on the analysis of the change in the multiconfigurational wave function the algorithm takes the decision whether the optimization should continue following the same electronic state or switch to a different state. This algorithm helps to overcome convergence difficulties near degeneracies. The implementation in the MOLCAS quantum chemistry package is discussed. To demonstrate the utility of the proposed procedure four examples of application are provided: thymine, asulam, 1,2-dioxetane, and a three-double-bond model of the 11-cis-retinal protonated Schiff base. © 2015 Wiley Periodicals, Inc.
The causes of the hardest electron precipitation events seen with SAMPEX
NASA Astrophysics Data System (ADS)
Smith, David M.; Casavant, Eric P.; Comess, Max D.; Liang, Xinqing; Bowers, Gregory S.; Selesnick, Richard S.; Clausen, Lasse B. N.; Millan, Robyn M.; Sample, John G.
2016-09-01
We studied the geomagnetic, plasmaspheric, and solar wind context of relativistic electron precipitation (REP) events seen with the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), Proton Electron Telescope (PET) to derive an exponential folding energy E0 for each event. Events with E0< 400 keV peak near midnight, and with increasing E0, the peak magnetic local time (MLT) moves earlier but never peaks as early as the MLT distribution of electromagnetic ion cyclotron (EMIC) waves in the outer belt, and a distinct component near midnight remains. Events with E0>750 keV near dusk (1400 < MLT < 2000) show correlations with solar wind dynamic pressure and proton density, AE index, negative Dst index, and an extended plasmasphere, all supporting an EMIC wave interpretation. Events with 500 keV
A new look at the position operator in quantum theory
NASA Astrophysics Data System (ADS)
Lev, F. M.
2015-01-01
The postulate that coordinate and momentum representations are related to each other by the Fourier transform has been accepted from the beginning of quantum theory by analogy with classical electrodynamics. As a consequence, an inevitable effect in standard theory is the wave packet spreading (WPS) of the photon coordinate wave function in directions perpendicular to the photon momentum. This leads to the following paradoxes: if the major part of photons emitted by stars are in wave packet states (what is the most probable scenario) then we should see not separate stars but only an almost continuous background from all stars; no anisotropy of the CMB radiation should be observable; data on gamma-ray bursts, signals from directional radio antennas (in particular, in experiments on Shapiro delay) and signals from pulsars show no signs of WPS. In addition, a problem arises why there are no signs of WPS for protons in the LHC ring. We argue that the above postulate is based neither on strong theoretical arguments nor on experimental data and propose a new consistent definition of the position operator. Then WPS in directions perpendicular to the particle momentum is absent and the paradoxes are resolved. Different components of the new position operator do not commute with each other and, as a consequence, there is no wave function in coordinate representation. Implications of the results for entanglement, quantum locality and the problem of time in quantum theory are discussed.
Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector
Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr Y.; ...
2017-02-24
This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that the observed waves aremore » a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ~100; the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (~0.1); the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of ~80 keV protons. Here, we show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.« less
Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr Y.
This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that the observed waves aremore » a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ~100; the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (~0.1); the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of ~80 keV protons. Here, we show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.« less
Quasi-linear heating and acceleration in bi-Maxwellian plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellinger, Petr; Passot, Thierry; Sulem, Pierre-Louis
2013-12-15
Quasi-linear acceleration and heating rates are derived for drifting bi-Maxwellian distribution functions in a general nonrelativistic case for arbitrary wave vectors, propagation angles, and growth/damping rates. The heating rates in a proton-electron plasma due to ion-cyclotron/kinetic Alfvén and mirror waves for a wide range of wavelengths, directions of propagation, and growth or damping rates are explicitly computed.
Effects of Grain Size on Ultrasonic Attenuation in Type 316L Stainless Steel
Wan, Tao; Wakui, Takashi; Futakawa, Masatoshi; Obayashi, Hironari
2017-01-01
A lead bismuth eutectic (LBE) spallation target will be installed in the Target Test Facility (TEF-T) in the Japan Proton Accelerator Research Complex (J-PARC). The spallation target vessel filled with LBE is made of type 316L stainless steel. However, various damages, such as erosion/corrosion damage and liquid metal embrittlement caused by contact with flowing LBE at high temperature, and irradiation hardening caused by protons and neutrons, may be inflicted on the target vessel, which will deteriorate the steel and might break the vessel. To monitor the target vessel for prevention of an accident, an ultrasonic technique has been proposed to establish off-line evaluation for estimating vessel material status during the target maintenance period. Basic R&D must be carried out to clarify the dependency of ultrasonic wave propagation behavior on material microstructures and obtain fundamental knowledge. As a first step, ultrasonic waves scattered by the grains of type 316L stainless steel are investigated using new experimental and numerical approaches in the present study. The results show that the grain size can be evaluated exactly and quantitatively by calculating the attenuation coefficient of the ultrasonic waves scattered by the grains. The results also show that the scattering regimes of ultrasonic waves depend heavily on the ratio of wavelength to average grain size, and are dominated by grains of extraordinarily large size along the wave propagation path. PMID:28773115
Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assmann, W., E-mail: walter.assmann@lmu.de; Reinhardt, S.; Lehrack, S.
2015-02-15
Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measuredmore » by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound imaging. This acoustic range verification approach could offer the possibility of combining anatomical ultrasound and Bragg peak imaging, but further studies are required for translation of these findings to clinical application.« less
Modulation of chorus intensity by ULF waves deep in the inner magnetosphere
Xia, Zhiyang; Chen, Lunjin; Dai, Lei; ...
2016-09-05
Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this paper, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed chorus intensity variation at low frequency (f <~ 0.3f ce), but cannot account for the observed higher-frequency chorus waves, includingmore » the upper band chorus waves. This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. Finally, in addition, we use combined observations of Radiation Belt Storm Probes (RBSP) A and B to verify that the ULF wave event is spatially local and does not last long.« less
Decay property of sup 20 Na for the onset mechanism of the rapid-proton process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubono, S.; Ikeda, N.; Funatsu, Y.
1992-07-01
The decay property of {sup 20}Na was studied using a {sup 20}Mg beam to learn better the onset mechanism of the rapid-proton process. The delayed protons were successfully measured, which correspond to one of the possible 1{sup +} states in {sup 20}Na. There is no clear beta decay to the first excited 1{sup +} state above the proton threshold, suggesting that this state would not be the {ital s}-wave resonance in the thermal reaction of {sup 19}Ne+{ital p} as was expected before. The half-life time of {sup 20}Mg is determined to be 114{plus minus}17 ms. The stellar reaction rate ofmore » {sup 19}Ne({ital p},{gamma}){sup 20}Na is also discussed based on the present experimental result.« less
Ground state energy of electrons in a static point-ion lattice
NASA Technical Reports Server (NTRS)
Styer, D. F.; Ashcroft, N. W.
1983-01-01
The ground state energy of a neutral collection of protons and electrons was investigated under the assumption that in the ground state configuration, static protons occupy the sites of a rigid Bravais lattice. The Wigner-Seitz method was used in conjunction with three postulated potentials: bare Coulomb, Thomas-Fermi screening, and screening by a uniform bare background charge. Within these approximations, the exact band-minimum energy and wave functions are derived. For each of the three potentials, the approximate minimum ground state energy per proton (relative to isolated electrons and protons) is, respectively, -1.078 Ry, -1.038 Ry, and -1.052 Ry. These three minima all fall at a density of about 0.60 gm/cu cm, which is thus an approximate lower bound on the density of metallic hydrogen at its transition pressure.
NASA Astrophysics Data System (ADS)
Liang, Jun; Donovan, E.; Ni, B.; Yue, C.; Jiang, F.; Angelopoulos, V.
2014-10-01
Ion precipitation mechanisms are usually energy dependent and contingent upon magnetospheric/ionospheric locations. Therefore, the pattern of energy-latitude dependence of ion precipitation boundaries seen by low Earth orbit satellites can be implicative of the mechanism(s) underlying the precipitation. The pitch angle scattering of ions led by the field line curvature, a well-recognized mechanism of ion precipitation in the central plasma sheet (CPS), leads to one common pattern of energy-latitude dispersion, in that the ion precipitation flux diminishes at higher (lower) latitudes for protons with lower (higher) energies. In this study, we introduce one other systematically existing pattern of energy-latitude dispersion of ion precipitation, in that the lower energy ion precipitation extends to lower latitude than the higher-energy ion precipitation. Via investigating such a "reversed" energy-latitude dispersion pattern, we explore possible mechanisms of ion precipitation other than the field line curvature scattering. We demonstrate via theories and simulations that the H-band electromagnetic ion cyclotron (EMIC) wave is capable of preferentially scattering keV protons in the CPS and potentially leads to the reversed energy-latitude dispersion of proton precipitation. We then present detailed event analyses and provide support to a linkage between the EMIC waves in the equatorial CPS and ion precipitation events with reversed energy-latitude dispersion. We also discuss the role of ion acceleration in the topside ionosphere which, together with the CPS ion population, may result in a variety of energy-latitude distributions of the overall ion precipitation.
Dependence of two-proton radioactivity on nuclear pairing models
NASA Astrophysics Data System (ADS)
Oishi, Tomohiro; Kortelainen, Markus; Pastore, Alessandro
2017-10-01
Sensitivity of two-proton emitting decay to nuclear pairing correlation is discussed within a time-dependent three-body model. We focus on the 6Be nucleus assuming α +p +p configuration, and its decay process is described as a time evolution of the three-body resonance state. For a proton-proton subsystem, a schematic density-dependent contact (SDDC) pairing model is employed. From the time-dependent calculation, we observed the exponential decay rule of a two-proton emission. It is shown that the density dependence does not play a major role in determining the decay width, which can be controlled only by the asymptotic strength of the pairing interaction. This asymptotic pairing sensitivity can be understood in terms of the dynamics of the wave function driven by the three-body Hamiltonian, by monitoring the time-dependent density distribution. With this simple SDDC pairing model, there remains an impossible trinity problem: it cannot simultaneously reproduce the empirical Q value, decay width, and the nucleon-nucleon scattering length. This problem suggests that a further sophistication of the theoretical pairing model is necessary, utilizing the two-proton radioactivity data as the reference quantities.
A unified theory of stable auroral red arc formation at the plasmapause
NASA Technical Reports Server (NTRS)
Cornwall, J. M.; Coroniti, F. V.; Thorne, R. M.
1970-01-01
A theory is proposed that SAR-arcs are generated at the plasmapause as a consequence of the turbulent dissipation of ring current energy. During the recovery phase of a geomagnetic storm, the plasmapause expands outward into the symmetric ring current. When the cold plasma densities reach about 100/cu cm, ring current protons become unstable and generate intense ion cyclotron wave turbulence in a narrow region 1/2 earth radius wide (just inside the plasmapause). Approximately one-half of the ring current energy is dissipated into wave turbulence which in turn is absorbed through a Landau resonant interaction with plasma spheric electrons. The combined thermal heat flux to the ionosphere due to Landau absorption of the wave energy and proton-electron Coulomb dissipation is sufficient to drive SAR-arcs at the observed intensities. It is predicted that the arcs should be localized to a narrow latitudinal range just within the stormtime plasmapause. They should occur at all local times and persist for the 10 to 20 hour duration of the plasma-pause expansion.
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Jones, Frank C.
1988-01-01
The electron heating required if protons scatter elastically in a parallel, collisionless shock is calculated. Near-elastic proton scattering off large amplitude background magnetic field fluctuations might be expected if the waves responsible for the shock dissipation are generated by the fire hose instability. The effects of an electrostatic potential jump in the shock layer are included by assuming that the energy lost by protons in traversing the potential jump is converted into electron thermal pressure. It is found that the electron temperature increase is a strong function of the potential jump. Comparison is made to the parallel shock plasma simulation of Quest (1987).
Density Functional Calculations for the Neutron Star Matter at Subnormal Density
NASA Astrophysics Data System (ADS)
Kashiwaba, Yu; Nakatsukasa, Takashi
The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.
2002-01-01
Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.
Speed and thickness of the magnetopause.
NASA Technical Reports Server (NTRS)
Kaufmann, R. L.; Konradi, A.
1973-01-01
We have used the finite gyroradius of protons with energies greater than 140 keV to determine the location of the magnetopause when the satellite is within the adjacent steep proton flux gradient. This steep gradient region is usually two to four 140-keV proton gyroradii, or about 1000 to 4000 km thick. The measurements described here were made within 45 deg of the earth-sun line on moderately disturbed days, when proton fluxes were unusually high. On these days, the magnetopause usually moves at a speed of less than 20 km/sec. The magnetopause velocity sometimes changes abruptly, while remaining below 20 km/sec. Very rapid (about 50 km/sec) radial motion appears to be associated with the propagation of single, isolated waves along the magnetopause. The thickness of the electric current sheet that produces the magnetic field rotation in the magnetopause is usually on the order of 10 times the gyroradius of a 1-keV proton, or about 1000 km.
The Efficiency of Solar Flares With Gamma-ray Emission of Solar Cosmic Rays Production.
NASA Astrophysics Data System (ADS)
Belov, A. V.; Kurt, V. G.; Mavromichalaki, H.
A statistical analysis of solar flares with gamma-ray emission measured by SMM (W.T. Westrand, at al.,1999, Ap.J, Suppl. Series, 409) and proton events occurrence based on the proton events catalog (A.Belov, at al.2001, Proc. 27th ICRC 2001, Ham- burg, 3465) was performed. We obtained the probabilities of the appearence of pro- ton fluxes near the Earth from the different fluence values of gamma-line emission, bremsstrahlung emissions and soft X-ray emission of the parent flares. This statisti- cal approach allows us to obtain if not precise than at least proper quantitative ratios than relate the flares with obvious evidences for proton production with the escaped from the Sun viciniy. We than look at the available data of soft X-ray flares time behaviour and show the exact timing of proton acceleration and probably shock for- mation comparing the soft X-ray injection function. The shock wave influence on the proton escaping process is shortly discussed.
Tsunamis warning from space :Ionosphere seismology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larmat, Carene
2012-09-04
Ionosphere is the layer of the atmosphere from about 85 to 600km containing electrons and electrically charged atoms that are produced by solar radiation. Perturbations - layering affected by day and night, X-rays and high-energy protons from the solar flares, geomagnetic storms, lightning, drivers-from-below. Strategic for radio-wave transmission. This project discusses the inversion of ionosphere signals, tsunami wave amplitude and coupling parameters, which improves tsunami warning systems.
Proton-deuteron double scattering
NASA Technical Reports Server (NTRS)
Wilson, J. W.
1974-01-01
A simple but accurate form for the proton-deuteron elastic double scattering amplitude, which includes both projectile and target recoil motion and is applicable at all momentum transfer, is derived by taking advantage of the restricted range of Fermi momentum allowed by the deuteron wave function. This amplitude can be directly compared to approximations which have neglected target recoil or are limited to small momentum transfer; the target recoil and large momentum transfer effects are evaluated explicitly within the context of a Gaussian model.
Two-proton transfer reactions on even Ni and Zn isotopes
NASA Astrophysics Data System (ADS)
Boucenna, A.; Kraus, L.; Linck, I.; Chan, Tsan Ung
1990-10-01
New levels strongly excited by 112-MeV 12C ions on even Ni and Zn isotopes are Jπ assigned on kinematical and geometrical arguments, crude shell-model calculations, and distorted-wave Born approximation angular-distribution analysis. These tentative assignments are supported by the Bansal-French model. Because of the contribution of additional collective effects, the two-proton transfer reaction spectra are less selectively fed than those obtained with the analogous two-neutron transfer reactions induced on the same targets in a similar energy range.
Peak-Flux-Density Spectra of Large Solar Radio Bursts and Proton Emission from Flares.
1985-08-19
of the microwave peak (Z 1000 sfu in U-bursts) served as an indicator that the energy release during the impulsive phase was sufficient to produce a... energy or wave- length tends to be prominent in all, and cautions about over-interpreting associa- tions/correlations observed in samples of big flares...Sung, L. S., and McDonald, F. B. (1975) The variation of solar proton energy spectra and size distribution with helio- longitude, Sol. Phys. 41: 189. 28
Response of the Earth’s lower ionosphere to the Ground Level Enhancement event of December 13, 2006
NASA Astrophysics Data System (ADS)
Žigman, Vida; Kudela, Karel; Grubor, Davorka
2014-03-01
In this study we analyze the Ground Level Enhancement Event No 70 observed on December 13, 2006, by correlating the observations from two research topics: Cosmic rays and Very Low Frequency (VLF < 30 kHz) wave propagation, as two ground based techniques for the detection of solar proton events, and their impact on the lower ionosphere. The observations have been endorsed from recordings of worldwide network ground based Neutron Monitors as well as by satellite data from the satellites GOES 12 (www.swpc.noaa.gov) and Pamela (www.pamela.roma2infn.it). We have evaluated the ionization rate for protons in the altitude range relevant to VLF propagation, and for galactic cosmic ray (GCR) background, finding that at energies up to ˜2 GeV the ionization rate of solar protons exceeded the GCR ionization by 1.5 orders of magnitude. We have applied the Long Wave Propagation Capability (LWPC) code to evaluate the enhancement of the electron density from VLF signal perturbation and have inferred corresponding electron densities from the evaluated ionization rates and effective recombination coefficients from literature, to find the two independent sets in good agreement.
Cavitation damage prediction for spallation target vessels by assessment of acoustic vibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Futakawa, Masatoshi; Kogawa, Hiroyuki; Hasegawa, Shoichi
2008-01-01
Liquid-mercury target systems for MW-class spallation neutron sources are being developed around the world. Proton beams are used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. In order to estimate the cavitation erosion, i.e. the pitting damage formed by the collapse of cavitation bubbles, off-beam tests were performed by using an electric magnetic impact testing machine (MIMTM), which can impose equivalentmore » pressure pulses in mercury. The damage potential was defined based on the relationship between the pitting damage and the time-integrated acoustic vibration induced by impact due to the bubble collapses. Additionally, the damage potential was measured in on-beam tests carried out by using the proton beam at WNR (Weapons Neutron Research) facility in Los Alamos Neutron Science Center (LANSCE). In this paper, the concept of the damage potential, the relationship between the pitting damage formation and the damage potential both in off-beam and on-beam tests is shown.« less
NASA Astrophysics Data System (ADS)
Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.
2013-09-01
Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B 0) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B 0(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P th and the magnetic pressure P B, distributing against the temporal scale and the angle θxB between B 0(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of θxB. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B 0(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T ∥ derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.
NASA Astrophysics Data System (ADS)
Dumlao, Morphy C.; Xiao, Dan; Zhang, Daming; Fletcher, John; Donald, William A.
2017-04-01
Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, 2.5 kVp-p high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for 50 h by common 9 V-battery (PP3).
The fluid-dynamic paradigm of the dust-acoustic soliton
NASA Astrophysics Data System (ADS)
McKenzie, J. F.
2002-06-01
In most studies, the properties of dust-acoustic solitons are derived from the first integral of the Poisson equation, in which the shape of the pseudopotential determines both the conditions in which a soliton may exist and its amplitude. Here this first integral is interpreted as conservation of total momentum, which, along with the Bernoulli-like energy equations for each species, may be cast as the structure equation for the dust (or heavy-ion) speed in the wave. In this fluid-dynamic picture, the significance of the sonic points of each species becomes apparent. In the wave, the heavy-ion (or dust) flow speed is supersonic (relative to its sound speed), whereas the protons and electrons are subsonic (relative to their sound speeds), and the dust flow is driven towards its sonic point. It is this last feature that limits the strength (amplitude) of the wave, since the equilibrium point (the centre of the wave) must be reached before the dust speed becomes sonic. The wave is characterized by a compression in the heavies and a compression (rarefaction) in the electrons and a rarefaction (compression) in the protons if the heavies have positive (negative) charge, and the corresponding potential is a hump (dip). These features are elucidated by an exact analytical soliton, in a special case, which provides the fully nonlinear counterpoint to the weakly nonlinear sech2-type solitons associated with the Korteweg de Vries equation, and indicates the parameter regimes in which solitons may exist.
Role of the Coronal Alfvén Speed in Modulating the Solar-wind Helium Abundance
NASA Astrophysics Data System (ADS)
Wang, Y.-M.
2016-12-01
The helium abundance He/H in the solar wind is relatively constant at ˜0.04 in high-speed streams, but varies in phase with the sunspot number in slow wind, from ˜0.01 at solar minimum to ˜0.04 at maximum. Suggested mechanisms for helium fractionation have included frictional coupling to protons and resonant interactions with high-frequency Alfvénic fluctuations. We compare He/H measurements during 1995-2015 with coronal parameters derived from source-surface extrapolations of photospheric field maps. We find that the near-Earth helium abundance is an increasing function of the magnetic field strength and Alfvén speed v A in the outer corona, while being only weakly correlated with the proton flux density. Throughout the solar cycle, fast wind is associated with short-term increases in v A near the source surface; resonance with Alfvén waves, with v A and the relative speed of α-particles and protons decreasing with increasing heliocentric distance, may then lead to enhanced He/H at 1 au. The modulation of helium in slow wind reflects the tendency for the associated coronal Alfvén speeds to rise steeply from sunspot minimum, when this wind is concentrated around the source-surface neutral line, to sunspot maximum, when the source-surface field attains its peak strengths. The helium abundance near the source surface may represent a balance between collisional decoupling from protons and Alfvén wave acceleration.
MODELING THE GAMMA-RAY EMISSION IN THE GALACTIC CENTER WITH A FADING COSMIC-RAY ACCELERATOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ruo-Yu; Wang, Xiang-Yu; Prosekin, Anton
2016-12-20
Recent HESS observations of the ∼200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic center shows a cutoff at ∼10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single yet fading accelerator. In this model, gamma-rays frommore » the CMZ region are produced by protons injected in the past, while gamma-rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the CMZ region and HESS J1745-290 can be reproduced simultaneously. Meanwhile, we find that the cosmic-ray energy density profile in the CMZ region may also be reproduced in the fading accelerator model when appropriate combinations of the particle injection history and the diffusion coefficient of cosmic rays are adopted.« less
NASA Astrophysics Data System (ADS)
McKenzie, J. F.; Dubinin, E.; Sauer, K.; Doyle, T. B.
2004-08-01
Perturbation reductive procedures, as used to analyse various weakly nonlinear plasma waves (solitons and periodic waves), normally lead to the dynamical system being described by KdV, Burgers' or a nonlinear Schrödinger-type equation, with properties that can be deduced from an array of mathematical techniques. Here we develop a fully nonlinear theory of one-dimensional stationary plasma waves, which elucidates the common nature of various diverse wave phenomena. This is accomplished by adopting an essentially fluid dynamic viewpoint. In this unified treatment the constants of the motion (for mass, momentum and energy) lead naturally to the construction of the wave structure equations. It is shown, for example, that electrostatic, Hall magnetohydrodynamic and ion cyclotron acoustic nonlinear waves all obey first-order differential equations of the same generic type for the longitudinal flow field of the wave. The equilibrium points, which define the soliton amplitude, are given by the compressive and/or rarefactive roots of a total plasma ‘energy’ or ‘momentum’ function characterizing the wave type. This energy function, which is an algebraic combination of the Bernoulli momentum and energy functions for the longitudinal flow field, is the fluid dynamic counterpart of the pseudo-potentials, which are characteristic of system structure equations formulated in other than fluid variables. Another general feature of the structure equation is the phenomenon of choked flow, which occurs when the flow speed becomes sonic. It is this trans-sonic property that limits the soliton amplitudes and defines the critical collective Mach numbers of the waves. These features are also obtained in multi-component plasmas where, for example, in a bi-ion plasma, momentum exchanges between protons and heavier ions are mediated by the Maxwell magnetic stresses. With a suitable generalization of the concept of a sonic point in a bi-ion system and the corresponding choked flow feature, the wave structures, although now more complicated, can also be understood within this overall fluid framework. Particularly useful tools in this context are the momentum hodograph (an algebraic relation between the bi-ion speeds and the electron speed, or magnetic field, which follows from the conservation of mass, momentum and charge-neutrality) and a generalized Bernoulli energy density for each species. Analysis shows that the bi-ion solitons are essentially compressive, but contain the remarkable feature of the presence of a proton rarefactive core. A new type of soliton, called an ‘oscilliton’ because embedded spatial oscillations are superimposed on the classical soliton, is also described and discussed. A necessary condition for the existence of this type of wave is that the linear phase velocity must exhibit an extremum where the phase speed matches the group speed. The remarkable properties of this wave are illustrated for the case of both whistler waves and bi-ion waves where, for the latter, the requisite condition is met near the cross-over frequencies. In the case of the whistler oscilliton, which propagates at speeds in excess of one half of the Alfvén speed (based on the electrons), an analytic solution has been constructed through a phase-portrait integral of the system in which the proton and electron dynamics must be placed on the same footing. The relevance of the different wave structures to diverse space environments is briefly discussed in relation to recently available high-time and spatial resolution data from satellite observations.
Enhancement of wave growth for warm plasmas with a high-energy tail distribution
NASA Technical Reports Server (NTRS)
Thorne, Richard M.; Summers, Danny
1991-01-01
The classical linear theory of electromagnetic wave growth in a warm plasma is considered for waves propagating parallel to a uniform ambient magnetic field. Wave-growth rates are calculated for ion-driven right-hand mode waves for Kappa and Maxwellian particle distribution functions and for various values of the spectral index, the temperature anisotropy, and the ratio of plasma pressure to magnetic pressure appropriate to the solar wind. When the anisotropy is low the wave growth is limited to frequencies below the proton gyrofrequency and the growth rate increases dramatically as the spectral index is reduced. The growth rate for any Kappa distribution greatly exceeds that for a Maxwellian with the same bulk properties. For large thermal anisotropy the growth rate from either distribution is greatly enhanced. The growth rates from a Kappa distribution are generally larger than for a Maxwellian distribution, and significant wave growth occurs over a broader range of frequencies.
Plasma wave interactions with energetic ions near the magnetic equator
NASA Technical Reports Server (NTRS)
Gurnett, D. A.
1975-01-01
An intense band of electromagnetic noise is frequently observed near the magnetic equatorial plane at radial distance from about 2 to 5 Re. Recent wideband wave-form measurements with the IMP-6 and Hawkeye-1 satellites have shown that the equatorial noise consists of a complex superposition of many harmonically spaced lines. Several distinctly different frequency spacings are often evident in the same spectrum. The frequency spacing typically ranges from a few Hz to a few tens of Hz. It is suggested that these waves are interacting with energetic protons, alpha particles, and other heavy ions trapped near the magnetic equator. The possible role these waves play in controlling the distribution of the energetic ions is considered.
OGO 5 observations of Pc 5 waves - Particle flux modulations
NASA Technical Reports Server (NTRS)
Kokubun, S.; Kivelson, M. G.; Mcpherron, R. L.; Russell, C. T.; West, H. I., Jr.
1977-01-01
An investigation is conducted concerning the modulations of particle fluxes associated with Pc 5 waves in the region beyond the plasmapause. A study of thermal flux modulations indicates that some of the density enhancements observed are not spatial structures but are spurious features caused by temporal flux variations associated with hydromagnetic waves. A resonance model of the energetic particle flux modulations is discussed. Energetic particle modulations are also considered. The reported observations reveal that modulations are dominant at energies of about 100 keV for electrons and at 100 keV to 1 MeV for protons. This may indicate that the bounce resonance interaction is not important for Pc 5 waves.
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)
2002-01-01
A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.
Design study of a radio-frequency quadrupole for high-intensity beams
NASA Astrophysics Data System (ADS)
Bahng, Jungbae; Kim, Eun-San; Choi, Bong-Hyuk
2017-07-01
The Rare isotope Accelerator Of Newness (RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project (RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to 200-MeV/u-uranium with continuous wave (CW) power of 400 kW to support research in various scientific fields. Its system consists of an ECR ion source, LEBTs with 10 keV/u, CW RFQ accelerator with 81.25 MHz and 500 keV/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator (QWR) section with 81.25 MHz and a Half Wave Resonator (HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton, deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 keV/u to 1.5 MeV/u and currents in the mA range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D+ RFQ design. The D+ RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed. Supported by Korea University Future Research Grant
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Initial results from the new developed model of the interacting ring current ions and ion cyclotron waves are presented. The model described by the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another one gives wave evolution. Such system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. Calculating ion-wave relationships, on a global scale under non steady-state conditions during May 2-5, 1998 storm, we presented the data at three time cuts around initial, main, and late recovery phases of May 4, 1998 storm phase. The structure and dynamics of the ring current proton precipitating flux regions and the wave active ones are discussed in detail.
Proton scattering by short lived sulfur isotopes
NASA Astrophysics Data System (ADS)
Maréchal, F.; Suomijärvi, T.; Blumenfeld, Y.; Azhari, A.; Bauge, E.; Bazin, D.; Brown, J. A.; Cottle, P. D.; Delaroche, J. P.; Fauerbach, M.; Girod, M.; Glasmacher, T.; Hirzebruch, S. E.; Jewell, J. K.; Kelley, J. H.; Kemper, K. W.; Mantica, P. F.; Morrissey, D. J.; Riley, L. A.; Scarpaci, J. A.; Scheit, H.; Steiner, M.
1999-09-01
Elastic and inelastic proton scattering has been measured in inverse kinematics on the unstable nucleus 40S. A phenomenological distorted wave Born approximation analysis yields a quadrupole deformation parameter β2=0.35+/-0.05 for the 2+1 state. Consistent phenomenological and microscopic proton scattering analyses have been applied to all even-even sulfur isotopes from A=32 to A=40. The second analysis used microscopic collective model densities and a modified Jeukenne-Lejeune-Mahaux nucleon-nucleon effective interaction. This microscopic analysis suggests the presence of a neutron skin in the heavy sulfur isotopes. The analysis is consistent with normalization values for λv and λw of 0.95 for both the real and imaginary parts of the Jeukenne-Lejeune-Mahaux potential.
FLARE VERSUS SHOCK ACCELERATION OF HIGH-ENERGY PROTONS IN SOLAR ENERGETIC PARTICLE EVENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cliver, E. W.
2016-12-01
Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that eventsmore » omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 10{sup 5}) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ∼2 × 10{sup 3}, similar to those of comparably sized well-connected (W20–W90) SEP events.« less
Flare vs. Shock Acceleration of High-energy Protons in Solar Energetic Particle Events
NASA Astrophysics Data System (ADS)
Cliver, E. W.
2016-12-01
Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 105) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ˜2 × 103, similar to those of comparably sized well-connected (W20-W90) SEP events.
NASA Astrophysics Data System (ADS)
Mor, Ilan; Vartsky, David; Dangendorf, Volker; Tittelmeier, Kai.; Weierganz, Mathias; Goldberg, Mark Benjamin; Bar, Doron; Brandis, Michal
2018-06-01
We describe an analysis procedure for automatic unambiguous detection of fast-neutron-induced recoil proton tracks in a micro-capillary array filled with organic liquid scintillator. The detector is viewed by an intensified CCD camera. This imaging neutron detector possesses the capability to perform high position-resolution (few tens of μm), energy-dispersive transmission-imaging using ns-pulsed beams. However, when operated with CW or DC beams, it also features medium-quality spectroscopic capabilities for incident neutrons in the energy range 2-20 MeV. In addition to the recoil proton events which display a continuous extended track structure, the raw images exhibit complex ion-tracks from nuclear interactions of fast-neutrons in the scintillator, capillaries quartz-matrix and CCD. Moreover, as expected, one also observes a multitude of isolated scintillation spots of varying intensity (henceforth denoted "blobs") that originate from several different sources, such as: fragmented proton tracks, gamma-rays, heavy-ion reactions as well as events and noise that occur in the image-intensifier and CCD. In order to identify the continuous-track recoil proton events and distinguish them from all these background events, a rapid, computerized and automatic track-recognition-procedure was developed. Based on an appropriately weighted analysis of track parameters such as: length, width, area and overall light intensity, the method is capable of distinguishing a single continuous-track recoil proton from typically surrounding several thousands of background events that are found in each CCD frame.
NASA Astrophysics Data System (ADS)
Paganetti, Harald
2017-01-01
Cancer therapy is a multi-modality approach including surgery, systemic or targeted chemotherapy, radiation (external beam or radionuclide), and immunotherapy. Radiation is typically administered using external beam photon therapy. Proton therapy has been around for more than 60 years but was restricted to research laboratories until the 1990s. Since then clinical proton therapy has been growing rapidly with currently more than 50 facilities worldwide. The interest in proton therapy stems from the physical properties of protons allowing for advanced dose sculpting around the target and sparing of healthy tissue. This review first evaluates the basics of proton therapy physics and technology and then outlines some of the current physical, biological, and clinical challenges. Solving these will ultimately determine whether proton therapy will continue on its path to becoming mainstream.
Felicíssimo, V C; Guimarães, F F; Cesar, A; Gel'mukhanov, F; Agren, H
2006-11-30
The theory of IR-X-ray pump-probe spectroscopy beyond the Born-Oppenheimer approximation is developed and applied to the study of the dynamics of intramolecular proton transfer in glyoxalmonoxime leading to the formation of the tautomer 2-nitrosoethenol. Due to the IR pump pulses the molecule gains sufficient energy to promote a proton to a weakly bound well. A femtosecond X-ray pulse snapshots the wave packet route and, hence, the dynamics of the proton transfer. The glyoxalmonoxime molecule contains two chemically nonequivalent oxygen atoms that possess distinct roles in the hydrogen bond, a hydrogen donor and an acceptor. Core ionizations of these form two intersecting core-ionized states, the vibronic coupling between which along the OH stretching mode partially delocalizes the core hole, resulting in a hopping of the core hole from one site to another. This, in turn, affects the dynamics of the proton transfer in the core-ionized state. The quantum dynamical simulations of X-ray photoelectron spectra of glyoxalmonoxime driven by strong IR pulses demonstrate the general applicability of the technique for studies of intramolecular proton transfer in systems with vibronic coupling.
A New Global Multi-fluid MHD Model of the Solar Corona
NASA Astrophysics Data System (ADS)
van der Holst, B.; Chandran, B. D. G.; Alterman, B. L.; Kasper, J. C.; Toth, G.
2017-12-01
We present a multi-fluid generalization of the AWSoM model, a global magnetohydrodynamic (MHD) solar corona model with low-frequency Alfven wave turbulence (van der Holst et al., 2014). This new extended model includes electron and multi-ion temperatures and velocities (protons and alpha particles). The coronal heating and acceleration is addressed via outward propagating low-frequency Alfven waves that are partially reflected by Alfven speed gradients. The nonlinear interaction of these counter-propagating waves results in turbulent energy cascade. To apportion the wave dissipation to the electron and ion temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating as described by Chandran et al. (2011, 2013). This heat partitioning results in a more than mass proportional heating among ions.
A study of the coherence length of ULF waves in the earth's foreshock
NASA Technical Reports Server (NTRS)
Le, G.; Russell, C. T.
1990-01-01
High-time-resolution magnetic-field data for different separations of ISEE 1 and 2 in the earth's ion foreshock region are examined to study the coherence length of upstream ULF waves. Examining the correlation coefficients of the low-frequency waves as a function of separation distance shows that the correlation coefficient depends mainly on the separation distance of ISEE 1 and 2 transverse to the solar-wind flow. It drops to about 0.5 when the transverse separation is about 1 earth radius, a distance much larger than the proton thermal gyroradius in the solar wind. Thus the coherence length of the low-frequency waves is about one earth radius, which is of the order of the wavelength, and is consistent with that estimated from the bandwidth of the waves.
Correlating Type II and III Radio Bursts with Solar Energetic Particle Events
NASA Astrophysics Data System (ADS)
Ledbetter, K.; Winter, L. M.; Quinn, R. A.
2013-12-01
Solar energetic particles (SEPs) are high-energy particles, such as protons, which are accelerated at the Sun and speed outward into the solar system. If they reach Earth, they can be harmful to satellites, ionospheric communications, and humans in space or on polar airline routes. NOAA defines an SEP event as an occasion when the flux of protons with energies higher than 10 MeV exceeds 10 pfu (particle flux units) as measured by the GOES satellites in geosynchronous orbit. The most intense SEP events are associated with shocks, driven by coronal mass ejections (CMEs), which accelerate particles as they move through the corona. However, very few CMEs result in SEP events. To determine what factors are most important in distinguishing the shock waves that will result in SEP acceleration toward Earth, we take into account several variables and perform a principal component analysis (PCA) to examine their correlations. First, we examine Type II radio bursts, which are caused by electrons accelerating in the same CME-driven shocks that can accelerate SEPs. Using data from the WAVES instrument on the WIND satellite, these Type II radio bursts, as well as the Type III bursts that often accompany them, can be characterized by slope in 1/f space and by intensity. In addition, local Langmuir waves detected by WIND, which are caused by electrons speeding through the plasma surrounding the satellite, can be an indicator of the magnetic connectivity between the active region and Earth. Finally, X-ray flares directly preceding the Type II burst are also taken into consideration in the PCA analysis. The accompanying figure illustrates an example of the WAVES solar radio bursts along with the GOES solar proton flux >= 10 MeV during the SEP event on April 11, 2013. Using PCA to determine which of these factors are most relevant to the onset, intensity, and duration of SEP events will be valuable in future work to predict such events. In total, we present the analysis of all type II radio bursts observed by WIND between January 2010 and May 2013. Future work will include the STEREO/SWAVES data with a focus on creating an operating real-time SEP forecaster relying on radio, X-ray, and proton flux observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loznikov, V. M., E-mail: loznikov@yandex.ru; Erokhin, N. S.; Zol’nikova, N. N.
A three-component phenomenological model describing the specific features of the spectrum of cosmic-ray protons and helium nuclei in the rigidity range of 30–2×10{sup 5} GV is proposed. The first component corresponds to the constant background; the second, to the variable “soft” (30–500 GV) heliospheric source; and the third, to the variable “hard” (0.5–200 TV) source located inside a local bubble. The existence and variability of both sources are provided by the corresponding “surfatron accelerators,” whose operation requires the presence of an extended region with an almost uniform (in both magnitude and direction) magnetic field, orthogonally (or obliquely) to which electromagneticmore » waves propagate. The maximum energy to which cosmic rays can be accelerated is determined by the source size. The soft source with a size of ∼100 AU is located at the periphery of the heliosphere, behind the front of the solar wind shock wave. The hard source with a size of >0.1 pc is located near the boundary of an interstellar cloud at a distance of ∼0.01 pc from the Sun. The presence of a kink in the rigidity spectra of p and He near 230 GV is related to the variability of the physical conditions in the acceleration region and depends on the relation between the amplitudes and power-law exponents in the dependences of the background, soft heliospheric source, and hard near galactic source. The ultrarelativistic acceleration of p and He by an electromagnetic wave propagating in space plasma across the external magnetic field is numerically analyzed. Conditions for particle trapping by the wave and the dynamics of the particle velocity and momentum components are considered. The calculations show that, in contrast to electrons and positrons (e{sup +}), the trapped protons relatively rapidly escape from the effective potential well and cease to accelerate. Due to this effect, the p and He spectra are softer than that of e{sup +}. The possibility that the spectra of accelerated protons deviate from standard power-law dependences due to the surfatron mechanism is discussed.« less
Measurements of VLF polarization and wave normal direction on OGO-F
NASA Technical Reports Server (NTRS)
Helliwell, R. A.
1973-01-01
A major achievement of the F-24 experiment on OGO 6 was a verification of the theory of the polarization of proton whistlers. As predicted, the electron whistler was found to be right-hand polarized and the proton whistler left hand polarized. The transition from right- to left-hand polarization was found to occur very rapidly. Thus it appears that the experimental technique may allow great accuracy in the measurement of the cross-over frequency, a frequency that provides information on the ionic composition of the ionosphere.
3 parton production at DIS at small x
NASA Astrophysics Data System (ADS)
Hentschinski, Martin
2018-01-01
We use the spinor helicity formalism to calculate the cross section for production of three partons of a given polarization in Deep Inelastic Scattering (DIS) off proton and nucleus targets at small Bjorken x. The target proton or nucleus is treated as a classical color field (shock wave) from which the produced partons scatter multiple times. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus as well as to study energy loss in DIS reactions.
Nonperturbative parton distributions and the proton spin problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonov, Yu. A., E-mail: simonov@itep.ru
2016-05-15
The Lorentz contracted form of the static wave functions is used to calculate the valence parton distributions for mesons and baryons, boosting the rest frame solutions of the path integral Hamiltonian. It is argued that nonperturbative parton densities are due to excitedmultigluon baryon states. A simplemodel is proposed for these states ensuring realistic behavior of valence and sea quarks and gluon parton densities at Q{sup 2} = 10 (GeV/c){sup 2}. Applying the same model to the proton spin problem one obtains Σ{sub 3} = 0.18 for the same Q{sup 2}.
Two-proton transfer reactions on even Ni and Zn isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucenna, A.; Kraus, L.; Linck, I.
New levels strongly excited by 112-MeV {sup 12}C ions on even Ni and Zn isotopes are {ital J}{sup {pi}} assigned on kinematical and geometrical arguments, crude shell-model calculations, and distorted-wave Born approximation angular-distribution analysis. These tentative assignments are supported by the Bansal-French model. Because of the contribution of additional collective effects, the two-proton transfer reaction spectra are less selectively fed than those obtained with the analogous two-neutron transfer reactions induced on the same targets in a similar energy range.
Lower-Hybrid-Drift Wave Turbulence in the Distant Magnetotail
1978-05-01
kV ɘ with =• Y ~~ <» (Krall and Liewer, 1971). In this situation a Doppler shifted ,1; lower hybrid wave (u), - kV, . = ± u...satellite includes the relevant Doppler shifts since, in general, proton bulk flows are not directed parallel to the local magnetic field vector...theory of Section II predicts a relatively narrow frequency spectrum, the dominance of the Doppler shifting term k • Vp in Eq.(23)acts to
Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications.
Hickling, Susannah; Xiang, Liangzhong; Jones, Kevin C; Parodi, Katia; Assmann, Walter; Avery, Stephen; Hobson, Maritza; El Naqa, Issam
2018-04-21
Acoustic waves are induced via the thermoacoustic effect in objects exposed to a pulsed beam of ionizing radiation. This phenomenon has interesting potential applications in both radiotherapy dosimetry and treatment guidance as well as low dose radiological imaging. After initial work in the field in the 1980s and early 1990s, little research was done until 2013 when interest was rejuvenated, spurred on by technological advances in ultrasound transducers and the increasing complexity of radiotherapy delivery systems. Since then, many studies have been conducted and published applying ionizing radiation-induced acoustic principles into three primary research areas: Linear accelerator photon beam dosimetry, proton therapy range verification, and radiological imaging. This review article introduces the theoretical background behind ionizing radiation-induced acoustic waves, summarizes recent advances in the field, and provides an outlook on how the detection of ionizing radiation-induced acoustic waves can be used for relative and in vivo dosimetry in photon therapy, localization of the Bragg peak in proton therapy, and as a low-dose medical imaging modality. Future prospects and challenges for clinical implementation of these techniques are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W. L.; Qiao, B., E-mail: bqiao@pku.edu.cn; Huang, T. W.
2016-07-15
Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulsesmore » at intensity I{sub 0} = 3 × 10{sup 20 }W/cm{sup 2} and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.« less
NASA Astrophysics Data System (ADS)
McLeod, Roger David; McLeod, David Matthew
2012-02-01
This shows how Hooke's law, for electron, proton and neutron, 2D and 3D, strings, builds electromagnetic string-waves, extending, and pleasing, Schr"odinger. These are composed of spirally linked, parallel, north-pole oriented, neutrino and antineutrino strings, stable by magnetic repulsions. Their Dumbo Proton is antineutrino-scissor cut, and compressed in the vicinity of a neutron star, where electrostatic marriage occurs with a neutrino-scissor cut, and compressed, electron, so a Mickey Neutron emerges. Strings predict: electron charge is - 1/3 e, Dumbo P is 25 % longer than Mickey N, and Hooke says relaxing springs fuel three, separate, non-eternal, inflations, after Big Bangs. Gravity is strings, longitudinally linked. Einstein says Herman Grid's black diagonals prove human vision reads its information from algebraically-signed electromagnetic field distributions, (diffraction) patterns, easily known by ray-tracing, not requiring difficult Spatial Fourier Transformation. High-schoolers understand its application to Wave Mechanics, agreeing that positive-numbered probabilities do not enter, to possibly displease God. Detected stick-figure forms of constellations: like Phoenix, Leo, Canis Major, and especially Orion, fool some observers into false beliefs in things like UFHumanoids, or Kokopelli, Pele and Pamola!
Manifestation of α clustering in 10Be via α -knockout reaction
NASA Astrophysics Data System (ADS)
Lyu, Mengjiao; Yoshida, Kazuki; Kanada-En'yo, Yoshiko; Ogata, Kazuyuki
2018-04-01
Background: Proton-induced α -knockout reactions may allow direct experimental observation of α clustering in nuclei. This is obtained by relating the theoretical descriptions of clustering states to the experimental reaction observables. It is desired to introduce microscopic structure models into the theoretical frameworks for α -knockout reactions. Purpose: Our goal is to probe the α clustering in the 10Be nucleus by proton-induced α -knockout reaction observables. Method: We adopt an extended version of the Tohsaki-Horiuchi-Schuck-Röpke wave function of 10Be and integrate it with the distorted-wave impulse approximation framework for the calculation of (p ,p α ) -knockout reactions. Results: We make the first calculation for the 10Be(p ,p α )6He reaction at 250 MeV by implementing a microscopic α -cluster wave function, and we predict the triple-differential cross section (TDX). Furthermore, by constructing artificial states of the target nucleus 10Be with compact or dilute spatial distributions, the TDX is found to be highly sensitive to the extent of clustering in the target nuclei. Conclusions: These results provide reliable manifestation of α clustering in 10Be.
Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun
2017-01-24
Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.
Initial conditions in high-energy collisions
NASA Astrophysics Data System (ADS)
Petreska, Elena
This thesis is focused on the initial stages of high-energy collisions in the saturation regime. We start by extending the McLerran-Venugopalan distribution of color sources in the initial wave-function of nuclei in heavy-ion collisions. We derive a fourth-order operator in the action and discuss its relevance for the description of color charge distributions in protons in high-energy experiments. We calculate the dipole scattering amplitude in proton-proton collisions with the quartic action and find an agreement with experimental data. We also obtain a modification to the fluctuation parameter of the negative binomial distribution of particle multiplicities in proton-proton experiments. The result implies an advancement of the fourth-order action towards Gaussian when the energy is increased. Finally, we calculate perturbatively the expectation value of the magnetic Wilson loop operator in the first moments of heavy-ion collisions. For the magnetic flux we obtain a first non-trivial term that is proportional to the square of the area of the loop. The result is close to numerical calculations for small area loops.
Electronic state and optical response in a hydrogen-bonded molecular conductor
NASA Astrophysics Data System (ADS)
Naka, Makoto; Ishihara, Sumio
2018-06-01
Motivated by recent experimental studies of hydrogen-bonded molecular conductors κ -X 3(Cat-EDT-TTF) 2[X =H , D], interplays of protons and correlated electrons, and their effects on magnetic, dielectric, and optical properties, are studied theoretically. We introduce a model Hamiltonian for κ -X 3(Cat-EDT-TTF) 2, in which molecular dimers are connected by hydrogen bonds. Ground-state phase diagram and optical conductivity spectra are examined by using the mean-field approximation and the exact diagonalization method in finite-size cluster. Three types of the competing electronic and protonic phases, charge density wave phase, polar charge-ordered phase, and antiferromagnetic dimer-Mott insulating phase are found. Observed softening of the interdimer excitation due to the electron-proton coupling implies reduction of the effective electron-electron repulsion, i.e., "Hubbard U ," due to the quantum proton motion. Contrastingly, the intradimer charge excitation is hardened due to the proton-electron coupling. Implications of the theoretical calculations to the recent experimental results in κ -X 3(Cat-EDT-TTF) 2 are discussed.
Lower Hybrid Oscillations in Multicomponent Space Plasmas Subjected to Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.; Moore, T. E.; Liemohn, M. W.; Horwitz, J. L.
1997-01-01
It is found that in multicomponent plasmas subjected to Alfven or fast magnetosonic waves, such as are observed in regions of the outer plasmasphere and ring current-plasmapause overlap, lower hybrid oscillations are generated. The addition of a minor heavy ion component to a proton-electron plasma significantly lowers the low-frequency electric wave amplitude needed for lower hybrid wave excitation. It is found that the lower hybrid wave energy density level is determined by the nonlinear process of induced scattering by ions and electrons; hydrogen ions in the region of resonant velocities are accelerated; and nonresonant particles are weakly heated due to the induced scattering. For a given example, the light resonant ions have an energy gain factor of 20, leading to the development of a high-energy tail in the H(+) distribution function due to low-frequency waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paolone, M.; Malace, S. P.; Strauch, S.
2010-08-12
Proton recoil polarization was measured in the quasielastic 4He(e(pol),e{prime}p(pol)){sup 3}H reaction at Q{sup 2}=0.8 and 1.3(GeV/c){sup 2} with unprecedented precision. The polarization-transfer coefficients are found to differ from those of the {sup 1}H(e(pol),e{prime}p(pol)) reaction, contradicting a relativistic distorted-wave approximation and favoring either the inclusion of medium-modified proton form factors predicted by the quark-meson coupling model or a spin-dependent charge-exchange final-state interaction. For the first time, the polarization-transfer ratio is studied as a function of the virtuality of the proton.
Two-proton radioactivity with 2p halo in light mass nuclei A = 18-34
NASA Astrophysics Data System (ADS)
Saxena, G.; Kumawat, M.; Kaushik, M.; Jain, S. K.; Aggarwal, Mamta
2017-12-01
Two-proton radioactivity with 2p halo is reported theoretically in light mass nuclei A = 18- 34. We predict 19Mg, 22Si, 26S, 30Ar and 34Ca as promising candidates of ground state 2p-radioactivity with S2p < 0 and Sp > 0. Observation of extended tail of spatial charge density distribution, larger charge radius and study of proton single particle states, Fermi energy and the wave functions indicate 2p halo like structure which supports direct 2p emission. The Coulomb and centrifugal barriers in experimentally identified 2p unbound 22Si show a quasi-bound state that ensures enough life time for such experimental probes. Our predictions are in good accord with experimental and other theoretical data available so far.
Exclusive quasi-free proton knockout from oxygen isotopes at intermediate energies
NASA Astrophysics Data System (ADS)
Kawase, Shoichiro; Uesaka, Tomohiro; Tang, Tsz Leung; Beaumel, Didier; Dozono, Masanori; Fukunaga, Taku; Fujii, Toshihiko; Fukuda, Naoki; Galindo-Uribarri, Alfredo; Hwang, Sanghoon; Inabe, Naoto; Kawabata, Takahiro; Kawahara, Tomomi; Kim, Wooyoung; Kisamori, Keiichi; Kobayashi, Motoki; Kubo, Toshiyuki; Kubota, Yuki; Kusaka, Kensuke; Lee, Cheongsoo; Maeda, Yukie; Matsubara, Hiroaki; Michimasa, Shin'ichiro; Miya, Hiroyuki; Noro, Tetsuo; Nozawa, Yuki; Obertelli, Alexandre; Ogata, Kazuyuki; Ota, Shinsuke; Padilla-Rodal, Elizabeth; Sakaguchi, Satoshi; Sakai, Hideyuki; Sasano, Masaki; Shimoura, Susumu; Stepanyan, Samvel; Suzuki, Hiroshi; Suzuki, Tomokazu; Takaki, Motonobu; Takeda, Hiroyuki; Tamii, Atsushi; Tokieda, Hiroshi; Wakasa, Tomotsugu; Wakui, Takashi; Yako, Kentaro; Yasuda, Jumpei; Yanagisawa, Yoshiyuki; Yokoyama, Rin; Yoshida, Kazuki; Yoshida, Koichi; Zenihiro, Juzo
2018-02-01
The dependence of the single-particle strength on the difference between proton and neutron separation energies is studied for oxygen isotopes in a wide range of isospins. The cross sections of the quasi-free (p,2p) reaction on ^{14,16,18,22,24}O were measured at intermediate energies. The measured cross sections are compared to predictions based on the distorted wave impulse approximation and shell-model psd valence-space spectroscopic factors. The reduction factors, which are the ratio of the experimental cross sections to the theoretical predictions, show no apparent dependence on the proton-neutron separation energy difference. The result is compatible with the result of the (e,e^'p) reaction on stable targets and with the predictions of recent ab initio calculations.
Localized aurora beyond the auroral oval
NASA Astrophysics Data System (ADS)
Frey, Harald U.
2007-03-01
Aurora is the result of the interaction between precipitating energetic electrons and protons with the upper atmosphere. Viewed from space, it generally occurs in continuous and diffuse ovals of light around the geomagnetic poles. Additionally, there are localized regions of aurora that are unrelated to the ovals and exhibit different morphological, spatial, and temporal properties. Some of these localized aurorae are detached from the oval poleward or equatorward of it. Others are located within the oval and are brighter than the surrounding diffuse aurora. Many of them occur only during preferred solar wind conditions and orientations of the interplanetary magnetic field. This review describes the different localized aurorae and their particle sources in the plasma sheet, at the plasmapause, or at the magnetopause. Their origin is still not completely understood, and the study of aurorae can teach a great deal about their underlying physical processes of reconnection, electrostatic acceleration, or wave-particle interactions.
Design of the new couplers for C-ADS RFQ
NASA Astrophysics Data System (ADS)
Shi, Ai-Min; Sun, Lie-Peng; Zhang, Zhou-Li; Xu, Xian-Bo; Shi, Long-Bo; Li, Chen-Xing; Wang, Wen-Bin
2015-04-01
A new special coupler with a kind of bowl-shaped ceramic window for a proton linear accelerator named the Chinese Accelerator Driven System (C-ADS) at the Institute of Modern Physics (IMP) has been simulated and constructed and a continuous wave (CW) beam commissioning through a four-meter long radio frequency quadruple (RFQ) was completed by the end of July 2014. In the experiments of conditioning and beam, some problems were promoted gradually such as sparking and thermal issues. Finally, two new couplers were passed with almost 110 kW CW power and 120 kW pulsed mode, respectively. The 10 mA intensity beam experiments have now been completed, and the couplers during the operation had no thermal or electro-magnetic problems. The detailed design and results are presented in the paper. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03020500)
FIRE HOSE INSTABILITY DRIVEN BY ALPHA PARTICLE TEMPERATURE ANISOTROPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matteini, L.; Schwartz, S. J.; Hellinger, P.
We investigate properties of a solar wind-like plasma, including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, can also be triggered when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion speciesmore » have sufficient parallel anisotropies, both of them can drive the instability, and we observe the generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in the direction of the drift associated with the unstable species. The generated waves scatter particles and reduce their temperature anisotropy to a marginally stable state, and, moreover, they significantly reduce the relative drift between the two ion populations. The coexistence of modes excited by both species leads to saturation of the plasma in distinct regions of the beta/anisotropy parameter space for protons and alpha particles, in good agreement with in situ solar wind observations. Our results confirm that fire hose instabilities are likely at work in the solar wind and limit the anisotropy of different ion species in the plasma.« less
ROLE OF THE CORONAL ALFVÉN SPEED IN MODULATING THE SOLAR-WIND HELIUM ABUNDANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil
The helium abundance He/H in the solar wind is relatively constant at ∼0.04 in high-speed streams, but varies in phase with the sunspot number in slow wind, from ∼0.01 at solar minimum to ∼0.04 at maximum. Suggested mechanisms for helium fractionation have included frictional coupling to protons and resonant interactions with high-frequency Alfvénic fluctuations. We compare He/H measurements during 1995–2015 with coronal parameters derived from source-surface extrapolations of photospheric field maps. We find that the near-Earth helium abundance is an increasing function of the magnetic field strength and Alfvén speed v {sub A} in the outer corona, while being onlymore » weakly correlated with the proton flux density. Throughout the solar cycle, fast wind is associated with short-term increases in v {sub A} near the source surface; resonance with Alfvén waves, with v {sub A} and the relative speed of α -particles and protons decreasing with increasing heliocentric distance, may then lead to enhanced He/H at 1 au. The modulation of helium in slow wind reflects the tendency for the associated coronal Alfvén speeds to rise steeply from sunspot minimum, when this wind is concentrated around the source-surface neutral line, to sunspot maximum, when the source-surface field attains its peak strengths. The helium abundance near the source surface may represent a balance between collisional decoupling from protons and Alfvén wave acceleration.« less
An unambiguous determination of the propagation of a compressional Pc 5 wave
NASA Technical Reports Server (NTRS)
Lin, N.; Mcpherron, R. L.; Kivelson, M. G.; Williams, D. J.
1988-01-01
A compressional Pc5 event observed by the ISEE-1 magnetometer and Medium Energetic Particle Experiment instrument on August 21 and 22, 1978, is examined. The propagation properties of the compressional waves were determined using a technique which utilizes the finite Larmor radius effects in the signature of the multichannel energetic ion detector. It is shown that this technique determines unambiguously the propagation characteristics of the wave in both the azimuthal and the radial directions in the plane perpendicular to the background magnetic field; the results remained valid even though heavy energetic ions with Larmor radii larger than proton Larmor radii were present in the plasma.
An unambiguous determination of the propagation of a compressional Pc 5 wave
NASA Astrophysics Data System (ADS)
Lin, N.; McPherron, R. L.; Kivelson, M. G.; Williams, D. J.
1988-06-01
A compressional Pc5 event observed by the ISEE-1 magnetometer and Medium Energetic Particle Experiment instrument on August 21 and 22, 1978, is examined. The propagation properties of the compressional waves were determined using a technique which utilizes the finite Larmor radius effects in the signature of the multichannel energetic ion detector. It is shown that this technique determines unambiguously the propagation characteristics of the wave in both the azimuthal and the radial directions in the plane perpendicular to the background magnetic field; the results remained valid even though heavy energetic ions with Larmor radii larger than proton Larmor radii were present in the plasma.
Electromagnetic ion cyclotron waves observed in the plasma depletion layer
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.; Murr, D.
1991-01-01
Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.
Proton Therapy for Head and Neck Cancer.
Kim, Joseph K; Leeman, Jonathan E; Riaz, Nadeem; McBride, Sean; Tsai, Chiaojung Jillian; Lee, Nancy Y
2018-05-09
The application of proton beam radiation therapy in the treatment of head and neck cancer has grown tremendously in the past few years. Globally, widespread interest in proton beam therapy has led to multiple research efforts regarding its therapeutic value and cost-effectiveness. The current standard of care using modern photon radiation technology has demonstrated excellent treatment outcomes, yet there are some situations where disease control remains suboptimal with the potential for detrimental acute and chronic toxicities. Due to the advantageous physical properties of the proton beam, proton beam therapy may be superior to photon therapy in some patient subsets for both disease control and patient quality of life. As enthusiasm and excitement for proton beam therapy continue to increase, clinical research and widespread adoption will elucidate the true value of proton beam therapy and give a greater understanding of the full risks and benefits of proton therapy in head and neck cancer.
Design and prototyping of HL-LHC double quarter wave crab cavities for SPS test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdu-Andres, S.; Skaritka, J.; Wu, Q.
2015-05-03
The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.
1990-02-14
gamma rays, the interplanetary propagation of the particles to Earth, the access of these particles to the magnetosphere and the changes initiatcd in...geomagnetic disturbances on the availability and quality of !ong range, short wave radio communication is perhaps the best known of the solar effects. With...1987. (14) "Low Energy Protons at the Equator," presented by M. A. Miah at the Chapman Conference on Plasma Waves and Instabilities in Magnetospheres
NASA Technical Reports Server (NTRS)
Brinca, Armando L.; Tsurutani, Bruce T.
1988-01-01
Cometary heavy ions can resonantly excite hydromagnetic wave activity with spacecraft frequency spectra strongly deviating from the ion cyclotron frequency. The influence of the newborn particle temperature on this effect is assessed, its relevance to the interpretation of the observations is discussed, and an alternative, more efficient mechanism to generate spacecraft frequencies of the order of the proton cyclotron frequency is suggested.
NASA Astrophysics Data System (ADS)
Drukker, Karen; Hammes-Schiffer, Sharon
1997-07-01
This paper presents an analytical derivation of a multiconfigurational self-consistent-field (MC-SCF) solution of the time-independent Schrödinger equation for nuclear motion (i.e. vibrational modes). This variational MC-SCF method is designed for the mixed quantum/classical molecular dynamics simulation of multiple proton transfer reactions, where the transferring protons are treated quantum mechanically while the remaining degrees of freedom are treated classically. This paper presents a proof that the Hellmann-Feynman forces on the classical degrees of freedom are identical to the exact forces (i.e. the Pulay corrections vanish) when this MC-SCF method is used with an appropriate choice of basis functions. This new MC-SCF method is applied to multiple proton transfer in a protonated chain of three hydrogen-bonded water molecules. The ground state and the first three excited state energies and the ground state forces agree well with full configuration interaction calculations. Sample trajectories are obtained using adiabatic molecular dynamics methods, and nonadiabatic effects are found to be insignificant for these sample trajectories. The accuracy of the excited states will enable this MC-SCF method to be used in conjunction with nonadiabatic molecular dynamics methods. This application differs from previous work in that it is a real-time quantum dynamical nonequilibrium simulation of multiple proton transfer in a chain of water molecules.
Combined few-body and mean-field model for nuclei
NASA Astrophysics Data System (ADS)
Hove, D.; Garrido, E.; Sarriguren, P.; Fedorov, D. V.; Fynbo, H. O. U.; Jensen, A. S.; Zinner, N. T.
2018-07-01
The challenging nuclear many-body problem is discussed along with classifications and qualitative descriptions of existing methods and models. We present detailed derivations of a new method where cluster correlations co-exist with an underlying mean-field described core structure. The variation of an antisymmetrized product of cluster and core wave functions and a given nuclear interaction, provide sets of self-consistent equations of motion. First we test the technique on the neutron dripline nucleus 26O, considered as 24O surrounded by two neutrons. We choose Skyrme effective interactions between all pairs of nucleons. To ensure correct asymptotic behavior we modify the valence neutron–neutron interaction to fit the experimental scattering length in vacuum. This is an example of necessary considerations both of effective interactions between in-medium and free pairs, and renormalizations due to restrictions in allowed Hilbert space. Second, we investigate the heavier neutron dripline nucleus 72Ca, described as 70Ca plus two neutrons. We continuously vary the strength of the Skyrme interaction to fine tune the approach to the dripline. Halo structure in the s-wave is observed followed by the tendency to form Efimov states. Occurrence of Efimov states are prevented by the exceedingly unfavorable system of two light and one heavy particle. Specifically the neutron–neutron scattering length is comparable to the spatial extension of a possible Efimov state, and scaling would place the next of the states outside our galaxy. Our third application is on the proton dripline nucleus 70Kr, described as 68Se plus two protons, which is a prominent waiting point for the astrophysical rapid proton-process. We calculate radiative capture rates and discuss the capture mechanism as being either direct, sequential, virtual sequential or an energy dependent mixture of them. We do not find any 1‑ resonance and therefore no significant E1 transition. This is consistent with the long waiting time, since both E2 and background transitions are very slow. After the applications on dripline nuclei we discuss perspectives with improvements and applications. In the conclusion we summarize while emphasizing the merits of consistently treating both short- and large-distance properties, few- and many-body correlations, ordinary nuclear structure, and concepts of halos and Efimov states.
Comparison of forward and backward pp pair knockout in 3He(e,e'pp)n
NASA Astrophysics Data System (ADS)
Baghdasaryan, H.; Weinstein, L. B.; Laget, J. M.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anghinolfi, M.; Ball, J.; Battaglieri, M.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Sanctis, E.; De Vita, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Hafidi, K.; Hicks, K.; Hyde, C. E.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jo, H. S.; Joo, K.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kvaltine, N. D.; Lu, H. Y.; MacGregor, I. J. D.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Paolone, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pisano, S.; Pozdniakov, S.; Procureur, S.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Saini, M. S.; Saylor, N. A.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Smith, E. S.; Sober, D. I.; Sokan, D.; Stepanyan, S. S.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Tang, W.; Tkachenko, S.; Voskanyan, H.; Voutier, E.; Wood, M. H.; Zana, L.; Zhao, B.
2012-06-01
Measuring nucleon-nucleon short range correlations (SRCs) has been a goal of the nuclear physics community for many years. They are an important part of the nuclear wave function, accounting for almost all of the high-momentum strength. They are closely related to the EMC effect. While their overall probability has been measured, measuring their momentum distributions is more difficult. In order to determine the best configuration for studying SRC momentum distributions, we measured the 3He(e,e'pp)n reaction, looking at events with high-momentum protons (pp>0.35 GeV/c) and a low-momentum neutron (pn<0.2 GeV/c). We examined two angular configurations: either both protons emitted forward or one proton emitted forward and one backward (with respect to the momentum transfer, q⃗). The measured relative momentum distribution of the events with one forward and one backward proton was much closer to the calculated initial-state pp relative momentum distribution, indicating that this is the preferred configuration for measuring SRC.
NASA Technical Reports Server (NTRS)
Ghosh, Sanjoy; Goldstein, Melvyn L.
2011-01-01
Recent analysis of the magnetic correlation function of solar wind fluctuations at 1 AU suggests the existence of two-component structure near the proton-cyclotron scale. Here we use two-and-one-half dimensional and three-dimensional compressible MHD models to look for two-component structure adjacent the proton-cyclotron scale. Our MHD system incorporates both Hall and Finite Larmor Radius (FLR) terms. We find that strong spectral anisotropies appear adjacent the proton-cyclotron scales depending on selections of initial condition and plasma beta. These anisotropies are enhancements on top of related anisotropies that appear in standard MHD turbulence in the presence of a mean magnetic field and are suggestive of one turbulence component along the inertial scales and another component adjacent the dissipative scales. We compute the relative strengths of linear and nonlinear accelerations on the velocity and magnetic fields to gauge the relative influence of terms that drive the system with wave-like (linear) versus turbulent (nonlinear) dynamics.
Polar Plasma Wave Investigation Data Analysis in the Extended Mission
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.; Menietti, J. D.
2003-01-01
The low latitude boundary layer (LLBL) is a region where solar wind momentum and energy is transferred to the magnetosphere. Enhanced "broadband" electric plasma waves from less than 5 Hz to l0(exp 5) Hz and magnetic waves from less than 5 Hz to the electron cyclotron frequency are characteristic of the LLBL. Analyses of Polar plasma waves show that these "broadband" waves are actually discrete electrostatic and electromagnetic modes as well as solitary bipolar pulses (electron holes). It is noted that all wave modes can be generated by approx. 100 eV to approx. 10 keV auroral electrons and protons. We will review wave-particle interactions, with focus on cross- diffusion rates and the contributions of such interactions toward the formation of the boundary layer. In summary, we will present a scenario where the global solar wind-magnetosphere interaction is responsible for the auroral zone particle beams, and hence for the generation of plasma waves and the formation of the boundary layer. It is speculated that all planetary magnetospheres will have boundary layers and they will be characterized by similar currents and plasma wave modes.
Polar Plasma Wave Investigation Data Analysis in the Extended Mission
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.
2004-01-01
The low latitude boundary layer (LLBL) is a region where solar wind momentum and energy is transferred to the magnetosphere. Enhanced "broadband" electric plasma waves from less than 5 Hz to 10(exp 5) Hz and magnetic waves from less than 5 Hz to the electron cyclotron frequency are characteristic of the LLBL. Analyses of Polar plasma waves show that these "broadband" waves are actually discrete electrostatic and electromagnetic modes as well as solitary bipolar pulses (electron holes). It is noted that all wave modes can be generated by approx. 100 eV to approx. 10 keV auroral electrons and protons. We will review wave-particle interactions, with focus on cross-diffusion rates and the contributions of such interactions toward the formation of the boundary layer. In summary, we will present a scenario where the global solar wind-magnetosphere interaction is responsible for the auroral zone particle beams, and hence for the generation of plasma waves and the formation of the boundary layer. It is speculated that all planetary magnetospheres will have boundary layers and they will be characterized by similar currents and plasma wave modes.
Hydrogen blistering under extreme radiation conditions
NASA Astrophysics Data System (ADS)
Sznajder, Maciej; Geppert, Ulrich; Dudek, Miroslaw
2018-01-01
Metallic surfaces, exposed to a proton flux, start to degradate by molecular hydrogen blisters. These are created by recombination of protons with metal electrons. Continued irradiation progresses blistering, which is undesired for many technical applications. In this work, the effect of the proton flux magnitude onto the degradation of native metal oxide layers and its consequences for blister formation has been examined. To study this phenomenon, we performed proton irradiation experiments of aluminium surfaces. The proton kinetic energy was chosen so that all recombined hydrogen is trapped within the metal structure. As a result, we discovered that intense proton irradiation increases the permeability of aluminium oxide layers for hydrogen atoms, thereby counteracting blister formation. These findings may improve the understanding of the hydrogen blistering process, are valid for all metals kept under terrestrial ambient conditions, and important for the design of proton irradiation tests.
Smith, Parker J; Goeltz, John C
2017-12-07
The 1,2-diol moiety in a variety of substituted catechols allows formation of room temperature ionic melts in a 2:1 ratio with choline chloride or choline dihydrogen citrate. These deep eutectic solvents were 4.3-6.6 M in redox active catechols. Substituents on 3- and 4-substituted catechols shift both E° and pK a such that Hammett parameters predict the observed E p for oxidation in square wave voltammetry. The proton acceptor for the proton-coupled oxidation shifts the observed E p more strongly than the substituents within the substituents and acceptors reported here. The shift is predicted well by the pK a of the conjugate acid of the proton acceptor, i.e., water in aqueous solutions or chloride or dihydrogen citrate in the DESs in this study. Together, the substituent and the proton acceptor allow gross and fine-tuning of the oxidation potential for catechol over 750 mV, the first demonstration of control of the thermodynamics of proton-coupled electron transfer in deep eutectic solvents. Changing the substituents on the HBD affords fine control in tens of millivolts, while changing the base strength of the anion of the organic salt affords gross control across hundreds of millivolts.
Dieterle, M.; Werthmüller, D.; Abt, S.; ...
2018-06-21
Background: Photoproduction of mesons off quasi-free nucleons bound in the deuteron allows to study the elec- tromagnetic excitation spectrum of the neutron and the isospin structure of the excitation of nucleon resonances. The database for such reactions is much more sparse than for free proton targets. Purpose: Study experimentally single π0 photoproduction off quasi-free nucleons from the deuteron. Investigate nuclear effects by a comparison of the results for free protons and quasi-free protons. Use the quasi-free neutron data (corrected for nuclear effects) to test the predictions of reaction models and partial wave analysis (PWA) for γn → nπ 0 derivedmore » from the analysis of the other isospin channels. Methods: High statistics angular distributions and total cross sections for the photoproduction of π 0 mesons off the deuteron with coincident detection of recoil nucleons have been measured for the first time. The experiment was performed at the tagged photon beam of the Mainz Microtron (MAMI) accelerator for photon energies between 0.45 GeV and 1.4 GeV, using an almost 4π electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. A complete kinematic reconstruction of the final state removed the effects of Fermi motion. Results: Significant effects from final state interactions (FSI) were observed for participant protons in comparison to free proton targets (between 30% and almost 40%). The data in coincidence with recoil neutrons were corrected for such effects under the assumption that they are identical for participant protons and neutrons. Reaction model predictions and PWA for γn → nπ 0, based on fits to data for the other isospin channels, disagreed between themselves and no model provided a good description of the new data. Conclusions: The results demonstrate clearly the importance of a measurement of the fully neutral final state for the isospin decomposition of the cross section. Model refits, for example from the Bonn-Gatchina analysis, show that the new and the previous data for the other three isospin channels can be simultaneously described when the contributions of several partial waves are modified. Finally, the results are also relevant for the suppression of the higher resonance bumps in total photoabsorption on nuclei, which are not well understood.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieterle, M.; Werthmüller, D.; Abt, S.
Background: Photoproduction of mesons off quasi-free nucleons bound in the deuteron allows to study the elec- tromagnetic excitation spectrum of the neutron and the isospin structure of the excitation of nucleon resonances. The database for such reactions is much more sparse than for free proton targets. Purpose: Study experimentally single π0 photoproduction off quasi-free nucleons from the deuteron. Investigate nuclear effects by a comparison of the results for free protons and quasi-free protons. Use the quasi-free neutron data (corrected for nuclear effects) to test the predictions of reaction models and partial wave analysis (PWA) for γn → nπ 0 derivedmore » from the analysis of the other isospin channels. Methods: High statistics angular distributions and total cross sections for the photoproduction of π 0 mesons off the deuteron with coincident detection of recoil nucleons have been measured for the first time. The experiment was performed at the tagged photon beam of the Mainz Microtron (MAMI) accelerator for photon energies between 0.45 GeV and 1.4 GeV, using an almost 4π electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. A complete kinematic reconstruction of the final state removed the effects of Fermi motion. Results: Significant effects from final state interactions (FSI) were observed for participant protons in comparison to free proton targets (between 30% and almost 40%). The data in coincidence with recoil neutrons were corrected for such effects under the assumption that they are identical for participant protons and neutrons. Reaction model predictions and PWA for γn → nπ 0, based on fits to data for the other isospin channels, disagreed between themselves and no model provided a good description of the new data. Conclusions: The results demonstrate clearly the importance of a measurement of the fully neutral final state for the isospin decomposition of the cross section. Model refits, for example from the Bonn-Gatchina analysis, show that the new and the previous data for the other three isospin channels can be simultaneously described when the contributions of several partial waves are modified. Finally, the results are also relevant for the suppression of the higher resonance bumps in total photoabsorption on nuclei, which are not well understood.« less
NASA Astrophysics Data System (ADS)
Darafsheh, Arash; Zhang, Rongxiao; Kassaee, Alireza; Finlay, Jarod C.
2018-03-01
Visible light generated as the result of interaction of ionizing radiation with matter can be used for radiation therapy quality assurance. In this work, we characterized the visible light observed during proton irradiation of poly(methyl methacrylate) (PMMA) and silica glass fiber materials by performing luminescence spectroscopy. The spectra of the luminescence signal from PMMA and silica glass fibers during proton irradiation showed continuous spectra whose shape were different from that expected from Čerenkov radiation, indicating that Čerenkov radiation cannot be the responsible radioluminescence signal. The luminescence signal from each material showed a Bragg peak pattern and their corresponding proton ranges are in agreement with measurements performed by a standard ion chamber. The spectrum of the silica showed two peaks at 460 and 650 nm stem from the point defects of the silica: oxygen deficiency centers (ODC) and non-bridging oxygen hole centers (NBOHC), respectively. The spectrum of the PMMA fiber showed a continuous spectrum with a peak at 410 nm whose origin is connected with the fluorescence of the PMMA material. Our results are of interest for various applications based on imaging radioluminescent signal in proton therapy and will inform on the design of high-resolution fiber probes for proton therapy dosimetry.
NASA Astrophysics Data System (ADS)
Hoppock, I. W.; Chandran, B. D. G.
2017-12-01
The dissipation of turbulence is a prime candidate to explain the heating of collisionless plasmas like the solar wind. We consider the heating of protons and alpha particles using test particle simulations with a broad spectrum of randomly phased kinetic Alfvén waves (KAWs). Previous research extensively simulated and analytically considered stochastic heating at low plasma beta for conditions similar to coronal holes and the near-sun solar wind. We verify the analytical models of proton and alpha particle heating rates, and extend these simulations to plasmas with beta of order unity like in the solar wind at 1 au. Furthermore, we consider cases with very large beta of order 100, relevant to other astrophysical plasmas. We explore the parameter dependency of the critical KAW amplitude that breaks the gyro-center approximation and leads to stochastic gyro-orbits of the particles. Our results suggest that stochastic heating by KAW turbulence is an efficient heating mechanisms for moderate to high beta plasmas.
NASA Astrophysics Data System (ADS)
Borissov, A. B.
2013-04-01
Development of the acoustic method of particle detection is presented from the very beginning until current experiments and perspectives. In 1976, Askaryan and Dolgoshein suggested acoustic detection of ultra high energy neutrino in ocean by using an acoustic signal generated according to thermoacoustic mechanism. Practical realization of such project is going on now in several experiments. In 1983, De Rujula, Glashow, Wilson, Charpak presented a possibility to use neutrino beam produced by a multi-TeV proton synchrotron for purposes of geological research. Dedicated studies were started in the group of Dolgoshein. Results of Monte Carlo simulations and measurement of such acoustic signals on the test beams of 70 GeV proton accelerator are reported. A new possibility to forecast the earthquakes using the measurement of the velocity of longitudinal sound waves in the region of earthquake by means of usage of neutrino beam as an underground source of acoustic waves is discussed.
Amplitude tests of direct channel resonances: The dibaryon
NASA Astrophysics Data System (ADS)
Goldstein, G. R.; Moravosik, M. J.; Arash, F.
1985-02-01
A recently formulated polarization amplitude test for the existence of one-particle-exchange mechanisms is modified to deal with direct-channel resonances. The results are applied to proton-proton elastic scattering at and around 800 MeV to test the suggested existence of a dibaryon resonance. This test is sensitive to somewhat different circumstances and parameters than the methods used in the past to find dibaryon resonances. The evidence, on the basis of the SAID data set, is negative for a resonance in any singlet partial wave, but is tantalizingly subliminal for a 3F3 resonance.
Amplitude tests of direct channel resonances: the dibaryon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, G.R.; Moravcsik, M.J.; Arash, F.
A recently formulated polarization amplitude test for the existence of one-particle-exchange mechanisms is modified to deal with direct-channel resonances. The results are applied to proton-proton elastic scattering at and around 800 MeV to test the suggested existence of a dibaryon resonance. This test is sensitive to somewhat different circumstances and parameters than the methods used in the past to find dibaryon resonances. The evidence, on the basis of the SAID data set, is negative for a resonance in any singlet partial wave, but is tantalizingly subliminal for a /sup 3/F/sub 3/ resonance. 7 refs., 4 figs.
Nonthermal turbulent heating in the solar envelope.
NASA Technical Reports Server (NTRS)
Papadopoulos, K.
1973-01-01
It is shown that MHD pulses, in the form of fast magnetosonic waves or solitons, can produce a strong electron-ion coupling capable of maintaining electron-proton temperature equilibrium in the solar envelope. The mechanism producing the nonthermal heating is the fluid-like modified two-stream instability, which, since it is essentially independent of the electron-proton temperature ratio and the value of beta, becomes a prime candidate for the anomalous collisions required by the fluid models inside a distance less than 30 solar radii, in order to explain the dominant features of the solar-wind flow.
Accelerated ions and self-excited Alfvén waves at the Earth's bow shock
NASA Astrophysics Data System (ADS)
Berezhko, E. G.; Taneev, S. N.; Trattner, K. J.
2011-07-01
The diffuse energetic ion event and related Alfvén waves upstream of the Earth's bow shock, measured by AMPTE/IRM satellite on 29 September 1984, 06:42-07:22 UT, was studied using a self-consistent quasi-linear theory of ion diffusive shock acceleration and associated Alfvén wave generation. The wave energy density satisfies a wave kinetic equation, and the ion distribution function satisfies the diffusive transport equation. These coupled equations are solved numerically, and calculated ion and wave spectra are compared with observations. It is shown that calculated steady state ion and Alfvén wave spectra are established during the time period of about 1000 s. Alfvén waves excited by accelerated ions are confined within the frequency range (10-2 to 1) Hz, and their spectral peak with the wave amplitude δB ≈ B comparable to the interplanetary magnetic field value B corresponds to the frequency 2 × 10-2 Hz. The high-frequency part of the wave spectrum undergoes absorption by thermal protons. It is shown that the observed ion spectra and the associated Alfvén wave spectra are consistent with the theoretical prediction.
Whistler and Alfvén Mode Cyclotron Masers in Space
NASA Astrophysics Data System (ADS)
Trakhtengerts, V. Y.; Rycroft, M. J.
2012-10-01
Preface; 1. Introduction; 2. Basic theory of cyclotron masers (CMs); 3. Linear theory of the cyclotron instability (CI); 4. Backward wave oscillator (BWO) regime in CMs; 5. Nonlinear cyclotron wave-particle interactions for a quasi-monochromatic wave; 6. Nonlinear interaction of quasi-monochromatic whistler mode waves with gyroresonant electrons in an in homogeneous plasma; 7. Wavelet amplification in an inhomogeneous plasma; 8. Quasi-linear theory of cyclotron masers; 9. Nonstationary generation regimes, and modulation effects; 10. ELF/VLF noise-like emissions and electrons in the Earth's radiation belts; 11. Generation of discrete ELF/VLF whistler mode emissions; 12. Cyclotron instability of the proton radiation belts; 13. Cyclotron masers elsewhere in the solar system and in laboratory plasma devices; Epilogue; Glossary of terms; List of acronyms; References; Index.
Nonlinear Waves in the Terrestrial Quasiparallel Foreshock.
Hnat, B; Kolotkov, D Y; O'Connell, D; Nakariakov, V M; Rowlands, G
2016-12-02
We provide strongly conclusive evidence that the cubic nonlinearity plays an important part in the evolution of the large amplitude magnetic structures in the terrestrial foreshock. Large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency are identified after nonharmonic slow variations are filtered out by applying the empirical mode decomposition. Numerical solutions of the derivative nonlinear Schrödinger equation, predicted analytically by the use of a pseudopotential approach, are found to be consistent with the observed wave forms. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfvén speed. We suggest that the feedback of the large amplitude fluctuations on background plasma is reflected in the evolution of the pseudopotential.
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
NASA Technical Reports Server (NTRS)
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Neutron-proton scattering at next-to-next-to-leading order in Nuclear Lattice Effective Field Theory
Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; ...
2017-05-08
Here, we present a systematic study of neutron-proton scattering in Nuclear Lattice Effective Field Theory (NLEFT), in terms of the computationally efficient radial Hamiltonian method. Our leading-order (LO) interaction consists of smeared, local contact terms and static one-pion exchange. We show results for a fully non-perturbative analysis up to next-to-next-to-leading order (NNLO), followed by a perturbative treatment of contributions beyond LO. The latter analysis anticipates practical Monte Carlo simulations of heavier nuclei. We explore how our results depend on the lattice spacing a, and estimate sources of uncertainty in the determination of the low-energy constants of the next-to-leading-order (NLO) two-nucleonmore » force. We give results for lattice spacings ranging from a = 1.97 fm down to a = 0.98 fm, and discuss the effects of lattice artifacts on the scattering observables. At a = 0.98 fm, lattice artifacts appear small, and our NNLO results agree well with the Nijmegen partial-wave analysis for S-wave and P-wave channels. We expect the peripheral partial waves to be equally well described once the lattice momenta in the pion-nucleon coupling are taken to coincide with the continuum dispersion relation, and higher-order (N 3LO) contributions are included. Finally, we stress that for center-of-mass momenta below 100 MeV, the physics of the two-nucleon system is independent of the lattice spacing.« less
Two-component Superfluid Hydrodynamics of Neutron Star Cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobyakov, D. N.; Pethick, C. J., E-mail: dmitry.kobyakov@appl.sci-nnov.ru, E-mail: pethick@nbi.dk
2017-02-20
We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that themore » nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.« less
A Self-Consistent Model of the Interacting Ring Current Ions with Electromagnetic ICWs
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of ring current ions and ion cyclotron waves in a quasilinear approach. These two equations were solved on a global scale under non steady-state conditions during the May 2-5, 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the wave active zones at three time cuts around initial, main, and late recovery phases of the May 4, 1998 storm phase are presented and discussed in detail. Comparisons of the model wave-ion data with the Polar/HYDRA and Polar/MFE instruments results are presented..
NASA Technical Reports Server (NTRS)
Brinca, Armando L.; Tsurutani, Bruce T.
1989-01-01
The effect of multiple (singly ionized) coexisting newborn ion species on the stability of low-frequency electromagnetic waves was investigated using a plasma model in which solar wind magnetoplasma is made up of isotropic Maxwellian electron and proton populations with a common number density of 4.95/cu cm and temperatures equal to 17.2 eV and 6.9 eV, respectively. It is shown that the effect of multiple ions on wave growth, for given background magnetoplasma conditions and relative densities, depends not only on their mass but also on the physical nature of the wave modes. If the ion masses are disparate, each one of the coexisting ion beams tends to stimulate instabilities without undue influence from the other species. If the masses of newborn ions are similar, they can strongly catalyze wave growth of fluidlike nonresonant modes, but bring about weak growth enhancements in cyclotron resonant instabilities.
PIC simulation of a thermal anisotropy-driven Weibel instability in a circular rarefaction wave
NASA Astrophysics Data System (ADS)
Dieckmann, M. E.; Sarri, G.; Murphy, G. C.; Bret, A.; Romagnani, L.; Kourakis, I.; Borghesi, M.; Ynnerman, A.; O'C Drury, L.
2012-02-01
The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.
NASA Astrophysics Data System (ADS)
McLeod, David Matthew
2011-11-01
McLeods' NEF11#22 submission is from their same-title INVITED presentation at Frontiers in Optics 2011, San Jose, CA. It shows how Hooke's law for electron, proton and neutron strings build electromagnetic waves from strings. These are composed of spirally linked, parallel, north-pole oriented, neutrino and antineutrino strings, stable because of magnetic repulsions. Their Dumbo Proton is antineutrino-scissor cut, and compressed in the vicinity of a neutron star, where electrostatic marriage occurs with a neutrino-scissor cut, and compressed, electron, so a Mickey Neutron emerges. Strings then predict electron charge is -- 1/3 e, Dumbo P is 25 % longer than Mickey N, and Hooke says relaxing springs fuel three separate inflations after each Big Bang oscillation. Gravity can be strings longitudinally linked. Einstein says Herman Grid's black diagonals prove human vision reads its information from algebraically-signed electromagnetic field diffraction patterns known by ray-tracing, not difficult Spatial Fourier Transformation. High-schoolers understand its application to Wave Mechanics, and agree that positive-numbered probabilities do not enter to possibly displease God. Stick figure constellations detected, like Phoenix, Leo, Canis Major, and especially Orion, fool some observers into false beliefs in things like UFHumanoids, or Kokopelli, Pele and Pamola!
NASA Astrophysics Data System (ADS)
Tsurutani, B. T.; Hajra, R.; Tanimori, T.; Takada, A.; Bhanu, R.; Mannucci, A. J.; Lakhina, G. S.; Kozyra, J. U.; Shiokawa, K.; Lee, L. C.; Echer, E.; Reddy, R. V.; Gonzalez, W. D.
2016-10-01
A new scenario is presented for the cause of magnetospheric relativistic electron decreases (REDs) and potential effects in the atmosphere and on climate. High-density solar wind heliospheric plasmasheet (HPS) events impinge onto the magnetosphere, compressing it along with remnant noon-sector outer-zone magnetospheric 10-100 keV protons. The betatron accelerated protons generate coherent electromagnetic ion cyclotron (EMIC) waves through a temperature anisotropy (T⊥/T|| > 1) instability. The waves in turn interact with relativistic electrons and cause the rapid loss of these particles to a small region of the atmosphere. A peak total energy deposition of 3 × 1020 ergs is derived for the precipitating electrons. Maximum energy deposition and creation of electron-ion pairs at 30-50 km and at < 30 km altitude are quantified. We focus the readers' attention on the relevance of this present work to two climate change mechanisms. Wilcox et al. (1973) noted a correlation between solar wind heliospheric current sheet (HCS) crossings and high atmospheric vorticity centers at 300 mb altitude. Tinsley et al. has constructed a global circuit model which depends on particle precipitation into the atmosphere. Other possible scenarios potentially affecting weather/climate change are also discussed.
Time Exceedances for High Intensity Solar Proton Fluxes
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adam, James H., Jr.; Dietrich, William F.
2011-01-01
A model is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.
Periods of High Intensity Solar Proton Flux
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adams, James H.; Dietrich, William F.
2012-01-01
Analysis is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.
Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura
2015-01-13
Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.
ULF waves at comets Halley and Giacobini-Zinner - Comparison with simulations
NASA Astrophysics Data System (ADS)
Le, G.; Russell, C. T.; Gary, S. P.; Smith, E. J.; Riedler, W.; Schwingenschuh, K.
1989-09-01
A comparison is made between observations and numerical simulations of magnetic fluctuations near the proton and water group ion cyclotron frequencies as a function of distance from the comets Halley and Giacobini-Zinner. The amplitude of waves due to different cyclotron resonant instabilities is monitored by examining the amplitude of waves near the gyrofrequency of the respective ions, measured in by the ICE spacecraft. The results are compared with a one-dimensional electromagnetic hybrid simulation of two-ion pickup based on the predictions of Gary et al. (1989). The observations are consistent with the prediction that amplitudes are dependent on the properties of the injected beams and the local injection rate.
Ambiguities in model-independent partial-wave analysis
NASA Astrophysics Data System (ADS)
Krinner, F.; Greenwald, D.; Ryabchikov, D.; Grube, B.; Paul, S.
2018-06-01
Partial-wave analysis is an important tool for analyzing large data sets in hadronic decays of light and heavy mesons. It commonly relies on the isobar model, which assumes multihadron final states originate from successive two-body decays of well-known undisturbed intermediate states. Recently, analyses of heavy-meson decays and diffractively produced states have attempted to overcome the strong model dependences of the isobar model. These analyses have overlooked that model-independent, or freed-isobar, partial-wave analysis can introduce mathematical ambiguities in results. We show how these ambiguities arise and present general techniques for identifying their presence and for correcting for them. We demonstrate these techniques with specific examples in both heavy-meson decay and pion-proton scattering.
Acceleration of low-energy protons and alpha particles at interplanetary shock waves
NASA Technical Reports Server (NTRS)
Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.
1983-01-01
The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.
NASA Astrophysics Data System (ADS)
Wang, Hang; Tang, Chenxiao; Zhuang, Xupin; Cheng, Bowen; Wang, Wei; Kang, Weimin; Li, Hongjun
2017-10-01
The primary goal of this study is to develop a high-performanced proton exchange membrane with the characteristics of through-membrane and continuous solution blown nanofibers as proton-conducting channels. The curled sulfonated phenolphthalein poly (ether sulfone) and poly (vinylidene fluoride) nanofibers were separately fabricated through the solution blowing process which is a new nanofiber fabricating method with high productivity, then they were fabricated into a sandwich-structured mat. Then this sandwich-structured mat was hot-pressed to form the designed structure using different melting temperatures of the two polymers by melting and making poly (vinylidene fluoride) flow into the phenolphthalein poly (ether sulfone) nanofiber mat. The characteristics of the composite membrane, such as morphology and performance of the membrane, were investigated. The characterization results proved the successful preparation of the membrane structure. Performance results showed that the novel structured membrane with through-membrane nanofibers significantly improved water swelling and methanol permeability, though its conductivity is lower than that of Nafion, the cell performance showed comparable results. Therefore, the novel structure design can be considered as a promising method for preparing of proton exchange membranes.
NASA Astrophysics Data System (ADS)
Li, W.
2017-12-01
In the collisionless heliospheric plasmas, wave-particle interaction is a fundamental physical process in transferring energy and momentum between particles with different species and energies. This presentation focuses on one of the important wave-particle interaction processes: interaction between whistler-mode waves and electrons. Whistler-mode waves have frequencies between proton and electron cyclotron frequency and are ubiquitously present in the heliospheric plasmas including solar wind and planetary magnetospheres. I use Earth's Van Allen radiation belt as "local space laboratory" to discuss the role of whistler-mode waves in energetic electron dynamics using multi-satellite observations, theory and modeling. I further discuss solar wind drivers leading to energetic electron dynamics in the Earth's radiation belts, which is critical in predicting space weather that has broad impacts on our technological systems and society. At last, I discuss the unprecedented future opportunities of exploring space science using multi-satellite observations and state-of-the-art theory and modeling.
Electromagnetic Ion Cyclotron Waves Detected by Kaguya and Geotail in the Earth's Magnetotail
NASA Astrophysics Data System (ADS)
Nakagawa, Tomoko; Nishino, Masaki N.; Tsunakawa, Hideo; Takahashi, Futoshi; Shibuya, Hidetoshi; Shimizu, Hisayoshi; Matsushima, Masaki; Saito, Yoshifumi
2018-02-01
Narrowband electromagnetic ion cyclotron waves first discovered by the Apollo 15 and 16 Lunar Surface Magnetometers were surveyed in the magnetic field data obtained by the Kaguya satellite at an altitude of ˜100 km above the Moon in the tail lobe and plasma sheet boundary layer of the Earth's magnetosphere. The frequencies of the waves were typically 0.7 times the local proton cyclotron frequency, and 75% of the waves were left hand polarized with respect to the background magnetic field. They had a significant compressional component and comprised several discrete packets. They were detected on the dayside, nightside, and above the terminator of the Moon, irrespective of the lunar magnetic anomaly, or the magnetic connection to the lunar surface. The waves with the same characteristics were detected by Geotail in the absence of the Moon in the magnetotail. The most likely energy source of the electromagnetic ion cyclotron waves is the ring beam ions in the plasma sheet boundary layer.
NASA Technical Reports Server (NTRS)
Takahashi, K.; Mcentire, R. W.; Zanetti, L. J.; Lopez, R. E.; Kistler, L. M.
1987-01-01
This paper presents a detailed analysis of a compressional Pc 5 wave observed in the postmidnight sector on July 21, 1986, using data from the magnetometer, the charge-energy-mass spectrometer, and the medium-energy particle analyzer aboard the AMPTE/Charge Composition Explorer (CCE) spacecraft. The Pc 5 wave exhibited harmonically related transverse and compressional magnetic oscillations, modulation of the flux of medium energy protons, and a large azimuthal wave number, i.e., properties that are similar to those of compressional Pc5 waves observed previously at geostationary orbit. The unique observations recorded by the AMPTE/CCE included the occurrence of the wave in the postmidnight sector, its sunward propagation with respect to the spacecraft, and the left-handed polarization of the perturbed magnetic field. In spite of the morphological uniqueness observed, the excitation of the July 21 event is considered to be due to the same type of instability as operates at geostationary orbit.
An eastward propagating compressional Pc 5 wave observed by AMPTE/CCE in the postmidnight sector
NASA Astrophysics Data System (ADS)
Takahashi, K.; Lopez, R. E.; McEntire, R. W.; Zanetti, L. J.; Kistler, L. M.; Ipavich, F. M.
1987-12-01
This paper presents a detailed analysis of a compressional Pc 5 wave observed in the postmidnight sector on July 21, 1986, using data from the magnetometer, the charge-energy-mass spectrometer, and the medium-energy particle analyzer aboard the AMPTE/Charge Composition Explorer (CCE) spacecraft. The Pc 5 wave exhibited harmonically related transverse and compressional magnetic oscillations, modulation of the flux of medium energy protons, and a large azimuthal wave number, i.e., properties that are similar to those of compressional Pc5 waves observed previously at geostationary orbit. The unique observations recorded by the AMPTE/CCE included the occurrence of the wave in the postmidnight sector, its sunward propagation with respect to the spacecraft, and the left-handed polarization of the perturbed magnetic field. In spite of the morphological uniqueness observed, the excitation of the July 21 event is considered to be due to the same type of instability as operates at geostationary orbit.
Peregrine rogue waves induced by the interaction between a continuous wave and a soliton.
Yang, Guangye; Li, Lu; Jia, Suotang
2012-04-01
Based on the soliton solution on a continuous wave background for an integrable Hirota equation, the reduction mechanism and the characteristics of the Peregrine rogue wave in the propagation of femtosecond pulses of optical fiber are discussed. The results show that there exist two processes of the formation of the Peregrine rogue wave: one is the localized process of the continuous wave background, and the other is the reduction process of the periodization of the bright soliton. The characteristics of the Peregrine rogue wave are exhibited by strong temporal and spatial localization. Also, various initial excitations of the Peregrine rogue wave are performed and the results show that the Peregrine rogue wave can be excited by a small localized (single peak) perturbation pulse of the continuous wave background, even for the nonintegrable case. The numerical simulations show that the Peregrine rogue wave is unstable. Finally, through a realistic example, the influence of the self-frequency shift to the dynamics of the Peregrine rogue wave is discussed. The results show that in the absence of the self-frequency shift, the Peregrine rogue wave can split into several subpulses; however, when the self-frequency shift is considered, the Peregrine rogue wave no longer splits and exhibits mainly a peak changing and an increasing evolution property of the field amplitude.
COMPARATIVE DISINFECTION EFFICIENCY OF PULSED AND CONTINUOUS-WAVE UV IRRADIATION TECHNOLOGIES
Pulsed UV (PUV) is novel UV irradiation system that is a non-mercury lamp based alternative to currently used continuous-wave systems for water disinfection. To compare the polychromatic PUV irradiation disinfection efficiency with that from continuous wave monochromatic low-pre...
Pondermotive acceleration of charged particles along the relativistic jets of an accreting blackhole
NASA Astrophysics Data System (ADS)
Ebisuzaki, T.; Tajima, T.
2014-05-01
Accreting blackholes such as miniquasars and active galactic nuclei can contribute to the highest energy components of intra- (˜1015 eV) galactic and extra-galactic components (˜1020 eV) of cosmic rays. Alfven wave pulses which are excited in the accretion disk around blackholes propagate in relativistic jets. Because of their highly non-linear nature of the waves, charged particles (protons, ions, and electrons) can be accelerated to high energies in relativistic jets in accreting blackhole systems, the central engine of miniquasars and active galactic nuclei.
NASA Astrophysics Data System (ADS)
Vafin, S.; Schlickeiser, R.; Yoon, P. H.
2016-05-01
The general electromagnetic fluctuation theory for magnetized plasmas is used to calculate the steady-state wave number spectra and total electromagnetic field strength of low-frequency collective weakly damped eigenmodes with parallel wavevectors in a Maxwellian electron-proton plasma. These result from the equilibrium of spontaneous emission and collisionless damping, and they represent the minimum electromagnetic fluctuations guaranteed in quiet thermal space plasmas, including the interstellar and interplanetary medium. Depending on the plasma beta, the ratio of |δB |/B0 can be as high as 10-12 .
Evidence for confinement of low-energy cosmic rays ahead of interplanetary shock waves.
NASA Technical Reports Server (NTRS)
Palmeira, R. A. R.; Allum, F. R.
1973-01-01
Short-lived (about 15 min), low-energy proton increases associated with the passage of interplanetary shock waves have been previously reported. In the present paper, we have examined in a fine time scale (about 1 min) the concurrent particle and magnetic field data, taken by detectors on Explorer 34, for four of these events. Our results further support the view that these impulsive events are due to confinement of the solar cosmic-ray particles in the region just ahead (about 1,000,000 km) of the advancing shock front.
Gyrokinetic stability of electron-positron-ion plasmas
NASA Astrophysics Data System (ADS)
Mishchenko, A.; Zocco, A.; Helander, P.; Könies, A.
2018-02-01
The gyrokinetic stability of electron-positron plasmas contaminated by an ion (proton) admixture is studied in a slab geometry. The appropriate dispersion relation is derived and solved. Stable K-modes, the universal instability, the ion-temperature-gradient-driven instability, the electron-temperature-gradient-driven instability and the shear Alfvén wave are considered. It is found that the contaminated plasma remains stable if the contamination degree is below some threshold and that the shear Alfvén wave can be present in a contaminated plasma in cases where it is absent without ion contamination.
The Uncertainty Principle, Virtual Particles and Real Forces
ERIC Educational Resources Information Center
Jones, Goronwy Tudor
2002-01-01
This article provides a simple practical introduction to wave-particle duality, including the energy-time version of the Heisenberg Uncertainty Principle. It has been successful in leading students to an intuitive appreciation of "virtual particles" and the role they play in describing the way ordinary particles, like electrons and protons, exert…
Single-event Effect Report for EPC Series eGaN FETs: Proton Testing for SEE and TNID Effects
NASA Technical Reports Server (NTRS)
Scheick, Leif
2014-01-01
Previous testing of the Enhanced Power Conversion (EPC) eGaN FETs showed sensitivity to destructive single-event effects (SEE) effects to heavy ions. The presence of tungsten plugs in the gate area raises concerns that the device may be vulnerable to SEE from protons. Irradiation of biased and unbiased devices with heavy ion has results in some damage suspected of being due to total non-ionizing dose (TNID). Proton irradiation is a better radiation type to study this effect. This study presents the results of testing device with protons for SEE and TNID. No SEE in the EPC2012 device, the most sensitive device to SEE, were seen with 53 MeV protons at several angles. The devices continued to function after 1.5 Mrad (Si) of proton dose with only a slight shift in parameters. These results suggest that gross TNID will not be a factor in using these devices nor suffer from SEE due to protons. However, the device should be tested at with 500 MeV protons to guarantee to immunity proton SEE.
Continuous ECS-indicated recording of the proton-motive charge flux in leaves.
Klughammer, Christof; Siebke, Katharina; Schreiber, Ulrich
2013-11-01
Technical features and examples of application of a special emitter-detector module for highly sensitive measurements of the electrochromic pigment absorbance shift (ECS) via dual-wavelength (550-520 nm) transmittance changes (P515) are described. This device, which has been introduced as an accessory of the standard, commercially available Dual-PAM-100 measuring system, not only allows steady-state assessment of the proton motive force (pmf) and its partitioning into ΔpH and ΔΨ components, but also continuous recording of the overall charge flux driven by photosynthetic light reactions. The new approach employs a double-modulation technique to derive a continuous signal from the light/dark modulation amplitude of the P515 signal. This new, continuously measured signal primarily reflects the rate of proton efflux via the ATP synthase, which under quasi-stationary conditions corresponds to the overall rate of proton influx driven by coupled electron transport. Simultaneous measurements of charge flux and CO2 uptake as a function of light intensity indicated a close to linear relationship in the light-limited range. A linear relationship between these two signals was also found for different internal CO2 concentrations, except for very low CO2, where the rate of charge flux distinctly exceeded the rate of CO2 uptake. Parallel oscillations in CO2 uptake and charge flux were induced by high CO2 and O2. The new device may contribute to the elucidation of complex regulatory mechanisms in intact leaves.
EMIC wave events during the four QARBM challenge intervals
NASA Astrophysics Data System (ADS)
Engebretson, M. J.; Posch, J. L.; Braun, D.; Li, W.; Angelopoulos, V.; Kellerman, A. C.; Kletzing, C.; Lessard, M.; Mann, I. R.; Tero, R.; Shiokawa, K.; Wygant, J. R.
2017-12-01
We present observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM focus group on Quantitative Assessment of Radiation Belt Modeling: March 17-18 (Stormtime Enhancement), May 31-June 2 (Stormtime Dropout), September 19-20 (Non-storm Enhancement), and September 23-25 (Non-storm Dropout). Observations include EMIC wave data from the Van Allen Probes and THEMIS spacecraft in the inner magnetosphere and from several arrays of ground-based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from the low-altitude POES spacecraft. Each of these data sets provides only limited spatial coverage, but their combination reveals consistent occurrence patterns, which are then used to evaluate the effectiveness of EMIC waves in causing dropouts of radiation belt electrons during these GEM events.
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2002-01-01
A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.
NASA Astrophysics Data System (ADS)
Ayala, Alejandro; Hentschinski, Martin; Jalilian-Marian, Jamal; Tejeda-Yeomans, Maria Elena
2017-07-01
We use the spinor helicity formalism to calculate the cross section for production of three partons of a given polarization in Deep Inelastic Scattering (DIS) off proton and nucleus targets at small Bjorken x. The target proton or nucleus is treated as a classical color field (shock wave) from which the produced partons scatter multiple times. We reported our result for the final expression for the production cross section and studied the azimuthal angular correlations of the produced partons in [1]. Here we provide the full details of the calculation of the production cross section using the spinor helicity methods.
A Survey of High Explosive-Induced Damage and Spall in Selected Metals Using Proton Radiography
NASA Astrophysics Data System (ADS)
Holtkamp, D. B.; Clark, D. A.; Ferm, E. N.; Gallegos, R. A.; Hammon, D.; Hemsing, W. F.; Hogan, G. E.; Holmes, V. H.; King, N. S. P.; Liljestrand, R.; Lopez, R. P.; Merrill, F. E.; Morris, C. L.; Morley, K. B.; Murray, M. M.; Pazuchanics, P. D.; Prestridge, K. P.; Quintana, J. P.; Saunders, A.; Schafer, T.; Shinas, M. A.; Stacy, H. L.
2004-07-01
Multiple spall and damage layers can be created in metal when the free surface reflects a Taylor wave generated by high explosives. These phenomena have been explored in different thicknesses of several metals (tantalum, copper, 6061 T6-aluminum, and tin) using high-energy proton radiography. Multiple images (up to 21) can be produced of the dynamic evolution of damaged material on the microsecond time scale with a <50 ns "shutter" time. Movies and multiframe still images of areal and (Abel inverted) volume densities are presented. An example of material that is likely melted on release (tin) is also presented.
Radiative capture of cold neutrons by protons and deuteron photodisintegration with twisted beams
NASA Astrophysics Data System (ADS)
Afanasev, Andrei; Serbo, Valeriy G.; Solyanik, Maria
2018-05-01
We consider two basic nuclear reactions: capture of neutrons by protons, n + p → γ + d, and its time-reversed counterpart, photodisintegration of the deuteron, γ + d → n + p. In both of these cases we assume that the incoming beam of neutrons or photons is ‘twisted’ by having an azimuthal phase dependence, i.e., it carries an additional angular momentum along its direction of propagation. Taking a low-energy limit of these reactions, we derive relations between corresponding transition amplitudes and cross sections with plane-wave beams and twisted beams. Implications for experiments with twisted cold neutrons and twisted photon beams are discussed.
NASA Astrophysics Data System (ADS)
Hasan, A.; Sharma, S.; Arthanayaka, T. P.; Lamichhane, B. R.; Remolina, J.; Akula, S.; Madison, D. H.; Schulz, M.
2014-11-01
We have performed a kinematically complete experiment on ionization of H2 by 75 keV proton impact. The triple differential cross sections (TDCS) extracted from the measurement were compared to a molecular 3-body distorted wave (M3DW) calculation for three different electron ejection geometries. Overall, the agreement between experiment and theory is better than in the case of a helium target for the same projectile. Nevertheless, significant quantitative discrepancies remain, which probably result from the capture channel, which may be strongly coupled to the ionization channel. Therefore, improved agreement could be expected from a non-perturbative coupled-channel approach.
NASA Technical Reports Server (NTRS)
Kazanas, D.; Georganopoulos, M.; Mastichladis, A.
2003-01-01
We propose a process by which the kinetic energy of the protons, that carry most of the energy of GRB relativistic blast waves (RBW) of Lorentz factor is converted explosively into relativistic electrons of the same Lorentz factor, which subsequently produce the observed prompt gamma-ray emission of the burst. This conversion is the result of the combined effects of the reflection of photons produced within the flow by upstream located matter, their re-interception and conversion into e(+) e(-) pairs on the RBW by the p gamma (right arrow) p e(+) e(-) reaction.
Electron transfer in proton-hydrogen collisions under dense quantum plasma
NASA Astrophysics Data System (ADS)
Nayek, Sujay; Bhattacharya, Arka; Kamali, Mohd Zahurin Mohamed; Ghoshal, Arijit; Ratnavelu, Kurunathan
2017-09-01
The effects of dense quantum plasma on 1 s → nlm charge transfer, for arbitrary n,l,m, in proton-hydrogen collisions have been studied by employing a distorted wave approximation. The interactions among the charged particles in the plasma have been represented by modified Debye-Huckel potentials. A detailed study has been made to explore the effects of background plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range 10-1000 keV. For the unscreened case, our results agree well with some of the most accurate results available in the literature.
Large Hadron Collider at CERN: Beams generating high-energy-density matter.
Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E
2009-04-01
This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has suggested an additional very important application of the LHC, namely, studies of HED states in matter.
Mercury Handling for the Target System for a Muon Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, Van B; Mcdonald, K; Kirk, H.
2012-01-01
The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes andmore » waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.« less
Mchedlishvili, D.; Chiladze, D.; Dymov, S.; ...
2016-02-03
The differential cross section for proton-proton elastic scattering has been measured at a beam kinetic energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12°-16° to 25°-30°, depending on the energy. A precision in the overall normalisation of typically 3% was achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon the results of a partial wave analysis.more » Furthermore, after extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.« less
Calculation and analysis of cross-sections for p+184W reactions up to 200 MeV
NASA Astrophysics Data System (ADS)
Sun, Jian-Ping; Zhang, Zheng-Jun; Han, Yin-Lu
2015-08-01
A set of optimal proton optical potential parameters for p+ 184W reactions are obtained at incident proton energy up to 250 MeV. Based on these parameters, the reaction cross-sections, elastic scattering angular distributions, energy spectra and double differential cross sections of proton-induced reactions on 184W are calculated and analyzed by using theoretical models which integrate the optical model, distorted Born wave approximation theory, intra-nuclear cascade model, exciton model, Hauser-Feshbach theory and evaporation model. The calculated results are compared with existing experimental data and good agreement is achieved. Supported by National Basic Research Program of China, Technology Research of Accelerator Driven Sub-critical System for Nuclear Waste Transmutation (2007CB209903) and Strategic Priority Research Program of Chinese Academy of Sciences, Thorium Molten Salt Reactor Nuclear Energy System (XDA02010100)
NASA Astrophysics Data System (ADS)
Pahlavani, M. R.; Firoozi, B.
2016-09-01
γ-ray transitions from excited states of {}16{{N}} and {}16{{O}} isomers that appear in the γ spectrum of the {}616{{{C}}}10\\to {}716{{{N}}}9\\to {}816{{{O}}}8 beta decay chain are investigated. The theoretical approach used in this research starts with a mean-field potential consisting of a phenomenological Woods-Saxon potential including spin-orbit and Coulomb terms (for protons) in order to obtain single-particle energies and wave functions for nucleons in a nucleus. A schematic residual surface delta interaction is then employed on the top of the mean field and is treated within the proton-neutron Tamm-Dancoff approximation (pnTDA) and the proton-neutron random phase approximation. The goal is to use an optimized surface delta interaction interaction, as a residual interaction, to improve the results. We have used artificial intelligence algorithms to establish a good agreement between theoretical and experimental energy spectra. The final results of the ‘optimized’ calculations are reasonable via this approach.
Infrared renormalons and single meson production in proton-proton collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmadov, A. I.; Aydin, Coskun; Hakan, Yilmaz A.
2009-07-01
In this article, we investigate the contribution of the higher-twist Feynman diagrams to the large-p{sub T} inclusive pion production cross section in proton-proton collisions and present the general formulas for the higher-twist differential cross sections in the case of the running coupling and frozen coupling approaches. The structure of infrared renormalon singularities of the higher-twist subprocess cross section and the resummed expression (the Borel sum) for it are found. We compared the resummed higher-twist cross sections with the ones obtained in the framework of the frozen coupling approach and leading-twist cross section. We obtain, that ratio R=({sigma}{sub {pi}{sup +}}{sup HT}){supmore » res}/({sigma}{sub {pi}{sup +}}{sup HT}){sup 0}, for all values of the transverse momentum p{sub T} of the pion identically equivalent to ratio r=({delta}{sub {pi}}{sup HT}){sup res}/({delta}{sub {pi}}{sup HT}){sup 0}. It is shown that the resummed result depends on the choice of the meson wave functions used in calculation. Phenomenological effects of the obtained results are discussed.« less
Laser acceleration of protons using multi-ion plasma gaseous targets
Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; ...
2015-02-01
We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less
Role of the N*(1535) in pp{yields}pp{phi} and {pi}{sup -}p{yields}n{phi} reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie Jujun; Graduate University of Chinese Academy of Sciences, Beijing 100049; Zou Bingsong
2008-01-15
The near-threshold {phi}-meson production in proton-proton and {pi}{sup -}p collisions is studied with the assumption that the production mechanism is due to the sub-N{phi}-threshold N*(1535) resonance. The {pi}{sup 0}-,{eta}-, and {rho}{sup 0}-meson exchanges for proton-proton collisions are considered. It is shown that the contribution to the pp{yields}pp{phi} reaction from the t-channel {pi}{sup 0}-meson exchange is dominant. With a significant N*(1535)N{phi} coupling [g{sub N*(1535)N{phi}}{sup 2}/4{pi}=0.13], both pp{yields}pp{phi} and {pi}{sup -}p{yields}n{phi} data are very well reproduced. The significant coupling of the N*(1535) resonance to N{phi} is compatible with previous indications of a large ss component in the quark wave function of themore » N*(1535) resonance and may be the real origin of the significant enhancement of the {phi} production over the naive OZI-rule predictions.« less
NASA Astrophysics Data System (ADS)
Rhea, James R.; Young, Thomas C.
1987-10-01
The proton binding characteristics of humic acids extracted from the sediments of Cranberry Pond, an acidic water body located in the Adirondack Mountain region of New York State, were explored by the application of a multiligand distribution model. The model characterizes a class of proton binding sites by mean log K values and the standard deviations of log K values about the mean. Mean log K values and their relative abundances were determined directly from experimental titration data. The model accurately predicts the binding of protons by the humic acids for pH values in the range 3.5 to 10.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhea, J.R.; Young, T.C.
1987-01-01
The proton binding characteristics of humic acids extracted from the sediments of Cranberry Pond, an acidic water body located in the Adirondack Mountain region of New York State, were explored by the application of a nultiligand distribution model. The model characterizes a class of proton binding sites by mean log K values and the standard deviations of log K values and the mean. Mean log K values and their relative abundances were determined directly from experimental titration data. The model accurately predicts the binding of protons by the humic acids for pH values in the range 3.5 to 10.0.
Medium energy proton radiation damage to (AlGa)As-GaAs solar cells
NASA Technical Reports Server (NTRS)
Loo, R. Y.; Kamath, G. S.; Knechtli, R. C.
1982-01-01
The performance of (AlGa)As-GaAs solar cells irradiated by medium energy 2, 5, and 10 MeV protons was evaluated. The Si cells without coverglass and a number of GaAs solar cells with 12 mil coverglass were irradiated simultaneously with bare GaAs cells. The cell degradation is directly related to the penetration of depth of protons with GaAs. The influence of periodic and continuous thermal annealing on the GaAs solar cells was investigated.
Lahey, Benjamin B; Zald, David H; Hakes, Jahn K; Krueger, Robert F; Rathouz, Paul J
2014-09-01
Mental disorders predict future occurrences of both the same disorder (homotypic continuity) and other disorders (heterotypic continuity). Heterotypic continuity is inconsistent with a view of mental disorders as fixed entities. In contrast, hierarchical-dimensional conceptualizations of psychopathology, in which each form of psychopathology is hypothesized to have both unique and broadly shared etiologies and mechanisms, predict both homotypic and heterotypic continuity. To test predictions derived from a hierarchical-dimensional model of psychopathology that (1) heterotypic continuity is widespread, even controlling for homotypic continuity, and that (2) the relative magnitudes of heterotypic continuities recapitulate the relative magnitudes of cross-sectional correlations among diagnoses at baseline. Ten prevalent diagnoses were assessed in the same person twice (ie, in 2 waves separated by 3 years). We used a representative sample of adults in the United States (i.e., 28,958 participants 18-64 years of age in the National Epidemiologic Study of Alcohol and Related Conditions who were assessed in both waves). Diagnoses from reliable and valid structured interviews. Adjusting for sex and age, we found that bivariate associations of all pairs of diagnoses from wave 1 to wave 2 exceeded chance levels (P < .05) for all homotypic (median tetrachoric correlation of ρ = 0.54 [range, 0.41-0.79]) and for nearly all heterotypic continuities (median tetrachoric correlation of ρ = 0.28 [range, 0.07-0.50]). Significant heterotypic continuity was widespread even when all wave 1 diagnoses (including the same diagnosis) were simultaneous predictors of each wave 2 diagnosis. The rank correlation between age- and sex-adjusted tetrachoric correlation for cross-sectional associations among wave 1 diagnoses and for heterotypic associations from wave 1 to wave 2 diagnoses was ρ = 0.86 (P < .001). For these prevalent mental disorders, heterotypic continuity was nearly universal and not an artifact of failure to control for homotypic continuity. Furthermore, the relative magnitudes of heterotypic continuity closely mirrored the relative magnitudes of cross-sectional associations among these disorders, consistent with the hypothesis that both sets of associations reflect the same factors. Mental disorders are not fixed and independent entities. Rather, each diagnosis is robustly related to other diagnoses in a correlational structure that is manifested both concurrently and in patterns of heterotypic continuity across time.
Wave functions of the Q .Q interaction in terms of unitary 9-j coefficients
NASA Astrophysics Data System (ADS)
Zamick, Larry; Harper, Matthew
2015-03-01
We obtain wave functions for two protons and two neutrons in the g9 /2 shell expressed as column vectors with amplitudes D (Jp,Jn) . When we use a quadrupole-quadrupole interaction (Q .Q ) we get, in many cases, a very strong overlap with wave functions given by a single set of unitary 9-j coefficients—U 9 j =<(jj ) 2 j(jjJB|(jj ) Jp(jj ) Jn) I> . Here JB=9 for even I T =0 states. For both even and odd T =1 states we take JB equal to 8 whilst for odd I ,T =0 we take JB to be 7. We compare the Q .Q results with those of a more realistic interaction.
Astrophysical ZeV acceleration in the relativistic jet from an accreting supermassive blackhole
NASA Astrophysics Data System (ADS)
Ebisuzaki, Toshikazu; Tajima, Toshiki
2014-04-01
An accreting supermassive blackhole, the central engine of active galactic nucleus (AGN), is capable of exciting extreme amplitude Alfven waves whose wavelength (wave packet) size is characterized by its clumpiness. The pondermotive force and wakefield are driven by these Alfven waves propagating in the AGN (blazar) jet, and accelerate protons/nuclei to extreme energies beyond Zetta-electron volt (ZeV=1021 eV). Such acceleration is prompt, localized, and does not suffer from the multiple scattering/bending enveloped in the Fermi acceleration that causes excessive synchrotron radiation loss beyond 1019 eV. The production rate of ZeV cosmic rays is found to be consistent with the observed gamma-ray luminosity function of blazars and their time variabilities.
The Demonstration and Science Experiments (DSX) Mission
NASA Astrophysics Data System (ADS)
McCollough, J. P., II; Johnston, W. R.; Starks, M. J.; Albert, J.
2015-12-01
In 2016, the Air Force Research Laboratory will launch its Demonstration and Science Experiments mission to investigate wave-particle interactions and the particle and space environment in medium Earth orbit (MEO). The DSX spacecraft includes three experiment packages. The Wave Particle Interaction Experiment (WPIx) will perform active and passive investigations involving VLF waves and their interaction with plasma and energetic electrons in MEO. The Space Weather Experiment (SWx) includes five particle instruments to survey the MEO electron and proton environment. The Space Environmental Effects Experiment (SFx) will investigate effects of the MEO environment on electronics and materials. We will describe the capabilities of the DSX science payloads, science plans, and opportunities for collaborative studies such as conjunction observations and far-field measurements.
Continuous-wave terahertz imaging of nonmelanoma skin cancers
NASA Astrophysics Data System (ADS)
Joseph, Cecil Sudhir
Continuous wave terahertz imaging has the potential to offer a safe, non-invasive medical imaging modality for detecting different types of human skin cancers. Terahertz pulse imaging (TPI) has already shown that there is contrast between basal cell carcinoma and normal skin. Continuous-wave imaging offers a simpler, lower cost alternative to terahertz pulse imaging. This project aims to isolate the optimal contrast frequency for a continuous wave terahertz imaging system and demonstrate transmission based, in-vitro , imaging of thin sections of non-melanoma skin cancers and correlate the images to sample histology. The aim of this project is to conduct a proof-of-principle experiment that establishes whether continuous-wave terahertz imaging can detect differences between cancerous and normal tissue while outlining the basic requirements for building a system capable of performing in vivo tests.
Quashie, Edwin E.; Saha, Bidhan C.; Correa, Alfredo A.
2016-10-05
Here, we present an ab initio study of the electronic stopping power of protons in copper over a wide range of proton velocities v = 0.02–10a.u. where we take into account nonlinear effects. Time-dependent density functional theory coupled with molecular dynamics is used to study electronic excitations produced by energetic protons. A plane-wave pseudopotential scheme is employed to solve the time-dependent Kohn-Sham equations for a moving ion in a periodic crystal. The electronic excitations and the band structure determine the stopping power of the material and alter the interatomic forces for both channeling and off-channeling trajectories. Our off-channeling results aremore » in quantitative agreement with experiments, and at low velocity they unveil a crossover region of superlinear velocity dependence (with a power of ~1.5) in the velocity range v = 0.07–0.3a.u., which we associate to the copper crystalline electronic band structure. The results are rationalized by simple band models connecting two separate regimes. We find that the limit of electronic stopping v → 0 is not as simple as phenomenological models suggest and it is plagued by band-structure effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkubo, T., E-mail: ohkubo.takeru@jaea.go.jp; Ishii, Y.
A compact focused gaseous ion beam system has been developed to form proton microbeams of a few hundreds of keV with a penetration depth of micrometer range in 3-dimensional proton beam writing. Proton microbeams with kinetic energies of 100-140 keV were experimentally formed on the same point at a constant ratio of the kinetic energy of the object side to that of the image side. The experimental results indicate that the beam diameters were measured to be almost constant at approximately 6 μm at the same point with the kinetic energy range. These characteristics of the system were experimentally andmore » numerically demonstrated to be maintained as long as the ratio was constant.« less
Polarization Observables T and F in the yp -> pi p Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao
The theory that describes the interaction of quarks is Quantum Chromodynamics (QCD), but how quarks are bound inside a nucleon is not yet well understood. Pion photoproduction experiments reveal important information about the nucleon excited states and the dynamics of the quarks within it and thus provide a useful tool to study QCD. Detailed information about this reaction can be obtained in experiments that utilize polarized photon beams and polarized targets. Pion photoproduction in the γρ -> π0ρ reaction has been measured in the FROST experiment at the Thomas Jefferson National Accelerator Facility. In this experiment circularly polarized photons withmore » electron-beam energies up to 3.082 GeV impinged on a transversely polarized frozen-spin target. Final-state protons were detected in the CEBAF Large Acceptance Spectrometer. Results of the polarization observables T and F have been extracted. The data generally agree with predictions of present partial wave analyses, but also show marked differences. The data will constrain further partial wave analyses and improve the extraction of proton resonance properties.« less
Deuteron electromagnetic form factors with the light-front approach
NASA Astrophysics Data System (ADS)
Sun, Bao-dong; Dong, Yu-bing
2017-01-01
The electromagnetic form factors and low-energy observables of the deuteron are studied with the help of the light-front approach, where the deuteron is regarded as a weakly bound state of a proton and a neutron. Both the S and D wave interacting vertexes among the deuteron, proton, and neutron are taken into account. Moreover, the regularization functions are also introduced. In our calculations, the vertex and the regularization functions are employed to simulate the momentum distribution inside the deuteron. Our numerical results show that the light-front approach can roughly reproduce the deuteron electromagnetic form factors, like charge G 0, magnetic G 1, and quadrupole G 2, in the low Q 2 region. The important effect of the D wave vertex on G 2 is also addressed. Supported by National Natural Science Foundation of China (10975146, 11475192), The fund provided by the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD" project is also appreciated, YBD thanks FAPESP grant 2011/11973-4 for funding his visit to ICTP-SAIFR
Application of the N-quantum approximation to the proton radius problem
NASA Astrophysics Data System (ADS)
Cowen, Steven
This thesis is organized into three parts: 1. Introduction and bound state calculations of electronic and muonic hydrogen, 2. Bound states in motion, and 3.Treatment of soft photons. In the first part, we apply the N-Quantum Approximation (NQA) to electronic and muonic hydrogen and search for any new corrections to energy levels that could account for the 0.31 meV discrepancy of the proton radius problem. We derive a bound state equation and compare our numerical solutions and wave functions to those of the Dirac equation. We find NQA Lamb shift diagrams and calculate the associated energy shift contributions. We do not find any new corrections large enough to account for the discrepancy. In part 2, we discuss the effects of motion on bound states using the NQA. We find classical Lorentz contraction of the lowest order NQA wave function. Finally, in part 3, we develop a clothing transformation for interacting fields in order to produce the correct asymptotic limits. We find the clothing eliminates a trilinear interacting Hamiltonian term and produces a quadrilinear soft photon interaction term.
Perspective of Muon Production Target at J-PARC MLF MUSE
NASA Astrophysics Data System (ADS)
Makimura, Shunsuke; Matoba, Shiro; Kawamura, Naritoshi; Matsuzawa, Yukihiro; Tabe, Masato; Aoyagi, Hiroyuki; Kondo, Hiroto; Kobayashi, Yasuo; Fujimori, Hiroshi; Ikedo, Yutaka; Kadono, Ryosuke; Koda, Akihiro; Kojima, Kenji M.; Miyake, Yasuhiro; Nakamura, Jumpei G.; Oishi, Yu; Okabe, Hirotaka; Shimomura, Koichiro; Strasser, Patrick
A pulsed muon beam with unprecedented intensity will be generated by a 3-GeV 333-microA proton beam on a muon target made of 20-mm thick isotropic graphite at J-PARC MLF MUSE (Muon Science Establishment). The first muon beam was successfully generated on September 26th, 2008. Gradually upgrading the beam intensity, continuous 300-kW proton beam has been operated by a fixed target method without replacements till June of 2014. However, the lifetime of the fixed target was anticipated to be less than 1 year by the proton-irradiation damage of the graphite through 1-MW beam operation. To extend the lifetime, a muon rotating target, in which the radiation damage is distributed to a wider area, was installed in September of 2014, and continuous and stable operation has been successfully performed. Because the muon target becomes highly radioactive by the proton irradiation, the maintenance is conducted by remote handling in the Hot cell. In September of 2015, a scraper No. 1 to collimate the proton beam scattered by the target was replaced for further high-power beam operation. Recently, new developments on monitoring and maintenance of the muon target for higher power operation are in progress. In this article, perspective of muon production target at J-PARC MLF MUSE will be described.
NASA Astrophysics Data System (ADS)
Kim, Hyomin; Clauer, C. Robert; Gerrard, Andrew J.; Engebretson, Mark J.; Hartinger, Michael D.; Lessard, Marc R.; Matzka, Jürgen; Sibeck, David G.; Singer, Howard J.; Stolle, Claudia; Weimer, Daniel R.; Xu, Zhonghua
2017-07-01
We report on simultaneous observations of electromagnetic ion cyclotron (EMIC) waves associated with traveling convection vortex (TCV) events caused by transient solar wind dynamic pressure (Pd) impulse events. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft located near the magnetopause observed radial fluctuations of the magnetopause, and the GOES spacecraft measured sudden compressions of the magnetosphere in response to sudden increases in Pd. During the transient events, EMIC waves were observed by interhemispheric conjugate ground-based magnetometer arrays as well as the GOES spacecraft. The spectral structures of the waves appear to be well correlated with the fluctuating motion of the magnetopause, showing compression-associated wave generation. In addition, the wave features are remarkably similar in conjugate hemispheres in terms of bandwidth, quasiperiodic wave power modulation, and polarization. Proton precipitation was also observed by the DMSP spacecraft during the wave events, from which the wave source region is estimated to be 72°-74° in magnetic latitude, consistent with the TCV center. The confluence of space-borne and ground instruments including the interhemispheric, high-latitude, fluxgate/induction coil magnetometer array allows us to constrain the EMIC source region while also confirming the relationship between EMIC waves and the TCV current system.
Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere
NASA Astrophysics Data System (ADS)
Omura, Yoshiharu; Pickett, Jolene; Grison, Benjamin; Santolik, Ondrej; Dandouras, Iannis; Engebretson, Mark; Décréau, Pierrette M. E.; Masson, Arnaud
2010-07-01
We develop a nonlinear wave growth theory of electromagnetic ion cyclotron (EMIC) triggered emissions observed in the inner magnetosphere. We first derive the basic wave equations from Maxwell's equations and the momentum equations for the electrons and ions. We then obtain equations that describe the nonlinear dynamics of resonant protons interacting with an EMIC wave. The frequency sweep rate of the wave plays an important role in forming the resonant current that controls the wave growth. Assuming an optimum condition for the maximum growth rate as an absolute instability at the magnetic equator and a self-sustaining growth condition for the wave propagating from the magnetic equator, we obtain a set of ordinary differential equations that describe the nonlinear evolution of a rising tone emission generated at the magnetic equator. Using the physical parameters inferred from the wave, particle, and magnetic field data measured by the Cluster spacecraft, we determine the dispersion relation for the EMIC waves. Integrating the differential equations numerically, we obtain a solution for the time variation of the amplitude and frequency of a rising tone emission at the equator. Assuming saturation of the wave amplitude, as is found in the observations, we find good agreement between the numerical solutions and the wave spectrum of the EMIC triggered emissions.
Vadim Ptitsyn
2018-04-18
"E-RHIC - Future Electron-Ion Collider at BNL. While RHIC scientists continue their quest to look deep into nuclear phenomena resulting from collisions of ion beams and beams of polarized protons, new design work is under way for a possible extension of RHIC to include e-RHIC, a 10-billion electron volt, high-intensity polarized proton beam.
Frauenfelder, Hans; Young, Robert D.; Fenimore, Paul W.
2017-01-01
We recently introduced a model of incoherent quasielastic neutron scattering (QENS) that treats the neutrons as wave packets of finite length and the protein as a random walker in the free energy landscape. We call the model ELM for “energy landscape model.” In ELM, the interaction of the wave packet with a proton in a protein provides the dynamic information. During the scattering event, the momentum Q(t) is transferred by the wave packet to the struck proton and its moiety, exerting the force F(t)=dQ(t)/dt. The resultant energy E⋆ is stored elastically and returned to the neutron as it exits. The energy is given by E⋆=kB(T0+χQ), where T0 is the ambient temperature and χ (≈ 91 K Å) is a new elastobaric coefficient. Experiments yield the scattering intensity (dynamic structure factor) S(Q;T) as a function of Q and T. To test our model, we use published data on proteins where only thermal vibrations are active. ELM competes with the currently accepted theory, here called the spatial motion model (SMM), which explains S(Q,T) by motions in real space. ELM is superior to SMM: It can explain the experimental angular and temperature dependence, whereas SMM cannot do so. PMID:28461503
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Gen; Lee, Martin A., E-mail: gjk44@wildcats.unh.edu
The effects of scatter-dominated interplanetary transport on the spectral properties of the differential fluence of large gradual solar energetic particle (SEP) events are investigated analytically. The model assumes for simplicity radial constant solar wind and radial magnetic field. The radial diffusion coefficient is calculated with quasilinear theory by assuming a spectrum of Alfvén waves propagating parallel to the magnetic field. Cross-field transport is neglected. The model takes into consideration several essential features of gradual event transport: nearly isotropic ion distributions, adiabatic deceleration in a divergent solar wind, and particle radial scattering mean free paths increasing with energy. Assuming an impulsivemore » and spherically symmetric injection of SEPs with a power-law spectrum near the Sun, the predicted differential fluence spectrum exhibits at 1 AU three distinctive power laws for different energy domains. The model naturally reproduces the spectral features of the double power-law proton differential fluence spectra that tend to be observed in extremely large SEP events. We select nine western ground-level events (GLEs) out of the 16 GLEs during Solar Cycle 23 and fit the observed double power-law spectra to the analytical predictions. The compression ratio of the accelerating shock wave, the power-law index of the ambient wave intensity, and the proton radial scattering mean free path are determined for the nine GLEs. The derived parameters are generally in agreement with the characteristic values expected for large gradual SEP events.« less
Proton irradiation effects on gallium nitride-based devices
NASA Astrophysics Data System (ADS)
Karmarkar, Aditya P.
Proton radiation effects on state-of-the-art gallium nitride-based devices were studied using Schottky diodes and high electron-mobility transistors. The device degradation was studied over a wide range of proton fluences. This study allowed for a correlation between proton irradiation effects between different types of devices and enhanced the understanding of the mechanisms responsible for radiation damage in GaN-based devices. Proton irradiation causes reduced carrier concentration and increased series resistance and ideality factor in Schottky diodes. 1.0-MeV protons cause greater degradation than 1.8-MeV protons because of their higher non-ionizing energy loss. The displacement damage in Schottky diodes recovers during annealing. High electron-mobility transistors exhibit extremely high radiation tolerance, continuing to perform up to a fluence of ˜1014 cm-2 of 1.8-MeV protons. Proton irradiation creates defect complexes in the thin-film structure. Decreased sheet carrier mobility due to increased carrier scattering and decreased sheet carrier density due to carrier removal by the defect centers are the primary damage mechanisms. Interface disorder at either the Schottky or the Ohmic contact plays a relatively unimportant part in overall device degradation in both Schottky diodes and high electron-mobility transistors.
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less
A Statistical Analysis of the Solar Phenomena Associated with Global EUV Waves
NASA Astrophysics Data System (ADS)
Long, D. M.; Murphy, P.; Graham, G.; Carley, E. P.; Pérez-Suárez, D.
2017-12-01
Solar eruptions are the most spectacular events in our solar system and are associated with many different signatures of energy release including solar flares, coronal mass ejections, global waves, radio emission and accelerated particles. Here, we apply the Coronal Pulse Identification and Tracking Algorithm (CorPITA) to the high-cadence synoptic data provided by the Solar Dynamics Observatory (SDO) to identify and track global waves observed by SDO. 164 of the 362 solar flare events studied (45%) were found to have associated global waves with no waves found for the remaining 198 (55%). A clear linear relationship was found between the median initial velocity and the acceleration of the waves, with faster waves exhibiting a stronger deceleration (consistent with previous results). No clear relationship was found between global waves and type II radio bursts, electrons or protons detected in situ near Earth. While no relationship was found between the wave properties and the associated flare size (with waves produced by flares from B to X-class), more than a quarter of the active regions studied were found to produce more than one wave event. These results suggest that the presence of a global wave in a solar eruption is most likely determined by the structure and connectivity of the erupting active region and the surrounding quiet solar corona rather than by the amount of free energy available within the active region.
Plasma observations at the Earth's magnetic equator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, R.C.; Shawhan, S.D.; Gallagher, D.L.
1987-03-01
The magnetic equator provides a unique location for thermal plasma and plasma wave measurements. Plasma populations are found to be confined within a few degrees latitude of the equator, particularly the ions. The equatorially trapped ion population is found to be primarily hydrogen, and the authors find little evidence for preferential heating of heavier ions. Helium is occasionally found to be heated along with the protons, and forms about 10% of the equatorially trapped populations at such times, similar to the percentage of He{sup +} in the cold, core plasma of the plasmasphere. One case of a heated O{sup +}more » component was found; at the 0.1% level it generally comprises in the outer plasmasphere core plasma. The heated H{sup +} ions can be characterized by a bi-Maxwellian with kT{sub {parallel}} = 0.5-1.0 eV, and kT = 5-50 eV, with a density of 10-100 cm{sup {minus}3}. The total plasma density, as inferred from the plasma wave instrument measurements of the upper hybrid measurements of the upper hybrid resonance (UHR), is relatively constant with latitude, occasionally showing a local minimum at the magnetic equator, even though the ion flux has increased substantially. The first measurements of the equatorially trapped plasma and coincident UHR measurements show that the trapped plasma is a feature of the plasmapause region, found at total plasma densities of 20-200 cm{sup {minus}3}. The warm, trapped plasma is found in conjunction with equatorial noise, a plasma wave feature found at frequencies near 100 Hz, with a broad spectrum generally found between the proton gyrofrequency at the low frequency edge and the geometric mean gyrofrequency at the high frequency edge. This latter frequency is generally the lower hybrid resonance (LHR) for a proton-electron plasma. Sharp spatial boundaries are occasionally found with latitude, delimiting the equatorially trapped plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedner, Eric S.; Brown, Houston J.; Helm, Monte L.
2016-01-20
The hydrogen production electrocatalyst Ni(PPh2NPh2)22+ (1) is capable of traversing multiple electrocatalytic pathways. When using dimethylformamidium, DMF(H)+, the mechanism of formation of H2 catalyzed by 1 changes from an ECEC to an EECC mechanism as the potential approaches the Ni(I/0) couple. Two recent electrochemical methods, current-potential analysis and foot-of-the-wave analysis (FOWA), were performed on 1 to measure the detailed chemical kinetics of the competing ECEC and EECC pathways. A sensitivity analysis was performed on the electrochemical methods using digital simulations to gain a better understanding of their strengths and limitations. Notably, chemical rate constants were significantly underestimated when not accountingmore » for electron transfer kinetics, even when electron transfer was fast enough to afford a reversible non-catalytic wave. The EECC pathway of 1 was found to be faster than the ECEC pathway under all conditions studied. Using buffered DMF: DMF(H)+ mixtures led to an increase in the catalytic rate constant (kobs) of the EECC pathway, but kobs for the ECEC pathway did not change when using buffered acid. Further kinetic analysis of the ECEC path revealed that added base increases the rate of isomerization of the exo-protonated Ni(0) isomers to the catalytically active endo-isomers, but decreases the net rate of protonation of Ni(I). FOWA on 1 did not provide accurate rate constants due to incomplete reduction of the exo-protonated Ni(I) intermediate at the foot of the wave, but FOWA could be used to estimate the reduction potential of this previously undetected intermediate. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less
Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles.
Kim, Youngsoo; Smith, Jeremy G; Jain, Prashant K
2018-05-07
Multi-electron redox reactions, although central to artificial photosynthesis, are kinetically sluggish. Amidst the search for synthetic catalysts for such processes, plasmonic nanoparticles have been found to catalyse multi-electron reduction of CO 2 under visible light. This example motivates the need for a general, insight-driven framework for plasmonic catalysis of such multi-electron chemistry. Here, we elucidate the principles underlying the extraction of multiple redox equivalents from a plasmonic photocatalyst. We measure the kinetics of electron harvesting from a gold nanoparticle photocatalyst as a function of photon flux. Our measurements, supported by theoretical modelling, reveal a regime where two-electron transfer from the excited gold nanoparticle becomes prevalent. Multiple electron harvesting becomes possible under continuous-wave, visible-light excitation of moderate intensity due to strong interband transitions in gold and electron-hole separation accomplished using a hole scavenger. These insights will help expand the utility of plasmonic photocatalysis beyond CO 2 reduction to other challenging multi-electron, multi-proton transformations such as N 2 fixation.
Discrimination of radiation quality through second harmonic out-of-phase cw-ESR detection.
Marrale, Maurizio; Longo, Anna; Brai, Maria; Barbon, Antonio; Brustolon, Marina
2014-02-01
The ability to discriminate the quality of ionizing radiation is important because the biological effects produced in tissue strongly depends on both absorbed dose and linear energy transfer (LET) of ionizing particles. Here we present an experimental electron spin resonance (ESR) analysis aimed at discriminating the effective LETs of various radiation beams (e.g., 19.3 MeV protons, (60)Co photons and thermal neutrons). The measurement of the intensities of the continuous wave spectrometer signal channel first harmonic in-phase and the second harmonic out-of-phase components are used to distinguish the radiation quality. A computational analysis, was carried out to evaluate the dependence of the first harmonic in-phase and second harmonic out-of-phase components on microwave power, modulation amplitude and relaxation times, and highlights that these components could be used to point out differences in the relaxation times. On the basis of this numerical analysis the experimental results are discussed. The methodology described in this study has the potential to provide information on radiation quality.
Cavity Processing and Preparation of 650 MHz Elliptical Cell Cavities for PIP-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, Allan; Chandrasekaran, Saravan Kumar; Grassellino, Anna
The PIP-II project at Fermilab requires fifteen 650 MHz SRF cryomodules as part of the 800 MeV LINAC that will provide a high intensity proton beam to the Fermilab neutrino program. A total of fifty-seven high-performance SRF cavities will populate the cryomodules and will operate in both pulsed and continuous wave modes. These cavities will be processed and prepared for performance testing utilizing adapted cavity processing infrastructure already in place at Fermilab and Argonne. The processing recipes implemented for these structures will incorporate state-of-the art processing and cleaning techniques developed for 1.3 GHz SRF cavities for the ILC, XFEL, andmore » LCLS-II projects. This paper describes the details of the processing recipes and associated chemistry, heat treatment, and cleanroom processes at the Fermilab and Argonne cavity processing facilities. This paper also presents single and multi-cell cavity test results with quality factors above 5·10¹⁰ and accelerating gradients above 30 MV/m.« less
Kramer, Harald; Pickhardt, Perry J; Kliewer, Mark A; Hernando, Diego; Chen, Guang-Hong; Zagzebski, James A; Reeder, Scott B
2017-01-01
The purpose of this study was to prospectively evaluate the accuracy of proton-density fat-fraction, single- and dual-energy CT (SECT and DECT), gray-scale ultrasound (US), and US shear-wave elastography (US-SWE) in the quantification of hepatic steatosis with MR spectroscopy (MRS) as the reference standard. Fifty adults who did not have symptoms (23 men, 27 women; mean age, 57 ± 5 years; body mass index, 27 ± 5) underwent liver imaging with un-enhanced SECT, DECT, gray-scale US, US-SWE, proton-density fat-fraction MRI, and MRS for this prospective trial. MRS voxels for the reference standard were colocalized with all other modalities under investigation. For SECT (120 kVp), attenuation values were recorded. For rapid-switching DECT (80/140 kVp), monochromatic images (70-140 keV) and fat density-derived material decomposition images were reconstructed. For proton-density fat fraction MRI, a quantitative chemical shift-encoded method was used. For US, echogenicity was evaluated on a qualitative 0-3 scale. Quantitative US shear-wave velocities were also recorded. Data were analyzed by linear regression for each technique compared with MRS. There was excellent correlation between MRS and both proton-density fat-fraction MRI (r 2 = 0.992; slope, 0.974; intercept, -0.943) and SECT (r 2 = 0.856; slope, -0.559; intercept, 35.418). DECT fat attenuation had moderate correlation with MRS measurements (r 2 = 0.423; slope, 0.034; intercept, 8.459). There was good correlation between qualitative US echogenicity and MRS measurements with a weighted kappa value of 0.82. US-SWE velocity did not have reliable correlation with MRS measurements (r 2 = 0.004; slope, 0.069; intercept, 6.168). Quantitative MRI proton-density fat fraction and SECT fat attenuation have excellent linear correlation with MRS measurements and can serve as accurate noninvasive biomarkers for quantifying steatosis. Material decomposition with DECT does not improve the accuracy of fat quantification over conventional SECT attenuation. US-SWE has poor accuracy for liver fat quantification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulyuz, Kerim; Stedwell, Corey N.; Wang Da
2011-05-15
We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarilymore » increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.« less
Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation
NASA Astrophysics Data System (ADS)
Singamaneni, Srinivasa Rao; Stesmans, Andre; van Tol, Johan; Kosynkin, D. V.; Tour, James M.
2014-04-01
Electronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH3 adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.
Scrutinizing the evidence for N ( 1685 )
Anisovich, A. V.; Burkert, V.; Klempt, E.; ...
2017-03-30
The helicity-dependent observable E for the reaction γd → ηn(p) with a spectator proton was recently measured in this paper by the A2 Collaboration at MAMI in Mainz. The data were interpreted as further evidence for a narrow resonance with spin and parity J P = 1/2 + (P 11 wave). However, a full partial-wave analysis without any narrow resonance leads to an excellent description of the data. Finally, imposing a narrow resonance with the properties suggested by the A2 Collaboration leads to a significant deterioration of the fit quality: there is no need for a narrow resonance.
A Fluid Dynamic Approach to the Dust-Acoustic Soliton
NASA Astrophysics Data System (ADS)
McKenzie, J. F.; Doyle, T. B.
2002-12-01
The properties of dust-acoustic solitons are derived from a fluid dynamic viewpoint in which conservation of total momentum, combined with the Bernoulli-like energy equations for each species, yields the structure equation for the heavy (or dust) speed in the stationary wave. This fully nonlinear approach reveals the crucial role played by the heavy sonic point in limiting the collective dust-acoustic Mach number, above which solitons cannot exist. An exact solution illustrates that the cold heavy species is compressed and this implies concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave.
NASA Astrophysics Data System (ADS)
Grib, S. A.; Leora, S. N.
2016-03-01
We use analytical methods of magnetohydrodynamics to describe the behavior of cosmic plasma. This approach makes it possible to describe different structural fields of disturbances in solar wind: shock waves, direction discontinuities, magnetic clouds and magnetic holes, and their interaction with each other and with the Earth's magnetosphere. We note that the wave problems of solar-terrestrial physics can be efficiently solved by the methods designed for solving classical problems of mathematical physics. We find that the generalized Riemann solution particularly simplifies the consideration of secondary waves in the magnetosheath and makes it possible to describe in detail the classical solutions of boundary value problems. We consider the appearance of a fast compression wave in the Earth's magnetosheath, which is reflected from the magnetosphere and can nonlinearly overturn to generate a back shock wave. We propose a new mechanism for the formation of a plateau with protons of increased density and a magnetic field trough in the magnetosheath due to slow secondary shock waves. Most of our findings are confirmed by direct observations conducted on spacecrafts (WIND, ACE, Geotail, Voyager-2, SDO and others).
Effective-range function methods for charged particle collisions
NASA Astrophysics Data System (ADS)
Gaspard, David; Sparenberg, Jean-Marc
2018-04-01
Different versions of the effective-range function method for charged particle collisions are studied and compared. In addition, a novel derivation of the standard effective-range function is presented from the analysis of Coulomb wave functions in the complex plane of the energy. The recently proposed effective-range function denoted as Δℓ [Ramírez Suárez and Sparenberg, Phys. Rev. C 96, 034601 (2017), 10.1103/PhysRevC.96.034601] and an earlier variant [Hamilton et al., Nucl. Phys. B 60, 443 (1973), 10.1016/0550-3213(73)90193-4] are related to the standard function. The potential interest of Δℓ for the study of low-energy cross sections and weakly bound states is discussed in the framework of the proton-proton S10 collision. The resonant state of the proton-proton collision is successfully computed from the extrapolation of Δℓ instead of the standard function. It is shown that interpolating Δℓ can lead to useful extrapolation to negative energies, provided scattering data are known below one nuclear Rydberg energy (12.5 keV for the proton-proton system). This property is due to the connection between Δℓ and the effective-range function by Hamilton et al. that is discussed in detail. Nevertheless, such extrapolations to negative energies should be used with caution because Δℓ is not analytic at zero energy. The expected analytic properties of the main functions are verified in the complex energy plane by graphical color-based representations.
Eikonal approximation for proton-helium electron-capture processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, K.; Toshima, N.; Ishihara, T.
1985-09-01
We calculate the capture cross sections for H/sup +/+He..-->..H+He/sup +/, treating the passive electron explicitly in a distorted-wave formalism based on the eikonal approximation. It is found that the shape of the differential cross sections is influenced considerably by the interaction between the passive electron and the incident proton, while the integrated cross sections are much less sensitive to that. The differential cross section at 293 keV agrees well with the experimental data except at extremely small scattering angles. The forward peak is reproduced well at higher energies. The integrated cross sections are in excellent agreement with experiments for themore » incident energy above 250 keV.« less
On the ππ continuum in the nucleon form factors and the proton radius puzzle
NASA Astrophysics Data System (ADS)
Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.-W.; Meißner, U.-G.
2016-11-01
We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ→bar{N} N partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius.
ULF waves in the Martian foreshock: MAVEN observations
NASA Astrophysics Data System (ADS)
Shan, Lican; Mazelle, Christian; Meziane, Karim; Ruhunusiri, Suranga; Espley, Jared; Halekas, Jasper; Connerney, Jack; McFadden, Jim; Mitchell, Dave; Larson, Davin; Brain, Dave; Jakosky, Bruce; Ge, Yasong; Du, Aimin
2016-04-01
Foreshock ULF waves constitute a significant physical phenomenon of the plasma environment for terrestrial planets. The occurrence of these ULF waves, associated with backstreaming ions reflected and accelerated at the bow shock, implies specific conditions and properties of the shock and its foreshock. Using measurements from MAVEN, we report clear observations of this type of ULF waves in the Martian foreshock. We show from different case studies that the peak frequency of the wave case in spacecraft frame is too far from the local ion cyclotron frequency to be associated with local pickup ions taking into account the Doppler shifted frequency from a cyclotron resonance, the obliquity of the mode, resonance broadening and experimental uncertainties. On the opposite their properties fit very well with foreshock waves driven unstable by backtreaming field-aligned ion beams. The propagation angle is usually less than 30 degrees from ambient magnetic field. The waves also display elliptical and left-hand polarizations with respect to interplanetary magnetic field in the spacecraft frame. It is clear for these cases that foreshock ions are simultaneous present for the ULF wave interval. Such observation is important in order to discriminate with the already well-reported pickup ion (protons) waves associated with exospheric hydrogen in order to quantitatively use the later to study seasonal variations of the hydrogen corona.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhaoguo; University of Chinese Academy of Sciences, Beijing 100049; Zong, Qiugang, E-mail: qgzong@gmail.com
2014-12-15
Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = –9.3°) region. For the three cases, the time-dependent wave amplitude,more » cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.« less
Theoretical detection limit of PIXE analysis using 20 MeV proton beams
NASA Astrophysics Data System (ADS)
Ishii, Keizo; Hitomi, Keitaro
2018-02-01
Particle-induced X-ray emission (PIXE) analysis is usually performed using proton beams with energies in the range 2∼3 MeV because at these energies, the detection limit is low. The detection limit of PIXE analysis depends on the X-ray production cross-section, the continuous background of the PIXE spectrum and the experimental parameters such as the beam currents and the solid angle and detector efficiency of X-ray detector. Though the continuous background increases as the projectile energy increases, the cross-section of the X-ray increases as well. Therefore, the detection limit of high energy proton PIXE is not expected to increase significantly. We calculated the cross sections of continuous X-rays produced in several bremsstrahlung processes and estimated the detection limit of a 20 MeV proton PIXE analysis by modelling the Compton tail of the γ-rays produced in the nuclear reactions, and the escape effect on the secondary electron bremsstrahlung. We found that the Compton tail does not affect the detection limit when a thin X-ray detector is used, but the secondary electron bremsstrahlung escape effect does have an impact. We also confirmed that the detection limit of the PIXE analysis, when used with 4 μm polyethylene backing film and an integrated beam current of 1 μC, is 0.4∼2.0 ppm for proton energies in the range 10∼30 MeV and elements with Z = 16-90. This result demonstrates the usefulness of several 10 MeV cyclotrons for performing PIXE analysis. Cyclotrons with these properties are currently installed in positron emission tomography (PET) centers.
Modelling of proton acceleration in application to a ground level enhancement
NASA Astrophysics Data System (ADS)
Afanasiev, A.; Vainio, R.; Rouillard, A. P.; Battarbee, M.; Aran, A.; Zucca, P.
2018-06-01
Context. The source of high-energy protons (above 500 MeV) responsible for ground level enhancements (GLEs) remains an open question in solar physics. One of the candidates is a shock wave driven by a coronal mass ejection, which is thought to accelerate particles via diffusive-shock acceleration. Aims: We perform physics-based simulations of proton acceleration using information on the shock and ambient plasma parameters derived from the observation of a real GLE event. We analyse the simulation results to find out which of the parameters are significant in controlling the acceleration efficiency and to get a better understanding of the conditions under which the shock can produce relativistic protons. Methods: We use the results of the recently developed technique to determine the shock and ambient plasma parameters, applied to the 17 May 2012 GLE event, and carry out proton acceleration simulations with the Coronal Shock Acceleration (CSA) model. Results: We performed proton acceleration simulations for nine individual magnetic field lines characterised by various plasma conditions. Analysis of the simulation results shows that the acceleration efficiency of the shock, i.e. its ability to accelerate particles to high energies, tends to be higher for those shock portions that are characterised by higher values of the scattering-centre compression ratio rc and/or the fast-mode Mach number MFM. At the same time, the acceleration efficiency can be strengthened by enhanced plasma density in the corresponding flux tube. The simulations show that protons can be accelerated to GLE energies in the shock portions characterised by the highest values of rc. Analysis of the delays between the flare onset and the production times of protons of 1 GV rigidity for different field lines in our simulations, and a subsequent comparison of those with the observed values indicate a possibility that quasi-perpendicular portions of the shock play the main role in producing relativistic protons.
A CW FFAG for Proton Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstone, C.; Neuffer, D. V.; Snopok, P.
2012-05-01
An advantage of the cyclotron in proton therapy is the continuous (CW) beam output which reduces complexity and response time in the dosimetry requirements and beam controls. A CW accelerator requires isochronous particle orbits at all energie s through the acceleration cycle and present compact isochronous cyclotrons for proton therapy reach only 250 MeV (kinetic energy) which is required for patient treatment, but low for full Proton Computed Tomography (PCT) capability. PCT specifications ne ed 300-330 MeV in order for protons to transit the human body. Recent innovations in nonscaling FFAG design have achieved isochronous performance in a compact (~3more » m radius) design at these higher energies. Preliminary isochronous designs are presented her e. Lower energy beams can be efficiently extracted for patient treatment without changes to the acceleration cycle and magnet currents.« less
Proton and electron mean free paths: The Palmer consensus revisited
NASA Technical Reports Server (NTRS)
Bieber, John W.; Matthaeus, William H.; Smith, Charles W.; Wanner, Wolfgang; Kallenrode, May-Britt; Wibberenz, Gerd
1994-01-01
We present experimental and theoretical evidence suggesting that the mean free path of cosmic-ray electrons and protons may be fundamentally different at low to intermediate (less than 50 MV) rigidities. The experimental evidence is from Helios observations of solar energetic particles, which show that the mean free path of 1.4 MV electrons is often similar to that of 187 MV protons, even though proton mean free paths continue to decrease comparatively rapidly with decreasing rigidty down to the lowest channels (about 100 MV) observed. The theoretical evidence is from computations of particle scattering in dynamical magnetic turbulence, which predict that electrons will have a larger mean free path than protons of the same rigidity. In the light of these new results, 'consensus' ideas about cosmic-ray mean free paths may require drastic revision.
NASA Astrophysics Data System (ADS)
Hinterberger, F.; Rohdjeß, H.; Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Büßer, K.; Busch, M.; Colberg, T.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Eversheim, P. D.; Felden, O.; Gebel, R.; Glende, M.; Greiff, J.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Jonas, E.; Krause, H.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Meinerzhagen, A.; Nähle, O.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Trelle, H. J.; Weise, E.; Wellinghausen, A.; Woller, K.; Ziegler, R.
2000-01-01
The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power AN and the polarization correlation parameters ANN, ASS and ASL are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent dσ/dΩ and AN data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.
Radiation damage effects by electrons, protons, and neutrons in Si/Li/ detectors.
NASA Technical Reports Server (NTRS)
Liu, Y. M.; Coleman, J. A.
1972-01-01
The degradation in performance of lithium-compensated silicon nuclear particle detectors induced by irradiation at room temperature with 0.6-MeV and 1.5-MeV electrons, 1.9-MeV protons, and fast neutrons from a plutonium-beryllium source has been investigated. With increasing fluence, the irradiations produced an increase of detector leakage current, noise, capacitance, and a degradation in the performance of the detector as a charged-particle energy spectrometer. Following the irradiations, annealing effects were observed when the detectors were reverse-biased at their recommended operating voltages. Upon removal of bias, a continuous degradation of detector performance characteristics occurred. Detectors which had been damaged by electrons and protons exhibited a stabilization in their characteristics within two weeks after irradiation, whereas detectors damaged by neutrons had a continuous degradation of performance over a period of several months.
Design study of low-energy beam transport for multi-charge beams at RAON
NASA Astrophysics Data System (ADS)
Bahng, Jungbae; Qiang, Ji; Kim, Eun-San
2015-12-01
The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.
Lahey, Benjamin B.; Zald, David H.; Hakes, Jahn K.; Krueger, Robert F.; Rathouz, Paul J.
2014-01-01
Importance Mental disorders predict future occurrences of both the same disorder (homotypic continuity) and other disorders (heterotypic continuity). Heterotypic continuity is inconsistent with a view of mental disorders as fixed entities. In contrast, hierarchical-dimensional conceptualizations of psychopathology, in which each form of psychopathology is hypothesized to have both unique and broadly shared etiologies and mechanisms, predict both homotypic and heterotypic continuity. Objective To test predictions derived from a hierarchical-dimensional model of psychopathology that (a) heterotypic continuity is widespread, even controlling for homotypic continuity, and (b) the relative magnitudes of heterotypic continuities recapitulate the relative magnitudes of cross-sectional correlations among diagnoses at baseline. Design Assess 10 prevalent diagnoses in the same persons 3 years apart. Setting Representative sample of adults in the United States. Participants The 28,958 participants in the National Epidemiologic Study of Alcohol and Related Condition aged 18–64 years who were assessed in both waves. Main Outcome Measure Diagnoses from reliable and valid structured interviews. Results Bivariate associations of all pairs of diagnoses from wave 1 to wave 2 exceeded chance levels for all homotypic (tetrachoric ρ = 0.41 – 0.79, median = 0.54) and for nearly all heterotypic continuities (tetrachoric ρ = 0.07 – 0.50, median = 0.28), adjusted for sex and age. Significant heterotypic continuity was widespread even when all other wave 1 diagnoses (including the same diagnosis) were simultaneous predictors of each wave 2 diagnosis. The rank correlation between age and sex adjusted tetrachoric ρs for cross-sectional associations among wave 1 diagnoses and heterotypic associations from wave 1 to wave 2 diagnoses was ρ = .86. Conclusions and Relevance For these prevalent mental disorders, heterotypic continuity was nearly universal and not an artifact of failure to control for homotypic continuity. Furthermore, the relative magnitudes of heterotypic continuity closely mirrored the relative magnitudes of cross-sectional associations among these disorders, consistent with the hypothesis that both sets of associations reflect the same factors. Mental disorders are not fixed and independent entities. Rather, each diagnosis is robustly related to other diagnoses in a correlational structure that is manifested both concurrently and in patterns of heterotypic continuity across time. PMID:24989054
Radial evolution of ion distribution functions
NASA Technical Reports Server (NTRS)
Marsch, E.
1983-01-01
A survey of solar wind ion velocity distributions and derived parameters (temperature, ion differential speed, heat flux, adiabatic invariants) is presented with emphasis on the heliocentric distance range between 0.3 and 1 AU traversed by the Helios solar probe. The radial evolution of nonthermal features are discussed which are observed to be most pronounced at perihelion. Within the framework of quasilinear plasma theory, wave particle interactions that may shape the ion distributions are considered. Some results of a self consistent model calculation are presented accounting for ion acceleration and heating by resonant momentum and energy exchange with ion cyclotron and magnetosonic waves propagating away from the Sun along the interplanetary magnetic field. Another tentative explanation for the occurrence of large perpendicular proton temperatures is offered in terms of heating by Landau damping of lower hybrid waves.
ARCS 3 ionospheric artificial argon ion beam injections - Waves near the heavy ion gyrofrequencies
NASA Technical Reports Server (NTRS)
Erlandson, R. E.; Cahill, L. J., Jr.; Kaufmann, R. L.; Arnoldy, R. L.; Pollock, C. J.
1989-01-01
Low-frequency electric field data below the proton gyrofrequency are presented for the duration of the argon ion beam experiment conducted as part of the Argon Release for Controlled Studies (ARCS) program. An argon ion beam was injected from the subpayload antiparallel or perpendicular to the magnetic field at altitudes from 250 to 405 km. During the injections, the wave spectra were broadband near the subpayload and narrow-band near heavy ion gyrofrequencies at perpendicular separation distances between 42 and 254 m. It is suggested that the narrow-band waves are associated with both the perpendicular argon ion beam and an unexpected flux of low-energy ions which peaked in energy near 15 eV and pitch angle near 90 deg with respect to the magnetic field.
Acoustic time-of-flight for proton range verification in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Kevin C.; Avery, Stephen, E-mail: Stephen.A
2016-09-15
Purpose: Measurement of the arrival times of thermoacoustic waves induced by pulsed proton dose depositions (protoacoustics) may provide a proton range verification method. The goal of this study is to characterize the required dose and protoacoustic proton range (distance) verification accuracy in a homogeneous water medium at a hospital-based clinical cyclotron. Methods: Gaussian-like proton pulses with 17 μs widths and instantaneous currents of 480 nA (5.6 × 10{sup 7} protons/pulse, 3.4 cGy/pulse at the Bragg peak) were generated by modulating the cyclotron proton source with a function generator. After energy degradation, the 190 MeV proton pulses irradiated a water phantom,more » and the generated protoacoustic emissions were measured by a hydrophone. The detector position and proton pulse characteristics were varied. The experimental results were compared to simulations. Different arrival time metrics derived from acoustic waveforms were compared, and the accuracy of protoacoustic time-of-flight distance calculations was assessed. Results: A 27 mPa noise level was observed in the treatment room during irradiation. At 5 cm from the proton beam, an average maximum pressure of 5.2 mPa/1 × 10{sup 7} protons (6.1 mGy at the Bragg peak) was measured after irradiation with a proton pulse with 10%–90% rise time of 11 μs. Simulation and experiment arrival times agreed well, and the observed 2.4 μs delay between simulation and experiment is attributed to the difference between the hydrophone’s acoustic and geometric centers. Based on protoacoustic arrival times, the beam axis position was measured to within (x, y) = (−2.0, 0.5) ± 1 mm. After deconvolution of the exciting proton pulse, the protoacoustic compression peak provided the most consistent measure of the distance to the Bragg peak, with an error distribution with mean = − 4.5 mm and standard deviation = 2.0 mm. Conclusions: Based on water tank measurements at a clinical hospital-based cyclotron, protoacoustics is a potential method for measuring the beam’s position (x and y within 2.0 mm) and Bragg peak range (2.0 mm standard deviation), although range verification will require simulation or experimental calibration to remove systematic error. Based on extrapolation, a protoacoustic arrival time reproducibility of 1.5 μs (2.2 mm) is achievable with 2 Gy of total deposited dose. Of the compared methods, deconvolution of the excitation proton pulse is the best technique for extracting protoacoustic arrival times, particularly if there is variation in the proton pulse shape.« less
Acoustic time-of-flight for proton range verification in water.
Jones, Kevin C; Vander Stappen, François; Sehgal, Chandra M; Avery, Stephen
2016-09-01
Measurement of the arrival times of thermoacoustic waves induced by pulsed proton dose depositions (protoacoustics) may provide a proton range verification method. The goal of this study is to characterize the required dose and protoacoustic proton range (distance) verification accuracy in a homogeneous water medium at a hospital-based clinical cyclotron. Gaussian-like proton pulses with 17 μs widths and instantaneous currents of 480 nA (5.6 × 10(7) protons/pulse, 3.4 cGy/pulse at the Bragg peak) were generated by modulating the cyclotron proton source with a function generator. After energy degradation, the 190 MeV proton pulses irradiated a water phantom, and the generated protoacoustic emissions were measured by a hydrophone. The detector position and proton pulse characteristics were varied. The experimental results were compared to simulations. Different arrival time metrics derived from acoustic waveforms were compared, and the accuracy of protoacoustic time-of-flight distance calculations was assessed. A 27 mPa noise level was observed in the treatment room during irradiation. At 5 cm from the proton beam, an average maximum pressure of 5.2 mPa/1 × 10(7) protons (6.1 mGy at the Bragg peak) was measured after irradiation with a proton pulse with 10%-90% rise time of 11 μs. Simulation and experiment arrival times agreed well, and the observed 2.4 μs delay between simulation and experiment is attributed to the difference between the hydrophone's acoustic and geometric centers. Based on protoacoustic arrival times, the beam axis position was measured to within (x, y) = (-2.0, 0.5) ± 1 mm. After deconvolution of the exciting proton pulse, the protoacoustic compression peak provided the most consistent measure of the distance to the Bragg peak, with an error distribution with mean = - 4.5 mm and standard deviation = 2.0 mm. Based on water tank measurements at a clinical hospital-based cyclotron, protoacoustics is a potential method for measuring the beam's position (x and y within 2.0 mm) and Bragg peak range (2.0 mm standard deviation), although range verification will require simulation or experimental calibration to remove systematic error. Based on extrapolation, a protoacoustic arrival time reproducibility of 1.5 μs (2.2 mm) is achievable with 2 Gy of total deposited dose. Of the compared methods, deconvolution of the excitation proton pulse is the best technique for extracting protoacoustic arrival times, particularly if there is variation in the proton pulse shape.
Protons at the speed of sound: Predicting specific biological signaling from physics.
Fichtl, Bernhard; Shrivastava, Shamit; Schneider, Matthias F
2016-05-24
Local changes in pH are known to significantly alter the state and activity of proteins and enzymes. pH variations induced by pulses propagating along soft interfaces (e.g. membranes) would therefore constitute an important pillar towards a physical mechanism of biological signaling. Here we investigate the pH-induced physical perturbation of a lipid interface and the physicochemical nature of the subsequent acoustic propagation. Pulses are stimulated by local acidification and propagate - in analogy to sound - at velocities controlled by the interface's compressibility. With transient local pH changes of 0.6 directly observed at the interface and velocities up to 1.4 m/s this represents hitherto the fastest protonic communication observed. Furthermore simultaneously propagating mechanical and electrical changes in the lipid interface are detected, exposing the thermodynamic nature of these pulses. Finally, these pulses are excitable only beyond a threshold for protonation, determined by the pKa of the lipid head groups. This protonation-transition plus the existence of an enzymatic pH-optimum offer a physical basis for intra- and intercellular signaling via sound waves at interfaces, where not molecular structure and mechano-enyzmatic couplings, but interface thermodynamics and thermodynamic transitions are the origin of the observations.
NASA Astrophysics Data System (ADS)
Wunderman, Irwin; Siegel, Edward Carl-Ludwig; Lewis, Thomas; Young, Frederic; Smith, Adolph; Dresschhoff-Zeller, Gieselle
2013-03-01
SHMUTZ: ``wet-graphite''Scheike-....[Adv.Mtls.(7/16/12)]hyper/super-SCHMUTZ-conductor(S!!!) = ``wet''(?)-``graphite''(?) = ``graphene''(?) = water(?) = hydrogen(?) =ultra-heavy proton-bands(???) = ...(???) claimed room/high-Tc/high-Jc superconductOR ``p''-``wave''/ BAND(!!!) superconductIVITY and actualized/ instantiated MgB2 high-Tc superconductors and their BCS- superconductivity: Tc Siegel[ICMAO(77);JMMM 7,190(78)] connection to SiegelJ.Nonxline-Sol.40,453(80)] disorder/amorphous-superconductivity in nano-powders mechanical bulk/shear(?)-moduli/hardness: proton-irradiated diamond, powders TiB2, TiC,{Siegel[Semis. & Insuls.5:39,47, 62 (79)])-...``VS''/concommitance with Siegel[Phys.Stat.Sol.(a)11,45(72)]-Dempsey [Phil.Mag. 8,86,285(63)]-Overhauser-(Little!!!)-Seitz-Smith-Zeller-Dreschoff-Antonoff-Young-...proton-``irradiated''/ implanted/ thermalized-in-(optimal: BOTH heat-capacity/heat-sink & insulator/maximal dielectric-constant) diamond: ``VS'' ``hambergite-borate-mineral transformable to Overhauser optimal-high-Tc-LiBD2 in Overhauser-(NW-periodic-table)-Land: CO2/CH4-ETERNAL-sequestration by-product: WATER!!!: physics lessons from
Alfvenic turbulence generated by the interstellar pickup protons in the outer heliosphere
Gamayunov, K.; Zhang, M.; Pogorelov, N.; ...
2013-06-13
Here a self-consistent model of the interstellar pickup protons, slab component of the Alfvénic turbulence, and core solar wind protons is presented for r ≤ 1 AU along with the initial results and comparison with the Voyager 2 (V2) observations. A fraction of the pickup proton free energy, f D, which is actually released in the wave form during isotropization, is taken from the quasi-linear consideration without preexisting turbulence. Whereas we use observations to specify a strength of the large scale driving, C sh, for turbulence. Our results show that for C sh ≈ 1 - 1.5 and f Dmore » ≈ 0.7 - 1, the model slab component agrees well with the V2 observations of the total transverse magnetic fluctuations starting from ~8 AU. Finally, this finding agrees with the result by Oughton et al. [17] where they also showed that the slab component dominates the two-dimensional component at the heliocentric distances beyond ~ 10 AU. So it is likely that the slab component at low-latitudes makes up a majority of the transverse magnetic fluctuations beyond 8 - 10 AU.« less
Energetic particle variations measured at Voyager 1 and 2 in 2013-14
NASA Astrophysics Data System (ADS)
Decker, R. B.; Krimigis, S. M.; Roelof, E. C.; Hill, M. E.
2014-12-01
In late August of 2012 Voyager 1 evidently crossed the heliopause at 121.6 AU near the nose of the heliosphere and entered the local interstellar medium (LISM). Since that time Voyager 1 has been in a relatively stable, but not steady-state region. Low-energy ion and electron intensities measured by the LECP instrument on Voyager 1 continue to be down by factors of 103 to 104 for major ion species compared to those in the heliosheath, with no evidence of anomalous cosmic rays upstream. The anisotropy of galactic cosmic ray protons >211 MeV, which reached a maximum ≈9% in April 2013, persisted for about one year after Voyager 1 entered the LISM, suggesting a transition region upstream of the heliopause of ≈4 AU. However, the increase in anisotropy has resumed, suggesting that influence of the heliosphere persists to distances ≈7 AU. In addition, small (≈1%) increases in the angular-averaged GCR proton intensities, the most recent occurring in mid-April of 2014 (at 127.5 AU), have been attributed to large disturbances due to solar activity and are also associated with activity in the Voyager 1 Plasma Wave instrument [Gurnett et al. 2014, this session]. Voyager 2 is now at 106 AU and still firmly in the heliosheath, with the lower-energy ion intensities having increased by a factor ≈3 since reaching a minimum in early 2013. Although the intensities of low-energy heliosheath ions and electrons continue to increase, they remain variable on short time scales. The spectral hardening of low-energy ions observed at Voyager 1 beginning about ≈1.5 years before its crossing of the heliopause is totally absent at Voyager 2. Hence, it appears highly unlikely that Voyager 2 is approaching the heliopause in the near future.
Spectral characterization of laser-accelerated protons with CR-39 nuclear track detector.
Seimetz, M; Bellido, P; García, P; Mur, P; Iborra, A; Soriano, A; Hülber, T; García López, J; Jiménez-Ramos, M C; Lera, R; Ruiz-de la Cruz, A; Sánchez, I; Zaffino, R; Roso, L; Benlloch, J M
2018-02-01
CR-39 nuclear track material is frequently used for the detection of protons accelerated in laser-plasma interactions. The measurement of track densities allows for determination of particle angular distributions, and information on the kinetic energy can be obtained by the use of passive absorbers. We present a precise method of measuring spectral distributions of laser-accelerated protons in a single etching and analysis process. We make use of a one-to-one relation between proton energy and track size and present a precise calibration based on monoenergetic particle beams. While this relation is limited to proton energies below 1 MeV, we show that the range of spectral measurements can be significantly extended by simultaneous use of absorbers of suitable thicknesses. Examples from laser-plasma interactions are presented, and quantitative results on proton energies and particle numbers are compared to those obtained from a time-of-flight detector. The spectrum end points of continuous energy distributions have been determined with both detector types and coincide within 50-100 keV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maneva, Y. G.; Poedts, Stefaan; Viñas, Adolfo F.
2015-11-20
We perform 2.5D hybrid simulations with massless fluid electrons and kinetic particle-in-cell ions to study the temporal evolution of ion temperatures, temperature anisotropies, and velocity distribution functions in relation to the dissipation and turbulent evolution of a broadband spectrum of parallel and obliquely propagating Alfvén-cyclotron waves. The purpose of this paper is to study the relative role of parallel versus oblique Alfvén-cyclotron waves in the observed heating and acceleration of alpha particles in the fast solar wind. We consider collisionless homogeneous multi-species plasma, consisting of isothermal electrons, isotropic protons, and a minor component of drifting α particles in a finite-βmore » fast stream near the Earth. The kinetic ions are modeled by initially isotropic Maxwellian velocity distribution functions, which develop nonthermal features and temperature anisotropies when a broadband spectrum of low-frequency nonresonant, ω ≤ 0.34 Ω{sub p}, Alfvén-cyclotron waves is imposed at the beginning of the simulations. The initial plasma parameter values, such as ion density, temperatures, and relative drift speeds, are supplied by fast solar wind observations made by the Wind spacecraft at 1 AU. The imposed broadband wave spectra are left-hand polarized and resemble Wind measurements of Alfvénic turbulence in the solar wind. The imposed magnetic field fluctuations for all cases are within the inertial range of the solar wind turbulence and have a Kraichnan-type spectral slope α = −3/2. We vary the propagation angle from θ = 0° to θ = 30° and θ = 60°, and find that the heating of alpha particles is most efficient for the highly oblique waves propagating at 60°, whereas the protons exhibit perpendicular cooling at all propagation angles.« less
Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases.
Cheng, Jiali; Nanayakkara, Gayani; Shao, Ying; Cueto, Ramon; Wang, Luqiao; Yang, William Y; Tian, Ye; Wang, Hong; Yang, Xiaofeng
2017-01-01
Mitochondrial proton leak is the principal mechanism that incompletely couples substrate oxygen to ATP generation. This chapter briefly addresses the recent progress made in understanding the role of proton leak in the pathogenesis of cardiovascular diseases. Majority of the proton conductance is mediated by uncoupling proteins (UCPs) located in the mitochondrial inner membrane. It is evident that the proton leak and reactive oxygen species (ROS) generated from electron transport chain (ETC) in mitochondria are linked to each other. Increased ROS production has been shown to induce proton conductance, and in return, increased proton conductance suppresses ROS production, suggesting the existence of a positive feedback loop that protects the biological systems from detrimental effects of augmented oxidative stress. There is mounting evidence attributing to proton leak and uncoupling proteins a crucial role in the pathogenesis of cardiovascular disease. We can surmise the role of "uncoupling" in cardiovascular disorders as follows; First, the magnitude of the proton leak and the mechanism involved in mediating the proton leak determine whether there is a protective effect against ischemia-reperfusion (IR) injury. Second, uncoupling by UCP2 preserves vascular function in diet-induced obese mice as well as in diabetes. Third, etiology determines whether the proton conductance is altered or not during hypertension. And fourth, proton leak regulates ATP synthesis-uncoupled mitochondrial ROS generation, which determines pathological activation of endothelial cells for recruitment of inflammatory cells. Continue effort in improving our understanding in the role of proton leak in the pathogenesis of cardiovascular and metabolic diseases would lead to identification of novel therapeutic targets for treatment.
Correlations and currents in 3He studied with the (e, e'pp) reaction
NASA Astrophysics Data System (ADS)
Groep, David Leo
2000-01-01
Nucleon-nucleon correlations, especially those of short-range character, can be well studied with electron-induced two-nucleon knockout reactions at intermediate electron energies. However, these reactions are not only driven by one-body currents, i.e., coupling of the virtual photon to one of the nucleons of a correlated pair, a process that directly probes NN-correlations. Also two-body currents, resulting from intermediate Delta-excitation and coupling to exchanged mesons, as well as final state interactions, influence the experimental cross section. Exclusive measurements of the three-body breakup of 3He offer the opportunity to compare data to microscopic calculations. The relative importance of competing two-proton knockout mechanisms can be investigated by varying the energy and momentum of the virtual photon. The experiment was performed with the electron beam extracted from the Amsterdam Pulse Stretcher (AmPS) at NIKHEF; the incident electron energy was 564 MeV. A cryogenic, high-pressure 3He gas target was used with a thickness of 270 mg/cm^2. Scattered electrons were detected in the QDQ magnetic spectrometer and both emitted protons in the HADRON plastic scintillator arrays. Cross sections were determined for three values of the three-momentum transfer of the virtual photon (q=305, 375, and 445 MeV/c) at an energy transfer value omega of 220 MeV. At q=375 MeV/c, measurements were performed over a continuous range in energy transfer from 170 to 290 MeV. The data are compared to results of continuum-Faddeev calculations performed by Golak et al., that account for rescattering among the emitted nucleons. Various potential models were used in the calculations: Bonn-B, CD-Bonn, Nijmegen-93 and Argonne v18 . Presentation of the data as a function of the missing or neutron momentum, pm, shows that the cross section decreases exponentially as a function of pm. Calculations performed with only a one-body hadronic current operator show fair agreement with data obtained at pm < 100 MeV/c at omega = 220 MeV for all q-values. It can therefore be concluded that at omega = 220 MeV and pm < 100 MeV/c the cross section is dominated by direct knockout of two protons via a one-body hadronic current. At higher neutron momentum values, data and theoretical predictions differ up to a fac tor of five for all values of omega. Within the range of energy transfer values probed in this experiment, the high pm domain is expected to be strongly influenced by intermediate excitation in the proton-neutron pair. Within specific regions of phase space, where two nucleons are emitted with comparable momentum vectors, rescattering processes strongly influence the cross section. For a such a region, measured at q=445 MeV/c, good agreement was found between data and the continuum- Faddeev calculations as a function of the pn momentum difference in the final state. Information on the wave function of 3He may be obtained in the domain omega = 220 MeV and pm < 100 MeV/c by representing the cross section as a function of pdiff1, which can be related to the relative momentum of the constituents of the two-proton pair in the initial state. The observed decrease of the cross section reflects the behaviour of the wave function and is well reproduced by calculations. At present, the data do not permit to express preference for any one of the potential models considered.
Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.
Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing
2014-01-01
The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.
Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance
Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing
2014-01-01
The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993
Full-wave modeling of EMIC waves near the He + gyrofrequency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eun -Hwa; Johnson, Jay R.
Electromagnetic ion cyclotron (EMIC) waves are known to be excited by the cyclotron instability associated with hot and anisotropic ion distributions in the equatorial region of the magnetosphere and are thought to play a key role in radiation belt losses. Although detection of these waves at the ground can provide a global view of the EMIC wave environment, it is not clear what signatures, if any, would be expected. One of the significant scientific issues concerning EMIC waves is to understand how these waves are detected at the ground. In order to solve this puzzle, it is necessary to understandmore » the propagation characteristics of the field-aligned EMIC waves, which include polarization reversal, cutoff, resonance, and mode coupling between different wave modes, in a dipolar magnetic field. However, the inability of ray tracing to adequately describe wave propagation near the crossover cutoff-resonance frequencies in multi-ion plasmas is one of reasons why these scientific questions remain unsolved. Using a recently developed 2-D full-wave code that solves the full-wave equations in global magnetospheric geometry, we demonstrate how EMIC waves propagate from the equatorial region to higher magnetic latitude in an electron-proton-He+ plasma. We find that polarization reversal occurs at the crossover frequency from left-hand polarization (LHP) to right-hand (RHP) polarization and such RHP EMIC waves can either propagate to the inner magnetosphere or reflect to the outer magnetosphere at the Buchsbaum resonance location. Lastly, we also find that mode coupling from guided LHP EMIC waves to unguided RHP or LHP waves (i.e., fast mode) occurs.« less
Full-wave modeling of EMIC waves near the He + gyrofrequency
Kim, Eun -Hwa; Johnson, Jay R.
2016-01-06
Electromagnetic ion cyclotron (EMIC) waves are known to be excited by the cyclotron instability associated with hot and anisotropic ion distributions in the equatorial region of the magnetosphere and are thought to play a key role in radiation belt losses. Although detection of these waves at the ground can provide a global view of the EMIC wave environment, it is not clear what signatures, if any, would be expected. One of the significant scientific issues concerning EMIC waves is to understand how these waves are detected at the ground. In order to solve this puzzle, it is necessary to understandmore » the propagation characteristics of the field-aligned EMIC waves, which include polarization reversal, cutoff, resonance, and mode coupling between different wave modes, in a dipolar magnetic field. However, the inability of ray tracing to adequately describe wave propagation near the crossover cutoff-resonance frequencies in multi-ion plasmas is one of reasons why these scientific questions remain unsolved. Using a recently developed 2-D full-wave code that solves the full-wave equations in global magnetospheric geometry, we demonstrate how EMIC waves propagate from the equatorial region to higher magnetic latitude in an electron-proton-He+ plasma. We find that polarization reversal occurs at the crossover frequency from left-hand polarization (LHP) to right-hand (RHP) polarization and such RHP EMIC waves can either propagate to the inner magnetosphere or reflect to the outer magnetosphere at the Buchsbaum resonance location. Lastly, we also find that mode coupling from guided LHP EMIC waves to unguided RHP or LHP waves (i.e., fast mode) occurs.« less
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.; Liemohn, M. W.
2007-01-01
This paper continues presentation and discussion of the results from our new global self-consistent theoretical model of interacting ring current ions and propagating electromagnetic ion cyclotron waves [Khazanov et al., 2006]. To study the effects of electromagnetic ion cyclotron wave propagation and refraction on the wave induced ring current precipitation and heating of the thermal plasmaspheric electrons, we simulate the May 1998 storm. The main findings after a simulation can be summarized as follows. Firstly, the wave induced ring current precipitation exhibits quite a lot of fine structure, and is highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 x 10(exp 6) (cm(raised dot) s(raised dot) sr(raised dot) (sup -1)) are observed during the maill and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not connected to the most intense waves in simple manner. The characteristics of the wave power spectral density distribution over the wave normal angle are extremely crucial for the effectiveness of the ring current ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from RAM [Kozyra et al., 1997a] reveals that although we observe a qualitative agreement between the localizations of the wave induced precipitations in the models, there is no quantitative agreement between the magnitudes of the fluxes. The quantitative differences are mainly due to a qualitative difference between the characteristics of the wave power spectral density distributions over the wave normal angle in RAM and in our model. Thirdly, the heat fluxes to plasmaspheric electrons caused by Landau resonate energy absorption from electromagnetic ion cyclotron waves are observed in the postnoon-premidnight MLT sector, and can reach the magnitude of 10(exp 11) eV/(cm(sup 2)(raised dot)s). The Coulomb energy degradation of the RC H(+) and O(+) ions maximizes at about 10(exp 11) (eV/(cm(sup 2) (raised dot) s), and typically leads to electron energy deposition rates of about 2(raised dot) 10(exp 10) (eV/(cm(sup 2)(raised dot)s) which are observed during two periods; 32-48 hours, and 76-86 hours after 1 May, 0000 UT. The theoretically derived spatial structure of the thermal electron heating caused by interaction of the ring current with the plasmasphere is strongly supported by concurrent and conjugate plasma measurements from the plasmasphere, ring current, and topside ionosphere [Gurgiolo et al., 2005]. Finally, the wave induced intense electron heating has a structure of the spot-like patches along the most enhanced density gradients in the plasmasphere boundary layer and can be a possible driver to the observed but still not explained small-scale structures of enhanced emissions in the stable auroral red arcs.
The formation and evolution of reconnection-driven, slow-mode shocks in a partially ionised plasma
NASA Astrophysics Data System (ADS)
Hillier, A.; Takasao, S.; Nakamura, N.
2016-06-01
The role of slow-mode magnetohydrodynamic (MHD) shocks in magnetic reconnection is of great importance for energy conversion and transport, but in many astrophysical plasmas the plasma is not fully ionised. In this paper, we use numerical simulations to investigate the role of collisional coupling between a proton-electron, charge-neutral fluid and a neutral hydrogen fluid for the one-dimensional (1D) Riemann problem initiated in a constant pressure and density background state by a discontinuity in the magnetic field. This system, in the MHD limit, is characterised by two waves. The first is a fast-mode rarefaction wave that drives a flow towards a slow-mode MHD shock wave. The system evolves through four stages: initiation, weak coupling, intermediate coupling, and a quasi-steady state. The initial stages are characterised by an over-pressured neutral region that expands with characteristics of a blast wave. In the later stages, the system tends towards a self-similar solution where the main drift velocity is concentrated in the thin region of the shock front. Because of the nature of the system, the neutral fluid is overpressured by the shock when compared to a purely hydrodynamic shock, which results in the neutral fluid expanding to form the shock precursor. Once it has formed, the thickness of the shock front is proportional to ξ I-1.2 , which is a smaller exponent than would be naively expected from simple scaling arguments. One interesting result is that the shock front is a continuous transition of the physical variables of subsonic velocity upstream of the shock front (a c-shock) to a sharp jump in the physical variables followed by a relaxation to the downstream values for supersonic upstream velocity (a j-shock). The frictional heating that results from the velocity drift across the shock front can amount to ~2 per cent of the reference magnetic energy.
NASA Astrophysics Data System (ADS)
de Araújo, W. R. B.; de Melo, J. P. B. C.; Tsushima, K.
2018-02-01
We study the nucleon electromagnetic (EM) form factors in symmetric nuclear matter as well as in vacuum within a light-front approach using the in-medium inputs calculated by the quark-meson coupling model. The same in-medium quark properties are used as those used for the study of in-medium pion properties. The zero of the proton EM form factor ratio in vacuum, the electric to magnetic form factor ratio μpGEp (Q2) /GMp (Q2) (Q2 = -q2 > 0 with q being the four-momentum transfer), is determined including the latest experimental data by implementing a hard constituent quark component in the nucleon wave function. A reasonable fit is achieved for the ratio μpGEp (Q2) /GMp (Q2) in vacuum, and we predict that the Q02 value to cross the zero of the ratio to be about 15 GeV2. In addition the double ratio data of the proton EM form factors in 4He and H nuclei, [GEp4He (Q2) /G4HeMp (Q2) ] / [GEp1H (Q2) /GMp1H (Q2) ], extracted by the polarized (e → ,e‧ p →) scattering experiment on 4He at JLab, are well described. We also predict that the Q02 value satisfying μpGEp (Q02) /GMp (Q0 2) = 0 in symmetric nuclear matter, shifts to a smaller value as increasing nuclear matter density, which reflects the facts that the faster falloff of GEp (Q2) as increasing Q2 and the increase of the proton mean-square charge radius. Furthermore, we calculate the neutron EM form factor double ratio in symmetric nuclear matter for 0.1
Polarized Compton Scattering Experiments at the Mainz Microtron
NASA Astrophysics Data System (ADS)
Martel, Philippe
2017-01-01
Interactions between an electromagnetic wave and a proton are described at the basic level by the mass, charge, and anomalous magnetic moment of the proton. Such a description, however, assumes a point-like particle, something the proton is certainly not. The internal structure of the proton leads to higher order terms, such as the scalar and vector polarizabilities, in the interaction. To study these polarizabilities, a multi-experiment program has been undertaken at the Mainz Microtron to measure observables in Compton scattering that exhibit dependence on these parameters. This program has made use of the A2 tagged photon beam, with either a linear or circular polarization, proton targets of either unpolarized LH2 or frozen-spin butanol with transverse or longitudinal polarization, as well as the nearly 4 π detection capability of the Crystal Ball and TAPS detectors. The first of these measurements, the double-polarization asymmetry Σ2 x, also the first of its kind, has already been published. Measurements of the beam asymmetry Σ3 and another double-polarization asymmetry Σ2 z have also been performed and are in various stages of analysis and publication. This talk will discuss the status of these measurements, as well as various fitting studies that are being performed with the data in hand, and plans for future measurements. on behalf of the A2 collaboration at MAMI.
Proton velocity ring-driven instabilities and their dependence on the ring speed: Linear theory
NASA Astrophysics Data System (ADS)
Min, Kyungguk; Liu, Kaijun; Gary, S. Peter
2017-08-01
Linear dispersion theory is used to study the Alfvén-cyclotron, mirror and ion Bernstein instabilities driven by a tenuous (1%) warm proton ring velocity distribution with a ring speed, vr, varying between 2vA and 10vA, where vA is the Alfvén speed. Relatively cool background protons and electrons are assumed. The modeled ring velocity distributions are unstable to both the Alfvén-cyclotron and ion Bernstein instabilities whose maximum growth rates are roughly a linear function of the ring speed. The mirror mode, which has real frequency ωr=0, becomes the fastest growing mode for sufficiently large vr/vA. The mirror and Bernstein instabilities have maximum growth at propagation oblique to the background magnetic field and become more field-aligned with an increasing ring speed. Considering its largest growth rate, the mirror mode, in addition to the Alfvén-cyclotron mode, can cause pitch angle diffusion of the ring protons when the ring speed becomes sufficiently large. Moreover, because the parallel phase speed, v∥ph, becomes sufficiently small relative to vr, the low-frequency Bernstein waves can also aid the pitch angle scattering of the ring protons for large vr. Potential implications of including these two instabilities at oblique propagation on heliospheric pickup ion dynamics are discussed.
Detecting cavitation in mercury exposed to a high-energy pulsed proton beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzi, Nicholas J; Chitnis, Parag V; Holt, Ray G
2010-01-01
The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will bemore » reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.« less
Toward continuous-wave operation of organic semiconductor lasers
Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya
2017-01-01
The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042
Toward continuous-wave operation of organic semiconductor lasers.
Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya
2017-04-01
The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.
Water versus DNA: New insights into proton track-structure modeling in radiobiology and radiotherapy
Champion, Christophe; Quinto, Michele A.; Monti, Juan M.; ...
2015-09-25
Water is a common surrogate of DNA for modelling the charged particle-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, a self-consistent quantum mechanical modelling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. Their respective probability of occurrence-expressed in terms of total cross sections-as well asmore » their energetic signature (potential and kinetic) are assessed in order to clearly emphasize the differences existing between realistic building blocks of living matter and the controverted water-medium surrogate. Thus the consequences in radiobiology and radiotherapy will be discussed in particular in view of treatment planning refinement aiming at better radiotherapy strategies.« less
Shock-wave proton acceleration from a hydrogen gas jet
NASA Astrophysics Data System (ADS)
Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly
2013-04-01
Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.
Champion, C; Quinto, M A; Monti, J M; Galassi, M E; Weck, P F; Fojón, O A; Hanssen, J; Rivarola, R D
2015-10-21
Water is a common surrogate of DNA for modelling the charged particle-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, a self-consistent quantum mechanical modelling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. Their respective probability of occurrence-expressed in terms of total cross sections-as well as their energetic signature (potential and kinetic) are assessed in order to clearly emphasize the differences existing between realistic building blocks of living matter and the controverted water-medium surrogate. Consequences in radiobiology and radiotherapy will be discussed in particular in view of treatment planning refinement aiming at better radiotherapy strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Todd M.; Liao, Zuolei; Nyman, May
Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less
Tadevosian, A; Trchunian, A
2009-01-01
It has been shown that the exposure of wild-type Escherichia coli K12 bacteria grown in anaerobic conditions upon fermentation of glucose to coherent extremely high-frequency (51.8 and 53 GHz) electromagnetic radiation (EMR) or millimeter waves (wavelength 5.8 to 6.7 mm) of low intensity (flux capacity 0.06 mW/cm2) caused a marked decrease in energy-dependent and N,N'-dicyclohexylcarbodiimide- or azide-sensitive proton and potassium ions transport fluxes through the membrane, including proton fluxes via proton F0F1-ATPase and through the potassium uptake Trk system, correspondingly. K+ uptake was less for the E. coli mutant Trk 1110. The rate of molecular hydrogen production by formate hydrogen lyase 2 is strongly inhibited. The results indicate that the bacterial effect of coherent extremely high-frequency EMR includes changes in the activity of membrane transport and enzymatic systems in which the F0F1-ATPase plays a key role.
Alam, Todd M.; Liao, Zuolei; Nyman, May; ...
2016-04-27
Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less
Watt-Level Continuous-Wave Emission from a Bi-Functional Quantum Cascade Laser/Detector
2017-04-18
facet continuous wave emission at 15◦C. Apart from the general performance benets, this enables sensing techiques which rely on continuous wave...record achieved with strained material at this wavelength. Keywords quantum cascade laser, quantum cascade detector, lab- on -a-chip, monolithic integrated...materials, which makes their integration on Si particularly dicult. Heterogeneous integration using transfer techniques allows both single device and wafer
Low-Frequency Waves in Cold Three-Component Plasmas
NASA Astrophysics Data System (ADS)
Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong
2016-09-01
The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS
One-Hertz Waves at Mars: MAVEN Observations
NASA Astrophysics Data System (ADS)
Ruhunusiri, Suranga; Halekas, J. S.; Espley, J. R.; Eparvier, F.; Brain, D.; Mazelle, C.; Harada, Y.; DiBraccio, G. A.; Thiemann, E. M. B.; Larson, D. E.; Mitchell, D. L.; Jakosky, B. M.; Sulaiman, A. H.
2018-05-01
We perform a survey of 1-Hz waves at Mars utilizing Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft observations for a Martian year. We find that the 1-Hz wave occurrence rate shows an apparent variation caused by masking of the waves by background turbulence during the times when the background turbulence levels are high. To correct for this turbulence masking, we select waves that occur in time intervals where the background turbulence levels are low. We find that the extreme ultraviolet flux does not affect the wave occurrence rate significantly, suggesting that the newly born pickup ions originating in the Mars's exosphere contribute minimally to the 1-Hz wave generation. We find that the wave occurrence rates are higher for low Mach numbers and low beta values than for high Mach numbers and high beta values. Further, we find that a high percentage of 1-Hz waves satisfy the group-standing condition, which suggests that a high percentage of the waves seen as monochromatic waves in the spacecraft frame can be broadband waves in the solar wind frame that have group velocities nearly equal and opposite to the solar wind velocity. We infer that the wave occurrence rate trends with the Mach number and proton beta are a consequence of how the Mach numbers and beta values influence the wave generation and damping or how those parameters affect the group-standing condition. Finally, we find that the 1-Hz waves are equally likely to be found in both the quasi-parallel and the quasi-perpendicular foreshock regions.
Reasons for Trying E-cigarettes and Risk of Continued Use
Kong, Grace; Cavallo, Dana A.; Camenga, Deepa R.; Krishnan-Sarin, Suchitra
2016-01-01
BACKGROUND: Longitudinal research is needed to identify predictors of continued electronic cigarette (e-cigarette) use among youth. We expected that certain reasons for first trying e-cigarettes would predict continued use over time (eg, good flavors, friends use), whereas other reasons would not predict continued use (eg, curiosity). METHODS: Longitudinal surveys from middle and high school students from fall 2013 (wave 1) and spring 2014 (wave 2) were used to examine reasons for trying e-cigarettes as predictors of continued e-cigarette use over time. Ever e-cigarette users (n = 340) at wave 1 were categorized into those using or not using e-cigarettes at wave 2. Among those who continued using e-cigarettes, reasons for trying e-cigarettes were examined as predictors of use frequency, measured as the number of days using e-cigarettes in the past 30 days at wave 2. Covariates included age, sex, race, and smoking of traditional cigarettes. RESULTS: Several reasons for first trying e-cigarettes predicted continued use, including low cost, the ability to use e-cigarettes anywhere, and to quit smoking regular cigarettes. Trying e-cigarettes because of low cost also predicted more days of e-cigarette use at wave 2. Being younger or a current smoker of traditional cigarettes also predicted continued use and more frequent use over time. CONCLUSIONS: Regulatory strategies such as increasing cost or prohibiting e-cigarette use in certain places may be important for preventing continued use in youth. In addition, interventions targeting current cigarette smokers and younger students may also be needed. PMID:27503349
Reasons for Trying E-cigarettes and Risk of Continued Use.
Bold, Krysten W; Kong, Grace; Cavallo, Dana A; Camenga, Deepa R; Krishnan-Sarin, Suchitra
2016-09-01
Longitudinal research is needed to identify predictors of continued electronic cigarette (e-cigarette) use among youth. We expected that certain reasons for first trying e-cigarettes would predict continued use over time (eg, good flavors, friends use), whereas other reasons would not predict continued use (eg, curiosity). Longitudinal surveys from middle and high school students from fall 2013 (wave 1) and spring 2014 (wave 2) were used to examine reasons for trying e-cigarettes as predictors of continued e-cigarette use over time. Ever e-cigarette users (n = 340) at wave 1 were categorized into those using or not using e-cigarettes at wave 2. Among those who continued using e-cigarettes, reasons for trying e-cigarettes were examined as predictors of use frequency, measured as the number of days using e-cigarettes in the past 30 days at wave 2. Covariates included age, sex, race, and smoking of traditional cigarettes. Several reasons for first trying e-cigarettes predicted continued use, including low cost, the ability to use e-cigarettes anywhere, and to quit smoking regular cigarettes. Trying e-cigarettes because of low cost also predicted more days of e-cigarette use at wave 2. Being younger or a current smoker of traditional cigarettes also predicted continued use and more frequent use over time. Regulatory strategies such as increasing cost or prohibiting e-cigarette use in certain places may be important for preventing continued use in youth. In addition, interventions targeting current cigarette smokers and younger students may also be needed. Copyright © 2016 by the American Academy of Pediatrics.
A comparison of the effects of continuous wave, sinusoidal-amplitude modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague Dawley rats (175-225g). Brain NADH fluorescence, adensine triphosphate (ATP) concentrat...
Global MHD Simulation of the Coronal Mass Ejection on 2011 March 7: from Chromosphere to 1 AU
NASA Astrophysics Data System (ADS)
Jin, M.; Manchester, W.; van der Holst, B.; Oran, R.; Sokolov, I.; Toth, G.; Vourlidas, A.; Liu, Y.; Sun, X.; Gombosi, T. I.
2013-12-01
In this study, we present magnetohydrodynamics simulation results of a fast CME event that occurred on 2011 March 7 by using the newly developed Alfven Wave Solar Model (AWSoM) in Space Weather Modeling Framework (SWMF). The background solar wind is driven by Alfven-wave pressure and heated by Alfven-wave dissipation in which we have incorporated balanced turbulence at the top of the closed field lines. The magnetic field of the inner boundary is specified with a synoptic magnetogram from SDO/HMI. In order to produce the physically correct CME structures and CME-driven shocks, the electron and proton temperatures are separated so that the electron heat conduction is explicitly treated in conjunction with proton shock heating. Also, collisionless heat conduction is implemented for getting the correct electron temperature at 1 AU. We initiate the CME by using the Gibson-Low flux rope model and simulate the CME propagation to 1 AU. A comprehensive validation study is performed using remote as well as in-situ observations from SOHO, STEREOA/B, ACE, and WIND. Our result shows that the new model can reproduce most of the observed features and the arrival time of the CME is correctly estimated, which suggests the forecasting capability of the new model. We also examine the simulated CME-driven shock structures that are important for modeling the associated solar energetic event (SEP) with diffusive shock acceleration.
Origin of low proton-to-electron temperature ratio in the Earth's plasma sheet
NASA Astrophysics Data System (ADS)
Grigorenko, E. E.; Kronberg, E. A.; Daly, P. W.; Ganushkina, N. Yu.; Lavraud, B.; Sauvaud, J.-A.; Zelenyi, L. M.
2016-10-01
We study the proton-to-electron temperature ratio (Tp/Te) in the plasma sheet (PS) of the Earth's magnetotail using 5 years of Cluster observations (2001-2005). The PS intervals are searched within a region defined with -19 < X ≤ -7 RE and |Y| < 15 RE (GSM) under the condition |BX| ≤ 10 nT. One hundred sixty PS crossings are identified. We find an average value of
RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Airapetian, Vladimir S.; Usmanov, Arcadi V., E-mail: vladimir.airapetian@nasa.gov, E-mail: avusmanov@gmail.com
Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electronmore » temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharov, L.; Laitinen, T.; Vainio, R.
2015-06-10
With the first observations of solar γ-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the γ-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported backmore » to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the γ-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space.« less
A Landau fluid model for dispersive magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Passot, T.; Sulem, P. L.
2004-11-01
A monofluid model with Landau damping is presented for strongly magnetized electron-proton collisionless plasmas whose distribution functions are close to bi-Maxwellians. This description that includes dynamical equations for the gyrotropic components of the pressure and heat flux tensors, extends the Landau-fluid model of Snyder, Hammett, and Dorland [Phys. Plasmas 4, 3974 (1997)] by retaining Hall effect and finite Larmor radius corrections. It accurately reproduces the weakly nonlinear dynamics of dispersive Alfvén waves whose wavelengths are large compared to the ion inertial length, whatever their direction of propagation, and also the rapid Landau dissipation of long magnetosonic waves in a warm plasma.
A Bulk Comptonization Model for the Prompt GRB Emission and its Relation to the Fermi GRB Spectra
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes
2010-01-01
We present a model in which the GRB prompt emission at E E(sub peak) is due to bulk Comptonization by the relativistic blast wave motion of either its own synchrotron photons of ambient photons of the stellar configuration that gave birth to the GRB. The bulk Comptonization process then induces the production of relativistic electrons of Lorentz factor equal to that of the blast wave through interactions with its ambient protons. The inverse compton emission of these electrons produces a power law component that extends to multi GeV energies in good agreement with the LAT GRB observations.
Novel Imaging Method of Continuous Shear Wave by Ultrasonic Color Flow Mapping
NASA Astrophysics Data System (ADS)
Yamakoshi, Yoshiki; Yamamoto, Atsushi; Yuminaka, Yasushi
Shear wave velocity measurement is a promising method in evaluation of tissue stiffness. Several methods have been developed to measure the shear wave velocity, however, it is difficult to obtain quantitative shear wave image in real-time by low cost system. In this paper, a novel shear wave imaging method for continuous shear wave is proposed. This method uses a color flow imaging which is used in ultrasonic imaging system to obtain shear wave's wavefront map. Two conditions, shear wave frequency condition and shear wave displacement amplitude condition, are required, however, these conditions are not severe restrictions in most applications. Using the proposed method, shear wave velocity of trapezius muscle is measured. The result is consistent with the velocity which is calculated from shear elastic modulus measured by ARFI method.
Luo, Y.; Fischer, W.; White, S.
2016-02-04
The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we will present the operational observations at the routine proton physics stores. In addition, the mechanisms for the beam loss, transverse emittance growth, and bunch lengthening are analyzed. Lastly, numerical calculations and multiparticle tracking are used to model these observations.
Electromagnetic Ion Cyclotron Wavefields in a Realistic Dipole Field
NASA Astrophysics Data System (ADS)
Denton, R. E.
2018-02-01
The latitudinal distribution and properties of electromagnetic ion cyclotron (EMIC) waves determine the total effect of those waves on relativistic electrons. Here we describe the latitudinal variation of EMIC waves simulated self-consistently in a dipole magnetic field for a plasmasphere or plume-like plasma at geostationary orbit with cold H+, He+, and O+ and hot protons with temperature anisotropy. The waves grow as they propagate away from the magnetic equator to higher latitude, while the wave vector turns outward radially and the polarization becomes linear. We calculate the detailed wave spectrum in four latitudinal ranges varying from magnetic latitude (MLAT) close to 0° (magnetic equator) up to 21°. The strongest waves are propagating away from the magnetic equator, but some wave power propagating toward the magnetic equator is observed due to local generation (especially close to the magnetic equator) or reflection. The He band waves, which are generated relatively high up on their dispersion surface, are able to propagate all the way to MLAT = 21°, but the H band waves experience frequency filtering, with no equatorial waves propagating to MLAT = 21° and only the higher-frequency waves propagating to MLAT = 14°. The result is that the wave power averaged k∥, which determines the relativistic electron minimum resonance energy, scales like the inverse of the local magnetic field for the He mode, whereas it is almost constant for the H mode. While the perpendicular wave vector turns outward, it broadens. These wavefields should be useful for simulations of radiation belt particle dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balandina, E. V., E-mail: lena@kiraton.sinp.msu.ru; Leikin, E. M.; Yudin, N. P.
2008-01-15
Basic Breit-Wigner features of the S{sub 11}(1535), S{sub 11}(1650), and P{sub 11}(1710) nucleon resonances are evaluated in a model-independent way on the basis of the results obtained previously from a partial-wave analysis of eta-meson photoproduction on protons.
2008-01-30
that will use conventional diode- or hotomultiplier-tube-based optical detectors , which are xtremely sensitive . . HEATING AND FREE-CARRIER IMITATIONS...CONTRACT NUMBER IN-HOUSE Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides 5b. GRANT...B 261Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides T. Baehr-Jones,1,* M. Hochberg,1,3
Richings, Gareth W; Habershon, Scott
2017-09-12
We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated "on-the-fly". The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree-Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allmond, James M; Stuchberry, A. E.; Danchev, M.
Radioactive 136Te has two valence protons and two valence neutrons outside of the 132Sn double shell closure, providing a simple laboratory for exploring the emergence of collectivity and nucleon- nucleon interactions. Coulomb excitation of 136Te on a titanium target was utilized to determine an extensive set of electromagnetic moments for the three lowest-lying states, including B(E2;0more » $$+\\atop{1}$$→ 2$$+\\atop{1}$$ ), Q(2$$+\\atop{1}$$ ), and g(2$$+\\atop{1}$$ ). The results indicate that the first-excited state, 2$$+\\atop{1}$$ , composed of the simple 2p ⊕ 2n system, is prolate deformed, and its wave function is dominated by neutron degrees of freedom, but not to the extent previously suggested. It is demonstrated that extreme sensitivity of g(2$$+\\atop{1}$$) to the proton and neutron contributions to the wave function provides unique insight into the nature of emerging collectivity, and g(2$$+\\atop{1}$$ ) was used to differentiate among several state-of-the-art theoretical calculations. Finally, our results are best described by the most recent shell model calculations.« less
Allmond, James M; Stuchberry, A. E.; Danchev, M.; ...
2017-03-03
Radioactive 136Te has two valence protons and two valence neutrons outside of the 132Sn double shell closure, providing a simple laboratory for exploring the emergence of collectivity and nucleon- nucleon interactions. Coulomb excitation of 136Te on a titanium target was utilized to determine an extensive set of electromagnetic moments for the three lowest-lying states, including B(E2;0more » $$+\\atop{1}$$→ 2$$+\\atop{1}$$ ), Q(2$$+\\atop{1}$$ ), and g(2$$+\\atop{1}$$ ). The results indicate that the first-excited state, 2$$+\\atop{1}$$ , composed of the simple 2p ⊕ 2n system, is prolate deformed, and its wave function is dominated by neutron degrees of freedom, but not to the extent previously suggested. It is demonstrated that extreme sensitivity of g(2$$+\\atop{1}$$) to the proton and neutron contributions to the wave function provides unique insight into the nature of emerging collectivity, and g(2$$+\\atop{1}$$ ) was used to differentiate among several state-of-the-art theoretical calculations. Finally, our results are best described by the most recent shell model calculations.« less
Measurements of Heavy Ion Differential Streaming with SOHO/CELIAS/CTOF and ACE/SWICS at 1 AU
NASA Astrophysics Data System (ADS)
Janitzek, Nils; Berger, Lars; Taut, Andreas; Drews, Christian; Wimmer-Schweingruber, Robert
2016-04-01
Helios measurements in the early 1980s showed the existence of a systematic velocity difference, called "differential streaming", between solar wind bulk protons and alpha particles with the alphas streaming faster than the protons. The absolute differential speed between these species decreases with radial distance to the Sun and decreasing proton speed. In the fast wind it was measured to be approximately half of the local Alfvén speed. However, the detailed processes of acceleration and regulation of differential streaming are still not well understood. A proposed key process is resonant wave particle interaction between the ions and Alfvén waves near the ion-cyclotron frequency which is able to accelerate the alphas preferentially due to their higher mass-per-charge ratio. Measuring the differential speed of a wide set of solar wind heavy ions and therefore extending the mass-per-charge range significantly can provide additional information on the underlying processes that we cannot infer from the alphas and protons alone. We analysed data measured at L1 by SOHO/CELIAS/CTOF in 1996 and ACE/SWICS from 2001 to 2010. Both instruments are linear time-of-flight mass spectrometers which measure the ions' radial 1D velocity distributions with a cadence of 5 and 12 minutes, respectively. Comparing the mean ion speed, with the mean proton speed measured routinely by the SOHO/CELIAS/MTOF/PM and ACE/SWEPAM, respectively, we obtain the differential streaming for major charge states of solar wind carbon, oxygen, neon, magnesium, silicon and iron. In the case of the SWICS data the magnetometer on-board ACE (ACE/MAG) allows us to directly relate the differential streaming to the ambient Alfvén velocity while the lack of in-situ magnetic field measurements on SOHO is compensated by a B-field extrapolation from the WIND spacecraft (WIND/MAG) to the SOHO site. Both instruments show a similar result: significant differential streaming between heavy ions and protons on the order of the local Alfvén speed for solar wind above 400 km/s. While for slow solar wind the picture is more complex, the differential streaming is ubiquitous in the fast wind. Neither of the instruments measured a clear trend with ion mass-per-charge as would be expected from simple models including ion cyclotron resonance as the main driving process. Finally, we discuss a possible dependence of the differential streaming on the solar cycle.
Multiple electron processes of He and Ne by proton impact
NASA Astrophysics Data System (ADS)
Terekhin, Pavel Nikolaevich; Montenegro, Pablo; Quinto, Michele; Monti, Juan; Fojon, Omar; Rivarola, Roberto
2016-05-01
A detailed investigation of multiple electron processes (single and multiple ionization, single capture, transfer-ionization) of He and Ne is presented for proton impact at intermediate and high collision energies. Exclusive absolute cross sections for these processes have been obtained by calculation of transition probabilities in the independent electron and independent event models as a function of impact parameter in the framework of the continuum distorted wave-eikonal initial state theory. A binomial analysis is employed to calculate exclusive probabilities. The comparison with available theoretical and experimental results shows that exclusive probabilities are needed for a reliable description of the experimental data. The developed approach can be used for obtaining the input database for modeling multiple electron processes of charged particles passing through the matter.
Differential cross sections for ionizations of H and H2 by 75 keV proton impact
NASA Astrophysics Data System (ADS)
Igarashi, A.; Gulyás, L.
2018-02-01
We have calculated total, partial and fully differential cross sections (FDCSs) for ionizations of H and H2 by 75 keV proton impact within the framework of the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) approximation. Applying the single active electron model, the interaction between the projectile and the target ion is taken into account in the impact parameter picture. Extension of the CDW-EIS model to the molecular target is performed using the two-effective center approximation. The obtained results are compared with those of experimental and other theoretical data when available. The agreements between the theories and the experimental data are generally reasonable except for some cases of the FDCSs.
Freak Waves In The Ocean A~é We Need Continuous Measurements!
NASA Astrophysics Data System (ADS)
Liu, P.; Teng, C.; Mori, N.
Freak waves, sometimes also known as rogue waves, are a particular kind of ocean waves that displays a singular, unexpected, and unusually high wave profile with an extraordinarily large and steep trough or crest. The existence of freak waves has be- come widely accepted while it always poses severe hazard to the navy fleets, merchant marines, offshore structures, and virtually all oceanic ventures. Multitudes of seagoing vessels and mariners have encountered freak waves over the years, many had resulted in disasters. The emerging interest in freak waves and the quest to grasp an understand- ing of the phenomenon have inspired numerous theoretical conjectures in recent years. But the practical void of actual field observation on freak waves renders even the well- developed theories remain unverified. Furthermore, the present wave measurement systems, which have been in practice for the last 5 decades, are not at all designed to capture freak waves. We wish therefore to propose and petition to all oceanic scientist and engineers to consider undertaking an unprecedented but technologically feasible practice of making continuous and uninterrupted wave measurements. As freak waves can happen anywhere in the ocean and at anytime, the continuous and uninterrupted measurements at a fixed station would certainly be warranted to document the occur- rence of freak waves, if present, and thus lead to basic realizations of the underlying driving mechanisms.
A quasilinear kinetic model for solar wind electrons and protons instabilities
NASA Astrophysics Data System (ADS)
Sarfraz, M.; Yoon, P. H.
2017-12-01
In situ measurements confirm the anisotropic behavior in temperatures of solar wind species. These anisotropies associated with charge particles are observed to be relaxed. In collionless limit, kinetic instabilities play a significant role to reshape particles distribution. The linear analysis results are encapsulated in inverse relationship between anisotropy and plasma beta based observations fittings techniques, simulations methods, or solution of linearized Vlasov equation. Here amacroscopic quasilinear technique is adopted to confirm inverse relationship through solutions of set of self-consistent kinetic equations. Firstly, for a homogeneous and non-collisional medium, quasilinear kinetic model is employed to display asymptotic variations of core and halo electrons temperatures and saturations of wave energy densities for electromagnetic electron cyclotron (EMEC) instability sourced by, T⊥}>T{∥ . It is shown that, in (β ∥ , T⊥}/T{∥ ) phase space, the saturations stages of anisotropies associated with core and halo electrons lined up on their respective marginal stability curves. Secondly, for case of electrons firehose instability ignited by excessive parallel temperature i.e T⊥}>T{∥ , both electrons and protons are allowed to dynamically evolve in time. It is also observed that, the trajectories of protons and electrons at saturation stages in phase space of anisotropy and plasma beta correspond to proton cyclotron and firehose marginal stability curves, respectively. Next, the outstanding issue that most of observed proton data resides in nearly isotropic state in phase space is interpreted. Here, in quasilinear frame-work of inhomogeneous solar wind system, a set of self-consistent quasilinear equations is formulated to show a dynamical variations of temperatures with spatial distributions. On choice of different initial parameters, it is shown that, interplay of electron and proton instabilities provides an counter-balancing force to slow down the protons away from marginal stability states. As we are dealing both, protons and electrons for radially expanding solar wind plasma, our present approach may eventually be incorporated in global-kinetic models of the solar wind species.
NASA Technical Reports Server (NTRS)
Greenstadt, E. W.; Le, G.; Strangeway, R. J.
1995-01-01
We review our current knowledge of ULF waves in planetary foreshocks. Most of this knowledge comes from observations taken within a few Earth radii of the terrestrial bow shock. Terrestrial foreshock ULF waves can be divided into three types, large amplitude low frequency waves (approximately 30-s period), upstream propagating whistlers (1-Hz waves), and 3-s waves. The 30-s waves are apparently generated by back-streaming ion beams, while the 1-Hz waves are generated at the bow shock. The source of the 3-s waves has yet to be determined. In addition to issues concerning the source of ULF waves in the foreshock, the waves present a number of challenges, both in terms of data acquisition, and comparison with theory. The various waves have different coherence scales, from approximately 100 km to approximately 1 Earth radius. Thus multi-spacecraft separation strategies must be tailored to the phenomenon of interest. From a theoretical point of view, the ULF waves are observed in a plasma in which the thermal pressure is comparable to the magnetic pressure, and the rest-frame wave frequency can be moderate fraction of the proton gyro-frequency. This requires the use of kinetic plasma wave dispersion relations, rather than multi-fluid MHD. Lastly, and perhaps most significantly, ULF waves are used to probe the ambient plasma, with inferences being drawn concerning the types of energetic ion distributions within the foreshock. However, since most of the data were acquired close to the bow shock, the properties of the more distant foreshock have to be deduced mainly through extrapolation of the near-shock results. A general understanding of the wave and plasma populations within the foreshock, their interrelation, and evolution, requires additional data from the more distant foreshock.
Generation Process of Large-Amplitude Upper-Band Chorus Emissions Observed by Van Allen Probes
Kubota, Yuko; Omura, Yoshiharu; Kletzing, Craig; ...
2018-04-19
In this paper, we analyze large-amplitude upper-band chorus emissions measured near the magnetic equator by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument package on board the Van Allen Probes. In setting up the parameters of source electrons exciting the emissions based on theoretical analyses and observational results measured by the Helium Oxygen Proton Electron instrument, we calculate threshold and optimum amplitudes with the nonlinear wave growth theory. We find that the optimum amplitude is larger than the threshold amplitude obtained in the frequency range of the chorus emissions and that the wave amplitudes grow between themore » threshold and optimum amplitudes. Finally, in the frame of the wave growth process, the nonlinear growth rates are much greater than the linear growth rates.« less
Generation Process of Large-Amplitude Upper-Band Chorus Emissions Observed by Van Allen Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, Yuko; Omura, Yoshiharu; Kletzing, Craig
In this paper, we analyze large-amplitude upper-band chorus emissions measured near the magnetic equator by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument package on board the Van Allen Probes. In setting up the parameters of source electrons exciting the emissions based on theoretical analyses and observational results measured by the Helium Oxygen Proton Electron instrument, we calculate threshold and optimum amplitudes with the nonlinear wave growth theory. We find that the optimum amplitude is larger than the threshold amplitude obtained in the frequency range of the chorus emissions and that the wave amplitudes grow between themore » threshold and optimum amplitudes. Finally, in the frame of the wave growth process, the nonlinear growth rates are much greater than the linear growth rates.« less
NASA Astrophysics Data System (ADS)
Podesta, J. J.
2011-12-01
This year, for the first time, the reduced normalized magnetic helicity spectrum has been analyzed as a function of the angle θ between the local mean magnetic field and the flow direction of the solar wind using wavelet techniques. In fast wind, at scales localized near kρp = 1 and kc/ωpp = 1, where ρp is the thermal proton gyro-radius and c/ωpp is the proton inertial length, the analysis reveals two distinct populations of fluctuations. There is a population of fluctuations at oblique angles, centered about an angle of 90 degrees, which are right hand polarized in the spacecraft frame and are believed to be associated with kinetic Alfven waves although the signal covers a wide range of oblique angles and a satisfactory interpretation of their spectrum through comparison with theory has not yet been obtained. A second population of fluctuations is found at angles near zero degrees which are left-hand polarized in the spacecraft frame. The data indicates that these are parallel propagating electromagnetic waves consisting either of left-hand polarized ion cyclotron waves propagating predominantly away from the sun or right-hand polarized whistler waves propagating predominantly toward the sun along the local mean magnetic field. As a consequence of the Doppler shift, both types of waves have the same polarization in the spacecraft frame. Unfortunately, the wave polarization in the plasma frame is difficult to determine using magnetic field data alone. Whether the observed waves are right- or left hand polarized in the plasma frame is a fundamental problem for future investigations. The analyses of spacecraft data performed so far have assumed that the solar wind velocity is directed radially outward from the sun. However, in the ecliptic plane at 1 AU, the flow direction typically deviates from the radial direction by a few degrees, sometimes more, and this adversely affects measurements of the angular helicity spectrum. To correct this, new measurements obtained using data from the Wind spacecraft use the scale dependent local mean solar wind velocity when computing the angle
A test of the Hall-MHD model: Application to low-frequency upstream waves at Venus
NASA Technical Reports Server (NTRS)
Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.
1994-01-01
Early studies suggested that in the range of parameter space where the wave angular frequency is less than the proton gyrofrequency and the plasma beta, the ratio of the thermal to magnetic pressure, is less than 1 magnetohydrodynamics provides an adequate description of the propagating modes in a plasma. However, recently, Lacombe et al. (1992) have reported significant differences between basic wave characteristics of the specific propagation modes derived from linear Vlasov and Hall-magnetohydrodynamic (MHD) theories even when the waves are only weakly damped. In this paper we compare the magnetic polarization and normalization magnetic compression ratio of ultra low frequency (ULF) upstream waves at Venus with magnetic polarization and normalized magnetic compression ratio derived from both theories. We find that while the 'kinetic' approach gives magnetic polarization and normalized magnetic compression ratio consistent with the data in the analyzed range of beta (0.5 less than beta less than 5) for the fast magnetosonic mode, the same wave characteristics derived from the Hall-MHD model strongly depend on beta and are consistent with the data only at low beta for the fast mode and at high beta for the intermediate mode.
Wave and plasma observations during a compressional Pc 5 wave event August 10, 1982
NASA Technical Reports Server (NTRS)
Engebretson, M. J.; Cahill, L. J., Jr.; Waite, J. H., Jr.; Gallagher, D. L.; Chandler, M. O.; Sugiura, M.
1986-01-01
Magnetometer and thermal plasma instruments on the polar-orbiting Dynamics Explorer 1 satellite observed a small-amplitude ultralow frequency pulsation event at the outer edge of the plasmapause near the geomagnetic equator in the midafternoon sector on August 10, 1982, during the recovery phase of a magnetic storm. Transverse pulsations of 30-50 s period were observed throughout the event, and a 270-s period, purely compressional Pc 5 pulsation with several shifts in phase occurred within + or - 5 deg of the geomagnetic equator. Electric fields and the motion of thermal ions appeared to be in quadrature with pulsations in magnetic field magnitude throughout the event. This suggests that the net Poynting flux for the compressional waves was zero, consistent with their being standing waves. Large fluxes of trapped 90 deg pitch angle 10-eV protons, also symmetric about the geomagnetic equator, were observed in conjunction with the waves. These may serve as a source of free energy for the pulsations. These observations lend support to recent studies suggesting that many dayside compressional wave events are related to localized field line resonance near plasmapauselike boundaries, but also include features that cannot be explained by existing theories.
Wave and plasma observations during a compressional Pc 5 wave event August 10, 1982
NASA Astrophysics Data System (ADS)
Engebretson, M. J.; Cahill, L. J., Jr.; Waite, J. H., Jr.; Gallagher, D. L.; Chandler, M. O.; Sugiura, M.; Weimer, D. R.
1986-06-01
Magnetometer and thermal plasma instruments on the polar-orbiting Dynamics Explorer 1 satellite observed a small-amplitude ultralow frequency pulsation event at the outer edge of the plasmapause near the geomagnetic equator in the midafternoon sector on August 10, 1982, during the recovery phase of a magnetic storm. Transverse pulsations of 30-50 s period were observed throughout the event, and a 270-s period, purely compressional Pc 5 pulsation with several shifts in phase occurred within + or - 5 deg of the geomagnetic equator. Electric fields and the motion of thermal ions appeared to be in quadrature with pulsations in magnetic field magnitude throughout the event. This suggests that the net Poynting flux for the compressional waves was zero, consistent with their being standing waves. Large fluxes of trapped 90 deg pitch angle 10-eV protons, also symmetric about the geomagnetic equator, were observed in conjunction with the waves. These may serve as a source of free energy for the pulsations. These observations lend support to recent studies suggesting that many dayside compressional wave events are related to localized field line resonance near plasmapauselike boundaries, but also include features that cannot be explained by existing theories.
SU-E-T-592: OSL Response of Al2O3:C Detectors Exposed to Therapeutic Proton Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granville, DA; Flint, DB; Sawakuchi, GO
Purpose: To characterize the response of Al{sub 2}O{sub 3}:C optically stimulated luminescence (OSL) detectors (OSLDs) exposed to therapeutic proton beams of differing beam quality. Methods: We prepared Al{sub 2}O{sub 3}:C OSLDs from the same material as commercially available nanoDot dosimeters (Landauer, Inc). We irradiated the OSLDs in modulated proton beams of varying quality, as defined by the residual range. An absorbed dose to water of 0.2 Gy was delivered to all OSLDs with the residual range values varying from 0.5 to 23.5 cm (average LET in water from ∼0.5 to 2.5 keV/µm). To investigate the beam quality dependence of differentmore » emission bands within the OSL spectrum, we performed OSLD readouts using both continuous-wave stimulation (CW-OSL) and pulsed stimulation (P-OSL) with two sets of optical filters (Hoya U-340 and Kopp 5113). For all readout modes, the relative absorbed dose sensitivity ( S{sub rel}) for each beam quality was calculated using OSLDs irradiated in a 6 MV photon beam as a reference. Results: We found that the relative absorbed dose sensitivity was highly dependent on both readout mode and integration time of the OSL signal. For CW-OSL signals containing only the blue emission band, S{sub rel} was between 0.85 and 0.94 for 1 s readouts and between 0.82 and 0.93 for 10 s readouts. Similarly, for P-OSL readouts containing only the blue emission band S{sub rel} ranged from 0.86 to 0.91, and 0.82 to 0.93 for 1 s and 10 s readouts, respectively. For OSLD signals containing only the UV emission band, S{sub rel} ranged from 1.00 to 1.46, and 0.97 to 1.30 for P-OSL readouts of 1 s and 10 s, respectively. Conclusion: For measurements of absorbed dose using Al{sub 2}O{sub 3}:C OSLDs in therapeutic proton beams, dependence on beam quality was smallest for readout protocols that selected the blue emission band with small integration times. DA Granville received financial support from the Natural Sciences and Engineering Research Council of Canada.« less
Deep Dielectric Charging of Spacecraft Polymers by Energetic Protons
NASA Technical Reports Server (NTRS)
Green, Nelson W.; Dennison, J. R.
2007-01-01
The majority of research in the field of spacecraft charging concentrates on electron charging effects with little discussion of charging by protons. For spacecraft orbiting in the traditional LEO and GEO environments this emphasis on electrons is appropriate since energetic electrons are the dominant species in those orbits. But for spacecraft in orbits within the inner radiation belts or for interplanetary and lunar space probes, proton charging (center dot) effects may also be of concern. To examine bulk spacecraft charging effects in these environments several typical highly insulating spacecraft polymers were exposed to energetic protons (center dot) with energies from 1 Me V to lO Me V to simulate protons from the solar wind and from solar energetic proton events. Results indicate that effects in proton charged dielectrics are distinctly different than those observed due to electron charging. In most cases, the positive surface potential continued to increase for periods on the order of minutes to a day, followed by long time scale decay at rates similar to those observed for electron charging. All samples charged to positive potentials with substantially lower magnitudes than for equivalent electron doses. Possible explanations for the different behavior of the measured surface potentials from proton irradiation are discussed; these are related to the evolving internal charge distribution from energy dependent electron and proton transport, electron emission, charge migration due to dark current and radiation induced conductivity, and electron capture by embedded protons.
Waves associated to COMPLEX EVENTS observed by STEREO
NASA Astrophysics Data System (ADS)
Siu Tapia, A. L.; Blanco-Cano, X.; Kajdic, P.; Aguilar-Rodriguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.
2012-12-01
Complex Events are formed by two or more large-scale solar wind structures which interact in space. Typical cases are interactions of: (i) a Magnetic Cloud/Interplanetary Coronal Mass Ejection (MC/ICME) with another MC/ICME transient; and (ii) an ICME followed by a Stream Interaction Region (SIR). Complex Events are of importance for space weather studies and studying them can enhance our understanding of collisionless plasma physics. Some of these structures can produce or enhance southward magnetic fields, a key factor in geomagnetic storm generation. Using data from the STEREO mission during the years 2006-2011, we found 17 Complex Events preceded by a shock wave. We use magnetic field and plasma data to study the micro-scale structure of the shocks, and the waves associated to these shocks and within Complex Events structures. To determine wave characteristics we perform Power Spectra and Minimum Variance Analysis. We also use PLASTIC WAP protons data to study foreshock extensions and the relationship between Complex Regions and particle acceleration to suprathermal energies.
Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry
NASA Technical Reports Server (NTRS)
Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.;
2014-01-01
Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.